Jump to content

Verdier duality: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 73: Line 73:
* {{Citation | last1=Grothendieck | first1=Alexandre | author1-link=Alexandre Grothendieck | title=Séminaire de Géométrie Algébrique du Bois Marie - 1965-66 - Cohomologie l-adique et Fonctions L - (SGA 5) | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture notes in mathematics | isbn=978-3-540-08248-4 | year=1977 | volume=589 | pages=xii+484}}, Exposés I and II contain the corresponding theory in the étale situation
* {{Citation | last1=Grothendieck | first1=Alexandre | author1-link=Alexandre Grothendieck | title=Séminaire de Géométrie Algébrique du Bois Marie - 1965-66 - Cohomologie l-adique et Fonctions L - (SGA 5) | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture notes in mathematics | isbn=978-3-540-08248-4 | year=1977 | volume=589 | pages=xii+484}}, Exposés I and II contain the corresponding theory in the étale situation
* {{Citation | last1=Iversen | first1=Birger | title=Cohomology of sheaves | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Universitext | isbn=978-3-540-16389-3 | id={{MathSciNet | id = 842190}} | year=1986}}
* {{Citation | last1=Iversen | first1=Birger | title=Cohomology of sheaves | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Universitext | isbn=978-3-540-16389-3 | id={{MathSciNet | id = 842190}} | year=1986}}
*{{Citation | last1=Verdier | first1=Jean-Louis | author1-link=Jean-Louis Verdier | editor1-last=Springer | editor1-first=Tonny Albert | title=Proceedings of a Conference on Local Fields: NUFFIC Summer School held at Driebergen (The Netherlands) in 1966 | url=http://books.google.com/books?id=SW-mAAAAIAAJ | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-3-540-03953-2 | id={{MR|0230732}} | year=1967 | chapter=A duality theorem in the etale cohomology of schemes | pages=184–198}}
*{{Citation | last1=Verdier | first1=Jean-Louis | author1-link=Jean-Louis Verdier | title=Séminaire Bourbaki, Vol. 9 | url=http://www.numdam.org/item?id=SB_1964-1966__9__337_0 | publisher=[[Société Mathématique de France]] | location=Paris | isbn=978-2-85629-042-2 | id={{MR|1610971}} | year=1995 | chapter=Dualité dans la cohomologie des espaces localement compacts | pages=Exp. No. 300, 337–349}}
*{{Citation | last1=Verdier | first1=Jean-Louis | author1-link=Jean-Louis Verdier | title=Séminaire Bourbaki, Vol. 9 | url=http://www.numdam.org/item?id=SB_1964-1966__9__337_0 | publisher=[[Société Mathématique de France]] | location=Paris | isbn=978-2-85629-042-2 | id={{MR|1610971}} | year=1995 | chapter=Dualité dans la cohomologie des espaces localement compacts | pages=Exp. No. 300, 337–349}}



Revision as of 14:56, 28 November 2011

In mathematics, Verdier duality is a generalization of the Poincaré duality of manifolds to spaces with singularities. The theory was introduced by Jean-Louis Verdier (1965), and there is a similar duality theory for schemes due to Grothendieck. It plays a role in the theory of perverse sheaves.

Notation

The exclamation mark is often pronounced "shriek" (slang for exclamation mark), and the maps called "f shriek" or "f lower shriek" and "f upper shriek" – see also shriek map.

Verdier duality

Global Verdier duality states that Rf! has a right adjoint f! in the derived category, in other words

If X is a finite covering space of Y then f! takes sheaves to sheaves and is the same as f. If X is a closed subspace of Y then f! again takes sheaves to sheaves, but in general its image on sheaves cannot be represented by a single sheaf, but only by a complex of sheaves on the derived category.

Local Verdier duality states that

in the right derived category of sheaves of F modules over X. Taking homology of both sides gives global Verdier duality.

The dualizing complex DX on X is defined to be

where f is the map from X to a point.

If X is a finite dimensional locally compact space, and Db(X) the bounded derived category of sheaves of abelian groups over X, then the Verdier dual is a contravariant functor

defined by

It has the following properties:

  • D2(S) is isomorphic to S when S has constructible cohomology.
  • (Verdier duality) If f is a continuous map from X to Y then there is an isomorphism
    for any SDb(X).

Here Rf denotes the higher direct image, at the derived category level.

In the special case when Y is a point and X is compact this says (roughly) that the cohomologies of dual complexes are dual.

Poincaré duality

Poincaré duality is a special case of Verdier duality; this can be seen as follows.

In the derived category, cohomology can be interpreted as chain homotopy classes of maps

Hk (X, F) = [F[−k],X] = [F, X[k]]

where F[−k] is the complex with the constant sheaf F concentrated in degree k, and [—, —] denote the chain homotopy classes of maps. The Verdier dual allows us to interpret homology in the derived category as well:

[F[−k], DX] = Hk (X, F).

The left hand side is by definition the dual of the cohomology with compact support, so this equation says that homology is dual to cohomology with compact support.

It also follows that for an oriented manifold M, the Verdier dual is given by

DM = F[−n].

Ordinary Poincaré duality of a manifold can then be interpreted as the perfect pairing

[F[−k], F] ⊗ [F[kn], F[−n]] → [F[−n], F[−n]] → F.

References

  • Borel, Armand (1984), Intersection cohomology, Progress in Mathematics, Basel, Boston, Berlin: Birkhäuser, ISBN 978-0-8176-3274-8
  • Gelfand, Sergei I.; Manin, Yuri Ivanovich (1999), Homological algebra, Berlin: Springer, ISBN 978-3-540-65378-3
  • Grothendieck, Alexandre (1977), Séminaire de Géométrie Algébrique du Bois Marie - 1965-66 - Cohomologie l-adique et Fonctions L - (SGA 5), Lecture notes in mathematics, vol. 589, Berlin, New York: Springer-Verlag, pp. xii+484, ISBN 978-3-540-08248-4, Exposés I and II contain the corresponding theory in the étale situation
  • Iversen, Birger (1986), Cohomology of sheaves, Universitext, Berlin, New York: Springer-Verlag, ISBN 978-3-540-16389-3, MR842190
  • Verdier, Jean-Louis (1967), "A duality theorem in the etale cohomology of schemes", in Springer, Tonny Albert (ed.), Proceedings of a Conference on Local Fields: NUFFIC Summer School held at Driebergen (The Netherlands) in 1966, Berlin, New York: Springer-Verlag, pp. 184–198, ISBN 978-3-540-03953-2, MR0230732
  • Verdier, Jean-Louis (1995), "Dualité dans la cohomologie des espaces localement compacts", Séminaire Bourbaki, Vol. 9, Paris: Société Mathématique de France, pp. Exp. No. 300, 337–349, ISBN 978-2-85629-042-2, MR1610971