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Abstract

Motivated by the needs of the pairing based cryptography, Miyaji,
Nakabayashi and Takano have suggested a construction of so-called
MNT elliptic curves with low embedding degree. We give some heuris-
tic arguments which suggest that there are only about z1/2t°(1) of
MNT curves with complex multiplication discriminant up to z. We
also show that there are very few finite fields over which elliptic curves
with small embedding degree and small complex multiplication dis-
criminant may exist (regardless of the way they are constructed).



1 Introduction

Since the pioneering works [8, 9, 14, 15, 20, 21, 25|, several other crypto-
graphic applications of the Tate or Weil pairing on elliptic curves have been
discovered (see, for example, [1, 7]). In particular, for these applications,
the following problem is of primal interest: Find an efficient construction
of elliptic curves € over the finite field IF, of ¢ elements, such that #&(F,),
the number of F -rational points on &£, has a sufficiently large prime divisor
(| #&(F,) which also satisfies ¢ | ¢* — 1 for a reasonably small value of the
positive integer k. In what follows, we refer to [6, 23| for a background on
elliptic curves.

It is easy to see that supersingular curves are the natural candidates
for such constructions. However, one can also suspect that supersingular
curves have some cryptographic weaknesses and thus ask for constructions
generating ordinary curves with the above property. It follows from results
of [2, 17, 18] that such curves are very rare and brute force search is not likely
to succeed. On the other hand, several such constructions have recently been
proposed (see [3, 4, 5, 10, 13, 19, 22] and the references therein). Unfortu-
nately, none of these constructions has been rigorously analyzed and, in fact,
even heuristic analysis is not immediate, and may take significant efforts. For
example, see [12, 13] for several examples of such analysis of various aspects
of the above constructions.

Let
k

Op(X)= [ (X —exp(2mj/k))

ged(j,k)=1

be the kth cyclotomic polynomial, where + = +/—1. Typically, the above
mentioned constructions work into two steps:

Step 1 Choose a prime /¢, integers k > 2 and ¢, and a prime power ¢ such
that

] <2¢?  t#0,1,2,  Llg+1—t, (] D(q). (1)

Step 2 Construct an elliptic curve £ over F, with #&(F,) =q¢+1—1t.

In the above construction, k should be reasonable small (for example k =
2,3,4,6 are typical values), while the ratio log ¢/ log ¢ should be as large as
possible, preferably close to 1.



Unfortunately, there is no efficient algorithm for Step 2, except for the
case when the 2 — 4¢ has a very small square-free part; that is, when

t? —4q = —r’s (2)

with some integers r and s, where s is a small square-free positive integer.
In this case either —s or —4s is the fundamental discriminant of the complex
multiplication field of the corresponding elliptic curve.

Accordingly, for positive real numbers x, y and z we denote by Qx(z,y, 2)
the number of prime powers ¢ < x for which there exist a prime ¢ > y and an
integer t satisfying (1) and (2) with a square-free positive integer s < z. In
this note, we obtain an upper bound on Qy(z,y, z) which suggests that finite
fields suitable for pairing based cryptography are very rare, at least using
the current algorithms for constructing elliptic curves with a given number
of points.

For example, if z = O(1), that is, if the complex multiplication discrim-
inant is bounded by an absolute constant, and the cardinality of the curve
must be prime, then our bound implies that there are at most z'/2+°() such
possible fields F, with ¢ < . On the other hand, heuristically, the construc-
tion proposed in [5] should lead to about /4+°(1) examples of suitable fields
and elliptic curves. It would be very interesting to close the gap and give, if
not rigorous then at least convincing heuristic, tight upper and lower bounds
on the number of suitable finite fields.

We also examine in more detail one of the first constructions of the above
type, namely the construction of the MNT curves from [19], and give some
heuristic arguments which suggest that this construction may produce only
a very limited family of curves once one wants that £ = ¢ + 1 — ¢ is prime.
On the other hand, we give some arguments showing for any fixed § > 0 one
can generate substantially many more curves if only log¢/logqg > 1 — ¢ is
desired. Moreover, one can let § be a slowly decreasing function of q.

Throughout the paper, the implied constants in the symbols ‘O’, ‘<’
and >’ may occasionally, where obvious, depend on the small positive
parameters ¢ and ¢ and are absolute otherwise (we recall that U = O(V),
U<« Vand V > U are all three equivalent to the inequality |U| < ¢V with
some constant ¢ > 0).
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2 Scarcity of the Pairing Friendly Fields

According to the heuristics given in [13], there are about x'/27°() of prime
powers ¢ < x for which there is an ordinary elliptic curve £ satisfying
#E(F,) | ®x(q). We note that these heuristics apply to all curves with-
out any restriction on the arithmetic structure of #&(F,), or on the size of
the discriminant of the field of complex multiplication. It seems that giv-
ing a rigorous proof of this result is out of reach nowadays due to our poor
knowledge of the distribution of roots of polynomial congruences (see [11] for
the limits of what is achievable nowadays). However, in the most important
practical case when the cardinality of the curve is required to have a large
prime divisor and the complex multiplication discriminant must be small, we
are able to prove a comparable upper bound.

Theorem 1. For any fized integer k and positive real numbers x, y and z
the following bound holds

Qulz,y, 2) < a¥/FoWy~1y
as r — 0.

Proof. Since ¢ | ¢+ 1 —t and ¢ | ®(q), we also have ¢ | ®p(t — 1). In
particular, each such ¢ divides

W= T[] ®t-1).

|t|<2x1/2

Clearly, log W = O(kz'/?log z).

Let w(n) denote the number of prime divisors of an integer n. Since

w(n)! < n, we have
logn
=0(———|.
w(n) (log log n)



Thus, there are at most
L <w(W) = 0(kz'/?) (3)
suitable values of /.
For each fixed ¢ > y we have
m=q+1—1t (4)
with some positive integer m < M, where
x4+ 14 22/2
M = {#J = O(z/y). ()
Using (4), we can express (2) as

(t —2)* +r’s = 4lm,

which has only (¢/m)°) = z°() integer solutions (r,t), once ¢, m and s are
fixed. Furthermore, the number ¢ is uniquely determined when ¢, m and ¢
are fixed. Since there are O(LM z) possible triples (¢, m, s), we derive

Q(z,y,2) < LMz,
and by (3) and (5) we conclude the proof. O

In particular, if z = 2°("), which is the only practically interesting case
anyway, we see that unless y < z'/2 there are very few finite fields suitable
for pairing based cryptography. In other words, unless the request of the
primality of the cardinality of the curve is relaxed to the request for this
cardinality to have a large prime divisor (that is, a prime divisor ¢ with
log ¢/logq > 1/2), the suitable fields are very rare.

3 Heuristic on MNT Curves

3.1 General outline

Here, we give some heuristic estimates on the number of elliptic curves which
can be produced by the algorithms of [19] designed to produce elliptic curves
satisfying the condition (1) with k£ = 3, 4,6, and the condition (2) for a given
value of s.

In general, our arguments are based on a combination of the following
observations:



e The algorithm of [19] gives a parametric family of curves whose param-
eter runs through a solution of a Pell equation u?> — Dv? = a.

e Consecutive solutions (u;,v;) of a Pell equation grow exponentially, as
e for some constant ¢ > 0.

e The probability of a random integer n to be prime is 1/ logn.

e MNT curves should satisfy two independent primality conditions (on
the field size and on the cardinality of the curve).

Putting all these observations together leads to the conclusion that the
expected total number of such curves is bounded, by the order of magnitude,
by the converging series

- 1 —~1 7’
> = s
~— (log €% )2 j2 62

J=1 Jj=1

This leads to the conclusion that the total number of all MNT curves of
prime cardinalities (over all finite possible fields) is bounded by an absolute
constant. This certainly does not undermind the practical usability of the
algorithms of [19] which seem to produce enough such curves in ranges which
are used nowadays (for example, for finite fields Fj, where ¢ is a 160-170 bit
prime power).

On the other hand, since the set of numbers with a large prime divisor is
denser than the set of primes, similar heuristic arguments also show that the
algorithms of [19] should be able to produce sufficiently many curves with a
low embedding degree and whose cardinalities have a large prime divisor.

We now implement this heuristics in a more precise (and thus more tech-
nically cluttered) form which leads to more specific estimates.

3.2 Prime cardinalities

Since all three algorithms for £k = 3,4,6 can be analyzed along the same
lines, we only concentrate on the case k = 6. In this case, if successful, the
algorithm produces positive integers ¢ and ¢ of the form

qg=4m?+1, t=42m+1



for some positive integer m, where u = 6m + 1 is a solution to the following
Pell equation

u? — 3sv° = =8, u,v € N, (6)

Assume that 3 1 s. Since 8 is a prime power, it follows from the well-
known theory of quadratic fields that if we write (u;(s),v1(s)) for the smallest
positive integer solution of the equation (6) with odd u, then all the positive
integer solutions to (6) are of the form (u;(s),v;(s)), where

J
us(s) + 03 (5)V3s = (u1(s) + v1(5)V35) (Uo(s) + Vo(s)V3s) . jeZ,
where (Up(s), Vo(s)) is the fundamental solution of the Pell equation
U?—-3sV%=1, UV eN.

We also put
u;(s) — 1
m;(s) = yls) = 1 é :
Note that we need that u;(s) = 1 (mod 3) in order for m;(s) to be an
integer. The sequence (u;(s));>1 is periodic modulo 6 with period at most 2,
so if at least one of u;(s) and us(s) is congruent to 1 (mod 3), then at least
every second value of u;(s), j = 1,2,..., is also be congruent to 1 (mod 3),
otherwise none of these numbers can satisfy this congruence.
Using the regular heuristics that the probability of a random integer n to
be prime is 1/logn and assuming that the numbers

qi(s) =4m;(s)’ +1  and  £;(s) = ¢;(s) + 1 F (2m;(s) + 1)

behave like random integers with respect to primality, we see that if we denote
by N(s) the expected total number of prime powers among the numbers of
the form g;(s) satisfying the additional condition that ¢;(s) is also a prime,
then we expect that uniformly in s (even if we ignore the fact that solutions
with u;(s) # 1 (mod 6) do not lead to integer values of m,(s)), we have

00 1
N(s) < Z log(4m;()? + 1) log (4m; (3)? + 2m; (3) + 1

= 1
+ JZ:; log(4m;(s)? + 1) log(4m;(s)? — 2m,(s) + 1)
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Since it is clear that

Up(s) = 1/3sV2(s) + 1> /2,

we easily get that if we write
o(s) = Uo(s) + Vo(s)V3s  and  B(s) = uo(s) + wo(s)V3s,  (7)
then
mj(s) = % (% (B(s)a(s +86(s) als) ) — 1> > 2.
Thus,

1
) < Z log s (log s)? (8)

In the case when 3 | s, say s = 3sg, the same arguments apply and lead
to the same bound (8). The only change is that the positive integer solutions
to (6) are of the form (u;(s),v;(s)), where

u;(s) +3v;(5) /50 = (wi(s) + 3v1(s)v/50) (Uo(s) + 3Vo(s)Vs0) . j € Z,
where (Up(s), Vo(s)) is the smallest positive solution of the Pell equation
U? —50(3V)* =1, U,V €N.

We now see that the bound (8) implies that the expected total number
E(z) of all MNT curves with s < z is

EBz) = Z ) < Z logs logzz)T

s<z s<z
s square-free

In fact, more is believed (see, for example, [16]), namely that for most s
the number a(s) in (7) is very large. Specifically, it is believed that there
exists a set S of asymptotic density 1 of positive integers such that the

relation
. logloga(s)
lim ——————=
seS  log(v/s)
holds. In particular, a(s) > exp(s'/27°M) and thus

1
s1/2+0(1)

=1

N(s) <
when s € §. Thus, it is quite possible that in fact
E(Z) < 21/2—&-0(1)'



3.3 Cardinalities with a large prime divisor

Similar heuristics apply if we weaken the condition that /;(s) is prime and
request only that it has a sufficiently large prime divisor, say ;(s) > ¢;(s)'°
for some 0 > 0.

Since in this case we are likely to get infinitely many isogeny classes of
elliptic curves, it is natural to introduce the counting function Ej(z,z) for
the number of isogeny classes of such elliptic curves with ¢;(s) < z and s < z.

Let p(u) be the Dickman function which is defined for v > 0 by the
difference-differential equation

up'(u) +p(u—1)=0,  u>1 (9)
together with the initial condition
p(u) =1, 0<u<l.

We recall that the number of positive integers n < X such that no prime
divisor of n exceeds X /" is (1+o0(1))p(u)X for every fixed u (see [24, Corol-
lary 9.3, Chapter II1.5] for a much more precise statement). Since p(u) < 1
for every u > 1, we see that for every 6 € (0, 1) there is a positive proportion
1—p(1/(1=10))4o(1) of positive integers n < X which have a prime divisor
[ >n'9,

Let us write M;s(s, x) for the expected total number of isogeny classes of
the above elliptic curves with ¢;(s) < x and such that ¢;(s) +1F (2m;(s)+1)
has a prime divisor [;(s) > ¢;(s)'7°. We say that s is admissible if it is square-
free and if the equation (6) has solutions with u;(s) =1 (mod 6) (and thus,
at least 50% of such solutions).

If s is admissible, then similar heuristics as the one used in Section 3.2
together with the fact that loga(s) < y/slogs and log 3(s) < +/slog s give
that for every § € (0,1) we should have

1 J(s,x) 1
) > (1-0(75)) 32 s
j=1
1 log J(s,x)
> (1 —r (1 —5)) s1/2log s’
where |
| klogz
I(s,2) = {31/2 logsJ

9



and k > 0 is some absolute constant. In particular,

log log x
M;s(s,z) > —F——
o(s:) s1/2]og s
in the range s < (logz)?~¢ for any fixed positive £ and 4.
It is natural to assume that there is a positive proportion of admissible
values of s. Thus, the expected total number Ejs(x,z) of isogeny classes of
such elliptic curves with ¢;(s) <z and s < z is

log1 1/2]0g1
Es(z,2) = Z Ms(s,z) > Z 9BO0BT o 2 OB OBY

1/2 1 1

S og s og z
s<z s<z g g

s admissible s admissible

for every z < (logx)?~¢,

4 Concluding Remarks

One should certainly be very cautious when applying heuristic arguments
of the type used in Section 3. In particular, upper bounds of the type o(1)
on quantities which take integer values (see (8), for example) look especially
dubious. So, we withdraw from making any binding conclusions. However,
we believe that overall, the arguments Section 3 give some indication about
the power and limitation of the algorithms from [19]. We also hope that
some ideas of this paper can be used for evaluating some other similar con-
structions.
Since
p(u) =1—logu, 1<u<?,

one can expect that for a sufficiently small ¢ the implied constant in the lower
bound (5) is proportional to
1
1 — | ~0.
()

In particular, one can take § to be a slowly decreasing function of s, which
would correspond to “almost prime” cardinalities.

10



References

1]

2]

3]

[4]

[5]

8]

[9]

[10]

[11]

R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange and K. Nguyen,
Elliptic and hyperelliptic curve cryptography: Theory and practice,
CRC Press, 2005.

R. Balasubramanian and N. Koblitz, "The improbability that an ellip-
tic curve has subexponential discrete log problem under the Menezes-
Okamoto-Vanstone algorithm’; J. Cryptology, 11 (1998), 141-145.

P. S. L. M. Barreto, B. Lynn and M. Scott, ‘Elliptic curves with
prescribed embedding degrees’, Lect. Notes in Comp. Sci., Springer-
Verlag, Berlin, 3006 (2003), 17-25.

P. S. L. M. Barreto, B. Lynn and M. Scott, ‘Efficient implementation
of pairing-based cryptosystems’, J. Cryptology, 17 (2004), 297-319.

P. S. L. M. Barreto and M. Naehrig, ‘Pairing-friendly elliptic curves
of prime order’, Selected Areas in Cryptography, SAC’2005, Springer-
Verlag, Berlin, (to appear).

I. Blake, G. Seroussi and N. Smart, FElliptic curves in cryptography,
London Math. Soc., Lecture Note Series, 265, Cambridge Univ. Press,
1999.

I. Blake, G. Seroussi and N. Smart, Advances in elliptic curves in cryp-
tography, London Math. Soc., Lecture Note Series, 317, Cambridge
Univ. Press, 2005.

D. Boneh and M. Franklin, ‘Identity-based encryption from the Weil
pairing’, SIAM J. Comp., 32 (2003), 586—615.

D. Boneh, B. Lynn and H. Shacham, ‘Short signatures from the Weil
pairing’, J. Cryptology, 17 (2004), 297-319.

F. Brezing and A. Weng, ‘Elliptic curves suitable for pairing based
cryptography’, Designs, Codes and Cryptography, 37 (2005), 133—-141.

W. Duke, J. B. Friedlander and H. Iwaniec, ‘Equidistribution of roots
of a quadratic congruence to prime moduli’, Annals of Math., 141
(1995), 423-441.

11



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

R. Dupont, A. Enge and A. Morain, ‘Building curves with arbitrary
small MOV degree over finite prime fields’, J. Cryptology, 18 (2005),
79-89.

S. D. Galbraith, J. McKee and P. Valenca, ‘Ordinary abelian varieties
having small embedding degree’, Proc. Workshop on Math. Problems
and Techniques in Cryptology, CRM, Barcelona, 2005, 29-45.

A. Joux, ‘A one round protocol for tripartite Diffie-Hellman’, Lect.
Notes in Comp. Sci., Springer-Verlag, Berlin, 1838 (2000), 385-393.

A. Joux, ‘The Weil and Tate pairings as building blocks for public key
cryptosystems’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin,
2369 (2002), 20-32.

H. W. Lenstra Jr., ‘Solving the Pell equation’, Notices Amer. Math.
Soc., 49 (2002), 182-192.

F. Luca, D. J. Mireles and I. E. Shparlinski, ‘MOV attack in various
subgroups on elliptic curves’, Illinois J. Math., 48 (2004), 1041-1052.

F. Luca and I. E. Shparlinski, ‘On the exponent of the group of points
on elliptic curves in extension fields’, Intern. Math. Research Notices,
2005 (2005), 1391-1409.

A. Miyaji, M. Nakabayashi and S. Takano, ‘New explicit conditions of
elliptic curve traces for FR-reduction’, IEICE Trans. Fundamentals,
E84-A (2001), 1234-1243.

K. Rubin and A. Silverberg, ‘Supersingular abelian varieties in cryp-
tology’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2442
(2002) 336-353.

R. Sakai, K. Ohgishi and M. Kasahara, ‘Cryptosystems based on pair-
ing’, Proc. of SCIS’2000, Okinawa, Japan, 2000.

M. Scott and P. S. L. M. Barreto, ‘Generating more MNT elliptic
curves,” Designs, Codes and Cryptography, to appear.

J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag,
Berlin, 1995.

12



[24] G. Tenenbaum, Introduction to analytic and probabilistic number the-
ory, Cambridge Univ. Press, Cambridge, UK, 1995.

[25] E. R. Verheul, ‘Evidence that XTR is more secure than supersingular
elliptic curve cryptosystems’, Lect. Notes in Comp. Sci., Springer-
Verlag, Berlin, 2045 (2001), 195-210.

13



