Jump to content

Quantum entanglement swapping: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Move the sentence about the relation to teleportation to the concept section and add +ref
Move the History to the bottom so the images don't conflict with diagrams
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
'''Quantum entanglement swapping''' is a [[quantum mechanics|quantum mechanical]] concept to extend [[quantum entanglement|entanglement]] from one pair of [[particle]]s to another, even if those new particles have never interacted before. This process may have application in [[quantum communication]] networks and [[quantum computing]].
'''Quantum entanglement swapping''' is a [[quantum mechanics|quantum mechanical]] concept to extend [[quantum entanglement|entanglement]] from one pair of [[particle]]s to another, even if those new particles have never interacted before. This process may have application in [[quantum communication]] networks and [[quantum computing]].


==History==

[[File:A. Zeilinger (cropped).jpg|thumb|upright|Anton Zeilinger, contributor to the concept and realization of entanglement swapping]]
[[File:Professor Artur Ekert FRS (cropped).jpg|thumb|upright|Artur K. Ekert, contributor to the concept and realization of entanglement swapping]]
* '''1992''': Yurke and Stoler show theoretically that entanglement does not require interaction of the final measured particles.<ref name=YurkeStoler1992>{{Cite journal |last1=Yurke |first1=Bernard |last2=Stoler |first2=David |date=1992-03-02 |title=Einstein-Podolsky-Rosen effects from independent particle sources |url=https://link.aps.org/doi/10.1103/PhysRevLett.68.1251 |journal=Physical Review Letters |language=en |volume=68 |issue=9 |pages=1251–1254 |doi=10.1103/PhysRevLett.68.1251 |bibcode=1992PhRvL..68.1251Y |issn=0031-9007}}</ref><ref name="horodecki2007"/>{{rp|876}}<ref name=PanMultiphoton2012>{{Cite journal |last1=Pan |first1=Jian-Wei |last2=Chen |first2=Zeng-Bing |last3=Lu |first3=Chao-Yang |last4=Weinfurter |first4=Harald |last5=Zeilinger |first5=Anton |last6=Żukowski |first6=Marek |date=2012-05-11 |title=Multiphoton entanglement and interferometry |url=https://link.aps.org/doi/10.1103/RevModPhys.84.777 |journal=Reviews of Modern Physics |language=en |volume=84 |issue=2 |pages=777–838 |doi=10.1103/RevModPhys.84.777 |arxiv=0805.2853 |bibcode=2012RvMP...84..777P |issn=0034-6861}}</ref>{{rp|786|q=Yurke and Stoler
(1992a, 1992b) showed that in theory multiparticle entanglement effects should in principle be observable for particles
originating from independent sources.}}
* '''1993''': The term "entanglement swapping" came from physicists [[Marek Żukowski]], [[Anton Zeilinger]], [[Michael Horne (physicist)|Michael A. Horne]], and [[Artur Ekert|Artur K. Ekert]] in their 1993 paper. They refined the concept to show one can extend entanglement from one particle pair to another using a method called [[Bell state]] measurement.<ref name="Zukowski, 1993" >{{Cite journal
|journal=[[Physical Review Letters|Phys. Rev. Lett.]]
|title="Event-ready-detectors" Bell experiment via entanglement swapping
|first1=M. |last1=Żukowski |author-link1=Marek Żukowski
|first2=A. |last2=Zeilinger |author-link2=Anton Zeilinger
|first3=M. A. |last3=Horne |author-link3=Michael Horne (physicist)
|first4=A. K. |last4=Ekert |author-link4=Artur Ekert
|volume=71 |page=4287
|date=27 December 1993
|issue=26
|doi=10.1103/PhysRevLett.71.4287
|bibcode=1993PhRvL..71.4287Z
|url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.4287
|access-date=1 September 2024
}}</ref>
* '''1998''': [[Jian-Wei Pan]] working in [[Anton Zeilinger]]'s group conducted the first experiment on entanglement swapping. They used entangled [[photon]]s to show successful transfer of entanglement between pairs that never interacted.<ref name="Pan, 1998" >{{Cite journal
|last1=Pan |first1=J.-W.
|last2=Bouwmeester |first2=D.
|last3=Weinfurter |first3=H.
|last4=Zeilinger |first4=A.
|year=1998
|title=Experimental entanglement swapping: Entangling photons that never interacted
|journal=[[Physical Review Letters|Phys. Rev. Lett.]]
|volume=80 |issue=18
|pages=3891–3894
|doi=10.1103/PhysRevLett.80.3891
|bibcode=1998PhRvL..80.3891P
}}</ref>
* '''2000s''': Later experiments took this further, making it work over longer distances and with more complex [[quantum state]]s.{{Citation needed|date=November 2024}}
==Concept==
==Concept==
=== Basic principles ===
=== Basic principles ===
Line 55: Line 19:
|bibcode=2022PhyA..58526400J
|bibcode=2022PhyA..58526400J
}}</ref><ref name="Pan, 1998" />
}}</ref><ref name="Pan, 1998" />
[[File:Entanglement swapping.svg|thumb|Entanglement states from independent sources can become entangled through Bell state analysis.]]


Entanglement swapping is a form of the three component [[Greenberger–Horne–Zeilinger state]]; experimental apparatus to demonstrate entanglement swapping are equivalent to the three-particle form of [[Mermin%27s_device#Three_particle_device|Mermin's device]], a [[thought experiment]] model designed to explain entanglement.<ref name=YurkeStoler1992/>
Entanglement swapping is a form of the three component [[Greenberger–Horne–Zeilinger state]]; experimental apparatus to demonstrate entanglement swapping are equivalent to the three-particle form of [[Mermin%27s_device#Three_particle_device|Mermin's device]], a [[thought experiment]] model designed to explain entanglement.<ref name=YurkeStoler1992/>
Line 160: Line 126:
|doi=10.1103/PhysRevLett.81.5932
|doi=10.1103/PhysRevLett.81.5932
}}</ref>
}}</ref>

==History==

[[File:A. Zeilinger (cropped).jpg|thumb|upright|Anton Zeilinger, contributor to the concept and realization of entanglement swapping]]
[[File:Professor Artur Ekert FRS (cropped).jpg|thumb|upright|Artur K. Ekert, contributor to the concept and realization of entanglement swapping]]
* '''1992''': Yurke and Stoler show theoretically that entanglement does not require interaction of the final measured particles.<ref name=YurkeStoler1992>{{Cite journal |last1=Yurke |first1=Bernard |last2=Stoler |first2=David |date=1992-03-02 |title=Einstein-Podolsky-Rosen effects from independent particle sources |url=https://link.aps.org/doi/10.1103/PhysRevLett.68.1251 |journal=Physical Review Letters |language=en |volume=68 |issue=9 |pages=1251–1254 |doi=10.1103/PhysRevLett.68.1251 |bibcode=1992PhRvL..68.1251Y |issn=0031-9007}}</ref><ref name="horodecki2007"/>{{rp|876}}<ref name=PanMultiphoton2012>{{Cite journal |last1=Pan |first1=Jian-Wei |last2=Chen |first2=Zeng-Bing |last3=Lu |first3=Chao-Yang |last4=Weinfurter |first4=Harald |last5=Zeilinger |first5=Anton |last6=Żukowski |first6=Marek |date=2012-05-11 |title=Multiphoton entanglement and interferometry |url=https://link.aps.org/doi/10.1103/RevModPhys.84.777 |journal=Reviews of Modern Physics |language=en |volume=84 |issue=2 |pages=777–838 |doi=10.1103/RevModPhys.84.777 |arxiv=0805.2853 |bibcode=2012RvMP...84..777P |issn=0034-6861}}</ref>{{rp|786|q=Yurke and Stoler
(1992a, 1992b) showed that in theory multiparticle entanglement effects should in principle be observable for particles
originating from independent sources.}}
* '''1993''': The term "entanglement swapping" came from physicists [[Marek Żukowski]], [[Anton Zeilinger]], [[Michael Horne (physicist)|Michael A. Horne]], and [[Artur Ekert|Artur K. Ekert]] in their 1993 paper. They refined the concept to show one can extend entanglement from one particle pair to another using a method called [[Bell state]] measurement.<ref name="Zukowski, 1993" >{{Cite journal
|journal=[[Physical Review Letters|Phys. Rev. Lett.]]
|title="Event-ready-detectors" Bell experiment via entanglement swapping
|first1=M. |last1=Żukowski |author-link1=Marek Żukowski
|first2=A. |last2=Zeilinger |author-link2=Anton Zeilinger
|first3=M. A. |last3=Horne |author-link3=Michael Horne (physicist)
|first4=A. K. |last4=Ekert |author-link4=Artur Ekert
|volume=71 |page=4287
|date=27 December 1993
|issue=26
|doi=10.1103/PhysRevLett.71.4287
|bibcode=1993PhRvL..71.4287Z
|url=https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.71.4287
|access-date=1 September 2024
}}</ref>
* '''1998''': [[Jian-Wei Pan]] working in [[Anton Zeilinger]]'s group conducted the first experiment on entanglement swapping. They used entangled [[photon]]s to show successful transfer of entanglement between pairs that never interacted.<ref name="Pan, 1998" >{{Cite journal
|last1=Pan |first1=J.-W.
|last2=Bouwmeester |first2=D.
|last3=Weinfurter |first3=H.
|last4=Zeilinger |first4=A.
|year=1998
|title=Experimental entanglement swapping: Entangling photons that never interacted
|journal=[[Physical Review Letters|Phys. Rev. Lett.]]
|volume=80 |issue=18
|pages=3891–3894
|doi=10.1103/PhysRevLett.80.3891
|bibcode=1998PhRvL..80.3891P
}}</ref>
* '''2000s''': Later experiments took this further, making it work over longer distances and with more complex [[quantum state]]s.{{Citation needed|date=November 2024}}


== References ==
== References ==

Latest revision as of 01:00, 22 November 2024

Quantum entanglement swapping is a quantum mechanical concept to extend entanglement from one pair of particles to another, even if those new particles have never interacted before. This process may have application in quantum communication networks and quantum computing.

Concept

[edit]

Basic principles

[edit]

Quantum entanglement swapping has three pairs of entangled particles: (A, B), (C, D), & (E, F). Particles A & B are initially entangled, as are particles C & D. One particle from each pair is projected (call them B and C) onto one of the for possible Bell states, a process called a Bell state measurement. The unmeasured particles (A and D) can become entangled. This happens without any direct interaction between them.[1][2]

Entanglement states from independent sources can become entangled through Bell state analysis.

Entanglement swapping is a form of the three component Greenberger–Horne–Zeilinger state; experimental apparatus to demonstrate entanglement swapping are equivalent to the three-particle form of Mermin's device, a thought experiment model designed to explain entanglement.[3]

Entanglement swapping is a form of quantum teleportation. In quantum teleportation, the unknown state of a particle can be sent from one location to another using the combination of a quantum and classical channel. The unknown state is projected by Alice onto a Bell state and the result is communicated to Bob through the classical channel.[4] In entanglement swapping, the state from one of the two sources is the quantum channel of teleportation and the state from the other source is the unknown being sent to Bob.[5]: 876 

Mathematical representation

[edit]

The mathematical expression for the swapping process is:[5]: 876 

In this expression, refers to an entangled state of X & Y particles while BSM indicates Bell state measurement. A Bell state is one of four specific states of representing two particles with maximal entanglement; a Bell state measurement projects a quantum state onto this basis set.[6]: 813 

Potential applications

[edit]

Quantum cryptography

[edit]

In the field of quantum cryptography, it helps secure communication channels better. By utilizing swapped entanglements between particles' pairs, it is possible to generate secure encryption keys that should be protected against eavesdropping.[7]

Quantum networks

[edit]

Quantum entanglement swapping also serves as a core technology for designing quantum networks, where many nodes-like quantum computers or communication points-link through these special connections made by entangled links. These networks may support safely transferring quantum information over long routes.[8]

Quantum repeaters and long-distance communication

[edit]

Quantum entanglement swapping may allow the construction of quantum repeaters to stretch out quantum communication networks by allowing entanglement to be shared over long distances. Performing entanglement swapping at certain points acts like relaying information without loss.[9][10]

History

[edit]
Anton Zeilinger, contributor to the concept and realization of entanglement swapping
Artur K. Ekert, contributor to the concept and realization of entanglement swapping
  • 1992: Yurke and Stoler show theoretically that entanglement does not require interaction of the final measured particles.[3][5]: 876 [6]: 786
  • 1993: The term "entanglement swapping" came from physicists Marek Żukowski, Anton Zeilinger, Michael A. Horne, and Artur K. Ekert in their 1993 paper. They refined the concept to show one can extend entanglement from one particle pair to another using a method called Bell state measurement.[11]
  • 1998: Jian-Wei Pan working in Anton Zeilinger's group conducted the first experiment on entanglement swapping. They used entangled photons to show successful transfer of entanglement between pairs that never interacted.[2]
  • 2000s: Later experiments took this further, making it work over longer distances and with more complex quantum states.[citation needed]

References

[edit]
  1. ^ Ji, Zhaoxu; Fan, Peiru; Zhang, Huanguo (2022). "Entanglement swapping for Bell states and Greenberger–Horne–Zeilinger states in qubit systems". Physica A: Statistical Mechanics and Its Applications. 585 (585): 126400. arXiv:1911.09875. Bibcode:2022PhyA..58526400J. doi:10.1016/j.physa.2021.126400.
  2. ^ a b Pan, J.-W.; Bouwmeester, D.; Weinfurter, H.; Zeilinger, A. (1998). "Experimental entanglement swapping: Entangling photons that never interacted". Phys. Rev. Lett. 80 (18): 3891–3894. Bibcode:1998PhRvL..80.3891P. doi:10.1103/PhysRevLett.80.3891.
  3. ^ a b Yurke, Bernard; Stoler, David (1992-03-02). "Einstein-Podolsky-Rosen effects from independent particle sources". Physical Review Letters. 68 (9): 1251–1254. Bibcode:1992PhRvL..68.1251Y. doi:10.1103/PhysRevLett.68.1251. ISSN 0031-9007.
  4. ^ Hu, Xiao-Min; Guo, Yu; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can (2023). "Progress in quantum teleportation". Nat. Rev. Phys. 5 (6): 339–353. Bibcode:2023NatRP...5..339H. doi:10.1038/s42254-023-00588-x. Retrieved 1 September 2024.
  5. ^ a b c Horodecki, Ryszard; Horodecki, Pawel; Horodecki, Michal; Horodecki, Karol (2009). "Quantum entanglement". Reviews of Modern Physics. 81 (2): 865–942. arXiv:quant-ph/0702225. Bibcode:2009RvMP...81..865H. doi:10.1103/RevModPhys.81.865. S2CID 59577352.
  6. ^ a b Pan, Jian-Wei; Chen, Zeng-Bing; Lu, Chao-Yang; Weinfurter, Harald; Zeilinger, Anton; Żukowski, Marek (2012-05-11). "Multiphoton entanglement and interferometry". Reviews of Modern Physics. 84 (2): 777–838. arXiv:0805.2853. Bibcode:2012RvMP...84..777P. doi:10.1103/RevModPhys.84.777. ISSN 0034-6861.
  7. ^ Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. (2002). "Quantum cryptography" (PDF). Rev. Mod. Phys. 74 (1): 145–195. arXiv:quant-ph/0101098. Bibcode:2002RvMP...74..145G. doi:10.1103/RevModPhys.74.145.
  8. ^ Lu, Chao-Yang; Yang, Tao; Pan, Jian-Wei (10 July 2009). "Experimental Multiparticle Entanglement Swapping for Quantum Networking". Phys. Rev. Lett. 103 (20501): 020501. Bibcode:2009PhRvL.103b0501L. doi:10.1103/PhysRevLett.103.020501. PMID 19659188. Retrieved 1 September 2024.
  9. ^ Shchukin, Evgeny; van Loock, Peter (13 April 2022). "Optimal Entanglement Swapping in Quantum Repeaters". Phys. Rev. Lett. 128 (15): 150502. arXiv:2109.00793. Bibcode:2022PhRvL.128o0502S. doi:10.1103/PhysRevLett.128.150502. PMID 35499889. Retrieved 1 September 2024.
  10. ^ Briegel, H.-J.; Dür, W.; Cirac, J. I.; Zoller, P. (1998). "Quantum repeaters:The role of imperfect local operations in quantum messages". Phys. Rev. Lett. 81 (26): 5932. doi:10.1103/PhysRevLett.81.5932.
  11. ^ Żukowski, M.; Zeilinger, A.; Horne, M. A.; Ekert, A. K. (27 December 1993). ""Event-ready-detectors" Bell experiment via entanglement swapping". Phys. Rev. Lett. 71 (26): 4287. Bibcode:1993PhRvL..71.4287Z. doi:10.1103/PhysRevLett.71.4287. Retrieved 1 September 2024.

Further reading

[edit]
[edit]