Aller au contenu

Roentgenium

Un article de Wikipédia, l'encyclopédie libre.

Roentgenium
DarmstadtiumRoentgeniumCopernicium
Au
  Structure cristalline cubique centrée
 
111
Rg
 
               
               
                                   
                                   
                                                               
                                                               
   
                                           
Rg
Tableau completTableau étendu
Position dans le tableau périodique
Symbole Rg
Nom Roentgenium
Numéro atomique 111
Groupe 11
Période 7e période
Bloc Bloc d
Famille d'éléments Métal de transition ?
Configuration électronique [Rn] 5f14 6d10 7s1
Électrons par niveau d’énergie 2, 8, 18, 32, 32, 18, 1
Propriétés atomiques de l'élément
Masse atomique [282]
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
279Rg{syn.}0,17 sα10,37275Mt
280Rg{syn.}3,6 sα9,75276Mt
281Rg[1]{syn.}17+6
−3
 s
90 % FS
10 % α

277Mt
282Rg[2]{syn.}2,1+1,4
−0,6
 min
α9,00278Mt
Propriétés physiques du corps simple
État ordinaire Présumé solide[3]
Masse volumique 28,7 g·cm-3 (prédiction)[4]
Système cristallin Cubique centré[3] (prédiction)
Divers
No CAS 54386-24-2[5]
Précautions
Élément radioactif
Radioélément à activité notable

Unités du SI & CNTP, sauf indication contraire.

Le roentgenium, roentgénium[6], röntgenium[7] ou rœntgénium[7], prononcé \ʁœnt.ɡɛ.njɔm\ ou \ʁœnt.ɡe.njɔm\ selon la graphie (symbole Rg) est l'élément chimique de numéro atomique 111. Il correspond à l'unununium (Uuu) de la dénomination systématique de l'IUPAC, et est encore appelé élément 111 dans la littérature. Il a été synthétisé pour la première fois en décembre 1994 par une réaction 209Bi (64Ni, n) 272Rg au Gesellschaft für Schwerionenforschung (GSI) de Darmstadt, en Allemagne, et son identification a été validée par l'IUPAC en janvier 2003[8]. Il a reçu son nom définitif en novembre 2004 en l'honneur du Wilhelm Röntgen, le découvreur des rayons X[9].

Il s'agit d'un transactinide très radioactif, dont l'isotope le plus stable, le 282Rg, a une période radioactive d'environ 2,1 min. Situé sous l'or dans le tableau périodique des éléments, il appartient au bloc d et serait un métal de transition, d'autant qu'il a été établi que le copernicium, qui lui fait suite sur la 7e période, présente clairement les propriétés d'un métal de transition.

Découverte

[modifier | modifier le code]
Large panneau portant un tableau périodique des éléments. La case correspondant au roentgenium est mise en relief.
Panneau utilisé au GSI pour la présentation de la découverte de l'élément 111.

Le roentgenium (précédemment unununium) a été synthétisé et identifié le par Peter Armbruster et Gottfried Münzenberg[10] sous la direction de Sigurd Hofmann au Centre de recherche sur les ions lourds (Gesellschaft für Schwerionenforschung, GSI) de Darmstadt en Allemagne[11]. Seuls trois atomes de 272Rg furent observés, en fusionnant un noyau de bismuth 209 209Bi et un noyau de nickel 64 64Ni :

64
28
Ni
+ 209
83
Bi
273
111
Rg*
272
111
Rg
+ 1
0
n
.

Sept radioisotopes sont connus, de 272Rg à 282Rg, dont deux présentent des signes d'isomérie nucléaire. L'isotope à la plus grande durée de vie connue est 282Rg avec une demi-vie d'environ 2,1 minutes.

Roentgenium 272

[modifier | modifier le code]

La synthèse directe du 272Rg par le GSI en 1994 avait montré quatre lignes alpha à 11.37, 11.03, 10.82 et 10.40 MeV avec une période radioactive de 1,6 ms, tandis que la valeur mesurée en 2004 à l'institut RIKEN au Japon donnait une période de 3,8 ms[12]. Ces données contradictoires pourraient découler d'isomères différents du noyau de roentgenium 272, mais des recherches doivent encore être menées pour clarifier la situation.

Roentgenium 274

[modifier | modifier le code]

La désintégration alpha de deux atomes de 278
113
Nh
en roentgenium 274 a été observée selon deux chaînes de désintégration différentes passant par le 274Rg selon deux périodes radioactives et deux énergies de désintégration distinctes. Ces observations pourraient révéler deux formes allotropiques du noyau de roentgenium 274, mais les données sont encore insuffisantes pour conclure.

Références

[modifier | modifier le code]
  1. (en) Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, J. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. V. Shumeiko, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov et G. K. Vostokin,, « Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt », Physical Review C, vol. 87, no 5,‎ , article no 054621 (DOI 10.1103/PhysRevC.87.054621, Bibcode 2013PhRvC..87e4621O, lire en ligne)
  2. (en) J. Khuyagbaatar, A. Yakushev, Ch. E. Düllmann, D. Ackermann, L.-L. Andersson, M. Asai, M. Block, R. A. Boll, H. Brand, D. M. Cox, M. Dasgupta, X. Derkx, A. Di Nitto, K. Eberhardt, J. Even, M. Evers, C. Fahlander, U. Forsberg, J. M. Gates, N. Gharibyan, P. Golubev, K. E. Gregorich, J. H. Hamilton, W. Hartmann, R.-D. Herzberg, F. P. Heßberger, D. J. Hinde, J. Hoffmann, R. Hollinger, A. Hübner, E. Jäger, B. Kindler, J. V. Kratz, J. Krier, N. Kurz, M. Laatiaoui, S. Lahiri, R. Lang, B. Lommel, M. Maiti, K. Miernik, S. Minami, A. Mistry, C. Mokry, H. Nitsche, J. P. Omtvedt, G. K. Pang, P. Papadakis, D. Renisch, J. Roberto, D. Rudolph, J. Runke, K. P. Rykaczewski, L. G. Sarmiento, M. Schädel, B. Schausten, A. Semchenkov, D. A. Shaughnessy, P. Steinegger, J. Steiner, E. E. Tereshatov, P. Thörle-Pospiech, K. Tinschert, T. Torres De Heidenreich, N. Trautmann, A. Türler, J. Uusitalo, D. E. Ward, M. Wegrzecki, N. Wiehl, S. M. Van Cleve et V. Yakusheva, « 48Ca+249Bk Fusion Reaction Leading to Element Z =117: Long-Lived α-Decaying 270Db and Discovery of 266Lr », Physical Review Letters, vol. 112, no 17,‎ , article no 172501 (PMID 24836239, DOI 10.1103/PhysRevLett.112.172501, Bibcode 2014PhRvL.112q2501K, lire en ligne)
  3. a et b (en) Andreas Östlin et Levente Vitos, « First-principles calculation of the structural stability of 6d transition metals », Physical Review B, vol. 84, no 11,‎ , article no 113104 (DOI 10.1103/PhysRevB.84.113104, Bibcode 2011PhRvB..84k3104O, lire en ligne)
  4. (en) Darleane C. Hoffman, Diana M. Lee et Valeria Pershina, « Transactinide Elements and Future Elements », The Chemistry of the Actinide and Transactinide Elements,‎ , p. 1652-1752 (ISBN 978-94-007-0210-3, DOI 10.1007/978-94-007-0211-0_14, Bibcode 2011tcot.book.1652H, lire en ligne).
  5. Base de données Chemical Abstracts interrogée via SciFinder Web le 15 décembre 2009 (résultats de la recherche)
  6. http://fr.calameo.com/books/000015856485428a9c563 et page concernée
  7. a et b Dictionnaire de l'Académie française ; la forme rœntgénium est une erreur par hypercorrection, puisque le patronyme allemand Roentgen ne prend pas la ligature en français
  8. (en) P. J. Karol, H. Nakahara, B. W. Petley et E. Vogt, « On the Claims for Discovery of Elements 110, 111, 112, 114, 116, and 118 (IUPAC Technical Report) », Pure and Applied Chemistry, vol. 75, no 10,‎ , p. 1601-1611 (DOI 10.1351/pac200375101601, lire en ligne)
  9. IUPAC : Proposition du nom roentgenium pour l’élément 111 puis IUPAC : L’élément 111 est appelé roentgenium
  10. Gagnon, Steve; Who discovered the elements?, Jefferson Lab
  11. Hofmann, S.; Victor Ninov; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V.; Andreyev, A. N.; Saro, S.; Janik, R.; et Leino, M.; The new element 111, Zeitschrift für Physik A, Vol. 350, p. 281–282 (1995)
  12. "Status of heavy element research using GARIS at RIKEN", Morita et al., Nucl. Phys. A734, 101 (2004). Consulté le 2008-03-03

Sur les autres projets Wikimedia :

Liens externes

[modifier | modifier le code]


  1 2                               3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1  H     He
2  Li Be   B C N O F Ne
3  Na Mg   Al Si P S Cl Ar
4  K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8  119 120 *    
  * 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142  


Métaux alcalins Métaux alcalino-terreux Lanthanides Métaux de transition Métaux pauvres Métalloïdes Non-métaux Halogènes Gaz nobles Éléments non classés
Actinides
Superactinides