Jump to content

Konstantina Nikita

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Ksnikita (talk | contribs) at 17:19, 23 September 2020. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

  • Comment: The subject meets the notability criteria for academics (WP:NPROF, #3) and thus qualifies for an article on Wikipedia. However, the article is written in a non-neutral style, with a number of unverifiable claims. Please include in-line citations for all claims made in the article.
    If this is an autobiography or a biography of someone you know, please declare it on the talk page and your user page (see WP:DISCLOSE). MapleSoy (talk) 23:00, 20 August 2020 (UTC)

Konstantina (Nantia) Nikita
CitizenshipGreek
Alma materNational Technical University of Athens (M.Eng., Ph.D.)
National and Kapodistrian University of Athens (M.D.)
Known forBioelectromagnetics, on- body and in-body devices, multiscale modelling, intelligent processing of health data
AwardsBodossakis Foundation Academic Prize (2003)
EAMBES Founding Fellow (2012)
AIMBE Fellow (2016)
IEEE Fellow (2018)
Scientific career
FieldsElectrical Engineering, medicine
InstitutionsNational Technical University of Athens
Institute of Communication and Computer Systems
University of Southern California
Academic advisorsNikolaos K. Uzunoglu

Konstantina "Nantia" Nikita is a Greek electrical and computer engineer and a professor at the School of Electrical and Computer Engineering at the National Technical University of Athens (NTUA), Greece. She is director of the Mobile Radiocommunications Lab and founder and director of the Biomedical Simulations and Imaging Lab, NTUA. Since 2015, she has been an adjunct professor of biomedical engineering and medicine at Keck School of Medicine and Viterbi School of Engineering, University of Southern California.

Education, career and research

Nikita received the diploma in Electrical Engineering and the Ph.D. degree from the NTUA, as well as the M.D. degree from the Medical School, University of Athens. From 1990 to 1996, she worked as a researcher at the Institute of Communication and Computer Systems. In 1996, she joined the faculty of the School of Electrical and Computer Engineering, NTUA, as an assistant professor, and since 2005, she serves as a professor at the same school[1].

Trained as both a physician and engineer, she works to adapt technologies developed in the antennas and computer industry for healthcare innovation. Nikita leverages technologies at the intersection of (bio-)electromagnetics, sensors, and materials to yield next-generation wearables and implants characterized by extreme miniaturization and enhanced performance [2] [3]. She integrates data acquired from health monitoring systems with multiscale, multilevel modeling and intelligent decision-making techniques to diagnose, study and treat a variety of diseases including diabetes[4], obesity[5], cardiovascular disease[6], cancer[7], as well as neurological, mental and cognitive disorders[8].

Her work refers to both fundamental problems, which require the use of sophisticated methods of theoretical analysis and synthesis, and to the design and construction of experimental prototypes and intelligent health monitoring systems based on theoretical results of her work[9][10].

She pioneered[11][12] the modelling of complex human diseases, such as diabetes[13] and neurodegenerative diseases[14], by developing personalized multiscale models providing enhanced understanding of pathophysiological mechanisms, facilitating self-disease management and assisting therapeutic interventions[15] [16]. She employed machine learning techniques exploiting medical, lifestyle, environmental, and genetic data and integrated them with existing pathophysiological knowledge and models in order to devise personalized markers for the early detection and assessment of an array of highly prevalent diseases[17][18][19][20]. By multiscale modeling of carotid atherosclerosis, Nikita and her team introduced novel low-cost biomarkers for CVD/stroke risk assessment, bridging the gap between multifaceted phenotypes, incorporating image analysis-based indices, and pathophysiological mechanisms, underlying plaque vulnerability and rupture[21].

Nikita and her team developed smart systems, which incorporate sensing, computing and communication technologies, software/hardware modeling and system architectures for the monitoring, treatment, motivation and coaching of patients with diabetes and other chronic conditions[22][23][24].

Her early research has significantly advanced mobile phone technology[25] and has markedly improved hyperthermia technology[26] and treatment efficacy, including pioneering intra-operative treatment of pancreatic cancer[27].

She has been the technical manager of numerous European and National R&D projects on fundamental research and practical applications. She is the Editor-in-Chief of the IEEE Open Journal of Antennas and Propagation. She has been Chair of the program/organizing committee of and has served as keynote speaker at several international conferences and symposia. She is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), a Founding Fellow of the European Association of Medical and Biological Engineering and Science (EAMBES), a Fellow of the American Institute of Medical and Biological Engineering (AIMBE). She serves as chair of the LS7 Consolidator Grant Panel of the European Research Council (ERC), for granting investigator-driven frontier research in the domain of life sciences. She has been a member of the Board of Directors of the Atomic Energy Commission, the Hellenic National Academic Recognition and Information Center, the Hellenic National Council of Research and Technology and the Hellenic National Ethics Committee. She is a member of the IEEE-EMBS Technical Committee on Biomedical and Health Informatics (TC BHI), Chair of the IEEE Greece Section and Deputy Dean of the School of Electrical and Computer Engineering of the NTUA. She is the author of the “Handbook of Biomedical Telemetry” and of more than 180 journal publications, 350 conference proceedings papers and three patents[28][29].

Books

  • Nikita, Konstantina S. (2014). Handbook of Biomedical Telemetry. Wiley-IEEE Press.
  • Kanatas, Athanasios G.; Nikita, Konstantina S.; Mathiopoulos, Panagiotis (2017). New Directions in Wireless Communications Systems. CRC Press.
  • Golemati, Spyretta; Nikita, Konstantina S. (2019). Cardiovascular Computing-Methodologies and Clinical Applications. Springer.

Awards

Konstantina Nikita is the recipient of a number of awards and honors including the following:

References

  1. ^ "ECE • Konstantina Nikita". www.ece.ntua.gr.
  2. ^ Kiourti, A.; Nikita, K. S. (June 2014). "Implantable Antennas: A Tutorial on Design, Fabrication, and In Vitro\/In Vivo Testing". IEEE Microwave Magazine. 15 (4): 77–91. doi:10.1109/MMM.2014.2308765.
  3. ^ Kiourti, A.; Nikita, K. S. (July 2017). "A Review of In-Body Biotelemetry Devices: Implantables, Ingestibles, and Injectables". IEEE Transactions on Biomedical Engineering. 64 (7): 1422–1430. doi:10.1109/TBME.2017.2668612.
  4. ^ Zarkogianni, K.; Litsa, E.; Mitsis, K.; Wu, P.-Y.; Kaddi, C. D.; Cheng, C.-W.; Wang, M. D.; Nikita, K. S. (December 2015). "A Review of Emerging Technologies for the Management of Diabetes Mellitus". IEEE Transactions on Biomedical Engineering. 62 (12): 2735–2749. doi:10.1109/TBME.2015.2470521.
  5. ^ Valavanis, I. K.; Mougiakakou, S. G.; Grimaldi, K. A.; Nikita, K. S. (8 September 2010). "A multifactorial analysis of obesity as CVD risk factor: Use of neural network based methods in a nutrigenetics context". BMC Bioinformatics. 11 (1). doi:10.1186/1471-2105-11-453.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ Gastiounioti, A.; Makrodimitris, S.; Golemati, S.; Kadoglou, N.; Liapis, C.; Nikita, K. S. (2014). "A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall". IEEE Journal of Biomedical and Health Informatics: 1–1. doi:10.1109/JBHI.2014.2329604.
  7. ^ Kouloulias, V. E.; Nikita, K. S.; Kouvaris, J. R.; Uzunoglu, N. K.; Golematis, V. C.; Papavasiliou, C. G.; Vlahos, L. J. (December 2001). "Surgery Combined with Intraoperative Chemo-hyperthermia and Postoperative Radiotherapy in the Management of Advanced Pancreatic Adenocarcinoma: Feasibility Aspects and Efficacy". Journal of Hepato-Biliary-Pancreatic Surgery. 8 (6): 564–570. doi:10.1007/s005340100026.
  8. ^ Michmizos, K. P.; Lindqvist, B.; Wong, S.; Hargreaves, E. L.; Psychas, K.; Mitsis, G. D.; Danish, S. F.; Nikita, K. S. (March 2017). "Computational Neuromodulation : Future Challenges for Deep Brain Stimulation [Life Sciences]". IEEE Signal Processing Magazine. 34 (2): 114–119. doi:10.1109/MSP.2016.2639554.
  9. ^ Nikita, K.S.; Uzunoglu, N.K. (1996). "Coupling phenomena in concentric multi-applicator phased array hyperthermia systems". IEEE Transactions on Microwave Theory and Techniques. 44 (1): 65–74. doi:10.1109/22.481386.
  10. ^ Mougiakakou, S. G.; Bartsocas, C. S.; Bozas, E.; Chaniotakis, N.; Iliopoulou, D.; Kouris, I.; Pavlopoulos, S.; Prountzou, A.; Skevofilakas, M.; Tsoukalis, A.; Varotsis, K.; Vazeou, A.; Zarkogianni, K.; Nikita, K. S. (May 2010). "SMARTDIAB: A Communication and Information Technology Approach for the Intelligent Monitoring, Management and Follow-up of Type 1 Diabetes Patients". IEEE Transactions on Information Technology in Biomedicine. 14 (3): 622–633. doi:10.1109/TITB.2009.2039711.
  11. ^ "AIMBE College of Fellows Class of 2016".
  12. ^ "EAMBES Fellow". eambes.org.
  13. ^ Zarkogianni, K.; Vazeou, A.; Mougiakakou, S. G.; Prountzou, A.; Nikita, K. S. (September 2011). "An Insulin Infusion Advisory System Based on Autotuning Nonlinear Model-Predictive Control". IEEE Transactions on Biomedical Engineering. 58 (9): 2467–2477. doi:10.1109/TBME.2011.2157823.
  14. ^ Michmizos, K. P.; Sakas, D.; Nikita, K. S. (March 2012). "Prediction of the Timing and the Rhythm of the Parkinsonian Subthalamic Nucleus Neural Spikes Using the Local Field Potentials". IEEE Transactions on Information Technology in Biomedicine. 16 (2): 190–197. doi:10.1109/TITB.2011.2158549.
  15. ^ Tsirogiannis, G. L.; Tagaris, G. A.; Sakas, D.; Nikita, K. S. (30 December 2009). "A population level computational model of the basal ganglia that generates parkinsonian local field potential activity". Biological Cybernetics. 102 (2): 155–176. doi:10.1007/s00422-009-0360-3.
  16. ^ Zarkogianni, K.; Athanasiou, M.; Thanopoulou, A. C.; Nikita, K. S. (September 2018). "Comparison of Machine Learning Approaches Toward Assessing the Risk of Developing Cardiovascular Disease as a Long-Term Diabetes Complication". IEEE Journal of Biomedical and Health Informatics. 22 (5): 1637–1647. doi:10.1109/JBHI.2017.2765639.
  17. ^ Mougiakakou, S. G.; Valavanis, I. K.; Nikita, A.; Nikita, K. S. (September 2007). "Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers". Artificial Intelligence in Medicine. 41 (1): 25–37. doi:10.1016/j.artmed.2007.05.002.
  18. ^ Valavanis, Ioannis K.; Mougiakakou, S. G.; Grimaldi, K. A.; Nikita, K. S. (8 September 2010). "A multifactorial analysis of obesity as CVD risk factor: Use of neural network based methods in a nutrigenetics context". BMC Bioinformatics. 11 (1): 453. doi:10.1186/1471-2105-11-453.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  19. ^ Michmizos, K. P.; Frangou, P.; Stathis, P.; Sakas, D.; Nikita, K. S. (January 2015). "Beta-Band Frequency Peaks Inside the Subthalamic Nucleus as a Biomarker for Motor Improvement After Deep Brain Stimulation in Parkinson's Disease". IEEE Journal of Biomedical and Health Informatics. 19 (1): 174–180. doi:10.1109/JBHI.2014.2344102.
  20. ^ Zarkogianni, K.; Mitsis, K.; Litsa, E.; Arredondo, M.-T.; Ficο, G.; Fioravanti, A.; Nikita, K. S. (December 2015). "Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring". Medical & Biological Engineering & Computing. 53 (12): 1333–1343. doi:10.1007/s11517-015-1320-9.
  21. ^ Golemati, S.; Gastounioti, A.; Nikita, K. S. (March 2013). "Toward Novel Noninvasive and Low-Cost Markers for Predicting Strokes in Asymptomatic Carotid Atherosclerosis: The Role of Ultrasound Image Analysis". IEEE Transactions on Biomedical Engineering. 60 (3): 652–658. doi:10.1109/TBME.2013.2244601.
  22. ^ Gastounioti, A.; Kolias, V.; Golemati, S.; Tsiaparas, N. N.; Matsakou, A.; Stoitsis, J. S.; Kadoglou, N. P.E.; Gkekas, C.; Kakisis, J. D.; Liapis, C. D.; Karakitsos, P.; Sarafis, I.; Angelidis, P.; Nikita, K. S. (April 2014). "CAROTID – A web-based platform for optimal personalized management of atherosclerotic patients". Computer Methods and Programs in Biomedicine. 114 (2): 183–193. doi:10.1016/j.cmpb.2014.02.006.
  23. ^ Cancela, J.; Pastorino, M.; Arredondo, M. T.; Nikita, K. S.; Villagra, F.; Pastor, M. A. (2014). "Feasibility Study of a Wearable System Based on a Wireless Body Area Network for Gait Assessment in Parkinson's Disease Patients". Sensors. 14 (3): 4618–4633. doi:10.3390/s140304618.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  24. ^ Andreadis, I. I.; Spyrou, G. M.; Nikita, K. S. (January 2015). "A CAD-x Scheme for Mammography Empowered With Topological Information From Clustered Microcalcifications' Atlases". IEEE Journal of Biomedical and Health Informatics. 19 (1): 166–173. doi:10.1109/JBHI.2014.2334491.
  25. ^ Nikita, K.S.; Cavagnaro, M.; Bernardi, P.; Uzunoglu, N.K.; Pisa, S.; Piuzzi, E.; Sahalos, J.N.; Krikelas, G.I.; Vaul, J.A.; Excell, P.S.; Cerri, G.; Chiarandini, S.; De Leo, R.; Russo, P. (2000). "A study of uncertainties in modeling antenna performance and power absorption in the head of a cellular phone user". IEEE Transactions on Microwave Theory and Techniques. 48 (12): 2676–2685. doi:10.1109/22.899030.
  26. ^ Nikita, K.S.; Uzunoglu, N.K. (1996). "Coupling phenomena in concentric multi-applicator phased array hyperthermia systems". IEEE Transactions on Microwave Theory and Techniques. 44 (1): 65–74. doi:10.1109/22.481386.
  27. ^ Kouloulias, V. E.; Kouvaris, J. R.; Nikita, K. S.; Golematis, B. C.; Uzunoglu, N. K.; Mystakidou, K.; Papavasiliou, C.; Vlahos, L. (January 2002). "Intraoperative hyperthermia in conjunction with multi-schedule chemotherapy (pre-, intra- and post-operative), by-pass surgery, and post-operative radiotherapy for the management of unresectable pancreatic adenocarcinoma". International Journal of Hyperthermia. 18 (3): 233–252. doi:10.1080/02656730110108794.
  28. ^ "Implantable antenna for physiological monitoring or stimulation of tissue - Google Patents". 16 January 2018.
  29. ^ "Title Details". www.obi.gr.
  30. ^ "Interview with Nantia Nikita, Bodossaki".
  31. ^ "EAMBES Fellow". eambes.org.
  32. ^ "AIMBE College of Fellows Class of 2016".
  33. ^ "IEEE Class of Fellows 2018". ieeeaps.org.