Jump to content

Overhead power line: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
misinterpreted citations don't support incorrect claim; it's electdrical tension, not mechanical force
revert, and turn F&B into a proper in line citation
Line 4: Line 4:
[[Image:Overhead power line High-voltage 高圧線 DSCF0128.JPG|thumb|Overhead lines in [[Japan]]]]
[[Image:Overhead power line High-voltage 高圧線 DSCF0128.JPG|thumb|Overhead lines in [[Japan]]]]
[[Image:Łomża linia elektroenergetyczna napowietrzna.jpg|thumb|High and medium voltage power lines in [[Łomża]], Poland]]
[[Image:Łomża linia elektroenergetyczna napowietrzna.jpg|thumb|High and medium voltage power lines in [[Łomża]], Poland]]
An '''overhead power line''' is an electric power transmission line suspended by [[Transmission tower|towers]] or [[utility pole]]s. Since most of the [[electrical insulation|insulation]] is provided by air, overhead power lines are generally the lowest-cost method of [[electric power transmission|transmission]] for large quantities of electric energy. Towers for support of the lines are made of wood (as-grown or laminated), steel (either lattice structures or tubular poles), concrete, aluminium, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminium (either plain or reinforced with steel or sometimes composite materials), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and the ground so as to prevent dangerous contact with the line.
An '''overhead power line''' is an electric power transmission line suspended by [[Transmission tower|towers]] or [[utility pole]]s. Since most of the [[electrical insulation|insulation]] is provided by air, overhead power lines are generally the lowest-cost method of [[electric power transmission|transmission]] for large quantities of electric energy. Towers for support of the lines are made of wood (as-grown or laminated), steel (either lattice structures or tubular poles), concrete, aluminium, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminium (either plain or reinforced with steel, or sometimes composite materials), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and the ground so as to prevent dangerous contact with the line. <ref name=Fink78> [[Donald G. Fink]] and H. Wayne Beaty, ''Standard Handbook for Electrical Engineers, Eleventh Edition'', McGraw-Hill, New York, 1978, ISBN 0-07-020974-X, Chapter 14 ''Overhead Power Transmission'' </ref>


The invention of the [[strain insulator]] was a critical factor in allowing higher voltages to be used. At the end of the 19th century, the limited electrical strength of [[telegraph]]-style [[pin insulator]]s limited the voltage to no more than 69,000 [[volt]]s. Today overhead lines are routinely operated at voltages exceeding 765,000 volts between conductors, with even higher voltages possible in some cases.
The invention of the [[strain insulator]] was a critical factor in allowing higher voltages to be used. At the end of the 19th century, the limited electrical strength of [[telegraph]]-style [[pin insulator]]s limited the voltage to no more than 69,000 [[volt]]s. Today overhead lines are routinely operated at voltages exceeding 765,000 volts between conductors, with even higher voltages possible in some cases.
Line 17: Line 17:
==Structures==
==Structures==
{{seealso|Transmission tower}}
{{seealso|Transmission tower}}
Structures for overhead lines take a variety of shapes depending on the type of line. Structures may be as simple as wood [[Utility pole|poles]] directly set in the earth, carrying one or more cross-arm beams to support conductors, or "armless" construction with conductors supported on insulators attached to the side of the pole. Tubular steel poles are typically used in urban areas. High-voltage lines are often carried on lattice-type [[Electricity pylon|steel towers]] or pylons. For remote areas, aluminium towers may be placed by helicopters. Concrete poles have also been used. Poles made of reinforced plastics are also available, but their high cost restricts application.
Structures for overhead lines take a variety of shapes depending on the type of line. Structures may be as simple as wood [[Utility pole|poles]] directly set in the earth, carrying one or more cross-arm beams to support conductors, or "armless" construction with conductors supported on insulators attached to the side of the pole. Tubular steel poles are typically used in urban areas. High-voltage lines are often carried on lattice-type [[Electricity pylon|steel towers]] or pylons. For remote areas, aluminium towers may be placed by helicopters. Concrete poles have also been used.<ref name=Fink78/> Poles made of reinforced plastics are also available, but their high cost restricts application.


Each structure must be designed for the loads imposed on it by the conductors. A large transmission line project may have several types of towers, with "tangent" ("suspension" or "line" towers, UK) towers intended for most positions and more heavily constructed towers used for turning the line through an angle, dead-ending (terminating) a line, or for important river or road crossings. Depending on the design criteria for a particular line, semi-flexible type structures may rely on the weight of the conductors to be balanced on both sides of each tower. More rigid structures may be intended to remain standing even if one or more conductors is broken. Such structures may be installed at intervals in power lines to limit the scale of cascading tower failures.
Each structure must be designed for the loads imposed on it by the conductors. <ref name=Fink78/> The weight of the conductor must be supported, as well as dynamic loads due to wind and ice accumulation, and effects of vibration. Where conductors are in a straight line, towers need only resist the weight since the tension in the conductors approximately balances with no resultant force on the structure. Flexible conductors supported at their ends approximate the form of a [[catenary]], and much of the analysis for construction of transmission lines relies on the properties of this form. <ref name=Fink78/>

A large transmission line project may have several types of towers, with "tangent" ("suspension" or "line" towers, UK) towers intended for most positions and more heavily constructed towers used for turning the line through an angle, dead-ending (terminating) a line, or for important river or road crossings. Depending on the design criteria for a particular line, semi-flexible type structures may rely on the weight of the conductors to be balanced on both sides of each tower. More rigid structures may be intended to remain standing even if one or more conductors is broken. Such structures may be installed at intervals in power lines to limit the scale of cascading tower failures. <ref name=Fink78/>


Foundations for tower structures may be large and costly, particularly if the ground conditions are poor, such as in wetlands. Each structure may be stabilized considerably by the use of guy wires to counteract some of the forces applied by the conductors.
Foundations for tower structures may be large and costly, particularly if the ground conditions are poor, such as in wetlands. Each structure may be stabilized considerably by the use of guy wires to counteract some of the forces applied by the conductors.
Line 25: Line 27:
Power lines and supporting structures can be a form of [[visual pollution]]. In some cases the lines are buried to avoid this, but this "[[undergrounding]]" is more expensive and therefore not common.
Power lines and supporting structures can be a form of [[visual pollution]]. In some cases the lines are buried to avoid this, but this "[[undergrounding]]" is more expensive and therefore not common.


For a single wood [[utility pole]] structure, a pole is placed in the ground, then three crossarms extend from this, either staggered or all to one side. The insulators are attached to the crossarms. 1For an "H"-type wood pole structure, two poles are placed in the ground, then a crossbar is placed on top of these, extending to both sides. The insulators are attached at the ends and in the middle. [[Lattice tower]] structures have two common forms. One has a pyramidal base, then a vertical section, where three crossarms extend out, typically staggered. The [[strain insulator]]s are attached to the crossarms. Another has a pyramidal base, which extends to four support points. On top of this a horizontal truss-like structure is placed. The insulators are attached to this.
For a single wood [[utility pole]] structure, a pole is placed in the ground, then three crossarms extend from this, either staggered or all to one side. The insulators are attached to the crossarms. For an "H"-type wood pole structure, two poles are placed in the ground, then a crossbar is placed on top of these, extending to both sides. The insulators are attached at the ends and in the middle. [[Lattice tower]] structures have two common forms. One has a pyramidal base, then a vertical section, where three crossarms extend out, typically staggered. The [[strain insulator]]s are attached to the crossarms. Another has a pyramidal base, which extends to four support points. On top of this a horizontal truss-like structure is placed.


==Insulators==
==Insulators==
[[Electrical insulation#High-voltage insulators|Insulators]] must support the conductors and withstand both the normal operating voltage and surges due to switching and [[lightning]]. Insulators are broadly classified as either pin-type, which support the conductor above the structure, or suspension type, where the conductor hangs below the structure. Up to about 33 kV (69 kV in North America) both types are commonly used. At higher voltages only suspension-type insulators are common for overhead conductors. Insulators are usually made of wet-process [[porcelain]] or [[toughened glass]], with increasing use of glass-reinforced polymer insulators. However, with rising voltage levels and changing climatic conditions, polymer insulators ([[silicone rubber]] based) are seeing increasing usage.<ref> [http://www.ngk-locke.com/polymer.html NGK-Locke] Polymer insulator manufacturer</ref> China has already developed polymer insulators having a highest system voltage of 1100kV and India is currently developing a 1200kV (highest system voltage) line which will initially be charged with 400kV to be upgraded to a 1200kV line. {{Citation needed|date=October 2010}}
[[Electrical insulation#High-voltage insulators|Insulators]] must support the conductors and withstand both the normal operating voltage and surges due to switching and [[lightning]]. Insulators are broadly classified as either pin-type, which support the conductor above the structure, or suspension type, where the conductor hangs below the structure. Up to about 33 kV (69 kV in North America) both types are commonly used. <ref name=Fink78/> At higher voltages only suspension-type insulators are common for overhead conductors. Insulators are usually made of wet-process [[porcelain]] or [[toughened glass]], with increasing use of glass-reinforced polymer insulators. However, with rising voltage levels and changing climatic conditions, polymer insulators ([[silicone rubber]] based) are seeing increasing usage.<ref> [http://www.ngk-locke.com/polymer.html NGK-Locke] Polymer insulator manufacturer</ref> China has already developed polymer insulators having a highest system voltage of 1100kV and India is currently developing a 1200kV (highest system voltage) line which will initially be charged with 400kV to be upgraded to a 1200kV line. {{Citation needed|date=October 2010}}


[[File:Ceramic electric insulator, Stargard Szczeciński, Poland - 20070614.jpg|thumb|upright|Ceramic insulators]]
[[File:Ceramic electric insulator, Stargard Szczeciński, Poland - 20070614.jpg|thumb|upright|Ceramic insulators]]
Line 40: Line 42:


==Conductors==
==Conductors==
Aluminium conductors reinforced with steel (known as [[ACSR]]) are primarily used for medium and high voltage lines and may also be used for overhead services to individual customers. Aluminium conductors are used as it has the advantage of lower resistivity/weight than copper, as well as being cheaper. Some copper cable is still used, especially at lower voltages and for grounding.
Aluminium conductors reinforced with steel (known as [[ACSR]]) are primarily used for medium and high voltage lines and may also be used for overhead services to individual customers. Aluminium conductors are used as it has the advantage of lower resistivity/weight than copper, as well as being cheaper.<ref name=Fink78/> Some copper cable is still used, especially at lower voltages and for grounding.


While larger conductors may lose less energy due to lower [[electrical resistance]], they are more costly than smaller conductors. An optimization rule called ''[[Lord Kelvin|Kelvin's Law]]'' states that the optimum size of conductor for a line is found when the cost of the energy wasted in the conductor is equal to the annual interest paid on that portion of the line construction cost due to the size of the conductors. The optimization problem is made more complex due to additional factors such as varying annual load, varying cost of installation, and by the fact that only definite discrete sizes of cable are commonly made.
While larger conductors may lose less energy due to lower [[electrical resistance]], they are more costly than smaller conductors. An optimization rule called ''[[Lord Kelvin|Kelvin's Law]]'' states that the optimum size of conductor for a line is found when the cost of the energy wasted in the conductor is equal to the annual interest paid on that portion of the line construction cost due to the size of the conductors. The optimization problem is made more complex due to additional factors such as varying annual load, varying cost of installation, and by the fact that only definite discrete sizes of cable are commonly made. <ref name=Fink78/>


Since a conductor is a flexible object with uniform weight per unit length, the geometric shape of a conductor strung on towers approximates that of a [[catenary]]. The sag of the conductor (vertical distance between the highest and lowest point of the curve) varies depending on the temperature. A minimum overhead clearance must be maintained for safety. Since the temperature of the conductor increases with increasing heat produced by the current through it, it is sometimes possible to increase the power handling capacity (uprate) by changing the conductors for a type with a lower coefficient of thermal expansion or a higher allowable [[operating temperature]].
Since a conductor is a flexible object with uniform weight per unit length, the geometric shape of a conductor strung on towers approximates that of a [[catenary]]. The sag of the conductor (vertical distance between the highest and lowest point of the curve) varies depending on the temperature. A minimum overhead clearance must be maintained for safety. Since the temperature of the conductor increases with increasing heat produced by the current through it, it is sometimes possible to increase the power handling capacity (uprate) by changing the conductors for a type with a lower coefficient of thermal expansion or a higher allowable [[operating temperature]].
Line 126: Line 128:
General references:
General references:
{{refbegin}}
{{refbegin}}

* [[Donald G. Fink]] and H. Wayne Beaty, ''Standard Handbook for Electrical Engineers, Eleventh Edition'', McGraw-Hill, New York, 1978, ISBN 0-07-020974-X
* William D. Stevenson, Jr. ''Elements of Power System Analysis Third Edition'', McGraw-Hill, New York (1975) ISBN 0-07-061285-4
* William D. Stevenson, Jr. ''Elements of Power System Analysis Third Edition'', McGraw-Hill, New York (1975) ISBN 0-07-061285-4
{{refend}}
{{refend}}

Revision as of 15:16, 8 May 2011

Transmission lines in Lund, Sweden
Overhead lines in Japan
High and medium voltage power lines in Łomża, Poland

An overhead power line is an electric power transmission line suspended by towers or utility poles. Since most of the insulation is provided by air, overhead power lines are generally the lowest-cost method of transmission for large quantities of electric energy. Towers for support of the lines are made of wood (as-grown or laminated), steel (either lattice structures or tubular poles), concrete, aluminium, and occasionally reinforced plastics. The bare wire conductors on the line are generally made of aluminium (either plain or reinforced with steel, or sometimes composite materials), though some copper wires are used in medium-voltage distribution and low-voltage connections to customer premises. A major goal of overhead power line design is to maintain adequate clearance between energized conductors and the ground so as to prevent dangerous contact with the line. [1]

The invention of the strain insulator was a critical factor in allowing higher voltages to be used. At the end of the 19th century, the limited electrical strength of telegraph-style pin insulators limited the voltage to no more than 69,000 volts. Today overhead lines are routinely operated at voltages exceeding 765,000 volts between conductors, with even higher voltages possible in some cases.

Overhead power transmission lines are classified in the electrical power industry by the range of voltages:

  • Low voltage – less than 1000 volts, used for connection between a residential or small commercial customer and the utility.
  • Medium Voltage (Distribution) – between 1000 volts (1 kV) and to about 33 kV, used for distribution in urban and rural areas.
  • High Voltage (subtransmission less than 100 kV; subtransmission or transmission at voltage such as 115 kV and 138 kV), used for sub-transmission and transmission of bulk quantities of electric power and connection to very large consumers.
  • Extra High Voltage (transmission) – over 230 kV, up to about 800 kV, used for long distance, very high power transmission.
  • Ultra High Voltage – higher than 800 kV.

Structures

Structures for overhead lines take a variety of shapes depending on the type of line. Structures may be as simple as wood poles directly set in the earth, carrying one or more cross-arm beams to support conductors, or "armless" construction with conductors supported on insulators attached to the side of the pole. Tubular steel poles are typically used in urban areas. High-voltage lines are often carried on lattice-type steel towers or pylons. For remote areas, aluminium towers may be placed by helicopters. Concrete poles have also been used.[1] Poles made of reinforced plastics are also available, but their high cost restricts application.

Each structure must be designed for the loads imposed on it by the conductors. [1] The weight of the conductor must be supported, as well as dynamic loads due to wind and ice accumulation, and effects of vibration. Where conductors are in a straight line, towers need only resist the weight since the tension in the conductors approximately balances with no resultant force on the structure. Flexible conductors supported at their ends approximate the form of a catenary, and much of the analysis for construction of transmission lines relies on the properties of this form. [1]

A large transmission line project may have several types of towers, with "tangent" ("suspension" or "line" towers, UK) towers intended for most positions and more heavily constructed towers used for turning the line through an angle, dead-ending (terminating) a line, or for important river or road crossings. Depending on the design criteria for a particular line, semi-flexible type structures may rely on the weight of the conductors to be balanced on both sides of each tower. More rigid structures may be intended to remain standing even if one or more conductors is broken. Such structures may be installed at intervals in power lines to limit the scale of cascading tower failures. [1]

Foundations for tower structures may be large and costly, particularly if the ground conditions are poor, such as in wetlands. Each structure may be stabilized considerably by the use of guy wires to counteract some of the forces applied by the conductors.

Power lines and supporting structures can be a form of visual pollution. In some cases the lines are buried to avoid this, but this "undergrounding" is more expensive and therefore not common.

For a single wood utility pole structure, a pole is placed in the ground, then three crossarms extend from this, either staggered or all to one side. The insulators are attached to the crossarms. For an "H"-type wood pole structure, two poles are placed in the ground, then a crossbar is placed on top of these, extending to both sides. The insulators are attached at the ends and in the middle. Lattice tower structures have two common forms. One has a pyramidal base, then a vertical section, where three crossarms extend out, typically staggered. The strain insulators are attached to the crossarms. Another has a pyramidal base, which extends to four support points. On top of this a horizontal truss-like structure is placed.

Insulators

Insulators must support the conductors and withstand both the normal operating voltage and surges due to switching and lightning. Insulators are broadly classified as either pin-type, which support the conductor above the structure, or suspension type, where the conductor hangs below the structure. Up to about 33 kV (69 kV in North America) both types are commonly used. [1] At higher voltages only suspension-type insulators are common for overhead conductors. Insulators are usually made of wet-process porcelain or toughened glass, with increasing use of glass-reinforced polymer insulators. However, with rising voltage levels and changing climatic conditions, polymer insulators (silicone rubber based) are seeing increasing usage.[2] China has already developed polymer insulators having a highest system voltage of 1100kV and India is currently developing a 1200kV (highest system voltage) line which will initially be charged with 400kV to be upgraded to a 1200kV line. [citation needed]

Ceramic insulators

Suspension insulators are made of multiple units, with the number of unit insulator disks increasing at higher voltages. The number of disks is chosen based on line voltage, lightning withstand requirement, altitude, and environmental factors such as fog, pollution, or salt spray. Longer insulators, with longer creepage distance for leakage current, are required in these cases. Strain insulators must be strong enough mechanically to support the full weight of the span of conductor, as well as loads due to ice accumulation, and wind.

Porcelain insulators may have a semi-conductive glaze finish, so that a small current (a few milliamperes) passes through the insulator. This warms the surface slightly and reduces the effect of fog and dirt accumulation. The semiconducting glaze also ensures a more even distribution of voltage along the length of the chain of insulator units.

Polymer insulators by nature have hydrophobic characteristics providing for improved wet performance. Also, studies have shown that the specific creepage distance required in polymer insulators is much lower than that required in porcelain or glass. Additionally, the mass of polymer insulators (espicially in higher voltages) is approximately 50% to 30% less than that of a comparative porcelain or glass string. Better pollution and wet performance is leading to the increased use of such insulators.

Insulators for very high voltages, exceeding 200 kV, may have grading rings installed at their terminals. This improves the electric field distribution around the insulator and makes it more resistant to flash-over during voltage surges.

Conductors

Aluminium conductors reinforced with steel (known as ACSR) are primarily used for medium and high voltage lines and may also be used for overhead services to individual customers. Aluminium conductors are used as it has the advantage of lower resistivity/weight than copper, as well as being cheaper.[1] Some copper cable is still used, especially at lower voltages and for grounding.

While larger conductors may lose less energy due to lower electrical resistance, they are more costly than smaller conductors. An optimization rule called Kelvin's Law states that the optimum size of conductor for a line is found when the cost of the energy wasted in the conductor is equal to the annual interest paid on that portion of the line construction cost due to the size of the conductors. The optimization problem is made more complex due to additional factors such as varying annual load, varying cost of installation, and by the fact that only definite discrete sizes of cable are commonly made. [1]

Since a conductor is a flexible object with uniform weight per unit length, the geometric shape of a conductor strung on towers approximates that of a catenary. The sag of the conductor (vertical distance between the highest and lowest point of the curve) varies depending on the temperature. A minimum overhead clearance must be maintained for safety. Since the temperature of the conductor increases with increasing heat produced by the current through it, it is sometimes possible to increase the power handling capacity (uprate) by changing the conductors for a type with a lower coefficient of thermal expansion or a higher allowable operating temperature.

Bundle conductors

Bundle conductors are used to reduce corona losses and audible noise. Bundle conductors consist of several conductor cables connected by non-conducting spacers. For 220 kV lines, two-conductor bundles are usually used, for 380 kV lines usually three or even four. American Electric Power[3] is building 765 kV lines using six conductors per phase in a bundle. Spacers must resist the forces due to wind, and magnetic forces during a short-circuit.

Bundle conductors are used to increase the amount of current that may be carried in a line. Due to the skin effect, ampacity of conductors is not proportional to cross section, for the larger sizes. Therefore, bundle conductors may carry more current for a given weight.

A bundle conductor results in lower reactance, compared to a single conductor. It reduces corona discharge loss at extra high voltage (EHV) and interference with communication systems. It also reduces voltage gradient in that range of voltage.

As a disadvantage, the bundle conductors have higher wind loading.

Circuits

Single 3-phase circuit carried by electricity pylon, with ground wire

A single-circuit transmission line carries conductors for only one circuit. For a three-phase system, this implies that each tower supports three conductors.

Typical double-circuit line

A double-circuit transmission line has two circuits. For three-phase systems, each tower supports and insulates six conductors. Single phase AC-powerlines as used for traction current have four conductors for two circuits. Usually both circuits operate at the same voltage.

In HVDC systems typically two conductors are carried per line, but rarely only one pole of the system is carried on a set of towers.

In some countries like Germany most powerlines with voltages above 100 kV are implemented as double, quadruple or in rare cases even hexuple powerline as rights of way are rare. Sometimes all conductors are installed with the erection of the pylons; often some circuits are installed later. A disadvantage of double circuit transmission lines is that maintenance works can be more difficult, as either work in close proximity of high voltage or switch-off of 2 circuits is required. In case of failure, both systems can be affected.

The largest double-circuit transmission line is the Kita-Iwaki Powerline.

Ground wires

Overhead power lines are often equipped with a ground conductor (shield wire or overhead earth wire). A ground conductor is a conductor that is usually grounded (earthed) at the top of the supporting structure to minimise the likelihood of direct lightning strikes to the phase conductors. The ground wire is also a parallel path with the earth for fault currents in earthed neutral circuits. Very high-voltage transmission lines may have two ground conductors. These are either at the outermost ends of the highest cross beam, at two V-shaped mast points, or at a separate cross arm. Older lines may use surge arrestors every few spans in place of a shield wire; this configuration is typically found in the more rural areas of the United States. By protecting the line from lightning, the design of apparatus in substations is simplified due to lower stress on insulation. Shield wires on transmission lines may include optical fibers (OPGW), used for communication and control of the power system.

Medium-voltage distribution lines may have the grounded conductor strung below the phase conductors to provide some measure of protection against tall vehicles or equipment touching the energized line, as well as to provide a neutral line in Wye wired systems.

Insulated conductors

While overhead lines are usually bare conductors, rarely overhead insulated cables are used, usually for short distances (less than a kilometer). Insulated cables can be directly fastened to structures without insulating supports. An overhead line with bare conductors insulated by air is typically less costly than a cable with insulated conductors.

A more common approach is "covered" line wire. It is treated as bare cable, but often is safer for wildlife, as the insulation on the cables increases the likelihood of a large wing-span raptor to survive a brush with the lines, and reduces the overall danger of the lines slightly. These types of lines are often seen in the eastern United States and in heavily wooded areas, where tree-line contact is likely. The only pitfall is cost, as insulated wire is often costlier than its bare counterpart. Many utility companies implement covered line wire as jumper material where the wires are often closer to each other on the pole, such as an underground riser/Pothead, and on reclosers, cutouts and the like.

Low voltage

Aerial bundled cable in Old Coulsdon, Surrey

Low voltage overhead lines may use either bare conductors carried on glass or ceramic insulators or an aerial bundled cable system. The number of conductors may be anywhere between four (three phase plus a combined earth/neutral conductor - a TN-C earthing system) up to as many as six (three phase conductors, separate neutral and earth plus street lighting supplied by a common switch).

Train power

Overhead lines or overhead wires are used to transmit electrical energy to trams, trolleybuses or trains. Overhead line is designed on the principle of one or more overhead wires situated over rail tracks. Feeder stations at regular intervals along the overhead line supply power from the high voltage grid. For some cases low-frequency AC is used, and distributed by a special traction current network.

Further applications

Overhead lines are also occasionally used to supply transmitting antennas, especially for efficient transmission of long, medium and short waves. For this purpose a staggered array line is often used. Along a staggered array line the conductor cables for the supply of the earth net of the transmitting antenna are attached on the exterior of a ring, while the conductor inside the ring, is fastened to insulators leading to the high voltage standing feeder of the antenna.

Usage of area under overhead power lines

Use of the area below an overhead line is restricted because objects must not come too close to the energized conductors. Overhead lines and structures may shed ice, creating a hazard. Radio reception can be impaired under a power line, due both to shielding of a receiver antenna by the overhead conductors, and by partial discharge at insulators and sharp points of the conductors which creates radio noise.

In the area surrounding overhead lines it is dangerous to risk interference; e.g. flying kites or balloons, using ladders or operating machinery.

Overhead distribution and transmission lines near airfields are often marked on maps, and the lines themselves marked with conspicuous plastic reflectors, to warn pilots of the presence of conductors.

Construction of overhead power lines, especially in wilderness areas, may have significant environmental effects. Environmental studies for such projects may consider the effect of brush clearing, changed migration routes for migratory animals, possible access by predators and humans along transmission corridors, disturbances of fish habitat at stream crossings, and other effects.

History

The first transmission of electrical impulses over an extended distance was demonstrated on July 14, 1729 by the physicist Stephen Gray, in order to show that one can transfer electricity by that method. The demonstration used damp hemp cords suspended by silk threads (the low resistance of metallic conductors not being appreciated at the time).

However the first practical use of overhead lines was in the context of telegraphy. By 1837 experimental commercial telegraph systems ran as far as 13 miles (20 km). Electric power transmission was accomplished in 1882 with the first high voltage transmission between Munich and Miesbach. 1891 saw the construction of the first three-phase alternating current overhead line on the occasion of the International Electricity Exhibition in Frankfurt, between Lauffen and Frankfurt.

In 1912 the first 110 kV-overhead power line entered service followed by the first 220 kV-overhead power line in 1923. In the 1920s RWE AG built the first overhead line for this voltage and in 1926 built a Rhine crossing with the pylons of Voerde, two masts 138 meters high.

In Germany in 1957 the first 380 kV overhead power line was commissioned (between the transformer station and Rommerskirchen). In the same year the overhead line traversing of the Strait of Messina went into service in Italy, whose pylons served the Elbe crossing 1. This was used as the model for the building of the Elbe crossing 2 in the second half of the 1970s which saw the construction of the highest overhead line pylons of the world. Starting from 1967 in Russia, and also in the USA and Canada, overhead lines for voltage of 765 kV were built. In 1982 overhead power lines were built in Russia between Elektrostal and the power station at Ekibastusz, this was a three-phase alternating current line at 1150 kV (Powerline Ekibastuz-Kokshetau). In 1999, in Japan the first powerline designed for 1000 kV with 2 circuits were built, the Kita-Iwaki Powerline. In 2003 the building of the highest overhead line commenced in China, the Yangtze River Crossing.

Similar constructions

References

Specific references:

  1. ^ a b c d e f g h Donald G. Fink and H. Wayne Beaty, Standard Handbook for Electrical Engineers, Eleventh Edition, McGraw-Hill, New York, 1978, ISBN 0-07-020974-X, Chapter 14 Overhead Power Transmission
  2. ^ NGK-Locke Polymer insulator manufacturer
  3. ^ Six Wire Solution, retrieved March 6, 2007

General references:

  • William D. Stevenson, Jr. Elements of Power System Analysis Third Edition, McGraw-Hill, New York (1975) ISBN 0-07-061285-4