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Abstract

As an ISO/IEC international standard, Camellia has been used variouscryptographic applications. In this paper, we
improve previous attacks on Camellia-192/256 with key-dependent layersFL/FL−1 by using the intrinsic weakness
of keyed functions. Specifically, we present the first impossible differential attack on 13-round Camellia with 2121.6

chosen ciphertexts and 2189.9 13-round encryptions, while the analysis for the biggest number of rounds in previous
results on Camellia-192 worked on 12 rounds. Furthermore, we successfully attack 14-round Camellia-256 with 2122.1

chosen ciphertexts and 2229.3 14-round encryptions. Compared with the previously best known attack on 14-round
Camellia-256, the time complexity of our attack is reduced by 28.9 times and the data complexity is comparable.
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1. Introduction

The 128-bit block cipher Camellia was jointly developed by NTT and Mitsubishi in 2000 [1]. It supports three
kinds of key sizes, i.e., 128 bits, 192 bits and 256 bits. For simplicity, they can be usually denoted as Camellia-128,
Camellia-192 and Camellia-256, respectively. Camellia adopts the basic Feistel structure with two key-dependent
transformations inserted every six rounds. The goals for such a design are to provide non-regularity across rounds
and to thwart future unknown attacks. In 2002, Camellia was selected as one of the CRYPTREC e-government
recommended ciphers. In 2003, it was recommended in NESSIE block cipher portfolio. Finally, it was adopted as an
international standard by ISO/IEC [4].

So far, a lot of researchers have used various methods to attack Camellia such as linear cryptanalysis, differential
cryptanalysis, higher order differential attack, impossible differential attack and so on. Among them, most attacks
involved in reduced-round Camellia withoutFL/FL−1 and whitening layers [5, 6, 7, 11, 14, 15, 16, 17, 18], only
three attacks focused on the security of reduced-round Camellia with FL/FL−1 and whitening layers [3, 9, 10], and
four attacks analyzed the security of reduced-round Camellia with FL/FL−1 layers [8, 13, 2, 12]. For Camellia with
FL/FL−1 layers, Liet al. attacked 12-round Camellia-192 with 2120.1 chosen plaintexts and 2184 encryptions and 14-
round Camellia-256 with 2120 chosen ciphertexts and 2250.5 encryptions [8], lvet al. mounted impossible differential
attacks on 10-round Camellia-128 with 2118 chosen plaintexts and 2118 encryptions and 11-round Camellia-192 with
2118 chosen plaintexts and 2163.1 encryptions [13], Baiet al. improved Li’s results to attack 12-round Camellia-192
with 2120.6 chosen plaintexts and 2171.4 encryptions and 14-round Camellia-256 with 2121.2 chosen plaintexts and 2238.2

encryptions [2], lvet al. gave higher-order meet-in-the-middle attacks on 10-roundCamellia-128 with 293 chosen
plaintexts and 2118.6 encryptions, 11-round Camellia-192 with 278 chosen plaintexts and 2187.4 encryptions as well as
12-round Camellia-256 with 294 chosen plaintexts and 2237.3 encryptions [12].

Impossible differential cryptanalysis was independently proposed by Knudsen and Biham. Unlike traditional
differential cryptanalysis, the adversary requires to construct two truncated differentials with probability one which
meet a contradiction in the middle. This new differential with probability zero is called an impossible differential. By
using this impossible differential, we can remove all wrong candidates of the secret key until the correct one is left.
Preprint submitted to Information Processing Letters June 5, 2012



Table 1: Summary of attacks on reduced-round Camellia-192/256 without the whitening layers

Key Size Rounds Attack Type Data Time(Enc) Memory (Bytes) Source
Camellia-192 11 Impossible DC 2118CP 2163.1 2141 [12]

11 HO-MitM 294CP 2180.2 2174 [13]
11 Impossible DC 2120.4CP 2121.7 2115.5 [2]
12 Impossible DC 2120.1CP 2184 2124.1 [8]
12 Impossible DC 2120.6CP 2171.4 2171.6 [2]
12 Impossible DC 2124.35CP 2148.5 2132.7 Section 3.1
13 Impossible DC 2121.6CC 2189.9 2101.6 Section 3.2

Camellia-256 12 HO-MitM 294CP 2237.3 2174 [13]
14 Impossible DC 2120CC 2250.5 2125 [8]
14 Impossible DC 2121.2CC 2238.2 2180.2 [2]
14 Impossible DC 2122.1CC 2229.3 2134.1 Section 4

DC: Differential Cryptanalysis; CP/CC: Chosen Plaintexts/Chosen Ciphertexts;
HO-MitM: Higher Order Meet-in-the-Middle Attack; Enc: Encryptions;

As one of the most powerful methods, impossible differential cryptanalysis is used to analyze the securities ofmany
block ciphers such as AES, CLEAFIA, ARIA, MISTY1 and so on.

In this paper, we improve previous attacks on Camellia-192/256 with two key-dependent layersFL/FL−1 by
using the intrinsic weakness of keyed transformations. We first attack 12-round Camellia-192 with 2124.35 chosen
plaintexts, 2148.5 12-round encryptions and 2132.7 bytes. Compared with the previously fastest known attack on12-
round Camellia-192, the time and memory complexities of ourattack are reduced by 222.9 times and 238.9 times and the
data complexity is comparable. Second, we further improve our result and derive the first attack on 13-round Camellia-
192 with 2121.6 chosen ciphertexts, 2189.9 13-round encryptions and 2101.6 bytes, while the analysis for the biggest
number of rounds in previous results on Camellia-192 workedon 12 rounds. Finally, we propose improved impossible
differential cryptanalysis of 14-round Camellia-256 with 2122.1 chosen ciphertexts, 2229.3 14-round encryptions and
2134.1 bytes, which is 28.9 times faster than previously best known attack on 14-round Camellia-256. In table 1, we
summarize our results along with the former known ones on Camellia-192/256.

The remainder of this paper is organized as follows. Section2 introduces some preliminaries. Section 3 gives a
chosen plaintext attack on 12-round Camellia-192 and a chosen ciphertext attack on 13-round Camellia-192. Section
4 presents an impossible differential attack on 14-round Camellia-256. Section 5 summarizes this paper.

2. Preliminaries

2.1. Some Notations

- P,C: the plaintext and the ciphertext;
- Li−1,Ri−1: the left half and the right half of thei-th round input;
- ∆Li−1,∆Ri−1: the left half and the right half of the input difference in thei-th round;
- kw1|kw2, kw3|kw4: the pre-whitening key and the post-whitening key;
- ki , kli(1 ≤ i ≤ 6): the subkey used in thei-th round and 64-bit keys used in theFL/FL−1 layers;
- Sr ,∆Sr : the output and the output difference of the S-boxes in ther-th round;
- X | Y,X ≪ j: the concatenation ofX andY, left rotation ofX by j bits;
- XL( n

2 ),XR( n
2 ): the left half and the right half of an-bit word X;

- Xi ,X{i, j}, X{i∼ j}: the i-th byte, thei-th and j-th bytes and thei-th to the j-th bytes ofX;
- Xi,X(i, j),X(i∼ j): the i-th bit, thei-th and j-th bits and thei-th to j-th bits ofX;
- ⊕,∩,∪: bitwise exclusive-OR (XOR), AND, and OR operations, respectively;
- 0(i), 1(i): consecutivei bits are zero or one.

2.2. The Block Cipher Camellia

Camellia [1] is a 128-bit block cipher. It adopts the basic Feistel structure with the key-dependent functions
FL/FL−1 inserted every 6 rounds. Camellia supports variable key sizes and the number of rounds depends on the
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key size, i.e., 18 rounds for a 128-bit key size and 24 rounds for 192/256-bit key sizes. The encryption algorithm of
Camellia can be expressed as follows:

1. L0|R0 = P⊕ (kw1|kw2),
2. Forr = 1 to Nr:

if r , 6k, wherek = 1, · · · ,Nr/6− 1, thenLr = Rr−1 ⊕ F(Lr−1, kr ), Rr = Lr−1.

elseL′r = Rr−1 ⊕ F(Lr−1, kr ), R′r = Lr−1; Lr = FL(L′r , klr/3−1), Rr = FL−1(L′r , klr/3);
3. C = (RNr ⊕ kw3)|(LRNr ⊕ kw4).

Here the round function includes an XOR operation with a round key, an nonlinear transformationS and a linear
functionP. Among it, the linear transformationP and its inverse functionP−1 are defined as follows:

z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8; y1 = z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8;

z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8; y2 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8;

z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8; y3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8;

z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7; y4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7;

z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8; y5 = z1 ⊕ z2 ⊕ z5 ⊕ z7 ⊕ z8;

z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8; y6 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8;

z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8; y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7;

z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7; y8 = z1 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8;

where (y1, y2, y3, y4, y5, y6, y7, y8) and (z1, z2, z3, z4, z5, z6, z7, z8) are the input and output ofP. The key-dependent
functionFL : (XL | XR, klL | klR) 7→ YL | YR, whereYR = ((XL ∩ klL) ≪ 1)⊕ XR,YL = (YR∪ klR) ⊕ XL.

Key Schedule of Camellia-192/256. The key schedule of Camellia applies a 6-round Feistel structure to derive
two 128-bit intermediate variablesKA andKB from 128-bit variablesKL andKR, and then all round subkeys can be
generated byKL,KR,KA andKB. For Camellia-192, the left 128-bit of the keyK is used asKL, and the concatenation
of the right 64-bit of the keyK and the complement of the right 64-bit of the keyK is used asKR. For Camellia-256,
the main keyK is separated into two 128-bit variablesKL andKR, i.e.,K = KL | KR.

2.3. 8-Round Impossible Differentials of Camellia
In [10], Liu et al. presented 8-round impossible differentials of Camellia with twoFL/FL−1 layers as follows:

Property 1. For an 8-round Camellia encryption with two FL/FL−1 layers inserted after the first and seventh rounds,
the input difference of the first round is(0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0) and the output difference of the eighth round
is (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) with a and b being nonzero bytes and a(1) = b(1) = a′(8) = b′(8) = 0. Four subkeys
kli(i = 1, · · · , 4) are used in two FL/FL−1 layers. If a′ and b′ satisfy the following equations:

a′(i) =

{

0, if kl(i+1)
1 = 0;

a(i+1), if kl(i+1)
1 = 1;

b′(i) =

{

0, if kl(i+1)
4 = 0;

b(i+1), if kl(i+1)
4 = 1;

for 1 ≤ i ≤ 7,

then(0|0|0|0|0|0|0|0,a|0|0|0|a′|0|0|0)98 (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) is an 8-round impossible differential of Camel-
lia with two FL/FL−1 layers (See Fig. 1).

For each value ofkl(2∼8)
1 |kl(2∼8)

4 , denote the corresponding impossible differential by∆i . LetA = {∆i |0 ≤ i ≤ 214−1}.
All differentials ofA can be divided into three cases, i.e., (1)a′ = b′ = 0, (2)a′ = 0 andb′ , 0, ora′ , 0 andb′ = 0,
(3) a′ , 0 andb′ , 0. Since property 1 only gave the existence of an 8-round impossible differential of Camellia for
any fixed key value, they proposed an attack strategy to recover the master key in the following:

The Attack Strategy. Select a differential∆i from A. Based on it, we mount an impossible differential attack on
reduced-round Camellia given enough plaintext pairs.

- If one subkey will be kept, we recover the secret key by the key schedule and verify whether it is correct by some
plaintext-ciphertext pairs. If success, halt this attack.Otherwise, try another differential∆ j( j , i) of A and perform a
new impossible differential attack.

- If no subkeys or more than one subkeys are left, select another differential ofA to execute a new impossible
differential attack.
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Figure 1: The Structure of 8-Round Impossible Differentials of Camellia

3. Impossible Differential Cryptanalysis of Reduced-Round Camellia-192

In this section, we mount a chosen plaintext attack on 12-round Camellia-192 from rounds 3 to 14 and a chosen
ciphertext attack on 13-round Camellia-192 from rounds 3 to15. Some previous skills such as building hash tables
and the early abort technique [11] are also adopted. Moreover, we make full use of the corresponding subkey for each
8-round differential ofA to reduce the guessed key space.

3.1. Impossible Differential Cryptanalysis of 12-Round Camellia-192

By setting three rounds at the top and one round at the bottom of 8-round differentials, we attack 12-round
Camellia-192 from rounds 3 to 14. We divide all differentials ofA into three cases to discuss our attack as follows.

Case 1 a′ = b′ = 0. The 8-round impossible differential is∆ = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0)→8 (b|0|0|0|0|0|0|0, 0|0|
0|0|0|0|0|0), wherea and b are non-zero bytes anda(1) = b(1) = 0. At this time, the corresponding subkey is
kl(2∼8)

1 |kl(2∼8)
4 = K(31∼37)

R |K(125∼127)
L |K(0∼3)

L = 0(14). See Figure 2.

1. Choose 29.5 structures of plaintexts. Each structure contains 2111 plaintexts with the form: (P(α1|α2|α3|α4|α5|x1|x2|

α6), α7|α8|α9|α10|α11|α12|α13|α14), whereα(1)
4 , x1, x2 are fixed andαi(1 ≤ i ≤ 14, i , 4), α(2∼8)

4 take all possible
values. Clearly, each structure can form 2221 plaintext pairs. In total, we collect 2230.5 plaintext pairs. The left
halves of these plaintext differences satisfyP(g1|g2 ⊕ a|g3 ⊕ a|a|g4 ⊕ a|0|0|g5 ⊕ a) with a andgi(1 ≤ i ≤ 5)
being nonzero bytes anda(1) = 0. Encrypt them and keep those pairs whose ciphertext differences have the form
(P(h|0|0|0|0|0|0|0),b|0|0|0|0|0|0|0) with b andh being nonzero bytes andb(1) = 0. The probability of this event is
about 2−113. Therefore, the expected number of remaining pairs is about2117.5.

2. GuessK3,3 = K(31∼38)
R . We have known the value ofK(1∼7)

3,3 from kl(2∼8)
1 . Thus we only guess one bitK(8)

3,3. For each
remaining pair, compute the value of (S3,3,S′3,3) and check whether the equation∆S3,3 = (P−1(∆PR))3 holds. If
∆S3,3 , (P−1(∆PR))3 for some pair, then this pair will be discarded. The probability is about 2−8. So the expected
number of remaining pairs is approximately 2109.5. Next guessK3,l for 2 ≤ l ≤ 8(l , 3). For every remaining
pair, calculate the value of (S3,l ,S′3,l). Discard those pairs satisfying∆S3,l , (P−1(∆PR))l . About 261.5 pairs will
be kept. Finally, guessK3,1 and calculate the inputs of the 4-th round.
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Figure 2: Impossible Differential Attack on 12-Round Camellia for Case 1

3. According toK4 = K(15∼63)
R |K(0∼14)

R and K14,1 = K(60∼63)
R |K(0∼3)

R , we compute the value of (S4,S′4,∆S14,1) for
every remaining pair. Keep those pairs satisfying these equations∆S4,1 = (P−1(∆PL))1, ∆S4,l = (P−1(∆PL))l ⊕

(P−1(∆PL))4(l = 2, 3, 5, 8) and∆S14,1 = (P−1(∆CR))1. The probability of this event is about 2−48. The expected
number of remaining pairs is approximately 213.5. For each remaining pair, calculate the inputs of the 5-th round.

4. GuessK5,1. Compute the value of (∆S5,1, (P−1(∆R4))1) for each remaining pair. If∆S5,1 = (P−1(∆R4))1 for some
pair, we remove the guessed subkey. The probability is about2−8. So the expected number of remaining wrong
subkey is approximately 265 × (1− 2−8)213.5

≈ 1 if ∆ is an 8-round impossible differential. When only one joint
subkey is kept, we recover the secret key and verify whether it is correct, else try another differential ofA.

Case 2 a′ = 0 and b′ , 0, or a′ , 0 and b′ = 0. We only attack a special scenarioa′ = 0 andb′(1∼7) = b(2∼8).
Others can be attacked in the similar way. At this time, the differential is∆′ = (0|0|0|0|0|0|0|0,a|0|0|0|0|0|0|0)→8

(b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0),wherea, b andb′ are non-zero bytes,b′(1∼7) = b(2∼8) anda(1) = b(1) = b′(8) = 0. The
corresponding subkey iskl(2∼8)

1 |kl(2∼8)
4 = K(31∼37)

R |K(125∼127)
L |K(0∼3)

L = 0(7)|1(7).

1. Select 2120.7 plaintexts which have the same structure as above Case 1. We totally collect 2230.7 plaintext pairs.
Encrypt them and obtain the corresponding ciphertext pairs. If the ciphertext difference of some pair does not
satisfy (P(h|0|0|0|h′|0|0|0), b|0|0|0|b′|0|0|0) with b, b′, h andh′ being non-zero bytes,b′(1∼7) = b(2∼8) andb(1) =

b′(8) = 0, we get rid of this pair. The expected number of remaining pairs is about 2125.7.
2. GuessK3,3,K3,2,K3,{4∼8} andK3,1 in turn. After this test, about 269.7 pairs will be kept.
3. We have knownK4 and K14,l(l = 1, 5). For each remaining pair, we compute the values of (S4,S′4) and

(S14,l,S′14,l). This step is similar to step 3 of Case 1. The expected numberof remaining pairs is about 213.7.
4. GuessK15,1 as before. If∆′ is an 8-round impossible differential, then the expected number of remaining wrong

subkeys is approximately 273 × (1 − 2−8)213.7
≈ 1. We only consider the scenario that one joint subkey will be

kept. At this time, we recover the secret key by the key schedule and verify whether it is correct. If this key is
correct, then we halt the attack, else try another differential ofA.

Case 3 a′ , 0 and b′ , 0. We only attack an examplea′(1∼7) = a(2∼8) andb′(1∼7) = b(2∼8). The differential is
∆′′ = (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0)→8 (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0),wherea, a′, b andb′ are non-zero bytes and
a(1) = b(1) = a′(8) = b′(8) = 0. The corresponding subkey iskl(2∼8)

1 |kl(2∼8)
4 = K(31∼37)

R |K(125∼127)
L |K(0∼3)

L = 1(14).

1. Select 2124.35 plaitexts including those plaintexts in Cases 1 and 2. Encrypt them to obtain the corresponding

ciphertexts. Guess 11 bits ofKR, i.e., K14,1 = K(60∼63)
R |K(0∼3)

R and K(1∼3)
14,5 = K(28∼30)

R . SinceK(31∼35)
R = 1(5),

we can get the value ofK(4∼8)
14,5 . Partially decrypt the ciphertexts to derive the inputs of the 14-th round. In-

sert these plaintext-ciphertexts into a hash table indexedby 121-bit value of (L13,{2∼4}, L13,{6∼8}, L(1)
13,1, L(8)

13,5,

L(2∼8)
13,1 ⊕ L(1∼7)

13,5 ,R13). Any two plaintext-ciphertexts in the same row of the hash table forms a pair satisfying
(∆L13,∆R13) = (b|0|0|0|b′|0|0|0, 0|0|0|0|0|0|0|0) with b(1) = b′(8) = 0 andb(2∼8) = b′(1∼7). Finally, the expected
number of remaining pairs is about 2126.7.
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Table 2: Time Complexity of Cases 3
Step Time Complexity (1-round encryptions)

1 2124.35 × 12+ 2124.35 × 211 = 2135.35

2 (2126.7 × 212 + 2118.7 × 215 + 2110.7 × 220 + 2102.7 × 225 + 294.7 × 233 + 286.7 × 241 + 278.7 × 257 × 2)× 2× 1
8 = 2137

3 278.7 × 2× 257 = 2136.7

4 (221.7 × 2× 265 + 273 × (1+ (1− 2−8) + · · · + (1− 2−8)213.7
)) × 1

8 ≈ 284.7

2. GuessK3,3 = K(31∼38)
R as before. After this test, about 2118.7 pairs will be kept. Next guessK3,7,K3,6,K3,2 in turn.

BecauseK(1∼5)
3,7 = K(4)

14,1|K
(5∼8)
14,1 = K(63)

R |K
(0∼3)
R , K(6∼8)

3,6 = K(1∼3)
14,1 = K(60∼62)

R andK(6∼8)
3,2 = K(1∼3)

14,5 = K(28∼30)
R , we only

guess partial bits of (K3,7,K3,6,K3,2). Keep these pairs satisfying∆S3,l = (P−1(∆PR))l(l = 7, 6, 2). The expected
number of remaining pairs is about 294.7. Finally, guessK3,i(i = 4, 8). For each remaining pair, we compute
(S3,i,S′3,i) and test whether∆S3,i is equal to (P−1(∆PR))i. If ∆S3,i , (P−1(∆PR))i for some pair, then this pair will
be discarded. About 278.7 pairs will be kept. GuessK3,{1,5} and compute the inputs of the 4-th round.

3. SinceK4 = (KR ≪ 15)R, we can calculate (S4,S′4) for each remaining pair. Keep these pairs satisfying these
equations∆S4,1 = (P−1(∆PL))1, ∆S(1)

4,8 = (P−1(∆PL))(1)
8 , ∆S4,i = (P−1(∆PL))i ⊕ (∆S4,8 ⊕ (P−1(∆PL))8)(2∼8)|0(i =

6, 7) and∆S4, j = (P−1(∆PL)) j ⊕ ∆S4,8 ⊕ (P−1(∆PL))8 ⊕ ∆S4,7 ⊕ (P−1(∆PL))7( j = 2, 3, 4, 5). The probability of
this event is approximately 2−57. So about 221.7 will be kept.

4. GuessK5,5. For each remaining pair, we calculate (S5,5,S′5,5) and check whether∆S5,5 is equal to (P−1(∆R4))5.
If ∆S5,5 , (P−1(∆R4))5 for one pair, this pair will be discarded. About 213.7 pairs will be kept. Next guessK5,1 as
before. If one subkey is left, we retrieve the master key, else try another differential ofA.

Complexity. We list the time complexity of each step for Case 3 in table 2. We find the time complexity of Case
3 is determined by steps 1 and 2, i.e., 2138.1 1-round encryptions. Similarly, we compute the time complexities of
Cases 1 and 2, i.e., 2116.5 1-round encryptions and 2124.5 1-round encryptions. Therefore, the whole time complexity
is approximately 214×2138.1× 1

12 = 2148.5 12-round encryptions. The data and memory complexities are2124.35 chosen
plaintexts and 2126.7 × 4× 24 = 2132.7 bytes.

3.2. Impossible Differential Cryptanalysis of 13-Round Camellia-192
By adding one round at the bottom of above 12-round Camellia-192, we mount a chosen ciphertext attack on

13-round Camellia-192 from rounds 3 to 15.

Case 1 a′ = b′ = 0. The 8-round differential and the corresponding subkey are∆ andkl(2∼8)
1 |kl(2∼8)

4 = K(31∼37)
R |K(125∼127)

L |

K(0∼3)
L = 0(14), respectively.

1. Choose 266.5 structures of ciphertexts. Each structure contains 255 ciphertexts with the form (P(α1|α2|α3|α4|α5|x1|

x2|α6),P(α7|x3|x4|x5|x6|x7|x8|x9)), whereαi(1 ≤ i ≤ 7, i , 4), α(2∼8)
4 take all possible values,x j(1 ≤ j ≤ 9), α(1)

4
are fixed. Clearly, each structure forms 2109 ciphertext pairs. We totally collect about 2175.5 ciphertext pairs
whose differences satisfy (P(h1|h2 ⊕ b|h3 ⊕ b|b|h4 ⊕ b|0|0|h5 ⊕ b),P(h|0|0|0|0|0|0|0)) with h, hi, b being non-zero
bytes andb(1) = 0.

2. Guess remaining 57 bits ofKR. For each structure, we encrypt plaintexts to derive the inputs of the 5-th round.
Insert these plaintext-ciphertexts into a hash table indexed by the value of (L(1)

4,1, L4,{2∼8}, (P−1(R4)){2∼8}). Any two
plaintexts lying in the same row of the hash table forms a pairwhose input difference in the 5-th round satisfies
(a|0|0|0|0|0|0|0,P(g|0|0|0|0|0|0|0)). So the expected number of remaining pairs is about 262.5.

3. GuessK15,1,K15,4 and K15,{2,3,5,8} in turn. For each remaining pair, compute the value of (S15,i,S′15,i) for 1 ≤
i ≤ 5 andi = 8. Keep these pairs satisfying the equations∆S15,1 = (P−1(∆CL))1 and∆S15,l = (P−1(∆CL))l ⊕

(P−1(∆CL))4(l = 2, 3, 5, 8). The expected number of remaining pairs is about 222.5. Next guessK15,{6,7} and
calculate the outputs of the 14-th round.

4. SinceK14,1 = K(60∼63)
R |K(0∼3)

R , we calculate the value of∆S14,1 for each remaining pair. Keep these pairs satisfying
∆S14,1 = (P−1(∆CR))1. The expected number of remaining pair is about 214.5.

5. GuessK5,1 as step 4 of Case 1 in section 3.1. If one joint subkey is left, then we recover the master key, else try
another differential of A.
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Case 2 a′ = 0 and b′ , 0, or a′ , 0 and b′ = 0. We attack the same example as Case 2 in section 3.1. The 8-round
differential and the corresponding subkey are∆′ andkl(2∼8)

1 |kl(2∼8)
4 = K(31∼37)

R |K(125∼127)
L |K(0∼3)

L = 0(7)|1(7), respectively.

1. Select 241.6 structures of ciphertexts. Each structure contains 280 ciphertexts, the right halves of whose differences
have the formP(h|0|0|0h′|0|0|0) with h andh′ being non-zero bytes. Decrypt them and obtain the corresponding
plaintexts.

2. As step 2 of Case 1, we guess 57 bits ofKR and build 241.6 hash tables to collect some plaintext-ciphertext pairs
satisfying (∆L4,∆R4) = (a|0|0|0|0|0|0|0,P(g|0|0|0|0|0|0|0)) with a andg being non-zero bytes anda(1) = 0. The
expected number of remaining pairs is about 287.6.

3. GuessK15,1. For each remaining pair, we calculate the value of (S15,1,S′15,1) and verify whether the equation
∆S15,1 = (P−1(∆CL))1 holds. If∆S15,1 = (P−1(∆CL))1 for some pair, this pair will be kept. Next guessK15,8,
and compute the value of (S15,8,S′15,8) for every remaining pair. If∆S(1)

15,8 , (P−1(∆CL))(1)
8 for one pair, then

this pair will be discarded. Finally, guessK15,l(2 ≤ l ≤ 7). Keep those pairs satisfying these equations∆S15,i =

(P−1(∆CL))i ⊕ (∆S15,8⊕ (P−1(∆CL))8)(2∼8)|0(i = 6, 7) and∆S15, j = (P−1(∆CL)) j ⊕∆S15,8⊕ (P−1(∆CL))8⊕∆S15,7⊕

(P−1(∆CL))7( j = 2, 3, 4, 5). In total, the expected number of remaining pairs is about230.6.

4. BecauseK14,1 = K(60∼63)
R |K(0∼3)

R and K14,5 = K(28∼35)
R , we compute (S14,{1,5},S′14,{1,5}) for each remaining pair.

Discard those pairs satisfying∆S14,{1,5} , (P−1(∆CR)){1,5}. Finally, about 214.6 pairs will be kept.
5. GuessK5,1 as before. If∆′ is an impossible differential, the expected number of remaining wrong subkey is about

2129× (1− 2−8)214.6
≈ 1. We only recover the secret key if one joint subkey is kept.

Case 3 a′ , 0 and b′ , 0. We attack an example, i.e., the 8-round differential is∆′′. The corresponding subkey is
kl(2∼8)

1 |kl(2∼8)
4 = K(31∼37)

R |K(125∼127)
L | K(0∼3)

L = 1(14).

1. Choose the same structures of ciphertexts as Case 2. We totally collect 2200.6 ciphertext pairs.
2. Like step 2 of Case 2, guess the remaining 57 bits ofKR. For each structure, we build a hash table of plaintext-

cphertexts indexed by the value of (L(1)
4,1, L(8)

4,5, L(2∼8)
4,1 ⊕ L(1∼7)

4,5 , L4,{2∼4}, L4,{6∼8}, (P−1(R4)){2∼4}, (P−1(R4)){6∼8}). Then
any two plaintexts in the same row of one hash table forms a pair whose input difference in the 5-th round
has the form (a|0|0|0|a′|0|0|0,P(g|0|0|0|g′|0|0|0)) with a, a′, g andg′ being non-zero bytes,a(2∼8) = a′(1∼7) and
a(1) = a′(8) = 0. Therefore, the expected number of remaining pairs is about 295.6.

3. As steps 3 and 4 of Case 2 in this section, guessK15 andK14,{1,5}. Finally, about 222.6 pairs will be kept.
4. This step is the same as step 5 of Case 3 in section 3.1. The scenario that one subkey is left will be considered.

Complexity. For three cases, the time complexity of Case 3 is maximal, i.e., about 2121.6 × 257 × 2 ≈ 2179.6 1-round
encryptions. Therefore, the total time complexity is approximately 214 × 2179.6 × 1

13 = 2189.9 13-round encryptions.
The date and memory complexities are 2121.6 chosen ciphertexts and 295.6 × 4× 24 = 2101.6 bytes, respectively.

4. Impossible Differential Cryptanalysis of 14-Round Camellia-256

In this section, we mount an impossible differential attack on 14-round Camellia-256 from rounds 10 to 23. Since
the attack procedure is similar to above section, we will briefly introduce the whole attack as follows.

Case 1 a′ = b′ = 0. The 8-round differential and the corresponding subkey are∆ andkl(2∼8)
3 |kl(2∼8)

6 = K(61∼67)
L |K(14∼20)

A
= 0(14), respectively.

1. Select 267 structures of plaintexts. Each structure contains 255 plaintexts with the form (P(α1|x1|x2|x3|x4|x5|x6|x7),
P(α2|α3α4|α5|α6|x8|x9|α7)), whereαi(1 ≤ i ≤ 7, i , 5) andα(2∼8)

5 take all possible values andα(1)
5 andx j(1 ≤ j ≤

9) are fixed.
2. Guess 66 bits ofKL, i.e., K(109∼127)

L |K(0∼46)
L . SinceK10 = (KL ≪ 45)R = K(109∼127)

L |K(0∼44)
L andK23 = (KL ≪

111)L = K(111∼127)
L |K(0∼46)

L , we partially encrypt plaintexts to obtain inputs of the 11-th round and decrypt corre-
sponding ciphertexts to derive outputs of the 22-nd round. For each structure, we insert plaintext-ciphertexts into
a hash table indexed by the value of (L10,{2∼8}, (P−1(R10)){2∼8}, (P−1(R22))

(1)
4 , (P

−1(R22)){6,7}). Any two plaintext-
ciphertexts in the same row of this hash table forms a pair. Its input difference in the 11-th round and the right half
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of its output difference in the 22-nd round satisfy (a|0|0|0|0|0|0|0,P(g|0|0|0|0|0|0|0)) andP(h1|h2 ⊕ b|h3 ⊕ b|b|h4⊕

b|0|0|h5 ⊕ b) with a, g, b, hi(1 ≤ i ≤ 5) being non-zero bytes anda(1) = b(1) = 0. Thus the expected number of
remaining pairs is about 2176× 2−57 = 2119.

3. GuessK11,1 = K(45∼52)
A . For each remaining pair, we calculate∆S11,1. Keep these pairs satisfying∆S11,1 =

(P−1(∆R10))1. About 2111 pairs will be kept.
4. BecauseK22,3 = K(46∼53)

A , we only guess one bit ofK22,3, i.e.,K(8)
22,3 = K(53)

A . For each remaining pair, we calculate
the value of (S22,3,S′22,3). Keep those pairs satisfying∆S22,3 = (P−1(∆R21))3. The expected number of remaining

pairs is about 2103. Next guessK22,2 = K(38∼45)
A . In fact, we only guess 7 bits ofK22,2 because we have known

the value ofK(8)
22,2. Keep those pairs satisfying∆S22,2 = (P−1(∆R21))2. The expected number of remaining pairs

is about 295. Finally, guessK22,i for 4 ≤ i ≤ 8 in turn. Discard those pairs satisfying∆S22,i , (P−1(∆R21))i . The
expected number of remaining pairs is about 255. GuessK22,1 and compute the inputs of the 21-st round.

5. GuessK21,1, K21,4 andK21, j( j = 2, 3, 5, 8) in turn. For each remaining pair, we compute the value of (S21, j,S′21, j).

Keep those pairs satisfying∆S21,1 = (P−1(∆R20))1 and∆S21, j = (P−1(∆R20)) j ⊕ (P−1(∆R20))4. The expected
number of remaining pairs is about 215. Finally, guessK21,{6,7} = K(6∼13)

A |K(14∼21)
A . As a matter of fact, we only

guess 9 bits because we have known the value ofK(14∼20)
A . Compute the outputs of the 20-th round.

6. GuessK20,1. For each remaining pair, we calculate the value of (∆S20,1, (P−1(∆R19))1). Remove these guessed
subkeys such that∆S20,1 is equal to (P−1(∆R19))1 for one pair. If∆ is an 8-round impossible differential, the
expected number of remaining wrong subkeys is about 2195× (1− 2−8)215

≈ 1. We recover the secret key from
this guessed subkey when one subkey is left.

Case 2 a′ = 0 and b′ , 0, or a′ , 0 and b′ = 0. We attack one example, i.e., the 8-round differential is∆′. The
corresponding subkey iskl(2∼8)

3 |kl(2∼8)
6 = K(61∼67)

L |K(14∼20)
A = 0(7)|1(7).

1. Choose 267.1 structures of plaintexts, which have the same form as above Case 1 in this section.
2. GuessK10,K23 andK11,1, i.e., 66 bits ofKL and 8 bits ofKA. For each plaintext of any structure, compute outputs

of the 11-th and 22-nd rounds. Insert these plaintext-ciphertexts into a hash table indexed by (L11,R11,{2∼8}).
Any two pairs in the same row of the hash table forms a pair whose output difference in the 11-th round satisfies
(0|0|0|0|0|0|0|0,a|0|0|0|0|0|0|0). The expected number of remaining pairs is approximately267.1+109×2−48 = 2128.1.

3. GuessK22,3, K22,2, K22,i(i = 4, 6, 7, 8) in turn. For each remaining pair, calculate the intermediate value of
(S22, j,S′22, j) (2 ≤ j ≤ 8, j , 5). Keep those pairs satisfying∆S22, j = (P−1(∆R21)) j. The expected number of

remaining pairs is about 280.1. GuessK22,{1,5} and compute the outputs of the 21-st round.
4. GuessK21,1,K21,7,K21,l(2 ≤ l ≤ 8, l , 7) in turn. Keep those pairs satisfying these equations∆S21,1 =

(P−1(∆R20))1, ∆S(8)
21,7 = (P−1(∆R20))

(8)
7 , ∆S21,6 = ∆S21,7 ⊕ (P−1(∆R20))7 ⊕ (P−1(∆R20))6, ∆S21,8 = (P−1(∆R20))8 ⊕

0|(∆S21,7⊕ (P−1(∆R20))7)1∼7, ∆S21,i = (P−1(∆R20))i ⊕ ∆S21,7 ⊕ (P−1(∆R20))7 ⊕ ∆S21,8 ⊕ (P−1(∆R20))8(2 ≤ i ≤ 5).
The expected number of remaining pairs is about 223.1.

5. GuessK20,5. Keep those pairs satisfying∆S20,5 = (P−1(∆L20))5. About 215.1 pairs will be left. Next guessK20,1.
If ∆S20,1 = (P−1(∆L20))1 for one pair, we remove this guessed subkey. The expected number of remaining wrong
subkeys is about 2203× (1− 2−8)215.1

≈ 1 if ∆′ is an impossible differential. When one subkey is left, we recover
the secret key by the key schedule.

Case 3 a′ , 0 and b′ , 0. We attack the special example, i.e., the 8-round differential is∆′′. The corresponding
subkey iskl(2∼8)

3 |kl(2∼8)
6 = K(61∼67)

L |K(14∼20)
A = 1(14).

1. Select 242.1 structures of plaintexts. Each structure contains 280 plaintexts with the form (P(α1|x1|x2|x3|α2|x4|x5|x6),
α3|α4|α5|α6|α7|α8|α9|α10), whereαi(1 ≤ i ≤ 10) take all possible values andx j(1 ≤ j ≤ 6) are fixed.

2. GuessK10,K23 andK11,{1,5} as before. Partially encrypt the plaintexts to derive outputs of 11-th round and decrypt
the corresponding ciphertexts to get outputs of 22-nd round. Insert these plaintext-ciphertexts into the hash table
indexed by (L11, R(1)

11,1, R11,{2∼4}, R8
11,5, R11,{6∼8}, R(2∼8)

11,1 ⊕R(1∼7)
11,5 ). Any two plaintext-ciphrtetxs in the same row of the

hash table forms a pair whose output difference in the 11-th round have the form (0|0|0|0|0|0|0|0, a|0|0|0|a′|0|0|0)
with a(1) = a′(8) = 0 anda(2∼8) = a′(1∼7). The expected number of remaining pairs is about 242.1+159×2−73 = 2128.1.

3. GuessK22,K21,K20,{1,5} as above Case 2. Finally, we recover the secret key by the key schedule when one joint
subkey is left. Otherwise try another differential ofA.
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Complexity. Similarly, we analyze the time complexity of each case. We find that the time complexity of Case 3 is
maximal, i.e., 2215.3 14-round encryptions. Thus the total time complexity is about 2229.3 14-round encryptions. The
data and memory complexities are 2122.1 chosen plaintexts and 2134.1 bytes.

5. Conclusion

In this paper, we have presented the best known attacks on Camellia-192/256 by making full use of the relation
between the 8-round differentials of the setA and the values of the subkey. On the one hand, we mount a chosenplain-
text attack on 12-round Camellia-192 from rounds 3 to 14 and achosen ciphertext attack on 13-round Camellia-192
from rounds 3 to 15. The time complexity of our attack on 12-round Camellia-192 is about 2148.5 12-round encryp-
tions, which is 222.9 times faster than previously known best results on 12-roundCamellia-192. The corresponding
memory complexity is about 2132.7 bytes, which is 238.9 times smaller than previously known best results on 12-round
Camellia-192. More importantly, the attack on 13-round Camellia-192 is presented for the first time. On the other
hand, we successfully mount an improved impossible differential attack on 14-round Camellia-256 with 2122.1 chosen
ciphertexts, 2229.3 14-round encryptions and 2134.1 bytes. Compared with the previously fastest known attack on14-
round Camellia-256, the time and memory complexities of ourattack are reduced by 28.9 and 246.1 times and the data
complexity is comparable.
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