
1 

Two Kinds of Biclique Attacks on Lightweight Block Cipher PRINCE 

 Zheng Yuan1,2,  Zhen Peng1,2,  Haiwen Ou1,2 

1. Beijing Electronic Science &Technology Institute, Beijing 100070,China 

2. Xidian University, Xi’an 710071, China 

 zyuan@tsinghua.edu.cn; pengzhen0822@126.com 

 

Abstract: Inspired by the paper [10], using better differential characteristics in the biclique 

construction, we give another balanced biclique attack on full rounds PRINCE with the lower 

complexity in this paper. Our balanced biclique attack has 62.672 computational complexity and 
322 data complexity. Furthermore, we first illustrate a star-based biclique attack on full rounds 

PRINCE cipher in this paper. Our star-based biclique attack has 63.022 computational complexity 

and the required data can be reduced to only a single plaintext-ciphertext pair, this is the optimal 

data complexity among the existing results of full round attack on PRINCE. 
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1  Introduction 

Lightweight Block Cipher PRINCE. Lightweight block ciphers are suitable for extremely 

constrained environment with short block length and key length. The best studied lightweight 

block ciphers are mCrypton[1],CLEFIA[2],Piccolo[3],PRESENT[4],KLEIN[5],PRINCE[6]. 

PRINCE is a modern involutive lightweight block cipher proposed by Rechberger et al. at 

Asiacrypt 2012[6]. Since then, it has been widely used in many constrained devices. PRINCE with 

64-bit block and 128-bit key, uses so-called FX-construction. It is consisted of a 64-bit core cipher, 

named as PRINCEcore, and two whitenings before and after the PRINCEcore. PRINCEcore holds 

the major encryption logic, so the security of PRINCE mainly depends on the properties of the 

PRINCEcore. After being proposed in 2012, there are some cryptanalysis of PRINCE, such as 

differential cryptanalysis[10], algebraic cryptanalysis[11], Reflection Cryptanalysis[9] and 

biclique cryptanalysis[10]. Farzaech et al. gave the security evaluations of PRINCEcore against 

biclique and differential cryptanalysis, respectively[10]. They presented an independent-biclique 

attack on the full version PRINCEcore with 62.722 computational complexity and 402 data 

complexity[10], they also presented upon 2-round attack of differential cryptanalysis of 

PRINCEcore with 32.442 computational complexity and 322 data complexity, and upon 4-round 

attack of differential cryptanalysis with 56.262 computational complexity and 482 data complexity. 

Lilang gave algebraic attack on PRINCE[11], in which all the key bits of 5-round PRINCEcore 

could be obtained based on the different known plaintexts and all the key bits of 6-round PRINCE 

can be successful recovered under the chosen plaintext. Anne used multiple differentials and 
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exploited some properties of PRINCE for recovering the whole key[12]. Their attack could be 

extended up to 11 rounds with 62.432 computational complexity and 59.812 data complexity. 

Biclique Cryptanalysis. Biclique cryptanalysis was first proposed by Khovratovich et al. in 

2011[7] and they demonstrated the first single-key attacks on full rounds of three variants of AES 

with a significant advantage over exhaustive search. Bogdanov et al. proposed a star-based 

biclique[8] with just one state in one vertex set and 
22 d

states in the other ones, and implemented 

a star-based biclique attack on AES-128/192/256 , they achieved the theoretically minimal data 

complexity. In 2015, Yuan et al. gave a star-based independent biclique attack on full rounds 

SQUARE [13], which is the second application of star-based biclique attack to a block cipher. 

Our contribution. Stimuliated by the balanced independent biclique cryptanalysis of 

PRINCEcore[10] and star-based independent biclique crypanalysis [8,13], in this paper we present 

another balanced independent biclique attack on PRINCEcore, Especially, we first give a 

star-based independent biclique attack on PRINCEcore. Both of them are full rounds attack on 

PRINCEcore cipher. Our balanced independent biclique attack is superior to the previous balanced 

ones with 62.672 computational complexity and 322 data complexity. Our star-based independent 

biclique attack, with 63.022 computational complexity and required data can be reduced to a single 

plaintext-ciphertext pair, is first to use this kind of attack on PRINCEcore. To be the best of our 

knowledge, this is the optimal data complexity. We can note that the computational complexity 

and data complexity is influenced by the biclique construction. 

Outline. This paper is organized as follows: Section 2 describes the lightweight block cipher 

PRINCE. Section 3 and section 4 presents the balanced independent biclique attack and star-based 

independent biclique attack on full rounds PRINCEcore, respectively. Seciton 5 summarizes the 

whole paper. 

2  Description of Lightweight Block Cipher PRINCE 

PRICNE cipher is a 64-bit block cipher with a 128-bit key. It uses the FX construction (See Fig.1), 

and has three parts, one part is considered as the core cipher, named as PRICNEcore, and 

remaining parts are used for whitenings before and after the core. 

 PRINCEcore 

0 'k
0k

cm
 

Fig1. The construction of PRINCE 

2.1  The Key Schedule 
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The key schedule of PRINCE is not so complicated. Firstly, the 128-bit key k is split into two 

64-bit words  

0 1||k k k  

Then, it is extended to192-bit by a linear mapping of the form 

0 1 0 0 1 0 0 0 1( || ) ( || ' || ) : ( || ( 1) ( 63) || )k k k k k k k k k k       

where the 64-bit 1k is used for the PRINCEcore, the 64-bit 0k and 0 'k are used to wrap the core 

with two additions, the pre- and post- whitening. 

2.2  Round Transformation 

As described in Fig.2, we can see that PRINCEcore consists of the first five rounds, the middle 

rounds, and the last five rounds. Except the middle rounds, each round has two additional XORs 

with the key 1k and a different round constant
iRC . Round operation in the last five rounds is the 

inverse of the first five rounds. Every round in PRINCEcore constains following five steps. 

   

1k
1k

1k 1k 1k 1k 1k 1k
1k 1k

1k 1k11RC

10RC9RC8RC7RC6RC
1RC 2RC

3RC 4RC 5RC

0RC

1R
2R 3R 4R

5R S 'M 1S  1
6R  1

7R  1
8R  1

9R  1
10R 

S 'M SR  

1kiRC

1SR 1'M  1S  

1k iRC  
 Fig2. PRINCEcore 

S S S S
S S S S
S S S S
S S S S

   
   
   
   

   
   
   
   

S 'M SR iRC 1k

 

Fig3. Single round of PRINCEcore 

SB -layer.In the SB -layer step,PRINCEcore uses one 4-bit Sbox. i.e. a nibble Sbox. Every nibble 

in the state is replaced by the nibble generated after using the following S -box. 

'M M -layer. 'M M layer is a linear layer. 'M is a 64 64 block diagonal matrix.
0M and

1M are 

two16 16 submatrices which are placed on the diagonal of 'M . 
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However, 'M is only used in the middle round. To ensure the -reflection property, 'M need to be 

an involution. In the first five rounds, linear layer uses matrix M which can be derived from 'M . 

i.e., 'M SR M  , SR is a shift row operation. 

SR -layer. SR operation in the PRINCEcore is as same as the one in the AES. Row i of the state is 

rotated i cell positions to the left, 0,1,2,3i  . 

ik -add. In the ik -add step, a 64-bit state is Xor with the 64-bit subkey 1k . 

iRC -add. In the
iRC -add step, the 64-bit round constants

iRC is Xor with the 64-bit state. 

3  Balanced Independent Biclique Attack on PRINCEcore 

Inspired by paper [10], we give another balanced biclique attack on the full rounds PRINCEcore 

using the better differential characteristics in the biclique construction. We construct a biclique 

over the first round of PRINCE and match with precomputations technique on the remaining 

rounds. 

3.1  Key Partitioning 

We divide the 64-bit key space into
482 16-nibble key groups. The base keys [0,0]K are all

482

16-nibble values with four nibbles fixed to 0 and all other 12 nibbles in the state taking on all 

possible values. The
162 keys in a set [ , ]K i j  are defined relative to the base key [0,0]K ,and two 

difference K
i and K

j , where 8, {0,...,2 1}i j  and 1 2( || )i i i and 1 2( || )j j j . 

[0,0]K  1( )K
i k  1( )K

j k 

0
0

0
0

1i

2i

1j

2j

 

Fig4. Key Partitioning 

3.2  Constructing a Single Round Independent-Biclique of Dimension 8  

Here, we construct an independent biclique on the first round of PRINCEcore. We consider the 

block cipher as a composition of three subciphers: 2 1e g g f   . 

1 2g gfP S V C    
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According to section 3.1, i -trail actives nibble 0 and nibble 1, while j -trail actives nibble 8 

and nibble 9. we determine
82 plaintexts iP and

82 internal states jS to satisfy the definition of the 

biclique [ , ]K i j
i jf

P S ( 8, {0,...,2 1}i j  ). iP is the plaintext and jS is the internal state, this 

paper refers to the output of round 1 encryption. Fig5 illustrates the 1-round independent biclique 

on PRINCEcore, including base computation, i -differentials and j -differentials.   

Step1.Fix
0 (64)0P  ,and derive

0 [0,0] 0( )KS f P with key [0,0]K .This process is called as base 

computation ( Fig5, left). 

Step2.Encrypt 0P under different keys [0, ]K j ( 8{0,...,2 1}j  ) and derive [0, ]
0

K j
jf

P S  

(Fig5,middle). This process, is called i -differentials computation, has the same starting point 

and ending point as the base computation, so the computation complexity of this process is 
determined by the difference between [0, ]K j and [0,0]K .  

Step3.Decrypt 0S under different keys [ ,0]K i ( 8{0,...,2 1}i  ) and derive 1

[ ,0]
0

K i
i f

P S  

(Fig5,right). This process, i.e. j -differentials computations, are from over the same part of the 

cipher, so its computation complexity is determined by the difference between [ ,0]K i and [0,0]K . 

From Fig5, we can see that the forward differential trails and the backward differential trails do 

not share any non-linear components during the first round. Therefore, it is easy to find that 

[ , ]K i j
i jf

P S  ( 8, {0,...,2 1}i j  ) is true. So we can construct a 8-dimensional balanced 

independent biclique for every key group. In forward differential, i -differences are injected into 

nibble 0 and nibble 1 of key 1k and it affects five nibbles after one round. In backward differential,

j -differences are injected into nibble 8 and nibble 9 of key 1k  and it influences eight nibbles 

plaintexts after one round. 
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Fig5.Balanced independent biclique over the first round of PRINCEcore 

3.3  Matching with Precomputation 

In this section, we apply matching with precomputation technique on the remaining rounds to 

reduce computational complexity. Because PRINCEcore is an involutive structure, we choose the 

two nibbles of the state in the middle round, i.e, before 6-th round, as the matching values.  

Forward computation.  Firstly, we encrypt jS under key [0, ]K j and store 82 precomputation 

values of 
1

[0, ]
0,

K j
j jg

S v . Then, we encrypt the same jS under keys [ , ]K i j ,
1

[ , ]
,

K i j
j i jg

S v . 

Because both the processes have the same starting point, the recomputation complexity is 
determined by the difference between [0, ]K j and [ , ]K i j .  

Backward computation. Firstly ,we should ask the oracle to encrypt plaintext iP with the secret 

key sec retK and obtain ciphertext iC .Then, we decrypt iC under key [ ,0]K i and store 82  

precomputation values of 1
2

[ ,0]
,0

K i
i ig

v C . Lastly, we decrypt the same iC under keys [ , ]K i j , 

 1
2

[ , ]
,

K i j
i j ig

v C . Because both the processes have the same ending point, the recomputation 

complexity is determined by the difference between [ ,0]K i and [ , ]K i j . 
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   
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$10



$11

#3 #4 #5 #6 #7 #8 #9 #10 #11 #12

#12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23

Forward Matching

Backward Matching

 

Fig6. Recomputations for PRINCEcoer in forward and backward direction of balanced biclique attack. 

3.4  Complexity Analysis 

There are 192 1S S  -boxes in total in all round transformation of PRINCEcore. In the forward 

matching, we only need to compute 29 S-boxes; Fig6 top illustrates the active nibbles in the S 

operations in the states directly after the key additions during the matching. In the backward 

matching, we only need to compute 46 S-boxes. Fig6 bottom illustrates the active nibbles in the S 

operations in the states directly after the key additions during the matching. During the matching 

with precomputation, there are 75 S-boxes to be recomputed.  

Computation Complexity. For a key group of 162 keys, the recomputation complexity is 

16 14.6475
2 2

192recompC    . The complexity for constructing a biclique is 8 5.421
2 2 2

12bicliqueC     .The 

complexity of precomputations is 8 7.8811
2 2

12precompC    . The complexity to eliminate false positives 

is 82falseposC  . Therefore, the total computational complexity is  

2

48 5.42 14.64 7.88 8

62.67

2 ( )

2 (2 +2 +2 +2

=2

k d
full biclique recomp precomp falseposC C C C C   

  ）  

Data complexity. The data complexity is determined by the encrypted plaintexts. We fix 

0 (64)=0P for every biclique and all the plaintexts iP  ( 8{0,...,2 1}i  ) share eight nibbles, so 

the data complexity does not exceed
322 chosen plaintexts.  

Memory complexity. During the precomputation, we need to store
82 values, so the memory 

complexity is
82 . 

4  Star-Based Independent-Biclique Attack on PRINCEcore 

Inspired by their work [8], we first illustrate a star-based biclique attack on full rounds of 

PRINCEcore. A star-based biclique is different from balanced biclique with just one state in one 
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vertex set and
22 d

states in the other ones. We construct a 1-round star-based independent biclique 

over the first round of PRINCEcore and apply the matching with precomputations on the 

remaining rounds. 

4.1  Key Partitioning 

We divide the 64-bit key space into
482 16-nibble key groups. The form of partition is as same as 

section 3.1, so we do not describe key partitioning in this section.                                            

4.2  Constructing Single Round Star-Based Independent-Biclique of Dimension 8 

Similar to balanced biclique, stars can be constructed efficiently from independent sets of 

differentials. Unlike balanced biclique, the necessary differentials form of a star-based biclique is 

different from the one of balanced biclique. For PRINCEcore, it is easy to construct a star-based 

independent biclique over the first round. We place the star at the beginning of the cipher, let x be 

the plaintext and ,i jy be the output of round 1 encryption. Fig7 shows the 1-round star-based 

independent biclique, including the base computation, i -differentials and j -differentials. Both 

i -differentials and j -differentials do not share any non-linear components. 

Step1. Let 0x be the plaintext, and obtain 0,0 [0,0] 0( )Ky f x with key [0,0]K . This process is called 

as base computation (Fig7, left). 

Step2. Encrypt 0x under different keys K
i ( 8{0,...,2 1}i  )and obtain 0

K
i

if
x y

(Fig7,middle). This process has the same starting point and ending point as base computation. 

Step3. Encrypt 0x from over the same part of the cipher as step 2 under different keys K
j  

( 8{0,...,2 1}j  ) and obtain 0

K
j

jf
x y

 (Fig7,right). This process also has the same starting 

point and ending point as base computation. 









1
'

S
M

SR
R

C

1
'

S
M

SR
R

C

0x 0x





1
'

S
M

SR
R

C

0x

Base Computation differentials  differentials 

0y iy
jy

$0 $0 $0

$1 $1 $1

#0

#1

#2

#3

 

Fig7. Star-based independet biclique over the first round of PRINCEcore 
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From Fig7, we can observe that both the differentials do not share any non-linear components 

during the first round. So, it is easy to prove that 
[0,0]

,

K K
i jK

i jf
x y

  ( 8, {0,...,2 1}i j  ) is 

true. Therefore, we successfully construct a star-based independent biclique for every key group.  

4.3  Matching with Precomputation 

In this section, we apply matching with precomputation technique on the remaining rounds. We 

choose the same nibbles of the state in the middle round, i.e., before 6-th round, as the matching 

values. 

Forward matching. In the forward direction of matching, starting in round 2, a part of the state 

has to be recomputed. Because difference propagation in these differentials over one round is 

non-overlapping, no S-boxes has to be recomputed in 2-th round. However, starting in 3-th round 

and forwards, the propagation affects the whole state (Fig8, top). So 54 S-boxes have to be 

recomputed in the forward direction of matching.  

Backward matching. In the backward direction of matching, 42 S-boxes need to be recomputed 

(Fig8, bottom). 

   

$2 $3 $4 $5

   

$6 $7 $8 $9



$10



$11

Forward Matching
#3 #4 #5 #6 #7 #8 #9 #10 #11 #12

#12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23

Backward Matching

 

Fig8. Recomputations for PRINCEcore in forward and backward direction of star-based biclique attack. 

4.4  Complexity Analysis 

During the matching with precomputation, 96 S-boxes have to be recomputed. 

Computation Complexity. For a key group of 162 keys, the recomputation complexity is 

16 1596
2 2

192recompC    . The effort for constructing one biclique is 8 5.421
2 2 2

12bicliqueC     . The 

complexity of precomputations is 8 7.8811
2 2

12precompC    . The complexity to eliminate false 

positives is 82falseposC  . Therefore, the total computational complexity is  



10 

2

48 5.42 15 7.88 8

63.02

2 ( )

2 (2 +2 +2 +2

=2

k d
full bilique recomp precomp falseposC C C C C   

  ）  

Data complexity. The data complexity is determined by the encrypted plaintexts. We let x be the 

plaintext, so the data complexity will be 1. One known plaintext-ciphertext pair can sometimes be 

enough, and two known plaintext-ciphertext pairs yield a success probability of practically1. 

Memory complexity. During the precomputation, we need to store
82 values, so the memory 

complexity is upper bounded by
82 . 

5  Conclusion 

In this paper, we concentrate on independent biclique attack on full rounds PRINCEcore. We give 

two kinds of independent biclique attacks on full rounds PRINCEcore. One is a balanced-biclique 

attack with the lower computational complexity and data complexity than the previous works. 

Another is a first star-based biclique attack PRINCEcore with the optimal data complexity. i.e., we 

first utilize a star-based biclique (unbalanced biclique) to reduce the data complexity to the 

theoretically attainable minimum. Compared with previous biclique attack, our balanced-biclique 

attack has an advantage of computational complexity and data complexity. While the data 

complexity of our star-based independent biclique attack is optimal than the ones of existing kinds 

of biclique attacks. It's worth mentioning that the structure of biclique is important for the data 

complexity of the attack, whereas the length of the biclique seems to be correlated with the 

computational complexity. 
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A   Matching with One Nibble of Balanced Biclique Attack on PRINCEcore 

If we only choose nibble 12 of the state in the middle round, i.e, before 6-th round, as the 

matching value (Fig 9), we need to recompute 28 S-boxes In the forward matching and we have to 

recomputed 41 S-boxes in the backward matching. During the matching with precomputation, 69 

S-boxes need to be recomputed.  

   

$2 $3 $4 $5

   

$6 $7 $8 $9



$10



$11

#3 #4 #5 #6 #7 #8 #9 #10 #11 #12

#12 #13 #14 #15 #16 #17 #18 #19 # 20 #21 #22 #23

Forward Matching

Backward Matching

  

Fig 9. Matching with one nibble in forward and backward direction of balanced biclique attack. 

Computation Complexity. For a key group of 162 keys, the recomputation complexity is 

16 14.5269
2 2

192recompC    . The complexity for constructing a biclique is 8 5.421
2 2 2

12bicliqueC     .The 

complexity of precomputations is 8 7.8811
2 2

12precompC    . The complexity to eliminate false 

positives is 122falseposC  . Therefore, the total computational complexity is  

2

48 5.42 14.52 7.88 12

62.77

2 ( )

2 (2 +2 +2 +2

=2

k d
full biclique recomp precomp falseposC C C C C   

  ）  

B   Matching with One Nibble of Star-based Biclique Attack on PRINCEcore 

If we onlye choose nibble 12 of the state in the middle round, i.e, before 6-th round, as the 

matching value (Fig 10), we need to recompute 53 S-boxes in the forward matching and we have 

to recomputed 37 S-boxes in the backward matching. During the matching with precomputation, 

90 S-boxes need to be recomputed. 
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Fig10. Matching with one nibble in forward and backward direction of star-based biclique attack. 

Computation Complexity. For a key group of 162 keys, the recomputation complexity is 

16 14.9190
2 2

192recompC    .The complexity for constructing one biclique is 8 5.421
2 2 2

12bicliqueC     . 

The complexity of precomputations is 8 7.8811
2 2

12precompC    . The complexity to eliminate false 

positives is 122falseposC  . Therefore, the total computation complexity is 

2

48 5.42 14.91 7.88 12

63.1

2 ( )

2 (2 +2 +2 +2

=2

k d
full bilique recomp precomp falseposC C C C C   

  ）  


