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Abstract. In this paper we introduce the notion of Algebraic (Trapdoor) One Way Functions, which,
roughly speaking, captures and formalizes many of the properties of number-theoretic one-way func-
tions. Informally, a (trapdoor) one way function F : X → Y is said to be algebraic if X and Y are
(finite) abelian cyclic groups, the function is homomorphic i.e. F (x) · F (y) = F (x · y), and is ring-
homomorphic, meaning that it is possible to compute linear operations “in the exponent” over some
ring (which may be different from Zp where p is the order of the underlying group X) without knowing
the bases. Moreover, algebraic OWFs must be flexibly one-way in the sense that given y = F (x), it
must be infeasible to compute (x′, d) such that F (x′) = yd (for d 6= 0). Interestingly, algebraic one way
functions can be constructed from a variety of standard number theoretic assumptions, such as RSA,
Factoring and CDH over bilinear groups.
As a second contribution of this paper, we show several applications where algebraic (trapdoor) OWFs
turn out to be useful. In particular:

– Publicly Verifiable Secure Outsourcing of Polynomials: We present efficient solutions which work for
rings of arbitrary size and characteristic. When instantiating our protocol with the RSA/Factoring
based algebraic OWFs we obtain the first solution which supports small field size, is efficient and
does not require bilinear maps to obtain public verifiability.

– Linearly-Homomorphic Signatures: We give a direct construction of FDH-like linearly homomor-
phic signatures from algebraic (trapdoor) one way permutations. Our constructions support mes-
sages and homomorphic operations over arbitrary rings and in particular even small fields such as
F2. While it was already known how to realize linearly homomorphic signatures over small fields
(Boneh-Freeman, Eurocrypt 2011), from lattices in the random oracle model, ours are the first
schemes achieving this in a very efficient way from Factoring/RSA.

– Batch execution of Sigma protocols: We construct a simple and efficient Sigma protocol for any
algebraic OWP and show a “batch” version of it, i.e. a protocol where many statements can be
proven at a cost (slightly superior) of the cost of a single execution of the original protocol. Given
our RSA/Factoring instantiations of algebraic OWP, this yields, to the best of our knowledge, the
first batch verifiable Sigma protocol for groups of unknown order.

? Work done while at NYU.



1 Introduction

Algebraic One-Way Functions. This paper introduces the notion of Algebraic One-Way Func-
tion, which aims to capture and formalize many of the properties enjoyed by number-theoretic based
one-way functions. Intuitively, an Algebraic One-Way Function (OWF) F : Xκ → Yκ is defined over
abelian cyclic groups Xκ,Yκ, and it satisfies the following properties:

– Homomorphic: the classical property that says that group operations are preserved by the OWF.
– Ring-Homomorphic: this is a new property saying, intuitively, that it is possible to efficiently

perform linear operations “in the exponent” over some ring K. While this property turns out to
be equivalent to the homomorphic property for groups of known order n and the ring K = Zn,
it might not hold for groups of unknown order. Yet for the case of RSA Moduli we show that
this property holds, and more interestingly it holds for any finite ring.

– Flexibly One-Way: We strengthen the usual notion of one-wayness in the following way: given
y = F (x) is should be unfeasible to compute (x′, d) such that F (x′) = yd and d ∈ K6=0 (in
contrast with the traditional definition of one-wayness where d is fixed as 1).

In our work we also consider natural refinements of this notion to the cases when the function is a
permutation and when there exists a trapdoor that allows to efficiently invert the function.

We demonstrate the existence of Algebraic OWFs with three instantiations, the security of
which is deduced from the hardness of the Diffie-Hellman problem in groups with bilinear maps
and the RSA/Factoring assumptions respectively.

Applications. As a second contribution of this paper, we turn our attention to three separate
practical problems: outsourcing of polynomial computations, linearly homomorphic signatures and
batch executions of identification protocols. In all three separate problems, we show that Algebraic
OWFs can be used for building truly efficient schemes that improve in several ways on the “state-
of-the-art”. In particular, we propose solutions for:

– Publicly Verifiable Secure Outsourcing of Polynomials which works over rings of arbitrary size
and characteristic and does not necessarily use bilinear maps.

– Linearly Homomorphic Signature Schemes also over arbitrary rings, and in particular even small
fields such as F2. The only known constructions for the latter case require assumptions over
lattices [10] while we can use any of the assumptions above obtaining more efficient algorithms.

– Batch Executions of Identification Protocols: we construct a Sigma-protocol based on algebraic
one-way functions and then we show that it is possible to construct a “batch” version of it
where many statements are proven basically at the cost of a single one. A similar batch version
for the Schnorr’s Sigma protocol has been proposed in [22] and we generalize it to any of the
assumptions above. In particular for the instantiation based on RSA we obtain a batch version
of the Guillou-Quisquater protocol [27] which yields, to the best of our knowledge, the first
batch verifiable Sigma protocol for groups of unknown order, a problem left open in [22].

Below, we elaborate in detail about the improvements of our solutions.

1.1 Secure Outsourcing of Polynomials

Starting from work by Benabbas et al. [7], several papers have been investigating the problem
of securely outsourcing the computation of large polynomials. The problem can be described as
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follows: a computationally weak client stores a large polynomial (say in m variables, of degree d)
with a powerful server. Later, the client will request the server to evaluate the polynomial at a
certain input x and the server must provide such result together with a “proof” of its correctness.
In particular, it is crucial that verifying such a proof must require substantially less resources than
computing the polynomial from scratch. Furthermore, the client must store only a “small” amount
of secret information, e.g. not the entire polynomial.

Following [7], several other papers (e.g. [37, 38, 18]) have investigated this problem, focusing
specifically on the feature of public verification, i.e. the proof of correctness of the result provided
by the server can be verified by anyone. This comes in contrast with the original solution in [7]
which obtained only private verification, i.e. the proof of correctness of the result provided by the
server can be verified only by the client who initially stored the polynomial.

The popularity of this research problem can be explained by its numerous practical applications
including, as discussed in [7], Proofs of Retrievability (the client stores a large file F with the server
and later wants a short proof that the entire file can be retrieved) and Verifiable Keyword Search
(given a text file T = {w1, . . . , w`} and a word w, the server tells the client if w ∈ T or not).

Limitation of Previous Solutions. The solutions for outsourcing of polynomial computations
mentioned above suffer from two main drawbacks:

– Large Field Size. The schemes presented in [7, 37, 18] work only for polynomials computed over
fields of prime characteristic p, which is the same p as the order of the underlying cryptographic
group that is used to prove security. That means that for the schemes to be secure, p must be
large. Therefore up to now, none of the existing schemes could handle small field sizes. The
solution recently proposed in [38] can support polynomials over Z2, and thus, by working in a
“bit-by-bit” fashion, over any field. However, to work over other fields of any characteristic p, it
incurs a O(log p) computational overhead since O(log p) parallel instances of the scheme must
be run. It would be therefore nice to have a scheme that works for polynomials over arbitrary
fields, without a “bit-by-bit” encoding, so that the same scheme would scale well when working
over larger field sizes.

– Public Verifiability via Bilinear Maps. All previous solutions that achieve public verifiability
[37, 38, 18] do so by means of groups with bilinear maps as the underlying cryptographic tool.
Since pairing computations may be expensive compared to simpler operations such as expo-
nentiations, and given that bilinear maps are the only known algebraic structure under which
we can currently build publicly verifiable computation, it is an interesting question to inves-
tigate whether we can have solutions that use alternative algebraic tools and cryptographic
assumptions (e.g. RSA moduli) to achieve public verifiability.

Our new solution removes these two problems. As discussed above, we can instantiate our proto-
cols over RSA moduli, and prove their security under the DDH/RSA/Factoring Assumptions over
such groups, therefore avoiding the use of bilinear maps. Perhaps more interestingly, our protocols
can handle finite rings of any size and any characteristic, thus allowing for much more flexibility and
efficiency. Moreover, the schemes in [38] are based on specific Attribute-Based Encryption schemes
(e.g. [32]) whose security relies on “q-type” assumptions, whereas our solution can do so based on
the well known RSA/Factoring assumptions.

As in the case of [18] our techniques extend for building a protocol for Matrix Multiplication.
In this problem (also studied in [34]) the client stores a large (n× d) matrix M with the server and
then provides d-dimensional vectors x and obtains y = M · x together with a proof of correctness.
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Other comparisons with related work. The subject of verifiable outsourced computation has
a large body of prior work, both on the theoretical front (e.g. [4, 26, 31, 33, 25]) and on the more
applied arena (e.g. [35, 5, 43, 44]).

Our work follows the “amortized” paradigm introduced in [20] (also adopted in [16, 2]) where a
one-time expensive preprocessing phase is allowed. The protocols described in those papers allow
a client to outsource the computation of an arbitrary function (encoded as a Boolean circuit) and
use fully homomorphic encryption (i.e. [23]) resulting in solutions of limited practical relevance.
Instead, we follow [7] by considering a very limited class of computations (polynomial evaluation
and matrix multiplication) in order to obtain better efficiency.

As discussed above, we improve on [37] by providing a solution that works for finite rings of
arbitrary characteristic (even small fields) and by avoiding the use of bilinear maps. Given that our
solution is a generalization of [18] we also inherit all the improvements of that paper. In particular,
compared to [37]:

– we get security under constant-size assumptions (i.e. assumptions that do not asymptotically
depend on the degree of the polynomial), while their scheme uses a variation of the CDH
Assumption that grows with the degree.

– we handle a larger class of polynomial functions: their scheme supports polynomials in m vari-
ables and total degree d (which we also support) but we additionally consider also polynomials
of degree d in each variable.

– For the case we both support, we enjoy a much faster verification protocol: a constant amount
of work (a couple of exponentiations over an RSA modulus) while they require O(m) pairings5.

1.2 Linearly Homomorphic Signatures

Imagine a user Alice owns some data set m1, . . . ,mn ∈M that she keeps (signed) in some database
stored at a, not necessarily trusted, server. Imagine also that some other user, Bob, is allowed to
query the database to perform some basic computation (such as the mean or other statistics) over
Alice’s data set. The simplest way to do this in a reliable manner (for Bob) is to download the full
data set from the server, check all the signatures and compute the desired statistic. This solution,
however, has two drawbacks. First, it is inefficient in terms of bandwidth. Second, even though Alice
allows Bob to access some statistics over her data, she might not want this data to be explicitly
revealed. Homomorphic signatures allow to overcome both these issues in a very elegant fashion
[10]. Indeed, using a homomorphic signature scheme, Alice can sign m1, . . . ,mn, thus producing
the signatures σ1, . . . , σn, which can be verified exactly as ordinary signatures. The homomorphic
property provides the extra feature that given σ1, . . . , σn and some function f : Mn → M, one
can compute a signature σf on the value f(m1, . . . ,mn) without knowledge of the secret signing
key SK. In other words, for a fixed set of original signed messages, it is possible to provide any
y = f(m1, . . . ,mn) with a proof of correctness σf . In particular the creation and the verification
of σf does not require SK. The security definition is a relaxation over the classical security notion
for signatures: it should be impossible to create a signature σf for m 6= f(m1, . . . ,mn) without
knowing SK.

The notion of homomorphic signature was introduced by Johnson et al. [29] and later refined
by Boneh et al. [9]. Its main motivation was realizing a linear network coding scheme [1, 40] secure

5 In contrast the delegation phase is basically free in their case, while our delegation step requires O(md) work – note
however that in a publicly verifiable scheme, the verification algorithm might be run several times and therefore
its efficiency is more important.
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against pollution attacks. The construction from [9] uses bilinear groups as the underlying tool
and authenticates linear functions on vectors defined over large prime fields. Subsequent works
considered different settings as well. In particular, the constructions in [21, 14, 15] are based on
RSA, while [11, 10] rely on lattices and can support linear functions on vectors over small fields.
A general framework for building homomorphic signatures in the standard model, was recently
provided by Freeman [19].

Our Contribution. In this paper we show that algebraic trapdoor one way permutations, directly
allow for a very simple and elegant extension of Full Domain Hash (FDH) to the case of linearly
homomorphic signatures. Similarly to standard FDH signatures our construction is secure in the
random oracle model and allows for very efficient instantiations. Our framework allows for great
flexibility when choosing a homomorphic signature scheme and the underlying message space.
Indeed our constructions support messages and homomorphic operations over arbitrary finite rings.
While it was already known how to realize linearly homomorphic signatures over small fields [11,
10], ours seem to be the first schemes achieving this in a very efficient way and based on simple
assumptions such as Factoring and RSA. To give a more concrete idea about the efficiency of our
scheme, if we consider the case of messages in F2, then our signing algorithm is more efficient than
that in [10] in the same order of magnitude as taking a square root in Z∗N is more efficient than
sampling a pre-image in lattice-based trapdoor functions, at comparable security levels.

1.3 Batch Executions of Sigma Protocols

We show that for any Algebraic One-Way Permutation there exists a simple and efficient Sigma
protocol that allows a Prover to convince a Verifier that he “knows” a pre-image of an Algebraic
OWP. Our protocol can be seen as an extension of the classical Schnorr and Guillou-Quisquateur
protocols [41, 27]. Following [22] we then considered the question of constructing a “batch” version
of it where many statements are proven basically at the cost of a single one.

Gennaro et al. discuss in [22] many applications of such a protocol. As an example, consider an
access control system where users belong to various privilege classes. Access control classes for the
data are defined using such privileges, i.e. as the users who own a given subset of privileges. For
instance, the access control class for a given piece of data D, can be defined as the users who own
privileges P1, P2, P3.

This can be realized by associating a different public key to each privilege 6. Then a user
would prove that she knows the secret keys required for the authorization. Using typical proofs of
knowledge, to prove knowledge of k keys the user has to perform k proofs. Although these proofs
can be performed in parallel, keeping the round complexity the same, the computational complexity
goes up by a factor of k.

The question posed in [22] was to design a proof of knowledge of ` secrets at the cost of less
than ` proofs. They answered this question for the Schnorr’s protocol and they left it open for the

6 Another way to implement such an access control system is to give each user a certified public key. The certificate
would indicate the subset of privileges associated with this public key. Then in order to gain access, the user
proves knowledge of her secret keys, and if her privileges are a superset of the ones required for the access she
is attempting, access is granted. As discussed in [22] this approach violates Alice’s privacy, as she is required to
reveal all her privileges, when, theoretically, in order to gain access she should have had to reveal only a subset
of them. Moreover another advantage of associating different keys to different privileges, is that the latter can be
easily transferred simply by transferring the corresponding secret key.
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Guillou-Quisquateur protocol as the same techniques did not seem to work for groups of unknown
order.

Following [22] we show a batch version of our Sigma protocol where the prover can prove
knowledge of ` pre-images of the OWP, at a cost slightly superior to the cost of a single execution of
the Sigma protocol, thus saving a factor of ` in computation and bandwidth over the best previously
known solutions. Given our RSA/Factoring instantiations of Algebraic OWP, this immediately
solves the problem left open in [22] thus offering a batch verifiable Sigma protocol even for groups
of unknown order.

Related Work. Apart from [22] we are not aware of other work dealing with batch execution
of proofs of knowledge. There has been a lot of work on batching the computation of modular
exponentiations (e.g. [6]). But the obvious application of such solution to Sigma-protocols would
still yield a scheme with higher communication and computation cost by a factor of ` (the prover
would still have to send and compute the ` initial commitments of the Sigma protocol).

2 Background and Definitions

In what follows we will denote with λ ∈ N a security parameter. We say that a function ε is
negligible if it vanishes faster than the inverse of any polynomial. If S is a set, we denote with

x
$← S the process of selecting x uniformly at random in S. Let A be a probabilistic algorithm.

We denote with x
$← A(·) the process of running A on some appropriate input and assigning its

output to x.

2.1 Algebraic Tools and Computational Assumptions

Let G(1λ) be an algorithm that on input the security parameter 1λ outputs a tuple (p,G1,G2,GT , e)
such that: p is a prime of size at least λ, G1,G2,GT are groups of order p, and e : G1 ×G2 → GT

is an efficiently computable, non-degenerate bilinear map.

The co-Computational Diffie-Hellman problem was introduced by Boneh, Lynn and Shacham
as a natural generalization of the Computational Diffie-Hellman problem in asymmetric bilinear
groups [12]. It is defined as follows.

Definition 1 (co-CDH). Let (p,G1,G2,GT , e)
$← G(1λ), g1 ∈ G1, g2 ∈ G2 be generators, and

a, b
$← Zp be chosen at random. We define the advantage of an adversary A in solving the co-

Computational Diffie-Hellman problem as

AdvcdhA (λ) = Pr[A(p, g1, g2, g
a
1 , g

b
2) = gab1 ]

where the probability is taken over the random choices of G, a, b and the adversary A. We say that
the co-CDH Assumption holds for G if for every PPT algorithm A we have that AdvcdhA (λ) is
negligible.

Notice that in symmetric bilinear groups, where G1 = G2, this problem reduces to standard CDH.
For asymmetric groups, it is also easy to see that co-CDH reduces to the computational Bilinear
Diffie-Hellman problem [8].

We recall below the decisional version of the CDH Assumption for groups G of prime order p.
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Definition 2 (DDH). Let G be a group of prime order p, g ∈ G be a generator and a, b, c
$← Zp

be chosen at random. We define the advantage of an adversary A in deciding the Decisional Diffie-
Hellman (DDH) problem as

AdvddhA (λ) =
∣∣Pr[A(p, g, ga, gb, gab) = 1]− Pr[A(p, g, ga, gb, gc) = 1]

∣∣
We say that the DDH Assumption holds in G if for every PPT algorithm A: AdvddhA (λ) is negligible.

The RSA group Let Z∗N be the group of invertible integers modulo N . A group element g ∈ Z∗N
can be efficiently sampled by choosing a random value in {0, . . . , N − 1} and testing whether
gcd(g,N) = 1. An element h is called a quadratic residue if h = g2 mod N for some g ∈ Z∗N . In
our work we consider the subgroup QRN ⊂ Z∗N of quadratic residues in Z∗N . Similarly to Z∗N , QRN
also allows to efficiently sample a group element: choose g

$← Z∗N and compute h = g2 mod N . For
our convenience we consider moduli N which are product of “safe primes” p · q. We recall that p is
called a safe prime if p = 2p′ + 1 and p′ is also a prime number. Moreover, we assume that both
p and q are congruent 3 mod 4 so that N is a so-called “Blum integer”. In this case a few simple
facts hold: QRN is a cyclic group of order p′q′; almost any element of QRN is a generator (unless
it is 1 modulo p or q); every element x ∈ QRN has four square roots in Z∗N , exactly one of which
is in QRN , thus the squaring function x2 mod N is a permutation over QRN .

Let RSAGen(1λ) be the following procedure. On input a security parameter λ, choose two random
safe primes p and q of size at least λ, compute N = pq, and return (N, p, q).

Definition 3 (Factoring Assumption). We define the advantage of an adversary A in factoring
as:

AdvfactA (λ) = Pr[(N, p, q)
$← RSAGen(1λ); (p, q)←A(N)]

where the probability is taken over the random choices of RSAGen, and the adversary. We say that
the Factoring assumption holds for RSAGen if for every PPT algorithm A: AdvfactA (λ) is negligible.

Definition 4 (RSA Assumption). Let (N, p, q)
$← RSAGen(1λ), τ be a random element in Z∗N

and e ≥ 3 be a prime number such that gcd(e, φ(N)) = 1. We define the advantage of an adversary
A in solving the RSA problem as:

AdvrsaA (λ) = Pr[x←A(N, e, τ) : xe = τ mod N ]

where the probability is taken over the random choices of RSAGen, τ and the adversary. We say
that the RSA assumption holds for RSAGen if for every PPT algorithm A AdvrsaA (λ) is negligible.

According to the distribution from which e is chosen, there are several variants of the RSA assump-
tion. In our work, we consider the case when e is some fixed prime. In this case we say that RSA
holds for e.

Below we recall some results that will be useful in our proofs.

Lemma 1 (Shamir [42]). Given u, v ∈ Z∗N and integers a, b ∈ Z such that ua = vb mod N , it is
possible to efficiently compute z ∈ Z∗N such that za = vγ where γ = gcd(a, b).

Proof. The proof is a straightforward application of the extended Euclidean algorithm. One can
indeed use this algorithm to compute integers c, d such that ac+bd = γ = gcd(a, b). Finally, setting
z = udvd gives the desired result and completes the proof.
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Using the above lemma it is possible to show via a simple reduction that the RSA assumption
in the subgroup QRN ⊂ Z∗N is at least as hard as the RSA assumption in Z∗N .

We also recall the following result due to Rabin.

Lemma 2 (Rabin [39]). Let N be an RSA modulus and τ be a random value in QRN . If there
exists an efficient algorithm A that on input (N, τ) outputs a value z ∈ Z∗N such that z2 = τ mod N
with probability ε, then it is possible to build an efficient algorithm B that on input N uses A to
output its unique prime factorization with probability ε/2.

Finally, we observe that in the subgroup of quadratic residues QRN where N is the product of
two safe primes, the DDH assumption is assumed to hold (even if the factorization is revealed [30]).

2.2 Closed Form Efficient PRFs

The notion of closed form efficient pseudorandom functions was introduced in [7]. Their definition
however seemed geared specifically towards the application of polynomial evaluation and there-
fore proved insufficient for our matrix multiplication protocol. Here we extend it to include any
computations run on a set of pseudo-random values and a set of arbitrary inputs.

A closed form efficient PRF consists of algorithms (PRF.KG,PRF.F). The key generation PRF.KG
takes as input the security parameter 1λ, and outputs a secret key K and some public parameters
pp that specify domain X and range Y of the function. On input x ∈ X , PRF.FK(x) uses the
secret key K to compute a value y ∈ Y. It must of course satisfy the usual pseudorandomness
property. Namely, (PRF.KG,PRF.F) is secure if for every PPT adversary A, the following difference
is negligible: ∣∣Pr[APRF.FK(·)(1λ, pp) = 1]− Pr[AR(·)(1λ, pp) = 1]

∣∣
where (K, pp)

$← PRF.KG(1λ), and R(·) is a random function from X to Y.
In addition, it is required to satisfy the following closed-form efficiency property. Consider an

arbitrary computation Comp that takes as input ` random values R1, . . . , R` ∈ Y and a vector of m
arbitrary values x = (x1, . . . , xm), and assume that the best algorithm to compute Comp(R1, . . . , R`,
x1, . . . , xm) takes time T . Let z = (z1, . . . , z`) a `-tuple of arbitrary values in the domain X of
PRF.F. We say that a PRF (PRF.KG,PRF.F) is closed-form efficient for (Comp, z) if there exists an
algorithm PRF.CFEvalComp,z such that

PRF.CFEvalComp,z(K,x) = Comp(FK(z1), . . . , FK(z`), x1, . . . , xm)

and its running time is o(T ). For z = (1, . . . , `) we usually omit the subscript z.
Note that depending on the structure of Comp, this property may enforce some constraints on

the range Y of PRF.F. In particular in our case, Y will be an abelian group. We also remark that due
to the pseudorandomness property the output distribution of PRF.CFEvalComp,z(K,x) (over the ran-
dom choice of K) is indistinguishable from the output distribution of Comp(R1, . . . , R`, x1, . . . , xm)
(over the random choices of the Ri).

In this paper we do not introduce new PRFs with closed form efficiency but we use previous
proposals (in one case with a small modification). For the CDH-based solution we use the PRFs
based on the Decision Linear Assumption described in [18].

For the RSA/Factoring based solutions we use the PRF constructions described in [7] that are
based on the Naor-Reingold PRF [36]. The only difference is that in our case we have to instantiate
the PRFs in the group QRN , and thus claim their security under the hardness of DDH in the group
QRN .
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2.3 Verifiable Computation

A verifiable computation scheme is a tuple of distributed algorithms that enable a client to outsource
the computation of a function f to an untrusted worker, in such a way that the client can verify
the correctness of the result returned by the worker. In order for the outsourcing to make sense, it
is crucial that the cost of verification at the client must be cheaper than computing the function
locally.

In our work we are interested in computation schemes that are publicly verifiable as defined by
Parno et al. [38]: any third party (possibly different from the delegator) can verify the correctness
of the results returned by the worker.

Let F be a family of functions. A Verifiable Computation scheme VC for F is defined by the
following algorithms:

KeyGen(1λ, f)→ (SKf ,PKf ,EKf ): on input a function f ∈ F , it produces a secret key SKf that
will be used for input delegation, a public verification key PKf , used to verify the correctness of
the delegated computation, and a public evaluation key EKf which will be handed to the server
to delegate the computation of f .

ProbGen(PKf , SKf , x)→ (σx,VKx): given a value x ∈ Dom(f), the problem generation algorithm
is run by the delegator to produce an encoding σx of x, together with a public verification key
VKx.

Compute(EKf , σx)→ σy: given the evaluation key EKf and the encoding σx of an input x, this
algorithm is run by the worker to compute an encoded version of y = f(x).

Verify(PKf ,VKx, σy)→ y ∪ ⊥: on input the public key PKf , the verification key VKx, and an en-
coded output σy, this algorithm returns a value y or an error ⊥.

Correctness. Informally, a verifiable computation scheme VC is correct if the values generated
by the problem generation algorithm allows a honest worker to output values that will verify

correctly. More formally, for any f ∈ F , any (SKf ,PKf ,EKf )
$← KeyGen(1λ, f), any x ∈ Dom(f),

if (σx,VKx)
$← ProbGen(PKf ,SKf , x) and σy←Compute(EKf , σx), then f(x)←Verify(PKf ,VKx, σy)

holds with all but negligible probability.

Security. For any verifiable computation scheme VC, let us define the following experiment:

Experiment ExpPubVer
A [VC, f, λ]

(SKf ,PKf ,EKf )
$← KeyGen(1λ, f)

For i = 1 to q:
xi←A(PKf ,EKf , σx,1,VKx,1, . . . , σx,i−1,VKx,i−1)

(σx,i,VKx,i)
$← ProbGen(SKf , xi)

x∗←A(PKf ,EKf , σx,1,VKx,1, . . . , σx,q,VKx,q)

(σx∗ ,VKx∗)
$← ProbGen(SKf , x

∗)
σ̂y←A(PKf ,EKf , σx,1,VKx,1, . . . , σx,q,VKx,q,VKx∗)
ŷ←Verify(PKf , vkx∗ , σ̂y)
If ŷ 6= ⊥ and ŷ 6= f(x∗), output 1, else output 0.

For any λ ∈ N, any function f ∈ F , we define the advantage of an adversary A making at most
q = poly(λ) queries in the above experiment against VC as

AdvPubVer
A (VC, f, q, λ) = Pr[ExpPubVer

A [VC, f, λ] = 1].
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Definition 5. A verifiable computation scheme VC is secure for F if for any f ∈ F , and any PPT
A it holds that AdvPubVer

A (VC, f, q, λ) is negligible.

Note that our definition captures full adaptive security, where the adversary decides “on the fly”
on which input x∗ it will try to cheat. The weaker selective security notion requires the adversary
to commit to x∗ at the beginning of the game.

2.4 Linearly-Homomorphic Signatures

Digital signature schemes allow a user to create a signature σ on a message m (in some appro-
priate set M), such that any other user knowing only a public verification key PK can verify
the validity of σ on m. Boneh and Freeman [10] recently introduced the notion of homomorphic
signatures which extends regular signatures as follows: given a set of signatures (σ1, σ2, . . . , σm),
corresponding set of messages (M1,M2, . . . ,Mm) ∈ Mm, and a function f (in an appropriate set
F = {f |f :Mm →M}) any user can produce a valid signature on the message f(M1,M2, . . . ,Mm).
Furthermore, any message M can be verified against a signature σ as well as a function f . A lin-
early homomorphic signature scheme is a homomorphic signature scheme where the only admissible
functions f are linear, i.e. F = {f :Mm →M|f is linear}.

We recall below the formal notion of linearly-homomorphic signatures, as defined by Freeman
in [19].

Definition 6 (Linearly-Homomorphic Signatures). A linearly-homomorphic signature scheme
is a tuple of probabilistic, polynomial-time algorithms (Hom.KG,Hom.Sign,Hom.Ver,Hom.Eval) with
the following properties:

Hom.KG(1λ,m) takes a security parameter λ, a maximum data set size m, and outputs a public key
PK and a secret key SK. The public key PK defines implicitly a message space M, a signature
space Σ, and a set F of admissible linear functions, that in our case is F = {f : Mn →
M|f is linear}.

Hom.Sign(SK, τ,M, i) takes a secret key SK, a tag τ , a message M ∈ M and an index i ∈
{1, 2, . . . ,m}. It outputs a signature σ ∈ Σ.

Hom.Ver(VK, τ,M, σ, f) takes a public key PK, a tag τ , a message M ∈ M, a signature σ ∈ Σ,
and a function f ∈ F . It outputs either 0 (reject) or 1 (accept).

Hom.Eval(VK, τ, f,σ) takes a public key PK, a tag τ , a function f ∈ F , and a tuple of signatures
{σi}mi=1. It outputs a new signature σ′ ∈ Σ.

In order to define the correctness we first fix some notation. We denote by πi the projection
function πi : Xm → X, where X ∈ {M, Σ,F}, as follows: πi(x1, x2 . . . , xm) = xi.

Informally speaking, a linearly-homomorphic signature scheme is correct if: (i) the signature on
any initial message with index i as output by Hom.Sign must verify correctly against the correspond-
ing projection function πi; (ii) if any vector of signatures σ verifies correctly on respective messages
M , then the output of Hom.Eval(VK, τ, f,σ) should verify correctly for f(M1,M2, . . . ,Mm).

More formally, for correctness we require that:

1. For all public keys (PK, SK)
$← Hom.KG(1λ,m), any tag τ , any message M ∈ M, any index

i ∈ {1, 2, . . . ,m} and any signature σ
$← Hom.Sign(SK, τ,M, i), Hom.Ver(VK, τ,M, σ, f) = 1

holds with overwhelming probability.
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2. For all public keys (PK,SK)
$← Hom.KG(1λ,m), any tag τ the following holds with overwhelming

probability as well. Suppose a message-vector µ ∈ Mm, a function-vector f ∈ Fm and a
signature-vector σ are such that for all i = 1, . . . ,m

Hom.Ver(VK, τ,Mi = fi(µ1, µ2, . . . , µm), σi, fi) = 1.

Then, the following must hold with overwhelming probability:

Hom.Ver(VK, τ, g(M1,M2, . . . ,Mm),Eval(VK, τ, g,M ,σ), g ◦ f) = 1,

where g ◦ f :Mm →M is defined as [g ◦ f(µ1, µ2, . . . , µm)]i = πi(g(f1(µ), f2(µ), . . . , fm(µ))),
so that

g ◦ f(µ1, µ2, . . . , µm) = g(M1,M2, . . . ,Mm).

Security of linearly-homomorphic signatures Recall that in a linearly homomorphic signature
scheme, given valid signatures on a set of messages M1,M2, . . . ,Mm, anyone (only with the knowl-
edge of the public key) can produce valid signatures on any message M = f(M1,M2, . . . ,Mm), for
some linear function f . In particular, in order for the homomorphic property to work, these mes-
sages must be in the same “data set”, which is identified by a tag τ . Freeman recently proposed in
[19] a security notion for linearly-homomorphic signatures, which is stronger than the ones proposed
by earlier works, such as [9, 21, 10, 15]. In our work we adopt this definition. Informally, the goal
of the adversary is to produce a signature on a message M that cannot be obtained by applying
functions on previously observed data sets. This means, that the forgery is either a signature for a
new data set (Type 1 forgery), or it is a signature on a previously observed data set (M1, . . . ,Mm),
but on an incorrect value, i.e., a value which is not obtained by applying f(M1, . . . ,Mm).

More formally, we define the following security game:

Key generation The challenger runs (PK,SK)
$← Hom.KG(1λ,m) and gives PK to the adversary.

Queries The adversary submits queries of the form (F, i,M), where F is a filename (i.e., an
identifier for the data set), i ∈ {1, . . . ,m}, and M ∈ M. For each queried file name F , the
challenger generates a tag τF and keeps a state so that he returns the same τF next time the

same F is queried. The challenger computes σ
$← Hom.Sign(SK, τF ,M, i) and returns the tag

τF together with the signature σ. The challenger also keeps a state of the indices i queried for
each file F so that it rejects queries of the form (F, i,M) if (F, i,M ′) has been queried before
for some message M ′ 6= M , and it returns the same signature as before if M = M ′.
This stage is repeated a polynomial number of times. At the end of the querying stage the
challenger (and the adversary) have a list of states with file names Fj and corresponding tags
τj ; and for each file name Fk there is also a list of indices i with corresponding messages Mi for
0 ≤ i ≤ m.

Forgery The adversary outputs a tuple (τ∗,M∗, σ∗, f∗)

In order to define all possible forgeries we need to fix some notation. We denote by iF the
number of messages asked for the data set with filename F . A function f is said to be well-defined
on F if either iF = m, or iF < m and

f(M1, . . . ,MiF ,MiF+1, . . . ,Mm)

takes the same value for all possible choices of (MiF+1, . . . ,Mm) ∈Mm−iF .
The adversary wins the game if Hom.Ver(VK, τ∗,M∗, σ∗, f∗) = 1 and any of the following holds:
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1. τ∗ 6= τj for all τj chosen by the challenger
2. τ∗ = τj for some τj chosen by the challenger, corresponding to file name Fj and set of

(M1,M2, . . . ,Mm) queried with that file in total. Then for the adversary to win it must be
that M∗ 6= f∗(M1,M2, . . . ,Mm).

3. τ∗ = τj for some τj chosen by the challenger, corresponding to file name Fj and set of
(M1,M2, . . . ,Mk) queried with that file in total. Then the adversary to win it must be that f∗

is not well-defined on Fj .

It has been shown in [19] that for linearly-homomorphic schemes Type 3 forgeries reduce to
Type 2. Therefore, in our work we will focus only on Type 1 and Type 2 forgeries.

We define the advantage AdvLHSA (λ) of an adversary against a linearly-homomorphic signature
scheme as the probability of A winning the above game.

Definition 7 (Unforgeability of Linearly Homomorphic Signatures [19]). A linearly-homomorphic
signature scheme is unforgeable if for all m the advantage AdvLHSA (λ) of a any PPT algorithm A
is negligible.

2.5 Σ-protocols

Let L be an NP language with associated relation R. Informally, a Σ-protocol for R is a two
party (interactive) protocol, consisting of 3 rounds of communications and involving two parties:
an (honest) prover P and an (honest) verifier V . Both P and V start with some common input
statement of the form x ∈ L, where L is an NP language. The private input for P is a witness
w ∈ {0, 1}p(|x|) (where p(·) is some polynomial), certifying the fact that x ∈ L (i.e., such that
(x,w) ∈ R). At the end of the protocol V should be able to efficiently decide whether the produced
transcript is accepting with respect to the statement or not.

More formally, aΣ-protocol for a relationR consists of algorithms (Σ.Setup,Σ.Com,Σ.Resp,Σ.Ver)
such that:

– Σ.Setup(1λ,R)→ (x,w) is a PPT algorithm that on input the security parameter and a relation
R outputs a statement x and a witness w such that (x,w) ∈ R.

– Σ.Com(x; r) → R is a PPT algorithm run by the prover that on input the public value x and
random coins r in some appropriate randomness space RndSp, outputs the first message R of
the protocol.

– Σ.Resp(x,w, r, c)→ s is a PPT algorithm that is run by the prover to compute the third message
s of the Σ-protocol. The algorithm takes as input the pair (x,w) generated by Σ.Setup, random
coins r ∈ RndSp, and the second message of the verifier c ∈ ChSp. Here ChSp denotes the
challenge space.

– Σ.Ver(x,R, c, s) → 0/1 is the verification algorithm that on input the message R, a challenge
c ∈ ChSp and a response s, outputs 1 (accept) or 0 (reject).

Here we will focus on Σ-protocols having the following properties

Completeness. ∀(x,w)
$← Σ.Setup(1λ,R), any R

$← Σ.Com(x, r) for r
$← RndSp, any c ∈ ChSp,

and s
$← Σ.Resp(x,w, r, c),

Σ.Ver(x,R, c, s) = 1

holds with overwhelming probability.
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Special Soundness. There exists an extractor algorithm Σ.Ext such that ∀x ∈ L, ∀R, c, s, c′, s′
such that Σ.Ver(x,R, c, s) = 1 and Σ.Ver(x,R, c′, s′) = 1, Σ.Ext(x,R, c, s, c′, s′) = w′ such that
(x,w′) ∈ R.

Special HVZK. There exists a simulator Sim such that ∀c ∈ ChSp, Sim(x, c) generates a pair
(R, s) such that Σ.Ver(x,R, c, s) = 1 and the probability distribution of (R, c, s) is identical to
that obtained by running the real algorithms.

3 Algebraic (Trapdoor) One-Way Functions

A family of one-way functions consists of two efficient algorithms (Gen, F ) that work as follows.
Gen(1λ) takes as input a security parameter 1λ and outputs a key κ. Such key κ determines a member
Fκ(·) of the family, and in particular it specifies two sets Xκ and Yκ such that Fκ : Xκ → Yκ. Given
κ, for any input x ∈ Xκ it is efficient to compute y ∈ Yκ where y = Fκ(x). In addition, we assume
that κ specifies a finite ring K that will be used as described below.

(Gen, F ) is a family of algebraic one-way functions if it is:

Algebraic: ∀λ ∈ N, and every κ
$← Gen(1λ), the sets Xκ, Yκ are abelian cyclic groups. In our

work we denote the group operation by multiplication, and we assume that given κ, sampling
a (random) generator as well as computing the group operation can be done efficiently (in
probabilistic polynomial time).

Homomorphic: ∀λ ∈ N, every κ
$← Gen(1λ), for any inputs x1, x2 ∈ Xκ, it holds:

Fκ(x1) · Fκ(x2) = Fκ(x1 · x2)

Ring-homomorphic: intuitively, this property states that it is possible to evaluate inner product
operations in the exponent given some “blinded” bases. Before stating the property formally,
we give a high level explanation of this idea by using an example. Assume that one is given
values W1 = hω1 ,W2 = hω2 ∈ Xκ, ω1, ω2 ∈ Z, and wants to compute h(ω1α1+ω2α2 mod q) for some
integer coefficients α1, α2. If q 6= |Xκ| and the order of Xκ is not known, then it is not clear
how to compute such a value efficiently (notice that h is not given). The ring-homomorphic
property basically says that with the additional knowledge of Fκ(h), such computation can be
done efficiently.

More formally, let κ
$← Gen(1λ), h1, . . . , hm ∈ Xκ be generators (form ≥ 1), and letW1, . . . ,W` ∈

Xκ be group elements, each of the form Wi = h
ω
(1)
i

1 · · ·hω
(m)
i
m · Ri, for some Ri ∈ Xκ and some

integers ω
(j)
i ∈ Z (note that this decomposition may not be unique).

We say that (Gen, F ) is ring-homomorphic (for the ring K specified by κ) if there exists an

efficient algorithm Eval such that for any κ
$← Gen(1λ), any set of generators h1, . . . , hm ∈ Xκ,

any vector of elements W ∈ X `κ of the above form, and any vector of integers α ∈ Z`, it holds

Eval(κ,A,W ,Ω,α) = h
〈ω(1),α〉
1 · · ·h〈ω(m),α〉

m

∏̀
i=1

Rαii

where A = (A1, . . . , Am) ∈ Ymκ is such that Ai = Fκ(hi), Ω = (ω
(j)
i )i,j ∈ Z`×m, and each

product 〈ω(j),α〉 in the exponent is computed over the ring K. We notice that over all the
paper we often abuse notation by treating elements of the ring K as integers and vice versa. For
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this we assume a canonical interpretation of d ∈ K as an integer [d] ∈ Z between 0 and |K| − 1,
and that both d and [d] are efficiently computable from one another.
We note that in the case when the ring K is Zp, where p is the order of the group Xκ, then this
property is trivially realized: every OWF where Xκ is a group of order p, is ring-homomorphic
for Zp. To see this, observe that the following efficient algorithm trivially follows from the simple
fact that Xκ is a finite group:

Eval(κ,A,W ,Ω,α) =
∏̀
i=1

Wαi
i

What makes the property non-trivial for some instantiations (in particular the RSA and Factoring-
based ones shown in the next section) is that the algorithm Eval must compute the inner products
〈ω(j),α〉 over the ring K, which might be different from Zp, where p is the order of the group
Xκ over which the function is defined.

Flexibly One-way: finally, we require a family (Gen, F ) to be non-invertible in a strong sense.
Formally, we say that (Gen, F ) is flexibly one-way if for any PPT adversary A it holds:

Pr[A(1λ, κ, y) = (x′, d) : d 6= 0 ∧ d ∈ K ∧ Fκ(x′) = yd]

is negligible, where κ
$← Gen(1λ), x

$← Xκ is chosen uniformly at random and y = Fκ(x).
Our definition asks for d 6= 0 as we additionally require that in the case when d = 0 (over the
ring K) the function must be efficiently invertible. More precisely, given a value y = Fκ(x) ∈ Yκ
(for any x ∈ Xκ) and an integer d such that d = 0 over the ring K (d may though be different
from zero over the integers), there is an efficient algorithm that computes x′ ∈ Xκ such that
Fκ(x′) = yd.

Notice that flexible one-wayness is stronger than standard one-wayness (in which d is always fixed
to 1). Also, our notion is closely related to the notion of q-one wayness for group homomorphisms
given in [17]. Informally, this latter notion states that for some prime q: (1) f is one-way in the
standard sense, (2) there is a polynomial-time algorithm that on input (f, z, y, i) such that f(z) = yi

(for 0 < i < q) computes x such that f(x) = y, and (3) yq is efficiently invertible. It is not hard
to see that when q = |K| flexible one-wayness and q-one-wayness are basically equivalent, except
for that we do not require the existence of an efficient algorithm that on input (F, z, y, i) such that
F (z) = yi computes x such that F (x) = y.

We stress that even though flexible one-wayness may look non-standard, in the next section we
demonstrate that our candidates satisfy it under very simple and standard assumptions.

Algebraic Trapdoor One-Way Functions. Our notion of algebraic one-way functions can be
easily extended to the trapdoor case, in which there exists a trapdoor key that allows to efficiently
invert the function. More formally, we define a family of trapdoor one-way functions as a set of
efficient algorithms (Gen, F, Inv) that work as follows. Gen(1λ) takes as input a security parameter
1λ and outputs a pair (κ, td). Given κ, Fκ is the same as before. On input the trapdoor td and a
value y ∈ Yκ, the inversion algorithm Inv computes x ∈ Xκ such that Fκ(x) = y. Often we will
write Invtd(·) as F−1κ (·). Then we say that (Gen, F, Inv) is a family of algebraic trapdoor one-way
functions if it is algebraic, homomorphic and ring-homomorphic, in the same way as defined above.

Finally, when the input space Xκ and the output space Yκ are the same (i.e., Xκ = Yκ) and the
function Fκ : Xκ → Xκ is a permutation, then we call (Gen, F, Inv) a family of algebraic trapdoor
permutations.
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3.1 Instantiations

We give three simple constructions of algebraic (trapdoor) one-way functions from a variety of
number theoretic assumptions: CDH in bilinear groups, RSA and factoring.

CDH in Bilinear Groups

Gen(1λ): use G(1λ) to generate groups G1,G2,GT of the same prime order p, together with an
efficiently computable bilinear map e : G1 × G2 → GT . Sample two random generators g1 ∈
G1, g2 ∈ G2 and output κ = (p, e, g1, g2). The finite ring K is Zp.

Fκ(x): the function Fκ : G1 → GT is defined by:

Fκ(x) = e(x, g2)

The algebraic and homomorphic properties are easy to check. Moreover, the function is trivially
ring-homomorphic for Zp as p is the order of G1.

Its security can be shown via the following Theorem.

Theorem 1. If the co-CDH assumption holds for G(·), then the above function is flexibly one-way.

The proof can be obtained via a straightforward reduction. Given a co-CDH instance (p, g1, g2, g
a
1 , g

b
2)

compute y = e(ga1 , g
b
2) and run A on input (p, g1, g2, y). If A returns (x, d) ∈ G1 × Zp such that

e(x, g2) = yd, then compute gab1 = x1/d.

Since K = Zp, for d = 0 mod p computing a pre-image of yd is trivial, i.e., 1G1 .

RSA (over QRN) This construction is an algebraic trapdoor permutation, and it allows to
explicitly choose the ring K as Ze for any prime e ≥ 3.

Gen(1λ, e): let e ≥ 3 be a prime number. Run (N, p, q)
$← RSAGen(1λ) to generate a Blum integer

N , product of two safe primes p and q. If gcd(e, φ(N)) 6= 1, then reject the tuple (N, p, q) and
try again. Output κ = (N, e) and td = (p, q).

Fκ(x): the function Fκ : QRN → QRN is defined by:

Fκ(x) = xe mod N

Invtd(y): the inversion algorithm computes c = e−1 mod φ(N), and then outputs:

Invtd(y) = xc mod N

Eval(κ,A,W ,Ω,α): for j = 1 to m, compute ω(j) = 〈ω(j),α〉 over the integers and write it as
ω(j) = ω(j)′ + e · ω(j)′′ , for some ω(j)′ , ω(j)′′ ∈ Z. Finally, output

V =

∏`
i=1W

αi
i∏m

j=1A
ω(j)′′

j

mod N
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The algebraic and homomorphic properties are easy to check. To see that the function is ring-
homomorphic for K = Ze, we show the correctness of the Eval algorithm as follows:

V =

∏`
i=1W

αi
i∏m

j=1A
ω(j)′′

j

mod N =

∏l
i=1(

∏m
j=1 h

ω
(j)
i
j ·Ri)αi∏m

j=1 h
(eω(j)′′ mod φ(N))
j

mod N

=

∏m
j=1 h

(〈ω(j),α〉 mod φ(N))
j

∏l
i=1R

αi
i∏m

j=1 h
(eω(j)′′ mod φ(N))
j

mod N

=

∏m
j=1 h

(ω(j)′+eω(j)′′ mod φ(N))
j

∏l
i=1R

αi
i∏m

j=1 h
(eω(j)′′ mod φ(N))
j

mod N

= hω
(1)′

1 · · ·hω(m)′

m

l∏
i=1

Rαii mod N.

The security of the function is shown via the following Theorem:

Theorem 2. If the RSA assumption holds for RSAGen, the above function is flexibly one-way.

To prove the theorem, we simply observe that since d 6= 0 and d ∈ Ze, it holds gcd(e, d) = 1.
Therefore, it is possible to apply the result of Lemma 1 to transform any adversary against the
security of our OWF to an adversary which solves the RSA problem for the fixed e.

On the other hand, given y ∈ Yκ, in the special case when d = 0 mod e, finding a pre-image of
yd can be done efficiently by computing yd

′
where d′ is the integer such that d = e · d′.

Factoring This construction also allows to explicitly choose the ring K, which can be Z2t for any
integer t ≥ 1.

Gen(1λ, t): run (N, p, q)
$← RSAGen(1λ) to generate a Blum integer N product of two safe primes

p and q. Output κ = (N, t) and td = (p, q).
Fκ(x): The function Fκ : QRN → QRN is defined by:

Fκ(x) = x2
t

mod N

Invtd(y): given td = (p, q) and on input y ∈ QRN , the inversion algorithm proceeds as follows.
First, it uses the factorization of N to compute the four square roots x,−x, x′,−x′ ∈ Z∗N of y,
and then it outputs the only one which is in QRN (recall that since N is a Blum integer exactly
one of the roots of y is a quadratic residue).

Eval(κ,A,W ,ω,α): for j = 1 to m, compute ω(j) = 〈ω(j),α〉 over the integers and write it as
ω(j) = ω(j)′ + 2t · ω(j)′′ . Finally, output

V =

∏`
i=1W

αi
i∏m

j=1A
ω(j)′′

j

mod N

The algebraic and homomorphic properties are easy to check. To see that the function is ring-
homomorphic for Z2t , observe that its correctness can be checked similarly to the RSA case. We
notice that this construction is an algebraic trapdoor permutation.

The security of the function can be shown via the following Theorem:
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Theorem 3. If Factoring holds for RSAGen, then the above function is flexibly one-way.

Proof. To prove the theorem, we first show that any adversary A who is able to break the flexible
one-wayness of this construction with probability ε can be used to build an adversary B that
computes square roots with the same probability. Then, by applying Lemma 2, we finally obtain
an adversary who can factor N with probability ε/2.

Let (N, τ) be B’s input such that τ ∈ QRN . B sets κ = N and runs the adversary A(N, τ). Let
us suppose that A returns a pair (x, d) ∈ QRN×Z2t such that x2

t
= τd. Since d ∈ Z2t , we can write

d = 2` · u, for some 0 ≤ ` < t and an odd integer u. By applying Lemma 1 we can then compute
a value v such that v2

t
= τ gcd(2

t,2`·u) = τ2
`

mod N . Since ` < t and the squaring function is a
permutation over QRN (as N is a Blum integer), it holds v2

t−`
= τ mod N . Therefore, B computes

z = v2
t−`−1

mod N and returns z. It is easy to see that under the assumption that A’s output is
correct, it holds z2 = τ mod N .

Finally, similarly to the RSA case, given y ∈ Yκ, in the special case when d = 0 mod 2t, finding
a pre-image of yd can be done efficiently by computing yd

′
where d′ is the integer such that d = 2td′.

4 Our Verifiable Computation Schemes

In this section we propose the construction of verifiable computation schemes for the delegation
of multivariate polynomials and matrix multiplications. Our constructions make generic use of our
new notion of algebraic one-way functions.

An overview of our solutions. Our starting point is the protocol of [7]: assume the client has
a polynomial F (·) of large degree d, and it wants to compute the value F (x) for arbitrary inputs
x. In [7] the client stores the polynomial in the clear with the server as a vector of coefficients ci in
Zp. The client also stores with the server a vector of group elements ti of the form gaci+ri where g
generates a cyclic group G of order p, a ∈R Zp, and ri is the ith-coefficient of a polynomial R(·) of
the same degree as F (·). When queried on input x, the server returns y = F (x) and t = gaF (x)+R(x),
and the client accepts y iff t = gay+R(x).

If R(·) was a random polynomial, then this is a secure way to authenticate y, however checking
that t = gay+R(x) would require the client to compute R(x) – the exact work that we set out
to avoid! The crucial point, therefore, is how to perform this verification fast, i.e., in o(d) time.
The fundamental tool in [7] is the introduction of pseudo-random functions (PRFs) with a special
property called closed-form efficiency: if we define the coefficients ri of R(·) as PRFK(i) (which
preserves the security of the scheme), then for any input x the value gR(x) can be computed very
efficiently (sub-linearly in d) by a party who knows the secret key K for the PRF.

Our first observation was to point out that one of the PRFs proposed in [7] was basically a
variant of the Naor-Reingold PRF [36] which can be easily istantiated over RSA moduli assuming
the DDH assumption holds over such groups (in particular over the subgroup of quadratic residues).

Note, however, that this approach implies a private verification algorithm by the same client
who outsourced the polynomial in the first place, since it requires knowledge of the secret key K.
To make verification public, Fiore and Gennaro proposed the use of Bilinear Maps together with
algebraic PRFs based on the decision linear problem [18].

Our second observation was to note that the scheme in [7] is really an information-theoretic
authentication of the polynomial “in the exponent”. Instead of using exponentiation, we observed
that any “one-way function” with the appropriate “homomorphic properties” would do. We teased
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out the relevant properties and defined the notion of an Algebraic One-Way Function and showed
that it is possible to instantiate it using the RSA/Rabin functions.

If we use our algebraic one-way functions based on RSA and factoring described in Section 3.1,
then we obtain new verifiable computation schemes whose security relies on these assumptions and
that support polynomials over a large variety of finite rings: Ze for any prime e ≥ 3, Z2t for any
integer t ≥ 1. Previously known solutions [37, 18] could support only polynomials over Zp where p
must be a large prime whose size strictly depends on the security parameter 1λ (basically, p must
be such that the discrete logarithm problem is hard in a group of order p).

In contrast, our factoring and RSA solutions allow for much more flexibility. Precisely, using
the RSA function allows us to compute polynomials over Ze for any prime e ≥ 3, where e is the
prime used by the RSA function. Using the Rabin function allows us to handle polynomials over
Z2t for any integer t ≥ 1.

4.1 Polynomials of Degree d in each variable

In this section we propose the construction of a scheme for delegating the computation of m-
variate polynomials of degree at most d in each variable. These polynomials have up to l = (d+1)m

terms which we index by (i1, . . . , im), for 0 ≤ ij ≤ d. Similarly to [7, 18], we define the function
h : Km → Kl which expands the input x to the vector (h1(x), . . . , hl(x)) of all monomials as follows:
for all 1 ≤ j ≤ l, use a canonical ordering to write j = (i1, . . . , im) with 0 ≤ ik ≤ d, and then
hj(x) = (xi11 · · ·ximm ). So, using this notation we can write the polynomial as f(x) = 〈f , h(x)〉 =∑l

j=1 fj · hj(x) where the fj ’s are its coefficients.

Our scheme uses two main building blocks: an algebraic one-way function (see definition in
Section 3) (Gen, F ) and a pseudorandom function (PRF.KG, PRF.F, PRF.CFEval) with closed form
efficiency (see definition in Section 2.2). Our verifiable computation scheme works generically for
any family of functions F that is the set of m-variate polynomials of degree d over a finite ring K
such that: (1) the algebraic one-way function Fκ : Xκ → Yκ is ring-homomorphic for K, and (2)
there exists a PRF whose range is Xκ, and that has closed form efficiency relative to the computation

of polynomials, i.e., for the algorithm Poly(R,x) =
∑l

j=1R
hj(x)
j .

If we instantiate these primitives with the CDH-based algebraic OWF of Section 3.1 and the
PRFs based on Decision Linear described in [18], then our generic construction captures the ver-
ifiable computation scheme of Fiore and Gennaro [18]. Otherwise we can obtain new schemes by
using our algebraic OWFs based on RSA and Factoring described in Section 3.1. They have input
and output space Xκ = Yκ = QRN , the subgroup of quadratic residues in Z∗N . So, to complete
the instantiation of the scheme VCPoly, we need a PRF with closed form efficiency whose range is
QRN . For this purpose we can use the PRF constructions described in [7] that are based on the
Naor-Reingold PRF. The only difference is that in our case we have to instantiate the PRFs in the
group QRN , and thus claim their security under the hardness of DDH in the group QRN .

With these instantiations we obtain new verifiable computation schemes that support poly-
nomials over a large variety of finite rings: Ze for any prime e ≥ 3, Z2t for any integer t ≥ 1.
Previously known solutions [37, 18] could support only polynomials over Zp where p must be a
large prime whose size strictly depends on the security parameter 1λ. In contrast, our factoring and
RSA solutions allow for much more flexibility.

The description of our generic construction VCPoly follows.
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KeyGen(1λ, f). Run κ
$← Gen(1λ) to obtain a one-way function Fκ : Xκ → Yκ that is ring-

homomorphic for K. Let f be encoded as the set of its coefficients (f1, . . . , fl) ∈ Kl.

Generate the seed of a PRF, K
$← PRF.KG(1λ, dlog de,m), whose output space is Xκ, the input

of the one-way function. Choose a random generator h
$← Xκ, and compute A = Fκ(h).

For i = 1 to l, compute Wi = hfi · PRF.FK(i). Let W = (W1, . . . ,Wl) ∈ (Xκ)l.
Output EKf = (f,W,A), PKf = A, SKf = K.

ProbGen(PKf ,SKf ,x). Output σx = x and VKx = Fκ(PRF.CFEvalPoly(K,h(x))).

Compute(EKf , σx). Let EKf = (f,W,A) and σx = x. Compute y = f(x) =
∑l

i=1 fi · hi(x) (over
K) and

V = Eval(κ,A,W, f, h(x))

and return σy = (y, V ).
Verify(PKf ,VKx, σy). Parse σy as (y, V ). If y ∈ K and Fκ(V ) = Ay ·VKx, then output y, otherwise

output ⊥.

The correctness of the scheme follows from the properties of the algebraic one-way function and
the correctness of PRF.CFEval.

Theorem 4. If (Gen, F ) is a family of algebraic one-way functions and PRF.F is a family of pseudo-
random functions then any PPT adversary A making at most q = poly(λ) queries has negligible
advantage AdvPubVer

A (VCPoly,F , q, λ).

To prove the theorem, we define the following games, where Gi(A) denotes the output of Game
i run with adversary A:

Game 0: it is ExpPubVer
A (VCPoly,F , q, λ).

Game 1: this is the same as Game 0 except that the challenger performs a different evaluation
of the algorithm ProbGen. Let x be the input asked by the adversary. The challenger computes
VKx =

∏l
i=1 PRF.FK(i)hi(x).

Game 2: this game proceeds as Game 1, except that the function PRF.Fk(i) is replaced by a truly

random function that on every i lazily samples a value Ri
$← Xκ uniformly at random.

The proof of the theorem is obtained by the proofs of the following claims.

Claim 1 Pr[G0(A) = 1] = Pr[G1(A) = 1].

Proof. By correctness of PRF.CFEval, these two games produce the same distribution. In particular,
the distribution of the values VKx does not change. Therefore, the probability of the adversary
winning in Game 1, i.e., Pr[G1(A) = 1], remains the same.

Claim 2 |Pr[G1(A) = 1]− Pr[G2(A) = 1]| is negligible

Proof. The difference between Game 2 and Game 1 is that the output of the pseudorandom function
PRF.FK is replaced by values chosen at random in Xκ. If there exists an adversary A such its success
probability in Game 2 decreases by more than a non-negligible quantity, then A can be used to build
an efficient distinguisher that breaks the security of the PRF with such non-negligible probability.

Claim 3 Pr[G2(A) = 1] is negligible.
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Proof. Assume by contradiction there exists a PPT adversary A such that Pr[G2(A) = 1] is a
non-negligible ε.

We show that from such A it is possible to construct an efficient algorithm B that breaks the
flexible one-wayness of the algebraic one-way function with the same probability ε.

B receives the pair (κ,A) as its input, where A ∈ Yκ. It proceeds as follows. It chooses l random

values W1, . . . ,Wl
$← Xκ, and it sets EKf = (f,W,A) and PKf = A. Notice that the public and

evaluation keys are perfectly distributed as in Game 2.

Next, for i = 1 to l, B computes Zi = Fκ(Wi) · A−fi . B runs A(PKf ,EKf ) and answers its

queries as follows. Let x be the queried value. B computes VKx =
∏l
i=1 Z

hi(x)
i , and returns VKx to

A. By the homomorphic property of Fκ this computation of VKx is equivalent to the one made by
the challenger in Game 2.

Finally, let σ̂y = (ŷ, V̂ ) be the output of A at the end of the game, such that for some input
value x∗ chosen by A it holds: Verify(PKf ,VKx∗ , σ̂y) = ŷ, ŷ 6= ⊥ and ŷ 6= f(x∗). By verification,
this means that

Fκ(V̂ ) = Aŷ · VKx∗

Let y = f(x∗) ∈ K be the correct output of the computation, and let V = Eval(κ,A,W, f, h(x)) be
the proof as obtained by honestly running Compute. By correctness of the scheme it holds:

Fκ(V ) = Ay · VKx∗

Hence, we can divide the two verification equations and by the homomorphic property of Fκ, we
obtain Fκ(V̂ /V ) = Aδ where δ = ŷ−y 6= 0. B outputs U = V̂ /V and δ as a solution for the flexible
one-wayness of Fκ(A). As one can see, if A wins in Game 2 with probability ε, then B breaks the
one-wayness of Fκ with the same probability.

4.2 m-Variate Polynomials of Total Degree d

We observe that it is possible to change the protocol VCPoly described in the previous section in
order to support the class of polynomials in m variables and maximum degree d in each monomial.
As hinted in [18], this can be done as follows: (i) adjust the number of monomials to l = (m+ 1)d;
(ii) use a PRF with closed-form efficiency for polynomials of this form (such as the DDH-based one
given in [7]).

4.3 Matrix Multiplication

We show that the same techniques used to construct a verifiable computation scheme for the
delegation of multivariate polynomials can be adapted for the case of matrix multiplications. Again,
the building blocks are an algebraic one-way function and a PRF with closed form efficiency for
this type of computations.

By using our constructions of algebraic OWFs based on RSA and factoring we obtain schemes
that can support delegation of matrix computations over arbitrary finite rings of the form Ke for
any prime e > 1 and Z2t for any integer t ≥ 1. As for the algebraic PRF, we can use the DDH-
based construction (instantiated over QRN ) proposed in [18] that is closed-form efficient for matrix
multiplication.
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KeyGen(1λ,M). Run κ
$← Gen(1sec) to obtain a one-way function Fκ : Xκ → Yκ that is field-

homomorphic for K. Let M ∈ Kn×d be a matrix.
Generate a seed K for an algebraic PRF with domain [1..n] × [1..d] and range Xκ. Sample a

random generator h
$← Xκ, and compute A = Fκ(h).

For 1 ≤ i ≤ d, 1 ≤ j ≤ n, compute Wi,j = hMi,j · PRF.FK(i, j), and let W = (Wi,j) ∈ X n×dκ .
Output SKM = K, EKM = (M,W,A), and VKM = A.

ProbGen(SKM ,x). Let x = (x1, . . . , xd) ∈ Kd be the input. Let R be the matrix defined by
R = [PRF.FK(i, j)]. Compute ρx = PRF.CFEvalMatrix(K,x) in O(n + d) using the closed form
efficiency. Recall that ρx,i =

∏d
j=1 PRF.FK(i, j)xj , and define τx,i = Fκ(ρx,i). Finally, output the

encoding σx = x, and the verification key VKx = (τx,1, . . . , τx,n).
Compute(EKM , σx). Let EKM = (M,W,A) and σx = x. Compute y = M · x over the field K, and

the vector V = (V1, . . . , Vn) as Vj = Eval(κ,A, (Wi,j)i, (Mi,j)i,x), ∀j = 1 to n.
Output σy = (y,V ).

Verify(VKM ,VKx, σy). Parse σy as (y,V ). If y ∈ Kn and Fκ(Vi) = Ayi · τx,i, ∀i = 1, . . . , n, then
output y, otherwise output ⊥.

The security of the scheme is proven via the following theorem.

Theorem 5. If (Gen, F ) is a secure family of algebraic one-way functions and PRF.F is a secure
PRF family, then any PPT adversary A making at most q = poly(λ) queries has negligible advantage
AdvPubVer

A (VCMatrix,F , q, λ).

The proof proceeds in a way very similar to that of Theorem 4. Consider the following games,
where Gi(A) denotes the output of Game i with adversary A:

Game 0: it is ExpPubVer
A (VCMatrix,F , q, λ).

Game 1: this is the same as Game 0, except that the challenger performs a different computation
of the algorithm ProbGen. Let x be the input asked by the adversary. The challenger computes
VKx = ρx as ρx,i =

∏d
j=1 PRF.FK(i, j)xj .

Game 2: this game proceeds as Game 1, except that the matrix W is computed as Wi,j =

hMi,j · Ri,j where for all i, j Ri,j
$← Xκ is chosen uniformly at random, instead of being the

output of PRF.FK(i, j).

By the same ideas used in the proof of Theorem 4, it is not hard to see that the following two
claims hold.

Claim 4 Pr[G0(A) = 1] = Pr[G1(A) = 1].

Claim 5 |Pr[G1(A) = 1]− Pr[G2(A) = 1]| is negligible

The proof of the following claim is a simple extension of the proof of Claim 3. We describe it
below for completeness.

Claim 6 Pr[G2(A) = 1] is negligible

Proof. Assume by contradiction that there exists a PPT adversary A such that the probability of
A winning in Game 2 is a non-negligible function ε, then we show that we can build an efficient
algorithm B which uses A to break the security of the algebraic one-way function with probability
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ε. B takes as input a pair (κ,A) where A ∈ Yκ and proceeds as follows. For i = 1, . . . , d and

j = 1, . . . , n, B chooses Wi,j
$← Xκ, sets EKM = (M,W,A), and PKM = A. It is easy to check that

the public and evaluation keys are perfectly distributed as in Game 2. Next, for i = 1, . . . , d and
j = 1, . . . , n, it computes Zi,j = Fκ(Wi,j) · A−Mi,j . Then B runs A(PKM ,EKM ) and answers its

queries as follows. Let x be the queried vector. B computes τx,j =
∏d
i=1 Z

xi
i,j for j = 1 to n, and

returns VKx = (τx,1, . . . , τx,n) to A. By the homomorphic property of Fκ this computation of VKx

is equivalent to the one done in Game 2.
Finally, let σ̂y = (ŷ, V̂ ) be the output of A at the end of the game, such that for some x∗

chosen by A it holds Verify(PKf ,VKx∗ , σ̂y) = ŷ, ŷ 6= ⊥ and ŷ 6= M · x∗. Let y = M · x∗ be the
correct output of the multiplication. Since ŷ 6= y there must exist an index j ∈ {1, . . . , n} such
that ŷj 6= yj . However, if we let Vj = Eval(κ,A, (Wi,j)i, (Mi,j)i,x) be the honest computation for
the j-th vector entry, then by correctness we have:

Fκ(Vj) = Ayj · τx∗,j

Hence, if we divide the two verification equations, we obtain Fκ(V̂j/Vj) = Aδ where δ = ŷj−yj 6= 0.
Therefore, B can output U = V̂j/Vj and δ. It is easy to see that if A wins in Game 2 with probability
ε, then B breaks the one-wayness of Fκ with the same probability.

5 Linearly-Homomorphic FDH Signatures

In this section we show a direct application of Algebraic Trapdoor One Way Permutations (TDP)
to build linearly-homomorphic signatures.

An intuitive overview of our solution. Our construction can be seen as a linearly-homomorphic
version of Full-Domain-Hash (FDH) signatures. Recall that a FDH signature on a message m is
F−1(H(m)) where F is any TDP and H is a hash function modeled as a random oracle. Starting
from this basic scheme, we build our linearly homomorphic signatures by defining a signature on
a message m, tag τ and index i as σ = F−1(H(τ, i) · G(m)) where F is now an algebraic TDP,
H is a classical hash function that will be modeled as a random oracle and G is a homomorphic
hash function (i.e, such that G(x) ·G(y) = G(x+ y)). Then, we will show that by using the special
properties of algebraic TDPs (in particular, ring-homomorphicity and flexible one-wayness) both
the security and the homomorphic property of the signature scheme follow immediately.

Precisely, if the algebraic TDP used in the construction is ring-homomorphic for a ring K, then
our signature scheme supports the message space Kn (for some integer n ≥ 1) and all linear functions
over this ring. Interestingly, by instantiating our generic construction with our two algebraic TDPs
based on Factoring and RSA (see Section 3.1), we obtain schemes that are linearly-homomorphic
for arbitrary finite rings, i.e., Z2t or Ze, for any t ≥ 1 and any prime e. As we will detail at the end
of this section, previous solutions (e.g., [9, 21, 3, 11, 10, 14, 15, 19]) could support only large fields
whose size strictly depends on the security parameter. The only exception are the lattice-based
schemes of Boneh and Freeman [11, 10] that work for small fields, but are less efficient than our
solution. In this sense, one of our main contributions is to propose a solution that offers a great
flexibility as it can support arbitrary finite rings, both small and large, whose characteristic can be
basically chosen ad-hoc (e.g., according to the desired application) at the moment of instantiating
the scheme.

Our Scheme. The scheme is defined by the following algorithms.
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Hom.KG(1λ,m, n) On input the security parameter λ, the maximum data set size m, and an integer
n ≥ 1 used to determine the message spaceM as we specify below, the key generation algorithm
proceeds as follows.

Run (κ, td)
$← Gen(1λ) to obtain an algebraic TDP, Fκ : Xκ → Xκ that is ring-homomorphic for

the field K. Next, sample n + 1 group elements u, g1, . . . , gn
$← Xκ and choose a hash function

H : {0, 1}∗ → Xκ.
The public key is set as VK = (κ, u, g1, . . . , gn, H), while the secret key is the trapdoor SK = td.
The message spaceM = (K)n is the set of n-dimensional vectors whose components are elements
of K, while the set of admissible functions F is all degree-1 polynomials over K with m variables
and constant-term zero.

Hom.Sign(SK, τ,M, i) The signing algorithm takes as input the secret key SK, a tag τ ∈ {0, 1}λ, a

message M = (M1, . . . ,Mn) ∈ Kn and an index i ∈ {1, . . . ,m}. To sign, choose s
$← K uniformly

at random and use the trapdoor td to compute

x = F−1κ (H(τ, i) · us ·
n∏
j=1

g
Mj

j )

and output σ = (x, s).
Hom.Ver(VK, τ,M, σ, f) To verify a signature σ = (x, s) on a message M ∈ M, w.r.t. tag τ and

the function f , the verification algorithm proceeds as follows. Let f be encoded as its set of
coefficients (f1, f2, . . . , fm). Check that all values fi and Mj are in K and then check that the
following equation holds

Fκ(x) =
m∏
i=1

H(τ, i)fi · us ·
n∏
j=1

g
Mj

j

If both checks are satisfied, then output 1 (accept), otherwise output 0 (reject).
Hom.Eval(VK, τ, f,σ,M ,f) The public evaluation algorithm takes as input the public key VK, a

tag τ , a function f ∈ F encoded as (f1, . . . , fm) ∈ Km, a vector of signatures σ = (σ1, . . . , σm)
where σi = (xi, si), a vector of messages M = (M (1), . . . ,M (m)) and a vector of functions
f = (f (1), . . . , f (m)). If each signature σi is valid for the tag τ , the message M (i) and the function
f (i), then the signature σ output by Hom.Eval is valid for the message M = f(M (1), . . . ,M (m)).
In order to do this, our algorithm first computes s = f(s1, . . . , sm) =

∑m
i=1 fi ·si (over K). Next,

it defines:
A = (H(τ, 1), . . . ,H(τ,m), u, g1, . . . , gn) ∈ Xm+n+1

κ ,

Ω =

 f
(1)
1 · · · f (1)m s1 M

(1)
1 · · · M (1)

n
...

...
...

...

f
(m)
1 · · · f (m)

m sm M
(m)
1 · · · M (m)

n

 ∈ Zm×m+n+1

and uses the Eval algorithm of the algebraic TDP to compute x = Eval(κ,A,x, Ω, f). Finally,
it outputs σ = (x, s).
We remark that our construction requires the Hom.Eval algorithm to know the messages M (i) for
which the signatures σi are supposed to verify correctly. Moreover we stress that Hom.Eval needs
to receive both f and f as otherwise it would not be able to correctly perform the homomorphic
operations. Notice, however, that the value of the produced message does not depend on f (this
is needed essentially to run the Eval algorithm correctly).
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Since our scheme follows the FDH paradigm, its security holds in the random oracle model,
however, following similar results for FDH signatures, in the full version we propose a variant of
our scheme that can be proven secure in the standard model in the weaker security model of Q-time
security, in which the adversary is restricted to query signatures on at most Q different datasets,
and Q is a pre-fixed bound.

The security of our scheme follows from the following theorem.

Theorem 6. If (Gen, F, Inv) is a family of algebraic trapdoor permutations and H is modeled as a
random oracle, then the linearly-homomorphic signature scheme described above is secure.

Proof. As usual, the proof proceeds by contradiction. Assume there exists an efficient adversary
A that has non-negligible probability ε of winning the unforgeability game. Let (τ∗,M∗, σ∗, f∗) be
the valid forgery returned by the adversary, i.e., such that Verify(VK, τ∗,M∗, σ∗, f∗) = 1. According
to whether the forgery is of Type 1 or Type 2, we distinguish two types of adversaries. For every
such adversary A we describe a simulation in which we reduce A to an algorithm B that breaks
the flexible one-wayness of the algebraic TDP with non-negligible probability.

Type 1. B takes as input (κ, ρ) where κ is the description of an algebraic TDP Fκ : Xκ → Xκ
and ρ ∈ Xκ. The goal of B is to find values (x, d) ∈ Xκ × K such that Fκ(x) = ρd and d 6= 0. Our
simulator B proceeds as follows.

Key Generation. Let Q = poly(λ) be an upper bound on the number of data sets for which the

adversary asks signatures. B chooses in advance all tags τ1, . . . , τQ
$← {0, 1}λ that it will use in

the signing queries. Let T be the set of all such tags. B chooses an index µ
$← {1, . . . ,m} and

group elements y0, y1, . . . , yn
$← Xκ uniformly at random. For j = 1 to n, it sets gj = Fκ(yj),

and u = Fκ(y0). It gives the public key VK = (κ, u, g1, . . . , gn, H) to the adversary where H is
a random oracle whose queries are answered as described below. We notice that since Fκ is a
permutation over Xκ, the public key VK is distributed as in the real case.

Hash queries. The simulator maintains a table H̄ whose entries, indexed by pairs (τ, i), are tuples
of the form (δ, h). If an entry H̄[τ, i] is empty we denote it by H̄[τ, i] = ⊥. When the adversary
makes an oracle query H(τ, i) the simulator looks in the table the entry H̄[τ, i]. If H̄[τ, i] = (δ, h),

then B returns h. Otherwise, if H̄[τ, i] = ⊥, B picks a random δτ,i
$← Xκ, and it proceeds as

follows. If τ /∈ T ∧ i = µ, then it sets hτ,i = Fκ(δτ,i) · ρ. Otherwise B sets hτ,i = Fκ(δτ,i). Finally,
it returns hτ,i to A and stores H[τ, i] = (δτ,i, hτ,i). Notice that regardless of whether τ ∈ T and
i = µ, all answers have the same distribution, uniform over Xκ (as the group is cyclic).

Signing queries. Let (F, i,M) be a signing query. If this is the first query with filename F , then
B takes the next unused tag τ from T . Otherwise, let τ be the tag already chosen for F . Let
H̄[τ, i] = (δτ,i, hτ,i) (if H̄[τ, i] = ⊥, then B proceeds as above to generate it). Since τ ∈ T we

have hτ,i = Fκ(δτ,i). Thus, B simulates a signature by choosing s
$← K at random, computing

x = δτ,iy
s
0

∏n
j=1 y

Mj

j , and returning σ = (x, s) to the adversary. It is easy to see that σ is
correctly distributed.

Forgery. Let (τ∗,M∗, σ∗, f∗) be the forgery returned by A, and let T ′ = {τ1, . . . , τQ′} be the set
of all tags used in the signing queries. Notice that T ′ ⊆ T , |T \ T ′| ≤ Q and that all unrevealed
tags are completely unpredictable. By our assumption in this case of the proof, this is a Type
1 forgery, i.e., τ∗ /∈ T ′. Moreover, it must also be f∗ 6= 0m, i.e., there must exist an index
µ∗ ∈ {1, . . . ,m} such that f∗µ∗ 6= 0.
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If f∗µ = 0 or τ∗ ∈ T \ T ′, then B aborts the simulation and fails. Otherwise, it continues
the simulation. Notice though that Pr[µ = µ∗] = 1/m (as µ is perfectly hidden), and that
Pr[τ∗ ∈ T \ T ′] ≤ Q/2λ. Therefore, B does not abort with probability at least 1/m(1−Q/2λ).
By the validity of the forgery we have:

Fκ(x∗) =
m∏
i=1

H(τ∗, i)f
∗
i · us∗

n∏
j=1

g
M∗j
j =

m∏
i=1

Fκ(δτ∗,i)
f∗i · ρf∗µ · Fκ(y0)

s∗
n∏
j=1

Fκ(yj)
M∗j

Thus, by the homomorphic property of F we obtain:

Fκ

 x∗∏m
i=1 δ

f∗i
τ∗,iy

s∗
0

∏n
j=1 y

M∗j
j

 = ρf
∗
µ

Therefore, B can output U = x∗∏m
i=1 δ

f∗
i
τ∗,iy

s∗
0

∏n
j=1 y

M∗
j

j

and d = f∗µ. If A outputs a Type 1 forgery

with non-negligible probability ε, then B breaks the security of the algebraic TDP with non-
negligible probability ε

m(1−Q/2λ).

Type 2. Let τ1, . . . , τQ be the tags of all the datasets queried by the adversary in the sign-
ing phase. For a Type 2 adversary we have that τ∗ = τj for some j ∈ {1, . . . , Q}, and M∗ 6=
M̂ = f∗(M (1), . . . ,M (m)) where (M (1), . . . ,M (m)) are the messages of the dataset with tag τj . Let
σ̂ = (x̂, ŝ) = Hom.Eval(VK, τj , f

∗,σ,M , 1m) be the signature obtained by correctly applying the
Hom.Eval algorithm on the messages (and signatures) of the dataset τj with the function f∗. Since
M∗ 6= M̂ , there must exists an index ν ∈ {1, . . . , n} such that M∗ν 6= M̂ν . We distinguish the
following two mutually exclusive cases:

(a) s∗ − ŝ+M∗ν − M̂ν 6= 0
(b) s∗ − ŝ+M∗ν − M̂ν = 0, i.e., s∗ − ŝ 6= 0

where all inequalities are intended over the finite field K.
We provide different simulations for the two cases.

Type 2.a B takes as input (κ, ρ) where κ is the description of an algebraic TDP Fκ : Xκ → Xκ
and ρ ∈ Xκ. The goal of B is to find values (x, d) ∈ Xκ × K such that Fκ(x) = ρd and d 6= 0. Our
simulator B proceeds as follows.

Key Generation. B chooses the index ν
$← {1, . . . , n} and group elements y1, . . . , yn

$← Xκ uni-
formly at random. For j = 1 to n, j 6= ν, it sets gj = Fκ(yj), gν = Fκ(yν) · ρ, and u = ρ. It
returns the public key VK = (κ, u, g1, . . . , gn, H) and it answers random oracle queries to H as
described below. We notice that the simulated public key has the same distribution as the real
one.

Hash queries. The simulator maintains a table H̄ whose entries, indexed by pairs (τ, i), are triples
of the form (δ, β, h). If an entry H̄[τ, i] is empty we denote it by H̄[τ, i] = ⊥. When the adversary
makes a query H(τ, i) the simulator looks for H̄[τ, i]. If H̄[τ, i] = (δ, β, h), then it returns h.

Otherwise, if H̄[τ, i] = ⊥, B chooses δτ,i
$← Xκ, βτ,i

$← K and computes hτ,i = Fκ(δτ,i) · ρβτ,i .
Finally, it returns hτ,i to A and stores H̄[τ, i] = (δτ,i, βτ,i, hτ,i). Notice that since δτ,i is “fresh”
(i.e., chosen independently at random) for every query, all answers are uniformly distributed
over Xκ, and thus the value βτ,i is perfectly hidden.
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Signing queries. Let (F, i,M) be a signing query. If this is the first query with filename F , then

B chooses a new tag τ
$← {0, 1}λ. Otherwise, let τ be the tag already chosen for F , and let

H̄[τ, i] = (δτ,i, βτ,i, hτ,i). The simulator sets s = −(βτ,i + Mν) ∈ K, and uses the flexible one-
wayness property of the algebraic TDP to compute the preimage ρ̃ = F−1κ (ρs+βτ,i+Mν ) (this can

be done efficiently as s + βτ,i + Mν is 0 over K). Then it sets x = δτ,i
∏n
j=1 y

Mj

j ρ̃ and returns
σ = (x, s). It is not hard to check that the signature is distributed correctly. In particular, it

holds Fκ(x) = H(τ, i) · us
∏n
j=1 g

Mj

j and s is uniform in K as so is βτ,i.
Forgery. Let (τ∗,M∗, σ∗, f∗) be the forgery returned by A, and let σ̂ = (x̂, ŝ) = Hom.Eval(VK,

τj , f
∗,σ,M , 1m) be the signature obtained by applying the correct evaluation algorithm with

function f∗ to the messages of the dataset with tag τ∗ (that by definition of Type 2 was asked
in the signing phase). If M∗ν −M̂ν = 0, then B aborts and stops running. Otherwise it continues
the simulation. Notice though that since an index ν∗ such that M∗ν∗ − M̂ν∗ 6= 0 must exist, and
the ν chosen by B is perfectly hidden, then Pr[M∗ν − M̂ν 6= 0] = Pr[ν = ν∗] = 1/n.
By the validity of the forgery we have:

Fκ(x∗) =

m∏
i=1

H(τ∗, i)f
∗
i · us∗

n∏
j=1

g
M∗j
j

while by the correctness of Hom.Eval it holds

Fκ(x̂) =
m∏
i=1

H(τ∗, i)f
∗
i · uŝ

n∏
j=1

g
M̂j

j

So, we can divide the two equations and obtain:

Fκ(x∗/x̂) = us
∗−ŝ

n∏
j=1

g
M∗j −M̂j

j = ρs
∗−ŝ+M∗ν−M̂ν

n∏
j=1

Fκ(yj)
M∗j −M̂j

and thus

Fκ

 x∗

x̂
∏n
j=1 Fκ(yj)

M∗j −M̂j

 = ρs
∗−ŝ+M∗ν−M̂ν

Therefore, since s∗ − ŝ+M∗ν − M̂ν 6= 0 over K by definition of Type 2.a forgery, B can output
U = x∗

x̂
∏n
j=1 Fκ(yj)

M∗
j
−M̂j

and d = s∗ − ŝ+M∗ν − M̂ν .

If A outputs a Type 2 forgery with non-negligible probability ε, then B breaks the security of the
algebraic TDP with non-negligible probability ε/n.

Type 2.b The proof for this case is almost identical to that of Type 2.a except for the following
changes. In the Key Generation there is no guess about the index ν, and all values gj are simulated
as gj = Fκ(yj) for random yj ∈ Xκ. To answer signing queries, B sets s = −βτ,i. Finally, given the
adversary’s forgery, it holds

Fκ

 x∗

x̂
∏n
j=1 Fκ(yj)

M∗j −M̂j

 = ρs
∗−ŝ

Hence, U = x∗

x̂
∏n
j=1 Fκ(yj)

M∗
j
−M̂j

and d = s∗ − ŝ form a valid solution for breaking the flexible

one-wayness of the algebraic TDP.
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Efficiency and Comparisons. The most attractive feature of our proposal is that it allows
for great variability of the underlying message space. In particular our scheme allows to consider
finite rings of arbitrary size without sacrificing efficiency7. This is in sharp contrast with previous
solutions which can either support only large fields (whose size directly depends on the security
parameter e.g., [9, 21, 3, 11, 10, 14, 15, 19]) or are much less efficient in practice [11, 10].

Here we discuss in more details the efficiency of our scheme when instantiated with our RSA
and Factoring based Algebraic TDP. Since each signature σ = (x, s) consists of an element x ∈ Z∗N
and a value s in the field K, i.e., its size is |σ| = |N | + |S| where |N | is the bit size of the
RSA modulus and |S| is the bit size of the cardinality S of K. Ignoring the cost of hashing, both
signing and verifying require one single multi-exponentiation (where all exponents have size |S|)
and one additional exponentiation. Thus the actual efficiency of the scheme heavily depends on
the size of |S|. For large values of |S| our scheme is no better than previous schemes (such as the
RSA schemes by Gennaro et al. [21] and by Catalano, Fiore and Warinschi [15]). For smaller |S|,
however, our schemes allow for extremely efficient instantiations. If we consider for instance the
binary field F2, then generating a signature costs only (again ignoring the cost of hashing) one
square root extraction and a bunch of multiplications. Notice however that for the specific N (i.e.
N = pq where p = 2p′ + 1, q = 2q′ + 1 and p′, q′ are both primes) considered in our instantiations,
extracting square root costs one single exponentiation (i.e., one just exponentiates to the power
z = 2−1 mod p′q′). Verification is even cheaper as it requires (roughly) m+ n multiplications.

As mentioned above, the only known schemes supporting small fields are those by Boneh and
Freeman [11, 10]. Such schemes are also secure in the random oracle model, but rely on the hardness
of SIS-related problems over lattices. There, a signature is a short vector σ in the lattice, whereas the
basic signing operation is computing a short vector in the intersection of two integer lattices. This
is done by using techniques from [24, 13]. Even though the algebraic tools underlying our scheme
are significantly different with respect to those used in [11, 10] and it is not easy to make exact
comparisons, it is reasonable to expect that taking a square root in Z∗N is faster than state-of-the-art
pre-image sampling for comparable security levels.

6 An efficient Σ protocol for Algebraic One-Way Permutations

Here we propose an efficient Σ protocol for any Algebraic One-Way Permutation (OWP). Let
Fκ : Xκ → Xκ be an algebraic one-way permutation. We let RndSp coincide with Xκ and ChSp = K.
Let L be the language {〈y, Fκ〉 : ∃z ∈ Xκ s.t. Fκ(z) = y} and R be the corresponding relation (i.e.
(x = 〈y, Fκ〉, z) ∈ R iff Fκ(z) = y).

– Σ.Setup(1λ,R) It runs κ← Gen(1λ). Next it chooses at random z ∈ Xκ and computes Fκ(z) = y.
The statement is set as x← 〈y, Fκ〉, while the witness is z.

– Σ.Com(x; r)→ R On input x = 〈y, Fκ〉 and random coins r in RndSp, outputs the first message
R← Fκ(r).

– Σ.Resp(x,w, r, c)→ s Output s← r · zc ∈ Xκ.

– Σ.Ver(x,R, c, s)→ 0/1 On input R ∈ Yκ, c ∈ ChSp and s ∈ Xκ, outputs 1 if Fκ(s) = R · yc or 0
otherwise.

7 In fact, the exact size of the ring can be chosen ad-hoc (e.g., according to the desired application) at the moment
of instantiating the scheme.
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Correctness is obvious by inspection. Special soundness comes from the fact that the function
is flexibly one-way. Indeed, the extractor Σ.Ext, on input x,R, c, s, c′, s′, works as follows. It sets
x′ ← s · (s′)−1(= zc−c

′
). Next, it sets d← c− c′ ∈ K where (c− c′) 6= 0 in K. The extractor outputs

(x′, d). Clearly such a couple contradicts the flexible one wayness of the function as Fκ(x′) =
Fκ(zd) = yd. Honest verifier zero knowledge can be proved as follows. The simulator, on input
(x = 〈y, Fκ〉, c), chooses a random s ∈ Xκ and sets R ← Fκ(s)y−c. The output is (R, s). Clearly
Σ.Ver(x,R, c, s) = 1 and the probability distribution of (R, c, s) is identical to that obtained by
running the real algorithms.

6.1 Efficient Batch Execution of Sigma Protocols

In this section we present a generalization of the above Sigma protocol to the case in which the
statement being proven consists of multiple values x ← 〈y1, . . . , y`, Fκ〉, while the witness is the
corresponding zi such that Fκ(zi) = yi for i = 1, . . . , `.

A naive approach would be to compose the original Sigma protocol in parallel ` times. In other
words the prover would send over ` commitments and the verifier would reply with ` challenges -
one per identity. Note that this scheme has a communication and computation cost that is ` times
the cost of the original protocol. A possible improvement would be to use the same challenge for all
rounds, and apply batch verification techniques (such as the ones in [6]) to the last verification step.
Even with these improvements, the communication and computation cost of the whole scheme would
still be higher by a factor of ` (the prover would still have to send and compute ` commitments).

Following [22] we propose a more efficient scheme where the prover sends one commitment
and the verifier sends one challenge across all identities. The prover’s response is generalized from
a degree one polynomial to a degree ` polynomial formed from the ` secret keys. In [22] this
approach was applied to the Schnorr’s protocol [41]. Using our abstraction of algebraic OWFs, we
generalize this approach to the entire family of Sigma protocols described above. In particular for
the instantiation of Algebraic OWP based on Factoring/RSA, we obtain an efficient batch execution
of the Guillou-Quisquateur protocol [27], which was left as an open problem in [22].

We now describe our protocol Batch-Sigma:

– Σ.Setup(1λ,R) It runs κ← Gen(1λ). Next it chooses at random ` values zi ∈ Xκ and computes
Fκ(zi) = yi. The statement is set as x← 〈y1, . . . , y`, Fκ〉, while the witness is 〈z1, . . . , z`〉.

– Σ.Com(x; r)→ R On input x and random coins r in RndSp, outputs the first messageR← Fκ(r).
– Σ.Resp(x,w, r, c) → s Output s ← r ·

∏`
i=1 z

ci
i ∈ Xκ where ci is computed over the ring K

defined by (Gen, F ).
– Σ.Ver(x,R, c, s)→ 0/1 On input R ∈ Yκ, c ∈ ChSp and s ∈ Xκ, outputs 1 if Fκ(s) = R ·

∏`
i=1 y

ci
i

or 0 otherwise.

Concretely, to support the batch verification of ` statements, we need an algebraic OWP with a
ring K of size at least `+ 18. Correctness and Honest verifier zero knowledge can be proven as for
the single-statement case. Special soundness clearly does not hold, as two transcripts with the same
commitment and two distinct challenges do not yield a sufficient number of equations from which
to extract the ` witnesses. What we are able to prove, however, is that Batch-Sigma is a proof of
knowledge, i.e. it is possible to extract the witness from a prover that succeeds with a sufficiently
high probability.

8 This is due to the fact that we need at least ` + 1 distinct values cj ∈ K in order for our Proposition 1 to hold.
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Theorem 7. Batch-Sigma is a proof of knowledge of 〈z1, . . . , z`〉.

Proof. A fraudulent prover can cheat by guessing the correct challenge c ahead of time and sending
the commitment R such that the verification equation is satisfied for a randomly chosen s. The
probability of success for this attack is at most 2−t where t = |ChSp|.

In the proposition to follow we show that if a prover has probability of success significantly
larger than 2−t, then all the witnesses can be ”extracted” from such a prover. The basic idea of
the proof is that if we can generate `+ 1 transcripts with the same commitment R, then we have
enough relationships to compute all the witnesses.

In [22] these relationships were simple linear equations and the witnesses could be easily com-
puted by inverting the matrix of such a system of equations (which is invertible being a Van der
Monde matrix). In our case the proof is complicated by the fact that the inverse matrix may not
be efficiently computable, yet using the ring-homomorphism property of the underlying algebraic
one-way function we will be able to extract the witnesses.

Let us introduce some notation. Let P’ (the fraudulent prover) be any PPT Turing machine
that runs on the common input of Batch-Sigma. Let RP denote the random string of P’. Let success
bit S(RP, c) be 1 if P’ succeeds with RP on challenge c and 0 otherwise. The success rate S is
defined to be the average over S(RP, c) where RP and c are chosen uniformly at random. Let T be
the running time of P’, note that we may assume T to be independent of RP and c since limiting
the time to twice the average running time for successful pairs RP and c decreases the success rate
by at most a factor of 2.

We postpone the proof of the following proposition.

Proposition 1. If the success rate S of P’ is greater than 2−t+1 then there exists a PPT Tur-
ing machine TE (transcript extractor) which, given black box access to P’, runs in expected time
O(d log d · T/S) and computes ` + 1 transcripts of the form R, cj , sj where all the cj’s are distinct
and the transcripts satisfy the verification equation

Fκ(sj) = R ·
∏̀
i=1

y
cij
i

Note that if S is non-negligible and T is polynomial, the running time of TE is polynomial.
Therefore we run TE to obtain the above `+ 1 transcripts. Consider the Van der Monde matrix

C = (cij) and let ∆ be an integer such that ∆ · det(C) is also an integer. By using simple linear

algebra ”in the exponent” we can then recover the values z∆i .
We now continue as in the case of the basic Sigma protocol. Compute d ∈ K such that d∆ = 1K

(remember that the challenge space ChSp from where the ci are chosen is set to K). Of course such
a value is guaranteed to exist as long as ∆ 6= 0, moreover it can be computed efficiently using the
extended euclidean algorithm. Finally, for all i, it runs Eval on input (κ, yi, z

∆
i , ∆, d), thus getting

z∆di = zi which is the required witness.

To finish the proof of Theorem 7 we need to prove Proposition 1.

Proof. Algorithm TE runs as follows:

1. It picks an RP at random and simulates P’ using a random challenge, say c1. If P’ fails then it
repeats step 1 with a new RP . Otherwise it goes to step 2.
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2. Let u be the number of iterations of Step 1. Now hold RP fixed and probe up to (8u)(` +
1) · log(` + 1) random c’s while rewinding P’ each time to the point after which he sent the
initial commitment R. The goal is to find a total of `+ 1 distinct c’s, c1, c2 . . . c`+1 on which P’
succeeds. If it fails in this attempt to find `+ 1 c’s it then goes back to step 1.

To analyze the running time of TE, we need some additional definitions and two auxiliary
results. Define S(RP ) to be the fraction of c for which S(RP, c) is 1. Define RP to be “good” if
S(RP ) is at least S/2. Let #RP denote the size of the set of all RP and #c the size of the set of
all c. Note that #c = 2t+log `.

Lemma 3. With probability at least 1/2, TE picks a good RP in step 1.

Proof. Note that the mean of S(RP ), over allRP chosen uniformly at random, is S. NowΣRPS(RP ) =
#RP ·S. But since Σnot-goodRPS(RP ) ≤ #RP ·S/2 it follows that ΣgoodRPS(RP ) > #RP ·S/2.

In other words the set of RP, c for which S(RP, c) is 1 and RP is good is at least half the entire
set for which S(RP, c) is 1. Hence, with probability at least 1/2, RP is good.

Lemma 4 (Coupon collector lemma). With probability at least 1/2, for a good RP , KE will
succeed in finding a total of `+ 1 c’s, c1, c2 . . . c`+1 on which P’ succeeds, using up to (4/S)(`+ 1) ·
log(`+ 1) random probes.

Proof. Fix the good RP . Observe that since RP is good there must be greater than S/2 c’s such
that S(RP, c) is 1, i.e. there must be greater than 2−t · 2t+log` = ` successful c’s. Let there be
k ≥ S/2 · 2t+log` ≥ `+ 1 successful c’s (i.e. c’s for which S(RP, c) is 1). Then the expected number
of probes to find `+ 1 distinct successful c’s is

2t+log `

(
1

k
+

1

k − 1
+ . . .+

1

k − `

)
.

Since k ≥ S/2 · 2t+log` the expected number of probes is at most

2k

S

(
1

k
+

1

k − 1
+ . . .+

1

k − `

)
which is at most (2/S)(`+ 1) log(`+ 1). Hence with probability at least 1/2, TE will succeed using
at most twice the expected number of probes.

We now return to the proof of Proposition 1. First observe that the expected number of probes
in step 1 is 1/S. Next, observe that, since the expectation of u is 1/S, with probability at least
1/2, u ≥ (1/2)(1/S). By Lemma 3 RP is good with probability 1/2. Hence with probability at
least 1/4, we have that both u ≥ (1/2)(1/S) and RP is good. Then by Lemma 4, TE will succeed
in step 2 with probability at least 1/2. Since each probe takes O(T ) steps it follows that with
probability at least 1/8, TE succeeds in O(` log ` · T/S) steps. Hence the expected time is bounded
by ((1/8) + (7/8)(1/8) + (7/8)(7/8)(1/8) + . . .) ·O(` log ` · T/S) = O(` log ` · T/S) steps.
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A A linearly-homomorphic signature secure in the standard model for a
bounded number of datasets

In this section we show that by requiring specific properties on the hash function H, the signature
scheme described in the previous section can be proven secure without random oracles, but in
a weaker security model in which the adversary is allowed to ask signatures on only Q different
datasets, where Q is a (pre-specified) number. We call this notion Q-time security (similarly to the
Q-time security of regular signatures). The basic idea for doing the proof is to require H to be a
weak programmable hash function, following the definition proposed by Hofheinz, Jager and Kiltz
in [28]. However, for some technical details, we extend the original definition as we describe below.

Weak Programmable Hash Functions. A group hash function H for G consists of two algo-
rithms (PHF.Gen,PHF.Eval) such that: PHF.Gen(1λ) takes as input the security parameter λ and
outputs a description of the function K (which also contains a description of the input space I);
PHF.Eval(K,X) given the key K and a value X ∈ I evaluates the function HK(X) ∈ G.

Definition 8 (Weak Programmable Hash Functions [28]). A group hash function H =
(PHF.Gen,PHF.Eval) is a weak (m,n, γ, η)-programmable hash function (weak PHF, for short)
if there exist efficient trapdoor generation PHF.TrapGen and trapdoor evaluation PHF.TrapEval al-
gorithms such that:

1. PHF.TrapGen(1λ, g, h,X1, . . . , Xm) is given the security parameter λ, two generators g, h ∈ G,
and m input values X1, . . . , Xm ∈ I, and it outputs a key K and a trapdoor t.

2. For all g, h ∈ G and X1, . . . , Xm ∈ I, the keys K
$← PHF.Gen(1λ) and (K ′, t)

$← PHF.TrapGen(1λ,
g, h,X1, . . . , Xm) are statistically γ-close.

3. Given X ∈ I, PHF.TrapEval(t,X) produces two integers aX , bX ∈ Z such that PHF.Eval(K,X) =
gaXhbX .

4. For all X1, . . . , Xm ∈ I, all (K, t)
$← PHF.TrapGen(1λ, g, h,X1, . . . , Xm), and any Z1, . . . , Zn ∈

I such that Zi 6= Xj for all i, j, it holds

Pr[aX1 = · · · = aXm = 0 ∧ aZ1 , . . . , aZn 6= 0] ≥ η

where (aXi , bXi) = PHF.TrapEval(t,Xi), (aZj , bZj ) = PHF.TrapEval(t, Zj) and the probability is
taken over the random coins in the generation of (K, t).

Hofheinz, Jager and Kiltz proposed a refinement of the notion of programmable hash functions,
called “evasively PHF” [28]. Roughly speaking, a PHF is evasively secure if in the property 4, the
inequality aZi 6= 0 is replaced by gcd(aZi , e) = 1), for some prime number e. In what follows, we
extend that definition and defining weak PHFs that are K-evasively with respect to a finite field K.

Definition 9 (Weak K-Evasively Programmable Hash Functions). Let K be a finite ring.
We say that a group hash function is a K-evasively weak (m,n, γ, η)-programmable hash function if it
satisfies all four properties of Definition 8 except that in property 4 the inequalities aZ1 , . . . , aZn 6= 0
are required to hold over the finite ring K, instead of Z.
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For us, K will usually be any finite ring of the form Ze where e ≥ 2 is a prime number. In this
sense, this definition is almost the same as the one by Hofheinz et al., except that we do not ask
any specific requirement on the size of the prime e (in contrast, they require |X| < e ≤ |G|).

Finally, for the sake of our application, we define an additional property of a group hash function
H, which is a special form of m-wise independence.

Definition 10 (m-wise Independent Group Hash Functions). Let K be a finite ring. A group
hash function H = (PHF.Gen,PHF.Eval) is m-wise independent for K if there exist efficient trapdoor
generation PHF.TrapGen and trapdoor evaluation PHF.TrapEval algorithms such that:

1. PHF.TrapGen(1λ, g, h) is given the security parameter λ, two generators g, h ∈ G, and it outputs
a key K and a trapdoor t.

2. For all g, h ∈ G, the keys K
$← PHF.Gen(1λ) and (K ′, t)

$← PHF.TrapGen(1λ, g, h) are statisti-
cally close.

3. Given X ∈ I, PHF.TrapEval(t,X) produces two integers aX , bX such that PHF.Eval(K,X) =
gaXhbX .

4. For all g, h ∈ G, all (K, t)
$← PHF.TrapGen(1λ, g, h), for all distinct X1, . . . , Xm ∈ I, and ∀d1,

. . . , dm ∈ K, it holds

Pr[aX1 = d1 ∧ · · · ∧ aXm = dm] =
1

|K|m

where (aXi , bXi) = PHF.TrapEval(t,Xi) and the probability is taken over the generation of (K, t).

An instantiation for the group of quadratic residues QRN . Hofheinz et al. already
propose in [28] a weak evasively PHF for the group QRN of quadratic residues. Here we show that
the same construction, with a small adaptation, satisfies our K-evasively extension for all finite
rings Ze for e ≥ 2 prime.

The construction is the following:

– PHF.Gen(1λ) outputs K = (h0, . . . , h`) where hi
$← QRN for i = 0 to m.

– PHF.Eval(K,X): on input a key K and X ∈ {0, 1}l, compute

HK(X) =
∏̀
j=1

hX
i

i

where X is interpreted as an integer in the canonical way.

Our adaptation consists into restricting the input space I to being the set of integers X of a
certain fixed length l such that X = 0 over K if and only if X = 0 over Z. We will show later in
this section that given any integer X it is possible to map X to another integer X ′ such that X ′

has the desired property, i.e., X ′ = 0 over K iff X = 0 over Z.

Theorem 8. Let e be a prime number and let K be the finite ring Ze. The construction above is a
weak K-evasively (`, 1, γ, η)-programmable hash function for the group QRN of quadratic residues
modulo N = pq, where N is a Blum integer, product of safe primes, γ = (`+ 1)/

√
N and δ = 1.

Proof. The proof of this theorem is essentially the same as the proof given in [28] except for a few
observations that are needed to prove that it is K-evasive. For completeness, we recall most of the
proof pointing out the main differences.
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– The trapdoor generation algorithm PHF.TrapGen(1λ, g, h,X1, . . . , X`) samples random values

β0, . . . , β`
$← {1, . . . , N2} and computes the integer coefficients α0, . . . , α` of the polynomial

α(w) =
∑̀
j=0

αi · wi =
∏̀
j=1

(w −Xj)

Then it outputs K = (h0, . . . , h`) where hi = gαihβi , for i = 0 to m, and the trapdoor t = (α0,
β0, . . . , α`, β`).
We defer the reader to [28] for the proof that the trapdoor key K is statistically (`+1)/

√
N -close

to the real one.
– PHF.TrapEval(t,X) outputs aX =

∑`
j=0 αi ·Xi, bX =

∑`
j=0 βi ·Xi.

It is easy to see that the trapdoor evaluation algorithm is correct. To prove that it is K-
evasive for K = Ze we first observe that by definition of the polynomial α(w) we have that
aX1 = · · · = aX` = 0. Next, for Z 6= Xi for all i = 1, . . . , `, we have that aZ = α(Z) 6= 0 over the
integers. It is left to observe that aZ 6= 0 even over the ring K. This is true as all values Xi and
Z are assumed to be zero over K only if zero over Z, hence it holds α(Z) =

∏`
j=1(Z −Xj) 6= 0

over K with probability η = 1.

Then we prove that for the same group hash function there are trapdoor algorithms so that it
can be shown to satisfy our `-wise independence property.

Theorem 9. Let e ≥ 2 be prime and let K will be the finite ring Ze. The construction above is a
`-wise independent group hash function for the group QRN of quadratic residues modulo N = pq,
where N is a Blum integer, product of safe primes.

Proof. The first part of the proof is similar to that of Theorem 8. Recall that K = Zµ, where µ = es

is a prime power. We distinguish between the two cases, when ` ≤ e and when ` > e.
For ` ≤ e we show the following algorithms.

– The trapdoor generation algorithm PHF.TrapGen(1λ, g, h) samples random values α0, . . . , α`
$←

K, β0, . . . , β`
$← {1, . . . , N2} and outputs K = (h0, . . . , h`) where hi = gαihβi , for i = 0 to `,

and the trapdoor t = (α0, β0, . . . , α`, β`).
By the same argument as in [28], the key K generated by the trapdoor algorithm is statistically
(`+ 1)/

√
N -close to the real one.

– PHF.TrapEval(t,X) outputs aX =
∑`

j=0 αi ·Xi, bX =
∑`

j=0 βi ·Xi.
To see that the function is `-wise independent we observe that: (1) given the key K produced by
PHF.TrapGen, the coefficients αi of the polynomial α(w) are information theoretically hidden.
and (2) when α(w) is reduced over the finite ring K (e.g., it is reduced (mod e)) it is well
known that the evaluation of the polynomial on up to ` distinct points has the desired `-wise
independence property. In particular, this holds in our case as we assume that the input space
is restricted to values X such that X = 0 (mod e) if and only if X = 0 over the integers.

In the case when ` > e, we can use the above algorithms with some small changes. First, we
define K′ to be the ring Zes′ where s′ is the smallest integer such that es

′
> `. Second, the trapdoor

generation algorithm PHF.TrapGen(1λ, g, h) is changed so that the exponents αi are now taken
uniformly at random in K′. Proceeding as in (2) above but using K′ instead of K, it follows that
the value α(w) is uniformly distributed over K′. Hence, if we define aX = α(X) mod e we get aX
to be uniformly distributed over K = Ze, which completes the proof.
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Finally, before proving the security of our linearly-homomorphic signature scheme using weak
PHFs, we show that our restriction on the input space of the function H can be efficiently realized
via the following function.

Proposition 2. Let X ∈ Z be an integer between 0 and n, and let e ≥ 2. Let n′ be the smallest
multiple of e greater than n. We define the function fe,n′(x) as follows:

– if x = 0, set fe,n′(x) = 0 end
– else if x 6= 0 mod e set fe,n′(x) = x end

else express x = ake
k + ak−1e

k−1 + . . . a1e
– if a1 6= 0 set f(x) = n′ + (ake

k−1 + . . . a1) end
else n′ = n′ + n′/e, y = ake

k−1 + . . . a1 run fe,n′(y)

Then we claim that the function f(X) defined above satisfies the following properties:

1. f(x) ≡ 0 (mod e) iff x = 0 (over Z)
2. f(x) is injective
3. f(x) ∈ {0, . . . , 2n′}

Proof. 1. To see x = 0 ⇒ f(x) ≡ 0 (mod e), this follows by definition, i.e., f(0) = 0. To see
f(x) ≡ 0 (mod e) ⇒ x = 0, observe that f(0) = 0, and for any x 6= 0, this follows from the
injectivity property (see below).

2. It is obvious that for x 6= 0 mod e there cannot be collisions. Now let A = {a|a = 0 mod e}.
For contradiction let’s assume that f(x) = f(x′), where x, x′ ∈ A. If x 6= x′ then without loss
of generality x < x′. Let

x = ake
k + . . .+ a1e, x′ = bne

n + . . .+ b1e.

The coefficient ai and bi uniquely define the numbers x and x′, since the polynomial represen-
tation of any number on a prime base is unique. For the case when a1 6= 0, we claim that x < x′

implies that f(x) < f(x′). We have that f(x) = ake
k−1 +ak−1e

k−2 + . . .+a2e+a1. Now observe
that f(x′) ≥ bkek−1 + bk−1e

k−2 + . . .+ b2e+ b1 by the construction of the function. Since x < x′

it follows that

ake
k−1 + ak−1e

k−2 + . . .+ a2e+ a1 < bke
k−1 + bk−1e

k−2 + . . .+ b2e+ b1

hence f(x) < f(x′).

The tricky case is when a1 = 0 in which case the function will need at least an additional step
to converge to the final value f(x). The function firstly calculates

y = ake
k−1 + ak−1e

k−2 + . . .+ a2e+ a1,

practically same as before, only now we assumed a1 = 0 (which forces y = 0 mod e) hence y
cannot be assigned to f(x). To calculate f(x) the function is called again on y, but this time
we replace n′ with N ′ = n′ + n′

e . This replacement of n′ forces f(x) > N ′.

Now if b1 6= 0 then by the explanation above f(x′) will be mapped in the area between n′ + n′

e .
This area is big enough to fit all the multiples of e less than n′ since there are n′/e of them. In

35



this case N ′ > f(x′), and by above f(x) > N ′, hence f(x) > f(x′) and we are done. If b1 = 0
the function needs at least one more step to calculate f(x′). The function will first calculate

y′ = bke
k−1 + bk−1e

k−2 + . . .+ b2e+ b1

and call the function again on y′, replacing n′ with N ′ = n′ + n′

e . Since x < x′ implies y < y′,
and the function is now called on y and y′, by induction we deduce that f(x) < f(x′). Final
thing to check is that the algorithm indeed concludes in finite number of steps, which is easily
seen since at every step we reduce the powers of the representations, hence it has to hit one of
the end points.

Hence we see that in all the cases above we arrive at f(x) < f(x′) or f(x) > f(x′). This
contradicts the initial assumption of f(x) = f(x′) and the claim follows.

3. The element that gets mapped further to the right, is the one that takes the highest number of
steps to be calculated. That element is ei where i is the largest integer such that ei < n. See
that f(ei) = n′+n′/e+n/e2 + . . .+n′/ei+ 1. In fact the range of all but n′/e2 multiples of e lie
on [n′, n′+n′/e], the rest but n′/e3 multiples of e lie on [n′+n′/e, n′+n′/e2], and so on. So if k
is the smallest k such that n′ < ek then the size of the range has size less than

∑k
i=0 n

′/ei < 2n′.
Hence the range of f is contained in {0, . . . , 2n′}.

Security of the linearly-homomorphic signature in the standard model. Once we have
provided all relevant definitions of programmable hash functions we can now show that the linearly-
homomorphic signature scheme of Section 5 is Q-time secure in the standard model. Precisely, we
consider the scheme in which the hash function H(τ, i) is defined as HKi(τ) for i = 1, . . . ,m, where
(K1, . . . ,Km) are m independent instances of weak K-evasive programmable hash functions for Xκ,
where the group Xκ and the finite field K are those defined the by the algebraic TDP.

Theorem 10. If (Gen, F ) is a family of algebraic TDP and H is a group hash function for Xκ such
that H is K-evasively weak (Q, 1, γ, η)-programmable and H is Q-wise independent for K (where
Xκ and K are the group and the finite field defined by F ), then the linearly-homomorphic signature
scheme described above is Q-time secure.

Proof. The proof of the theorem is similar to that of the random oracle proof, except that here
we use the programmability of the group hash function. Assume there exists an efficient adversary
A that has non-negligible probability ε of winning the unforgeability game by querying at most Q
datasets to the signing oracle. Let (τ∗,M∗, σ∗, f∗) be the valid forgery returned by the adversary,
i.e., such that Verify(VK, τ∗,M∗, σ∗, f∗) = 1. According to whether the forgery is of Type 1 or Type
2, we distinguish two types of adversaries. For every such adversary A we describe a simulation in
which we reduce A to an algorithm B that breaks the flexible one-wayness of the algebraic TDP
with non-negligible probability.

Type 1. B takes as input (κ, ρ) where κ is the description of an algebraic TDP Fκ : Xκ → Xκ
and ρ ∈ Xκ. The goal of B is to find values (x, d) ∈ Xκ × K such that Fκ(x) = ρd and d 6= 0. Our
simulator B proceeds as follows.

Key Generation. B chooses in advance all tags τ1, . . . , τQ
$← {0, 1}λ that it will use in the signing

queries. Let T be the set of all such tags. B chooses µ
$← {1, . . . ,m} and y0, y1, . . . , yn

$← Xκ
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uniformly at random. For j = 1 to n, it sets gj = Fκ(yj), and u = Fκ(y0). Then, for i = 1 to m,

i 6= µ it chooses random generators ρi = Fκ(ωi) and hi = Fκ(δi) for ωi, δi
$← Xκ, and it sets ρµ =

ρ and hµ = Fκ(δµ) for δµ
$← Xκ. It defines X1 = τ1, X2 = τ2, . . . , XQ = τQ, and runs (Ki, ti)

$←
PHF.TrapGen(1λ, ρi, hi, X1, . . . , X`). It gives the public key VK = (κ, u, g1, . . . , gn,K1, . . . ,Km)
to the adversary. We notice that by the property of the PHF, the distribution of the simulated
public key is negligibly close to that generated by the real key generation algorithm.

Signing queries. Let (F, i,M) be a signing query. If this is the first query with filename F ,
then B takes the next unused tag τ from T . Otherwise, let τ be the tag already chosen for

F . Let X = τ , and (a
(i)
X , b

(i)
X )←PHF.TrapEval(Ki, X). By correctness of PHF.TrapEval it holds

HKi(X) = ρ
a
(i)
X
i h

b
(i)
X
i = Fκ(δ

b
(i)
X
i ) as a

(i)
X = 0 (with probability 1) by property 4 of the PHF. For

every i ∈ {1, . . . ,m} (in both cases i = µ or i 6= µ), B can easily simulate the signature by

picking s
$← K at random, and computing x = δb

(i)
X ys0

∏n
j=1 y

Mj

j (in particular, for i = µ, the
exponent of ρµ = ρ is 0). It is easy to see that σ = (x, s) is correctly distributed.

Forgery. Let (τ∗,M∗, σ∗, f∗) be the forgery returned by A, and let T ′ = {τ1, . . . , τQ′} be the set
of all tags used in the signing queries. Notice that T ′ ⊆ T , |T \ T ′| ≤ Q and that all unrevealed
tags are completely unpredictable. By our assumption in this case of the proof, this is a Type
1 forgery, i.e., τ∗ /∈ T ′. Moreover, it must also be f∗ 6= 0m, i.e., there must exist an index
µ∗ ∈ {1, . . . ,m} such that f∗µ∗ 6= 0.
If f∗µ = 0 or τ∗ ∈ T \ T ′, then B aborts the simulation and fails. Otherwise, it continues
the simulation. Notice though that Pr[µ = µ∗] = 1/m (as µ is perfectly hidden), and that
Pr[τ∗ ∈ T \ T ′] ≤ Q/2λ. Therefore, B does not abort with probability at least 1/m(1−Q/2λ).
Let Z = τ∗. By the validity of the forgery we have:

Fκ(x∗) =

m∏
i=1

HKi(τ
∗)f
∗
i · us∗

n∏
j=1

g
M∗j
j

=
m∏

i=1,i 6=µ
Fκ(ω

a
(i)
Z
i · δb

(i)
Z
i )f

∗
i (Fκ(δ

b
(µ)
Z
µ ) · ρa

(µ)
Z )f

∗
µFκ(y0)

s∗
n∏
j=1

Fκ(yj)
M∗j

Thus, by the homomorphic property of Fκ we obtain:

Fκ

 x∗∏m
i=1,i 6=µ(ω

a
(i)
Z
i · δb

(i)
Z
i )f

∗
i · δb

(µ)
Z f∗µ
µ · ys∗0

∏n
j=1 y

M∗j
j

 = ρa
(µ)
Z f∗µ

Therefore, B can output U =

 x∗∏m
i=1,i 6=µ(ω

a
(i)
Z
i ·δ

b
(i)
Z
i )f

∗
i ·δ

b
(µ)
Z

f∗µ
µ ·ys∗0

∏n
j=1 y

M∗
j

j

 and d = a
(µ)
Z f∗µ (which

is 6= 0 over K, as so are a
(µ)
Z and f∗µ by assumption). If A outputs a Type 1 forgery with non-

negligible probability ε, then B breaks the security of the algebraic TDP with non-negligible
probability ε

m(1−Q/2λ).

Type 2. For a Type 2 adversary we have that τ∗ = τj for some j ∈ {1, . . . , Q}, and M∗ 6=
M̂ = f∗(M (1), . . . ,M (m)) where (M (1), . . . ,M (m)) are the messages of the dataset with tag τj . Let
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σ̂ = (x̂, ŝ) = Hom.Eval(VK, τj , f
∗,σ,M , 1m) be the signature obtained by correctly applying the

Hom.Eval algorithm on the messages (and signatures) of the dataset τj with the function f∗. Since
M∗ 6= M̂ , there must exists an index ν ∈ {1, . . . , n} such that M∗ν 6= M̂ν . Then we distinguish the
following two mutually exclusive cases:

(a) s∗ − ŝ+M∗ν − M̂ν 6= 0
(b) s∗ − ŝ+M∗ν − M̂ν = 0, i.e., s∗ − ŝ 6= 0

where all inequalities are intended over K.
We provide different simulations for the two cases.

Type 2.a B takes as input (κ, ρ) where κ is the description of an algebraic TDP Fκ : Xκ → Xκ
and ρ ∈ Xκ. The goal of B is to find values (x, d) ∈ Xκ × K such that Fκ(x) = ρd and d 6= 0. Our
simulator B proceeds as follows.

Key Generation. B chooses ν
$← {1, . . . , n} and y1, . . . , yn

$← Xκ uniformly at random. For j = 1
to n, j 6= ν, it sets gj = Fκ(yj), gν = Fκ(yν) · ρ, and u = ρ. Then, for i = 1 to m, it chooses

random generators hi = Fκ(δi) for δi
$← Xκ, and it runs (Ki, ti)

$← PHF.TrapGen(1λ, ρ, hi). It
gives the public key VK = (κ, u, g1, . . . , gn,K1, . . . ,Km) to the adversary. We notice that by the
property of the PHF, the distribution of the simulated public key is negligibly close to that
generated by the real key generation algorithm.

Signing queries. Let (F, i,M) be a signing query. If this is the first query with filename F , then

B chooses a new tag τ
$← {0, 1}λ. Otherwise, let τ be the tag already chosen for F . Let X = τ ,

(a(i), b
(i)
X )←PHF.TrapEval(ti, X). The simulator sets s = −(b

(i)
X +Mν) ∈ K, and uses the flexibly

one-wayness property of the algebraic TDP to compute the pre-image ρ̃ = F−1κ (ρs+b
(i)
X +Mν ) (this

can be done efficiently as s+ b
(i)
X +Mν is 0 over K). Then it sets x = δi

∏n
j=1 y

Mj

j ρ̃ and returns
σ = (x, s). It is not hard to check that the signature is distributed correctly. In particular, it

holds Fκ(x) = H(τ, i)·us
∏n
j=1 g

Mj

j and s is uniform in K as so is b
(i)
X by the Q-wise independence

property of H.
Forgery. This part of the simulation is identical to that in Theorem 6.

Type 2.b This case of the proof is obtained by applying the same changes suggested in the
corresponding case of the proof of Theorem 6 to the simulation of Type 2.a described above.
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