
Attribute-Based Versions
of Schnorr and ElGamal

Javier Herranz

Universitat Politècnica de Catalunya,
Dept. Matemàtica Aplicada IV

c. Jordi Girona 1-3, 08034, Barcelona, Spain

Abstract. We design in this paper the first attribute-based cryptosystems that work in the classical Discrete
Logarithm, pairing-free, setting. The attribute-based signature scheme can be seen as an extension of Schnorr
signatures, with adaptive security relying on the Discrete Logarithm Assumption, in the random oracle model. The
attribute-based encryption schemes can be seen as extensions of ElGamal cryptosystem, with adaptive security
relying on the Decisional Diffie-Hellman Assumption, in the standard model.
The proposed schemes are secure only in a bounded model: the systems admit L secret keys, at most, for a bound
L that must be fixed in the setup of the systems. The efficiency of the cryptosystems, later, depends on this
bound L. Although this is an important drawback that can limit the applicability of the proposed schemes in
some real-life applications, it turns out that the bounded security of our key-policy attribute-based encryption
scheme (in particular, with L = 1) is enough to implement the generic transformation of Parno, Raykova and
Vaikuntanathan at TCC’2012. As a direct result, we obtain a protocol for the verifiable delegation of computation
of boolean functions, which does not employ pairings or lattices, and whose adaptive security relies on the Decisional
Diffie-Hellman Assumption.

Keywords: attribute-based cryptography, Discrete Logarithm setting, verifiable computation.

1 Introduction

Functional cryptography is emerging in the last years as a very interesting and powerful paradigm: decryptions
or signatures can be now computed by several users, as long as they have enough rights, instead of by a unique
user in possession of a secret key, as it is the case in the classical setting of public key cryptography. This
more general setting of functional encryption seems much more suitable for real-life applications involving
large amounts of different kinds of data, users and operations, such as storage and computation in the Cloud,
big data analysis, social networks, or the Internet of Things.

Attribute-based cryptography is perhaps the particular case of functional encryption which has found more
applications and, thus, has received more attention from the cryptographic community. In a typical attribute-
based cryptosystem, the secret operation (signing or decrypting) can be performed only by users who hold a
subset of attributes that satisfy some policy. Attribute-based cryptosystems must satisfy a collusion-resistance
property: if a set of users, each of them holding attributes that do not satisfy the given policy, collude and
try to perform the secret operation, they must fail to do so, even if the union of all their attributes satisfy the
policy. This is the usual setting in attribute-based signature schemes [26, 28, 15, 4, 22] and in ciphertext-policy
attribute-based encryption [7, 24, 25]. For encryption, the dual version of key-policy attribute-based encryption
has also been defined and widely studied [20, 29, 9]: here the users’ secret keys are related to policies, and
ciphertexts are related to subsets of attributes; the ciphertext can be decrypted by a secret key only if the
subset of attributes in the ciphertext is authorized for the policy in the secret key. Although the notion of
ciphertext-policy may seem a bit more realistic, it turns out that key-policy attribute-based encryption has
found some interesting applications, for instance in the area of verifiable delegation of computation [30].

The collusion-resistance property required to attribute-based cryptosystems makes it quite difficult to
design secure systems. To do so, researchers have taken profit from the additional algebraic properties provided
by mathematical objects like bilinear/multilinear maps or lattices. As a result, most of the attribute-based
cryptosystems proposed up to now make use of lattices or multilinear maps; this includes very general
constructions admitting arbitrary circuits as policies [18, 19, 8]. The only exceptions can be found in the
area of attribute-based signatures, with [22] based on RSA, and some generic constructions [26, 4] that



could in principle be implemented with RSA, as well. However, it is still desirable to study if attribute-based
cryptography can be based on other classical techniques and security assumptions, like those in the traditional
(pairing-free) Discrete Logarithm setting. The interest is both theoretical, to understand if more complex tools
like pairings or lattices are necessary for building some cryptographic functionalities, and practical, because
cryptosystems in the traditional Discrete Logarithm setting can be implemented in elliptic curves where
elements in a group may have a shorter representation, which may lead to clear efficiency gains. We note that
there exist (at least) two recent examples where the same problem of building cryptographic protocols in the
Discrete Logarithm pairing-free setting has been considered, in scenarios quite close to that of attribute-based
cryptography. In [2], for the problem of anonymous credentials systems, which is very related to attribute-
based signatures; and in [1], for the problem of inner-product encryption, which is another particular case of
functional encryption.

1.1 Our Contributions

We propose in this work the first (to the best of our knowledge) attribute-based cryptosystems which use
techniques and security assumptions of the pairing-free Discrete Logarithm setting. For attribute-based sig-
natures, the new scheme is proved secure (private and unforgeable) in the random oracle model, under the
only assumption that the Discrete Logarithm problem is hard to solve. For attribute-based encryption, we
design both a ciphertext-policy scheme and a key-policy scheme. The security of both schemes is proved in
the standard model, under the assumption that the Decisional Diffie-Hellman problem is hard. With these
security properties in mind, and also due to the similarities in their designs, it is natural to consider the new
schemes as the attribute-based versions of classical cryptosystems like Schnorr signatures [33] or ElGamal
encryption [14].

A positive property of the schemes is that they achieve adaptive security, meaning that the schemes are
secure even in front of adversaries that choose the challenge input (messages, policy and subset of attributes)
in the challenge phase. This is in contrast to selective security, where the considered adversaries choose the
challenge input in the setup phase of the systems. A negative property of the new schemes is the fact that they
are bounded : a bound L on the maximum number of secret keys generated by the system must be chosen in
the setup phase. Once the system has generated L keys, the setup phase must be run again, to generate new
public parameters. Furthermore, the efficiency of the schemes (for instance the size of the public parameters,
signatures and ciphertexts, and the computational cost of the protocols) depends on this bound L. This may
be a serious limitation for possible uses of the schemes in some real-life applications, like social networks,
with a huge expected number of users. Therefore, a direct implementation of the new schemes could make
sense only in quite closed applications, for instance in small companies or institutions.

As we explain in the next Section 1.2, it seems hard to avoid this limitation when designing attribute-
based cryptosystems in the pairing-free Discrete Logarithm setting. Interestingly, the bounded-security prop-
erty may be enough in some applications of attribute-based cryptography. Indeed, a generic tranformation
from a key-policy attribute-based encryption scheme to a protocol for the publicly verifiable delegation of
computation is given in [30], where the security level required for the attribute-based primitive is one-key
security. Actually, authors of [30] mention as an open problem the design of one-key secure attribute-based
cryptosystems with more efficiency or simplicity than the existing ones (which achieve unbounded security).
Our results can be seen as an answer to this problem, because we show that nor pairings or lattices are needed
in order to get one-key security. Combining our key-policy attribute-based encryption scheme with the con-
struction in [30], one immediately obtains a protocol for the publicly verifiable delegation of computation of
boolean functions, which does not require pairings or lattices, and whose adaptive security is based on the
Decisional Diffie-Hellman Assumption.

1.2 Why to Bound the Number of Users?

In the attribute-based cryptosystems that we propose in this work, both the number (and name) of possible
attributes and the number of users of the System must be bounded in advance. The first assumption is quite



realistic and common in the attribute-based literature, since the possible attributes in real-life applications
are usually known in advance, and not so many. However, imposing a bound on the number of users is a very
strong limitation, which restricts the possible application of the proposed schemes to particular situations
with few expected users, for instance providing attribute-based features to a small company or institution.

The question at this point is: can we avoid this drawback (bounding the number of users) in an attribute-
based cryptosystem which does not use pairings, where the parameters are polynomial on the number of
attributes, and where security relies only on the Discrete Logarithm family of assumptions (including the
Discrete Logarithm and Computational / Decisional Diffie-Hellman ones)? We give now some informal ar-
guments which seem to indicate that the answer to the previous question is ‘No’. This will not be a formal
(impossibility) result at all. In particular, our arguments are based on the current state-of-the-art in the
area of digital signatures. Therefore, giving a final and formal answer to the previous question remains as an
interesting and challenging open problem.

First of all, let us stress that we want to keep the parameters of the scheme polynomial on the (fixed)
number N of attributes of the systems. If this is not a requirement, then it is quite easy to design attribute-
based cryptosystems with the desired properties: if P̃ denotes the global set of attributes, let us just generate
one pair of ElGamal / Schnorr keys (ski, pki) for each subset Ai ⊂ P̃. The set of public keys will form the
public parameters of the attribute-based system. When a user requests a secret key for a subset of attributes
S ⊂ P̃, he receives the secret keys ski for all subsets Si ⊂ S. Note that the size of both the public parameters
and secret keys are exponential on N . Later, for instance in the case of encryption, to encrypt a message for a
decryption policy, one takes all the minimally authorized subsets {B1, . . . , Bk} for that policy (a basis), and
encrypts the plaintext for all the public keys associated to these sets (using multiple encryption techniques
to re-use the randomness). If a user is authorized, some subset Si in his secret key will match some of the
subsets Bj in the basis of the decryption policy, and so he could use the corresponding secret key ski to
decrypt and obtain the plaintext. A similar solution for the case of (Schnorr) signatures is straightforward.
It is easy to prove the selective security of the resulting cryptosystems.

Taking apart these solutions with exponential dependence on the number of attributes, the best we can do
is to include, in the public parameters, some elements for each of the attributes in P̃ = {at1, . . . , atN}. Since
we want to work in the (pairing-free) Discrete Logarithm scenario, where we have a public group G = 〈g〉
with prime order q, we can assume that we have some elements from G in the public parameters, whereas the
master secret key contains the discrete logarithms (element in Zq) of those values. So let us assume that the
public parameters contain {(gxi,1 , . . . , gxi,k}ati∈P̃ , for some value k (polynomial in N), whereas the master
secret key contains the corresponding discrete logarithms {(xi,1, . . . , xi,k}ati∈P̃ . When a user requests a secret

key for a subset of attributes S ⊂ P̃, he should get some secret, sensitive, unforgeable information related to
the values {(xi,1, . . . , xi,k}ati∈S . Typically, as it happens in the identity-based setting, the values contained
in the secret key can be thought as digital signatures computed by the master entity on the corresponding
attributes; in the attribute-based setting, moreover, all the “signatures” must be linked, in order to prevent
collusion attacks. We can distinguish three possibilities depending on the type of elements included in the
resulting secret key skS :

(i) skS contains only elements from G. In this case, even the verification of the validity of skS must involve
the use of pairings, to check that the elements in skS and some elements from the public parameters
satisfy some Diffie-Hellman relation. The same will happen later, in the signature/verification or encryp-
tion/decryption protocols. Actually, all the current pairing-based attribute-based cryptosystems belong
to this category (i).

(ii) skS contains elements from Zq, and the verification of the validity of skS does involve the evaluation of
some hash function. An example of this situation would be a system where each user can have at most
one attribute ati, and the secret key for that user would be a Schnorr signature (hi, si) of message ati,
satisfying hi = H(gsi · y−hi , ati), where y is part of the master public key. In the more realistic case
where users may have more attributes, all the Schnorr signatures should be linked and randomized to
prevent collusion attacks. This would lead to the appearance of (at least) one element R in the secret



key skS , specific and different for each user, which furthermore must be added as an input of the hash
evaluations, to preserve unforgeability of the secret keys. All in all, it seems impossible, for instance in
the case of attribute-based signatures, that a user can later prove possession of some attributes without
revealing some information on R or values hi. This means that the resulting attribute-based signatures
would be linkable, and so, the privacy requirement for attribute-based signatures would not be achieved.
Note that this strategy is essentially the one proposed in [2] for an anonymous credential system based
on DDH: the credentials can be used at most once, because a second use of the same credentials would
break anonymity. After the first use of the credentials, the user must go to the master entity to obtain
new credentials.

Something similar happens in the case of encryption: if we do not want to rely on pairings, then it seems
that the values R should be taken into account by the sender of the message when encrypting the plaintext,
in order to allow later decryption. But this means that the sender must know in advance the identities of
the users that will decrypt, and that those values R should be included in the public parameters. Both
things are unrealistic.

(iii) skS contains elements from Zq, and the verification of the validity of skS does not involve the evaluation
of any hash function. Taking into account that secret keys skS must be unforgeable, it seems we are now
in the same situation as if we would like to design a secure digital signature scheme based on the Discrete
Logarithm Assumption which does not use hash functions or pairings. The best that can be done in this
situation, according to the current state-of-the-art, is to bound in advance (before defining the public
key) the total number of messages that could be signed; otherwise, if the number of signatures available
to an adversary is unlimited, he can infer enough equations between the signatures and the (unknown)
elements of the secret key so that he gets the whole secret key and breaks the security of the system. In
the digital signature setting, bounding the number of signatures led to the concept of k-times signature
(with particular interest in the case k = 1) [32, 6, 27]. Translating this concept to our attribute-based
setting, what we will get is a situation where the number of secret key queries is bounded. If we assume
that the system can control that each user makes at most one secret key query, then what we get is a
situation where the number of users participating in the system must be bounded in advance.

Summing up, our personal conclusion (after spending some time trying to design attribute-based cryp-
tosystems in the pairing-free Discrete Logarithm setting) is a conjecture: in such a setting, and keeping all the
parameters polynomial in N , the best one can do is to have systems where the number of users is bounded
in advance. Once again, we encourage researchers to consider this problem and try to give a formal answer
to the question discussed in this section.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2 we describe the Discrete Logarithm setting,
in particular the Discrete Logarithm and Decisional Diffie-Hellman Assumptions, and also we recall the
definitions for zero-knowledge proofs of knowledge, which will be the main building block in the design of our
attribute-based signature scheme.

Sections 3 and 4 are devoted to (bounded) attribute-based signatures: we first recall the syntax definition
and the required security properties for such schemes, and then in Section 4 we describe the new scheme and
prove its security, in the random oracle model, under the Discrete Logarithm Assumption. Both the design
and the security analysis of the scheme are tightly related to a new zero-knowledge proof of knowledge for a
language related to discrete logarithm relations. Section 5 contains the definitions of the protocols and the
required security properties for (bounded) attribute-based encryption, in its two versions: ciphertext-policy
and key-policy. We describe the new ciphertext-policy attribute-based encryption scheme in Section 6, where
we prove its adaptive (but bounded) security in the standard model, under the Decisional Diffie-Hellman
Assumption. Part of the security proof is related to an algebraic property of a (huge) matrix; the proof of
this property, which involves simple but long linear algebra arguments, is moved to Appendix A in order to



ease the global reading of the paper. Section 7 is the analogue of Section 6, but now for a new key-policy
attribute-based encryption scheme.

For simplicity we describe and analyze our new schemes in the case of threshold policies; in Section 8
we explain how the schemes can be adapted in order to admit more general policies. We also discuss some
(in)efficiency aspects of our schemes in that section, and we observe that our key-policy attribute-based
encryption scheme can be combined with the construction in [30] to get a protocol for the publicly verifiable
delegation and computation of boolean functions.

2 Mathematical Framework and Building-Blocks

The typical Discrete Logarithm framework consists of a cyclic group G of prime order q. Examples of such
groups are subgroups of Zp, for some prime p, when q|p − 1, or groups of points in an elliptic curve. Given
a generator g of G, and another element y ∈ G, the discrete logarithm of y with respect to g is the integer
x ∈ Zq such that gx = y.

We will assume the existence of some algorithm (q,G, g) ← DLog.Inst(1λ) which, on input a security
parameter λ, outputs a triple (q,G, g), where q is a prime with λ bits, and G = 〈g〉 is a cyclic group.

Definition 1. (Discrete Logarithm problem.) An algorithm ADLog solves the Discrete Logarithm prob-

lem in G if it receives as input (q,G, g)← DLog.Inst(1λ) and a randomly chosen y R← G, and outputs x ∈ Zq
such that gx = y.

The Discrete Logarithm Assumption states that the probability that any algorithm ADLog solves the
Discrete Logarithm problem in polynomial time is negligible in λ, meaning that this probability decreases
(as λ increases) faster than the inverse of any polynomial.

Definition 2. (Decisional Diffie-Hellman problem.) An algorithm ADDH solves the Decisional Diffie-
Hellman (DDH, for short) problem in G if it receives as input (q,G, g) ← DLog.Inst(1λ) and a triple of
elements (gx, gy, gz) in G, where a, b R← Zq are randomly chosen and z is either random or z = xymod q, and
is able to distinguish which is the case.

A bit more formally, the advantage of an algorithm ADDH in solving the DDH problem is defined by
considering the following experiment, Expddh

ADDH
(λ), involving an adversary B.

Expddh
ADDH

(λ)

Choose b R← {0, 1} at random
(q,G, g)← DLog.Inst(1λ)

Choose x, y R← Zq independently and at random

If b = 0, compute T = gxy; if b = 1, sample T R← G independently and at random
b′ ← ADDH(q,G, g, gx, gy, T )
Output 1 if b′ = b, and 0 otherwise.

The advantage of ADDH in solving the DDH problem is defined as

AdvddhADDH
(λ) =

∣∣∣∣Pr[Expddh
ADDH

(λ) = 1]− 1

2

∣∣∣∣ .
The DDH Assumption states that the advantage of any polynomial time algorithm ADDH in solving the

DDH problem is negligible in λ.



2.1 Zero-Knowledge Proofs of Knowledge

Let R be a relation, containing pairs (x,w), such that, given (x,w), the fact (x,w) ∈ R can be verified in
polynomial time. We will call x the statement and w the witness. We define the language LR as the set of
statements x for which there exists a witness w such that (x,w) ∈ R.

A zero-knowledge proof of knowledge (ZKPK) for a relation R is a (possibly interactive) protocol between
two parties, a prover P and a verifier V , with common input x, where the prover convinces the verifier that
he knows a witness w for which (x,w) ∈ R, without revealing any additional information. Namely, the inputs
for the prover are a statement x and a witness w such that (x,w) ∈ R, whereas the input for the verifier is
just x. At the end, the output for the verifier is 1 if it accepts the proof or 0 if it rejects it.

In this work we deal with a particular kind of ZKPK protocols, known as Sigma protocols, where the
interaction consists of three steps. First of all, the prover computes and sends a commitment Cmt, then the
verifier sends a challenge c, and finally the prover computes and sends an answer Ans. The final output of
the verifier depends only on R, x,Cmt, c,Ans. The transcript of an execution of this protocol is denoted as
(Cmt, c,Ans).

For simplicity, we recall the security requirements of a ZKPK protocol for this particular case of Sigma
protocols. A ZKPK must satisfy the following three properties:

Completeness. Intuitively, this property ensures that, if the prover behaves honestly, then everything works
fine and a valid proof is always accepted.

Definition 3. A ZKPK for a relation R is complete if, for all (x,w) ∈ R, then an execution of the protocol
where the input of the prover is (x,w) is always accepted by the verifier.

Knowledge Soundness. Informally, this property guarantees that a (possibly malicious) prover who makes
a proof be accepted as valid must actually know a witness. Let W (x) = {w | (x,w) ∈ R} denote the set of
valid witnesses for element x.

Definition 4. A ZKPK for a relation R has knowledge soundness if there exists a polynomial-time extractor
E such that, for any prover P̃ and any statement x, the probability that E, given access to transcripts of the
protocol executed by P̃ , outputs w such that w ∈ W (x), is not significantly less than the probability that the
executions run by P̃ are accepted as valid.

Zero-knowledge. This property ensures that a valid proof for x does not reveal any information, other than
the fact that there exists a witness w such that (x,w) ∈ R. More formally,

Definition 5. A ZKPK for a relation R is zero-knowledge if, for any (possibly malicious) verifier Ṽ , there
exists a polynomial-time simulator algorithm S such that for any x ∈ LR, S(R, x, Ṽ ) generates a transcript
(Cmt, c,Ans) whose distribution is indistinguishable from the transcript of an execution of the protocol run by
a honest prover, with input (x,w) ∈ R, and verifier Ṽ .

This zero-knowledge property implies witness indistinguishability [16], which states that given a valid exe-
cution of the protocol for statement x, it is computationally hard to distinguish which witness in W (x) was
used by the prover.

The Fiat-Shamir [17] heuristics can be applied to a Sigma protocol in order to get a non-interactive zero-
knowledge proof of knowledge protocol, where the whole elements in the proof are computed by the prover
(the transcript is then usually denoted as π). The idea is to simply replace the challenge c computed by the
verifier with the result of applying a hash function to the inputs (x,R,Cmt). In the random oracle model
[5], where the hash function is assumed to behave as a completely random function, this transformation
preserves the security properties of the initial ZKPK protocol. If a message m is included as an additional
input of the hash function, this technique allows the construction of signature schemes (known as signatures



of knowledge), with security in the random oracle model. This is exactly what we will do in our signature
scheme: a particular attribute-based signature will be a signature of knowledge, applied to the corresponding
message, for a specific language that we will describe later.

3 (Bounded) Attribute-Based Signatures: Protocols and Security

In this section we describe the protocols that form an attribute-based signature scheme, as well as the security
properties that must be required to such a scheme. An attribute-based signature is linked to a determined
signing policy (P, Γ ): a set P of attributes and a (monotone increasing) family Γ ⊂ 2P of subsets of P. A
valid signature means that a signer possessing all the attributes of some of the subsets in Γ is the author of
the signature. The monotonicity property ensures that S1 ⊂ S2, S1 ∈ Γ ⇒ S2 ∈ Γ . The most common and
simple example of such a monotone increasing family of subsets is the threshold case: in a (t, n)-threshold
signing policy, the set P contains n attributes, and Γ = {S ⊂ P : |S| ≥ t}. That is, by verifying a threshold
attribute-based signature, the verifier is convinced that the author of the signature holds at least t of the
attributes included in the set P.

3.1 Syntactic Definition

A bounded attribute-based signature scheme consists of four probabilistic polynomial-time algorithms:

– Setup(1λ). The setup algorithm takes as input a security parameter λ and outputs some public parameters
pms and a master secret key msk. The public parameters contain the possible universe of attributes
P̃ = {at1, . . . , atN} and a bound L for the maximum number of users.

– KeyGen(S,msk, pms). The key generation algorithm takes as input the master secret key msk, the public
parameters pms and then a set of attributes S ⊂ P̃ satisfied by the user. The output is a secret key skS .

– Sign(m,P, Γ, skS , pms). The signing algorithm takes as input a message m, a signing policy (P, Γ ) where
P ⊂ P̃ and Γ ⊂ 2P , a secret key skS and the public parameters pms, and outputs a signature σ.

– Verify(σ,m,P, Γ, pms). The verification algorithm takes as input the signature σ, the message m, the
signing policy (P, Γ ) and the public parameters pms, and outputs 1 (accept) or 0 (reject), depending on
the validity of the signature.

Of course, the usual property of correctness must be required. Intuitively, a signature for a signing policy
(P, Γ ) that is computed by using skS such that S ∩ P ∈ Γ must be always accepted by the verification
protocol.

3.2 Security Definitions

Privacy. Intuitively, privacy means that, given a valid signature, nobody (including the master entity and
the stateless user who computed the signature) can obtain any information about the real author of the
signature. In other words, given two subsets S0 and S1, with S0, S1 ⊂ P∗, and a valid signature σ ←
Sign(m,P, Γ, skSb

, pms) for a signing policy Γ such that S0, S1 ∈ Γ , nobody can guess the bit b with probability

significantly bigger than 1/2. The privacy property is formally defined via the following experiment Exppriv
B (λ),

involving an adversary B.

Exppriv
b,B (λ)

Choose b R← {0, 1} at random
(pms,msk)← Setup(1λ)
(m,P, Γ, S0, skS0 , S1, skS1 , st1)← B(pms,msk)
Verify that skSi is a valid secret key for Si, for i = 0, 1
Verify that S0 ∩ P ∈ Γ and S1 ∩ P ∈ Γ
σ∗ ← Sign(m,P, Γ, skSb

, pms)
b′ ← B(σ∗, pms,msk, st1)
Output 1 if b′ = b, and 0 otherwise.



The advantage of B in breaking the privacy property is defined as

AdvprivB (λ) =

∣∣∣∣Pr[Exppriv
B (λ) = 1]− 1

2

∣∣∣∣ .
Definition 6. An attribute-based signature scheme is private if, for any adversary B that runs in polynomial
time, the advantage AdvprivB (λ) is negligible in the security parameter λ.

Since the adversary B can obtain the master secret key (and so, secret keys for all identities of his choice),
it is easy to see that the privacy property, as defined above, implies other properties like signer’s anonymity
and non-linkability of different signatures.

Unforgeability. An attribute-based signature scheme must satisfy the property of existential unforgeability
against chosen message and signing policy attacks. Such property is defined by the following experiment
Expunf

F (λ) involving an adversary F .

Expunf
F (λ)

(pms,msk)← Setup(1λ)

(σ∗,m∗,P∗, Γ ∗)← FKeyGen(·,msk,pms), Sign(·,pms)(pms)
Output 1 if the three following statements are true:

(i) Verify(σ∗,m∗,P∗, Γ ∗, pms) returns 1;
(ii) F has not made any secret key query S such that S ∩ P∗ ∈ Γ ∗;
(iii) the number of secret key queries is at most L (the bound given in pms);
(iv) (m∗,P∗, Γ ∗, σ∗) is not the result of any signature query from F .

Otherwise, output 0

The advantage of F in breaking the unforgeability of the scheme is defined as AdvunfF (λ) = Pr[Expunf
F (λ) =

1]. We stress that F is allowed to make up to L adaptive queries for secret keys of subsets S of his choice,
and adaptive signing queries for tuples (m,P, Γ ) of his choice, where Γ ⊂ 2P . The last kind of queries are
answered by choosing a random subset S ⊂ P with S ∈ Γ , and then by running skS ← KeyGen(S,msk, pms)
and σ ← Sign(m,P, Γ, skS , pms).

Definition 7. An attribute-based signature scheme is unforgeable if, for any adversary F that runs in poly-
nomial time, the advantage AdvunfF (λ) is negligible in the security parameter λ.

The above definition of unforgeability guarantees collusion resistance: a group of colluding users that pull
their secret keys together will not be able to sign messages for a signing policy that none of the attribute
sets of these users satisfies. The definition is in the adaptive setting where the attacker chooses the target
signing policy (P∗, Γ ∗) after making some queries. This is in contrast to the weaker selective setting where
the attacker must choose the target signing policy at the very beginning of the attack.

4 The New Attribute-Based Signature Scheme (for Threshold Signing Policies)

In this section, we describe our attribute-based signature scheme. For simplicity, we consider the case of
threshold signing policies. Therefore, a pair (P, Γ ) will be represented as (P, t), where 1 ≤ t ≤ |P|. Later, we
will explain how the scheme can be modified to support other (more general) signing policies.

4.1 Description of the Scheme

Setup(1λ). The setup algorithm starts by running (q,G, g) ← DLog.Inst(1λ), which outputs a cyclic group
G = 〈g〉 of prime order q, such that q is λ bits long. A cryptographic hash function H : {0, 1}∗ → Zq is



chosen. The global set of attributes P̃ = {at1, . . . , atN} is chosen. A bound L for the maximum number of
users in the system is given. Finally, the value M = L+N is defined.

For all i ∈ {1, . . . , N} and all j ∈ {1, . . . ,M}, choose xi,j
R← Z∗q independently and at random, and

compute Yi,j = gxi,j . An additional element h R← G is also randomly chosen.
The public parameters of the system are pms = (q,G, g, h,H, P̃, L,N, {Yi,j}1≤i≤N,1≤j≤M ), whereas the

master secret key is msk = {xi,j}1≤i≤N,1≤j≤M .

KeyGen(S,msk, pms). The key generation algorithm takes as input a subset of attributes S ⊂ P̃, the
master secret key msk and the public parameters pms.

The master entity chooses at random a vector a = (a1, . . . , aM ) R← (Zq)M and, for each ati ∈ S, computes

the value si =
M∑
j=1

ajxi,j mod q. If some of the elements si is equal to zero (which happens with negligible

probability), the master entity chooses a new vector a.
The global secret key is skS = (a, {si}ati∈S). In total, skS contains M + |S| elements from Zq.

The receiver of the secret key can validate its correctness by checking that gsi =
M∏
j=1

Y
aj
i,j , for all ati ∈ S.

Sign(m,P, t, skid,S , pms). The signing algorithm takes as input a message m, a set of attributes P ⊂ P̃,
a threshold t, a secret key skS = (a, {si}ati∈S) and the public parameters pms. The algorithm selects a
minimally authorized set S′, this is, a subset of S ∩P of cardinality exactly t. Without loss of generality and
to simplify notation, let us assume P = {at1, . . . , atn} and S′ = {at1, . . . , att}. To generate the signature, the
user runs the non-interactive zero-knowledge proof of knowledge protocol described in Section 4.2, with m as
an additional input of the hash function (signature of knowledge), to compute

PK

(a, S′, {si}ati∈S′) s.t. S′ ⊂ P
∧
|S′| = t

∧
∀ati ∈ S′ :

(
si 6= 0 ∧ gsi =

M∏
j=1

Y
aj
i,j

) (m)

The resulting signature (following the notation in Section 4.2) is

σ =
(
f(x), {(Ai, ui, ũi, zi, z̃i, ei, {wi,j}1≤j≤M )}1≤i≤n , {wj}1≤j≤M

)
.

Verify(σ,m,P, t, pms). The verification algorithm takes as input a message m, the signature σ on m, the
threshold signing policy (P, t), with n = |P|, and the public parameters pms. It simply checks the validity of
the proof of knowledge. That is:

1. Verify that the degree of f(x) is at most n− t.

2. For all ati ∈ P, compute ci = f(i) and the values Ti = A−ci · hei ·
M∏
j=1

Y
wj

i,j , Ri = A−cii · hzi ·
M∏
j=1

Y
wi,j

i,j ,

Ui = A−cii · gui · hzi , Ãi = Aũii · h−z̃i · g−ci .

3. Return 1 if f(0) = H

(
m,x,

{(
Ai, Ãi, Ti, Ri, Ui

)}
ati∈P

)
, and return 0 otherwise. Here we are denoting

x =
(
g, h, {Yi,j}1≤i≤n,1≤j≤M ,P, t

)
.

Remark 1. If some vector a given to some user as part of his secret key was a linear combination of other
vectors a(`) given to other users, then the security of the scheme could be compromised, since the system
could not resist a collusion attack. The probability of such a linear dependence is negligible in the security
parameter λ. However, in a real implementation of this scheme, it could be desirable to explicitly check that
such dependence relations do not occur. This can be done by the master entity, for instance, by choosing the
L vectors a(1), . . . ,a(L), linearly independent in (Zq)M , during the Setup protocol, and then assigning vector
a(`) to the `-th secret key query (in a stateful process). See also Section 4.6 for a different and more efficient
generation of the L vectors a(1), . . . ,a(L).



4.2 The Proof of Knowledge

The language of the zero-knowledge proof of knowledge that is used in the proposed attribute-based signature
scheme is related to the public information x =

(
g, h, {Yi,j}1≤i≤n,1≤j≤M ,P, t

)
, where (P, t) is the signing pol-

icy chosen by the signer. A witness w for the fact that x belongs to this language consists of
(
a, S′, {si}ati∈S′

)
,

where a = (a1, . . . , aM ) ∈ (Zq)M , S′ ⊂ P is a subset with |S′| = t attributes and, for all ati ∈ S′, it holds

that si ∈ Zq − {0} and gsi =
M∏
j=1

Y
aj
i,j . Without loss of generality, let us assume P = {at1, . . . , atn} and

S′ = {at1, . . . , att}.
An interactive zero-knowledge Sigma protocol (three steps) where the prover proves the knowledge of a

witness for such a statement can be constructed by combining existing and well-known techniques (see for
instance [12, 13, 10]), as follows.

1. The prover generates the first message (commitment) of the Sigma protocol as follows:

• For j = 1, . . . ,M and for i = 1, . . . , n, choose ri, κi, δj
R← Zq, and compute Ai = hri ·

M∏
j=1

Y
aj
i,j and

Ti = hκi ·
M∏
j=1

Y
δj
i,j .

• For i = t+ 1, . . . , n, choose ci, ui, ũi, zi, z̃i
R← Zq, and for each i = t+ 1, . . . , n and j = 1, . . . ,M , choose

wi,j
R← Zq. Compute the values Ui = A−cii · gui · hzi , Ãi = Aũii · h−z̃i · g−ci , Ri = A−cii · hzi ·

M∏
j=1

Y
wi,j

i,j .

• For i = 1, . . . , t, choose αi, βi, α̃i, β̃i
R← Zq, and for each i = 1, . . . , t and j = 1, . . . ,M , choose δi,j

R← Zq.

Compute the values Ui = gαi · hβi , Ãi = Aα̃i
i · h−β̃i , Ri = hβi ·

M∏
j=1

Y
δi,j
i,j .

The commitment sent by the prover is

Cmt =
({(

Ai, Ãi, Ti, Ri, Ui

)}
1≤i≤n

)
.

2. The verifier chooses c R← Zq and sends the challenge c back to the prover.
3. Finally, the prover performs the following computations:

• Find the (only) polynomial f(x) ∈ Zq[X] with degree at most n − t such that f(0) = cmod q and
f(i) = ci mod q for all i = t+ 1, . . . , n.
• For i = 1, . . . , t, compute ci = f(i) mod q and then compute the values ui = αi + cisi mod q, ũi =
α̃i + cis

−1
i mod q, zi = βi + ciri mod q and z̃i = β̃i + ciris

−1
i mod q.

• For i = 1, . . . , t and for j = 1, . . . ,M , compute wi,j = δi,j + ciaj mod q.
• For all i = 1, . . . , n, compute the values ei = κi + cri mod q. For all j = 1, . . . ,M , compute the values
wj = δj + caj mod q.

The final answer sent by the prover is

Ans =
(
f(x), {(ui, ũi, zi, z̃i, ei, {wi,j}1≤j≤M )}1≤i≤n , {wj}1≤j≤M

)
.

In order to validate the correctness of the proof, the verifier outputs 1 if and only if the degree of f(x) is
at most n− t and f(0) = c and all the following equalities hold for all i = 1, . . . , n, where ci = f(i) mod q:

(1) Ti = A−ci · hei ·
M∏
j=1

Y
wj

i,j .

(2) Ri = A−cii · hzi ·
M∏
j=1

Y
wi,j

i,j .

(3) Ui = A−cii · gui · hzi .
(4) Ãi = Aũii · h−z̃i · g−ci .



The Non-Interactive Version. We can apply the Fiat-Shamir heuristics to this Sigma protocol, by re-
placing the value c R← Zq chosen by the verifier with the output of a hash function H : {0, 1}∗ → Zq when
computed by taking as inputs all the public values of the language and statement, x, and also the values in
Cmt. If we include as an additional input a message m to be signed, the resulting answer Ans is a signature of
knowledge, on m, that proves that the author of the message knows a witness for the corresponding statement.

In this particular case, the signature on m would be

σ =
(
f(x), {(Ai, ui, ũi, zi, z̃i, ei, {wi,j}1≤j≤M )}1≤i≤n , {wj}1≤j≤M

)
.

To verify the validity of such a signature for a message m and threshold policy (P, t), one checks that the
degree of f(x) is at most n−t, defines ci = f(i) for i = 1, . . . , n, computes the values Ti, Ri, Ui, Ãi by following
equations (1), . . . , (4) above, and finally checks if

f(0) = H

(
m,x,

{(
Ai, Ãi, Ti, Ri, Ui

)}
1≤i≤n

)
.

4.3 Security of the Proof of Knowledge

We will prove that the proposed attribute-based signature scheme satisfies the properties of privacy and
unforgeability, as defined in Section 3.2. Both proofs will rely on the properties of the specific proof of
knowledge (in Section 4.2) which is used as a building block of the signature scheme. Therefore, we first prove
that such proof of knowledge achieves the necessary security level.

Correctness of the zero-knowledge proof of knowledge is very easy to validate.

Regarding the zero-knowledge property, let us describe a suitable simulator S which works for any state-
ment x in the language, and for any (possibly dishonest) verifier Ṽ . Recall that the goal of S is to produce
a transcript (Cmt, c,Ans) whose distribution is indistinguishable from the transcript of an execution of the
protocol run by a honest prover, with input (x,w) ∈ R, and verifier Ṽ . The simulator S acts as follows:

1. Choose c R← Zq with the same distribution as Ṽ does.

2. Choose at random a polynomial f(x) ∈ Zq[X] with degree at most n− t such that f(0) = cmod q. Define
ci = f(i) mod q for all i = 1, . . . , n.

3. For all i = 1, . . . , n, choose at random Ai, Ãi
R← G and ui, zi, ũi, z̃i, ei

R← Zq. For all j = 1, . . . ,M , choose

at random wj
R← Zq. Finally, for all i = 1, . . . , n and all j = 1, . . . ,M , choose at random wi,j

R← Zq.

4. For all i = 1, . . . , n, compute the values Ti = A−ci ·hei ·
M∏
j=1

Y
wj

i,j , Ri = A−cii ·hzi ·
M∏
j=1

Y
wi,j

i,j , Ui = A−cii ·gui ·hzi ,

Ãi = Aũii · h−z̃i · g−ci .
5. Define the commitment as Cmt =

({(
Ai, Ãi, Ti, Ri, Ui

)}
1≤i≤n

)
, and the final answer as

Ans =
(
f(x), {(ui, ũi, zi, z̃i, ei, {wi,j}1≤j≤M )}1≤i≤n , {wj}1≤j≤M

)
.

6. Output the transcript (Cmt, c,Ans).

It is easy to see that the distribution of this transcript is exactly the same as the distribution of a transcript
generated by a honest prover P who knows a witness for x, and Ṽ .

Finally, let us show that the proposed zero-knowledge proof of knowledge achieves the knowledge soundness
property, assuming the hardness of the Discrete Logarithm problem.

Theorem 1. Assuming the Discrete Logarithm problem is hard in G, then the zero-knowledge proof of knowl-
edge proposed in Section 4.2 achieves knowledge soundness.

Proof. Let us denote the success probability of P̃ as ε. The extractor E plays the role of the verifier and runs
the zero-knowledge protocol with P̃ twice, in parallel, but for the same first message coming from P̃ . As the
second message of the protocol, E chooses two random but different challenges c, c′ R← Zq, with c 6= c′. With



probability ε2, the two answers from P̃ to these two challenges are successful. If this is the case, E knows two
accepted transcripts (Cmt, c,Ans) and (Cmt, c′,Ans′). Let us denote them as

Cmt =
({(

Ai, Ãi, Ti, Ri, Ui

)}
1≤i≤n

)
Ans =

(
f(x), {(ui, ũi, zi, z̃i, ei, {wi,j}1≤j≤M )}1≤i≤n , {wj}1≤j≤M

)
Ans′ =

(
f ′(x),

{(
u′i, ũ

′
i, z
′
i, z̃
′
i, e
′
i, {w′i,j}1≤j≤M

)}
1≤i≤n , {w′j}1≤j≤M

)
.

Since the two transcripts are valid, we have f(0) = c 6= c′ = f ′(0). The two polynomials have degree at
most n− t, so we conclude that there must be at least t indices i such that ci = f(i) 6= f ′(i) = c′i (otherwise,
the two polynomials would be equal in more than n− t points and would therefore be the same polynomial,
which contradicts the fact f(0) 6= f ′(0)). Without loss of generality, let us assume that ci 6= c′i for i = 1, . . . , t.

The two answers satisfy equations (1), . . . , (4) in Section 4.2. Dividing the two valid instances of equation

(1) for each index i = 1, . . . , n, we have that Ac−c
′

i = hei−e
′
i ·

M∏
j=1

Y
wj−w′j
i,j holds for all i = 1, . . . , n. Let us

denote ri =
ei−e′i
c−c′ mod q and aj =

wj−w′j
c−c′ mod q, for all j = 1, . . . ,M , and thus we have

Ai = hri ·
M∏
j=1

Y
aj
i,j (Eq.1i)

Dividing the two valid instances of equation (2) for each index i = 1, . . . , t, we have that A
ci−c′i
i =

hzi−z
′
i ·

M∏
j=1

Y
wi,j−w′i,j
i,j holds for all i = 1, . . . , t. Denoting r̂i =

zi−z′i
ci−c′i

mod q and ai,j =
wi,j−w′i,j
ci−c′i

mod q, for all

j = 1, . . . ,M we have

Ai = hr̂i ·
M∏
j=1

Y
ai,j
i,j (Eq.2i)

Now looking at equalities (Eq.1i) and (Eq.2i), for each index i = 1, . . . , t, we have two representations
of Ai with respect to the basis h, Yi,1, . . . , Yi,M . Using a well-known result [11], under the assumption that
the Discrete Logarithm problem is hard in G, it turns out that the two representations must be the same.
Therefore, we have r̂i = ri for all i = 1, . . . , t, and we have ai,j = aj for all i = 1, . . . , t and all j = 1, . . . ,M .

If we divide now the two valid instances of equation (3) for each index i = 1, . . . , t, we have that A
ci−c′i
i =

gui−u
′
i · hzi−z′i holds for all i = 1, . . . , t. Denoting si =

ui−u′i
ci−c′i

mod q, we have

Ai = gsi · hr̂i (Eq.3i)

Combining equalities (Eq.2i) and (Eq.3i), and using the fact that ri = r̂i for each index i = 1, . . . , t and
ai,j = aj for all i = 1, . . . , t and all j = 1, . . . ,M , we conclude that

gsi =

M∏
j=1

Y
aj
i,j ,

for all i = 1, . . . , t, as desired. Now we have to show that these values si are different from zero.
If we divide the two valid instances of equation (4) for each index i = 1, . . . , t, we have that gci−c

′
i =

Aũi−ũ
′
i · hz̃′i−z̃i holds for all i = 1, . . . , t. Let us note that ũi − ũ′i 6= 0 under the assumption that Discrete

Logarithm problem is hard in G; otherwise, from the previous equality one gets the discrete logarithm of h

with respect to the basis g. Denoting s̃i =
ũi−ũ′i
ci−c′i

mod q and r̃i =
z̃′i−z̃i
ci−c′i

mod q, we have s̃i 6= 0 mod q and

g = As̃ii · h
r̃i (Eq.4i)



Combining equalities (Eq.3i) and (Eq.4i), for each index i = 1, . . . , t, we get g1−sis̃i = hr̃i+s̃iri . Under the
assumption that the Discrete Logarithm is hard in G, again, the only possibility is 1− sis̃i = 0 mod q, which
in particular means that s̃i = s−1

i mod q and thus si 6= 0 mod q, for each i = 1, . . . , t, as desired. ut

4.4 Privacy of the Signature Scheme

This property is achieved, in the random oracle model, because two valid signatures computed with two
different secret keys for the same signing policy are actually two valid proofs of knowledge for the same
statement, but computed with different witnesses. We have proved that the interactive proof of knowledge
protocol underlying our attribute-based signature scheme achieves the zero-knowledge property in a perfect
way. This implies [16] the perfect witness indistinguishability of that proof of knowledge. When the interactive
protocol is turned into a signature scheme via the Fiat-Shamir heuristic, the witness indistinguishability
property is preserved, in the random oracle model for the hash function H.

4.5 Unforgeability of the Signature Scheme

Theorem 2. Assuming that the Discrete Logarithm problem is hard in G, then the proposed attribute-based
signature scheme satisfies the unforgeability property. The proof is in the random oracle model for H.

Proof. We are going to prove that, if there exists some adversary F which breaks the unforgeability property
of the scheme with probability ε, then we can solve the Discrete Logarithm problem with probability ≈ ε2

q2H
,

where qH is the number of queries that F makes to the random oracle.

Let (q,G, g, y) be the instance of the Discrete Logarithm problem that we want to solve. We start running
the experiment Expunf

F (λ) with adversary F , by choosing the public parameters of the scheme. To do so, we
choose the global set of attributes P̃ = {at1, . . . , atN} and the bound L for the maximum number of users in
the system (and so, for the number of extraction queries that F can make). We define the value M = L+N .
We choose τ R← Z∗q and define h = yτ .

To define the values {Yi,j}1≤i≤N,1≤j≤M , we choose N vectors θi = (θi,1, . . . , θi,M ) R← (Zq)M , for i =
1, . . . , N , randomly, in general position. With overwhelming probability, these N vectors will be linearly
independent (we repeat the random choice if this is not the case). We choose N other vectors µi =
(µi,1, . . . , µi,M ) R← (Zq)M , for i = 1, . . . , N , also randomly. For each i = 1, . . . , N and each j = 1, . . . ,M ,
we define Yi,j = gµi,j · yθi,j .

The public parameters of the system that we give to F are pms = (q,G, g, h,H, P̃, L,N, {Yi,j}1≤i≤N,1≤j≤M ),
where the description of H is simply “random oracle”. Therefore, we maintain a table TABH where we in-
troduce and store the input-ouput relations of this oracle. Each time F makes a hash query, we check if the
input is already in TABH ; if this is the case, we answer with the corresponding output; if the input is new,
we choose an output randomly in Zq, we answer with this output, and we introduce a new entry in TABH ,
with this new input-output relation.

During the experiment, F will make up to L extraction queries, to obtain secret keys for subsets S of
his choice, where S ⊂ P̃, and also will make signing queries for messages m and (threshold) signing policies
(P, t). We have to give correct answers to all such queries. To answer the `-th extraction query, where

` ∈ {1, . . . , L}, corresponding to some subset of attributes S(`), we choose a(`) = (a
(`)
1 , . . . , a

(`)
M ) R← (Zq)M

at random such that a(`) · θi = 0 mod q, for all ati ∈ S(`), and such that a(`) is linearly independent with

a(1), . . . ,a(`−1). For each ati ∈ S(`), we compute si =
M∑
j=1

a
(`)
j µi,j . It is easy to check that the resulting secret

key skS(`) = (a(`), {si}ati∈S(`)) is valid.

Since M = L+N and N is an upper bound for the number of attributes in such a subset S, it is always
possible to find such L linearly independent vectors a(1), . . . ,a(L), and the secret keys obtained by F in these
queries follow the same distribution as in the description of the scheme.



Regarding the signing queries for m and (P, t), we can answer them by following essentially the same
procedure as the simulator S in the proof of the zero-knowledge property of the proposed proof of knowledge
(in Section 4.3). The only difference is that, once the transcript (Cmt, c,Ans) has been generated, we have to
add the relation H(m,x,Cmt) = c to the hash table TABH (only with negligible probability this input for H
had been queried before, as a hash query, by F ; we abort the experiment if this is the case). Here, x denotes
the statement of the language, which contains the public parameters and also the signing policy (P, t). The
signature sent back to F is σ = Ans.

With non-negligible probability ε, this forger F outputs a valid and non-trivial signature (σ,m,P, t),
where P ⊂ P̃ contains n attributes, 1 ≤ t ≤ n and

σ =
(
f(x), {(Ai, ui, ũi, zi, z̃i, ei, {wi,j}1≤j≤M )}1≤i≤n , {wj}1≤j≤M

)
satisfying in particular c = f(0) = H(query), where query =

(
m,x,

{(
Ai, Ãi, Ti, Ri, Ui

)}
1≤i≤n

)
and the

values Ti, Ri, Ui, Ãi are computed with equations (1), . . . , (4) in Section 4.2.
Now the idea is to use the replay technique, also known as forking lemma [31]: the experiment Expunf

F (λ) is
run again, with the same adversary F and using the same randomness and the same random oracle answers,
until the query H(query) corresponding to the first forged signature is made. At this time, a different value
c′ R← Zq′ , c′ 6= c is chosen and returned as the answer to this hash query, and the experiment goes on.
With some (non-negligible) probability ≈ ε

q2H
, the forger F will produce another valid and non-trivial forgery

(σ′,m′,P ′, t′), where

σ′ =
(
f ′(x),

{(
A′i, u

′
i, ũ
′
i, z
′
i, z̃
′
i, v
′
i, e
′
i, {w′i,j}1≤j≤M

)}
1≤i≤n , {w′j}1≤j≤M

)
and c′ = f ′(0) = H(query′), satisfying query′ = query. This means that P ′ = P, t′ = t, m′ = m, A′i = Ai,
Ã′i = Ãi, T

′
i = Ti, R

′
i = Ri and U ′i = Ui. On the other hand, since f(0) = c 6= c′ = f ′(0) and the two

polynomials have degree at most n− t, where n = |P|, there must be a subset I ⊂ P with |I| ≥ t such that
f(i) = ci 6= c′i = f ′(i), for all ati ∈ I (otherwise, the two polynomials would be the same one).

From this point, the analysis is exactly the same as in the proof of Theorem 1. From the two forgeries we
can extract a vector a = (a1, . . . , aM ) ∈ (Zq)M and values {si}ati∈I , where si ∈ Z∗q , such that

gsi =

M∏
j=1

Y
aj
i,j , ∀ati ∈ I. (Eq.6)

According to the relation between vector a and vectors {a(`)}1≤`≤L that we gave to F in the queried
secret keys, we can distinguish two cases.

Case 1: a is linearly independent to {a(`)}1≤`≤L.
Let us take an attribute ati ∈ I. Note that the corresponding vector θi = (θi,1, . . . , θi,M ) ∈ (Zq)M is

perfectly hidden in the public values Yi,j = gµi,j · yθi,j , for j = 1, . . . ,M . The only information that the
attacker F could have obtained from θi is derived from the extraction queries. Assuming that ati ∈ S(`) for
all the extraction queries, what F knows is that θi ·a(`) = 0, for all ` = 1, . . . , L. But in this Case 1, we know
that a is linearly independent to {a(`)}1≤`≤L. Let us denote this subspace of (Zq)M as G =

〈
{a(`)}1≤`≤L

〉
.

We have dimG = L and dim(Ker{θi}) = M −1 > L, and also we are assuming G ⊂ Ker{θi}. The probability
(over the random choices we have taken during the reduction) that a ∈ Ker{θi} once we know that a /∈ G
is 1/q. This can be seen, for instance, by extending the basis {a(1), . . . ,a(L)} of G to a basis of Ker{θi}) (by
adding M − 1− L vectors) and finally extending this basis to a basis of the whole space (Zq)M by adding a
last vector. The expression of a with respect to this basis will have some element different to 0 in the last
N positions, since a /∈ G; the rest of coefficients are randomly distributed. The probability that a ∈ Ker{θi}
is the probability that the last coefficient in the above-mentioned representation of a is equal to 0, which is
1/q.



Therefore, with overwhelming probability we have a /∈ Ker{θi} in this case. From the equality (Eq.6)
applied to this attribute ati, we infer gsi = gµi·a · yθi·a, with θi · a 6= 0 mod q. Therefore, we conclude that
x = si−µi·a

θi·a mod q satisfies gx = y and thus we solve the given instance of the Discrete Logarithm problem.

Case 2: a is a linear combination of vectors in {a(`)}1≤`≤L.

Let us write a =
∑

1≤`≤L
ψ`a

(`) and let us take some `∗ ∈ {1, . . . , L} such that ψ`∗ 6= 0 mod q. Going back to

the `∗-th extraction query, for a subset of attributes S(`∗), by definition of a successful forgery, we know that
the number of attributes in S(`∗)∩P is less than t. Therefore, there exists at least an attribute ati ∈ I−S(`∗).
Let us now define the subset of extraction queries J1 = {` ∈ {1, . . . , L} s.t. ati ∈ S(`)}, and its complement
J2 = {1, . . . , L} − J1. We know that `∗ ∈ J2 and that a(`) · θi = 0 mod q, for all ` ∈ J1. Let us write and
denote

a =

∑
`∈J1

ψ`a
(`)

+

∑
`∈J2

ψ`a
(`)

 = aJ1 + aJ2 ,

where aJ1 ·θi = 0 mod q and aJ2 = ψ`∗a
(`∗) +

∑
`∈J2,` 6=`∗

ψ`a
(`). Now a ∈ Ker{θi} if and only if aJ2 ∈ Ker{θi}.

Furthermore, since all the vectors a(`) are linearly independent, we know that aJ2 /∈ G =
〈
{a(`)}`∈J1

〉
.

Therefore, we are in the same situation as in Case 1, and we conclude that the probability that aJ2 ∈ Ker{θi}
is negligible in λ. We thus have a ·θi 6= 0 mod q with overwhelming probability, and we can use the same last
step as in Case 1 to find the solution of the given instance of the Discrete Logarithm problem. ut

4.6 A Variation with Better Efficiency

In the proposed scheme, we could use Vandermonde vectors a = (1, a, a2, . . . , aM−1), for some value a R← Z∗q ,
for the vectors that are included in the secret keys skS . The vectors will be linearly independent as long as
all the values a R← Z∗q are different, which happens with overwhelming probability in the security parameter.
With this modification, since now the value a is enough to represent the whole vector a, the size of each
secret key becomes |skS | = 1 + |S|, which is the usual size in the attribute-based literature.

Furthermore, the efficiency of the signature / verification protocols (and the size of the signatures) can be
improved in this case, because now the kind of statements in the zero-knowledge proof of knowledge protocol
have the form gsi =

∏
1≤j≤M

Y aj−1

i,j = gfi(a), where fi(Z) = xi,1 + xi,2Z + . . .+ xi,MZ
M−1 is the degree M − 1

polynomial defined by the master secret values associated to attribute ati. The linear dependence on M in
the efficiency of our zero-knowledge proof of knowledge protocol can be reduced to

√
M or even log(M), by

using the techniques in [21, 3] for the polynomial evaluation part of the resulting zero-knowledge proof of
knowledge.

The unforgeability proof has to be slightly modified, and in particular a loss factor of 1
NL appears in the

reduction, since we have to guess, before preparing the public parameters, the indices `∗ and i that appear
in Case 2 of the proof of Theorem 2.

5 (Bounded) Attribute-Based Encryption: Protocols and Security

Let us move to attribute-based encryption, in both its ciphertext-policy and key-policy flavours. Through the
rest of the paper, we will use CP-ABE and KP-ABE as abbreviations of ciphertext-policy attribute-based
encryption and key-policy attribute-based encryption.

5.1 CP-ABE: Syntactic Definition

A bounded ciphertext-policy attribute-based encryption (CP-ABE) scheme consists of four probabilistic
polynomial-time algorithms:



– Setup(1λ). The setup algorithm takes as input a security parameter λ and outputs some public parameters
pms and a master secret key msk. The public parameters contain the possible universe of attributes
P̃ = {at1, . . . , atn} and a bound L for the maximum number of users.

– KeyGen(S,msk, pms). The key generation algorithm takes as input the master secret key msk, the public
parameters pms and then a set of attributes S ⊂ P̃ satisfied by the user. The output is a private key skS .

– Encrypt(m,P, Γ, pms). The encryption algorithm takes as input a message m, a decryption policy (P, Γ )
where P ⊂ P̃ and Γ ⊂ 2P , and the public parameters pms, and outputs a ciphertext C.

– Decryption(C,P, Γ, skS , pms). The decryption algorithm takes as input a ciphertext C, a decryption policy
(P, Γ ), a secret key skS and the public parameters pms, and outputs a message m̃.

The usual property of correctness requires that the decryption algorithm, when run on a ciphertext C
honestly computed for plaintext m and policy (P, Γ ), using secret key skS , must output m if and only if
S ∩ P ∈ Γ .

5.2 CP-ABE: Security Definition

Intuitively, any polinomial-time adversary must have negligible success probability in distinguishing an en-
cryption of m(0) from an encryption of m(1), for the same decryption policy (P, Γ ), where the two different
plaintexts and the policy are chosen by the adversary. This must hold even if the adversary has adaptive
access to an oracle that answers valid secret keys for sets of attributes of his choice, provided none of these
subsets is authorized for (P, Γ ). This property, usually denoted as IND-CPA, is formally defined via the

following experiment Expind-cpa
ACP

(λ),involving an adversary ACP .

Expind-cpa
ACP

(λ)

Choose b R← {0, 1} at random
(pms,msk)← Setup(1λ)

(m(0),m(1),P, Γ, st1)← AKeyGen(·,msk,pms)
CP (pms)

C∗ ← Encrypt(m(b),P, Γ, pms)

b′ ← AKeyGen(·,msk,pms)
CP (C∗, pms, st1)

If some of the following statements is not true, output ⊥:
(i) ACP has not made any secret key query S such that S ∩ P ∈ Γ ;
(ii) the number of secret key queries is at most L (the bound given in pms);

(iii) m(0) 6= m(1)

Otherwise, output 1 if b′ = b, and 0 if b′ 6= b.

The advantage of ACP in breaking the bounded IND-CPA property of the CP-ABE scheme is defined as

Advind-cpaACP
(λ) =

∣∣∣∣Pr[Expind-cpa
ACP

(λ) = 1]− 1

2

∣∣∣∣ .
Definition 8. A ciphertext-policy attribute-based encryption scheme is indistinguishable under bounded ad-
pative chosen-plaintext attacks (IND-CPA secure) if, for any adversary ACP that runs in polynomial time,

the advantage Advind-cpaACP
(λ) is negligible in the security parameter λ.

5.3 KP-ABE: Syntactic Definition

A bounded key-policy attribute-based encryption (KP-ABE) scheme, for monotone policies, consists of four
probabilistic polynomial-time algorithms:

– Setup(1λ). The setup algorithm takes as input a security parameter λ and outputs some public parameters
pms and a master secret key msk. The public parameters contain the possible universe of attributes
P̃ = {at1, . . . , atn} and a bound L for the maximum number of users.



– KeyGen(P, Γ,msk, pms). The key generation algorithm takes as input the master secret key msk, the public
parameters pms, a set of attributes P ⊂ P̃ and a monotone policy Γ ⊂ 2P . The output is a private key
skP,Γ .

– Encrypt(m,S, pms). The encryption algorithm takes as input a message m, a set of attributes S ⊂ P̃ and
the public parameters pms, and outputs a ciphertext C.

– Decryption(C, S, skP,Γ , pms). The decryption algorithm takes as input a ciphertext C, the associated set
of attributes S, a secret key skP,Γ and the public parameters pms, and outputs a message m̃.

The correctness property requires that the decryption algorithm, when run on a ciphertext C honestly
computed for plaintext m and subset of attributes S ⊂ P̃, using secret key skP,Γ , must output m if and only
if S ∩ P ∈ Γ .

5.4 KP-ABE: Security Definition

Any polinomial-time adversary must have negligible success probability in distinguishing an encryption of
m(0) from an encryption of m(1), for the same set of attributes S ⊂ P̃, where m(0) 6= m(1) and S are chosen by
the adversary. This must hold even if the adversary has adaptive access to an oracle that answers valid secret
keys for pairs (P, Γ ) of his choice, provided S ∩ P /∈ Γ holds, for all such queries. This IND-CPA property

for KP-ABE schemes is formally defined via the following experiment Expind-cpa
AKP

(λ),involving an adversary
AKP .

Expind-cpa
AKP

(λ)

Choose b R← {0, 1} at random
(pms,msk)← Setup(1λ)

(m(0),m(1), S, st1)← AKeyGen(·,msk,pms)
KP (pms)

C∗ ← Encrypt(m(b), S, pms)

b′ ← AKeyGen(·,msk,pms)
KP (C∗, pms, st1)

If some of the following statements is not true, output ⊥:
(i) AKP has not made any secret key query (P, Γ ) such that S ∩ P ∈ Γ ;
(ii) the number of secret key queries is at most L (the bound given in pms);

(iii) m(0) 6= m(1)

Otherwise, output 1 if b′ = b, and 0 if b′ 6= b.

The advantage of AKP in breaking the bounded IND-CPA property of the KP-ABE scheme is defined as

Advind-cpaAKP
(λ) =

∣∣∣∣Pr[Expind-cpa
AKP

(λ) = 1]− 1

2

∣∣∣∣ .
Definition 9. A key-policy attribute-based encryption scheme is indistinguishable under bounded adpative
chosen-plaintext attacks (IND-CPA secure) if, for any adversary AKP that runs in polynomial time, the

advantage Advind-cpaAKP
(λ) is negligible in the security parameter λ.

6 The New CP-ABE Scheme (for Threshold Policies)

For simplicity, we consider the case of threshold decryption policies. Therefore, a pair (P, Γ ) will be repre-
sented as (P, t), where 1 ≤ t ≤ |P|. Later, we will explain how the scheme can be modified to support other
(more general) policies.

Setup(1λ). The setup algorithm starts by running (q,G, g)← DLog.Inst(1λ), which outputs a cyclic group
G = 〈g〉 of prime order q, such that q is λ bits long. The global set of attributes P̃ = {at1, . . . , atN} has to
be chosen. A bound L for the maximum number of users in the system has to be given. Finally, the value
M = L+ 2N is defined.



For all i ∈ {1, . . . , N} and all j ∈ {1, . . . ,M}, choose xi,j
R← Z∗q independently and at random. Compute

Yi,j = gxi,j .

The public parameters of the system are pms = (q,G, g, P̃, L,N,M, {Yi,j}1≤i≤N,1≤j≤M ), whereas the
master secret key is msk = {xi,j}1≤i≤N,1≤j≤M .

KeyGen(S,msk, pms). The key generation algorithm takes as input a subset of attributes S ⊂ P̃, the
master secret key msk and the public parameters pms.

The master entity chooses a vector a = (a1, . . . , aM ) R← (Zq)M , randomly, from the set of vectors satisfying
a · (xi,1, . . . , xi,M ) = 1, for all ati ∈ S.

The secret key, skS = a, contains M elements from Zq.

The correctness of the secret key can be verified by checking that
M∏
j=1

Y
aj
i,j = g holds, for all ati ∈ S.

Encrypt(m,P, t, pms). The encryption algorithm takes as input a message m ∈ G, a set of attributes
P ⊂ P̃, a threshold t and the public parameters pms. Without loss of generality and to simplify notation, let
us assume P = {at1, . . . , atn}. The algorithm proceeds as follows.

1. Choose at random r R← Z∗q , and compute the value C0 = m · gr.
2. For j = 1, . . . ,M , use Shamir’s (t, n)-threshold secret sharing scheme to share 0 among the attributes in
P. That is, choose a random polynomial fj(x) ∈ Zq[X] with degree t− 1 such that fj(0) = 0.

3. For each i = 1, . . . , n and each j = 1, . . . ,M , compute the value Ci,j = Y r
i,j · gfj(i).

The final ciphertext, C = ( C0 , {Ci,j}1≤i≤n,1≤j≤M ), contains nM + 1 elements from G.

Decrypt(C,P, t, skS , pms). The decryption algorithm takes as input a ciphertext C, a set of attributes
P ⊂ P̃, a threshold t, a secret key skS = a and the public parameters pms. The algorithm selects a minimally
authorized set S′, this is, a subset of S ∩P of cardinality exactly t. Let {λS′i }ati∈S′ denote the corresponding
Lagrange interpolation coefficients, such that f(0) =

∑
ati∈S′

λS
′

i f(i), for all polynomial f(x) with degree at

most t−1. In particular, note that for the constant polynomial f(x) = 1, we get 1 =
∑

ati∈S′
λS
′

i . The decryption

algorithm simply computes and outputs the value

C0 ·
∏
ati∈S′

 M∏
j=1

C
aj
i,j

−λS
′

i

6.1 Remarks and Correctness

If some vector a given to some user as part of his secret key was a linear combination of other vectors a(`)

given to other users, then the security of the scheme could be compromised, since the system could not
resist a coalition attack. The probability of such a linear dependence is negligible in the security parameter
λ. However, in a real implementation of this scheme, it could be desirable to explicitly check that such
dependence relations do not occur.

In order to (slightly) improve efficiency, we can partially apply the idea in Section 4.6: vectors a can be
defined as a = (a(1),a(2)), where a(1) = (1, a, a2, . . . , aL−1) ∈ (Zq)L for some value a ∈ Z∗q , and a(2) ∈ (Zq)2N .
The first part ensures linear independence, and the second part contains enough degrees of freedom so that
a satisfies the desired properties. In this way, since a(1) can be represented by element a, the length of skP,t
becomes 1 + 2N , independent of the bound L on the number of users.

The correctness of the scheme can be easily verified:



C0 ·
∏
ati∈S′

 M∏
j=1

C
aj
i,j

−λS
′

i

= m · gr ·
∏
ati∈S′

 M∏
j=1

(
Y
aj
i,j

)r ·
 M∏
j=1

gaj ·fj(i)

−λS
′

i

=

m · gr ·

 ∏
ati∈S′

(gr)−λ
S′
i

 · M∏
j=1

 ∏
ati∈S′

gλ
S′
i fj(i)

−aj = m · gr · g−r ·
M∏
j=1

(
gfj(0)

)−aj
= m ·

M∏
j=1

1−aj = m.

6.2 Security of the CP-ABE Scheme

Theorem 3. Assuming that the Decisional Diffie-Hellman problem is hard in G, then the proposed ciphertext-
policy attribute-based encryption scheme is IND-CPA secure.

Proof. Let ACP be an adversary against the IND-CPA security of the ABE scheme. Without loss of generality,
let us assume that:

1. P = {at1, . . . , atn} and t ∈ {1, . . . , n} in the challenge threshold policy (P, t).
2. ACP makes L secret key queries, for subsets of attributes S1, . . . , SL such that |S` ∩ P| = t − 1, for all

queries, ` = 1, . . . , L. Let skS`
= a(`) denote the obtained secret key, for ` = 1, . . . , L.

For each attribute ati ∈ P, let us define Zi = {a(`) s.t. ati ∈ S`} and zi = |Zi|. We have 0 ≤ zi ≤ L and∑
1≤i≤n

zi = (t− 1)L.

Assuming the existence of a successful adversary ACP with non-negligible advantage Advind-cpaACP
(λ), let us

construct an adversary ADDH against the DDH problem. Let (g, gx, gy, T ) be the given instance of the DDH
problem.ADDH generates public parameters pms for the CP-ABE scheme as follows.ADDH chooses the global
set of attributes P̃ = {at1, . . . , atN} and the bound L for the maximum number of users in the system (and so,
for the number of extraction queries that A can make). The value M = L+2N is defined. To define the values
{Yi,j}1≤i≤N,1≤j≤M , ADDH chooses 2N vectors µi = (µi,1, . . . , µi,M ) R← (Zq)M , θi = (θi,1, . . . , θi,M ) R← (Zq)M ,

for i = 1, . . . , N , all of them independent and random. ADDH defines Yi,j = gµi,j ·(gy)θi,j , for each i = 1, . . . , N
and each j = 1, . . . ,M .

The public parameters of the system thatADDH gives toACP are pms = (q,G, g, P̃, L,N,M, {Yi,j}1≤i≤N,1≤j≤M ).
During the experiment, ACP will make up to L extraction queries, to obtain secret keys for subsets S
of his choice, where S ⊂ P̃. We have to give correct answers to all such queries. To answer the `-th
extraction query, where ` ∈ {1, . . . , L}, corresponding to some subset of attributes S`, ADDH chooses

a(`) = (a
(`)
1 , . . . , a

(`)
M ) R← (Zq)M , randomly from the set of vectors that satisfy a(`) · µi = 1 mod q and

a(`) ·θi = 0 mod q, for all i such that ati ∈ S`, and such that a(`) is linearly independent with a(1), . . . ,a(`−1).

Since N is an upper bound for the size of S, and the vector space (Zq)M has dimension M = L+ 2N , it is
always possible to find such L linearly independent vectors, and the distribution of the secret keys obtained
by ACP is the same (up to a negligible factor) as in a real execution of the ABE scheme.

At some point ACP outputs a challenge query for two messages m(0),m(1) ∈ G with m(0) 6= m(1) and a
threshold decryption policy (P, t), where P = {at1, . . . , atn} for simplicity. ADDH chooses at random a bit
b ∈ {0, 1} and computes C0 = m(b) · (gx). Implicitly, this defines r = x in the challenge ciphertext.

For each j = 1, . . . ,M , ADDH chooses independently and at random a polynomial fj(x) = f
(1)
j x+ . . .+

f
(t−1)
j xt−1 with degree t− 1 such that fj(0) = 0.

For each i = 1, . . . , n and each j = 1, . . . ,M , ADDH computes the value

Ci,j = (gx)µi,j · T θi,j · gfj(i)

The challenge ciphertext that ADDH gives to ACP is C∗ = ( C0 , {Ci,j}1≤i≤n,1≤j≤M ).



When ACP outputs a bit b′, the adversary ADDH acts as follows: if b′ = b, then ADDH concludes that
T = gxy and outputs 0; otherwise, if b′ 6= b, then ADDH concludes that T is random, and outputs 1.

On the one hand, if the given instance of the DDH problem satisfies T = gxy, then it is easy to check
that C∗ is a valid ciphertext for message m(b). In this case, the output bit b′ of ACP will satisfy b′ = b with
probability 1

2 + Advind-cpaACP
(λ).

On the other hand, let us discuss what happens when, in the instance of the DDH problem, T is random
and independent of x, y. The goal is to show that, in this case, the distribution of the the values that ACP sees
during the attack is independent of the bit b, even if ACP has unlimited computational power (in particular,
we assume that ACP can compute discrete logarithms, now). If we succeed in proving this, then the output
bit b′ of ACP will satisfy b′ = b with probability 1

2 in this case.
Let us write T = gxy+e, where e 6= 0 mod q with overwhelming probability, in the considered case. The

information available to ACP during the attack includes:

– the discrete logarithms of values Yi,j in pms, for i = 1, . . . , n, j = 1, . . . ,M . This means values δi,j :=
µi,j + yθi,j , for i = 1, . . . , n, j = 1, . . . ,M ;

– the secret keys skS`
= a(`), satisfying a(`) · µi = 1 and a(`) · θi = 0, for all ati ∈ S(`);

– the discrete logarithms of the elements in the challenge ciphertext C∗. This means α(b) + x, being m(b) =
gα

(b)
for C0, and finally the discrete logarithm ci,j of each Ci,j , which is

ci,j = x(µi,j + yθi,j) + eθi,j +
t−1∑
k=1

f
(k)
j ik

Note that ci,j can be rewriten as xδi,j + eθi,j +
t−1∑
k=1

f
(k)
j ik.

Let us consider the following vector X of independent and uniform random variables in Zq,

X =
(
x , {f (k)

j }1≤j≤M,1≤k≤t−1 , {θi,j}1≤i≤n,1≤j≤M , {µi,j}1≤i≤n,1≤j≤M
)

and a vector Y of variables reflecting A’s view (values ci,j , δi,j and the relations between vectors a(`) and
vectors µi and θi, for all attribute ati ∈ S(`) and ` = 1, . . . , L):

Y =
(
x+ α(b), {ci,j}1≤i≤n,1≤j≤M , {δi,j}1≤i≤n,1≤j≤M , 0, . . . , 0, 1, . . . , 1

)
The two vectors of variables are related by an affine transformation Y = A·X+b, where b =

(
α(b), 0, . . . , 0

)
is the constant vector, and matrix A has 1 + 2nM + 2L(t− 1) rows and 1 + (t− 1)(M + 1) + 2nM columns.
Since the variables in X are uniformly random and independent, if we are able to see that the first row of the
matrix A is linearly independent from the rest of rows, then we will conclude that the first random variable
in Y , which corresponds to element C0 in the challenge ciphertext, is independent from the other values in
A’s view. In such a case, we will conclude that the distribution of the ciphertext is independent of the bit b,
as desired.

Lemma 1. The first row of matrix A is not contained in the vector space spanned by the rest of rows of A.

Proof. To ease the global reading of the paper, in particular of this proof of Theorem 3, the proof of this
lemma is moved to Appendix A. ut

Final analysis. The probability that ADDH wins the DDH game is

Pr[Expddh
ADDH

(λ) = 1] = Pr[ADDH wins] =

= Pr[T = gxy] · Pr[ADDH wins|T = gxy] + Pr[T random] · Pr[ADDH wins|T random] =



=
1

2
·
(

1

2
+ Advind-cpaACP

(λ)

)
+

1

2
· 1

2
=

1

2
+

1

2
· Advind-cpaACP

(λ)

Therefore, we have constructed an algorithm ADDH that solves the DDH problem with non-negligible
advantage

AdvddhADDH
(λ) =

∣∣∣∣Pr[Expddh
ADDH

(λ) = 1]− 1

2

∣∣∣∣ =
1

2
· Advind-cpaACP

(λ).

ut

7 The New KP-ABE Scheme (for Threshold Policies)

Again, we consider for the moment the case of threshold policies. Therefore, a pair (P, Γ ) will be represented
as (P, t), where 1 ≤ t ≤ |P|. The new KP-ABE scheme is very similar to the CP-ABE scheme in the previous
section.

Setup(1λ). The setup algorithm starts by running (q,G, g)← DLog.Inst(1λ), which outputs a cyclic group
G = 〈g〉 of prime order q, such that q is λ bits long. The global set of attributes P̃ = {at1, . . . , atN} has to
be chosen. A bound L for the maximum number of users in the system has to be given. Finally, the value
M = L+ 2N is defined.

For all i ∈ {1, . . . , N} and all j ∈ {1, . . . ,M}, choose xi,j
R← Z∗q independently and at random. Compute

Yi,j = gxi,j .

The public parameters of the system are pms = (q,G, g, P̃, L,N,M, {Yi,j}1≤i≤N,1≤j≤M ), whereas the
master secret key is msk = {xi,j}1≤i≤N,1≤j≤M .

KeyGen(P, t,msk, pms). The key generation algorithm takes as input a subset of n attributes P ⊂ P̃ and
a threshold t such that 1 ≤ t ≤ n ≤ N , the master secret key msk and the public parameters pms.

The master entity uses Shamir’s (t, n)-threshold secret sharing scheme to share 1 among the attributes
in P. That is, he chooses a random polynomial f(x) ∈ Zq[X] with degree t − 1 such that f(0) = 1, and he
defines si = f(i), for all ati ∈ P.

After that, the master entity chooses a vector a = (a1, . . . , aM ) R← (Zq)M , randomly, from the set of
vectors satisfying a · (xi,1, . . . , xi,M ) = si, for all ati ∈ P.

The secret key, skP,t = a, contains M elements from Zq.
The correctness of the secret key can be verified by checking that, for any subset S ⊂ P with |S| = t, it

holds
∏

ati∈S

(
M∏
j=1

Y
aj
i,j

)λSi
= g, where {λSi }ati∈S denote the corresponding Lagrange interpolation coefficients.

Encrypt(m,S, pms). The encryption algorithm takes as input a message m ∈ G, a set of attributes S ⊂ P̃
and the public parameters pms. Let us assume, for simplicity, that S = {at1, . . . , atn}, with |S| = n ≤ N .
The algorithm proceeds as follows.

1. Choose at random r R← Z∗q , and compute the value C0 = m · gr.
2. For each i = 1, . . . , n and each j = 1, . . . ,M , compute the value Ci,j = Y r

i,j .

The final ciphertext, C = ( C0 , {Ci,j}1≤i≤n,1≤j≤M ), contains nM + 1 elements from G.

Decrypt(C, S, skS , pms). The decryption algorithm takes as input a ciphertext C, the associated set of
attributes S ⊂ P̃, a secret key skP,t = a and the public parameters pms. The algorithm selects a minimally
authorized set S′ ⊂ S ∩ P of cardinality exactly t. Let {λS′i }ati∈S′ denote the corresponding Lagrange inter-
polation coefficients, such that f(0) =

∑
ati∈S′

λS
′

i f(i), for all polynomial f(x) with degree at most t − 1. In

particular, note that for the constant polynomial f(x) = 1, we get 1 =
∑

ati∈S′
λS
′

i . The decryption algorithm



simply computes and outputs the value

C0 ·
∏
ati∈S′

 M∏
j=1

C
aj
i,j

−λS
′

i

7.1 Remarks and Correctness

The same remarks as in the case of the CP-ABE scheme can be made now, regarding the linear independence
of the vectors a in different secret keys, and the efficiency improvement (regarding the size of the secret keys)
by considering a = (1, a, a2, . . . , aL−1,a(2)) for some value a ∈ Z∗q and some vector a(2) ∈ (Zq)2N .

The correctness of the KP-ABE scheme can be easily verified:

C0 ·
∏
ati∈S′

 M∏
j=1

C
aj
i,j

−λS
′

i

= m · gr ·
∏
ati∈S′

 M∏
j=1

(
Y
aj
i,j

)r−λS
′

i

=

m · gr ·
∏

ati∈S′
(gsi)−r·λ

S′
i = m · gr ·

g ∑
ati∈S′

λS
′

i f(i)
−r = m · gr ·

(
g1
)−r

= m.

7.2 Security of the KP-ABE Scheme

Theorem 4. Assuming that the Decisional Diffie-Hellman problem is hard in G, then the proposed key-policy
attribute-based encryption scheme is IND-CPA secure.

Proof. (Sketch.) The proof follows the same ideas as the proof of Theorem 3 for the security of the CP-ABE
scheme. We transform a hypothetical successful adversaryAKP against the KP-ABE scheme into an adversary
ADDH against the DDH problem. If (g, gx, gy, T ) is the given instance of the DDH problem, ADDH generates
the public parameters pms for the KP-ABE scheme exactly as in the proof of Theorem 3. In particular, ADDH
defines Yi,j = gµi,j · (gy)θi,j , for each i = 1, . . . , N and each j = 1, . . . ,M .

When AKP makes its `-th extraction query, to obtain a secret key for a pair (P`, t`) of its choice, ADDH
chooses at random a degree t` − 1 polynomial f (`)(x) such that f (`)(0) = 1, and then chooses a vector

a(`) = (a
(`)
1 , . . . , a

(`)
M ) R← (Zq)M , randomly from the set of vectors that satisfy a(`) · µi = f (`)(i) mod q and

a(`) ·θi = 0 mod q, for all i such that ati ∈ P`, and such that a(`) is linearly independent with a(1), . . . ,a(`−1).

Since N is an upper bound for the size of S, and the vector space (Zq)M has dimension M = L+ 2N , it
is always possible to find such L linearly independent vectors, whose distribution is essentially the same as
in a real execution of the KP-ABE scheme.

When AKP outputs a challenge query for two messages m(0),m(1) ∈ G with m(0) 6= m(1) and a subset
of attributes S ⊂ P̃, ADDH chooses at random a bit b ∈ {0, 1} and computes C0 = m(b) · (gx). For each
i = 1, . . . , n and each j = 1, . . . ,M , ADDH computes the value Ci,j = (gx)µi,j · T θi,j .

When AKP outputs a bit b′, the adversary ADDH acts as follows: if b′ = b, then ADDH concludes that
T = gxy and outputs 0; otherwise, if b′ 6= b, then ADDH concludes that T is random, and outputs 1.

If the given instance of the DDH problem satisfies T = gxy, then C∗ is a valid ciphertext for message
m(b). In this case, the output bit b′ of AKP will satisfy b′ = b with probability 1

2 + Advind-cpaAKP
(λ).

On the other hand, when T is random and independent of x, y in the given instance of the DDH problem,
then we can again write T = gxy+e for a random value e, different from zero with overwhelming probability.
In this case, we can show (by using similar arguments as in the proof of Theorem 3) that the distribution of
the the values that AKP sees during the attack is independent of the bit b. Note that C0 = m(b) · (gx), and
the dependence on x of all the other elements Ci,j in the challenge ciphertext is cancelled by the randomness



θi,j in values Yi,j of the public parameters. Some degrees of freedom/independence on these values θi,j are
“lost” in front of AKP when he makes the L extraction queries for pairs (P`, t`); note however that these
queries must satisfy |P`∩S| ≤ t`−1, by definition, and that there are precisely t`−1 perfectly hidden degrees
of freedom in the choice of the polynomial f (`)(x). Therefore, and informally speaking (this can be formally
proved, as we have done in the proof of Theorem 3) the t`− 1 degrees of freedom on values {θi,j}ati∈S,1≤j≤M
that are “lost” by the conditions θi · a(`) = 0 for all ati ∈ P` ∩ S are compensated by the t` − 1 perfectly
hidden values {f (`)(i)}ati∈P`∩S that univocally determine, along with f (`)(0) = 1, the polynomial f (`)(x).

Therefore, the conclusion is the same as in the proof of Theorem 3: the existence of an algorithm ADDH
that solves the DDH problem with non-negligible advantage

AdvddhADDH
(λ) =

1

2
· Advind-cpaAKP

(λ).

ut

8 Extensions, (In)Efficiency Considerations and Applications

8.1 More General Policies

In the description of our schemes, we have considered for simplicity the particular case where policies are
of the threshold family. However, the schemes can be extended to admit more general (monotone) policies
Γ ⊂ P. In the attribute-based signature scheme, in particular in the zero-knowledge proof of knowledge
protocol, the idea is to consider a secret sharing scheme (for instance, a monotone span program [23]) that
realizes the dual access structure Γ ∗ = {S ⊂ P | P − S /∈ Γ}; the value c will be the secret, and the values
{cj}atj∈P will be the shares, that will be computed with the secret sharing scheme for the access structure
Γ ∗. In the threshold case, the dual access structure is Γ ∗ = {S ⊂ P | |S| ≥ n− t+1}, and the secret is shared
with Shamir’s method, with a polynomial of degree n− t. This kind of zero-knowledge proofs were introduced
for the first time in [13]. Apart from replacing polynomials with monotone span programs, the rest of the
protocol and the security analysis work exactly in the same way as we detail here for the threshold case.

In the attribute-based encryption schemes, the idea is simply to replace polynomials with monotone span
programs that realize the corresponding policy Γ . Another difference is that some (algebraic) parts of the
security proofs become (even) more tedious.

8.2 (In)Efficiency

The fact that a bound L on the total number of users must be fixed from the beginning is a drawback, but
in some real-life applications this may not be a serious limitation. However, the fact that the efficiency of the
new schemes (size of the public parameters, secret keys, signatures, ciphertexts, running times...) depend on
L is a more serious drawback, which may limit the applicability of our schemes to very restricted scenarios,
like small companies or institutions.

Elements in our signatures or ciphertexts may belong to a standard group G where the discrete logarithm
problem is hard (points of an elliptic curve) and can thus be securely represented by λ = 160 bits, in contrast
to the the 1024 or 2048 bits needed to represent elements in RSA-based [22] or pairing-based [25] solutions.
But this “advantage” quickly disappears since the number of elements in our (non-optimized) signatures or
ciphertexts is n(6+L+N) or n(L+2N), where N is the total number of attributes in the system. In the other
schemes in the literature, for general monotone policies and with adaptive security, this number is typically
6n or 9n. Focusing on the encryption case, this means that our schemes can be competitive only for values
L+ 2N ≤ 70, for instance in applications with N = 20 attributes and L = 30 users.

Since we do not want to finish the work with a negative opinion of the new schemes, we show in the next
section that the bounded-security property of our schemes (in particular, the KP-ABE scheme) is enough to
find a positive application.



8.3 Application to Verifiable Computation

Parno, Raykova and Vaikuntanathan give in [30] a general construction from a KP-ABE scheme to a protocol
for the verifiable delegation of computation of boolean functions f : {0, 1}N → {0, 1}. Note that a boolean
function is equivalent to an access structure on a set of N elements (or attributes, in the context of this
paper).

The basic idea is that the client runs the setup phase of the KP-ABE scheme twice, (pms0,msk0) ←
KP-ABE.Setup(1λ) and (pms1,msk1) ← KP-ABE.Setup(1λ). Later, to delegate the computation of some
boolean function f admitted by the KP-ABE scheme, the client runs skf ← KP-ABE.KeyGen(f,msk0, pms0)
and skf̄ ← KP-ABE.KeyGen(f̄ ,msk1, pms1), where f̄ is the negation of f : f̄(x) = 1−f(x), for all x ∈ {0, 1}N .
The values (pms0, pms1, skf , skf̄ ) are given to the server. The client chooses a secure one-way function H.

Each time the client wants the server to compute f(x) on some boolean vector x ∈ {0, 1}N , he chooses two
random plaintexts m(0),m(1) and computes ciphertexts C(0) ← KP-ABE.Encrypt(m(0),x, pms0) and C(1) ←
KP-ABE.Encrypt(m(1),x, pms1), along with the hash values s0 = H(m(0)) and s1 = H(m(1)). The clieint sends
x and the ciphertexts C(0), C(1) to the server, and stores or publishes the pair (s0, s1).

If f(x) = 1, the server computes m(0) ← KP-ABE.Decrypt(C(0),x, skf , pms0) and sends (m(0),⊥) to the
client. If f(x) = 0 (and so f̄(x) = 1), the server computes m(1) ← KP-ABE.Decrypt(C(1),x, skf̄ , pms1) and

sends (⊥,m(1)) to the client.
Depending on the obtained answer and its relation to the stored hashed values (s0, s1), the client (or

anybody) concludes what is the correct value of f(x). Furthermore, thanks to the two parallel executions of
the KP-ABE process, the server cannot cheat the client without being detected; the worse he can do is to
abort the process. That is, the computation performed by the server is (publicly) verifiable.

Parno et al. prove in [30] that the resulting protocol for (publicly) verifiable computation of boolean
functions is secure, provided the underlying KP-ABE scheme is one-key secure, which means that it must
be secure in front of adversaries that can make at most one secret key extraction query. Translated to the
framework of this paper, we can use our bounded KP-ABE scheme with L = 1 (and thus, M = 1 + 2N)
to instantiate the Parno et al. construction. As a result, we obtain a protocol for the verifiable computation
(VC) of monotone boolean functions, in the standard Discrete Logarithm scenario, with security based on
the DDH Assumption. A (small) drawback of the resulting VC protocol with respect to other instantiations
of the construction, for instance using pairing-based KP-ABE schemes, is that the cost for the client is
quadratic on N , rather than linear, because the encryption running time in our KP-ABE scheme depends on
NM = 2N2 +N .

A Comment on the Monotonicity of f (and f̄). As we have noted in the previous paragraph, the
resulting VC protocol would be valid for monotone boolean functions, because the underlying KP-ABE scheme
only admits monotone functions (or access policies). This is not a serious problem in practice; as noted in [30],
a non-monotone boolean function f1 can always be transformed into an equivalent monotone one, by doubling
the number N of variables (including the negation of each variable). Note that this observation would be
important even in the case where the VC protocol was run to evaluate a monotone (increasing) function f ,
because the underlying KP-ABE scheme must admit the function f̄ , which is monotone decreasing. If the
KP-ABE scheme admits only monotone increasing functions, then f must not be modified, but we should
find a monotone increasing function equivalent to f̄ .

This means that, with the transformation proposed in [30] applied to a KP-ABE scheme which admits
only monotone increasing functions, one always needs to double the number of variables, from N to 2N ,
even if the client only wants to evaluate monotone increasing functions. This observation is important since
most of the KP-ABE schemes proposed in the literature (including the new one, in this work) only admit
monotone increasing functions; a notable exception can be found in [29].

However, it turns out that the transformation in [30] can be modified in the following way. First of all, in the
delegation phase, replace skf̄ ← KP-ABE.KeyGen(f̄ ,msk1, pms1) with skf∗ ← KP-ABE.KeyGen(f∗,msk1, pms1),

where f∗ is the dual function of f : f∗(x) = 1− f(x̄), for all x ∈ {0, 1}N . Later, in the request phase, replace



C(1) ← Encrypt(m(1),x, pms1) with C(1) ← Encrypt(m(1), x̄, pms1). With these modifications, the server can
either obtain m(0), if f(x) = 1, or obtain m(1), if f∗(x̄) = 1, which is equivalent to f(x) = 0. So the func-
tionality of the construction is preserved, but now we have that the monotonicity of f∗ is the same as that of
f (if any). Therefore, if a client is interested in the verifiable computation of a monotone increasing function
f , and the underlying KP-ABE scheme admits only this kind of functions, we can run this modified version
of the Parno et al. construction without doubling the number of variables.

Acknowledgements

The author wants to thank Paz Morillo and Jorge Villar for their comments, corrections and suggestions on
the proofs of Theorem 3 and Lemma 1, and Jens Groth for pointing out the variation in Section 4.6.

References

1. M. Abdalla, F. Bourse, A. De Caro and D. Pointcheval. Simple functional encryption schemes for inner products. Proc. of
PKC’15, to appear (2015). Available at http://eprint.iacr.org/2015/017

2. F. Baldimtsi and A. Lysyanskaya. Anonymous credentials light. Proc. of CCS’13, ACM Press, pp. 1087–1098 (2013)
3. S. Bayer and J. Groth. Zero-knowledge argument for polynomial evaluation with application to blacklists. Proc. of Euro-

crypt’13, LNCS 7881, Springer-Verlag, pp. 646–663 (2013)
4. M. Bellare and G. Fuchsbauer. Policy-based signatures. Proc. of PKC’14, LNCS 8383, Springer-Verlag, pp. 520–537 (2014)
5. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols. Proc. of CCS’93,

ACM Press, pp. 62–73 (1993)
6. M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures, and Fiat-Shamir without random oracles.

Proc. of PKC’07, LNCS 4450, Springer-Verlag, pp. 201–216 (2007)
7. J. Bethencourt, A. Sahai and B. Waters. Ciphertext-policy attribute-based encryption. Proc. of IEEE Symposium on Security

and Privacy, IEEE Society Press, pp. 321–334 (2007)
8. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan and D. Vinayagamurthy. Fully

key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. Proc. of Eurocrypt’14, LNCS 8441,
Springer-Verlag, pp. 533–556 (2014)

9. X. Boyen. Attribute-based functional encryption on lattices. Proc. of TCC’13, LNCS 7785, Springer-Verlag, pp. 122–142
(2013)

10. S. Brands. Rapid demonstration of linear relations connected by boolean operators. Proc. of Eurocrypt’97, LNCS 1233,
Springer-Verlag, pp. 318–333 (1997)

11. D. Chaum, E. van Heijst and B. Pfitzmann. Cryptographically strong undeniable signatures, unconditionally secure for the
signer. Proc. of Crypto’91, LNCS 576, Springer-Verlag, pp. 470–484 (1992)

12. D. Chaum and T.P. Pedersen. Wallet databases with observers. Proc. of Crypto’92, LNCS 740, Springer-Verlag, pp. 89–105
(1993)

13. R. Cramer, I. Damg̊ard, B. Schoenmakers. Proofs of partial knowledge and simplified design of witness hiding protocols.
Proc. of Crypto’94, LNCS 839, Springer-Verlag, pp. 174–187 (1994)

14. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Infor-
mation Theory, Vol. 31, pp. 469–472 (1985)

15. A. Escala, J. Herranz and P. Morillo. Revocable attribute-based signatures with adaptive security in the standard model.
Proc. of Africacrypt’11, LNCS 6737, Springer-Verlag, pp. 224–241 (2011)

16. U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. Proc. of STOC’90, ACM Press, pp. 416–426
(1990)

17. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature problems. Proc. of Crypto’86,
LNCS 263, Springer-Verlag, pp. 186–194 (1986)

18. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. Proc. of FOCS’13, IEEE Society Press, pp. 40–49 (2013)

19. S. Garg, C. Gentry, S. Halevi, A. Sahai and B. Waters. Attribute-based encryption for circuits from multilinear maps. Proc.
of Crypto’13, LNCS 8043, Springer-Verlag, pp. 479–499 (2013)

20. V. Goyal, O. Pandey, A. Sahai and B. Waters. Attribute-based encryption for fine-grained access control of encrypted data.
Proc. of Computer and Communications Security, CCS’06, ACM Press, pp. 89–98 (2006)

21. J. Groth. Linear algebra with sub-linear zero-knowledge arguments. Proc. of Crypto’09, LNCS 5677, Springer-Verlag, pp.
192–208 (2009)

22. J. Herranz. Attribute-based signatures from RSA. Theoretical Computer Science, Vol. 527, pp. 73–82 (2014)
23. M. Karchmer and A. Wigderson. On span programs. Proc. of SCTC’93, IEEE Computer Society Press, pp. 102–111 (1993)
24. A. Lewko, T. Okamoto, A. Sahai, K. Takashima and B. Waters. Fully secure functional encryption: attribute-based encryption

and (hierarchical) inner product encryption. Proc. of Eurocrypt’10, LNCS 6110, Springer-Verlag, pp. 62–91 (2010)



25. A. Lewko and B. Waters. New proof methods for attribute-based encryption: achieving full security through selective tech-
niques. Proc. of Crypto’12, LNCS 7417, Springer-Verlag, pp. 180–198 (2012)

26. H.K. Maji, M. Prabhakaran and M. Rosulek. Attribute-based signatures. Proc. of CT-RSA’11, LNCS 6558, Springer-Verlag,
pp. 376–392 (2011)

27. P- Mohassel. One-time signatures and chameleon hash functions. Proc. of SAC’10, LNCS 6544, Springer-Verlag, pp. 302–319
(2010)

28. T. Okamoto and K. Takashima. Efficient attribute-based signatures for non-monotone predicates in the standard model.
Proc. of PKC’11, LNCS 6571, Springer-Verlag, pp. 35–52 (2011)

29. R. Ostrovsky, A. Sahai and B. Waters. Attribute-based encryption with non-monotonic access structures. Proc. of CCS’07,
ACM Press, pp. 195–203 (2007)

30. B. Parno, M. Raykova and V. Vaikuntanathan. How to delegate and verify in public: verifiable computation from attribute-
based encryption. Proc. of TCC’12, LNCS 7194, Springer-Verlag, pp. 422–439 (2012)

31. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology, Vol. 13
(3), pp. 361–396 (2000)

32. J. Pieprzyk, H. Wang and C. Xing. Multiple-time signature schemes against chosen message attacks. Proc. of SAC’03, LNCS
3006, Springer-Verlag, pp. 88–100 (2003)

33. C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, Vol. 4, Springer-Verlag, pp. 161–174
(1991)

A Proof of Lemma 1

The first row of A is (1, 0, . . . , 0). The following nM rows, corresponding to values ci,j in vector Y , reflect
the relation

ci,j = xδi,j + eθi,j +
t−1∑
k=1

f
(k)
j ik

The following nM rows, corresponding to values δi,j in A’s view, reflect the relation

δi,j = yθi,j + µi,j .

The following L(t− 1) rows reflect the relations

a(`) · θi = 0, ∀ati ∈ S(`), ∀` = 1, . . . , L.

Finally, the last L(t− 1) rows of matrix A reflect the relations

a(`) · µi = 1, ∀ati ∈ S(`), ∀` = 1, . . . , L.

The general form of matrix A is shown in Figure 1.





1 0 . . . . . . . . . . . . . . . . . . 0

δ1,1 1 12 . . . 1t−1

δ1,2 1 12 . . . 1t−1 e · IdM
...

. . .

δ1,M 1 12 . . . 1t−1

...
. . .

. . .

δn,1 n n2 . . . nt−1

δn,2 n n2 . . . nt−1 e · IdM
...

. . .

δn,M n n2 . . . nt−1

y · IdM IdM

. . .
. . .

y · IdM IdM

a(`1) ∈ Z1
...

. . .

a(`n) ∈ Zn
...

a(`1) ∈ Z1
...

. . .

a(`n) ∈ Zn
...



Fig. 1: The initial matrix, A

The last n blocks of rows in A can be substracted with linear combinations of the rows in the blocks with
y · IdM . . . IdM , and we get the transformed but equivalent matrix A(2), depicted in Figure 2.





1 0 . . . . . . . . . . . . . . . . . . 0

δ1,1 1 12 . . . 1t−1

δ1,2 1 12 . . . 1t−1 e · IdM
...

. . .

δ1,M 1 12 . . . 1t−1

...
. . .

. . .

δn,1 n n2 . . . nt−1

δn,2 n n2 . . . nt−1 e · IdM
...

. . .

δn,M n n2 . . . nt−1

y · IdM IdM

. . .
. . .

y · IdM IdM

a(`1) ∈ Z1
...

. . .

a(`n) ∈ Zn
...

−y · a(`1) ∈ Z1
...

. . .

−y · a(`n) ∈ Zn
...



Fig. 2: Matrix A(2)

Since our goal is to prove that the first row of the matrix is not spanned by the rest of rows of the matrix,
we can now remove the rows and columns “touched” by the blocks IdM on the right part of the matrix,
because the coefficients of these rows in a hypothetical linear combination of all the rows that would equal
the vector (1, 0, . . . , 0) would be equal to 0. Similarly, we can remove the last n blocks of rows, because these
rows are multiples of the rows in the previous n blocks (by multiplying them with −y).

All in all, we get a reduced matrix A(3), in Figure 3, where we still want to show that the first row is not
spanned by the rest of rows.





1 0 . . . . . . . . . . . . . . . 0

δ1,1 1 12 . . . 1t−1

δ1,2 1 12 . . . 1t−1 e · IdM
...

. . .

δ1,M 1 12 . . . 1t−1

...
. . .

. . .

δn,1 n n2 . . . nt−1

δn,2 n n2 . . . nt−1 e · IdM
...

. . .

δn,M n n2 . . . nt−1

a(`1) ∈ Z1
...

. . .

a(`n) ∈ Zn
...


Fig. 3: Matrix A(3)

In the M central blocks of columns of A(3), with Vandermonde vectors, we can re-order the rows in order
to get (1, . . . , 1t−1), and below (2, . . . , 2t−1), and so on, until (t−1, . . . , (t−1)t−1), and then the rest of vectors
until (n . . . , nt−1) and the same effect repeated M times, in diagonal descending cascade. We can transform
the rows corresponding to each index s ∈ {t, t+ 1, . . . , n} by substracting to them linear combinations (with
the Lagrange interpolation coefficients) of the rows corresponding to indices in {1, . . . , t − 1}, in order to

get 0’s in all these n− t+ 1 rows of each of those M blocks. We denote as λ
(s)
i the corresponding Lagrange

coefficients, such that (s, . . . , st−1) =
∑

1≤i≤t−1
λ

(s)
i (i, . . . , it−1).

What we get after applying these transformations is matrix A(4), in Figure 4. Values marked with ∗ in
A(4) and the following matrices are not relevant.





1 0 . . . . . . . . . . . . 0

δ1,1 1 . . . 1t−1

δ2,1 2 . . . 2t−1 ∗
...

... ∗
δt−1,1 (t− 1) . . . (t− 1)t−1

...
. . .

. . .

δ1,M 1 . . . 1t−1

δ2,M 2 . . . 2t−1 ∗
... ∗

δt−1,M (t− 1) . . . (t− 1)t−1

∗
... −λ(t)

1 · e · IdM . . . −λ(t)
t−1 · e · IdM e · IdM

∗
... . . . . . . . . .

. . .

∗
... −λ(n)

1 · e · IdM . . . −λ(n)
t−1 · e · IdM e · IdM

∗
a(`1) ∈ Z1

...
. . .

a(`t−1) ∈ Zt−1
...

a(`t) ∈ Zt
...

. . .

a(`n) ∈ Zn
...


Fig. 4: Matrix A(4)

Now the non-zero rows of the central M blocks of columns are clearly linearly independent (seen as vectors
in (Zq)M(t−1)) so, again, a hypothetical linear combination of all the rows in A(4) (excepting the first one)
that would equal the vector (1, 0, . . . , 0) would have 0 as the coefficient of these rows. We can thus remove
the corresponding rows and columns, and we get matrix A(5), in Figure 5, where we still want to pove that
the first row is not spanned by the rest of rows.





1 0 . . . 0

∗
... −λ(t)

1 · e · IdM . . . −λ(t)
t−1 · e · IdM e · IdM

∗
... . . .

. . . . . .
. . .

∗
... −λ(n)

1 · e · IdM . . . −λ(n)
t−1 · e · IdM e · IdM

∗
a(`1) ∈ Z1

...
. . .

a(`t−1) ∈ Zt−1
...

a(`t) ∈ Zt
...

. . .

a(`n) ∈ Zn
...


Fig. 5: Matrix A(5)

In the next transformation, we are going to transform the last zt + . . . + zn rows of A(5) into 0, by
substracting to them some linear combinations of the rows with e · IdM on the right part. As a result, we will
be able to remove all the columns and rows “touched” by those blocks e · IdM , because these rows cannot
contribute in a hypothetical linear combination of all the rows in the modified A(5) matrix (excepting the
first one) that would equal the vector (1, 0, . . . , 0). The result of these two steps is matrix A(6), depicted in
Figure 6. 

1 0 . . . 0 . . . 0 . . . . . . 0

a(`1) ∈ Z1
...

a(`2) ∈ Z2
...

. . .

a(`t−1) ∈ Zt−1
...

∗ λ
(t)
1 · a(`t) ∈ Zt λ

(t)
2 · a(`t) ∈ Zt . . . λ

(t)
t−1 · a(`t) ∈ Zt

...
...

...
...

...
...

...
...

. . .
...

∗ λ(n)
1 · a(`n) ∈ Zn λ(n)

2 · a(`n) ∈ Zn . . . λ
(n)
t−1 · a(`n) ∈ Zn

...
...

...
...

...


Fig. 6: Matrix A(6)



Let us now look for possible linear combinations of the rows (all but the first one) of matrix A(6) that
could equal the first row, that is, vector (1, 0, . . . , 0). Let us denote the coefficients of such a hypothetical

linear combination as {ρ(`)
i }1≤`≤L,ati∈S`∩P .

Looking at the right part, below the 0’s of the first row, and taking into account that these vectors are
all linearly independent, we have that the sum of the coefficients of all the rows corresponding to a same
vector a(`) must be 0. Let us focus on one such vector a(`), corresponding to a secret key query for a subset of
attributes S` such that |S` ∩P| = t− 1. Let us define A` = S` ∩ {at1, . . . , att−1} and B` = S` ∩ {att, . . . , atn},
and let us denote r = |A`| and w = |B`|, such that t − 1 = r + w. The involved coefficients {ρ(`)

i }ati∈S`∩P
must satisfy the following conditions, for all i = 1, . . . , t−1 (that is, for each of the t−1 blocks of M columns
below the 0’s of the first row):

(i) if ati ∈ A`, then ρ
(`)
i +

∑
ats∈B`

ρ
(`)
s · λ(s)

i = 0,

(ii) if ati /∈ A`, then
∑

ats∈B`

ρ
(`)
s · λ(s)

i = 0.

In other words, the vector of coefficients ({ρ(`)
i }ati∈A`

, {ρ(`)
s }ats∈B`

) must be in the kernel of the (t− 1)×
(t− 1) matrix

D =



λ
(s1)
i1

. . . λ
(sw)
i1

Idr
...

...

λ
(s1)
ir

. . . λ
(sw)
ir

λ
(s1)
ir+1

. . . λ
(sw)
ir+1

...
...

λ
(s1)
it−1

. . . λ
(sw)
it−1


where A` = {ati1 , . . . , atir}, B` = {ats1 , . . . , atsw} and we use ir+1, . . . , it−1 to refer to the indices in {1, . . . , t−
1} −A`. The bottom-right part of D is a non-singular w×w matrix, because it is a square submatrix of the
(t − 1) × (t − 1) matrix Λ of Lagrange interpolation coefficients that one would obtain by considering t − 1
interpolation points {1, . . . , t− 1} and t− 1 external evaluation points {s1, . . . , sw, s̃w+1, . . . , s̃t−1}. Matrix Λ
is non-singular because it is the product of two non-singular matrices: the matrix which has the coefficients
of the t− 1 interpolation polynomials (a basis) as rows, and the matrix which has the Vandermonde vectors
of the evaluation points as columns.

Since we have the identity matrix Idr on the top-left part of D, we conclude that D is non-singular, and
therefore there is no vector in the kernel of D, other than the zero vector 0.

Summing up, for all the vectors a(`), ` = 1, . . . , L, we have that all the coefficients {ρ(`)
i }ati∈S`∩P must be

equal to 0. This concludes the proof of the fact that the first row of matrix A is not spanned by the rest of
the rows of A.


