Jump to content

Eisenbud–Levine–Khimshiashvili signature formula: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m clean up using AWB
Citation bot (talk | contribs)
Alter: isbn. Add: s2cid. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Afernand74 | #UCB_toolbar
 
(23 intermediate revisions by 14 users not shown)
Line 1: Line 1:
{{Short description|Computes the Poincaré–Hopf index of a real, analytic vector field at a singularity}}
In mathematics, and especially [[differential topology]] and [[singularity theory]], the '''[[D. Eisenbud|Eisenbud]]–Levine–Khimshiashvili signature formula''' gives a way of computing the Poincaré-Hopf [[Index of a vector field|index]] of a [[real valued function|real]], [[Analytic function|analytic]] [[vector field]] at an algebraically isolated singularity.<ref name="arnold et al">{{Citation|first=V. I.|last=Arnold|first2=A. N.|last2=Varchenko|first3=S. M.|last3=Gusein-Zade|title=Singularities of Differentiable Maps: The Classification of Critical Points Caustics, Wave Fronts|publisher=Springer|year=2009|page=84|ISBN=3-642-05204-5}}</ref><ref name="brasselet et al">{{Citation|first=J. P.|last=Brasselet|first2=J.|last2=Seade|first3=T.|last3=Suwa|title=Vector Fields on Singular Varieties|pages=123 − 125|publisher=Springer|year=2009|ISBN=3-642-05204-5}}</ref> It is named after [[David Eisenbud]], [[Harold Levine]], and [[George Khimshiashvili]]. Intuitively, the index of a vector field near a zero is the number of times the vector field wraps around the sphere. Because analytic vector fields have a rich algebraic structure, the techniques of [[commutative algebra]] can be brought to bear to compute their index. The signature formula expresses the index of an analytic vector field in terms of the [[signature of a quadratic form|signature]] of a certain [[quadratic form]].
In mathematics, and especially [[differential topology]] and [[singularity theory]], the '''Eisenbud–Levine–Khimshiashvili signature formula''' gives a way of computing the Poincaré–Hopf [[Index of a vector field|index]] of a [[real valued function|real]], [[Analytic function|analytic]] [[vector field]] at an algebraically isolated singularity.<ref name="arnold et al">{{cite book|first1=Vladimir I.|last1=Arnold|author1-link=Vladimir Arnold|first2=Alexander N.| last2=Varchenko|author2-link=Alexander Varchenko|first3=Sabir M.|last3=Gusein-Zade|author3-link=Sabir Gusein-Zade| title=Singularities of differentiable maps. Vol. I. The classification of critical points, caustics and wave fronts| translator= Ian Porteous and Mark Reynolds| publisher=Birkhäuser|location= Boston, MA|series= Monographs in Mathematics|volume= 82|year=2009|page=84|isbn=978-0-8176-3187-1|mr=0777682|doi=10.1007/978-1-4612-5154-5}}</ref><ref name="brasselet et al">{{Citation|first1=Jean-Paul|last1=Brasselet| first2=José|last2=Seade|first3=Tatsuo|last3=Suwa|title=Vector fields on singular varieties|pages=123–125|publisher=Springer|location=Berlin|year=2009|isbn=978-3-642-05204-0|mr=2574165|doi=10.1007/978-3-642-05205-7}}</ref> It is named after [[David Eisenbud]], [[Harold I. Levine]], and [[George Khimshiashvili]]. Intuitively, the index of a vector field near a zero is the number of times the vector field wraps around the sphere. Because analytic vector fields have a rich algebraic structure, the techniques of [[commutative algebra]] can be brought to bear to compute their index. The signature formula expresses the index of an analytic vector field in terms of the [[signature of a quadratic form|signature]] of a certain [[quadratic form]].


== Nomenclature ==
== Nomenclature ==
Consider the [[Real coordinate space|''n''-dimensional space]] '''R'''<sup>''n''</sup>. Assume that '''R'''<sup>''n''</sup> has some fixed [[coordinate system]], and write '''x''' for a point in '''R'''<sup>''n''</sup>, where {{nowrap|1='''x''' = (''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>).}}


Consider the [[Real coordinate space|''n''-dimensional space]] '''R'''<sup>''n''</sup>. Assume that '''R'''<sup>''n''</sup> has some fixed [[coordinate system]], and write '''x''' for a point in '''R'''<sup>''n''</sup>, where {{nowrap|1='''x''' = (''x''<sub>1</sub>, &hellip;, ''x''<sub>''n''</sub>).}}
Let ''X'' be a [[vector field]] on '''R'''<sup>''n''</sup>. For {{nowrap|1=1 ≤ ''k''''n''}} there exist [[Function (mathematics)|functions]] {{nowrap|1=ƒ<sub>''k''</sub> : '''R'''<sup>''n''</sup> '''R'''}} such that one may express ''X'' as
:<math> X = f_1({\mathbf x})\,\frac{\partial}{\partial x_1} + \cdots + f_n({\mathbf x})\,\frac{\partial}{\partial x_n} . </math>


To say that ''X'' is an ''analytic vector field'' means that each of the functions {{nowrap|1=ƒ<sub>''k''</sub> : '''R'''<sup>''n''</sup> → '''R'''}} is an [[analytic function]]. One says that ''X'' is ''singular'' at a point '''p''' in '''R'''<sup>''n''</sup> (or that '''p''' is a ''singular point'' of ''X'') if {{nowrap|1=''X''('''p''') = 0}}, i.e. ''X'' vanishes at '''p'''. In terms of the functions {{nowrap|1=ƒ<sub>''k''</sub> : '''R'''<sup>''n''</sup> → '''R'''}} it means that {{nowrap|1=ƒ<sub>''k''</sub>('''p''') = 0}} for all {{nowrap|1=1 ≤ ''k'' ≤ ''n''}}. A singular point '''p''' of ''X'' is called ''isolated'' (or that '''p''' is an ''isolated singularity'' of ''X'') if {{nowrap|1=''X''('''p''') = 0}} and there exists an [[open neighbourhood]] {{nowrap|1=''U'' ⊆ '''R'''<sup>''n''</sup>}}, containing '''p''', such that {{nowrap|1=''X''('''q''') ≠ 0}} for all '''q''' in ''U'', different from '''p'''. An isolated singularity of ''X'' is called algebraically isolated if, when considered over the [[complex domain]], it remains isolated.<ref>{{cite journal|last=Arnold|first= Vladimir I.|authorlink=Vladimir Arnold|title=The index of a singular point of a vector field, the Petrovskiĭ-Oleĭnik inequalities, and mixed Hodge structures|journal=Functional Analysis and Its Applications|pages=1–12|volume=12|issue=1|year=1978|doi=10.1007/BF01077558|mr=0498592|s2cid= 123306360}}</ref><ref name="gomez">{{cite journal|last1=Gómex Mont|first1= Xavier |last2=Mardešić|first2= Pavao |title=The index of a vector field tangent to a hypersurface and the signature of the relative Jacobian determinant|journal=[[Annales de l'Institut Fourier]]|issue=47|volume=5|year=1997|pages=1523–1539|url=http://aif.cedram.org/item?id=AIF_1997__47_5_1523_0|mr=1600363}}</ref>
Let ''X'' be a [[vector field]] on '''R'''<sup>''n''</sup>. For {{nowrap|1=1 ≤ ''k'' ≤ ''n''}} there exist [[Function (mathematics)|function]]s {{nowrap|1=ƒ<sub>''k''</sub> : '''R'''<sup>''n''</sup> → '''R'''}} such that one may express ''X'' as
:<math> X = f_1({\bold x})\,\frac{\partial}{\partial x_1} + \cdots + f_n({\bold x})\,\frac{\partial}{\partial x_n} . </math>


Since the Poincaré–Hopf index ''at a point'' is a purely local invariant (cf. [[Poincaré–Hopf theorem]]), one may restrict one's study to that of [[germ (mathematics)|germs]]. Assume that each of the ƒ<sub>''k''</sub> from above are ''function germs'', i.e. {{nowrap|1=ƒ<sub>''k''</sub> : ('''R'''<sup>''n''</sup>,0) → ('''R''',0).}} In turn, one may call ''X'' a ''vector field germ''.
To say that ''X'' is an ''analytic vector field'' means that each of the functions {{nowrap|1=ƒ<sub>''k''</sub> : '''R'''<sup>''n''</sup> → '''R'''}} is an [[analytic function]]. One says that ''X'' is ''singular'' at a point '''p''' in '''R'''<sup>''n''</sup> (or that '''p''' is a ''singular point'' of ''X'') if {{nowrap|1=''X''('''p''') = 0}}, i.e. ''X'' vanishes at '''p'''. In terms of the functions {{nowrap|1=ƒ<sub>''k''</sub> : '''R'''<sup>''n''</sup> → '''R'''}} it means that {{nowrap|1=ƒ<sub>''k''</sub>('''p''') = 0}} for all {{nowrap|1=1 ≤ ''k'' ≤ ''n''}}. A singular point '''p''' of ''X'' is called ''isolated'' (or that '''p''' is an ''isolated singularity'' of ''X'') if {{nowrap|1=''X''('''p''') = 0}} and there exists an [[open neighbourhood]] {{nowrap|1=''U'' ⊆ '''R'''<sup>''n''</sup>}}, containing '''p''', such that {{nowrap|1=''X''('''q''') ≠ 0}} for all '''q''' in ''U'', different from '''p'''. An isolated singularity of ''X'' is called algebraically isolated if, when considered over the [[complex domain]], it remains isolated.<ref>{{cite journal|author=Arnold, V. I.|title=Index of a singular point of a vector field, the Petrovskii — Oleinik inequality, and mixed hodge structures|journal=Functional Analysis and Its Applications|publisher=Springer New York|issn=0016-2663|pages=1 − 12|volume=12|issue=1|url=http://www.springerlink.com/content/g445136165070240|year=1978}}</ref><ref name="gomez">{{cite journal|author1=Gómex Mont, X. |author2=Mardešić, P. |title=The index of a vector field tangent to a hypersurface and the signature of the relative jacobian determinant|journal=[[Annales de l'Institut Fourier]]|issue=47|volume=5|year=1997|pages=1523 − 1539|url=http://aif.cedram.org/item?id=AIF_1997__47_5_1523_0}}</ref>

Since the Poincaré-Hopf index ''at a point'' is a purely local invariant (cf. [[Poincaré-Hopf theorem]]), one may restrict one's study to that of [[germ (mathematics)|germs]]. Assume that each of the ƒ<sub>''k''</sub> from above are ''function germs'', i.e. {{nowrap|1=ƒ<sub>''k''</sub> : ('''R'''<sup>''n''</sup>,0) → ('''R''',0).}} In turn, one may call ''X'' a ''vector field germ''.


== Construction ==
== Construction ==

Let ''A''<sub>''n'',0</sub> denote the [[ring (mathematics)|ring]] of analytic function germs {{nowrap|1=('''R'''<sup>''n''</sup>,0) → ('''R''',0)}}. Assume that ''X'' is a vector field germ of the form
Let ''A''<sub>''n'',0</sub> denote the [[ring (mathematics)|ring]] of analytic function germs {{nowrap|1=('''R'''<sup>''n''</sup>,0) → ('''R''',0)}}. Assume that ''X'' is a vector field germ of the form
:<math> X = f_1({\bold x})\,\frac{\partial}{\partial x_1} + \cdots + f_n({\bold x})\,\frac{\partial}{\partial x_n} </math>
:<math> X = f_1({\mathbf x})\,\frac{\partial}{\partial x_1} + \cdots + f_n({\mathbf x})\,\frac{\partial}{\partial x_n} </math>
with an algebraicially isolated singularity at 0. Where, as mentioned above, each of the ƒ<sub>''k''</sub> are function germs {{nowrap|1=('''R'''<sup>''n''</sup>,0) → ('''R''',0)}}. Denote by ''I<sub>X''</sub> the [[Ideal (ring theory)|ideal]] generated by the ƒ<sub>''k''</sub>, i.e. {{nowrap|1=''I<sub>X''</sub> = (ƒ<sub>1</sub>, &hellip;, ƒ<sub>''n''</sub>).}} Then one considers the [[local algebra]], ''B<sub>X''</sub>, given by the [[Quotient ring|quotient]]
with an algebraically isolated singularity at 0. Where, as mentioned above, each of the ƒ<sub>''k''</sub> are function germs {{nowrap|1=('''R'''<sup>''n''</sup>,0) → ('''R''',0)}}. Denote by ''I<sub>X</sub>'' the [[Ideal (ring theory)|ideal]] generated by the ƒ<sub>''k''</sub>, i.e. {{nowrap|1=''I<sub>X</sub>'' = (ƒ<sub>1</sub>, , ƒ<sub>''n''</sub>).}} Then one considers the [[local algebra]], ''B<sub>X</sub>'', given by the [[Quotient ring|quotient]]
:<math> B_X := A_{n,0} / I_X \, . </math>
:<math> B_X := A_{n,0} / I_X \, . </math>


The Eisenbud–Levine–Khimshiashvili signature formula gives the index of the vector field ''X'', at 0, by assigning a non-degenerate [[bilinear form]] on the local algebra ''B<sub>X''</sub>. The [[Signature of a quadratic form|signature]] of this non-degenerate bilinear form being equal to the index of ''X''.<ref name="brasselet et al"/><ref name="gomez"/><ref>{{cite journal|author1=Eisenbud, D. |author2=Levine, H. I. |title=An Algebraic Formula for the Degree of a ''C''<sup>∞</sup> Map Germ|journal=The Annals of Mathematics|volume=106|issue=1|year=1977|pages=19–38|jstor=1971156}}</ref>
The Eisenbud–Levine–Khimshiashvili signature formula states that the index of the vector field ''X'' at 0 is given by the [[Signature of a quadratic form|signature]] of a certain non-degenerate [[bilinear form]] (to be defined below) on the local algebra ''B<sub>X</sub>''.<ref name="brasselet et al" /><ref name="gomez" /><ref>{{cite journal|last1=Eisenbud|first1= David|author1-link=David Eisenbud |last2=Levine| first2= Harold I. |author2-link= Harold I. Levine| title=An algebraic formula for the degree of a ''C''<sup>∞</sup> map germ|journal=[[Annals of Mathematics]]|volume=106|issue=1|year=1977|pages=19–38|jstor=1971156|doi=10.2307/1971156|mr=0467800}}</ref>


The dimension of ''B<sub>X''</sub> is finite if and only if the [[complexification]] of ''X'' has an isolated singularity at 0 in '''C'''<sup>''n''</sup>; i.e. ''X'' has an algebraically isolated singularity at 0 in '''R'''<sup>''n''</sup>.<ref name="brasselet et al"/> In this case, ''B<sub>X''</sub> will be a finite-dimensional, [[algebra (mathematics)|real algebra]].
The dimension of <math>B_X</math> is finite if and only if the [[complexification]] of ''X'' has an isolated singularity at 0 in '''C'''<sup>''n''</sup>; i.e. ''X'' has an algebraically isolated singularity at 0 in '''R'''<sup>''n''</sup>.<ref name="brasselet et al" /> In this case, ''B<sub>X</sub>'' will be a finite-dimensional, [[algebra (mathematics)|real algebra]].


=== Definition of the bilinear form ===
=== Definition of the bilinear form ===

Using the analytic components of ''X'', one defines another analytic germ {{nowrap|1=F : ('''R'''<sup>''n''</sup>,0) → ('''R'''<sup>''n''</sup>,0)}} given by
Using the analytic components of ''X'', one defines another analytic germ {{nowrap|1=F : ('''R'''<sup>''n''</sup>,0) → ('''R'''<sup>''n''</sup>,0)}} given by
:<math> F({\bold x}) := (f_1({\bold x}), \ldots, f_n({\bold x})) , </math>
:<math> F({\mathbf x}) := (f_1({\mathbf x}), \ldots, f_n({\mathbf x})) , </math>
for all {{nowrap|1='''x''' ∈ '''R'''<sup>''n''</sup>}}. Let {{nowrap|1=J<sub>''F''</sub> ∈ ''A''<sub>''n'',0</sub>}} denote the [[determinant]] of the [[Jacobian matrix]] of ''F'' with respect to the [[Basis (linear algebra)|basis]] {{nowrap|1={∂/∂''x''<sub>1</sub>, &hellip;, ∂/∂''x<sub>n''</sub>}.}} Finally, let {{nowrap|1=[J<sub>''F''</sub>] ∈ ''B<sub>X''</sub>}} denote the [[equivalence class]] of J<sub>''F''</sub>, [[modular arithmetic|modulo]] ''I<sub>X''</sub>. Using ∗ to denote multiplication in ''B<sub>X''</sub> one is able to define a non-degenerate bilinear form β as follows:<ref name="brasselet et al"/><ref name="gomez"/>
for all {{nowrap|1='''x''' ∈ '''R'''<sup>''n''</sup>}}. Let {{nowrap|1=J<sub>''F''</sub> ∈ ''A''<sub>''n'',0</sub>}} denote the [[determinant]] of the [[Jacobian matrix]] of ''F'' with respect to the [[Basis (linear algebra)|basis]] {{nowrap|1={∂/∂''x''<sub>1</sub>, , ∂/∂''x<sub>n</sub>''}.}} Finally, let {{nowrap|1=[J<sub>''F''</sub>] ∈ ''B<sub>X</sub>''}} denote the [[equivalence class]] of J<sub>''F''</sub>, [[modular arithmetic|modulo]] ''I<sub>X</sub>''. Using ∗ to denote multiplication in ''B<sub>X</sub>'' one is able to define a non-degenerate bilinear form β as follows:<ref name="brasselet et al" /><ref name="gomez" />
:<math> \beta : B_X \times B_X \stackrel{*}{\longrightarrow} B_X \stackrel{\ell}{\longrightarrow} \R; \ \ \beta(g,h) = \ell(g*h) , </math>
:<math> \beta : B_X \times B_X \stackrel{*}{\longrightarrow} B_X \stackrel{\ell}{\longrightarrow} \R; \ \ \beta(g,h) = \ell(g*h) , </math>

where <math>\scriptstyle \ell</math> is ''any'' linear function such that
where <math>\scriptstyle \ell</math> is ''any'' linear function such that
:<math> \ell \left( \left[ J_F \right] \right) > 0 . </math>
:<math> \ell \left( \left[ J_F \right] \right) > 0 . </math>
As mentioned: the signature of β is exactly the signature of ''X'' at 0.
As mentioned: the signature of β is exactly the index of ''X'' at 0.


== Example ==
== Example ==

Consider the case {{nowrap|1=''n'' = 2}} of a vector field on the plane. Consider the case where ''X'' is given by
Consider the case {{nowrap|1=''n'' = 2}} of a vector field on the plane. Consider the case where ''X'' is given by
:<math>X := (x^3 - 3xy^2) \, \frac{\partial}{\partial x} + (3x^2y - y^3) \, \frac{\partial}{\partial y} . </math>
:<math>X := (x^3 - 3xy^2) \, \frac{\partial}{\partial x} + (3x^2y - y^3) \, \frac{\partial}{\partial y} . </math>
Clearly ''X'' has an algebraically isolated singularity at 0 since {{nowrap|1=''X'' = 0}} if and only if {{nowrap|1=''x'' = ''y'' = 0.}} The ideal ''I<sub>X''</sub> is given by {{nowrap|1=(''x''<sup>3</sup> − 3''xy''<sup>2</sup>, 3''x''<sup>2</sup>''y'' − ''y''<sup>3</sup>),}} and
Clearly ''X'' has an algebraically isolated singularity at 0 since {{nowrap|1=''X'' = 0}} if and only if {{nowrap|1=''x'' = ''y'' = 0.}} The ideal ''I<sub>X</sub>'' is given by {{nowrap|1=(''x''<sup>3</sup> − 3''xy''<sup>2</sup>, 3''x''<sup>2</sup>''y'' − ''y''<sup>3</sup>),}} and


:<math> B_X = A_{2,0} / (x^3 - 3xy^2, 3x^2y - y^3) \cong \R\langle 1, x, y, x^2, xy, y^2, xy^2, y^3, y^4 \rangle . </math>
:<math> B_X = A_{2,0} / (x^3 - 3xy^2, 3x^2y - y^3) \cong \R\langle 1, x, y, x^2, xy, y^2, xy^2, y^3, y^4 \rangle . </math>


The first step for finding the non-degenerate, bilinear form β is to calculate the multiplication table of ''B<sub>X''</sub>; reducing each entry modulo ''I<sub>X''</sub>. Whence
The first step for finding the non-degenerate, bilinear form β is to calculate the multiplication table of ''B<sub>X</sub>''; reducing each entry modulo ''I<sub>X</sub>''. Whence

<center>
{| class="wikitable"
{| class="wikitable" style="text-align:center;margin:1em auto;"
!∗
!1
!''x''
!''y''
!''x''<sup>2</sup>
!''xy''
!''y''<sup>2</sup>
!''xy''<sup>2</sup>
!''y''<sup>3</sup>
!''y''<sup>4</sup>
|-
|-
!1
!<center>∗</center>
|1
!<center>1</center>
!<center>''x''</center>
|''x''
!<center>''y''</center>
|''y''
!<center>''x''<sup>2</sup></center>
|''x''<sup>2</sup>
!<center>''xy''</center>
|''xy''
!<center>''y''<sup>2</sup></center>
|''y''<sup>2</sup>
!<center>''xy''<sup>2</sup></center>
|''xy''<sup>2</sup>
!<center>''y''<sup>3</sup></center>
|''y''<sup>3</sup>
!<center>''y''<sup>4</sup></center>
|''y''<sup>4</sup>
|-
|-
!''x''
!<center>1</center>
|''x''
|<center>1</center>
|<center>''x''</center>
|''x''<sup>2</sup>
|<center>''y''</center>
|''xy''
|<center>''x''<sup>2</sup></center>
|3''xy''<sup>3</sup>
|<center>''xy''</center>
|''y''<sup>3</sup>/3
|<center>''y''<sup>2</sup></center>
|''xy''<sup>2</sup>
|<center>''xy''<sup>2</sup></center>
|''y''<sup>4</sup>/3
|0
|<center>''y''<sup>3</sup></center>
|0
|<center>''y''<sup>4</sup></center>
|-
|-
!<center>''x''</center>
!''y''
|<center>''x''</center>
|''y''
|''xy''
|<center>''x''<sup>2</sup></center>
|<center>''xy''</center>
|''y''<sup>2</sup>
|<center>3''xy''<sup>3</sup></center>
|''y''<sup>3</sup>/3
|<center>''y''<sup>3</sup>/3</center>
|''xy''<sup>2</sup>
|<center>''xy''<sup>2</sup></center>
|''y''<sup>3</sup>
|0
|<center>''y''<sup>4</sup>/3</center>
|<center>0</center>
|''y''<sup>4</sup>
|0
|<center>0</center>
|-
|-
!<center>''y''</center>
!''x''<sup>2</sup>
|<center>''y''</center>
|''x''<sup>2</sup>
|<center>''xy''</center>
|3''xy''<sup>2</sup>
|<center>''y''<sup>2</sup></center>
|''y''<sup>3</sup>/3
|<center>''y''<sup>3</sup>/3</center>
|''y''<sup>4</sup>
|0
|<center>''xy''<sup>2</sup></center>
|<center>''y''<sup>3</sup></center>
|''y''<sup>4</sup>/3
|0
|<center>0</center>
|0
|<center>''y''<sup>4</sup></center>
|0
|<center>0</center>
|-
|-
!''xy''
!<center>''x''<sup>2</sup></center>
|''xy''
|<center>''x''<sup>2</sup></center>
|<center>3''xy''<sup>2</sup></center>
|''y''<sup>3</sup>/3
|<center>''y''<sup>3</sup>/3</center>
|''xy''<sup>2</sup>
|0
|<center>''y''<sup>4</sup></center>
|<center>0</center>
|''y''<sup>4</sup>/3
|0
|<center>''y''<sup>4</sup>/3</center>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|-
|-
!<center>''xy''</center>
!''y''<sup>2</sup>
|<center>''xy''</center>
|''y''<sup>2</sup>
|<center>''y''<sup>3</sup>/3</center>
|''xy''<sup>2</sup>
|<center>''xy''<sup>2</sup></center>
|''y''<sup>3</sup>
|<center>0</center>
|''y''<sup>4</sup>/3
|0
|<center>''y''<sup>4</sup>/3</center>
|<center>0</center>
|''y''<sup>4</sup>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|-
|-
!<center>''y''<sup>2</sup></center>
!''xy''<sup>2</sup>
|<center>''y''<sup>2</sup></center>
|''xy''<sup>2</sup>
|<center>''xy''<sup>2</sup></center>
|''y''<sup>4</sup>/3
|0
|<center>''y''<sup>3</sup></center>
|0
|<center>''y''<sup>4</sup>/3</center>
|0
|<center>0</center>
|0
|<center>''y''<sup>4</sup></center>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|-
|-
!<center>''xy''<sup>2</sup></center>
!''y''<sup>3</sup>
|<center>''xy''<sup>2</sup></center>
|''y''<sup>3</sup>
|0
|<center>''y''<sup>4</sup>/3</center>
|<center>0</center>
|''y''<sup>4</sup>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|-
|-
!<center>''y''<sup>3</sup></center>
!''y''<sup>4</sup>
|<center>''y''<sup>3</sup></center>
|''y''<sup>4</sup>
|0
|<center>0</center>
|0
|<center>''y''<sup>4</sup></center>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|0
|<center>0</center>
|-
|}
!<center>''y''<sup>4</sup></center>
|<center>''y''<sup>4</sup></center>
|<center>0</center>
|<center>0</center>
|<center>0</center>
|<center>0</center>
|<center>0</center>
|<center>0</center>
|<center>0</center>
|<center>0</center>
|-
|} </center>
Direct calculation shows that {{nowrap|1=J<sub>''F''</sub> = 9(''x''<sup>4</sup> + 2''x''<sup>2</sup>''y''<sup>2</sup> + ''y''<sup>4</sup>)}}, and so {{nowrap|1=[J<sub>''F''</sub>] = 24''y''<sup>4</sup>.}} Next one assigns values for <math>\scriptstyle \ell</math>. One may take
Direct calculation shows that {{nowrap|1=J<sub>''F''</sub> = 9(''x''<sup>4</sup> + 2''x''<sup>2</sup>''y''<sup>2</sup> + ''y''<sup>4</sup>)}}, and so {{nowrap|1=[J<sub>''F''</sub>] = 24''y''<sup>4</sup>.}} Next one assigns values for <math>\scriptstyle \ell</math>. One may take
:<math> \ell(1) = \ell(x) = \ell(y) = \ell(x^2) = \ell(xy) = \ell(y^2) = \ell(xy^2) = \ell(y^3) = 0, \ \text{and} \ \ell(y^4) = 3 .</math>
:<math> \ell(1) = \ell(x) = \ell(y) = \ell(x^2) = \ell(xy) = \ell(y^2) = \ell(xy^2) = \ell(y^3) = 0, \ \text{and} \ \ell(y^4) = 3 .</math>
This choice was made so that <math>\scriptstyle \ell\left( \left[ J_F \right] \right) \, > \, 0</math> as was required by the hypothesis, and to make the calculations involve integers, as aposed to fractions. Applying this to the multiplication table gives the matrix representation of the bilinear form β with respect to the given basis:
This choice was made so that <math>\scriptstyle \ell\left( \left[ J_F \right] \right) \, > \, 0</math> as was required by the hypothesis, and to make the calculations involve integers, as opposed to fractions. Applying this to the multiplication table gives the matrix representation of the bilinear form β with respect to the given basis:
:<center><math> \left[ \begin{array}{ccccccccc}
<math display="block"> \left[ \begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array} \right] </math></center>
\end{array} \right] </math>
The [[eigenvalue]]s of this matrix are {{nowrap|1=−3, −3, −1, 1, 1, 2, 3, 3 and 4.}} There are 3 negative eigenvalues ({{nowrap|1=#''N'' = 3}}), and six positive eigenvalues ({{nowrap|1=#''P'' = 6}}); meaning that the signature of β is {{nowrap|1=#''P'' − #''N'' = 6 − 3 = +3}}. It follows that ''X'' has Poincaré-Hopf index +3 at the origin.
The [[eigenvalue]]s of this matrix are {{nowrap|1=−3, −3, −1, 1, 1, 2, 3, 3 and 4}} There are 3 negative eigenvalues ({{nowrap|1=#''N'' = 3}}), and six positive eigenvalues ({{nowrap|1=#''P'' = 6}}); meaning that the signature of β is {{nowrap|1=#''P'' − #''N'' = 6 − 3 = +3}}. It follows that ''X'' has Poincaré–Hopf index +3 at the origin.


== Topological verification ==
== Topological verification ==
With this particular choice of ''X'' it is possible to verify the Poincaré–Hopf index is +3 by a direct application of the definition of Poincaré–Hopf index.<ref name="milnor">{{Citation|first=John W.|last=Milnor|authorlink=John Milnor|title=Topology from the Differentiable Viewpoint|publisher=[[Princeton University Press]]|year=1997|isbn=978-0-691-04833-8}}</ref> '''This is very rarely the case, and was the reason for the choice of example'''. If one takes [[polar coordinates]] on the plane, i.e. {{nowrap|1=''x'' = ''r''&nbsp;cos(θ)}} and {{nowrap|1=''y'' = ''r''&nbsp;sin(θ)}} then {{nowrap|1=''x''<sup>3</sup> − 3''xy''<sup>2</sup> = ''r''<sup>3</sup>cos(3θ)}} and {{nowrap|1=3''x''<sup>2</sup>''y'' − ''y''<sup>3</sup> = ''r''<sup>3</sup>sin(3θ).}} Restrict ''X'' to a circle, centre 0, radius {{nowrap|1= 0 < ε ≪ 1}}, denoted by ''C''<sub>0,ε</sub>; and consider the map {{nowrap|1=''G'' : ''C''<sub>0,ε</sub> → ''C''<sub>0,1</sub>}} given by

:<math> G\colon X \longmapsto \frac{X}{||X||} .</math>
With this particular choice of ''X'' it is possible to verify the Poincaré-Hopf index is +3 by a direct application of the definition of Poincaré-Hopf index.<ref name="milnor">{{Citation|first=J. W.|last=Milnor|title=Topology from the Differentiable Viewpoint|publisher=Princeton University Press|year=1997|ISBN=0-691-04833-9}}</ref> '''This is very rarely the case, and was the reason for the choice of example'''. If one takes [[polar coordinates]] on the plane, i.e. {{nowrap|1=''x'' = ''r''&nbsp;cos(θ)}} and {{nowrap|1=''y'' = ''r''&nbsp;sin(θ)}} then {{nowrap|1=''x''<sup>3</sup> − 3''xy''<sup>2</sup> = ''r''<sup>3</sup>cos(3θ)}} and {{nowrap|1=3''x''<sup>2</sup>''y'' − ''y''<sup>3</sup> = ''r''<sup>3</sup>sin(3θ).}} Restrict ''X'' to a circle, centre 0, radius {{nowrap|1= 0 < ε ≪ 1}}, denoted by ''C''<sub>0,ε</sub>; and consider the map {{nowrap|1=''G'' : ''C''<sub>0,ε</sub> → ''C''<sub>0,1</sub>}} given by
The Poincaré–Hopf index of ''X'' is, by definition, the [[topological degree]] of the map ''G''.<ref name="milnor" /> Restricting ''X'' to the circle ''C''<sub>0,ε</sub>, for arbitrarily small ε, gives
:<math> G: X \longmapsto \frac{X}{||X||} .</math>
The Poincaré-Hopf index of ''X'' is, by definition, the [[topological degree]] of the map ''G''.<ref name="milnor"/> Restricting ''X'' to the circle ''C''<sub>0,ε</sub>, for arbitrarily small ε, gives
:<math> G(\theta) = (\cos(3\theta),\sin(3\theta)) , \, </math>
:<math> G(\theta) = (\cos(3\theta),\sin(3\theta)) , \, </math>
meaning that as θ makes one rotation about the circle ''C''<sub>0,ε</sub> in an anti-clockwise direction; the image ''G''(θ) makes three complete, anti-clockwise rotations about the unit circle ''C''<sub>0,1</sub>. Meaning that the topological degree of ''G'' is +3 and that the Poincaré-Hopf index of ''X'' at 0 is +3.<ref name="milnor"/>
meaning that as θ makes one rotation about the circle ''C''<sub>0,ε</sub> in an anti-clockwise direction; the image ''G''(θ) makes three complete, anti-clockwise rotations about the unit circle ''C''<sub>0,1</sub>. Meaning that the topological degree of ''G'' is +3 and that the Poincaré–Hopf index of ''X'' at 0 is +3.<ref name="milnor" />


== References ==
== References ==

Latest revision as of 14:40, 6 November 2022

In mathematics, and especially differential topology and singularity theory, the Eisenbud–Levine–Khimshiashvili signature formula gives a way of computing the Poincaré–Hopf index of a real, analytic vector field at an algebraically isolated singularity.[1][2] It is named after David Eisenbud, Harold I. Levine, and George Khimshiashvili. Intuitively, the index of a vector field near a zero is the number of times the vector field wraps around the sphere. Because analytic vector fields have a rich algebraic structure, the techniques of commutative algebra can be brought to bear to compute their index. The signature formula expresses the index of an analytic vector field in terms of the signature of a certain quadratic form.

Nomenclature

[edit]

Consider the n-dimensional space Rn. Assume that Rn has some fixed coordinate system, and write x for a point in Rn, where x = (x1, …, xn).

Let X be a vector field on Rn. For 1 ≤ kn there exist functions ƒk : RnR such that one may express X as

To say that X is an analytic vector field means that each of the functions ƒk : RnR is an analytic function. One says that X is singular at a point p in Rn (or that p is a singular point of X) if X(p) = 0, i.e. X vanishes at p. In terms of the functions ƒk : RnR it means that ƒk(p) = 0 for all 1 ≤ kn. A singular point p of X is called isolated (or that p is an isolated singularity of X) if X(p) = 0 and there exists an open neighbourhood URn, containing p, such that X(q) ≠ 0 for all q in U, different from p. An isolated singularity of X is called algebraically isolated if, when considered over the complex domain, it remains isolated.[3][4]

Since the Poincaré–Hopf index at a point is a purely local invariant (cf. Poincaré–Hopf theorem), one may restrict one's study to that of germs. Assume that each of the ƒk from above are function germs, i.e. ƒk : (Rn,0) → (R,0). In turn, one may call X a vector field germ.

Construction

[edit]

Let An,0 denote the ring of analytic function germs (Rn,0) → (R,0). Assume that X is a vector field germ of the form

with an algebraically isolated singularity at 0. Where, as mentioned above, each of the ƒk are function germs (Rn,0) → (R,0). Denote by IX the ideal generated by the ƒk, i.e. IX = (ƒ1, …, ƒn). Then one considers the local algebra, BX, given by the quotient

The Eisenbud–Levine–Khimshiashvili signature formula states that the index of the vector field X at 0 is given by the signature of a certain non-degenerate bilinear form (to be defined below) on the local algebra BX.[2][4][5]

The dimension of is finite if and only if the complexification of X has an isolated singularity at 0 in Cn; i.e. X has an algebraically isolated singularity at 0 in Rn.[2] In this case, BX will be a finite-dimensional, real algebra.

Definition of the bilinear form

[edit]

Using the analytic components of X, one defines another analytic germ F : (Rn,0) → (Rn,0) given by

for all xRn. Let JFAn,0 denote the determinant of the Jacobian matrix of F with respect to the basis {∂/∂x1, …, ∂/∂xn}. Finally, let [JF] ∈ BX denote the equivalence class of JF, modulo IX. Using ∗ to denote multiplication in BX one is able to define a non-degenerate bilinear form β as follows:[2][4]

where is any linear function such that

As mentioned: the signature of β is exactly the index of X at 0.

Example

[edit]

Consider the case n = 2 of a vector field on the plane. Consider the case where X is given by

Clearly X has an algebraically isolated singularity at 0 since X = 0 if and only if x = y = 0. The ideal IX is given by (x3 − 3xy2, 3x2yy3), and

The first step for finding the non-degenerate, bilinear form β is to calculate the multiplication table of BX; reducing each entry modulo IX. Whence

1 x y x2 xy y2 xy2 y3 y4
1 1 x y x2 xy y2 xy2 y3 y4
x x x2 xy 3xy3 y3/3 xy2 y4/3 0 0
y y xy y2 y3/3 xy2 y3 0 y4 0
x2 x2 3xy2 y3/3 y4 0 y4/3 0 0 0
xy xy y3/3 xy2 0 y4/3 0 0 0 0
y2 y2 xy2 y3 y4/3 0 y4 0 0 0
xy2 xy2 y4/3 0 0 0 0 0 0 0
y3 y3 0 y4 0 0 0 0 0 0
y4 y4 0 0 0 0 0 0 0 0

Direct calculation shows that JF = 9(x4 + 2x2y2 + y4), and so [JF] = 24y4. Next one assigns values for . One may take

This choice was made so that as was required by the hypothesis, and to make the calculations involve integers, as opposed to fractions. Applying this to the multiplication table gives the matrix representation of the bilinear form β with respect to the given basis: The eigenvalues of this matrix are −3, −3, −1, 1, 1, 2, 3, 3 and 4 There are 3 negative eigenvalues (#N = 3), and six positive eigenvalues (#P = 6); meaning that the signature of β is #P − #N = 6 − 3 = +3. It follows that X has Poincaré–Hopf index +3 at the origin.

Topological verification

[edit]

With this particular choice of X it is possible to verify the Poincaré–Hopf index is +3 by a direct application of the definition of Poincaré–Hopf index.[6] This is very rarely the case, and was the reason for the choice of example. If one takes polar coordinates on the plane, i.e. x = r cos(θ) and y = r sin(θ) then x3 − 3xy2 = r3cos(3θ) and 3x2yy3 = r3sin(3θ). Restrict X to a circle, centre 0, radius 0 < ε ≪ 1, denoted by C0,ε; and consider the map G : C0,εC0,1 given by

The Poincaré–Hopf index of X is, by definition, the topological degree of the map G.[6] Restricting X to the circle C0,ε, for arbitrarily small ε, gives

meaning that as θ makes one rotation about the circle C0,ε in an anti-clockwise direction; the image G(θ) makes three complete, anti-clockwise rotations about the unit circle C0,1. Meaning that the topological degree of G is +3 and that the Poincaré–Hopf index of X at 0 is +3.[6]

References

[edit]
  1. ^ Arnold, Vladimir I.; Varchenko, Alexander N.; Gusein-Zade, Sabir M. (2009). Singularities of differentiable maps. Vol. I. The classification of critical points, caustics and wave fronts. Monographs in Mathematics. Vol. 82. Translated by Ian Porteous and Mark Reynolds. Boston, MA: Birkhäuser. p. 84. doi:10.1007/978-1-4612-5154-5. ISBN 978-0-8176-3187-1. MR 0777682.
  2. ^ a b c d Brasselet, Jean-Paul; Seade, José; Suwa, Tatsuo (2009), Vector fields on singular varieties, Berlin: Springer, pp. 123–125, doi:10.1007/978-3-642-05205-7, ISBN 978-3-642-05204-0, MR 2574165
  3. ^ Arnold, Vladimir I. (1978). "The index of a singular point of a vector field, the Petrovskiĭ-Oleĭnik inequalities, and mixed Hodge structures". Functional Analysis and Its Applications. 12 (1): 1–12. doi:10.1007/BF01077558. MR 0498592. S2CID 123306360.
  4. ^ a b c Gómex Mont, Xavier; Mardešić, Pavao (1997). "The index of a vector field tangent to a hypersurface and the signature of the relative Jacobian determinant". Annales de l'Institut Fourier. 5 (47): 1523–1539. MR 1600363.
  5. ^ Eisenbud, David; Levine, Harold I. (1977). "An algebraic formula for the degree of a C map germ". Annals of Mathematics. 106 (1): 19–38. doi:10.2307/1971156. JSTOR 1971156. MR 0467800.
  6. ^ a b c Milnor, John W. (1997), Topology from the Differentiable Viewpoint, Princeton University Press, ISBN 978-0-691-04833-8