Jump to content

1000 (number): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Reverted 1 edit by 71.49.153.121 (talk): Nope. (TW)
Line 160: Line 160:
:1291 – Mertens function zero
:1291 – Mertens function zero
:1292 – Mertens function zero
:1292 – Mertens function zero
:1294 – Maximum font size allowed in Adobe InDesign
:1296 – 6<sup>4</sup>, 36<sup>2</sup>, sum of the cubes of the first eight positive integers, the number of [[rectangle]]s on a normal 8&nbsp;×&nbsp;8 [[chessboard]]
:1296 – 6<sup>4</sup>, 36<sup>2</sup>, sum of the cubes of the first eight positive integers, the number of [[rectangle]]s on a normal 8&nbsp;×&nbsp;8 [[chessboard]]
:1297 – Mertens function zero
:1297 – Mertens function zero

Revision as of 01:23, 12 January 2017

← 999 1000 1001 →
Cardinalone thousand
Ordinal1000th
(one thousandth)
Factorization23 × 53
Divisors1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000
Greek numeral,Α´
Roman numeralM
Greek prefixchilia
Latin prefixmilli
Binary11111010002
Ternary11010013
Senary43446
Octal17508
Duodecimal6B412
Hexadecimal3E816
Tamil

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it is often written with a comma separating the thousands unit: 1,000.

It may also be described as the short thousand in historical discussion of medieval contexts where it might be confused with the Germanic concept of the "long thousand" (1200).

In mathematics

  • The decimal representation for one thousand is
  • The SI prefix for a thousand is kilo-, with the official symbol k—for instance, prefixed to "metre" or its symbol "m", kilometre or km signifies a thousand metres. As such, people occasionally represent the number in a non-standard notation by replacing the last three zeros of the general numeral with "K": for instance, 30K for 30,000.
  • By the SI writing style, a space can be used as a thousands separator, i.e., to separate the digits of a number at every power of 1000.
  • The sum of Euler's totient function over the first 57 integers is 1000.
  • Prime Curios! mentions that 1000 is the smallest number that generates three primes in the fastest way possible by concatenation of decremented numbers (1000999, 1000999998997, and 1000999998997996995994993 are prime). The criterion excludes counting the number itself.
  • 1000 is a Harshad number in base 10.

In time

  • A grand is a slang term for one thousand units of a given currency, usually dollars or pounds. Several grand can be shortened to Gs.
  • The symbol K is sometimes used for a thousand; for example, in referring to units of salary or in reference to the Y2K computer bug.
  • Especially in the United States, the gambling community often refers to denominations of $1000 as dimes.
  • The idiom "a picture is worth a thousand words".
  • According to an ancient Japanese legend, anyone who folds a thousand origami cranes will be granted a wish by a crane.
  • The thousandth of something is often celebrated, as with other round numbers. A good example is a millennium.

Miscellaneous

Music

Selected numbers in the thousands (1001–1999)

1001–1249

1001sphenic number (7 × 11 × 13), pentagonal number, pentatope number
1002 – sphenic number, Mertens function zero, abundant number
1005 – Mertens function zero; first number written in English containing all five vowels a e i o u.
1008 – divisible by the number of primes below it
1009 – smallest four-digit prime, palindromic in bases 11, 15, 19, 24 and 28: (83811, 47415, 2F219, 1I124, 18128)
1010 – Mertens function zero
1013 – Sophie Germain prime,[1] centered square number,[2] Mertens function zero
1014 – Mertens function zero
1015 – square pyramidal number[3]
1016 – member of the Mian–Chowla sequence[4]
1017 – Brick Squad
1018 – Mertens function zero
1019 – Sophie Germain prime,[1] safe prime[5]
1020 – polydivisible number
1023 – the highest number one can count to on one's fingers using binary; also the magic number used in Global Positioning System signals
1024 – 210, the number of bytes in a kilobyte (in 1999, the IEC coined kibibyte to use for 1024 with kilobyte being 1000, but this convention has not been widely adopted)
1027 – sum of the squares of the first eight primes; can be written from base 2 to base 18 using only the digits 0 to 9.
1028 – sum of totient function for first 58 integers; can be written from base 2 to base 18 using only the digits 0 to 9.
1029 – can be written from base 2 to base 18 using only the digits 0 to 9.
1031 – Sophie Germain prime[1]
1033 – locale ID of English (United States) in (some version of) Windows.[6]
1035 – triangular number,[7] hexagonal number[8]
1049 – Sophie Germain prime,[1] highly cototient number[9]
1051 – centered pentagonal number[10]
1056 – pronic number[11]
1060 – sum of the first 25 primes
1071 – heptagonal number[12]
1072 – centered heptagonal number[13]
1079 – every positive integer is the sum of at most 1079 tenth powers.
1080 – pentagonal number[14]
1081 – triangular number,[7] member of Padovan sequence[15]
1086 – Smith number,[16] sum of totient function for first 59 integers
1087 – cousin prime, lucky prime,[17] Kynea number[18]
1089 – 332, nonagonal number, centered octagonal number, first natural integer which digits in its decimal expression get reversed when multiplied by 9.[19]
1091 – cousin prime and twin prime
1092 – divisible by the number of primes below it
1093 – the smallest Wieferich prime (the only other known Wieferich prime is 3511[20]), twin prime and star number[21]
1102 – sum of totient function for first 60 integers
1103 – Sophie Germain prime,[1] balanced prime[22]
1104 – Keith number[23]
1105 – Carmichael number,[24] magic constant of n × n normal magic square and n-queens problem for n = 13, decagonal number,[25] centered square number,[2] 1105 = 332 + 42 = 322 + 92 = 312 + 122 = 232 + 242
1116 – divisible by the number of primes below it
1122 – pronic number,[11] divisible by the number of primes below it
1123 – balanced prime[22]
1124 – Leyland number[26]
1128 – triangular number,[7] hexagonal number,[8] divisible by the number of primes below it
1134 - divisible by the number of primes below it
1138 – recurring number in the works of George Lucas and his companies, beginning with his first feature film – THX 1138; particularly, a special code for Easter eggs on Star Wars DVDs.
1140 – tetrahedral number[27]
1151 – first prime following a prime gap of 22.[28]
1152 – highly totient number[29]
1153 – Proth prime[30]
1156 – 342, octahedral number,[31] centered pentagonal number,[10] centered hendecagonal number.[32]
1159 – member of the Mian–Chowla sequence[4]
1161 – sum of the first 26 primes
1162 – pentagonal number,[14] sum of totient function for first 61 integers
1169 – highly cototient number[9]
1170 – highest possible score in a National Academic Quiz Tournaments (NAQT) match
1176 – triangular number[7]
1177 – heptagonal number[12]
1184 – amicable number with 1210[33]
1187 – safe prime,[5] Stern prime,[34] balanced prime[22]
1190 – pronic number[11]
1192 – sum of totient function for first 62 integers
1198 – centered heptagonal number[13]
1200 – the long thousand, ten "long hundreds" of 120 each, the traditional reckoning of large numbers in Germanic languages
the number of households the Nielsen ratings sample[35]
1201 – centered square number[2]
1210 – amicable number with 1184[36]
1216 – nonagonal number[37]
1217 – Proth prime[30]
1219 – Mertens function zero
1220 – Mertens function zero
1223 – Sophie Germain prime,[1] balanced prime[22]
1225 – 352, triangular number, square triangular number,[38] hexagonal number,[8] centered octagonal number[39]
1228 – sum of totient function for first 63 integers
1229 – Sophie Germain prime,[1] number of primes between 0 and 10000
1233 – 122 + 332
1240 – square pyramidal number[3]
1241 – centered cube number[40]
1242 – decagonal number[25]
1247 – pentagonal number[14]
1249 – emirp, trimorphic number[41]

1250–1499

1255 – Mertens function zero
1256 – Mertens function zero
1258 – Mertens function zero
1259 – highly cototient number[9]
1260 – highly composite number,[42] pronic number,[11] the smallest vampire number,[43] sum of totient function for first 64 integers, this number appears twice in the Book of Revelation
1261 – star number,[21] Mertens function zero
1264 – sum of the first 27 primes
1266 – centered pentagonal number,[10] Mertens function zero
1270 – Mertens function zero
1275 – triangular number,[7] sum of the first 50 natural numbers
1279 – Mertens function zero
1280 – Mertens function zero
1282 – Mertens function zero
1283 – safe prime[5]
1285 – Mertens function zero
1288 – heptagonal number[12]
1289 – Sophie Germain prime,[1] Mertens function zero
1291 – Mertens function zero
1292 – Mertens function zero
1294 – Maximum font size allowed in Adobe InDesign
1296 – 64, 362, sum of the cubes of the first eight positive integers, the number of rectangles on a normal 8 × 8 chessboard
1297 – Mertens function zero
1299 – Mertens function zero
1300 – Sum of the first 4 fifth powers, mertens function zero, largest possible win margin in an NAQT match
1301 – centered square number[2]
1302 – Mertens function zero
1306 – Mertens function zero. In base 10, raising the digits of 1306 to powers of successive integers equals itself: 1306 = 11 + 32 + 03 + 64. 135, 175, 518, and 598 also have this property.
1307 – safe prime[5]
1308 – sum of totient function for first 65 integers
1309 – the first sphenic number followed by two consecutive such number
1312 – member of the Mian–Chowla sequence;[4] code for "ACAB" itself an acronym for "all cops are bastards"[44]
1318 – Mertens function zero
1319 – safe prime[5]
1325 – Markov number[45]
1326 – triangular number,[7] hexagonal number,[8] Mertens function zero
1327 – first prime followed by 32 consecutive composite numbers
1328 – sum of totient function for first 66 integers
1329 – Mertens function zero
1330 – tetrahedral number,[27] forms a Ruth–Aaron pair with 1331 under second definition
1331 – 113, centered heptagonal number,[13] forms a Ruth–Aaron pair with 1330 under second definition. This is the only cube of the form x2 + x − 1, for x = 36.
1332 – pronic number[11]
1335 – pentagonal number,[14] Mertens function zero
1336 – Mertens function zero
1337 – Used in the novel form of spelling called leet
1338 – Mertens function zero
1342 – Mertens function zero
1350 – nonagonal number[37]
1361 – first prime following a prime gap of 34.[28]
1365 – pentatope number[46]
1367 – safe prime,[5] balanced prime[22]
1369 – 372, centered octagonal number[39]
1371 – sum of the first 28 primes
1378 – triangular number[7]
1379 – magic constant of n × n normal magic square and n-queens problem for n = 14.
1381 – centered pentagonal number[10]
1387 – 5th Fermat pseudoprime of base 2,[47] 22nd centered hexagonal number and the 19th decagonal number,[25] second Super-Poulet number.[48]
1394 – sum of totient function for first 67 integers
1395 – vampire number,[43] member of the Mian–Chowla sequence[4]
1404 – heptagonal number[12]
1405 – 262 + 272, 72 + 82 + … + 162, centered square number[2]
1406 – pronic number,[11] semi-meandric number[49]
1409 – Sophie Germain prime,[1] smallest number whose eighth power is the sum of 8 eighth powers, Proth prime[30]
1419 – Zeisel number[50]
1425 – self-descriptive number in base 5
1426 – sum of totient function for first 68 integers
1426 – pentagonal number[14]
1430 – Catalan number[51]
1431 – triangular number,[7] hexagonal number[8]
1432 – member of Padovan sequence[15]
1433 - Typical port used for remote connections to Microsoft SQL Server databases
1435 – vampire number;[43] the standard railway gauge in millimetres, equivalent to 4' 8½"
1439 – Sophie Germain prime,[1] safe prime[5]
1440 – a highly totient number[29] and a 481-gonal number. Also, the number of minutes in one day, the blocksize of a standard 3+12floppy disk, and the horizontal resolution of WXGA(II) computer displays
1441 – star number[21]
1444 – 382, smallest pandigital number in Roman numerals
1451 – Sophie Germain prime[1]
1458
1469 – octahedral number,[31] highly cototient number[9]
1470 – pentagonal pyramidal number,[52] sum of totient function for first 69 integers
1471 – centered heptagonal number[13]
1480 – sum of the first 29 primes
1481 – Sophie Germain prime[1]
1482 – pronic number[11]
1485 – triangular number
1487 – safe prime[5]
1490 – tetranacci number[53]
1491 – nonagonal number,[37] Mertens function zero
1492 – Mertens function zero
1493 – Stern prime[34]
1494 – sum of totient function for first 70 integers
1496 – square pyramidal number[3]
1499 – Sophie Germain prime[1]

1500–1749

1501 – centered pentagonal number[10]
1510
1511 – Sophie Germain prime,[1] balanced prime[22]
1513 – centered square number[2]
1518 – Mertens function zero
1519 – Mertens function zero
1520 – pentagonal number,[14] Mertens function zero, forms a Ruth–Aaron pair with 1521 under second definition
1521 – 392, Mertens function zero, centered octagonal number,[39] forms a Ruth–Aaron pair with 1520 under second definition
1523 – Mertens function zero, safe prime,[5] member of the Mian–Chowla sequence[4]
1524 – Mertens function zero
1525 – heptagonal number,[12] Mertens function zero
1527 – Mertens function zero
1528 – Mertens function zero
1530 – vampire number[43]
1531 – Mertens function zero
1532 – Mertens function zero
1535 – Thabit number
1537 – Keith number,[23] Mertens function zero
1540 – triangular number, hexagonal number,[8] decagonal number,[25] tetrahedral number[27]
1543 – Mertens function zero
1544 – Mertens function zero
1546 – Mertens function zero
1556 – sum of the squares of the first nine primes
1559 – Sophie Germain prime[1]
1560 – pronic number[11]
1564 – sum of totient function for first 71 integers
1572 – member of the Mian–Chowla sequence[4]
1575 – odd abundant number[54]
1583 – Sophie Germain prime
1588 – sum of totient function for first 72 integers
1593 – sum of the first 30 primes
1596 – triangular number
1597 – Fibonacci number,[55] Markov number,[45] Prime number, emirp
1600 – 402, repdigit in base 7 (44447), street number on Pennsylvania Avenue of the White House, Meters; Common High School Track Event, perfect score on SAT (except from 2005-2015)
1601 – Sophie Germain prime, Proth prime,[30] the novel 1601 (Mark Twain)
1617 – pentagonal number[14]
1618 – centered heptagonal number[13]
1619 – safe prime[5]
1625 – centered square number[2]
1626 – centered pentagonal number[10]
1633 – star number[21]
1638 – harmonic divisor number[56]
1639 – nonagonal number[37]
1640 – pronic number[11]
1649 – highly cototient number,[9] Leyland number[26]
1651 – heptagonal number[12]
1653 – triangular number, hexagonal number[8]
1657 – cuban prime[57]
1660 – sum of totient function for first 73 integers
1666 – largest efficient pandigital number in Roman numerals (each symbol occurs exactly once)
1679 – highly cototient number,[9] semiprime (23 × 73, see also Arecibo message)
1680 – highly composite number[42]
1681 – 412, smallest number yielded by the formula n2 + n + 41 that is not a prime; centered octagonal number[39]
1682 – member of a Ruth–Aaron pair (first definition)
1683 – member of a Ruth–Aaron pair (first definition)
1695 – magic constant of n × n normal magic square and n-queens problem for n = 15.
1696 – sum of totient function for first 74 integers
1701 – decagonal number, hull number of the U.S.S. Enterprise on Star Trek
1702 – palindromic in 3 consecutive bases: 89814, 78715, 6A616
1705 – tribonacci number[58]
1709 – first of a sequence of eight primes formed by adding 57 in the middle. 1709, 175709, 17575709, 1757575709, 175757575709, 17575757575709, 1757575757575709 and 175757575757575709 are all prime, but 17575757575757575709 = 232433 × 75616446785773
1711 – triangular number
1717 – pentagonal number[14]
1720 – sum of the first 31 primes
1722 – Giuga number,[59] pronic number[11]
1728 – the quantity expressed as 1000 in duodecimal, that is, the cube of twelve (called a great gross), and so, the number of cubic inches in a cubic foot, palindromic in base 11 (133111) and 23 (36323)
1729taxicab number, Carmichael number, Zeisel number, centered cube number, Hardy–Ramanujan number. In the decimal expansion of e the first time all 10 digits appear in sequence starts at the 1729th decimal place. In 1979 the rock musical Hair closed on Broadway in New York City after 1729 performances. Palindromic in bases 12, 32, 36.
1733 – Sophie Germain prime, palindromic in bases 3, 18, 19.
1736 – sum of totient function for first 75 integers
1741 – centered square number[2]
1747 – balanced prime[22]

1750–1999

1753 – balanced prime[22]
1756 – centered pentagonal number[10]
1760 – the number of yards in a mile
1764 – 422
1770 – triangular number, hexagonal number,[8] Town of Seventeen Seventy in Australia
1771 – tetrahedral number[27]
1772 – centered heptagonal number,[13] sum of totient function for first 76 integers
1782 – heptagonal number[12]
1785 – square pyramidal number[3]
1791 – largest natural number that cannot be expressed as a sum of at most four hexagonal numbers.
1794 – nonagonal number[37]
1800 – pentagonal pyramidal number,[52] also, in da Ponte's Don Giovanni, the number of women Don Giovanni had slept with so far when confronted by Donna Elvira, according to Leporello's tally
1801 – cuban prime[57]
1806 – pronic number,[11] product of first four terms of Sylvester's sequence, primary pseudoperfect number[60]
1807 – fifth term of Sylvester's sequence[61]
1811 – Sophie Germain prime
1820 – pentagonal number,[14] pentatope number[46]
1821 – member of the Mian–Chowla sequence[4]
1823 – safe prime[5]
1827 – vampire number[43]
1828 – meandric number, open meandric number
1830 – triangular number
1832 – sum of totient function for first 77 integers
1834 – octahedral number,[31] sum of the cubes of the first five primes
1836 – factor by which a proton is more massive than an electron
1837 – star number[21]
1841 – Mertens function zero
1843 – Mertens function zero
1844 – Mertens function zero
1845 – Mertens function zero
1849 – 432, palindromic in base 6 (= 123216), centered octagonal number[39]
1851 – sum of the first 32 primes
1853 – Mertens function zero
1854 – Mertens function zero
1856 – sum of totient function for first 78 integers
1857 – Mertens function zero
1861 – centered square number,[2] Mertens function zero
1862 – Mertens function zero, forms a Ruth–Aaron pair with 1863 under second definition
1863 – Mertens function zero, forms a Ruth–Aaron pair with 1862 under second definition
1864 – Mertens function zero
1866 – Mertens function zero
1870 – decagonal number[25]
1885 – Zeisel number[50]
1889 – Sophie Germain prime, highly cototient number[9]
1891 – triangular number, hexagonal number,[8] centered pentagonal number[10]
1892 – pronic number[11]
1896 – member of the Mian–Chowla sequence[4]
1897 – member of Padovan sequence[15]
1900 – 1900 (film) or Novecento, 1977 movie
1901 – Sophie Germain prime
1907 – safe prime,[5] balanced prime[22]
1909 – hyperperfect number[62]
1918 – heptagonal number[12]
1926 – pentagonal number[14]
1929 – Mertens function zero
1931 – Sophie Germain prime
1933 – centered heptagonal number,[13] prime number
1934 – sum of totient function for first 79 integers
1936 – 442, 18-gonal number,[63] 324-gonal number.
1938 – Mertens function zero
1951 – cuban prime[57]
1953 – triangular number
1956 – nonagonal number[37]
1966 – sum of totient function for first 80 integers
1969 - Only value less than four million for which a "mod-ification" of the standard Ackermann Function does not stabilize [64]
1973 – Sophie Germain prime
1980 – pronic number[11]
1984 – 11111000000 in binary, see also: 1984 (disambiguation)
1985 – centered square number[2]
1987 – 300th prime number
1988 – sum of the first 33 primes

References

  1. ^ a b c d e f g h i j k l m n o "Sloane's A005384 : Sophie Germain primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  2. ^ a b c d e f g h i j "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  3. ^ a b c d "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  4. ^ a b c d e f g h "Sloane's A005282 : Mian-Chowla sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  5. ^ a b c d e f g h i j k l "Sloane's A005385 : Safe primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  6. ^ [1].
  7. ^ a b c d e f g h "Sloane's A000217 : Triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  8. ^ a b c d e f g h i "Sloane's A000384 : Hexagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  9. ^ a b c d e f g "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  10. ^ a b c d e f g h "Sloane's A005891 : Centered pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  11. ^ a b c d e f g h i j k l m "Sloane's A002378 : Oblong (or promic, pronic, or heteromecic) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  12. ^ a b c d e f g h "Sloane's A000566 : Heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  13. ^ a b c d e f g "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  14. ^ a b c d e f g h i j "Sloane's A000326 : Pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  15. ^ a b c "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  16. ^ "Sloane's A006753 : Smith numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  17. ^ "Sloane's A031157 : Numbers that are both lucky and prime". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  18. ^ "Sloane's A093069 : a(n) = (2^n + 1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  19. ^ "Sloane's A001232 : Numbers n such that 9*n = (n written backwards)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  20. ^ Wells, D. The Penguin Dictionary of Curious and Interesting Numbers London: Penguin Group. (1987): 163
  21. ^ a b c d e "Sloane's A003154 : Centered 12-gonal numbers. Also star numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  22. ^ a b c d e f g h i "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  23. ^ a b "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  24. ^ "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  25. ^ a b c d e "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  26. ^ a b "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  27. ^ a b c d "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  28. ^ a b "Sloane's A000101 : Increasing gaps between primes (upper end)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-07-10.
  29. ^ a b "Sloane's A097942 : Highly totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  30. ^ a b c d "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  31. ^ a b c "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  32. ^ "Sloane's A069125 : a(n) = (11*n^2 - 11*n + 2)/2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  33. ^ Higgins, Peter (2008). Number Story: From Counting to Cryptography. New York: Copernicus. p. 61. ISBN 978-1-84800-000-1.
  34. ^ a b "Sloane's A042978 : Stern primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  35. ^ Meehan, Eileen R., Why TV is not our fault: television programming, viewers, and who's really in control Lanham, MD: Rowman & Littlefield, 2005
  36. ^ Higgins, ibid.
  37. ^ a b c d e f "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  38. ^ "Sloane's A001110 : Square triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  39. ^ a b c d e "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  40. ^ "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  41. ^ "Sloane's A033819 : Trimorphic numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  42. ^ a b "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  43. ^ a b c d e "Sloane's A014575 : Vampire numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  44. ^ "Constitutional Court allows 'FCK CPS' sticker". 28 April 2015. "...state court in Karlsruhe ruled that a banner ... that read 'ACAB' - an abbreviation of 'all cops are bastards' ... a punishable insult. ... A court in Frankfurt ... the numbers '1312' constituted an insult ... the numerals stand for the letters ACAB's position in the alphabet. {{cite journal}}: Cite journal requires |journal= (help)
  45. ^ a b "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  46. ^ a b "Sloane's A000332 : Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  47. ^ "Sloane's A001567 : Fermat pseudoprimes to base 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  48. ^ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  49. ^ "Sloane's A000682 : Semimeanders". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  50. ^ a b "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  51. ^ "Sloane's A000108 : Catalan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  52. ^ a b "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  53. ^ "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  54. ^ "Sloane's A005231 : Odd abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  55. ^ "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  56. ^ "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  57. ^ a b c "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  58. ^ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  59. ^ "Sloane's A007850 : Giuga numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  60. ^ "Sloane's A054377 : Primary pseudoperfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  61. ^ "Sloane's A000058 : Sylvester's sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  62. ^ "Sloane's A034897 : Hyperperfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  63. ^ "Sloane's A051870 : 18-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-12.
  64. ^ Jon Froemke; Jerrold W. Grossman (Feb 1993). "A Mod-n Ackermann Function, or What's So Special About 1969?". The American Mathematical Monthly. 100 (2). Mathematical Association of America: 180–183. JSTOR 2323780. {{cite journal}}: Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)