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Abstract

As an ISQIEC international standard, Camellia has been used vadgysographic applications. In this paper, we
improve previous attacks on Camellia-1226 with key-dependent layeFd_/FL™! by using the intrinsic weakness
of keyed functions. Specifically, we present the first imgedifferential attack on 13-round Camellia with*2®
chosen ciphertexts and®?° 13-round encryptions, while the analysis for the biggeshber of rounds in previous
results on Camellia-192 worked on 12 rounds. Furthermoeeswecessfully attack 14-round Camellia-256 witf?2
chosen ciphertexts and?3 14-round encryptions. Compared with the previously bestkmattack on 14-round
Camellia-256, the time complexity of our attack is reducg@®’ times and the data complexity is comparable.
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1. Introduction

The 128-bit block cipher Camellia was jointly developed byTNand Mitsubishi in 2000_[1]. It supports three
kinds of key sizes, i.e., 128 bits, 192 bits and 256 bits. Kapkcity, they can be usually denoted as Camellia-128,
Camellia-192 and Camellia-256, respectively. Camelliapas the basic Feistel structure with two key-dependent
transformations inserted every six rounds. The goals foh sudesign are to provide non-regularity across rounds
and to thwart future unknown attacks. In 2002, Camellia welscted as one of the CRYPTREC e-government
recommended ciphers. In 2003, it was recommended in NES8Hk bipher portfolio. Finally, it was adopted as an
international standard by ISEC [4].

So far, a lot of researchers have used various methods tk &&mellia such as linear cryptanalysigfeliential
cryptanalysis, higher order ftierential attack, impossible ftierential attack and so on. Among them, most attacks
involved in reduced-round Camellia withoBL/FL™! and whitening layers [5, 6, 7, 11,114, 15, 16, 17, 18], only
three attacks focused on the security of reduced-round {famdth FL/FL™* and whitening layers [3, 9, 10], and
four attacks analyzed the security of reduced-round Camnelth FL/FL™* layers [8, 18| 2, 12]. For Camellia with
FL/FL™ layers, Liet al. attacked 12-round Camellia-192 with*! chosen plaintexts and® encryptions and 14-
round Camellia-256 with2° chosen ciphertexts and®®> encryptions|[8], Ivet al. mounted impossible fferential
attacks on 10-round Camellia-128 with'2chosen plaintexts and¥® encryptions and 11-round Camellia-192 with
2118 chosen plaintexts and 2! encryptions|[13], Bagt al. improved Li’s results to attack 12-round Camellia-192
with 21296 chosen plaintexts and 24 encryptions and 14-round Camellia-256 witt%® chosen plaintexts and®?
encryptions|[2], Ivet al. gave higher-order meet-in-the-middle attacks on 10-rcDamhellia-128 with 22 chosen
plaintexts and 8% encryptions, 11-round Camellia-192 witf®Zhosen plaintexts and®# encryptions as well as
12-round Camellia-256 with® chosen plaintexts and®3 encryptions|[12].

Impossible diferential cryptanalysis was independently proposed by Kendand Biham. Unlike traditional
differential cryptanalysis, the adversary requires to coostwp truncated dferentials with probability one which
meet a contradiction in the middle. This neuifdiential with probability zero is called an impossibl&eliential. By
using this impossible dtierential, we can remove all wrong candidates of the secsetuiél the correct one is left.
Preprint submitted to Information Processing Letters June 5, 2012



Table 1: Summary of attacks on reduced-round Camellig2B&without the whitening layers

Key Size Rounds| Attack Type Data Time(Enc) | Memory (Bytes) Source

Camellia-192| 11 Impossible DC| 2'¥CP 21631 2141 [12]

11 HO-MitM 2%CP 21802 2174 [13]

11 Impossible DC| 2'2%4CP 21217 21185 [2]

12 Impossible DC| 2'201Cp 2184 2124l [8]

12 Impossible DC| 2'206Cp o174 o176 [2]

12 Impossible DC| 2'2435CP 21485 21827 Section 3.1

13 Impossible DC| 2'?¢CC 21899 21016 Section 3.2
Camellia-256| 12 HO-MitM 2%CP 22873 214 [13]

14 Impossible DC| 2'2°CC 22505 2125 [8]

14 Impossible DC| 2'?*2CC 22382 21802 [2]

14 Impossible DC| 2'%?'CC 22293 21341 Section 4

DC: Differential Cryptanalysis; GEC: Chosen PlaintetShosen Ciphertexts;
HO-MitM: Higher Order Meet-in-the-Middle Attack; Enc: Eryptions;

As one of the most powerful methods, impossiblatential cryptanalysis is used to analyze the securitiesasfy
block ciphers such as AES, CLEAFIA, ARIA, MISTY1 and so on.

In this paper, we improve previous attacks on Camelliafa®@ with two key-dependent layeFsL/FL™ by
using the intrinsic weakness of keyed transformations. Ve dittack 12-round Camellia-192 witi#?23° chosen
plaintexts, 2485 12-round encryptions and#’ bytes. Compared with the previously fastest known attack n
round Camellia-192, the time and memory complexities ofattack are reduced by2? times and 22° times and the
data complexity is comparable. Second, we further impreveesult and derive the first attack on 13-round Camellia-
192 with 2216 chosen ciphertexts,'®° 13-round encryptions and'?-6 bytes, while the analysis for the biggest
number of rounds in previous results on Camellia-192 wodedl2 rounds. Finally, we propose improved impossible
differential cryptanalysis of 14-round Camellia-256 wit#?2 chosen ciphertexts,2*3 14-round encryptions and
21341 pytes, which is 3° times faster than previously best known attack on 14-roumchéllia-256. In table 1, we
summarize our results along with the former known ones onélla¥192256.

The remainder of this paper is organized as follows. Se@ioriroduces some preliminaries. Section 3 gives a
chosen plaintext attack on 12-round Camellia-192 and aezhciphertext attack on 13-round Camellia-192. Section
4 presents an impossiblefidirential attack on 14-round Camellia-256. Section 5 surimasithis paper.

2. Preéliminaries

2.1. Some Notations

- P,C: the plaintext and the ciphertext;

- Li-1, R-1: the left half and the right half of thieth round input;

- ALi_1, AR_1: the left half and the right half of the inputftierence in thé-th round;
- kwa |kwe, kwslkwy: the pre-whitening key and the post-whitening key;

- ki, kli(1 < i < 6): the subkey used in theth round and 64-bit keys used in th&./FL™! layers;
- S, AS;: the output and the outputfierence of the S-boxes in tiheh round;

- X 1Y, X <« j: the concatenation of andY, left rotation ofX by j bits;

- Xy, Xrey): the left half and the right half of a-bit word X;

- Xi, Xii,jy» Xi~j)- thei-th byte, the-th andj-th bytes and theth to thej-th bytes ofX;
- Xi, XD X(0~D): thei-th bit, thei-th andj-th bits and the-th to j-th bits of X;

- ®, N, U: bitwise exclusive-OR (XOR), AND, and OR operations, resjpely;

- 0), 1¢y: consecutive bits are zero or one.

2.2. The Block Cipher Camellia

Camellia [1] is a 128-bit block cipher. It adopts the basidste structure with the key-dependent functions
FL/FL™! inserted every 6 rounds. Camellia supports variable kegssind the number of rounds depends on the
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key size, i.e., 18 rounds for a 128-bit key size and 24 rouad492256-bit key sizes. The encryption algorithm of
Camellia can be expressed as follows:

1. LolRo = P& (kwilkwy),
2. Forr = 1toNr:
if r £ 6k, wherek=1,--- ,Nr/6—1,thenL, = R_1® F(L_1,k), R = L_1.
eIseL; =R_.1® F(Lr,l, kr), R =L_ L = FL(Ll'., k||—/3,1), R = FL_l(L;, k|r/3);
3. C = (Rn, @ kwg)|(LRy, @ kwg).

Here the round function includes an XOR operation with a tbkey, an nonlinear transformati@and a linear
functionP. Among it, the linear transformatidd and its inverse functioR* are defined as follows:
1 =Y10Y30Y1OYe@Y7DYs, Y1I=LOBOLUOZLDZ D,
) =Y1OY DY, DYsDY7DYs; Vo=21 DD D 75D 77 D Zg,
Z=Y10Y0Y30Y50Y6DYs, Y3=ZOOLDZDZ D7,
2 =Yo0Y30YsDYsDYe @Y7, Ya=210D0ZBDLDZ D7z,

I5=Y10Y0Ye D Y7 DYs, Vs =21 0207 ® 77 © Zg;
=Y 0Y3DYs D Y7 D Ys; Yo =22DZ3DZ D 2 D Zg;
27 =Y30YsDY5 D Y DYs, VI=30ZL®Z® 27,
BB=Y10Y1DYsD Y6 DY7; Ve =21 QDD s,

where {1, Y2, Y3, Y4, Y5, Y6, Y7, ¥8) and @, 2, 73, 24, 75, 75, 77, Z) are the input and output d@®. The key-dependent
functionFL : (XL | Xgr, KIL | k|R) — YL | Yr, WhereYg = ((XL N k||_) K 1)@ Xr, YL = (YR U k|R) @ X,.

Key Schedule of Camellia-192/256. The key schedule of Camellia applies a 6-round Feistel siredo derive
two 128-bit intermediate variabld§, andKg from 128-bit variablek, andKg, and then all round subkeys can be
generated b¥K, , Kg, Ka andKg. For Camellia-192, the left 128-bit of the kéyis used a¥,, and the concatenation
of the right 64-bit of the keK and the complement of the right 64-bit of the Keys used a¥r. For Camellia-256,
the main keyK is separated into two 128-bit variablés andKg, i.e.,K = K| | Kg.

2.3. 8-Round Impossible férentials of Camellia
In [10], Liu et al. presented 8-round impossibleférentials of Camellia with tw&L/FL™* layers as follows:

Property 1. For an 8-round Camellia encryption with two FEL™! layers inserted after the first and seventh rounds,
the input diference of the first round i€]0]0]0|0]0|0|0, a]0|0]0j&’|0]0|0) and the output dference of the eighth round
is (b|0]0|0]b’|0]0]0, 0]0]0]0]0|0]0|0) with a and b being nonzero bytes anda= b® = a® = ® = 0. Four subkeys
Kli(i = 1,---,4)are used in two FLFL™! layers. If & and b satisfy the following equations:

I (i+) _ - . (i+1) _ A
a/(i) - O,‘ if klg.“'l = O' b’(i) _ 0" if k|4l+1 — O,
al, ki = 1 b0+, ik = 1;

then(0]0]0]0|0]0|0]0, aj0]0]0ja’|0]0]0) —+g (b]0]0]0]b’|0]0]0, 0]0]0]0J0]0j0|0)is an 8-round impossible flerential of Camel-
lia with two FL/FL™! layers (See Fig. 1).

For each value dfl(12~8)|klgz~8), denote the corresponding impossiblfetiential byA;. LetA = {A{|0 < i < 2'4-1).
All di fferentials ofA can be divided into three cases, i.e.,#1» b’ =0, (2)a = 0 andb’ # 0, ora’ # 0 andb’ = 0,
(3)a # 0 andb’ # 0. Since property 1 only gave the existence of an 8-round §sipte diferential of Camellia for
any fixed key value, they proposed an attack strategy to ex¢be master key in the following:

forl<i<?7,

The Attack Strategy. Select a dierentialA; from A. Based on it, we mount an impossiblefdiential attack on
reduced-round Camellia given enough plaintext pairs.

- If one subkey will be kept, we recover the secret key by thedahedule and verify whether it is correct by some
plaintext-ciphertext pairs. If success, halt this atta@therwise, try another fferentialA;(j # i) of Aand perform a
new impossible dferential attack.

- If no subkeys or more than one subkeys are left, select andifierential ofA to execute a new impossible
differential attack.
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Figure 1: The Structure of 8-Round ImpossibléiBientials of Camellia

3. Impossible Differential Cryptanalysisof Reduced-Round Camellia-192

In this section, we mount a chosen plaintext attack on 12ddtamellia-192 from rounds 3 to 14 and a chosen
ciphertext attack on 13-round Camellia-192 from rounds 330 Some previous skills such as building hash tables
and the early abort technique [11] are also adopted. Moreaeemake full use of the corresponding subkey for each
8-round diferential ofA to reduce the guessed key space.

3.1. Impossible Dferential Cryptanalysis of 12-Round Camellia-192

By setting three rounds at the top and one round at the botfo&round ditferentials, we attack 12-round
Camellia-192 from rounds 3 to 14. We divide alffdrentials ofA into three cases to discuss our attack as follows.

Casela =’ =0. The 8-round impossible fierential isA = (0]0]0|0|0]|0|0]0, a]00]0]0]0]0|0) — g (b]0]0]0]0]0]0|0, 0|0
0/0/0]00|0), wherea and b are non-zero bytes aral? = b® = 0. At this time, the corresponding subkey is
KIZOKE® = kB30 125120 03) - 01, See Figure 2.

1. Choose 2° structures of plaintexts. Each structure contafi$@aintexts with the form: R(a|az|as|aslas|x1|Xs|
ag), a7|aglag|aiolaiilaizlaislais), Whereafll), X1, Xp are fixed andyi(1 < i < 14,1 # 4), a22~8) take all possible
values. Clearly, each structure can forid’%laintext pairs. In total, we collect?®®® plaintext pairs. The left
halves of these plaintext fiiérences satisfyP(g1/g. @ algs @ alajgs @ al0j0|gs @ a) with a andgi(1 < i < 5)
being nonzero bytes araf) = 0. Encrypt them and keep those pairs whose ciphert@erdinces have the form
(P(h|0]0]0]0]0|0]0), bj0]0]0]0]0|0]0) with b andh being nonzero bytes arf®) = 0. The probability of this event is
about 2113, Therefore, the expected number of remaining pairs is a®'d(i.

2. GuesKsz = KE"%®. We have known the value Ng;” fromkI®*®. Thus we only guess one tb(lg. For each
remaining pair, compute the value @4, Sj ;) and check whether the equatiaSs 3 = (PY(APR))s holds. If
AS33 # (PY(APR))3 for some pair, then this pair will be discarded. The probigkig about 28. So the expected
number of remaining pairs is approximatef’%¥. Next guess, for 2 < | < 8(I # 3). For every remaining
pair, calculate the value 08§, S},). Discard those pairs satisfyingSs; # (P~'(APr))i. About 2** pairs will
be kept. Finally, gued€;; and calculate the inputs of the 4-th round.
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3.

P(g/lg>talgstala
|g+al0j0|gs+a)

P(g]0]0]0/0/0]0]0)

ki

KS Nalgtal0|0(gst+a)
= (glelgl0lgl0[0]g) .-“
(o EE0tes0M00 )

(@]0]0]0]0]0/0]0)

P(h/0]0]0]0]0]0J0) -
= (h||1|0]10]0]) (60/0[0]0[0]0[0)

Figure 2: Impossible Dierential Attack on 12-Round Camellia for Case 1

According toKy = Klg15~63)|Kg)~14) andKis1 = K§“63)|Kg)~3), we compute the value oS¢, S, AS141) for
every remaining pair. Keep those pairs satisfying thes@tausAS,; = (P~1(APL))1, ASs) = (P"X(AP)) @
(P~Y(APL))4(l = 2,3,5,8) andAS141 = (P~1(ACR))1. The probability of this event is about®. The expected
number of remaining pairs is approximateh?2 For each remaining pair, calculate the inputs of the 5-timco

. Gues¥s 1. Compute the value oi\Ss 1, (P"1(ARy))1) for each remaining pair. hSs; = (P"1(ARy)); for some

pair, we remove the guessed subkey. The probability is abduiSo the expected number of remaining wrong
subkey is approximately?® x (1 — 278)2*° ~ 1 if A is an 8-round impossible fierential. When only one joint
subkey is kept, we recover the secret key and verify whethigcorrect, else try anotherfirential ofA.

Case2a =0and b’ # 0,0or @ # Oand b’ = 0. We only attack a special scenaab = 0 andb’@" = p>-8),
Others can be attacked in the similar way. At this time, thgedéntial isA” = (0]0]|0]0]0|0|0|0, a/0]0]0]0|0|0]0) —g
(b|0]0j0Jb’|0]0|0, 0]0]0]00|0j0|0), wherea, b andb’ are non-zero bytey™>") = b8 anda® = b® = b'® = 0. The
corresponding subkey > FKkIZ® = K B3N 125120 0-3) — g 117

1.

N

Select 2207 plaintexts which have the same structure as above Case lots¥y tollect 2307 plaintext pairs.
Encrypt them and obtain the corresponding ciphertext péiithe ciphertext diference of some pair does not
satisfy (P(h|0]0/0]h’|0]0]0), bl0]0j0Jb’|0]00) with b, b’, h andh’ being non-zero bytesy®™" = b@® andb® =
b’® = 0, we get rid of this pair. The expected number of remainirigspa about 2257,

. GuesKaz, K32, K3 4.8 andKszy in turn. After this test, about®®’ pairs will be kept.
. We have knowrK,; and Ki4 (I = 1,5). For each remaining pair, we compute the valuesSaf $;) and

(S1a1, S4))- This step is similar to step 3 of Case 1. The expected nuofbemaining pairs is about'®’.

. GuesKs; as before. IA’ is an 8-round impossible fierential, then the expected number of remaining wrong

subkeys is approximately’2x (1 - 2*8)213‘7 ~ 1. We only consider the scenario that one joint subkey will be

kept. At this time, we recover the secret key by the key scleealud verify whether it is correct. If this key is
correct, then we halt the attack, else try anoth&edéntial ofA.

Case3a # Oand b’ # 0. We only attack an exampl@®? = a8 andb/™") = b8 The diferential is
A” = (0]0|0]0|0]0]0]0, a/0]0j0ja’|0]0]0) —¢ (b]0|0J0|b’|0]0]0, 0]0]0]0|0j0|0j0), wherea, &, b andb’ are non-zero bytes and
a® = bW = a® = p® = 0. The corresponding subkeyk® ®[kI>® = KE3T|K (125120 O3) — 9,

1. Select 2?43 plaitexts including those plaintexts in Cases 1 and 2. Hgtdiyem to obtain the corresponding

ciphertexts. Guess 11 bits &, i.e., Kiq1 = KE®IKO? and kP = K830, Sincek$% = 1),

we can get the value d{gi’”ss). Partially decrypt the ciphertexts to derive the inputstad 14-th round. In-
sert these plaintext-ciphertexts into a hash table indéxed21-bit value of (1324, Liae-a, Lig;. L3s,
L% @ L5, Ris). Any two plaintext-ciphertexts in the same row of the hasblé forms a pair satisfying
(AL1s, ARy3) = (b|0|0j0]lY|0]0|O, 00]0|0]0|0j00) with bM) = b’®) = 0 andb®® = b7, Finally, the expected
number of remaining pairs is aboufd’.
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Table 2: Time Complexity of Cases 3

Step Time Complexity (1-round encryptions)
1 212435 %12 + 212435 X 211 213535
2 (21267 X 212 + 21187 X 215 + 21107 X 220 21027 225 2947 233 2867 241 + 278.7 X 257 X 2) X 2% I — 2137
3 2787 X 2% 257 21367 &
4 (P x2x 2%+ 2B x (1+(1-28)+- -+ (1-282 ) x L ~ 2847

2. GuesKz3 = K(31 %) as before. After this test, about!8” pairs will be kept. Next gues$s 7, Ksg, Kz in turn.

BecauseK(bs) K(4) |Kﬁ~18) K(63)|K(0~3) K(GNS) Kﬁf) K(6°“62) and K(GNS) K&?) K(28“3°) we only
guess partlal bits oﬂ‘(3,7, Kse, K32). Keep these pairs satisfyingSs; = (P~ l(AF’R))|(I = 7,6,2). The expected
number of remaining pairs is about*Z. Finally, guess;(i = 4,8). For each remaining pair, we compute
(Ss,, S3;) and test whethekSg; is equal to P~L(APR)):. If AS3; # (P~1(APR)); for some pair, then this pair will
be discarded. About’8’ pairs will be kept. Guesks 15 and compute the inputs of the 4-th round.

3. SinceKy = (Kr <« 15), we can calculateSy, S)) for each remaining pair. Keep these pairs satisfying these
equations\Syy = (PY(APL))1, AS{) = (P-HAPL))Y, ASs; = (PHAPL)) @ (AS4s ® (PL(APL))s) @0 =
6,7) andASsj = (P~1(APL)); ® ASsg @ (P~1(APL))s ® ASs7 ® (P"Y(APL))7(j = 2,3,4,5). The probability of
this event is approximately2’. So about 27 will be kept.

4. GuesKss. For each remaining pair, we calculaig, S;5) and check whethekSss is equal to P(ARy))s.

If ASs5 # (P~1(AR4))s for one pair, this pair will be discarded. About2 pairs will be kept. Next guedss 1 as
before. If one subkey is left, we retrieve the master ke #lsanother dterential ofA.

Complexity. We list the time complexity of each step for Case 3 in table 2 fivd the time complexity of Case
3 is determined by steps 1 and 2, i.'3% 1-round encryptions. Similarly, we compute the time comiies of
Cases 1 and 2, i.e.}¥5 1-round encryptions and'?*> 1-round encryptions. Therefore, the whole time complexity
is approximately % x 21381 x .1, = 21485 12_round encryptions. The data and memory complexitieg'&fé° chosen
plaintexts and 287 x 4 x 2% = 21327 pytes.

3.2. Impossible Dferential Cryptanalysis of 13-Round Camellia-192
By adding one round at the bottom of above 12-round Camg8&a-we mount a chosen ciphertext attack on
13-round Camellia-192 from rounds 3 to 15.

Casela = b’ = 0. The 8-round dierential and the corresponding subkeyaendkl?®|kI?-® = K137 (125-127)

Kfo”s) = O(14), respectively.

1. Choose %° structures of ciphertexts. Each structure contamsphertexts with the formR(a1|azlas|aslas| x|
Xolae), P(a7|X3|Xa|X5| X6 X7| X8| X)), Wherea;(1 < i < 7,i # 4),« (ZNB) take all possible values;(1 < j < 9), agl)
are fixed. Clearly, each structure form¥%2ciphertext palrs We totally collect about’2® ciphertext pairs
whose diferences satisfyR(h;|h, @ bjhs @ bjbjhs & b|0j0jhs & b), P(h|0]0]0]0]0]0|0)) with h, hj, b being non-zero
bytes andb® = 0

2. Guess remaining 57 bits &f. For each structure, we encrypt plaintexts to derive thatmpf the 5-th round.
Insert these plaintext-ciphertexts into a hash table iaddsy the value ofl(ﬁ, La(2~8)» (P"1(R4))j2-5))- Any two
plaintexts lying in the same row of the hash table forms awhwse input dierence in the 5-th round satisfies
(a]0]0]0]0]0|0]j0, P(gl0/0]0]0|0]0]0)). So the expected number of remaining pairs is ab®i 2

3. GuessKis1,Kis4 andKis 2358 in turn. For each remaining pair, compute the value3yk(, Sj5;) for 1 <
i < 5andi = 8. Keep these pairs satisfying the equatia®ss; = (P~X(ACL)); andASys; = (P71(ACL)) @
(PY(ACL))4(l = 2,3,5,8). The expected number of remaining pairs is abda.2 Next guesKis 7 and
calculate the outputs of the 14-th round.

4. SinceKiqy = K(6M3)|K(ON3) we calculate the value @S, 43 for each remaining pair. Keep these pairs satisfying
ASi41 = (P 1(ACR))1 The expected number of remaining pair is abddf2
5. Gues«Ks as step 4 of Case 1 in section 3.1. If one joint subkey is le@ntwe recover the master key, else try
another diferential of A.
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Case2a =0and b’ #0,0r & # Oand b’ = 0. We attack the same example as Case 2 in section 3.1. The 8-roun
differential and the corresponding subkeyz&‘randkl(2~8)|kl(2~8) K(31~37)|K 25127)|K(°~3) = Or7)l1(7), respectively.

1. Select 21 structures of ciphertexts. Each structure contaffisiphertexts, the right halves of whoséfdrences
have the formP(h|0]0|0h|0]0|0) with h andh’ being non-zero bytes. Decrypt them and obtain the corraipgn
plaintexts.

2. As step 2 of Case 1, we guess 57 bit&afand build 21 hash tables to collect some plaintext-ciphertext pairs
satisfying (L4, ARs) = (a0/0]0/0]0]0|0, P(g|0/0]0|0]0]0|0)) with a andg being non-zero bytes araf?) = 0. The
expected number of remaining pairs is abdiftt2

3. GuesKis;. For each remaining pair, we calculate the valueSk(, S5;) and verify whether the equation
ASi51 = (PY(ACL))1 holds. I1fAS;5; = (P~1(ACL)); for some pair, this pair will be ke;ot Next guekssg,
and compute the value 08(sg, S5) for every remaining pair. |ﬁS(l)8 + (P~ 1(ACL))( for one pair, then
this pair will be discarded. Finally, guekss (2 < | £ 7). Keep those pairs satisfying these equatib8ss; =
(P_l(ACL))|@(Aslag@(P_l(ACL))g)(2N8)|0(I 6,7) andA515] (P~ 1(ACL))J®A5158®(P l(ACL))8®A5157®
(P~Y(ACL))7(j = 2,3,4,5). In total, the expected number of remaining pairs is aBéftft

4. Becaus&yas = KSWOIKE? andKiys = KE*, we compute $14115. S, 1 ) for each remaining pair.

Discard those pairs satisfyingS1415 # (P~1(ACRr))5. Finally, about 2*® pairs will be kept.
5. GuesKs; as before. I is an impossible dierential, the expected number of remaining wrong subkelyasia
2129 (1 - 278)2"° ~ 1. We only recover the secret key if one joint subkey is kept.

Case3a@ # 0and b’ # 0. We attack an example, i.e., the 8-rounéfeliential isA”. The corresponding subkey is
|(2~8)|k|(2~8) K(31N37)|K(125“127)| K(0~3) 14

1. Choose the same structures of ciphertexts as Case 2. Allg taillect 2996 ciphertext pairs.

2. Like step 2 of Case 2, guess the remaining 57 bit§gofFor each structure, we build a hash table of plaintext-
cphertexts indexed by the value &£}, L), L5 ? o L"), Lajo-a), Lasos. (PH(Ra)) 241 (P~1(Ra))6-8))- Then
any two plaintexts in the same row of one hash table forms mvpiadse input dierence in the 5-th round
has the form #/0]0/0Ja’|0]0|0, P(g|0|0|0|g’|0]0]0)) with a, &', g andg’ being non-zero bytes®>® = a@7" and
a® = a® = 0. Therefore, the expected number of remaining pairs is t2566.

3. As steps 3 and 4 of Case 2 in this section, gllasandKi 1 5. Finally, about 226 pairs will be kept.

4. This step is the same as step 5 of Case 3 in section 3.1. €harézthat one subkey is left will be considered.

Complexity. For three cases, the time complexity of Case 3 is maximal, akmut 3216 5 257 % 2 ~ 21796 1-round
encryptions. Therefore, the total ime complexity is apjimately 24 x 21796 x L = 21899 13-round encryptions.
The date and memory complexities afé'® chosen ciphertexts and™® x 4 x 24 = 21016 bytes, respectively.

4. Impossible Differential Cryptanalysisof 14-Round Camellia-256

In this section, we mount an impossibléfdrential attack on 14-round Camellia-256 from rounds 1(BtoSince
the attack procedure is similar to above section, we wiftyiintroduce the whole attack as follows.

Casela =b’ = 0. The 8-round diterential and the corresponding subkeymmdklgzwg)lklgwg) = K661N67)|K,&14”2°)

= O(14), respectively.

1. Select &7 structures of plaintexts. Each structure contaf¥aintexts with the formmR(a1|X1|Xa| Xa| Xa| Xs| Xe| X7),
P(a)azaglas|as|Xg|Xola?)), whereai(1 <i < 7,i #£5) andaé ~8) take all possible values al andxj(l<j<
9) are fixed.

2. Guess 66 bits oKy, i.e., KT 2KO49) ginceK = (KL << 45k = KM 2K andKys = (KL <«
111) = KE111~127)|K50~46), we partially encrypt plaintexts to obtain inputs of thethIround and decrypt corre-
sponding ciphertexts to derive outputs of the 22-nd routod eBch structure, we insert plaintext-ciphertexts into
a hash table indexed by the value bfi-g), (P~ (Ri0))2-g)» (P~ X(Re2)){", (PY(Re2))6.77)- Any two plaintext-
ciphertexts in the same row of this hash table forms a paimput diterence in the 11-th round and the right half
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of its output diference in the 22-nd round satisg@0]0|0]0]0|0, P(g|0|0]0]0|0]0]0)) andP(hy|h; & blhs & biblh, &
bl0|0jhs @ b) with &, g, b, hi(1 < i < 5) being non-zero bytes araf) = b® = 0. Thus the expected number of
remaining pairs is about?®® x 2757 = 2119,

3. Guesi11 = K{*®?. For each remaining pair, we calculai11. Keep these pairs satisfyingSi11 =
(P~Y(AR10))1. About 2111 pairs will be kept.

4. Becaus&zos = K%, we only guess one bit d€z,3, i.e., K, = K$?. For each remaining pair, we calculate
the value of 6223, S}, 5). Keep those pairs satisfyingS,23 = (P~ 1(AR»1))s. The expected number of remaining
pairs is about 3. Next guesKy,, = K(38“45) In fact, we only guess 7 bits ¢f,,, because we have known

the value oﬂ(égz)2 Keep those pairs satisfyingS,,, = (P"1(ARz1))2. The expected number of remaining pairs
is about 2°. Finally, gues,,; for 4 < i < 8 in turn. Discard those pairs satisfying,,; # (P~1(AR»1))i. The
expected number of remaining pairs is abotit ZuesKy,1 and compute the inputs of the 21-st round.

5. Guess$o11, Korsa andKoyj(j = 2,3,5,8) in turn. For each remaining pair, we compute the valuéS@jf(,SZLI
Keep those pairs satisfyingS;11 = (P~}(ARx0))1 andAS,1; = (P~1(ARx))j ® (P X (ARx))s. The expected
number of remaining pairs is about®2 Finally, guesKo1 67 = K& IIK*#D. As a matter of fact, we only
guess 9 bits because we have known the valu€{8F>?. Compute the outputs of the 20-th round.

6. GuesKy1. For each remaining pair, we calculate the valueAS4,1, (P"1(ARg))1). Remove these guessed
subkeys such thatSyq; is equal to P~1(ARy9)); for one pair. IfA is an 8-round impossible fierential, the
expected number of remaining wrong subkeys is ab&%t:2(1 — 278)2° ~ 1. We recover the secret key from
this guessed subkey when one subkey is left.

Case2a =0andb’ #0,0r & # O and b¥ = 0. We attack one example, i.e., the 8-rounffatiential isA’. The
corresponding subkey ¢ ®[kIZ® = KE-0NK (1429 = 07|17,

1. Choose 2! structures of plaintexts, which have the same form as abage C in this section.

2. GuesKio, KzzandKi1, i.e., 66 bits oK and 8 bits oK. For each plaintext of any structure, compute outputs
of the 11-th and 22-nd rounds. Insert these plaintext-cipits into a hash table indexed bl {, Ri12-g))-
Any two pairs in the same row of the hash table forms a pair elagput dfference in the 11-th round satisfies
(0]0]0]0/0]0|0]0, a0]0]0|0]0j00). The expected number of remaining pairs is approximafeéfi109x 2-48 = 21281,

3. GuessKyz3, Kaza, Kopi(i = 4,6,7,8) in turn. For each remaining pair, calculate the interragdivalue of
(Szzj,S’zzj) (2 < j <8,j#5). Keep those pairs satisfyiniS,2; = (P~2(ARz1))j. The expected number of
remaining pairs is abouf?!. Gues; 15 and compute the outputs of the 21-st round.

4. GuessKaia, K2l7, K2l|(2 < | < 8,1 # 7)in turn. Keep those pairs satisfying these equatid8s;; =
(PH(AR0)1, ASY, = (P-AR ), ASz16 = ASz17® (PHAR0)7 @ (P-(ARe0))s, ASzas = (PH(AR)s &
0[(AS21.7® (P (AR0))7)*7, ASz1i = (P (AR20))i ® AS217 @ (P~ (AR20))7 © AS218 @ (P71 (ARz))s(2 < i < 5).
The expected number of remaining pairs is abddt2

5. GuesKygs. Keep those pairs satisfyingS,os = (P1(ALzg))s. About 2> pairs will be left. Next guesksyq.

If ASz01 = (P~1(ALyo));1 for one pair, we remove this guessed subkey. The expectedenofiremaining wrong
subkeys is about?®3 x (1 - 2*8)2151 ~ 1if A’ is an impossible dierential. When one subkey is left, we recover
the secret key by the key schedule.

Case3a # 0and b’ # 0. We attack the special example, i.e., the 8-rourftedéntial isA”. The corresponding
subkey isklTOIKIE® = KETOIK (420 = 14,

1. Select 221 structures of plaintexts. Each structure contafipRintexts with the formm (a1 X1 | Xo| Xalaz| Xa|Xs| Xe),
a3laslas|as|laz|aslaslaio), whereai(1 < i < 10) take all possible values ang{1 < j < 6) are fixed.

2. GuesKi, Koz andKi1 (15 as before. Partially encrypt the plaintexts to derive otstpfi11-th round and decrypt
the correspondlng ciphertexts to get outputs of 22-nd rolmsekrt these plaintext-ciphertexts into the hash table
indexed by [11, Rlll' Ri1(2~4) R?Ls, Riv(6-8), (ZNS)GBR(&?). Any two plaintext-ciphrtetxs in the same row of the
hash table forms a pair whose outputelience in the 11-th round have the forn0{@0]0]|0|0|0, a]00|0ja’|0]|0|0)
with a® = a® = 0 anda®® = a7, The expected number of remaining pairs is abdtt259x 2-73 = 21281,

3. GuesKyy, Ka1, Koo 15 as above Case 2. Finally, we recover the secret key by theckeydale when one joint
subkey is left. Otherwise try anotheffidirential ofA.
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Complexity. Similarly, we analyze the time complexity of each case. We firat the time complexity of Case 3 is
maximal, i.e., 3152 14-round encryptions. Thus the total time complexity iswd@?%® 14-round encryptions. The
data and memory complexities ar2* chosen plaintexts and#1! bytes.

5. Conclusion

In this paper, we have presented the best known attacks oelCzu192256 by making full use of the relation
between the 8-roundfiérentials of the seék and the values of the subkey. On the one hand, we mount a chlasen
text attack on 12-round Camellia-192 from rounds 3 to 14 aoldasen ciphertext attack on 13-round Camellia-192
from rounds 3 to 15. The time complexity of our attack on 1@ Camellia-192 is about#® 12-round encryp-
tions, which is 22° times faster than previously known best results on 12-rdliaahellia-192. The corresponding
memory complexity is about'd?” bytes, which is 2 times smaller than previously known best results on 12-doun
Camellia-192. More importantly, the attack on 13-round €Hia-192 is presented for the first time. On the other
hand, we successfully mount an improved impossitfiedintial attack on 14-round Camellia-256 wittiZ chosen
ciphertexts, 292 14-round encryptions and#?! bytes. Compared with the previously fastest known attack4n
round Camellia-256, the time and memory complexities ofaitack are reduced by2and 26! times and the data
complexity is comparable.
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