Artificial gills (human)
This is the current revision of this page, as edited by Dawnseeker2000 (talk | contribs) at 16:45, 22 June 2024 (date format audit, minor formatting). The present address (URL) is a permanent link to this version.
Artificial gills are unproven conceptualised devices to allow a human to be able to take in oxygen from surrounding water. This is speculative technology that has not been demonstrated in a documented fashion. Natural gills work because nearly all animals with gills are thermoconformers (cold-blooded), so they need much less oxygen than a thermoregulator (warm-blood) of the same size.[1] As a practical matter, it is unclear that a usable artificial gill could be created because of the large amount of oxygen a human would need extracted from the water.
Methods
[edit]Several potential methods exist for the development of artificial gills. One proposed method is the use of liquid breathing with a membrane oxygenator to solve the problem of carbon dioxide retention, the major limiting factor in liquid breathing.[2][3][dubious – discuss] It is thought that a system such as this would allow for diving without risk of decompression sickness.[4]
They are generally thought to be unwieldy and bulky, because of the massive amount of water that would have to be processed to extract enough oxygen to supply an active diver, as an alternative to a scuba set.
An average diver with a fully closed-circuit rebreather needs 1.5 liters (0.40 U.S. gallons) of oxygen per minute while swimming or 0.64 L (0.17 US gal) per minute while resting.[5] At least 192 liters (50.7 U.S. gal) of sea water per minute would have to be passed through the system, and this system would not work in anoxic water. Seawater in tropical regions with abundant plant life contains 5–8 mg (0.077–0.123 gr) of oxygen per liter of water.[6] These calculations are based on the dissolved oxygen content of water.
See also
[edit]- Extracorporeal membrane oxygenation
- Henry's law – Gas law regarding proportionality of dissolved gas
References
[edit]- ^ Why don't people have gills? Archived 11 November 2007 at the Wayback Machine
- ^ Landé AJ, Claff CL, Sonstegard L, Roberts R, Perry C, Lillehei CW (1970). "An extracorporeal artificial gill utilizing liquid fluorocarbon". Fed. Proc. 29 (5): 1805–8. PMID 5466244.
- ^ Landé, AJ (2006). "Sequenced, hemoglobin based artificial gills synthetic gill supports diver's or climber's breathing by concentrating O2 from seawater or from thin air at altitude, and venting CO2". Undersea and Hyperbaric Medicine (Annual Meeting Abstract). Archived from the original on 15 April 2013. Retrieved 22 March 2009.
{{cite journal}}
: CS1 maint: unfit URL (link) - ^ Landé, AJ (2006). "Artificial gill complements liquid breathing for diving to great depths, without being threatened by the bends". Undersea and Hyperbaric Medicine (Annual Meeting Abstract). Archived from the original on 15 April 2013. Retrieved 22 March 2009.
{{cite journal}}
: CS1 maint: unfit URL (link) - ^ Knafelc, ME. "Oxygen Consumption Rate of Operational Underwater Swimmers". United States Navy Experimental Diving Unit Technical Report. NEDU-1-89. Archived from the original on 22 November 2008. Retrieved 22 March 2009.
{{cite journal}}
: CS1 maint: unfit URL (link) - ^ Fundamentals of Environmental Measurement
External links
[edit]- Le Page, Michael (7 January 2006). "Breathing in oceans full of air". New Scientist (2533).(subscription required) History of attempts to develop artificial gills and the principles and problems involved.
- Bill Christensen (2005). "Breathe Like A Fish Thanks To Alan Bodner". Science Fiction in the News. Technovelgy.com. Archived from the original on 14 August 2007. Retrieved 14 September 2007.
- www.likeafish.biz official website
- 'Like A Fish' Underwater Breathing System: Artificial Gills for U.S. Navy SEALs?
- Specific publication reference dates from an unusual source
- Artificial gills in fiction (called a "hydrolung") in Tom Swift and the Electronic Hydrolung, by Victor Appleton. It is a rebreather, fitted with a device that extracts oxygen from surrounding water.
- Webarchive template wayback links
- CS1 maint: unfit URL
- CS1: long volume value
- Articles with short description
- Short description is different from Wikidata
- Use dmy dates from June 2024
- All accuracy disputes
- Articles with disputed statements from December 2017
- Pages containing links to subscription-only content
- Official website different in Wikidata and Wikipedia