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Abstract

We investigate the decoding problem of Reed-Solomon (RS) Codes, also known as
the Polynomial Reconstruction Problem (PR), from a cryptographic hardness perspec-
tive. Namely, we deal with PR instances with parameter choices for which decoding is
not known to be feasibly solvable and where part of the solution polynomial is the hid-
den input. We put forth a natural decisional intractability assumption that relates to this
decoding problem: distinguishing between a single randomly chosen error-location and a
single randomly chosen non-error location for a given corrupted RS codeword with random
noise. We prove that under this assumption, PR-instances are entirely pseudorandom, i.e.,
they are indistinguishable from random vectors over the underlying finite field. Moreover,
under the same assumption we show that it is hard to extract any partial information
related to the hidden input encoded by the corrupted PR-instance, i.e., PR-instances hide
their message polynomial solution in the semantic security sense.

The above results lay a framework for the exploitation of PR as an intractability as-
sumption for provable security of cryptographic primitives. Based on this framework, we
present provably secure cryptographic constructions for (i) a pseudorandom number gen-
erator, (ii) a semantically secure version of the Oblivious Polynomial Evaluation Protocol,
and (iii) a stateful cipher with a set of interesting properties that include: semantic secu-
rity, forward secrecy, error-correcting decryption and an array of random self-reducibility
properties with respect to the plaintext choice, key choice and partial domain choice.

1 Introduction

Finding new problems based on which we can design cryptographic primitives is an important
research area. Given a presumably hard problem, it is usually non-trivial to exploit it directly
in cryptography. In fact, many times in order to serve as the base for secure cryptographic
primitives, we need to find related hard decision problems (predicates). This is the fundamen-
tal methodology initiated by Goldwasser and Micali in [GM84] where they started the quest
for formal notions and proofs of security in cryptography. The decision problem’s hardness,
typically seems related to (or at times proved in some sense related or, even better, reducible
from) the hardness of the original problem. Hard predicate assumptions allow formal security
proofs (in the form of reductions) for advanced cryptographic primitives such as pseudoran-
domness and semantically secure encryption. The first example of a decisional assumption is
Quadratic-Residuosity, which is related to (but not known to be reducible from) Factoring and
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was employed in designing the first semantically secure encryption scheme [GM84]. Another
such assumption is the Decisional Diffie-Hellman which implies the security of ElGamal en-
cryption and other advanced cryptographic primitives (e.g., [NR98]), and is related to (but
not known to be reducible from) the Diffie-Hellman problem.

In this work, our goal is to investigate the possibility of cryptographic primitives whose
security is based on the problem of Polynomial Reconstruction (PR). Recall that the problem
of Polynomial Reconstruction is defined as follows: Given n points over a finite field F, such
that at least t of them belong to the graph of a polynomial p of degree less than k, recover
such a polynomial (where n > t > k).

We note that Polynomial Reconstruction is equivalent to the decoding problem of Reed-
Solomon codes [RS60] and naturally has received much attention from a “positive” (coding
theoretic) perspective: Starting from the classical algorithm of Berlekamp and Welch ([BW86])
which solves Polynomial Reconstruction provided that t ≥ n+k

2 (which matches the error
correcting bound for Reed-Solomon Codes), to the recent work of Guruswami and Sudan
[GS98] which solves it when t ≥

√
kn (where many solutions are possible in the worst case).

The current state of knowledge suggests that for values of t below
√

kn the problem may be
hard (even under the light of recent extensions of list or average case decoding for related
families of codes in [BKY03, CS03, PV05]).

Regarding our goal, Polynomial Reconstruction as is does not appear to be amenable to
direct cryptographic exploitation: even if presumed hard, it is not at all clear how to build
advanced cryptographic primitives whose security can be reduced to it. Indeed, when Naor and
Pinkas [NP99] first employed the problem cryptographically in a context of protocol design,
they introduced a related pseudorandomness assumption. The relation of this assumption to
PR is another motivation for further investigation.

In this work, we identify a decisional problem that is naturally related to PR. The deci-
sional problem is defined as a distinguishability challenge between two ensembles (families of
distributions): the first ensemble, contains pairs of the form (i,y) where y is a random PR-
instance and i is a random error-location of that instance, whereas the second contains similar
pairs where i is a random non-error-location of the given instance. A distinguisher solves the
decisional problem if it can tell the two ensembles apart with some substantial advantage.
The indistinguishability of the two distributions is what we call “Decisional-PR-Assumption”
(DPR).

The DPR as formulated in the present work is a natural assumption and appears to be
intimately related to the decoding problem: the task of any decoder is to distinguish between
error and non-error locations. With thios assumption as a starting point, we then proceed to
employ the DPR in the cryptographic setting.
Pseudorandomnessof PR instances: We first prove that the DPR implies that PR-instances
are pseudorandom, i.e., they are computationally indistinguishable from random vectors. This
result is the fundamental backbone of the present investigation as pseudorandomness of PR-
instances is quite amenable to cryptographic exploitation as a reduction basis: indeed, the
security of all other constructions in this work will be reducible from pseudorandomness that
in turn is reducible from DPR.
Hardness of partial information extraction: We then show that an adversary with access to
a PR-instance who wishes to predict the value of some computable function on a portion of
the polynomial solution has only negligible advantage. This holds true even if the portion of
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the polynomial solution curve follows an adversarially chosen probability distribution. This
suggests that, under DPR a PR-instance semantically hides portions of its polynomial solution.

The above results lay the framework for the applied cryptographic exploitation of the PR
problem in provable security. The advantages of basing cryptographic constructions on a PR
related assumption, besides the fundamental insight into the PR problem, are as follows: (i) the
basic operation of PR-based cryptographic primitives is polynomial interpolation which can be
implemented quite efficiently (compared to e.g., modular exponentiation or other cryptographic
operations). (ii) PR seems to be a hard problem, and in the worst-case a variant of the problem
has been shown to be NP-hard [GSR95]; this may suggest that it could be difficult to solve
PR even with the advent of quantum computation, cf. [BBBV97].

We present the following cryptographic applications.
Pseudorandomness Extender. We design a bitstring mapping that given a seed it extends it
to longer bitstring that appears to be random to any polynomial time bounded attacker under
the DPR assumption. Based on such pseudorandom extension of an initial random seed, it is
straightforward to derive a pseudorandom number generator, cf. Chapter 3 of [Gol01].
Semantic Security for Oblivious Polynomial Evaluation. In [NP99, NP06], the primitive of
oblivious polynomial evalutation (OPE) was introduced: an OPE protocol allows a party A to
obtain the point evaluation on a polynomial held by a party B, so that A reveals no information
about the point she evaluates and B reveals no information about his polynomial beyond the
point that A learns. It is possible to implement OPE based on an t-out-of-n oblivious transfer
by having party A send her point encapsulated into a noisy PR-instance ([NP99, NP06], see
also [KY04]). In this work we show that the PR based protocol for OPE satisfies semantic
security for player A assuming the DPR assumption.
Stateful Cipher. We design a stateful block cipher that enables secure communication between
two parties and satisfies a number of interesting properties: (i) semantic security: an adaptive
chosen plaintext attacker does not get any advantage in guessing any non-trivial property
of a given challenge ciphertext, (ii) forward secrecy: if a total security breach occurs at a
certain time (e.g. the key is revealed), this affects the security only of future messages while
the previously sent messages are semantically secure in the view of the perpetrator. (iii)
Random self-reducibility properties: A typical security concern is whether an attacker may take
advantage of the structure of a subset of the key-space or of a subset of the plaintext-space. We
show that an attack on a large enough subset is equivalent to an attack on the average case, for
both plaintext space and key space, showing there are no weak plaintext subset and no weak
key subsets. In a similar fashion, we can also define random self-reducibility with respect to a
partial domain function: in this case we need to transform an adversary that recovers a certain
portion of the plaintext to an adversary that attacks a different portion of the plaintext.
Intuitively this means that no particular portion of the plaintext is more advantageous to
attack. We show that the PR-cipher satisfies this random self-reducibility property as well.
We remark that such properties are satisfied unconditionally based on the problem’s inherent
structure (as opposed to e.g., the semantic security of the cipher). The final property that the
cipher possesses due to its underlying nature is (iv) error-correcting decryption: the decryption
operation incorporates error-correction capabilities in a direct manner.
Remark: The present work is a full revised version of [KY02]. It contains a novel formulation
of the decisional PR assumption (that is much more natural compared to the original formu-
lation), a number of corrections and a complete restructuring of the exposition of the security
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proofs.
Notation. All computations are performed in a (large) finite field F of prime order. Tuples
in Fn are denoted by x and (x)i denotes the i-th coordinate of x. For commonly used tuples
such as z,y we will also use the notation zi, yi for (z)i, (y)i, respectively. PPT stands for
“probabilistic polynomial-time.” All algorithms mentioned in the paper are polynomial-time
Turing Machines, and denoted by A,B etc. For any PPT A that uses randomness r ∈ R
and has input distributed according to some distribution D, if y is in the range of A we will
denote by Pr[A(r, x) = y : r ← R, x ← D] the probability that A returns y when its input is
distributed according to D; occasionally we may drop r from the above notation. A function
α(λ) : IN → R is negligible if for all c it holds that α < λ−c for sufficiently large λ. If the
probability of an event is greater equal to 1 − ε where ε(λ) is a negligible function, then we
write that the event happens “with overwhelming probability.”

2 PR as a Cryptographically Hard Problem

Definition 2.1 Polynomial Reconstruction (PR). Given n, k, t and z,y ∈ Fn with zi 6=
zj for i 6= j, output all 〈p(x), I〉 such that p ∈ F[x], degree(p) < k, I ⊆ {1, . . . , n}, |I| ≥ t and
∀i ∈ I(p(zi) = yi).

PR as a coding theoretic problem asks for all messages that agree with at least t positions
of the received Reed-Solomon codeword. For a general treatment on the subject the interested
reader is referred to [Ber68] or [MS77]. Note that k < n since k/n is the message rate of the
code, and that we further require that at least one solution 〈p(x), I〉 exists.

When t ≥ n+k
2 then PR[z, k, t] has only one solution and it can be found with the algorithm

of Berlekamp and Welch [BW86] (n+k
2 is the error-correction bound of the Reed-Solomon

codes). When t is beyond the error-correction bound then having more than one solution is
possible. Sudan proposed an algorithm that solves the PR beyond the error-correction bound
when t ≥

√
2kn in [Sud97] and later in [GS98], Guruswami and Sudan presented an algorithm

that solves the PR for t >
√

kn. In [GSR95] it was proven that when t >
√

kn the number
of solutions is bounded by a polynomial. In [GS98] it is pointed out that the possibility of
an algorithm that solves instances for smaller values of t might be limited. Consequently the
current state of knowledge implies that PR[z, k, t] is hard for the choice of parameters t <

√
kn.

Input Convention for PR algorithms. A PR-instance will be denoted by y and defined for
the parameters n, k, t, z. When we say that an algorithm A operates with input a PR instance
we will simply write A(y) instead of A(n, k, t, z,y).

2.1 Structure of the Instance Space

An instance of PR is a vector y = 〈y1, . . . , yn〉 ∈ Fn and is specified by the parameters n, k, t
and the support elements z = 〈z1, . . . , zn〉 ∈ Fn. Note that the support elements are all distinct
but are given in vector form to define their correspondence to the elements of the vector y.

Let e ∈ Fn be vector of Hamming weight at most n − t. The general structure of a PR-
instance with parameters n, k, t and support z that we consider is y = e + p where p ∈ F[x],
and p = 〈p(z1), . . . , p(zn)〉. The set of all PR-instances with parameters n, k, t over the support
z will be denoted by Izn,k,t.

4



From this point we will denote by y1,y2, . . . arbitrary elements of Fn, by e1, e2, . . . arbitrary
error vectors, and by p1,p2, . . . vectors of the form 〈p(z1), . . . , p(zn)〉 such that p ∈ F[k] and
the degree of p is less than k. The parameters n, k, t, z will be clear from the context.

We know that in case t ≥ n+k
2 , independently of the choice of e, the PR-instance y = e+p

has the single unique solution p ∈ F[x]. Nevertheless, for smaller values of t it may be the case
that a PR-instance y may have more than one solutions. This is the setting when we will say
that the error-vector is ambiguous. Consider the following definition:

Definition 2.2 A vector e = 〈e1, . . . , en〉 is an (n, t)-error-vector for PR-instances with pa-
rameters n, k, t if its Hamming weight is n− t. An (n, t)-error-vector e is called k-ambiguous
if there is a polynomial p 6= 0 of degree less than k and a set of indices I with |I| = t so that
p(zi) = ei for all i ∈ I.

Lemma 2.3 Suppose y ∈ Izn,k,t; the following two statements are equivalent:

• There exist p, e such that y = p + e and e is a k-ambiguous (n, t)-error-vector.

• There exist p1, e1,p2, e2 such that y = p1 + e1 = p2 + e2 and e1 6= e2.

Proof. Suppose that y = p + e and e is k-ambiguous. This means that there exists some
non-zero polynomial p′ ∈ F[x] of degree less than k such that (e)i = p′(zi) for all i ∈ I ′ where
I ′ is a set of indices from {1, . . . , n} of size t. Consider the vector e′ = e− p′. It is easy to see
that it is an (n, t)-error-vector. Moreover it holds that y = (p + p′) + e′. Note that we have
that e 6= e′ since p′ 6= 0. This completes the first step of the proof.

Suppose now that y = p1 + e1 = p2 + e2 with e1 6= e2. It follows that e1 = e2 +(p2−p1);
given that e2 is an (n, t)-error-vector we have that there is a set of indices I2 of size t such that
(e2)i = 0 for all i ∈ I2. Based on this we have that (e1)i = (p2(zi) − p1(zi)) for i ∈ I2. Note
that the polynomial p2 − p1 must be non-zero (because if it is zero then it holds that e1 = e2,
a contradiction). Moreover it is clear that the degree of p2− p1 is less than k. This shows that
e1 is k-ambiguous and completes the second step of the proof. �

Next we show some basic results about the number of error-vectors in our formulation:

Lemma 2.4 (1) The total number of (n, t)-error-vectors is equal to
(
n
t

)
(|F| − 1)n−t.

(2) The number of (n, t)-error-vectors that are ambiguous is less than
(
n
t

)2(|F| − 1)n−2t+k.

Proof. (1) The formula is straightforward, since the vector contains n− t non-zero points that
can be distributed in

(
n

n−t

)
ways.

(2) An ambiguous vector by definition contains an embedded non-zero polynomial p that
matches it in (at least) t locations. Note that such locations may span both the zero as well
as non-zero areas of the error-location. Let m ∈ {0, . . . , k − 1} be a value that specifies in
how many of the zero locations such polynomial p will match the error vector (note that it
cannot be that m = k since then it holds that p = 0). The number of ways we can do select
an ambiguous error-vector will be at most:

k−1∑
m=max{2t−n,0}

(
n

t

)(
t

m

)(
n− t

t−m

)
(|F| − 1)(n−t)−(t−m)+(k−m)
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This is because,
(
n
t

)
is the number of ways to choose t non-zero locations among n points,(

t
m

)
is the number of ways we may choose the zero locations over which the polynomial p will

cross,
(

n−t
t−m

)
is the number of ways we may choose the remaining non-zero locations over which

the polynomial p will pass. Finally, we have n− t− (t−m) + (k−m) non-zero points: this is
because there are t−m of the non-zero error-points that are not freely selected but controlled
by the polynomial which can contribute only k −m degrees of freedom.

The bounds of the summation are justified as follows: m should be at least 2t − n unless
this quantity drops below zero where in this case we simply start m from zero. Note that
2t − n < k since the case t ≥ n+k

2 is excluded as there cannot be ambiguous error vectors
for such parameter choices. Simplifying the above summation we obtain that it is at most(
n
t

)2(|F| − 1)n−2t+k. �

Corollary 2.5 Suppose log(|F| − 1) ≥ (log
(
n
t

)
+ s)(t − k)−1; then, (i) the probability of a

uniform random variable over all (n, t)-error-vectors to result in an ambiguous (n, t)-error-
vector is less than 2−s.
(ii) (1− 2−s) ≤ |Iz

n,k,t|
|F|k(n

t)(|F|−1)n−t
≤ 1.

Proof. (i) Follows directly from lemma 2.4 since
(
n
t

)2(|F| − 1)n−2t+k/
(
n
t

)
(|F| − 1)n−t equals(

n
t

)
(|F| − 1)−t+k which is less or equal to 2−s based on the given condition.

(ii) Let Izn,k,t(I) be the subset of Izn,k,t that contains vectors y so that we can decompose
y = p + e and e is a (n, t)-error-vector that has zero’s in the locations I. It follows that
all instances will be included in the set ∪IIzn,k,t(I), where I is selected at from the set of all
subsets of size t of {1, . . . , n}. The union bound immediately yields the rightmost inequality
of the statement (ii) above. For the other leftmost inequality, observe that the number of non-
ambiguous (n, t)-error-vectors is at least

(
n
t

)
(|F|− 1)n−t−

(
n
t

)2(|F|− 1)n−2t+k using lemma 2.4.
Based on this we deduce that |Izn,k,t| ≥ |F|k(

(
n
t

)
(|F| − 1)n−t −

(
n
t

)2(|F| − 1)n−2t+k). From this
we obtain that |Izn,k,t|/(|F|k

(
n
t

)
(|F| − 1)n−t) ≥ (1−

(
n
t

)
/(|F| − 1)t−k) from which the statement

of the corollary follows. �

Given that we will be interested in sampling “hard” instances of PR[z, k, t] we will specify
next an efficient sampler that will be used for this purpose:

Definition 2.6 (Sampling PR-instances) Consider the following sampler S that produces an
instance of Izn,k,t: S on input (z, k, t) samples a random subset I ⊆ {1, . . . , n}, a polynomial
p ∈ F[x] with degree(p) < k; it then sets yi = p(zi) for all i ∈ I, whereas for all i 6∈ I it samples
yi at random from the set F − {p(zi)}. S terminates by returning the vector y = 〈y1, . . . , yn〉.
When y is the output of S we will denote by Iy the index set I.

An equivalent description of the above sampler S can also be described as selecting a random
polynomial p ∈ F[x] with degree(p) < k, as well as a random (n, t)-error-vector e and returns
p + e. The distribution induced by S over the space of PR-instances Izn,k,t will be denoted by
Sz

n,k,t.

Theorem 2.7 Suppose log(|F| − 1) ≥ (log
(
n
t

)
+ s)(t − k)−1; The statistical distance between

the distribution Sz
n,k,t and the uniform over Izn,k,t is less than 2−s+2.
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Proof. Given a y ∈ Izn,k,t define ny to be the number of different pairs (p, e) that satisfy
y = p + e. If there is only a single pair that fits y, then we say that y has a unique solution;
denote the set of all y that have a unique solution by U ; denote by U all the remaining tuples.

First consider the following summation A =
∑

y∈U |Izn,k,t|−1 = |U |/|Izn,k,t|. Note that

|U | < |F|k
(
n
t

)2(|F| − 1)n−2t+k, using lemma 2.4(ii). Next using corollary 2.5(ii) we have that
|Izn,k,t| ≥ (1− 2−s)|F|k

(
n
t

)
(|F| − 1)n−t. Based on this we obtain that A <

(
n
t

)
/(|F| − 1)t−k(1−

2−s) ≤ 2−s/(1− 2−s) = 1/(2s − 1) ≤ 2−s+1.
Next we consider the summation B =

∑
y∈U ny/C where C = |F|k

(
n
t

)
(|F|−1)n−t. Observe

that
∑

y∈U ny = C −
∑

y∈U ny = C − |U |. Based on this we have that B = 1 − |U |/C. Now

|U | ≥ |Izn,k,t| − |F|k
(
n
t

)2(|F| − 1)n−2t+k. As a result, |U |/C ≥ |I|/C − 2−s ≥ 1 − 2−s+1 using
corollary 2.5(ii). It follows that B ≤ 2−s+1.

The statistical distance of the two distributions equals 1
2

∑
y |

ny

C −|I
z
n,k,t|−1| ≤ 1

2(
∑

y∈U |C−1−
|Izn,k,t|−1|+ A + B) < 1

2(1− |Izn,k,t||/C + 2−s+1 + 2−s+1) < 2−s+2. �

2.2 Parameter Selection

In our exposition we will use λ as the security parameter. The parameters n, k, t, log |F| will
all be functions of λ, and will be assumed to satisfy the inequality k < t < n < |F| as well as
t <
√

nk. The straightforward brute-force algorithm for solving PR[z, k, t] requires checking
all possibilities and as a result, it has complexity proportional to min(

(
n
k

)
,
(
n
t

)
). The parameter

selection [n, k, t] would be suitable for the PR[z, k, t], if k, t are chosen so that t <
√

kn and
min(

(
n
k

)
,
(
n
t

)
) is exponential in λ. Note that the size of F can be made arbitrarily large (as long

as it is larger than n); regarding the structure of F, we choose F to be a prime field.

2.3 The Intractability Assumption

A decision problem that relates naturally to the hardness of solving an instance y of PR[z, k, t]
is the following: given y and an index i ∈ {1, . . . , n} decide whether i ∈ Iy. We will postulate
that such decision is computationally hard to make. A natural way to formalize this as an
intractability assumption is to define first the following two samplable probability distributions:

Definition 2.8 Given parameters n, k, t, the sampler Sbad first selects an instance y following
the sampler S of definition 2.6, then it selects i at random from the set {1, . . . , n}−Iy and then
outputs 〈i,y〉. Sgood is defined similarly but i is selected at random from the set Iy instead.

The above two samplers will be used to define the challenge for our decisional PR assump-
tion. In particular we have that:

Definition 2.9 Decisional-PR-Assumption. DPR[z, k, t]. For any PPT A we define:

Advdpr,A
z,k,t (λ) = |Pr[A(Sgood(z, k, t)) = 1]− Pr[A(Sbad(z, k, t)) = 1]|

It holds that Advdpr
z,k,t(λ) = maxA Advdpr,A

z,k,t (λ) = negl(λ).
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The intuition behind the assumption is that if the adversary is presented with a challenge
location then it is incapable of telling the difference between a good (i.e., uncorrupted) location
and a bad (i.e., error) location. The reader should note that that the random variable i
defined as the first component in an 〈i,y〉 pair drawn from Sgood (or Sbad) is in fact uniformly
distributed over {1, . . . , n} (i.e., an adversary concentrating on i itself without considering
yobtains no information about the source of the challenge 〈i,y〉).

Note that in a previous version of this paper, [KY02], we formulated the DPR assumption
differently employing what was called there a gap-predicate-pair. Such a pair of PPT predicates
exhibited a non-negligible spike for some specific location that had to be necessarily one of the
good locations; the DPR then suggested that gap-predicate-pairs do not exist. Our present
formulation is more intuitive in comparison and more general (in particular it can be shown
easily that the DPR as formulated above would be violated if any a gap-predicate-pair exists).

Next we consider the relationship between the decisional assumption and the parent func-
tional problem. The following fact is immediate:

Fact 2.10 The existence of a polynomial-time algorithm for PR[z, k, t] violates DPR[z, k, t].

Ideally, we would like to show the reverse direction as well, i.e., that any polynomial-time
distinguisher for the DPR assumption implies a polynomial-time algorithm for solving the PR
problem. We will clarify the issues that are pertaining to this reduction in the remaining of
this section by introducing the notion of a strong location oracle and presenting a reduction to
PR. A strong location oracle will be able to decide whether a given location is an error or not
with an error probability that is independent of the given instance. Note that the violation of
the DPR assumption does not necessarily imply the existence of a strong location oracle: this
is due to the fact that PR is not randomly self-reducible. Still, the result in the remaining of
the section demonstrates that local decisions, such as those employed in the DPR assumption,
may imply decodability if they are instance-independent in an algorithmic sense.

For a family of PR instances Iz we define the “codeword remaining redundancy” to be
the ratio (t− k)/n. The larger the remaining redundancy is, the easier the decoding problem
appears to be. For example if the codeword remaining redundancy is at least (1−k/n)/2 then
any PR instance is fully decodable.

Definition 2.11 A strong location oracle Oρ for the PR problem with error ε is a TM that
given any 〈i,y〉 where y is a PR[z, k, t] instance with support z and i ∈ {1, . . . , n} so that
(t − k)/n ≥ ρ, it returns {0, 1} depending on whether i is an error-location (i 6∈ Iy) or an
uncorrupted location (i ∈ Iy), respectively with probability 1− ε.

In the following lemma we show that a strong location oracle for remaining redundancy
ρ can be used for implementing a decoding algorithm for the PR problem for any choice of
parameters that satisfy (t− k)/n ≥ ρ. We note that a strong location oracle would work even
for instances that have ambiguous error vectors; in this case, the oracle is assumed to select
one of the possible polynomial solutions (i.e., it has a preferred polynomial solution that is
automatically selected).

Proposition 2.12 Given a strong location oracle Oρ with error ε, there exists a polynomial-
time algorithm AOρ that solves the PR[z, k, t] problem with (t − k)/n ≥ ρ with probability at
least 1− n · ε.
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Proof. The algorithm A operates as follows: given y = 〈y1, . . . , yn〉 ∈ Iz,k,t it submits (y, n) to
On,k,t. In case the answer is 1, A performs the following transformation y′i = (yi−yn)(zi−zn)−1

and forms the instance y′ = 〈y′1, . . . , y′n−1〉. Note that y′ is a PR instance with parameters
[n − 1, k − 1, t − 1]. On the other hand, if the answer of the location oracle is 0, A forms the
instance y′ = 〈y′1, . . . , y′n−1〉, (i.e., it simply drops the last element since it is an error location).
In either case, observe that the size of the input has been reduced by 1 and we may repeat the
process recursively on the instance y′. The remaining redundancy of y′ is either case equal to
(t−1− (k−1))/(n−1) = (t−k)/(n−1) and thus it holds that (t−k)/(n−1) ≥ (t−k)/n ≥ ρ.
We continue the process recursively until k non-error locations of the original instance have
been identified or we have reduced the parameters to satisfy the relation t ≥ (n + k)/2 (in
which case we may apply the [BW86] decoder to recover the solution). �

3 Pseudorandomness

In this section we will present the first basic implication of the DPR assumption: the fact that
PR instances are pseudorandom: i.e., computationally indistinguishable from a random set of
points over F.

In particular we will show that distinguishing instances of PR[z, k, t] from random elements
of Sn := Fn is hard under the DPR-Assumption. We first give the definition of setindistin-
guishability and pseudorandomness in our setting:

Definition 3.1 Let {Fn}n∈IN be a family of sets parameterized by n. Two families of sets
with An, Bn ⊆ Fn are (polynomial-time, computationally) indistinguishable if for any PPT
predicate A,

| Pr[A(X) = 1 : X ← An]− Pr[A(X) = 1 : X ← Bn]|

is negligible in n. If on the other hand there is an A for which the probability above is non-
negligible in n, we will say that A is a distinguisher for An, Bn. A family of sets An is called
F-pseudorandom if it is indistinguishable from Fn.

Note that for this section we consider Bn = Fn and An = Iz,k,t

Definition 3.2 We define the function Advpsr
z,k,t = maxA(Advpsr,A

z,k,t ) where Advpsr,A
z,k,t = |Pr[A(X) =

1]−Pr[A(Y ) = 1]| where X is distributed according to S(z, k, t) and Y is distributed according
to U over Fn.

Next we present a basic probabilistic lemma that will assist in the analysis later on.

Lemma 3.3 Let vb
i , vg

i be independent samplable binary random variables for i ∈ {1, . . . , n}
with means µb,i and µg,i respectively for which it holds:

• There exists an i ∈ {1, . . . , n} such that |Pr[vg
i = 1] − Pr[vb

i = 1]| ≥ α where α is a
non-negligible function in n.

Then, for all ε > 0, there exists a probabilistic polynomial-time TM B that returns an i that
satisfies |Pr[vg

i = 1] − Pr[vb
i = 1]| ≥ α/4 with probability 1 − ε. B requires O(α−2(log(ε−1) +

log n)) samples of each of the given random variables.
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Proof. Consider the following procedure B: first it produces the samples vb
i,j , v

g
i,j distributed

according to vb
i , vg

i for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} where m is a parameter to be specified
later. Then, for all i = 1, . . . , n, it computes the sums sb

i =
∑m

j=1 vb
i,j and sg

i =
∑m

j=1 vg
i,j as

well as the difference δi = |sb
i − sg

i |. Finally, B collects all i such that δi ≥ αm/2 forming a list
L and returns one of them at random. If no such i exists, i.e., the list L is empty, B returns ⊥.

We turn to the analysis of B next. Let i0 be the special index that is guarranteed in the
statement of the theorem and satisfies |Pr[vb

i0,1 = 1] − Pr[vg
i0,1 = 1]| ≥ α. Using the Chernoff

bound we have that Pr[|sg
i − µg,i| ≤ t1] ≥ 1 − e−t21/2m and Pr[|sb

i − µb,i| ≤ t2] ≥ 1 − e−t22/2m

for any t1, t2 > 0. Using the condition we have for i0 we obtain that |µg,i0 − µb,i0 | ≥ αm. We
set t1 = t2 = αm/4 and we obtain that with probability at least 1− 2e−α2m/2 it happens that
the events |sg

i0
− µg,i0 | ≤ αm/4 and |sb

i0
− µb,i0 | ≤ αm/4 are simultaneously true. This implies

that |sg
i0
− sb

i0
| ≤ αm/2 is also true so we conclude that Pr[δi0 ≥ αm/2] ≥ 1 − 2e−α2m/2. It

follows that with this probability the index i0 will be one of the possible indices that B can
return as output (and as a result the list of such possible indices is not empty conditioning on
this event).

Suppose now for some index i1 ∈ {1, . . . , n} it holds |Pr[vg
i1,1 = 1] − Pr[vb

i1,1 = 1]| < τ · α
which implies that |µg,i1 − µb,i1 | < ταm, for some τ ∈ (0, 1). Using the Chernoff bound again
we have that Pr[|sg

i1
− µg,i1 | ≤ t1] ≥ 1 − e−t21/2m and Pr[|sb

i1
− µb,i1 | ≤ t2] ≥ 1 − e−t22/2m

for any t1, t2 > 0. We set t1 = t2 = ταm/2 and we obtain that the probabilities of the
events |sg

i1
− µg,i1 | ≤ ταm/2 and |sb

i1
− µg,i1 | ≤ ταm/2 are both at least 1 − e−τ2α2m/8.

Based on this and the bound we have on the means |µg,i1 − µb,i1 | < ταm we conclude that
Pr[δi1 < 2ταm] ≥ 1 − 2e−τ2α2m/8, i.e., Pr[δi1 ≥ 2ταm] ≤ 2e−τ2α2m/8. We set τ = 1/4 and we
obtain that Pr[δi1 ≥ αm/2] ≤ 2e−α2m/128.

To complete the analysis we need to provide a lower bound for the probability to output
an index that satisfies |Pr[vg

i,1 = 1] − Pr[vb
i,1 = 1]| ≥ α/4. Note that in the worst case there

will be n − 1 indices i that satisfy the condition |Pr[vg
i,1 = 1] − Pr[vb

i,1 = 1]| < α/4 (excluding
i0). The event we are interested in is the following: none of the indices with distinguishing
probability less than α/4 belong to the list L while the index i0 belongs to the list L. Using
the above arguments we conclude that the probability we are interested in is at least (1 −
2e−α2m/128)n−1(1− 2e−α2m/2) ≥ 1− 2(n− 1)e−α2m/128− 2e−α2m/2 ≥ 1− e−α2m/128+ln 2n which
is greater equal to 1− ε provided we set m ≥ 128 · α−2(ln(ε)−1 + ln 2n). Recall that based on
the fact that α is a non-negligible function in n it holds that m is polynomial in n, log ε−1 as
required in the theorems statement. �

We proceed to the main theorem of this section that establishes the pseudorandomness
of the distribution induced by S (cf. definition 2.6) which implies that PR instances are
pseudorandom under the decisional PR assumption.

Theorem 3.4 Let A be a PPT predicate that is a polynomial-time distinguisher of the distri-
bution Sz

n,k,t over Fn and the uniform distribution U over Fn with distinguishing probability at

least α. Then, it holds that α ≤ t(n−t+3)
|F| + t · Advdpr

z′,k,t + 8t · Advdpr
z,k,t, where z′ ∈ Fn−1 and is

obtained from z by removing one of the coordinates.

Proof. Let A be the distinguisher between the distributions Sz
n,k,t and U as described in the

theorem’s statement. Also define the sampler Si to denote the distribution of pairs 〈i,y〉
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where y is sampled according to S. Consider the following procedure A1 that operates on
pairs of the form 〈i,y〉 as follows: it first selects a random permutation π and then overwrites
the yπ(1), . . . , yπ(i) values of the vector y (provided that i > 0) by substituting them with i
random values over F; in this way A1 produces the “partially randomized” PR instance y′.
Then A1 simulates A on y′. We will denote the operation of A1 as A(Rπ

i (y)) where Rπ
i is the

probabilistic operator that given y, it randomizes the first (according to π) i locations of y.
It is immediate that

Pr[A1(S0(z, k, t)) = 1] = Pr[A(S(z, k, t)) = 1]

as well as that
Pr[A1(Sn(z, k, t)) = 1] = Pr[A(U) = 1]

As a result |Pr[A1(S0(z, k, t)) = 1] − Pr[A1(Sn(z, k, t)) = 1]| ≥ α since |Pr[A(S(z, k, t)) =
1] − Pr[A(U) = 1]| ≥ α from the statement of the theorem. By employing the triangular
inequality we obtain that there exists i ∈ {1, . . . , n} such that

|Pr[A1(Si(z, k, t)) = 1]− Pr[A1(Si−1(z, k, t)) = 1]| ≥ α/n

Below we will denote by Ei,π
n,k,t the event A(Rπ

i (S(z, k, t))) = 1. Note that we don’t specify
z in the E notation as we will use the same z in conjunction to E in the remaining of the proof.
Using this notation and the above results we obtain that :

∀π ∃i ∈ {1, . . . , n} s.t. |Pr[Ei,π
n,k,t]− Pr[Ei−1,π

n,k,t ]| ≥ α′ (1)

where α′ = α/n.
Next, consider the event Badπ

i to correspond to the coin tosses of the sampler S(z, k, t) that
the location π(i) is among the error-locations. We denote by Goodπ

i the negation of this event.
Claim 1. |Pr[Ei,π

n,k,t | Badπ
i ]− Pr[Ei−1,π

n,k,t | Badπ
i ]| ≤ 1/|F|.

Indeed, observe that in the conditional space Badπ
i for the sampler S the π(i)-th location

of the vector y is distributed uniformly over the set F − {p(zπ(i))} where p is the solution
polynomial that is selected by the sampler. The probabilistic operator Rπ

i will substitute the
π(i)-th location with a random element over F. It follows by a standard argument that the
statistical distance between the two distributions is at most 1/|F| from which the claim 1
follows.

Next we use the fact: if |Pr[E1]− Pr[E2]| ≥ α and |Pr[E1|B]− Pr[E2|B]| ≤ ε then it holds
that |Pr[E1|¬B]−Pr[E2|¬B]| ≥ (α− ε ·Pr[B])(Pr[¬B])−1. Applying this on claim 1 we obtain
the following:

|Pr[Ei,π
n,k,t | Goodπ

i ]− Pr[Ei−1,π
n,k,t | Goodπ

i ]| ≥ α′′ (2)

where α′′ = n
t (α′ − (1− t

n)|F|−1) = α
t −

n−t
|F| .

Claim 2. Pr[Ei,π
n,k,t | Goodπ

i ] = |Pr[Ei,π
n,k,t−1 | Badπ

i ].
The validity of the second claim can be established by directly corresponding the random

coins of event Ei,π
n,k,t in the conditional space Goodπ

i to the random coins of event Ei,π
n,k,t−1 in

the conditional space Badπ
i . The event Ei,π

n,k,t can be thought of containing tuples of the form
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〈IL, pL, eL, ~rL〉 so that IL is a subset of {1, . . . , n} that necessarily includes i, pL ∈ F[x] with
degree(pL) < k, eL is a (n, t)-error-vector that is zero in IL and finally ~rL is a random vector of
Fi that specifies the coins of the probabilistic operator Rπ

i . On the other hand, the event Ei,π
n,k,t−1

in the conditional space Badπ
i can be thought of containing tuples of the form 〈IR, pR, eR, ~rR〉

where IR is a subset of {1, . . . , n} with cardinality t − 1, pR ∈ F[x] with degree(pR) < k, eR

is a (n, t − 1)-error-vector that is zero in IR and ~r is a random vector of Fi that defines the
coins of the probabilistic operator Rπ

i . Consider the following correspondence: given a tuple
〈IL, pL, eL, ~rL〉 we define 〈IR, pR, eR, ~rR〉 as follows: IR = IL − {π(i)}, pR = pL, ~rR = ~rL and
also we set (eR)j = (eL)j for all j 6= π(i) (note that (eL)π(i) = 0 since π(i) is not an error
location). Finally we select (eR)π(i) at random from F−{pR(zπ(i))}. We remark that the choice
of (eR)π(i) does not affect the outcome of the experiment since it substituted with the same
random value in both cases. It follows that for every tuple of Ei,π

n,k,t in the conditional space

Goodπ
i we have a correspondence of the same number of tuples of Ei−1,π

n,k,t−1 in the conditional
space Badπ

i . Based on this the statement of the claim follows.
Claim 3. |Pr[Ei,π

n,k,t−1 | Badπ
i ]− |Pr[Ei−1,π

n,k,t | Badπ
i ]| ≤ Advdpr

z′,k,t + 3/|F|.

Recall that the event Ei,π
n,k,t is defined as A(Rπ

i (S(z, k, t))) = 1. We will argue that the
two probability ensembles Rπ

i (S(z, k, t − 1)) and Rπ
i−1(S(z, k, t)) are computationally indistin-

guishable when considered over the conditional probability spaces based on the event Badπ
i .

Suppose that B is any PPT distinguisher between the two ensembles. We define next a PPT
distinguisher B′ for the DPR[z′, k, t] that operates as follows: B′ given the challenge 〈j,y〉
over the support set z′ = 〈z1, . . . , zi−1, zi+1, . . . , zn〉, B′ first randomizes the value (y)j ; then
it parses y as 〈y1, . . . , yπ(i)−1, yπ(i)+1, . . . yn〉 and injects a random value of F at location π(i);
finally it selects y′π(1), . . . , y

′
π(i−1) from F and overwrites the corresponding i− 1 locations of y.

The resulting vector ynew is of length n. B′ terminates by simulating B on ynew and returning
the output that B returns.

Suppose that the DPR[z′, k, t] challenge 〈j,y〉 was drawn according to the Sbad(z′, k, t)
sampler. This means that the vector y with the j-th location randomized is at a statistical
distance 1/|F| from S(z′, k, t) and after the injection of the random π(i)-th location value it
will be at a statistical distance 2/|F| from S(z, k, t) in the conditional probability space based
on Badπ

i . On the other hand, in the case that the DPR[z′, k, t] challenge 〈j,y〉 was drawn
according to the Sgood(z′, k, t) sampler we would have the following: the vector y with the j-th
location randomized is at a statistical distance 1/|F| from S(z′, k, t − 1); it follows that, after
injecting the π(i)-th location element and randomizing the i− 1 locations according to π, the
resulting vector ynew is at a distance 1/|F| from the ensemble Rπ

i (S(z, k, t − 1)). From these
facts the statement of claim 3 follows.

By applying the results of claim 2 and 3 to the inequality 2 we obtain the following :

|Pr[Ei−1,π
n,k,t | Badπ

i ]− Pr[Ei−1,π
n,k,t | Goodπ

i ]| ≥ α′′′ (3)

where α′′′ = α
t −

n−t+3
|F| −Advdpr

z′,k,t. Using the definition of the event Ei−1,π
n,k,t we rewrite equation

3 as follows:

|Pr[A(Rπ
i−1(S(z, k, t))) = 1 | Badπ

i ]− Pr[A(Rπ
i−1(S(z, k, t))) = 1 | Goodπ

i ]| ≥ α′′′ (4)

Where i is some index in {1, . . . , n} that while it is unknown, its existence is guaranteed
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from equation 1. Next we observe that we can simulate the behavior of the sampler S in the
conditional probability spaces Badπ

i and Goodπ
i . In particular this can be done easily by the

samplers SBadπ
i and SGoodπ

i that operate exactly as S with the exception the selection of the set of
indices I that is done as follows: for the case of SGoodπ

i a random subset I ⊆ {1, . . . , n}−{π(i)}
is selected that has cardinality t − 1 and then the element π(i) is added to it; on the other
hand, for the case of SBadπ

i a random subset I ⊆ {1, . . . , n}−{π(i)} is selected with cardinality
t. Based on this it follows that we can rewrite equation 4 in this way:

|Pr[A(Rπ
i−1(S

Badπ
i (z, k, t))) = 1]− Pr[A(Rπ

i−1(S
Goodπ

i (z, k, t))) = 1]| ≥ α′′′ (5)

Observe that if we define ub
i,j(π) to be equal to A(Rπ

i−1(S
Badπ

i (z, k, t))) and ug
i,j(π) to be

equal to A(Rπ
i−1(S

Goodπ
i (z, k, t))), the conditions of lemma 3.3 are satisfied (for any permutation

π). Armed with this observation we describe the following PPT procedure A2 that acts as a
DPR[z, k, t] distinguisher over the support elements z.
A2 on input 〈j,y〉 operates as follows. First A2 executes the following loop that depends

only on the input j:

1. Choose a random permutation π over {1, . . . , n}.
2. Execute the procedure B of lemma 3.3 to find the special index i for which equation 5 holds
using the random variables ub

i,j(π), ug
i,j(π) (note that the execution of the lemma is based on

parameters [zπ, k, t] and provides an i that satisfies equation 5 with success α′′′/4).
3. If π(i) = j stop and return (i, π) otherwise repeat from step 1.

Recall that the procedure B of lemma 3.3 will return an index that satisfies equation 5
with threshold α′′′/4 and will succeed with probability 1− ε1 where ε1 is a parameter we will
specify. The procedure B runs in time polynomial in n + ln ε−1

1 + (α′′′)−2.
Regarding the number of repetitions that are required for exiting the above loop at step

3 observe the following: the value j is independent of the determination of i, π. It follows
that with probability 1/n the loop will terminate at step 3 after the first repetition. After
ln ε−1

2 · n repetitions of the loop we conclude that the probability of failing all ln ε−1
2 · n times

is (1− 1/n)ln ε−1
2 ·n ≤ ε2.

It follows that A2 will terminate step 3 successfully and with probability at least 1−ε1−ε2 =
1−ε, it will possess at this stage an index i and a permutation π so that the equation 5 exhibits
a spike at location i for parameters z, k, t. Moreover it holds that π(i) = j.

After step 3 terminates, A2 simulates A(Rπ
i−1(y)) with parameters z, k, t and returns the

output that A returns.
Suppose that 〈j,y〉 is distributed according to Sbad(z, k, t). It follows that y will be dis-

tributed according to SBadπ
i (zπ, k, t). With a similar argument we obtain that if 〈j,y〉 is dis-

tributed according to Sgood(z, k, t), the vector y will be distributed according to SGoodπ
i (z, k, t).

Next we use the fact that if |Pr[E1|N ] − Pr[E2|N ]| ≥ α and Pr[¬N ] ≤ ε then |Pr[E1] −
Pr[E2]| ≥ (1−ε)α−ε. Based on the above we conclude that A2 is a distinguisher for DPR[z, k, t]
with distinguishing probability at least (1−ε)α′′′/4−ε. It follows that (1−ε)α′′′/4−ε ≤ Advdpr

z,k,t

and using that α′′′ = α
t −

n−t+3
|F| −Advdpr

z′,k,t we conclude that α ≤ t(n− t+3)/|F|+ t ·Advdpr
z′,k,t +

8t · Advdpr
z,k,t by setting ε ≤ Advdpr

z,k,t (note that if Advdpr
z,k,t is exponentially small in a parameter

s then the parameters ln ε−1
1 and ln ε−1

2 with ε1 + ε2 = ε will be polynomial in s). �
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Corollary 3.5 It holds that Advpsr
z,k,t ≤

t(n−t+3)
|F| + t · Advdpr

z′,k,t + 8t · Advdpr
z,k,t.

4 Hardness of Recovering Partial Information of Polynomial
Values

In this section we will show that PR[z, k, t] “leaks no partial information” about any specific
polynomial value under the DPR-Assumption even if these values are distributed according to
an arbitrary probability distribution. This result suggests that the decisional PR assumption
enables a form of semantic security for specific points of the polynomial curve that it hides.

We introduce first the following sampler that restricts the PR sampler of definition 2.6.

Definition 4.1 The sampler Sw over Fn is defined as follows: Sw given 〈z, k, t〉 such that
{0, . . . , u − 1} ∩ {z1, . . . , zn} = ∅ and and w = 〈w0, . . . , wu−1〉 ∈ Fu, it first interpolates a
polynomial p ∈ F[x] such that (1) p(i) = wi for i = 0, . . . , u − 1 and (2) p(i) is uniformly
distributed for i = u, . . . , k. Finally it selects e, a random (n, t)-error-vector and returns p+e.

We note that Sw induces a distribution over Fn that would be identical to that of the
sampler S of definition 2.6 if w is a uniform random variable over Fu. We denote the probability
distribution induced by Sw over Fn as Sw

z,k,t. For the remaining of the section we will assume
that {z1, . . . , zn} ∩ {0, 1, . . . , u− 1} where u will be clear from the context.

We model next what it means for a PR instance y to leak no partial information about a
certain portion of its polynomial solution py.

Definition 4.2 We say that PR[z, k, t] leaks no partial information for u points, if for all
samplable polynomial time distributions D over Fu with u < k, for any g : Fu → R and for
any PPT A it holds that there exists a PPT Sim that satisfies the following :

|Pr[A(y) = g(w) : y← Sw
z,k,t, w ← D]− Pr[SimA(1n) = g(w) : w ← D]| = negl(λ)

The rationale behind the above definition is that for any distribution D that specifies a
certain portion of the polynomial p, and for any computable function g that an adversary A
wishes to compute over the polynomial solution of the instance, it holds that it is possible to
simulate the output that A obtains given y without having access to y (i.e., releasing y to
the adversary does not provide any additional information that can be used to evaluate the
function g over the specified portion of the instance’s polynomial solution).

We show next that under the pseudorandomness of PR instances it holds that PR leaks no
partial information.

Theorem 4.3 There exists a PPT Sim such that for any polynomial time samplable distribu-
tion D over Fu, any g : Fu → R and any PPT A it holds that

|Pr[A(y) = g(w) : y← Sw
z,k,t, w ← D]− Pr[SimA(1n) = g(w) : w ← D]| ≤ Advpsr

z,k−u,t

Proof. Consider the following PPT Sim that operates using an oracle call to a procedure A
(the adversary):
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1. Sample y from Fn according to U.
2. Call A on input y to obtain out.
3. return out.

We will prove that SimA as defined above satisfies the statement of the theorem. To see
this, consider the following distinguisher machine B that operates on a given input y ∈ Fn :

1. Sample 〈w0, . . . , wu−1〉
D← Fu;

2. Interpolate q ∈ F[x] such that q(i) = wi for i = 0, . . . , u− 1.
3. Compute ynew as follows (ynew)i = (y)i ·

∏u−1
`=0 (zi − `) + q(zi).

4. Call A on input ynew to obtain out.
5. If out = g(u) then output 1

Suppose now that the above procedure B is given input that is distributed according to the
uniform distribution U over Fn. It is easy to see that in this case the tuple ynew is distributed
also according to U over Fn (as it is merely a point-wise linear transformation of y) and
as a result calling A on ynew is precisely the operation of SimA. It follows that the event
SimA(1n) = g(w) would be equal to the event B(y) = 1 when y is distributed according to U.

Suppose next that the procedure B is given input that is distributed according to Sz,k−u,t.
Given such vector the reader can verify that ynew is distributed according to Sw

z,k,t where w
is distributed according to D. Based on this it follows that the event A(y) = g(w) would be
equal to the event B(y) = 1 when y is distributed according to Sz,k−u,t. The statement of the
theorem follows. �

The following corollary is immediate based on the results of the previous section:

Corollary 4.4 Under the DPR[n, k− u, t] assumption it holds that PR[z, k, t] leaks no partial
information for u points.

In the rest of the section we present special cases of the above theorem that are common
in the cryptographic setting. Let us assume that the distribution D is uniform and u = 1.
Let g : F → R be a collection of poly-time computable functions defined over any F (for
simplicity we write g for each member of this collection). Define Fa = {u | g(u) = a;u ∈ F}
for any a ∈ R. We say that g is balanced if for all a ∈ R and all polynomials q it holds
that | |Fa|

|F| −
1
|R| |<

1
q(log |F|) (for sufficiently large |F|). The balanced property means that any

image under g corresponds to roughly the same number of pre-images. This is a very general
condition that applies to individual bits of randomly chosen elements of F as well as to various
length bit-sequences of randomly chosen elements of F.

Naturally, guessing an unknown value of a balanced function with a uniformly distributed
pre-image cannot be done with probability significantly greater than 1/|R|:

Fact 4.5 Let g : F→ R be balanced, poly-time computable. Then, for any PPT A′, if α′(n) :=
Pr[A′(r′) = g(u) : r′ ← R′;u← F] it holds that | α′(n)− 1

|R| | is negligible in log |F|.

Proof. Let R′
a := {r′ | A′(r′) = a} for any a ∈ R. Note that it holds that ∪a∈RR′

a = R′. Let q
be any polynomial; now because g is balanced:

α′(n) =
∑

a∈R |Fa||R′
a|

|F||R′|
<

∑
a∈R |R′

a|
|R′|

(
1
|R|

+
1

q(log |F|)

)
=

1
|R|

+
1

q(log |F|)
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and

α′(n) =
∑

a∈R |Fa||R′
a|

|F||R′|
>

∑
a∈R |R′

a|
|R′|

(
1
|R|
− 1

q(log |F|)

)
=

1
|R|
− 1

q(log |F|)

consequently |α′(n)− 1
|R| | is negligible in log |F|. �

The corollary of fact 4.5 and theorem 4.3 is the following:

Corollary 4.6 For any balanced g : F → R, the success of any PPT A that given y ∈ Iz,k,t,
computes the value g(py(0)) is only by a negligible fraction different than 1/|R| unless the
DPR[n, k − 1, t] assumption fails.

More specifically we can give the following examples of balanced predicates/functions that
are hard to compute given a PR[z, k, t]-instance:

Proposition 4.7 The following problems are hard under the DPR[n, k − 1, t]:

1. Let BITl(a) denote the l-th least significant bit of a ∈ F. Given y ∈ Iz,k,t predict
BITl(py(0)) with non-negligible advantage where l represents any bit, except the log log |F|
most significant.

2. Let BITSl(a) denote the sequence of the l least significant bits of a ∈ F. Given y ∈ Iz,k,t

predict BITSl(py(0)) with probability 1
2l + α(n) where α(n) is non-negligible.

3. Let QR(a) be 1 iff a ∈ F is a quadratic residue. Given y ∈ In,k,t predict QR(py(0)) with
non-negligible advantage.

Proof. Due to the corollary 4.6 we only need to show that the functions given are balanced.
(1) Let Hv denote the number of elements of F that their l-th LSB is v (where v ∈ {0, 1}).

We want to show that |H0|−|H1|
|F| is negligible in log |F|. Let f := |F|mod2l. If is easy to see that

|H0|− |H1| = f if f ≤ 2l−1 and that |H0|− |H1| = 2l−f if f > 2l−1. In any case, we would like
to show that 2l−1

|F| is negligible in log |F|, which is easy to establish unless l ≥ log |F|− log log |F|.
(2) For any bitstring b ∈ {0, 1}l (where l = 1, . . . , blog |F|c) it holds that Hb is either (a)

b |F|
2l c or (b) b |F|

2l c+1. Case (a): | |Hb|
|F| −

1
|H| | = |

b|F|/2lc
|F| −

1
2l | which is easy to see that is negligible

in log |F|. Case (b) is similar.
(3) Straightforward as we assume that F is a field of prime order. �

We note that the exclusion of the log log |F| most significant bits from the item (1) above is
independent of our treatment as depending on the order of the field they may be easy to guess,
and as a result BITl might not be balanced. Note that if the finite field is chosen appropriately
all bits of py(0) will be hard: e.g. if we restrict to finite fields F such that there is a c ∈ IN:
|F| − 2blog |F|c ≤ (log |F|)c then all bits will be hard (e.g. a field of numbers modulo a Mersenne
prime):

Corollary 4.8 Under the above selection of F and the DPR[n, k − 1, t], predicting any bit
in a point z0 of the graph of the solution polynomial of a PR[z, k, t] instance is hard (where
z0 6∈ {z1, . . . , zn}).

Proof. The proof is immediate from proposition 4.7 and the observation that all results of this
section would hold also for choices of z0 6= 0. �
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5 Applications

5.1 A Pseudorandom Extender

A pseudorandom extender is a polynomial-time machine Ext that given input from {0, 1}v, it
returns output to {0, 1}v+s such that if the input is a uniformly random variable U it holds that
Ext(U) is indistinguishable from the uniform random variable over {0, 1}v+s. More formally,

Definition 5.1 The mapping Ext : {0, 1}v → {0, 1}v+s with v, s ∈ IN and s > 0 is an (s, ε)-
pseudorandom-extender if it holds that for all PPT A: |Pr[A(Uv+s) = 1] − Pr[A(Ext(Uv)) =
1]| ≤ ε, where Uv,Uv+s are uniformly random variables over {0, 1}v, {0, 1}v+s respectively.

Let SSn,t to be the set of all subsets of {1, . . . , n} that are of size t. We define rank :
{1, . . . ,

(
n
t

)
} → SSn,t a 1-1 and onto function that enumerates all subsets from {1, . . . , n} that

are of size t (this is a subset enumerator that can be efficiently implemented). Also let bin(x)
denote the integer representation of the string x plus one.

Suppose next that we want to sample a subset uniformly distributed among all subsets of
size t. We define l̃1 = log

(
n
t

)
, l̃2 = log |F| l1 = bl̃1c, l2 = bl̃2c and εi as εi = 1−2li−l̃i for i = 1, 2.

If Ul1 is the uniform distribution over {0, 1}l1 we have the following:

Lemma 5.2 The statistical distance of rank(bin(Ul1)) from the uniform distribution SSn,t is
less or equal to ε1.

Proof. Let A = #SSn,t. The statistical distance of the two distributions equals (2l1(1/2l1 −
1/A) + (A− 2l1)/A)/2 = 1− 2l1/

(
n
t

)
from which the statement of the lemma follows. �

We next define the following pseudorandom extender Ext that operates on a bitstring input.
The main idea is to use the seed to fix the random coins used by the sampler of definition
2.6. Appropriate truncations are made to preserve the domain and range of the extender over
bitstrings.

1. Input : a string x ∈ {0, 1}v.
2. Split v as v = (n − k + t)l2 + l1 and x = x1|| . . . ||xn−k+t||x0 where x0 is of length l1 and
each x1, . . . xn−k+t is of length l2.
3. Seed the sampler S of definition 2.6 with x to obtain a PR[z, k, t] instance y such that
Iy = rank(bin(x0)) and the error locations of y are set to x1, . . . , xn−k+t.
4. Parse y as 〈y1, . . . , yn〉 and return the sequence of bits 〈BITSl2(y1), . . . BITSl2(yn)〉.

Note that given an input from {0, 1}v the mapping Ext above returns a bistring that
has length v + (t − k)l2 − l1. Under the assumption that the selection of n, k, t, |F| satisfies
(t − k)l2 > l1, we have that Ext extends its input bitstring to a larger bitstring; note that
selecting the parameters so that (t − k)l2 > l1 is always possible by selecting the field size l2
to be appropriately large.

Theorem 5.3 The mapping Ext : {0, 1}v → {0, 1}v+s defined above is a (s, ε)-pseudorandom
extender where v = (n − k + t)l2 + l1 satisfies that s = (t − k)l2 − l1 > 0 and ε ≤ Advpsr

n,k,t +
(2n− t + k)ε2 + ε1.
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Proof. First observe that the seeding of the sampler S that is performed within Ext does not
follow the uniform distribution. Based on lemma 5.2 we have that the statistical distance of
the seed random variable from the uniform distribution over a vector of Fn−k+t and a random
subset of size t is at most (n − t + k)ε2 + ε1. Moreover the statistical distance of a random
Fn tuple from a random string in {0, 1}v+s is at most nε2. The statement of the theorem
follows. �

Note that not all choices of parameters for PR will make ε1, ε2 small even if PR can be
assumed hard for such parameters. In particular, to minimize ε1, ε2 one should choose |F|, n
close to powers of 2, e.g., |F| can be selected to be a Mersenne prime.

We remark that given a pseudorandom extender one can derive a pseudorandom number
generator in an iterative fashion, cf. [Gol01].

5.2 Semantically Secure Oblivious Polynomial Evaluation

Oblivious polynomial evaluation (OPE) is a two-party protocol where player A wants to com-
pute P (α) for some (secret) α ∈ F of her choice, where P ∈ F[x], of degree dP , is the secret
input of player B. OPE was introduced by Naor and Pinkas in [NP99, NP06]. A way to imple-
ment OPE based on the polynomial reconstruction problem and a t-out-of-n oblivious transfer
([NP99]) is as follows: Player A, prepares a random instance y = p + e of PR[z, k, t], so that
py(0) = α, and sends it to B. Player B, parses y as 〈y1, . . . , yn〉 and computes Q(zi, yi) for all
i = 1, . . . , n, where Q(x, y) := P (y) + Q′(x, y), with Q′ a random polynomial of degrees d, dP

such that Q′(0, y) = 0. Using a t-out-of-n oblivious transfer, player A obtains t values Q(zi, yi)
that correspond to the indices of the non-error locations within y. The parameter t is set to
d + dP (k − 1) + 1 so that player A can interpolate Q(x, py(x)) and as a result compute the
value Q(0, py(0)) = P (α).

Obviously the security of player A depends on the hardness of the following problem: given
y distributed according to Sα

n,k,t, extract some information about α = py(0). In [NP99] the
security of a variant of the protocol above was claimed under a (rather strong) pseudoran-
domness assumption: namely that py(0) is pseudorandom to any poly-time observer given the
transcript of the protocol obtained by player B. The type of security that we want for an
oblivious polynomial evaluation protocol can be defined as follows:

Definition 5.4 Player A is semantically secure in an OPE protocol if for any interactive PPT
adversary A it holds that there exists an interactive PPT Sim so that for any polynomial-time
samplable distribution D over F and poly-time computable g : F→ R it holds that if A’s secret
input α is distributed according to D, we have the following :

|Pr[AA(α)(1n) = g(α) : α← D]− Pr[SimA(1n) = g(α) : α← D]| = negl(λ)

Theorem 5.5 Under the DPR[n, k − 1, t] assumption, player A is semantically secure in the
OPE protocol presented above (assuming an ideal implementation of t-out-of-n OT).

Proof. The proof follows immediately from corollary 4.4 setting u = 1: PR[z, k, t] leaks no
partial information under DPR[n, k − 1, t]. �
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5.3 A Secure Stateful-Cipher

A cipher involves two parties, who share some common random input (the key). The goal
of a cipher is the secure transmission of a sequence of messages. Suppose that I denotes the
shared randomness between the sender and the receiver. A (stateful) cipher is defined by two
probabilistic functions fI : K×P→ K×C and gI : K×C→ K×P. The spaces K, P, C denote
the state-space, plaintext-space and ciphertext-space respectively. The functions f, g have the
property that if fI(s,m) = (s′, c) (encryption) it holds that gI(s, c) = (s′,m) (decryption);
note that s′ (given by both f, g) is the state that succeds the state s.

Stream-ciphers use public state sequences of the form 〈0, 1, 2, 3, . . .〉. The reader is referred
to [Lub96] for more details on stream ciphers and how they can be built based on pseudoran-
dom number generators. Block-ciphers encrypt messages of size equal to some fixed security
parameter which are called blocks. Such ciphers are typically at the same state throughout
and this state is considered to be secret (it coincides with the secret shared random key). The
reader is referred to [Gol01] for further details on block-ciphers and generic constructions.

If a cipher, which operates on blocks, employs a “secret state-sequence update” and uses
the shared randomness (the key) only as the initial state of the state-sequence, it is called a
stateful cipher, see figure 1; (note that in a stateful cipher we suppress the subscript I from
the functions f, g).
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Figure 1: A Stateful Cipher

In the remaining of this section we introduce a stateful cipher that is based on PR and pos-
sesses a set of interesting properties: semantic security whose proof is derived from hardness of
partial information extraction as established in section 4, random self-reducible properties that
are based on the algebraic structure of the underlying problem and finally forward secrecy and
error-correcting decryption which are easily demonstratable directly based on the construction.

5.3.1 Description of the PR-Cipher

The state-space K is defined to be the set of n-bitstrings with Hamming weight t, i.e., K =
SSn,t. For some s ∈ K we define Is to be the corresponding subset of {1, . . . , n}, and vs be
the corresponding integer that has s as its binary representation. We denote by VK the set of
all numbers that their binary representation belongs in K. Let P := F

k−1
2 and C := Fn. The

shared randomness between the two parties is a random s0 ∈ K, that is the initial state of the
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cipher. The encryption function of the cipher is defined as follows

f(s,m) := F Is
n,k,t(〈s

′, (m)1, . . . , (m) k−1
2
〉)

where F Is
n,k,t is defined as the sampler S of definition 2.6 so that the subset I is set to Is, the

polynomial p is selected at random conditioned on p(0) = s′ and p(i) = (m)i for i = 1, . . . , k−1
2 .

Note that s′ is a random element of VK. The decryption function g is defined as follows: given
〈s, C〉 ∈ K × C, the polynomial p that corresponds to the pairs of C whose index is in Is is
interpolated. The decrypted message is set to be 〈p(1), . . . , p(k−1

2 )〉 and the next state is set
to the binary representation of p(0).

5.3.2 Semantic-Security

A semantic-security adversary A for a stateful cipher is a PPT that takes the following steps:
(i) queries a polynomial number of times the encryption-mechanism (ii) generates two messages
M1,M2 and obtain the ciphertext that corresponds to the encryption of Mb where b is selected
at random from {1, 2}, (iii) queries the encryption-mechanism a polynomial number of times.
Finally the adversary predicts the value of b. This is illustrated in figure 2. A cipher is said to
be semantically secure if any semantic-security adversary predicts b with negligible advantage.
For more details regarding semantically secure symmetric encryption, see [Lub96, KY00].
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Figure 2: Semantic security for stateful ciphers.

More formally semantic security in the context of stateful ciphers is defined as follows:

Definition 5.6 Let Ob, with b ∈ {1, 2} be an encryption oracle for a stateful cipher initialized
to a random initial state that accepts two kinds of input: (i) a plaintext, where Ob returns
its encryption under the current state, (ii) a pair of plaintexts M1,M2, where Ob returns the
encryption of Mb (such input is allowed only once). A semantic security adversary is a PPT
A that given oracle access to Ob and attempts to predicts b (with probability better than 1/2);
the advantage of A is defined as follows:

AdvAsem =| Pr[AOb
(1n) = b : b← {1, 2}]− 1/2 |
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where the probability is taken over all internal coin-tosses of Ob and A and all possible initial
states for the cipher. If, for a certain cipher, there do not exist semantic security adversaries
with non-nengligible advantage then we say that the cipher is semantically secure.

We remark that the two kinds of input to the encryption oracle define three stages of
adversarial action, namely (i) querying the encryption oracle a number of times, (ii) submitting
the “challenge” (the pair of plaintexts of which the adversary receives the encryption of one of
the two at random), and (iii) querying the encryption oracle a number of times before guessing
which of the two plaintexts of the challenge was encrypted. We proceed to show that the
PR-Cipher is semantically secure under the Decisional PR-Assumption, specifically:

Theorem 5.7 The PR-Cipher is semantically secure under the DPR: in particular for any A
it holds that AdvAsem ≤ (q + 1)Advpsr

z,(k−1)/2,t where q is the total number of queries posed by A
to the encryption oracle (q = w + w′ from figure 2).

Proof. We start with a definition: we denote by L(u)
n,k,t[m1, . . . ,mu] the vector output of an

encryption oracle of the PR-cipher when accessed by a chosen plaintext adversary u times on
messages m1, . . . ,mu. In other words it is the space of sequences of Iz,k,t instances y1, . . . ,yu so
that mj := 〈pyj (1), . . . , pyj (

k−1
2 )〉 and so that the binary representation of pyj (0) corresponds

to the characteristic string of index set I of the tuple yj+1, for j = 1, . . . , u − 1. For two
families of sets An and Bn we write A ≈ B if they are polynomial-time indistinguishable (see
definition 3.1).
Claim 1. For any u ≥ 1, L

(u)
n,k,t[m1, . . . ,mu] ≈ Fn×L

(u−1)
n,k,t [m2, . . . ,mu] under the assumption

that Advpsr
z,(k−1)/2,t is negligible.

Proof. Suppose the two families are distinguishable be some adversary A with non-negligible
advantage. We will show how to use the adversary to violate the DPR with parameters
[n, (k − 1)/2, t].
Adaptive Encryption Oracle. This is an oracle that has as input a tuple y ∈ Fn such that
y = 〈y1, . . . , yn〉 and zi 6∈ {0, . . . , k−1} and receives u queries equal to the sequence of messages
m1, . . . ,mu. Let p′(x) be a polynomial so that (i) p′(0) is a random element with p′(0) ≤ 2n

and the Hamming weight of p′(0) is t, and (ii) p′(i) = (m1)i for i = 1, . . . , k−1
2 . Consider the

transformation of y denoted by ym1 and defined by (ym1)i = p′(zi) + (y)i ·
∏(k−1)/2

`=0 (zi − `).
Define I2 to be the subset of {1, . . . , n} so that its characteristic string is identical to the binary
representation of p′(0). Next we sample ym2 so that (i) 〈pym2

(1), . . . , pym2
(k−1

2 )〉 = m2, and (ii)
the characteristic string of the index-set I for the instance ym2 is identical to the binary repre-
sentation of pym2

(0). Continuing in a similar manner we construct the instances ym1 , . . . ,ymu .

It is clear that this series of samples is uniformly distributed over L
(u)
n,k,t[m1, . . . ,mu] if the

given y is drawn from Sz
n,(k−1)/2,t whereas if y is drawn from Fn the output of the adaptive

encryption oracle will be distributed uniformly over Fn × L
(u−1)
n,k,t [m2, . . . ,mu]. It follows that

any distinguisher between the two distributions yields a distinguisher between random tuples
of Fn and random instances of Iz,(k−1)/2,t. This completes the proof of claim 1.

Claim 2. L
(u)
n,k,t[m1, . . . ,mu] ≈ (Fn)u under the assumption u · Advpsr

z,(k−1)/2,t is negligible.
Proof. Suppose that there is a distinguisher A between the two distributions. Then by the
triangular inequality A can be used to distinguish two “neighboring hybrid distributions” that
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are defined as follows: (Fn)v ×L
(u−v)
n,k,t [mu−v, . . . ,mu], (Fn)v+1×L

(u−v−1)
n,k,t [mu−v−1, . . . ,mu] for

some v ∈ {0, . . . , u− 1}. Using claim 1 we obtain the statement of the lemma.
(Proof of theorem 5.7) Suppose now that A is a semantic security adversary for the PR-cipher.
Consider a predicate B that simulates A returning as ciphertexts random elements from Fn

(including the ciphertext for the challenge step for which B flips the bit b). Finally B returns
1 if A guesses successfully the bit b. Using the result of claim 2 above it follows easily that the
success probability of the adversary A will be bounded by (q + 1)Advpsr

z,(k−1)/2,t. �

5.3.3 Random Self Reducibility Properties

In this section we study some basic random self-reducibility properties of the PR-cipher that
are based on its underlying algebraic properties. We start with a definition: a chosen-plaintext-
driven (cpd) adversary for a stateful cipher is a pair 〈A, φ〉 defined as follows:

Definition 5.8 Let Eκ(mc) be an encryption oracle for a stateful cipher that accepts two types
of queries (posed in arbitrary order): (1) encryption queries 〈encrypt,m〉 for which it returns
the encryption of m under the current state, (2) a single challenge query 〈challenge〉 for which
it returns the encryption of mc. A chosen-plaintext-driven (cpd) adversary with probability of
success α is a pair 〈A, φ〉 where A is a PPT and φ is a polynomial-time computable function
so that the following hold: Pr[AEκ(mc)(1n) = φ(mc) : κ← K,mc ← P] ≥ α.

Next we considerthe PR-cipher with parameters n, k, t. Below we define the following
specialized versions of the above definition :

Definition 5.9 For the PR-cipher with parameters n, k, t, we have

1. Specialized Key Space dversary: a specialized-key-space adversary is a specialized cpd-
adversary 〈A, φ〉 together with a key distribution D that with probability α satisfies:
Pr[AEκ(mc)(1n) = φ(mc) : κ← D,mc ← P] ≥ α.

2. Specialized Plaintext Space Adversary: a specialized-plaintext-space adversary is a spe-
cialized cpd-adversary 〈A, φ〉 together with a plaintext distribution D that with probability
α satisfies: Pr[AEκ(mc)(1n) = φ(mc) : κ← K,mc ← D] ≥ α.

3. Partial-Domain Adversary: a partial-domain cpd adversary 〈A, φ〉 with probability α sast-
isfies that φ ∈ {Proj1, . . . ,Proj k−1

2
} where Proji : F

k−1
2 → F such that Proji(〈m1, . . . ,

m k−1
2
〉) = mi.

In this section, we will employ an extended formulation of the PR-cipher that chooses a
different support vector z for each ciphertext that is selected at random from Fn under the
constraint that all coordinates are distinct elements of F and none of them is included to the set
{0, 1, . . . , k}. We remark that all the results of the previous sections regarding the PR-cipher
carry very easily to the above modification that has a randomized support vector as in all the
arguments no particular property of the support vector was used (note that this would also
require that the intractability assumption should be amended to quantify over a random choice
of the support vector as well). We call the modified cipher, the PR-cipher with randomized
support. The random self-reducibility properties of the PR-cipher with randomized support
are established in the following theorem:
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Theorem 5.10 For the PR-cipher with randomized support it holds that:

1. A cpd-adversary 〈A, f〉 with probability of success α can be transformed to a specialized-
key-space adversary 〈A, f〉 for any key distribution D and the same probability α.

2. A cpd-adversary 〈A, f〉 with probability α can be transformed to a specialized-plaintext-
space cp-adversary 〈A, f〉 for any plaintext distribution D and the same probability α,
provided that φ : F

k−1
2 → G where (G, ∗) is a group and φ is a group homomorphism

from (F
k−1
2 ,+) to (G, ∗).

3. A partial-domain cpd-adversary 〈A,Projj〉 with probability α can be transformed to a
partial-domain cpd-adversary 〈A,Projj′〉 with probability α − negl(λ) for any j′ 6= j,
provided that n · k ≤ ε · |F| where ε ∈ (0, 1).

Proof. (1) The proof follows easily from the fact that in case we have a randomized support,
any ciphertext (z,y) can be permuted according to a random permuation π, an operation
that will effectively randomize the secret-key used (which corresponds to the error-locations)
independently of the key distribution D where the secret-key is drawn from. As a result the
definition of the specialized-key-space cpd-adversary A′ is simply to select π at random and
apply the permutation to randomly shuffle the elements of the two challenge (z,y); then A′

simulates the cpd-adversary A and returns its output. The statement of the theorem follows
easily.

(2) Similarly as in the case of (1) we observe that we can randomize the plaintext of the
challenge ciphertext (z,y) by selecting a random polynomial R(x) of degree less than k and
computing (z,y + R). As before the specialized-plaintext-space cpd-adversary can apply this
transformation to the challenge ciphertext and then feed this challenge to the cpd-adversary
A. Given the output of A we observe that with probability α it equals φ(mc + R) where m
is a k−1

2 -vector over F and R is the vector 〈R(1), . . . , R(k−1
2 )〉. Based on the homomorphic

property we have that φ(mc +R) = φ(mc)∗f(R) and from this the specialized-plaintext-space
cpd-adversary A′ will be able to recover φ(mc) by dividing by f(R). Note that the randomized
support is not essential here (and thus this result will carry to the basic PR-cipher as well).

(3) Suppose that A is a partial-domain cpd-adversary for Projj where j ∈ {1, . . . , k−1
2 }

and let j′ ∈ {1, . . . , k−1
2 } such that j 6= j′. We know that A returns Projj(mc) and we want

to transform A to an algorithm A′ that returns Projj′(mc). Consider a PR-instance y with
support z. Now suppose that we consider y to have support a · z + b where a, b ∈ F. It follows
that if p is the polynomial solution of y based on support z then p((x − b)/a) would be the
polynomial solution of y based on support a · z + b. Given that A can recover p(j) we simply
need to select a, b such that (j− b)/a = j′ and simulate A on challenge y with support a ·z+ b.
Suppose we select b at random from F and a = (j′−b)/j. Define the event BADi to be the event
that azi+b ∈ {0, 1, . . . , k−1} for the above selection of a, b; it is easy to see that Pr[BADi] ≤ k

|F|
and as a result the probability Pr[∪iBADi] ≤ n k

|F| . Assuming that n(k + 1) ≤ ε · |F| where
ε ∈ (0, 1) is a constant it follows that the choice a, b will be appropriate with error probability
at most ε. We may repeat the sampling of b a number of q times independently to reduce
the error to εq = negl(λ) and as a result conclude that the success probability of A′ will be
α− negl(λ). �
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We conclude with the following corollary that shows that any attack on the average-case
of the plaintext space or the key-space is equivalent to an attack to any specific restriction of
the key-space or plaintext-space which is large enough.

Corollary 5.11 For the PR-cipher with parameters n, k, t based on λ the following statements
are equivalent:

1. There exists a cpd-adversary with non-negligible probability of success.

2. There exists a specialized key-space adversary for some key space K′ ⊆ K with #K′/#K
non-negligible in λ where the distribution D is defined as the uniform distribution over
K′.

3. There exists a specialized plaintext-space adversary for some plaintext space P′ ⊆ P with
#P′/#P non-negligible in λ where the distribution D is defined as the uniform distribution
over P′.

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) follow from theorem 5.10. The reverse
implications are immediate due to the size of the underlying restricted spaces. �

5.3.4 Forward Secrecy

A cipher is said to satisfy forward secrecy if in the case of a total security breach at some
point of its operation (i.e. the internal state is revealed) the adversary is unable to extract any
information about the previously communicated messages.

This is formalized by an adversary that mounts two chosen plaintext security attacks sub-
mitting adaptively messages to the encryption oracle. The encryption oracle flips a coin and
answers by encrypting the plaintexts submitted by one of the two attacks (the same attack
is answered throughout). At some point the internal state of the system is revealed to the
adversary. Forward secrecy is violated if the adversary can tell with probability significantly
better than one half to which chosen plaintext attack is the encryption oracle responding. If
the adversary cannot predict this with probability significantly better than 1/2 the a cipher is
said to satisfy forward secrecy. More formally,

Definition 5.12 Let Ob
fs, with b ∈ {1, 2} be an encryption oracle for a stateful cipher initialized

to a random initial state that accepts two kinds of input: (i) a pair of plaintexts m1,m2, where
Ob

fs returns the encryption of mb under the current state, (ii) a termination message, where Ob
fs

returns the current internal state; no more queries are accepted by Ob
fs after the termination

message is submitted. A forward secrecy adversary is a PPT A that given oracle access to Ob
fs

it attempts to predicts b (with probability better than 1/2); the advantage of A is defined as
follows:

AdvAfs =| Pr[AOb
fs(1n) = b : b← {1, 2}]− 1

2
|

where the probability is taken over all internal coin-tosses of Ob
fs and A and all possible initial

states for the cipher. If, for a certain cipher, there do not exist forward secrecy adversaries
with non-negligible advantage then we say that the cipher satisfies forward secrecy.

Below we establish the forward secrecy of the PR cipher based on the DPR assumption.
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Theorem 5.13 The PR-Cipher satisfies forward secrecy under DPR: in particular, for any
A it holds that AdvAfs ≤ q · Advpsr

z,(k−1)/2,t where q is the total number of queries posed by A to
the encryption oracle.

Proof. We denote by L(u)
n,k,t[

m0
1

m1
1
, . . . , m0

u
m1

u
] the output of an encryption oracle of the stateful

cipher when accessed by the two chosen plaintext attacks that are part of the forward secrecy
adversary. In other words it is the space of sequences of Iz,k,t instances y1, . . . ,yu so that
〈pyj (1), . . . , pyj (

k−1
2 )〉 = mb

j for all j = 1, . . . , u where b is a random coin toss; the binary
representation of pyj (0) corresponds to the characteristic string of the index set yj+1, for
j = 1, . . . , u− 1.
Claim 3. For any u ≥ 1, L(u)

n,k,t[
m0

1

m1
1
, . . . , m0

u
m1

u
] ≈ Fn × L(u−1)

n,k,t [m
0
2

m1
2
, . . . , m0

u
m1

u
] unless the DPR fails.

In particular, the distance between the two distributions is at most Advpsr
z,(k−1)/2,t.

The arguments of the proof of claim 3 are very similar to those of the proof of claim 1 in
the proof of theorem 5.7.
Claim 4. L(u)

n,k,t[
m0

1

m1
1
, . . . , m0

u
m1

u
] ≈ (Fn)u unless the DPR fails. In particular, the distance between

the two distributions is at most u · Advpsr
z,(k−1)/2,t.

The arguments of the proof of claim 4 are very similar to those of the proof of claim 2 in
the proof of theorem 5.7.

Based on the above, it follows that we may simulate the ciphertexts provided to the ad-
versary and the statement of the theorem follows easily as in the case of theorem 5.7: for any
choice of b the output of the encryption oracle is independent of the sequence of simulated
ciphertexts submitted for encryption by the oracle. �

5.3.5 Error-Correcting Decryption

A cryptosystem is said to allow error-correcting decryption if the decryption procedure is able
to correct errors that are introduced during the transmission (possibly by an adversary). This
combines the decryption operation with the error-correction operation.

A cryptosystem that transmits plaintext blocks of size d is called d′-error-correcting if up
to d′ errors can be corrected The PR-cipher (which transmits plaintexts blocks of size k−1

2 over
the underling finite field F) is error-correcting since the interpolation step during decryption
can be substituted by the [BW86] polynomial-reconstruction algorithm that can withstand up
to t−k

2 errors (in the worst-case). Extended error-correction capability can be achieved if the
Guruswami [GS98] list-decoder is applied instead of the [BW86] decoding method (but in this
case decryption may not be unique).

6 Conclusion

In this work we layed out a framework for the employment of the Polynomial Reconstruction
problem in cryptography. We put forth a natural decisional intractability assumption that
appears to be intimately related to the decoding problem: distinguishing a randomly chosen
error location from a randomly chosen correct location of the codeword in a uniform noise set-
ting. We showed that this assumption is sufficiently powerful to imply the pseudorandomness
of PR instances, i.e., the indistinguishability of codewords that are hard to decode from purely
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random vectors. Furthermore we established the fact that under our decisional assumption
PR-instances leak no partial information for a number of points of their polynomial solution,
i.e., a PR-instance semantically hides a number of solution points. Based on these results we
showed three cryptographic applications: (i) pseudorandom number generation, (ii) oblivious
polynomial evaluation, (iii) a semantically secure stateful-cipher.
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