Green rust: Difference between revisions
m Bot: Fixing double redirect to Fougèrite |
Jorge Stolfi (talk | contribs) Created article from journal publications. (refs still need some cleanup; will do that tomorrow, hopefully) |
||
Line 1: | Line 1: | ||
'''Green rust''' is a generic name for various green [[crystal]]line [[chemical compounds]] containing [[iron]](II) and iron(III) cations, the [[hydroxide]] ({{chem|HO|-}}) anion, and another anion such as [[carbonate]] ({{chem|C|O|3|2-}}), [[chloride]] ({{chem|Cl|-}}), or [[sulfate]] ({{chem|S|O|4|2-}}). The accepted formulas are<ref name="genin98"/> |
|||
#REDIRECT [[Fougèrite]] |
|||
* '''carbonate green rust''' - GR({{chem|C|O|3|2-}}): [{{chem|Fe|4|2+}}{{chem|Fe|2|3+}}({{chem|H|O|-}})<sub>12</sub>]<sup>2+</sup> · [{{chem|CO|3|2-}}·2{{chem|H|2|O}}]<sup>2-</sup>.<ref name="hansen89"/><ref name="abdel96"/><ref name="abdel98"/> |
|||
* '''chloride green rust''' - GR({{chem|Cl|-}}): [{{chem|Fe|3|2+}}{{chem|Fe|3+}}({{chem|H|O|-}})<sub>8</sub>]<sup>+</sup> · [{{chem|Cl|-}}·''n''{{chem|H|2|O}}]<sup>-</sup>.<ref name="abdel96"/><ref name="abdel98"/> |
|||
* '''sulfate green rust''' - GR({{chem|S|O|4|2-}}): [{{chem|Fe|4|2+}}{{chem|Fe|2|3+}}({{chem|H|O|-}})<sub>12</sub>]<sup>2+</sup> · [{{chem|S|O|4|2-}}·2{{chem|H|2|O}}]<sup>2-</sup>.<ref name="genin93"/><ref name="abdel98"/> |
|||
Green rust was first recognized as a [[corrosion]] crust on iron and [[steel]] surfaces.<ref name="legrand04"/> It occurs in nature as the mineral [[fougerite]].<ref name="genin98"/> |
|||
==Structure== |
|||
The [[crystal structure]] of green rust can be understood as the result of inserting the foreign anions and water molecules between [[brucite]]-like layers of [[iron(II) hydroxide]], {{chem|Fe}}({{chem|OH}})<sub>2</sub>. The latter has an hexagonal structure, with layer sequence AcBAcB... , where A and B are planes of [[hydroxide]] ions, and c those of {{chem|Fe|2+}} ([[iron]](II), ferrous) [[cation]]s. In the green rust, some {{chem|Fe|2+}} cations get oxidized to {{chem|Fe|3+}} (iron(III), ferric). Each triple layer AcB, which is electrically neutral in the hydroxide, becomes positively charged. The anions then intercalate between those triple layers and restore neutrality.<ref name="genin98"/> |
|||
There are two basic structures of green rust, "type 1" and "type 2". Type 1 is exemplified by the chloride and carbonate varieties. It has a [[rhombohedral]] cystal structure similar to that of [[pyroaurite]]. The layers are stacked in the sequence AcBiBaCjCbAkA ...; where A, B, and C represent {{chem|HO|-}} planes, a, b, and c are layers of mixed {{chem|Fe|2+}} and {{chem|Fe|3+}} cations, and i, j, and k are layers of the intercalated anions and water molecules. <ref name="legrand04"/><ref name="allmann"/><ref name="genin98"/> The ''c'' crystalographic parameter is 22.5-22.8 [[angstrom|Å]] for the carbonate, abd about 24 Å for the chloride.<ref name="abdel96"/> |
|||
Type 2 green rust is exemplified by the sulfate variety. It has a hexagonal crystal structure, with layers probably stacked in the sequence AcBiAbCjA...<ref name="legrand04"/><ref name="bernal"/><ref name="genin98"/> |
|||
==Chemical properties== |
|||
In oxidizing environment, green rust generally turns into {{chem|Fe|3+}} [[oxyhydroxide]]s.<ref name="legrand04"/> |
|||
==Occurrence and preparation== |
|||
===Iron and steel corrosion=== |
|||
Green rust compounds were identified in green corrosion crusts that form on iron and steel surfaces, in alternating [[redox|aerobic]] and [[redox|anaerobic]] conditions, by water containing anions such as chloride, sulfate, carbonate, or [[bicarbonate]].<ref name="legrand04"/><ref name="butler"/><ref name="stampfl"/><ref name="mcgill"/><ref name="genin93"/><ref name="abdel96"/><ref name="bonin"/><ref name="savoye"/> They are believed to be intermediates in the oxidative corrosion of iron to form iron(III) oxyhydroxides of ordinary brown rust, namely α-{{chem|Fe|O|OH}} ([[goethite]]) and γ-{{chem|Fe|O|OH}} ([[lepidocrocite]]). The green rust may be formed either directly from metallic iron or from [[iron(II) hydroxide]] {{chem|Fe}}({{chem|OH}})<sub>2</sub> and.</ref name="abdel96"> |
|||
===Soil=== |
|||
On the basis of [[Mössbauer spectroscopy|Mössbauer spectroscopic analysis]], green rust minerals are suspected to occur as minerals in certain bluish-green soils that are formed in alternating [[redox]] conditions, and turn ochre once exposed to air.<ref name="ponnam"/><ref name="lindsay"/><ref name="taylor80"/><ref name="trollard"/> The green rust has been conjectured to be present in the forn of the mineral fougerite.<ref name="abdel98"/> |
|||
===Biogenesis=== |
|||
Hexagonal cystals of green rust (carbonate and/or sulfate) have also been obtained as one of the byproducts of the bioreduction of ferric oxyhydroxides by dissimilatory [[iron-reducing bacteria]], specifically ''[[Shewanella putrefaciens]]'', that use the {{chem|Fe|3+}} ion for the oxidation of organic matter.<ref name="fred"/><ref name="ona02"/>. This process has been conjectured to occur in soil solutions and aquifers. <ref name="ona02"/> |
|||
===Laboratory preparation=== |
|||
Green rust compounds can be synthesized using various chemical procedures, e.g. from solutions containing iron(II) cations and the appropriate anions, such as chloride<ref name="feit"/><ref name="detour76"/><ref name="refait93"/><ref name="schwe94"/>, sulfate<ref name="detour75"/><ref name="olowe"/><ref name="genin96"/><ref name="genin02"/>, or carbonate.<ref name="legrand00"/> The iron(II) salt is reacted first with [[sodium hydroxide]] {{chem|Na|O|H}} to form ferrous hydroxide {{chem|Fe}}({{chem|OH}})<sub>2</sub>. Then the [[sodium]] salt of the secod anion is added, and the suspension is oxidized by stirring in air.<ref name="taylor80"/><ref name="hansen89"/><ref name="drissi"/> |
|||
For example, carbonate green rust can be prepared from solutions of sodium hydroxide and [[iron(II) sulfate]] {{chem|Fe|S|O|4}}, with a slight excess of the latter; then adding sufficient amount of [[sodium carbonate]] {{chem|Na|2|C|O|3}} solution, followed by the air oxidation step.<ref name="drissi"/> |
|||
Sulfate green rust can be obrtained by mixing solutions of {{chem|Fe|Cl|2}}·4{{chem|H|2|O}} and {{chem|Na|O|H}} to precipitate {{chem|Fe}}({{chem|O|H}})<sub>2</sub> then immediately adding [[sodium sulfate]] {{chem|Na|2|S|O|4}} and proceeding to the air oxidation step.<ref name="genin93"/><ref name="genin02"/> |
|||
In a more recent approach, solutions of both iron(II) and iron(III) salts are first mixed, then a solution of {{chem|Na|OH}} is added, all in the stoichometric proportions of the desired green rust. No oxidation step is then necessary.<ref name="genin02"/> |
|||
Carbonate green rust films have also been obtained from the electrochemical oxidation of iron plates.<ref name="legrand00"/> |
|||
==References== |
|||
<references> |
|||
<ref name="legrand04">Ludovic Legrand, Léo Mazerolles and Annie Chaussé (2004): "The oxidation of carbonate green rust into ferric phases: Solid-state reaction or transformation via solution". Geochimica et Cosmochimica Acta, volume 68, issue 17, pages 3497-–3507. {{doi:10.1016/j.gca.2004.02.019}}.</ref> |
|||
<ref name="abdel96">M. Abdelmoula, Ph. Refait, S. H. Drissi, J. P. Mihe, and J.-M. R. Génin (1996): "Conversion electron Mössbauer spectroscopy and X-ray diffraction studies of the formation of carbonate-containing green rust one by corrosion of metallic iron in NaHCO3 and (NaHCO3 + NaCl) solutions". Corrosion Science, volume 38, pages 623-633. doi:10.1016/0010-938X(95)00153-B</ref> |
|||
<ref name="abdel98">M. Abdelmoula, F. Trolard, G. Bourrié and J.-M. R. Génin (1998): "Evidence of the Fe(II)–Fe(III) green rust `fougerite' mineral occurrence in a hydromorphic soil and its transformation with depth". Hyperfine Interactions, volume 111, pages 231-238. DOI: 10.1023/A:1010802508927</ref> |
|||
<ref name="allmann">R. Allmann (1968): "The crystal structure of pyroaurite". Acta Crystallographica, series B, volume 24, pages pages 972-977. doi:10.1107/S0567740868003511</ref> |
|||
<ref name="bernal">J. D. Bernal, D. R. Dasgupta, and A. L. Mackay (1959): "The oxides and hydroxides of iron and their structural inter-relationships". Clay Minerals Bulletin, volume 4, pages 15-30. doi:10.1180/claymin.1959.004.21.02</ref> |
|||
<ref name="bonin">Pascale M. Bonin, Wojciech Jȩdral, Marek S. Odziemkowski, and Robert W. Gillham (2000): "Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater". Corrosion Science 42, pages 1921-1939. DOI: 10.1016/S0010-938X(00)00027-5</ref> |
|||
<ref name="butler">G. Butler and J. G. Beynon (1967): "The corrosion of mild steel in boiling salt solutions". Corrosion Science 7, pages 385-404. doi:10.1016/S0010-938X(67)80052-0</ref> |
|||
<ref name="detour75">J. Detournay, L. de Miranda, R. Derie, and M. Ghodsie (1975): "The region of stability of green rust II in the electrochemical potential-pH diagram in sulphate medium". Corrosion Science, volume 15, pages 295-306. doi:10.1016/S0010-938X(75)80011-4</ref> |
|||
<ref name="detour76">J. Detournay, R. Derie, and M. Ghodsie (1976): "Etude de l’oxydation par aération de Fe(OH)2 en milieu chlorure". Zeitschrift für anorganische und allgemeine Chemie, volume 427, pages 265-273. DOI: 10.1002/zaac.654270311</ref> |
|||
<ref name="drissi">S. H. Drissi, Ph. Refait, M. Abdelmoula, and J.-M. R. Génin (1995): "The preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media". Corrosion Science, volume 37, pages 2025-2041. doi:10.1016/0010-938X(95)00096-3</ref> |
|||
<ref name="feit">W. Feitknecht and G. Keller (1950): "Über die dunkelgrünen Hydroxyverbindungen des Eisens". Zeitschrift für anorganische und allgemeine Chemie, volume 262, pages 61-68. DOI: 10.1002/zaac.19502620110</ref> |
|||
<ref name="fred">J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, H. Dong, T. C. Onstott, N. Hinman, and S. M. Li (1998): "Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium". Geochimica et Cosmochimica Acta, volume 62, issues 19-20, pages 3239-3257. doi:10.1016/S0016-7037(98)00243-9</ref> |
|||
<ref name="genin93">J.-M. R. Génin, A. A. Olowe, B. Resiak, N. D. Benbouzid-Rollet, M. Confente and D. Prieur (1993): "Identification of sulphated green rust 2 compound produced as a result of microbially induced corrosion of steel sheet piles in harbour". In Marine Corrosion of Stainless Steels: Chlorination and Microbial Effects, European Federation Corrosion Series, The Institute of Materials, London; volume 10, pages 162-166.</ref> |
|||
<ref name="genin96">J.-M. R. Génin, A. A. Olowe, Ph. Refait, and L. Simon (1996): "On the stoichiometry and Pourbaix diagram of Fe(II)-Fe(III) hydroxy-sulphate or sulphate-containing green rust 2: An electrochemical and Mössbauer spectroscopy study". Corrosion Science, volume 38, pages 1751-1762. DOI: 10.1016/S0010-938X(96)00072-8</ref> |
|||
<ref name="genin98">J.-M. R. Génin, Ph. Refait, L. Simon, and S. H. Drissi (1998): "Preparation and Eh-pH diagrams of Fe(II)-Fe(III) green rust compounds; hyperfine interaction characteristics and stoichiometry of hydroxy-chloride, -sulphate and –carbonate". Hyperfine Interactions, volume 111, pages 313-318. doi:10.1023/A:1012638724990</ref> |
|||
<ref name="genin02">A. Génin, C. Ruby, M. Abdelmoula, O. Benali, J. Ghanbaja, Ph. Refait, and J.-M. R. Génin (2002): "Synthesis of Fe(II-III) hydroxysulfate green rust by coprecipitation". Solid State Science, volume 4, pages 61-66. doi:10.1016/S1293-2558(01)01219-5</ref> |
|||
<ref name="hansen89">H. C. B. Hansen (1989): "Composition, stabilization, and light absorp- tion of Fe(II)Fe(III) hydroxy-carbonate ( “ green rust ” ). Clay Miner. 24, pages 663-669. </ref> |
|||
<ref name="hansen98">H. C. B. Hansen and Bender C. Koch (1998): "Reduction of nitrate to ammonium by sulphate green rust: activation energy and reaction mechanism. Clay Minerals 33, pages 87-101.</ref> |
|||
<ref name="legrand00">L. Legrand, S. Savoye, A. Chaussé, and R. Messina (2000): "Study of oxidation products formed on iron in solutions containing bicarbon- ate/carbonate. Electrochim. Acta 46, pages 111-117.</ref> |
|||
<ref name="lindsay">W. L. Lindsay (1979): "Chemical Equilibria In Soils . Wiley Interscience.</ref> |
|||
<ref name="mcgill">McGill I. R., McEnaney B., and D. C. Smith (1976): "Crystal structure of green rust formed by corrosion of cast iron. Nature 259, pages 1521-1529.</ref> |
|||
<ref name="olowe">A. A. Olowe and J.-M. R. Génin (1991): "The mechanism of oxidation of Fe(II) hydroxide in sulphated aqueous media: importance of the initial ratio of the reactants. Corrosion Science 32, pages 965-984. </ref> |
|||
<ref name="ona02">G. Ona-Nguema, M. Abdelmoula, F. Jorand, O. Benali, A. Génin, J. C. Block, and J.-M. R. Génin (2002): "Iron (II, III) hydroxycarbon- ate green rust formation and stabilization from lepidocrocite biore- duction. Environ. Sci. Technol. 36, pages 16-20.</ref> |
|||
<ref name="ponnam">F. N. Ponnamperuma (1972): "The chemistry of submerged soils. Adv. In Agronomy 24, pages 173-189. </ref> |
|||
<ref name="refait93">Ph. Refait and J.-M. R. Génin (1993): "The oxidation of Fe(II) hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust I. Corrosion Science 34, pages 797-819. </ref> |
|||
<ref name="refait00">Ph. Refait, L. Simon, and J.-M. R. Génin (2000): "Reduction of SeO 4 2 anions and anoxic formation of iron(II)-iron(III) hydroxy-selenate green rust. Environ. Sci. Technol. 34, pages 819-825.</ref> |
|||
<ref name="savoye">S. Savoye, L. Legrand, G. Sagon, S. Lecomte, A. Chaussé, R. Messina, and P. Toulhoat (2001): "Experimental investigations on iron corro- sion products formed in bicarbonate/carbonate-containing solutions at 90 °C. Corrosion Science 43, pages 2049-2064. </ref> |
|||
<ref name="schwe94">U. Schwertmann and H. Fechter (1994): "The formation of green rust and its transformation to lepidocrocite. Clay Miner. 29, pages 87-92.</ref> |
|||
<ref name="stampfl">P. P. Stampfl (1969): "Ein basisches Eisen II-III Karbonat in Rost. Corrosion Science 9, pages 185-187. </ref> |
|||
<ref name="taylor80">R. M. Taylor (1980): "Formation and properties of Fe(II)-Fe(III) hy- droxycarbonate and its possible signi fi cance in soil formation. Clay Miner. 15, pages 369-382.</ref> |
|||
<ref name="trollard">F. Trolard, J.-M. R. Génin, M. Abdelmoula, G. Bourrié, B. Humbert, and A. Herbillon (1997): "Identi fi cation of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. Geochim. Cosmochim. Acta 61, pages 1107-1111. </ref> |
|||
</references> |
Revision as of 04:18, 31 August 2016
Green rust is a generic name for various green crystalline chemical compounds containing iron(II) and iron(III) cations, the hydroxide (HO−
) anion, and another anion such as carbonate (CO2−
3), chloride (Cl−
), or sulfate (SO2−
4). The accepted formulas are[1]
Green rust was first recognized as a corrosion crust on iron and steel surfaces.[6] It occurs in nature as the mineral fougerite.[1]
Structure
The crystal structure of green rust can be understood as the result of inserting the foreign anions and water molecules between brucite-like layers of iron(II) hydroxide, Fe(OH)2. The latter has an hexagonal structure, with layer sequence AcBAcB... , where A and B are planes of hydroxide ions, and c those of Fe2+
(iron(II), ferrous) cations. In the green rust, some Fe2+
cations get oxidized to Fe3+
(iron(III), ferric). Each triple layer AcB, which is electrically neutral in the hydroxide, becomes positively charged. The anions then intercalate between those triple layers and restore neutrality.[1]
There are two basic structures of green rust, "type 1" and "type 2". Type 1 is exemplified by the chloride and carbonate varieties. It has a rhombohedral cystal structure similar to that of pyroaurite. The layers are stacked in the sequence AcBiBaCjCbAkA ...; where A, B, and C represent HO−
planes, a, b, and c are layers of mixed Fe2+
and Fe3+
cations, and i, j, and k are layers of the intercalated anions and water molecules. [6][7][1] The c crystalographic parameter is 22.5-22.8 Å for the carbonate, abd about 24 Å for the chloride.[3]
Type 2 green rust is exemplified by the sulfate variety. It has a hexagonal crystal structure, with layers probably stacked in the sequence AcBiAbCjA...[6][8][1]
Chemical properties
In oxidizing environment, green rust generally turns into Fe3+
oxyhydroxides.[6]
Occurrence and preparation
Iron and steel corrosion
Green rust compounds were identified in green corrosion crusts that form on iron and steel surfaces, in alternating aerobic and anaerobic conditions, by water containing anions such as chloride, sulfate, carbonate, or bicarbonate.[6][9][10][11][5][3][12][13] They are believed to be intermediates in the oxidative corrosion of iron to form iron(III) oxyhydroxides of ordinary brown rust, namely α-FeOOH (goethite) and γ-FeOOH (lepidocrocite). The green rust may be formed either directly from metallic iron or from iron(II) hydroxide Fe(OH)2 and.</ref name="abdel96">
Soil
On the basis of Mössbauer spectroscopic analysis, green rust minerals are suspected to occur as minerals in certain bluish-green soils that are formed in alternating redox conditions, and turn ochre once exposed to air.[14][15][16][17] The green rust has been conjectured to be present in the forn of the mineral fougerite.[4]
Biogenesis
Hexagonal cystals of green rust (carbonate and/or sulfate) have also been obtained as one of the byproducts of the bioreduction of ferric oxyhydroxides by dissimilatory iron-reducing bacteria, specifically Shewanella putrefaciens, that use the Fe3+
ion for the oxidation of organic matter.[18][19]. This process has been conjectured to occur in soil solutions and aquifers. [19]
Laboratory preparation
Green rust compounds can be synthesized using various chemical procedures, e.g. from solutions containing iron(II) cations and the appropriate anions, such as chloride[20][21][22][23], sulfate[24][25][26][27], or carbonate.[28] The iron(II) salt is reacted first with sodium hydroxide NaOH to form ferrous hydroxide Fe(OH)2. Then the sodium salt of the secod anion is added, and the suspension is oxidized by stirring in air.[16][2][29]
For example, carbonate green rust can be prepared from solutions of sodium hydroxide and iron(II) sulfate FeSO
4, with a slight excess of the latter; then adding sufficient amount of sodium carbonate Na
2CO
3 solution, followed by the air oxidation step.[29]
Sulfate green rust can be obrtained by mixing solutions of FeCl
2·4H
2O and NaOH to precipitate Fe(OH)2 then immediately adding sodium sulfate Na
2SO
4 and proceeding to the air oxidation step.[5][27]
In a more recent approach, solutions of both iron(II) and iron(III) salts are first mixed, then a solution of NaOH is added, all in the stoichometric proportions of the desired green rust. No oxidation step is then necessary.[27]
Carbonate green rust films have also been obtained from the electrochemical oxidation of iron plates.[28]
References
- ^ a b c d e J.-M. R. Génin, Ph. Refait, L. Simon, and S. H. Drissi (1998): "Preparation and Eh-pH diagrams of Fe(II)-Fe(III) green rust compounds; hyperfine interaction characteristics and stoichiometry of hydroxy-chloride, -sulphate and –carbonate". Hyperfine Interactions, volume 111, pages 313-318. doi:10.1023/A:1012638724990
- ^ a b H. C. B. Hansen (1989): "Composition, stabilization, and light absorp- tion of Fe(II)Fe(III) hydroxy-carbonate ( “ green rust ” ). Clay Miner. 24, pages 663-669.
- ^ a b c d M. Abdelmoula, Ph. Refait, S. H. Drissi, J. P. Mihe, and J.-M. R. Génin (1996): "Conversion electron Mössbauer spectroscopy and X-ray diffraction studies of the formation of carbonate-containing green rust one by corrosion of metallic iron in NaHCO3 and (NaHCO3 + NaCl) solutions". Corrosion Science, volume 38, pages 623-633. doi:10.1016/0010-938X(95)00153-B
- ^ a b c d M. Abdelmoula, F. Trolard, G. Bourrié and J.-M. R. Génin (1998): "Evidence of the Fe(II)–Fe(III) green rust `fougerite' mineral occurrence in a hydromorphic soil and its transformation with depth". Hyperfine Interactions, volume 111, pages 231-238. DOI: 10.1023/A:1010802508927
- ^ a b c J.-M. R. Génin, A. A. Olowe, B. Resiak, N. D. Benbouzid-Rollet, M. Confente and D. Prieur (1993): "Identification of sulphated green rust 2 compound produced as a result of microbially induced corrosion of steel sheet piles in harbour". In Marine Corrosion of Stainless Steels: Chlorination and Microbial Effects, European Federation Corrosion Series, The Institute of Materials, London; volume 10, pages 162-166.
- ^ a b c d e Ludovic Legrand, Léo Mazerolles and Annie Chaussé (2004): "The oxidation of carbonate green rust into ferric phases: Solid-state reaction or transformation via solution". Geochimica et Cosmochimica Acta, volume 68, issue 17, pages 3497-–3507. {{doi:10.1016/j.gca.2004.02.019}}.
- ^ R. Allmann (1968): "The crystal structure of pyroaurite". Acta Crystallographica, series B, volume 24, pages pages 972-977. doi:10.1107/S0567740868003511
- ^ J. D. Bernal, D. R. Dasgupta, and A. L. Mackay (1959): "The oxides and hydroxides of iron and their structural inter-relationships". Clay Minerals Bulletin, volume 4, pages 15-30. doi:10.1180/claymin.1959.004.21.02
- ^ G. Butler and J. G. Beynon (1967): "The corrosion of mild steel in boiling salt solutions". Corrosion Science 7, pages 385-404. doi:10.1016/S0010-938X(67)80052-0
- ^ P. P. Stampfl (1969): "Ein basisches Eisen II-III Karbonat in Rost. Corrosion Science 9, pages 185-187.
- ^ McGill I. R., McEnaney B., and D. C. Smith (1976): "Crystal structure of green rust formed by corrosion of cast iron. Nature 259, pages 1521-1529.
- ^ Pascale M. Bonin, Wojciech Jȩdral, Marek S. Odziemkowski, and Robert W. Gillham (2000): "Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater". Corrosion Science 42, pages 1921-1939. DOI: 10.1016/S0010-938X(00)00027-5
- ^ S. Savoye, L. Legrand, G. Sagon, S. Lecomte, A. Chaussé, R. Messina, and P. Toulhoat (2001): "Experimental investigations on iron corro- sion products formed in bicarbonate/carbonate-containing solutions at 90 °C. Corrosion Science 43, pages 2049-2064.
- ^ F. N. Ponnamperuma (1972): "The chemistry of submerged soils. Adv. In Agronomy 24, pages 173-189.
- ^ W. L. Lindsay (1979): "Chemical Equilibria In Soils . Wiley Interscience.
- ^ a b R. M. Taylor (1980): "Formation and properties of Fe(II)-Fe(III) hy- droxycarbonate and its possible signi fi cance in soil formation. Clay Miner. 15, pages 369-382.
- ^ F. Trolard, J.-M. R. Génin, M. Abdelmoula, G. Bourrié, B. Humbert, and A. Herbillon (1997): "Identi fi cation of a green rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. Geochim. Cosmochim. Acta 61, pages 1107-1111.
- ^ J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, H. Dong, T. C. Onstott, N. Hinman, and S. M. Li (1998): "Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium". Geochimica et Cosmochimica Acta, volume 62, issues 19-20, pages 3239-3257. doi:10.1016/S0016-7037(98)00243-9
- ^ a b G. Ona-Nguema, M. Abdelmoula, F. Jorand, O. Benali, A. Génin, J. C. Block, and J.-M. R. Génin (2002): "Iron (II, III) hydroxycarbon- ate green rust formation and stabilization from lepidocrocite biore- duction. Environ. Sci. Technol. 36, pages 16-20.
- ^ W. Feitknecht and G. Keller (1950): "Über die dunkelgrünen Hydroxyverbindungen des Eisens". Zeitschrift für anorganische und allgemeine Chemie, volume 262, pages 61-68. DOI: 10.1002/zaac.19502620110
- ^ J. Detournay, R. Derie, and M. Ghodsie (1976): "Etude de l’oxydation par aération de Fe(OH)2 en milieu chlorure". Zeitschrift für anorganische und allgemeine Chemie, volume 427, pages 265-273. DOI: 10.1002/zaac.654270311
- ^ Ph. Refait and J.-M. R. Génin (1993): "The oxidation of Fe(II) hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust I. Corrosion Science 34, pages 797-819.
- ^ U. Schwertmann and H. Fechter (1994): "The formation of green rust and its transformation to lepidocrocite. Clay Miner. 29, pages 87-92.
- ^ J. Detournay, L. de Miranda, R. Derie, and M. Ghodsie (1975): "The region of stability of green rust II in the electrochemical potential-pH diagram in sulphate medium". Corrosion Science, volume 15, pages 295-306. doi:10.1016/S0010-938X(75)80011-4
- ^ A. A. Olowe and J.-M. R. Génin (1991): "The mechanism of oxidation of Fe(II) hydroxide in sulphated aqueous media: importance of the initial ratio of the reactants. Corrosion Science 32, pages 965-984.
- ^ J.-M. R. Génin, A. A. Olowe, Ph. Refait, and L. Simon (1996): "On the stoichiometry and Pourbaix diagram of Fe(II)-Fe(III) hydroxy-sulphate or sulphate-containing green rust 2: An electrochemical and Mössbauer spectroscopy study". Corrosion Science, volume 38, pages 1751-1762. DOI: 10.1016/S0010-938X(96)00072-8
- ^ a b c A. Génin, C. Ruby, M. Abdelmoula, O. Benali, J. Ghanbaja, Ph. Refait, and J.-M. R. Génin (2002): "Synthesis of Fe(II-III) hydroxysulfate green rust by coprecipitation". Solid State Science, volume 4, pages 61-66. doi:10.1016/S1293-2558(01)01219-5
- ^ a b L. Legrand, S. Savoye, A. Chaussé, and R. Messina (2000): "Study of oxidation products formed on iron in solutions containing bicarbon- ate/carbonate. Electrochim. Acta 46, pages 111-117.
- ^ a b S. H. Drissi, Ph. Refait, M. Abdelmoula, and J.-M. R. Génin (1995): "The preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media". Corrosion Science, volume 37, pages 2025-2041. doi:10.1016/0010-938X(95)00096-3
Cite error: A list-defined reference named "hansen98" is not used in the content (see the help page).
Cite error: A list-defined reference named "refait00" is not used in the content (see the help page).