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Constructing hyper-bent functions from Boolean
functions with the Walsh spectrum taking the same
value twice
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Abstract Hyper-bent functions as a subclass of bent functions attract much
interest and it is elusive to completely characterize hyper-bent functions. Most
of known hyper-bent functions are Boolean functions with Dillon exponents
and they are often characterized by special values of Kloosterman sums. In this
paper, we present a method for characterizing hyper-bent functions with Dillon
exponents. A class of hyper-bent functions with Dillon exponents over F22m

can be characterized by a Boolean function over F2m , whose Walsh spectrum
takes the same value twice. Further, we show several classes of hyper-bent
functions with Dillon exponents characterized by Kloosterman sum identities
and the Walsh spectra of some common Boolean functions.

Keywords Bent function · hyper-bent function · Dillon exponents ·
Walsh-Hadamard transform · Kloosterman sums

1 Introduction

Bent functions are maximally nonlinear Boolean functions with even num-
bers of variables whose Hamming distance to the set of all affine functions
equals 2n−1 ± 2

n
2 −1. These functions introduced by Rothaus [26] as interest-

ing combinatorial objects have been extensively studied for their applications
not only in cryptography, but also in coding theory [4,22] and combinatorial
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design. A bent function can be considered as a Boolean function defined over
Fn
2 , F2m × F2m (n = 2m) or F2n . Thanks to good structures and properties

of the finite field F2n , bent functions can be well studied. Much research on
bent functions on F2n can be found in [2,3,5,6,8–11,14,16,17,20–24,31]. Y-
oussef and Gong [30] introduced a class of bent functions called hyper-bent
functions, which achieve the maximal minimum distance to all the coordinate
functions of all bijective monomials (i.e., functions of the form Trn1 (ax

i) + ϵ,
gcd(i, 2n − 1) = 1). However, the definition of hyper-bent functions was given
by Gong and Golomb [15] by a property of the extended Hadamard transfor-
m of Boolean functions. Hyper-bent functions as special bent functions with
strong properties are hard to characterize and many related problems are open.
Much research give the precise characterization of hyper-bent functions in cer-
tain forms, such as hyper-bent functions with Dillon exponents and hyper-bent
functions with Niho exponents.

Charpin and Gong [5] studied the hyper-bent functions with multiple trace
terms of the form

f(x) =
∑
r∈R

Trn1 (arx
r(2m−1)),

where n = 2m, R is a set of representations of the cyclotomic cosets modulo
2m + 1 of full size n and ar ∈ F2m . The characterization of these hyper-bent
functions was presented by the character sums on F2m . Lisonek [18] present-
ed another characterization of Charpin and Gong’s hyper-bent functions in
terms of the number of rational points on certain hyperelliptic curves. And
they proved that there exists an algorithm for determining such hyper-bent
functions with time complexity and space complexity O(ramaxm

b), where rmax

is the biggest element in R, and a, b are some positive constants irrelevant to
rmax and m. In particular, when R = r and (r, 2m + 1) = 1, these hyper-bent
function are monomial functions via Dillon-like exponents. Dillon [8] proved
that Trn1 (ax

r(2m−1)) (a ∈ F2m) is hyper-bent if and only if Km(a) = 0.
Mesnager [22] generalized Charpin and Gong’s hyper-bent functions and

presented the characterization of hyper-bent functions of the form

f(x) =
∑
r∈R

Trn1 (arx
r(2m−1)) + Tr21(bx

2n−1
3 ),

where b ∈ F4 and ar ∈ F2m . In the case #R = 1, explicit characterization
in [21] by Mesnager is presented. With the similar approach, Wang et al. [29]
characterized the hyper-bentness of a class of Boolean functions of the form

f(x) =
∑
r∈R

Trn1 (arx
r(2m−1)) + Tr41(bx

2n−1
5 ),

where b ∈ F16 and ar ∈ F2m . In [27,28], explicit characterization for the case
#R = 1 is given. When rmax is small, Flori and Mesnager[12,13] used the
number of rational points on hyper-elliptic curves to determine those classes
of Wang et al.’s hyper-bent functions. Mesnager and Flori [25] generalized the
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above results and characterized the hyper-bentness of Boolean functions of the
form

f(x) =
∑
r∈R

Trn1 (arx
r(2m−1)) + Trt1(bx

s(2m−1)),

where s|(2m +1), t = o(s(2m − 1)), i.e., t is the size of the cyclotomic coset of
s modulo 2m + 1, ar ∈ F2m , and b ∈ F2t .

Li et al. [19] considered a class of Boolean functions of the form

f(x) =

q−1∑
i=0

Trn1 (ax
(ri+s)(q−1)) + Tr21(bx

q2−1
3 ),

where n = 2m, q = 2m, m is odd, gcd(r, q + 1) = 1, a ∈ Fq2 , and b ∈ F4. The
hyper-bentness of these functions is characterized by Kloosterman sums.

This paper characterizes hyper-bent functions with Dillon exponents c(2m−
1) with a new method. A hyper-bent function with Dillon exponents over F22m

can be characterized by two elements in F2m , which take the same Walsh-
Hadamard coefficient of a Boolean function over F2m . Further, Kloosterman
sum identities and the Walsh spectra of some common Boolean functions are
used to characterize several classes of hyper-bent functions.

This paper is organized as follows: Section 2 introduces some notations,
hyper-bent functions, and results of exponential sums. Section 3 presents our
main method for characterizing hyper-bent functions over F22m from Boolean
functions over F2m . Then we give several classes of hyper-bent functions from
some common Boolean functions over over F2m . Kloosterman sum identities
and the Walsh spectra of some common Boolean functions are of use in the
characterization of these hyper-bent functions. Section 4 makes a conclusion
for this paper.

2 Preliminaries

2.1 Boolean functions and bent functions

Let n be a positive integer, n = 2m, and q = 2m. Let F2n be a finite field with
2n elements and F∗

2n the multiplicative group of F2n . Let α be a primitive
element of F2n . Let U be a subgroup of F∗

2n generated by ξ = αq−1. Then U
is a cyclic group of q + 1 elements.

Let F2k be a subfield of F2n . The trace function from F2n to F2k , denoted

by Trnk (x), is a map defined as Trnk (x) := x+ x2k + x22k + · · ·+ x2n−k

.
A Boolean function f over F2n is an F2-valued function. The ”sign” function

of f is defined by χ(f) := (−1)f . The Walsh-Hadamard transform of f is the
discrete Fourier transform of χf , whose value at ω ∈ F2n is defined by

χ̂f (w) :=
∑

x∈F2n

(−1)f(x)+Trn1 (wx),

where w ∈ F2n . Then we can define the bent functions.
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Definition 1 A Boolean function f : F2n → F2 is called a bent function, if
χ̂f (w) = ±2

n
2 (∀w ∈ F2n).

If f is a bent function, n must be even. Further, deg(f) ≤ n
2 [3]. Hyper-bent

functions as an important subclass of bent functions are defined below.

Definition 2 A bent function f : F2n → F2 is called a hyper-bent function,
if, for any i satisfying (i, 2n − 1) = 1, f(xi) is also a bent function.

Many hyper-bent Boolean functions are with Dillon exponents. A Boolean
function is with Dillon exponents if the exponents of the trace representation
of this function have the form c(q − 1), where c is a positive integer. Such
functions satisfies that for any y ∈ F∗

q and x ∈ F2n , f(yx) = f(x). The
characterization of hyper-bent functions with Dillon exponents is given in the
following proposition [19,21].

Proposition 1 Let f(x) be a Boolean function with Dillon exponents defined
over F22m . Then f(x) is hyper-bent if and only if Λf =

∑
u∈U (−1)f(u) =

(−1)f(0).

2.2 Exponential sums

In this subsection, we introduce some results for special exponential sums.

Definition 3 The binary Kloosterman sums associated with a on finite field
F2m are

Km(a) =
∑

x∈F2m

(−1)Trm1 ( 1
x+ax), a ∈ F2m .

Note that 1
0 = 0 for x = 0.

Definition 4 The cubic sums on F2m are

Cm(a, b) =
∑

x∈F2m

(−1)Trm1 (ax3+bx), a ∈ F∗
2m , b ∈ F2m .

Carlitz computed the exact values of the cubic sums in the following two
propositions [1].

Proposition 2 Let m be an odd integer. Then
(1) Cm(1, 1) = (−1)(m

2−1)/82(m+1)/2.
(2) If Trm1 (c) = 0, then Cm(1, c) = 0.

(3) If Trm1 (c) = 1 and c ̸= 1, then Cm(1, c) = (−1)Trm1 (γ3+γ)( 2
m )2(m+1)/2,

where c = γ4 + γ + 1,γ ∈ F2m , and ( 2
m ) is the Jacobi symbol.

Proposition 3 Let m be an even integer. Then,
(1) Cm(1, 0) = (−1)

m
2 +12

m
2 +1;

(2) Cm(1, λ) =

{
(−1)Trm1 (γ3)(−1)

m
2 +12

m
2 +1, T rm2 (λ) = 0

0, T rm2 (λ) ̸= 0
, where γ is a

solution of γ4 + γ = λ2.
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3 A class of hyper-bent functions with Dillon exponents

Let n be a positive integer, n = 2m, and q = 2m. In this section, we present
our new method for characterizing hyper-bent functions over F2n by a Boolean
function over Fq, whose Walsh spectrum takes the same value twice.

Note that 1
0 = 0. Let g(y) be a Boolean function defined over Fq. Then we

define a Boolean function over Fq2 of the form

f(x) = g(
1

λ1 + λ2
· 1

xq−1 + x−(q−1)
) + Trm1 (

λi

λ1 + λ2
· 1

xq−1 + x−(q−1)
) (1)

where λi ∈ Fq (i = 1 or 2) and λ1 ̸= λ2. Note that xq−1 + x−(q−1) ∈ Fq. Then
f(x) is well defined. The hyper-bentness of f(x) is characterized by the same
Walsh-Hadamard coefficient of g(y) in the following theorem.

Theorem 1 Let f(x) be defined in (1). Let g(0) = 0. Then f(x) is hyper-bent
if and only if χ̂g(λ1) = χ̂g(λ2), where χ̂g(λ) is the Walsh-Hadamard transform
of g(y).

Proof Note that f(x) is a function with Dillon exponents c(q−1). When y ̸= 0
and Trn1 (y) = 1, the equation 1

u+u−1 = y has two solutions. Then u 7→ 1
u+u−1

is a 2-to-1 map from U \{1} to {y ∈ Fq : Trn1 (y) = 1} [21]. The map u 7→ uq−1

is a permutation of U . Then

Λf =
∑
u∈U

(−1)
g( 1

λ1+λ2
· 1

u+u−1 )+Trm1 (
λi

λ1+λ2
· 1

u+u−1 )

=(−1)g(0) + 2
∑

y∈Fq,Trm1 (y)=1

(−1)g(
y

λ1+λ2
)+Trm1 (

λi
λ1+λ2

y).

Further, we have

Λf =(−1)g(0)+
∑
y∈Fq

(−1)g(
y

λ1+λ2
)+Trm1 (

λi
λ1+λ2

y)−
∑
y∈Fq

(−1)g(
y

λ1+λ2
)+Trm1 (

λi
λ1+λ2

y)+Trm1 (y)

=(−1)g(0)+
∑
y∈Fq

(−1)g(
y

λ1+λ2
)+Trm1 (

λi
λ1+λ2

y)−
∑
y∈Fq

(−1)g(
y

λ1+λ2
)+Trm1 (

λ3−i
λ1+λ2

y).

Note that y 7→ y
λ1+λ2

is a permutation of Fq and g(0) = 0. Then Λf =

1+
∑

y∈Fq
(−1)g(y)+Trm1 (λiy)−

∑
y∈Fq

(−1)g(y)+Trm1 (λ3−iy). From Proposition 1,

f(x) is hyper-bent if and only if
∑

y∈Fq
(−1)g(y)+Trm1 (λiy) =

∑
y∈Fq

(−1)g(y)+Trm1 (λ3−iy),

i.e, χ̂g(λ1) = χ̂g(λ2). Hence, this theorem follows.

Theorem 1 offers a new method to present hyper-bent funtions of the form (1).
On the Walsh spectra of g(y), there are many exisiting results, which can be
used to find two different elements λ1 and λ2 satisfying χ̂g(λ1) = χ̂g(λ2). From
the proper choice of a Boolean function g(y), λ1, and λ2, a lot of hyper-bent
functions f(x) can be given.

For further consideration, we give the following lemma.
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Lemma 1 Let x ∈ Fq2 , u = xq−1, λ ∈ Fq, and m ≥ t ≥ 1. Then

(1) 1
u+u−1 =

∑2m−2

i=1 (u2(2i−1) + u−2(2i−1));

(2) Trm1 (λ 1
xq−1+x−(q−1) ) =

∑2m−2

i=1 Trn1 (λ
2m−1

x(2i−1)(q−1));

(3) ( 1
u+u−1 )

2t−1−1 =
∑2m−t

i=1 (u2t−1(2i−1) + u−2t−1(2i−1));

(4) Trm1 (λ( 1
xq−1+x−(q−1) )

2t−1−1) =
∑2m−t

i=1 Trn1 (λ
2m−t+1

x(2i−1)(q−1));

(5) (u+ u−1)2
t−1 =

∑2t−1

i=1 (u2i−1 + u−(2i−1));

(6) Trm1 (λ(xq−1 + x−(q−1))2
t−1) =

∑2t−1

i=1 Trn1 (λx
(2i−1)(q−1));

(7) (u+ u−1)2
t+1 = u2t−1 + u−(2t−1) + u2t+1 + u−(2t+1);

(8) Trm1 (λ(xq−1 + x−(q−1))2
t+1) = Trn1 (λ(x

(2t−1)(q−1) + x(2t+1)(q−1))).

Proof This lemma can be easily verified.

In the rest of this section, some common classes of Boolean functions over
Fq are used to characterize hyper-bent functions over F2n . Kloosterman sum
identities and cubic sums are linked with the characterization of hyper-bent
functions.

3.1 Hyper-bent functions from g(y) = Trm1 (ay−d)

From Theorem 1, we have the following proposition.

Proposition 4 Let d be an odd integer such that q−3 ≥ d ≥ 1 and gcd(d, q−
1) = e > 1. Let a ∈ Fq, ρ ∈ F∗

q , ρ
e = 1, and ρ ̸= 1. Then, the Boolean function

f(x) =
∑ d−1

2
j=0

(
d
j

)
Trn1 (ax

(d−2j)(q−1)) +
∑2m−2

j=1 Trn1 (
ρi

1+ρx
(2j−1)(q−1)) ∈ F2[x] is

hyper-bent, where i = 0 or i = 1.

Proof Let g(y) = Trm1 (ay−d). For any λ ∈ F∗
q , we have

χ̂g(λ) =
∑
y∈Fq

(−1)Trm1 (ay−d+λy) =
∑
y∈Fq

(−1)Trm1 (a(ρy)−d+λ(ρy)) =
∑
y∈Fq

(−1)Trm1 (ay−d+λρy),

i.e., χ̂g(λ) = χ̂g(λρ). From Theorem 1, we have the hyper-bent function

f(x) = Trm1 (aλd(1 + ρ)d(xq−1 + x−(q−1))d) + Trm1 (
ρi

1 + ρ

1

xq−1 + x−(q−1)
).

From Result (2) in Lemma 1, we have

f(x) =

d∑
j=0

Trm1 (aλd(1 + ρ)d
(
d

j

)
x(2j−d)(q−1)) +

2m−2∑
j=1

Trn1 ((
ρi

1 + ρ
)2

m−1

x(2j−1)(q−1)),

=

d−1
2∑

j=0

Trm1 (aλd(1 + ρ)d
(
d

j

)
(x(2j−d)(q−1) + x(d−2j)(q−1))) +

2m−2∑
j=1

Trn1 ((
ρi

1 + ρ
)2

m−1

x(2j−1)(q−1)),

=

d−1
2∑

j=0

(
d

j

)
Trn1 (aλ

d(1 + ρ)dx(d−2j)(q−1)) +
2m−2∑
j=1

Trn1 ((
ρi

1 + ρ
)2

m−1

x(2j−1)(q−1)).
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We can replace a by a
λd(1+ρ)d

and ρ by ρ2
m−1

and get that f(x) is still hyper-

bent. Hence, this proposition holds.

The coefficient
(
d
j

)
mod 2 can be determined by Lucas’s theorem. We will give

the hyper-bent function f(x) for cases d = 2s−1 and d = 2s+1 correspondingly
in the following corollary.

Corollary 1 Let a ∈ Fq and s be a positive integer.

(1) Let gcd(m, s) > 1, e = 2gcd(m,s) − 1, ρ ∈ Fq \ F2, ρe = 1, and

i ∈ {0, 1}. Then the Boolean function f(x) =
∑2s−1

j=0 Trn1 (ax
(2j−1)(q−1)) +∑2m−2

j=1 Trn1 (
ρi

1+ρx
(2j−1)(q−1)) is hyper-bent.

(2) Let m
gcd(m,s) be even, e = 2gcd(m,s) + 1, ρ ∈ Fq \ F2, ρ

e = 1, and i ∈
{0, 1}. Then the Boolean function f(x) = Trn1 (a(x

(2s−1)(q−1)+x(2s+1)(q−1)))+∑2m−2

j=1 Trn1 (
ρi

1+ρx
(2j−1)(q−1)) is hyper-bent.

Proof Take d = 2s−1. Then e = 2gcd(m,s)−1 = gcd(d, q−1). From Proposition
4, we have the hyper-bent function

f(x) =

2s−1−1∑
j=0

(
2s − 1

j

)
Trn1 (ax

(d−2j)(q−1)) +

2m−2∑
j=1

Trn1 (
ρi

1 + ρ
x(2j−1)(q−1)).

From Lucas’s Theorem, when 2s−1 − 1 ≥ j ≥ 0,
(
2s−1

j

)
≡ 1 mod 2. We have

the hyper-bent function

f(x) =
2s−1∑
j=1

Trn1 (ax
(2j−1)(q−1)) +

2m−2∑
j=1

Trn1 (
ρi

1 + ρ
x(2j−1)(q−1)).

Result (1) holds.

Take d = 2s + 1. Since m
gcd(m,s) is even, e = 2gcd(m,s) + 1 = gcd(d, q − 1).

From Proposition 4, we have the hyper-bent function

f(x) =
2s−1∑
j=0

(
2s + 1

j

)
Trn1 (ax

(d−2j)(q−1)) +
2m−2∑
j=1

Trn1 (
ρi

1 + ρ
x(2j−1)(q−1)).

From Lucas’s Theorem, when 2s−1 ≥ j ≥ 0,
(
2s+1

j

)
≡ 1 mod 2 holds only for

j = 0, 1. Then we have the hyper-bent function

f(x) = Trn1 (a(x
(2s−1)(q−1) + x(2s+1)(q−1))) +

2m−2∑
j=1

Trn1 (
ρi

1 + ρ
x(2j−1)(q−1)).

Result (2) holds.
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3.2 Hyper-bent functions from g(y) = Trm1 (y)

Take g(y) = Trm1 (y). Note that
∑

y∈Fq
(−1)Trm1 (µy) = 0 (µ ̸= 0). Thus, for

any λ ∈ Fq \ F2, we have χ̂g(0) = χ̂g(λ) = 0. From Theorem 1, we have the
following hyper-bent function f(x) = Trm1 ( 1λ · 1

xq−1+x−(q−1) ). Further, from
Lemma 1, we have the following hyper-bent function

f(x) =

2m−2∑
i=1

Trn1 (
1

λ2m−1 x
(2i−1)(q−1)).

Remark 1 Note that { 1

λ2m−1 : λ ∈ Fq \ F2} = Fq \ F2. Then, the Boolean

function f(x) =
∑2m−2

i=1 Trn1 (λx
(2i−1)(q−1)) is hyper-bent if and only if λ ̸∈ F2.

This hyper-bent function has been characterized in Corollary 4 in [19].

3.3 Hyper-bent functions from g(y) = Trm1 ( 1y )

Take g(y) = Trm1 ( 1y ), λi ∈ Fq (i = 1, 2), and λ1 ̸= λ2. The Boolean function

defined in (1) over Fq2 is

f(x) =Trm1 ((λ1 + λ2)(x
q−1 + x−(q−1))) + Trm1 (

λi

λ1 + λ2

1

xq−1 + x−(q−1)
)

=Trn1 ((λ1 + λ2)x
q−1) + Trm1 (

λi

λ1 + λ2

1

xq−1 + x−(q−1)
)

=Trn1 ((λ1 + λ2)x
q−1) +

2m−2∑
j=1

Trn1 ((
λi

λ1 + λ2
)2

m−1

x(2j−1)(q−1)).

Note that χ̂g(λi) = Km(λi) (i = 1, 2). Hence, from Theorem 1, we have the
following theorem

Theorem 2 Let λi ∈ Fq (i = 1, 2) and λ1 ̸= λ2. The following conditions are
equivalent.

(1) f1(x) = Trn1 ((λ1 + λ2)x
q−1) +

∑2m−2

i=1 Trn1 ((
λ1

λ1+λ2
)2

m−1

x(2i−1)(q−1)) is
hyper-bent.

(2) f1(x) = Trn1 ((λ1 + λ2)x
q−1) +

∑2m−2

i=1 Trn1 ((
λ2

λ1+λ2
)2

m−1

x(2i−1)(q−1)) is
hyper-bent.

(3) Km(λ1) = Km(λ2).

Usually, special values of Kloosterman sums are used to characterize hyper-
bent functions. From Theorem 2, we can characterize hyper-bent functions
from two distinct elements, which have the same evaluation of Kloosterman
sums. Known results on Kloosterman sum identities are of use. From known
Kloosterman sum identities, several hyper-bent functions can be given imme-
diately.
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Corollary 2 Let b ∈ Fq and ϵ ∈ F2. The following Boolean functions Trn1 ((b
2+

b)xq−1)+
∑2m−2

i=1 Trn1 ((b+ϵ)x(2i−1)(q−1)) (b ̸∈ F2), Tr
n
1 ((b

2+b)xq−1)+
∑2m−2

i=1 Trn1 ((b
2+

ϵ)x(2i−1)(q−1)) (b ̸∈ F2), and Trn1 ((b
4+b)xq−1)+

∑2m−2

i=1 Trn1 ((b
4+ϵ)x(2i−1)(q−1)) (b ̸∈

F4) are all hyper-bent.

Proof From [7], when b ∈ Fq \ F2, we have the following Kloosterman sum
identities: Km(b3(1 + b)) = Km((1 + b)3b), Km(b5(1 + b)) = Km((1 + b)5b),
and Km(b8(b4+b)) = Km((1+b)8(b4+b)). Consider the following three cases:

(1) λ1 = b3(1 + b) and λ2 = (1 + b)3b, where b ∈ Fq \ F2. Then λ1 ̸= λ2;
(2) λ1 = b5(1 + b) and λ2 = (1 + b)5b, where b ∈ Fq \ F2. Then λ1 ̸= λ2;
(3) λ1 = b8(b4 + b) and λ2 = (1 + b)8(b4 + b), where b ∈ Fq \ F4. Then

λ1 ̸= λ2;
From Theorem 2, this corollary can be obtained immediately.

3.4 Hyper-bent functions from g(y) = Trm1 (y2
t−1−1)

Take g(y) = Trm1 (y2
t−1−1), t ≥ 1, λi ∈ Fq (i = 1, 2), and λ1 ̸= λ2. From Result

(2) and Result (4) in Lemma 1, the Boolean function defined in (1) over Fq2

is

f(x) =
2m−t∑
j=1

Trn1 ((λ1 + λ2)
2m−t+1−1x(2j−1)(q−1)) +

2m−2∑
j=1

Trn1 ((
λi

λ1 + λ2
)2

m−1

x(2j−1)(q−1)).

(2)

From Theorem 1, we have the following theorem.

Theorem 3 Let f(x) be defined in (2). Then f(x) is hyper-bent if and only

if
∑

y∈Fq
(−1)Trm1 (y2t−1−1+λ1y) =

∑
y∈Fq

(−1)Trm1 (y2t−1−1+λ2y).

If gcd(t − 1,m) = 1, then gcd(2t−1 − 1, 2m − 1) = 1 and y 7→ y2
t−1−1

is a permutation of Fq, and
∑

y∈Fq
(−1)Trm1 (y2t−1−1) = 0. Hence, we have the

following corollary.

Corollary 3 Let gcd(t−1,m) = 1, λ ∈ F∗
q , and ϵ ∈ F2. The Boolean function

f(x) =
2m−t∑
j=1

Trn1 (λ
2m−t+1−1x(2j−1)(q−1)) + ϵ

2m−2∑
j=1

Trn1 (x
(2j−1)(q−1))

is hyper-bent if and only if
∑

y∈Fq
(−1)Trm1 (y2t−1−1+λy) = 0.

This corollary generalizes Theorem 6 in [19]. It is easy to verify that when
t = 1, 2, the hyper-bent function defined in (2) is just the hyper-bent function
in Remark 1. In the following subsection, we discuss the case t = 3. When
t = 3, χ̂g(λ) is just the cubic sum Cm(1, λ).
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When m is odd, from Proposition 2, we have χ̂g(λ) ∈ {0,±( 2
m )2(m+1)/2}.

Define H1,0 = {λ ∈ Fq : χ̂g(λ) = 0}, H1,1 = {λ ∈ Fq : χ̂g(λ) = ( 2
m )2(m+1)/2},

and H1,−1 = {λ ∈ Fq : χ̂g(λ) = −( 2
m )2(m+1)/2}. Further, from Proposition 2,

we have H1,0 = {λ ∈ Fq : Trm1 (λ) = 0}, H1,1 = {γ4 + γ + 1 : Trm1 (γ3 + γ) =
0} ∪ {1}, and H1,−1 = {γ4 + γ + 1 : Trm1 (γ3 + γ) = 1}.

From Theorem 1, we have the following corollary.

Corollary 4 Let m be odd, λi ∈ Fq(i = 1, 2), and λ1 ̸= λ2. Then, the Boolean
function

f(x) =

2m−3∑
j=1

Trn1 ((λ1+λ2)
2m−2−1x(2j−1)(q−1))+

2m−2∑
j=1

Trn1 ((
λi

λ1 + λ2
)2

m−1

x(2j−1)(q−1))

is hyper-bent if and only if there exists j ∈ {0, 1,−1} such that λ1, λ2 ∈ H1,j.

Remark 2 Note that the cardinality of {χ̂g(λ)|λ ∈ Fq} is 3. If we suppose
q = 2m > 3 and take four elements in Fq, then there exists two elements
λ1, λ2 ∈ Fq lying in some H1,j . Hence we can get a corresponding hyper-bent
function.

Note that 0 ∈ H1,0. Then we have the following corollary.

Corollary 5 Let m be odd, λ ∈ F∗
q , and ϵ ∈ F2. The Boolean function f(x) =∑2m−3

j=1 Trn1 (λ
2m−2−1x(2j−1)(q−1)) + ϵ

∑2m−2

j=1 Trn1 (x
(2j−1)(q−1)) is hyper-bent if

and only if Trm1 (λ) = 0, λ ̸= 0.

These corollaries generalize Result (3) in Corollary 6 in [19].
When m is even, from Proposition 3, χ̂g(λ) ∈ {0,±(−1)

m
2 +12

m
2 +1}. Define

H0,0 = {λ ∈ Fq : χ̂g(λ) = 0}, H0,1 = {λ ∈ Fq : χ̂g(λ) = (−1)
m
2 +12

m
2 +1}, and

H0,−1 = {λ ∈ Fq : χ̂g(λ) = −(−1)
m
2 +12

m
2 +1}. From Proposition 3, we have

H0,0 = {λ ∈ Fq : Trm2 (λ) ̸= 0}, H0,1 = {(γ4 + γ)2
m−1

: γ ∈ Fq, T r
m
1 (γ3) = 0},

and H0,−1 = {(γ4 + γ)2
m−1

: γ ∈ Fq, T r
m
1 (γ3) = 1}. Obviously, 0 ∈ H0,1.

Lemma 2 1 ∈ H0,1 if and only if 8|m.

Proof From the definition of H0,1, we have 1 ∈ H0,1 if and only if there exists
γ ∈ Fq satisfying γ4 + γ + 1 = 0 and Trm1 (γ3) = 0. It is easy to verify
that γ4 + γ + 1 = 0 is irreducible over F2. Thus, 4|m. Further, Trm1 (γ3) =
Tr41(Tr

m
4 (γ3)) = m

4 = 0. Hence, this theorem follows.

From Theorem 1, we have the following corollary.

Corollary 6 Let m be even, λi ∈ Fq(i = 1, 2), and λ1 ̸= λ2. The Boolean
function

f(x) =
2m−3∑
j=1

Trn1 ((λ1 + λ2)
2m−2−1x(2j−1)(q−1)) +

2m−2∑
j=1

Trn1 ((
λi

λ1 + λ2
)2

m−1

x(2j−1)(q−1))

is hyper-bent if and only if there exists j ∈ {0, 1,−1} satisfying λ1, λ2 ∈ H0,j.
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When 8|m, from Lemma 2, we have 0, 1 ∈ H0,1. Hence, we have the fol-

lowing hyper-bent functions : f0(x) =
∑2m−3

j=1 Trn1 (x
(2j−1)(q−1)) and f1(x) =∑2m−2

j=2m−3+1 Tr
n
1 (x

(2j−1)(q−1)).

4 Conclusion

In this paper, we characterize hyper-bent functions from Boolean functions
with the Walsh spectrum taking the same value twice. From our method, many
results on exponential sums can be used in the characterization of hyper-bent
functions. We use some Kloosterman sum identities and the Walsh spectra of
some common Boolean functions to characterize several classes of hyper-bent
functions.
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