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Abstract

Information leakage is a major concern in modern day IT-security. In fact, a mali-
cious user is often able to extract information about private values from the computation
performed on the devices. In specific settings, such as RFID, where a low computational
complexity is required, it is hard to apply standard techniques to achieve resilience against
this kind of attacks. In this paper, we present a framework to make cryptographic primitives
based on large finite fields robust against information leakage with a bounded computational
cost. The approach makes use of the inner product extractor and guarantees security in the
presence of leakage in a widely accepted model. Furthermore, we show how to apply the
proposed techniques to the authentication protocol Lapin, and we compare it to existing
solutions.

1 Introduction

A major concern for the implementation of secure cryptographic protocols is resistance to side-
channel attacks (SCA). This class of attacks makes use of information obtained by the observa-
tion of physical phenomena that may occur in the device used to implement the scheme. These
include measurements of timings, power consumption level, running machine’s sound or an
electromagnetic radiation (cf. for instance [ISW03, [MRO04, [DP08, FKPR10, GR10, DHLAW10,
BKKV10, DF11, DF12, |(GR12, GST13]|).

The technique called masking is a very efficient way to protect sensitive data. The idea
behind masking is to split the sensitive values into d (the masking order) random shares and to
compute every intermediate value of the algorithm on these shares. The security requirement is
that each subset of d — 1 shares is independent from the original value. In this way, in fact, an
adversary would need to combine leakage samples obtained by several separate shares in order to
recover useful information about the sensitive data. Multiple candidates for d-th order masking
schemes have been proposed, such as Boolean masking [RP10] and polynomial masking [PR11].

Recently, an efficient way to mask the LPN-based authentication protocol Lapin [HKL™12]
with Boolean masking was proposed by Gaspar et al. |[GLS14]. The proposal takes advantage of
the linearity of the Learning Parity with Noise (LPN) assumption, on which Lapin is based. This
makes it easy and therefore very efficient to apply Boolean masking to Lapin. While Boolean
masking decreases the efficiency of AES quadratically in the number of shares, it decreases the
efficiency only linearly in case of Lapin.

The above mentioned masking schemes, however, lack a strong formal security proof. A way
to deal with this issue from a theoretical point of view was suggested by Ishai et al. [ISWO03],



who proposed to use a leakage resilient circuit compiler based on Boolean masking. Such a
compiler takes as input a certain circuit I' and returns a modified circuit I' that computes the
same functionality but is designed to be resilient against a restricted class of leakage attacks.
This was subsequently extended to a broader class of attacks in [FRR™10]. Solutions based on
more complicated algebraic frameworks have been also proposed, for example Juma and Vahlis
[JV10] and Goldwasser and Rothblum [GR10]. These solutions achieve leakage resilience against
polynomial-time computable functions, but require a very heavy and inefficient machinery that
involves public-key encryption to protect the shares.

In two independent works by Dziembowski and Faust [DF12] and again Goldwasser and
Rothblum [GR12], it was shown how to achieve the same results without relying on secure
encryption schemes. Both papers describe leakage-resilient compilers, which encode values on
the internal wires using an inner product. The leakage resilience follows from the extractor
property of the inner product as a strong extractor which builds a strong theoretical security
basis. The framework has been adjusted and optimized in terms of efficiency for AES in a work
by Balasch et al. [BFGV12|, along with a sample implementation and an analysis of performance
results. Unfortunately, the authors lose the strong theoretical security basis in favor of efficiency
by using the inner product as a masking scheme but not as an extractor. Furthermore, Prouff
et al. [PRR14] showed that some of their proposed algorithms to compute operations in finite
fields can be attacked in theory. It is unclear yet, if these attacks can be exploited by real world

SCAs.

Our Contribution. We use inner product extractor based techniques to gain leakage resilience
while preserving the efficiency such that our techniques are applicable in practice. Compared
to the algorithms proposed by |[DF12, BFGV12, GR12| in order to perform operations on the
encoded values we use non-interactive algorithms which do not use any refresh subroutine, thus
improving the efficiency. Furthermore, the security of these procedures is easy to verify and
does not need any leakage-free components or oracles. The drawback is that the size of the
secret state will grow when using our proposed algorithms. To overcome this issue, we propose
a procedure to shrink down the secret internal state. This is an interactive algorithm which uses
a refresh algorithm as a subroutine. We emphasize that this shrinking procedure is optional
and in many applications not necessary. A refreshing algorithm is required when a computed
value is retrieved from the encodings.

The generation of leak-free randomness is a serious issue in many concrete scenarios. While
[DF12, BFGV12] access leakage-free components in almost all procedures to perform operations
in a finite field, we only access leakage-free components to retrieve a final value and, depending
on the application, to shrink down the internal state. We also give a complete security analysis
for every proposed algorithm, while, in particular for low dimension encodings together with
large finite fields, the security of some of the algorithms given by [DF12, BFGV12] is not clear.

We emphasize that an inner product extractor based leakage-resilient storage is very attrac-
tive when using a finite field of an exponential size. Since even encodings with a low dimension
preserve strong statistical extractor properties of the inner product. This is shown by the anal-
yses of inner product based leakage-resilient storage of [DDV10, DF11]. Further, we improve
the analysis of the inner product based leakage-resilient storage to get even stronger results.

A suitable application of our techniques are LPN- or LWE-based protocols over large fields.
We will show how to perform a leakage-resilient computation of the LPN-based protocol Lapin
and give implementation results. The results show that our implementation is efficient enough
such that it can be considered for applications in practice.



2 Preliminaries

We write [n] to indicate the set {1,...,n}. We denote with F the finite field Zs[x]/(g(z)), where
g(x) is a degree m polynomial irreducible over Zg[z] and F* := F \ {0}. Let A = (Ay,...,A4y)
and B = (By,...,B,) be two vectors with elements in F. The notation A||B indicates the
concatenation of the two vectors. Moreover, we denote with A ® B the following vector of
length n?:

A®B = (AlBl, ... ,Aan,AgBl, ... ,Aan, o AnB, ... ,Aan)

The inner product between A and B is defined in the usual way as

n

(A,B):=>_A;-Bi.

i=1

If an algorithm A has oracle access to a distribution D, we write AP. A probabilistic polynomial
time algorithm is called PPT.

The statistical distance between two random variables A and B with values in a finite set X
is defined as A(4,B) = 3> .y | Pr[A = 2] — Pr[B = x]‘ If this distance is negligible, we say
that the two variables are statistically indistinguishable. The min-entropy of a random variable
A is defined as Hoo(A) = —log(max,ecx Pr[A = z]).

TwO-SOURCE EXTRACTORS. Two-source extractors, introduced in 1988 by Chor and Goldre-
ich |[CG88|, are an important and powerful tool in cryptography.

Definition 2.1. Let £, R and C be finite sets, and let U be the uniform distribution over C.
A function ext : L x R — C is a weak (m,e€) two-source extractor if for all distributions of
independent random variables L € L and R € R such that Hx(L) > m and Hoo(R) > m we
have A(ext(L,R),U) < e.

If we change the condition on the min-entropy to Hoo(L) + Hso(R) > k, the extractor is called
flexible. Note that if £ = 2m this requirement is weaker than the original, hence flexibility is a
stronger notion.

The fact that the inner product is a strong extractor is well known in the literature ([Vaz85|,
[CG8E]). The security results in this work are based on the following lemma regarding the inner
product extractor over finite fields.

Lemma 2.1. [Rao07, Proof of Theorem 3.1] The inner product function (.,.) : F* x F* — F is
a weak flexible (k,€) two-source extractor for e < 2((n+1)1og[FI=k)/2,

LIMITED ADVERSARIES AND LEAKAGE-RESILIENT STORAGE. There have been several propos-
als to model SCA in theory [DF11, |DF12, |GR12|. In the so-called split-state model, we assume
that the memory of a physical device can be split in two distinct parts, called respectively
Pr, and Pgr. These could be, for instance, two separate processors, or also a single processor
operating at distinct and separate times.

All the computation carried out on the device (for computing, for example, a cryptographic
primitive or an algorithm) is performed as a two-party protocol II between the two parties
Pr, and Pr. More precisely, each of the two parties has an internal state (initially just some
input) and at each step communicates with the other party by sending some messages. These



messages depend on the initial state, the local randomness, and the messages received earlier
in the protocol. At the end of the execution of II, each party outputs a new state.

The main reason to adopt this setting is that we assume that the two parties operate
independently, and hence are subject to completely independent leakage. In our model, we
consider an adversary A that is able to interact with both memory parts. After each execution
of II, the adversary is allowed to query a leakage oracle Q(viewr,viewr), where (viewy, viewpg)
are the respective views of the players. The view of a player consists of all the information
that was available to him during the execution of the protocol, i.e. his initial state, his local
randomness and all the messages sent and /or received. The adversary submits functions f7, and
fr and after submission, he gets back fr(viewr) and fr(viewg). The only restriction is that the
total amount of bits output by the function f; during one execution of the protocol is limited to
a certain constant A, and the same holds for fr. An adversary is called A-limited with respect
to the limited amount of leakage during a single execution, but an arbitrary amount of leakage
over all executions of the protocol. A more formal description of the model may be found in
[DF12] or [GR12].

An important primitive used to achieve leakage resilience in this model is a leakage-resilient
storage (LRS) [DDV10, DF11, DF12]. An LRS for a set of values S consists of two PPT
algorithms LRS := (Encode, Decode, Refresh):

e Encode(1%,5) — (L, R): Outputs an encoding (L, R) of a value S € S.
e Decode(L, R) = S: Outputs the private value S corresponding to the encoding (L, R).
For correctness it is required that Decode(Encode(S)) = S for all S € S.

Definition 2.2. We say an LRS is (A, €)-secure if for every private value S and any \-limited
adversary AR querying the functions fr,(L) to Py and fr(R) to P we have

A([fr(L), fr(R) | Decode(L, R) = S], [fr(L"), fr(R)]) < e

where (L', R') is an encoding of a uniformly chosen value.

With this security notion, a A-limited adversary cannot distinguish whether the leakage is
obtained from a specific value S or a uniformly sampled value S’

The protocol II computes operations on encoded values and outputs encodings of the final
values. These can be later retrieved with a dedicated procedure.

Remark 2.1. In our leakage model, the total amount of leakage obtained from each memory
part in a single round is bounded by A. However, after a few observations, an adversary could
recover the shares completely, and trivially break the security of the scheme. The first procedure
we need to define, then, is a refreshing procedure that allows to inject new randomness in
the protocol. Namely the procedure Refresh takes as input an encoding (L, R) of a value
S and outputs a new encoding (L', R") for S. Due to space limitations, we will leave the
details and issues of the Refresh procedure to the appendix. We will mention, however, that all
known provably-secure refreshing algorithms for two parties need a leakage-free sampling of the
randomness [} We will discuss leakage-free oracles in Section

!The construction of a compiler from |[GR12| implies a refreshing procedure, which does not need any leak-free
gates. However, it assumes that a number of parties executing the protocol is much bigger than 2 and is rather
unefficient.



3 A Leakage-Resilient Storage Based on the Inner Product

An LRS based on the inner product was first proposed by [DDV10]. Given a field F and an
integer n (the dimension of the encodings), the LRS ®" based on the inner product for values
in F is given by:

e Encode(1%,5) — (L, R): Sample values (L1,...,Lp, R1,...,Rn_1) & (F*)2"=1 and set
R, = L,Y(S — (L1 ... ||Ln-1, R1|| - - - |Rn-1)). If R, = 0, resample. Finally, output

n

(L:=L4||...||Ln, R := Ry]| ... || Rp)-
e Decode(L, R) = S: Output S = (L, R).

Correctness and security were proved in [DF11]. However, we manage to improve the bounds
for which security holds. We will present our result in the next theorem.

Theorem 3.1. For separated Py and Pr and a finite field F, ®™ is a (X, €)-secure LRS for

__2nlog |[F*|=(n+3) log |[F|—2X
e < 2

Proof. Let A be a A-limited adversary with access to oracle Q(viewy, viewg). He is allowed to
query fr(viewr) and fr(viewgr) since P, and Pg are separated. The functions f;, and fr have
joint output size 2X. These functions define a mapping f from (F*)?" to {0,1}?*. For simplicity
we will write f(L, R) instead of fr(viewr) and fr(viewg). Let P, be the set of all preimages
of € {0,1}?}). Then the min-entropy of L and R given a certain leakage = € {0,1}?" is
Vf o (F*)2 — {0, 1}

Hoo,:c((LvR) ’ f(L7 R) = l’)

= —log ( max ( Pr [(L,R)=(L',R")| f(L,R) = x]))

(L',R/)E(F*)Qn (L,R)ﬁ(F*)2"

:—log< max ( Pr [(L,R) = (L',R')])) = log |P,|

(L',R')€P, (L,R)ﬁ]}”z

Since fr,(viewr,) depends only on L and fr(viewg) only on R, L and R are independent given
f. Hence Lemma implies the following bounds on the statistical distances for the elements

of {0,1}2*:
o = A ((L, R) | F(L, R) = ], (L', R)) < /[F[" ™1/ [P [~}

for a uniform (L', R’) € F. Notice that the statistical distance €, is not necessarily negligible.
For instance an adversary could choose a function f such that the function is 1 if all entries
of L and R are 1 € F and otherwise 0. In this case if a leakage f(L,R) = x = 1 appears, L
and R are statistically fixed and e, = ¢; = 1. Even if an adversary will choose such a function
f, ax =1 will appear only with a negligible probability then. A straight forward but a lossy
technique to prove the Theorem would be: Either x appears with negligible probability or €, is
negligible. We are not using this approach which is also a reason why we get better bounds.



We get the Theorem by bounding the final advantage of A: For all S € F
= A([f(L, R) | (L, R) = 5], (L', R))

M

:% Z ‘Pr[f(L,R):{L" <L’R>:S]_Pr[f(L/,R/):g;”

z€{0,1}2*
_ 1 Pr[(L,R) = S| f(L,R) = a] - Pr[f(L', R') = a] ooy
=5 2 Pr[(L, R) = 5] ~Prlf(L, B) =]
z€{0,1}2*
<3l S PALR) =al |PUL ) = S| AL R) =a] -
z€{0,1}2*
<|F| Y Prf(L,R)=21] (; > |Pr[(L,R) = 8" | f(L,R) =] - Pr[{L/,R) = 5’]\)
z€{0,1}2* S’elF
= ’F| Z Pr[f(L/7 R/) = :L’] (Ax([<L7 R> | f(L7 R) = x]? <L/7 RI)))
z€{0,1}2*
]IF|\/ |F|ntl N DGR A  2nlog |]F*|7(n2+3) log |F|—2x
- Ep :JcE{OZl}2/\ IPo1 < T =2

The first steps are straight forward. Then for the first inequality, we use a probably lossy
bound. In the second last line, we sum over the probability, that a leakage x appears multiplied
with the statistical distance €, implied by z. Finally we plugin the probabilities and apply the
bounds on ¢, for all z € {0,1}?* and use Jensen’s Inequality. O

FLEXIBILITY AND GRACEFUL DEGRADATION. The LRS ®" satisfies two additional, very useful
properties. It is flexible, since an adversary could query 2\ bits on a single party instead of
querying A bits on each of them, without decreasing the statistical distance. More generally, an
adversary is allowed to arbitrary split the amount of leakage among the two parties, as long as
the sum is equal to the total amount of tolerated leakage.

Even more interesting is the graceful degradation achieved by an LRS in general. If an adversary
queries 2\ + 2k bits instead of 2\ bits, the security will not entirely break down. In case of ®7, it
will only increase the statistical distance from uniform by a factor of 2%. If the statistical distance
is 2% for security parameter , then the security parameter will be decreased to k' = xk — k.

Remark 3.1. For seeing the improvement compared to previous results, we use the parameters
of Lemma 1 in [DF11] which is also used in [DF12|. We set m = 1 and the given leakage and
statistical distance is A = (1/2 — §)nlog|F| — logy~! and € = 2(|F|3/2>~"% 4 |F|y) for v > 0
and 1/2 > ¢ > 0. If we plug in A in Theorem our bound yields € = |F*|~"|F|"+3/2-70
|F|3/2-70~ for large fields. Hence € > e.

Remark 3.2. Further, for a total leakage 2\ of 1/2 of the bits of the encodings or more,
security is not guranateed anymore. This follows from the fact that (n + 3) log |F| is larger than
nlog |F*| which is the entropy of one of the encodings.

4 Computation and Retrieving Computed Values

To begin, we show how to perform non-interactive operations on the encoded values. Non-
interactivity guarantees that the computation doesn’t contradict the split-state model’s as-
sumptions, thus ensuring to achieve security. After describing the non-interactive operations,
we give a more formal description of a set of leakage-resilient operations based on the LRS ®".



ADDITION OF A CONSTANT AND AN ENCODED VALUE. Let X = (L, R) be the input secret
value and ¢ € F be a constant. To compute ¢+ X, we set L' = L||c and R’ = R||1. Then

(L'R)y =) (Li-Ri)+c=X+ec
i=1

ADDITION OF TWO ENCODED VALUES. Let X = (L, R) and Y = (K, Q) be the input secret
values, and (L', R) the encoding for Z = X + Y. The simplest addition procedure is to set
L' = L||K and R’ = R||Q. It is trivial to verify that

n n

(L',R) = Z(Li R+ K- Q) = Z(Li “R;) + Z(Ki Qi) = (L, R) + (K, Q).

i=1 =1 =1

MULTIPLICATION OF AN ENCODED VALUE BY A CONSTANT. Let ¢ be a public constant and
let X = (L, R) be the input secret value. We would like to obtain shares (L', R') for ¢- X. It is
then enough to set L' = L and R, = ¢ R; for i € [n]. It is immediate to verify that

(L',R) = zn:(Li-c-Ri) =c-(L,R)=rc-X.
i=1

MULTIPLICATION OF TWO ENCODED VALUES. Let X = (L, R) and Y = (K, Q) be the input
secret values and (L', R') the encoding for Z = X - Y. The simplest multiplication procedure is
toset ' =L® K and R = R® Q. It is now easy to verify that

n n

(LR =" (Li-Kj-Ri-Qj) = > (Li-Ri)- > (Ri- Qi) = (L, R) - (K, Q).

i=1 j=1 i=1 =1

We emphasize that this operation is too costly for large dimensions. If a multiplication between
two encoded values is necessary, using the algorithm given by [DF12] should be considered.

A SET OF LEAKAGE-RESILIENT OPERATIONS. To describe the set of leakage-resilient opera-
tions, we use again the algorithms of ®". More precisely, the set of leakage-resilient operations
U™ consists of nine PPT algorithms for two parties Py, and Pg:

e Initialize(S1,...,Ss): For all i € [s] compute Encodegn (1%, 5;) — (L;, R;). Start Pr, with
input L1,...Ls and P with input Ry, ..., Rs.

e Refresh(i): P and Pg replace (L;, R;) by (L., R,) < Refresh(L;, R;).
e cAdd(i, j,c): Pr sets L; := Lj||c and Pg sets R; := Rj||1.
e Add(7,j,k): P, sets L; := Lj||Ly and Pg sets R; := Rj||Ry.

e cMult(i, j,¢): Pr, sets L; := (cLjq1||cLjal...) for Ly = (Lj1||Ljz2] ...) and Pg sets R; :=
R;.

e Mult(i,j,k): P, sets L := L; ® Ly, and Pg sets R; := R; ® Ry,.
e RetrieveValue(i) — (L', R'): Invoke Refresh(i), Pr, outputs L; and Pr outputs R;.

e ShrinkDown(%): Shrinks down L; and R; to dimension n + 1. For more details and the
security analysis, we refer to Appendix



Remark 4.1. Note that, apart from cMult, the length of the encodings increases in all the
other operations. This can influence the performance of the following operations. Thus, we
have designed a Shrink procedure that allows to reduce an arbitrary length of encodings down
to n + 1 field elements.

It turns out that, in the protocols we considered, using this operation does not improve the
overall efficiency. This is because it requires a call to the Refresh procedure, which is quite
costly. For completeness, we present the Shrink operation in Appendix [B] We remark that this
operation is still useful in many situations, because it does improve the performance for more
complicated patterns of operations (indeed, even for just two consecutive multiplications on
encoded values).

The main property of U™ is that functions computable by two parties P;, and Pr with
the operations described above can be made leakage resilient in a straightforward way. The
procedure Initialize, which receives as input all sensitive values, is called at the beginning of the
computation. This process has to be free of leakage. Once encodings for the sensitive values are
created and shared among Pr, and Ppg, arbitrary functions can be computed and retrieved and
the leakage during the computation will not leak any information about the sensitive values,
even if the computed function may reveal them.

After the computation, P, and Pg can refresh their encodings by using Refresh to compute
another function without leaking information about the sensitive values during the computation.
If Refresh is used, the amount of tolerated leakage is as large as during the first computation.
This follows directly from the property of Refresh. We prove the general statement about ¥
in the next theorem.

Theorem 4.1. Let F be an arbitrary function computable by two parties Pr, Pr using V™. Let
the encodings used by Pr,, Pr for computing a value be fresh and independent. Let S1,...,Ss € F
be a set of input values for F' among additional inputs that may be chosen uniformly or by an
adversary. Then for any A-limited adversary A and any q € N:

_ 2nlog |F*|—(n+3) log |F|—2X
2

AAKELER) () ), AMEUED) () < g2

where x; is an output of F on input Si,...,Ss. Furthermore, for every i € [q], Q(Pr,PRr)
gives access to A bits of leakage on each of the views of Pr, and Pr during the computation
of x;, whereas Q(Py,Py) indicates leakage obtained from the computation of x; for uniform
Si,...,SLel.

Proof. We start with ¢ = 1. Without loss of generality we set x; = {S1,...5,} and assume that
A sends queries fr,1(Ls; 1), -, fr.s(Ls, 1) to Py, and fr1(Rs,1),---, frs(Rs,1) to Pg with a
total ouput size of 2X bits. Let \; be the output size of fr,1(Lg, 1) and fr1(Rs;1) for i € [s].
Then according to Theorem

e = AAPPLPR) () AUPUPU) (7))
= AASELPR)(G) S 0), AEUPU) (g 8L))

_2nlog [F*|—(n+3) log |F]|—X;
<Y 2 :

=1
S
_ 2nlog |[F*|—(n+3) log |F| A
= 2 2 E 27
=1
_ 2nlog |[F*|—(n+3) log |F|—2)
<2 2




This is because Theorem [3.1] holds for any private value S € F, which is harder to achieve than
if S is known or even chosen by A. To extend the result to g outputs of F, we use a simple
hybrid argument. For x1, we showed that A can not distinguish if the leakage is received from
encodings of Sp,...Ss or from some uniform S7,...S’ with probability more than e. Since we
use fresh and independent encodings of S1,...Ss for the computation of x5 to x4, we can apply
Theorem again. So for every single x;, A will notice with at most probability e, if the leakage
is based on S7,... S instead of Sy, ...Ss. Summing up over ¢ we get:

AASKELER) (1)), ASBURD) (2 g)) < ge -

Note that Theorem provides leakage resilience for any function F' with private values
S and computable by two parties P, Pr using W". More precisely, given ¢ outputs of F' and
leakage retrieved during the computation of F', an adversary cannot distinguish if the leakage
comes from the computation of F' on input S or a uniformly sampled input in F.

Corollary 4.1. Let F be a function with private input S and additional input that may be
chosen at uniform or by an adversary. Suppose that, for any PPT algorithm, q outputs of F
are distinguishable from uniform with probability at most €. Then q outputs of F computed by
two parties Pr,, Pr using O™ are distinguishable from uniform with probability at most € by any
PPT \-limited adversary, where

2n log |F*|—(n+3) log [F|—2X
2

€ <e+q2”

5 Leakage-Resilient Computation of Lapin

Even though the techniques presented above can be easily applied to other primitives or proto-
cols (for example [LM13]), we set our focus on Lapin. The instantiation of Lapin with a large
field fits perfectly the proposed techniques. We use the parameters given in [HKL™12]. The au-
thors propose to use the field F = Fo[X]/(X?32+ X +1), which results in a size |F| = 2°32. Lapin
uses two private key elements s1, s5 € F and for every protocol execution, a sensitive noise term
e is sampled from the distribution BL, i.e. the distribution over the polynomials of F where each
of the coefficients is chosen from the binary Bernoulli distribution. While s; and ss could be
stored in encoded form on two separated parts Pr, and Pr on the device, e has to be resampled
after every computation and not just refreshed. During the protocol a term z = r(cs; + s2) + e
for uniform field elements r, ¢ is computed. Due to space constraintments, we refer for details
to [HKLT12]. A leakage-resilient computation of z would imply a leakage-resilient variant of
Lapin.

ON LEAK-FREE ORACLES. For sampling and encoding e, we use a leak-free oracle O.. The
reason for using O, to generate an encoding for e is that it is fundamental to securely sample
the randomness. In fact, even leaking a single bit of the sampled noise is enough to undermine
security, since revealing the noise from a LPN sample provides a linear equation from which the
secret can be recovered. Hence we assume that an encoding of the random noise is computed
in a leak-free way. This may be not reasonable to assume in some situations. On the other
side, the O, oracle does not have any input, and the noise e is independent from any interaction
between the parties of the authentication protocol, this makes it harder to attack such an oracle
with a SCA.

One strategy to deal with this issue (that also concerns refreshing procedures), is to sample
the vectors L. and R, in advance, i.e. even before the challenge ¢ is known. One can therefore



compute a number of pairs (L, , Re, ), (Ley, Re,), - - - and pick one of them (possibly at random)
whenever a fresh pair is needed. Storing these pairs on the Tag even for a long time is completely
safe under the assumption that only computation leaks information. Even if an adversary got
access to a stored pair, the scheme would still be secure as long as the adversary did not learn
more than what he could have learned via leakage queries during a single execution of the
protocol. Whenever a Tag is running out of (L, R.) pairs, it could sample a few new pairs from
O, and store them in the memory or sample a new pair after every protocol execution. Even if
the oracle O, was not completely leakage-free, it would still be hard to attack the system, since
the (Le, Re) pairs are sampled in a different moment from the actual execution of the protocol
and it is probably not easy for an adversary to figure out which pair is used next timeﬂ

DESCRIBING THE LEAKAGE-RESILIENT COMPUTATION. At the core of Lapin, there is the
function F(r,c, s1,82,€) = z =r(s1jc+ s2) + € = rcs; + rsg + e. In Figure |1 we give the details
of its implementation using the set of leakage-resilient operations ¥™ from Section

IHPUt: (leaL827 RS1>R82) € ((F \ {O})n)4’ (Cv ’I”) € FQ
Output: z =r(cs; + s2) +e

Lo ]k

Pr ‘ ’ Pr ‘

L, :=rcLg,||rLs,||Le R, = Ry || Rs, || Re

(L, R.) := Refresh®" (L., R.)
output r, z := (L, R.,)

Figure 1: Leakage Resilient Computation for a Lapin Tag. To see which instructions of U™ are
used, see Section For the encodings hold (L, , Rs,) = $1, {(Ls,, Rs,) = s2 and (L., R.) = e. Before
perfoming the next computation, the encodings of s; and s, need to be refreshed.

The encodings L, , Ls,, Rs,, Rs, for s; and sy are stored on the device and e is obtained from
Q.. The two parties Py, and Pg perform non-interactive additions of shares and multiplications
by constants to create an encoding of the response z. The retrieving procedure is used to get an
encoding of z in a secure way. Finally, z itself can be obtained by computing the inner product
of the encodings. Before starting the next protocol execution, the encodings of s; and s2 need
to be refreshed using the refreshing operation of W™.

The security of the scheme and robustness against leakage can be easily obtained from Corol-
lary Let €7, be the winning probability against Lapin. This is essentially the probability of
distinguishing, for ¢ outputs, the function F(r, ¢, s1, s2,e) = z from uniform, where r is uniform
and c is chosen by an adversary. The values s1, s3 and e are the sensitive values and hence they
are encoded. The winning probability €, against the proposed leakage-resilient protocol for ¢
executions is €, = €1, + egn, where eyn is the distinguishing probability stated in Theorem @

SAMPLING THE RANDOMNESS AND REFRESHING. As we already mentioned, it is necessary that
both the on-chip randomness sampling and the refreshing procedure be secure against continual
leakage. In particular, if the refreshing procedure accesses a sensitive value in order to generate

2Because the pair to be used can be picked at random from the set of available pairs.
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new encodings for it, the overall security of the protocol could be critically harmed. The sensitive
value could in fact be easily retrieved during refresh executions. In Appendix [A] we describe
two existing refreshing algorithms for inner product shares. Neither of them directly accesses a
sensitive value so both perform much better, in the presence of leakage, than simply executing
an Decode operation followed by a new Encode operation. While the weaker refreshing algorithm
is not provably secure in a theoretical sense, the stronger, leakage-resilient refreshing procedure
comes at a cost of a less efficient computation and requires a larger amount of randomness.
Note that even the leakage-resilient refreshing requires that the randomness is drawn from a
leakage-free oracle.

EFrrICcIENCY. The efficiency of the scheme is calculated in terms of inversions and multiplications
over F. In Table[l| we report our efficiency analysis of Lapin when instantiated with the stronger
(second row) and the weaker (third row) refreshing procedures. In our analysis, we do not
include the computation of a refreshing procedure between two protocol executions.

Efficiency Security
Protocol Refresh n Multlphca%tlons 8 bit AVR \ ]
& Invertions P
Lapin - - 2&0 0.3 mio cycles | 0 €L
Lapin Leakage-Resilient | 4 19n & 6n+1 | 43 mio cycles | 141 | ef, + 278!
Lapin Leakage-Free 4 1in+1&1 9 mio cycles | 141 | e +278!

Table 1: Efficiency of the Framework and Robustness Against Leakage. In the table above,
n is the dimension of the encodings, €, is the winning probability against Lapin and €, is the winning
probability against the leakage-resilient protocol with A bits of leakage on each of the two parties per
protocol execution. The refresh procedure in between two protocol executions is not covered in the
presented computational costs. The 8 bit AVR implementation for multiplication and division is a
straight forward implementation of the algorithms given in [HVMO04] and for Lapin a uniform challenge
c in FF is used instead of a sparse element in F.

Even though the protocol is quite simple, the computation is perhaps more expensive than
one would expect, due to the expensive refreshing operation (which we describe in Appendix.
Compared to standard Lapin, the efficiency decreases by at least a factor of 30. Lapin performs
better over a ring with a reducible multiplication, but in order to apply the proposed techniques,
the extractor properties of a field are necessary. Furthermore, Lapin takes advantage of a
multiplication with sparse field elements. In our framework, only a few field elements are sparse
and hence the optimization does not have a big effect on the overall efficiency.

The 8 bit AVR implementation is based on a shift and add based division and multiplication.
Even the most costly implementation with 43 million cycles has a running time of 1.34 seconds
on a 32 Mhz architecture. The cycle amount would drastically decrease on an implementation
on a 32 bit architecture, since shifts and additions can be carried out four times faster. We
emphasize, that the cost of sampling the randomness is not covered here.

LEAKAGE RESILIENCE. Our proposal accomplishes leakage resilience in a model which allows
continuous and arbitrarily chosen leakage functions as long as leakage-free components are not
addressed. A choice of n = 4 results in a leakage-resilient protocol for chosen leakage functions
of 141 bits output size per round for each of the two parties. To get these results, we first set the
statistical distance gained by the inner product to 278!, For meaningful results, Theorem
requires n > 4. Finally we set the amount of protocol executions to be at most g = 2%9.
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6 Conclusions and Future Work

This work provides techniques to perform leakage-resilient operations which perfectly fits cryp-
tographic primitives or protocols running over large finite fields. It achieves strong provable
security results thanks to the improved results for the underlying LRS based on the inner prod-
uct extractor and the large size of the field. This framework could be very helpful to make other
primitives leakage-resilient without using heavy machinery. Since the known refresh algorithms
are still costly, more efficient alternatives would greatly increase the overall efficiency.

An issue from which our techniques suffer is the generation of on-chip randomness. Further-
more, it is required to use leakage-free oracles to sample randomness without leaking informa-
tion.

Applying the proposed techniques to Lapin, we obtain a very high level of leakage resilience.
In terms of efficiency, it is still very expensive, decreasing the efficiency compared to standard
Lapin by at least a factor of 30. This is also a drawback for leakage resilience, since additional
computation will cause additional leakage. Therefore, in settings in which performance is very
important and leakage resilience plays a minor role, the Boolean masking of Lapin seems to
be a better choice. On the other hand, in applications in which a high leakage resilience is
necessary, the proposed techniques applied to Lapin provides an interesting option while still
having reasonable responding times during a protocol interaction.
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A Refreshing Procedures for the Inner Product LRS

As a first security requirement, a refreshing procedure needs to be rerandomizing.

Definition A.1 (Rerandomizing). The refreshed encodings are uniformly distributed over the
set of encodings of the encoded value.

Dziembowski and Faust in [DF11] describe two possible refreshing procedures, starting from
an intuitive, but flawed, one, and then providing a secure one. The latter makes use of a
leak-free component Og that samples uniformly random pairs of orthogonal vectors, and has a
complexity of O(n?) field operations. An improved version appears in [DF12|. The procedure
was then revisited and adapted to the AES case in [BFGV12]. We report it in Figure

Input: L € (F\ {0})" is given to P, and R € (F\ {0})" to Pg.
Output: L' and R’ such that (L', R") = (L, R).

[ P ] [ Pe |

A (F\{o})"

X
Sample B such that B R'=R+B
X = (I, B)
output L/ output R’

Figure 2: Refreshing Procedure. The refreshing procedure proposed in [BFGV12).

This formulation of a refreshing procedure is very simple but, as the authors incidentally
mention, security is based on the (rather unrealistic) assumption that the whole procedure is
leakage-free. The reason for this is that, during the interaction between Pr and Pg, one of
the parties might learn additional information about the secret state of the other one. While
leakage on input and output does not cause any problem, an adversary could use this additional
knowledge of one of the parties during the procedure to query a leakage function which depends
partially on both the encodings. This might reveal information about the inner product of the
encodings and hence of the encoded value. Even though in practice, it is not known yet, how
to exploit this by a SCA.

To deal with this issue, a property called reconstructability was introduced in [FRR™10].
Let Op be a masked operation with input (L, R), and output (L', R"). We call reconstructor a
simulator algorithm Rec that is able to recreate the views that both parties would have after
executing Op, without actually executing it. More specifically, Rec takes as input (L, R) and
(L', R'), and returns (viewy,, viewg). In addition, it is important that the execution of Rec does
not require any interaction between the parties after they are given the inputE]

3Therefore, the parties can jointly draw some common randomness in advance. This will be referred to as
offline sampling later in this paper.
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Definition A.2 (Reconstructability). A masked operation Op is said to be e-reconstructable if
there exists a reconstructor Rec such that, for every X € F, it holds that

A((L, R, viewy,, viewr), (L', R, view} , viewl)) < ¢,

where (L, R) = Encode(X), viewy, and viewg are the views of the two parties after the execution
of Op(L,R) = (L', R') and (view,, viewy) = Rec((L,R), (L', R')).

This property guarantees that leaking from the internal states during the operation on the
encodings does not reveal more than just leaking from the input and output of the operation.

A reconstructable refreshing procedure was suggested by Andrychowicz in [And12] and we
present it in Figure

Input: L € (F\ {0})" is given to P, and R € (F\ {0})" to Pg
Output: L' and R’ such that (L', R') = (L, R)

P, | . Pr
VZ-::L;l-AiforiE[n] 4 U, :=V;- B; for i € [n]
R =R+ U,

if3ien:R, =0
~abort and restart;
Vi:=R; " B foric [n]

U; := f/; .

L' =L+ U,
ifden:L=0
abort and restart;

B
<

; for i € [n]

h

output L/ output R’

Figure 3: Refreshing Procedure. The procedure Refresh™ is used to refresh the shares of a secret.
The values A, A, B, B are such that (A, B) = —(A,B) and A; #0 and B; #0 for 1 <i < n.

As opposed to previous proposals, this procedure is more efficient, having a complexity of
O(n) operations: it requires 2n inversions, 4n multiplications and 2n additions in the finite field.
The procedure makes use of a modified leak-free component O that generates quadruples of
vectors (A, A, B, B) such that (4, B) = —(A, B) and for 1 < i < n it holds that A; # 0 and
B; # 0. Tt is easy to see that this oracle can be simulated by players in possession of Q.

Note that his refreshing algorithm assumes that the shares have all non-zero coordinates. In
practice, we will use very big fields (at least |F| > 2256) so a random vector would have all
non-zero coordinates with overwhelming probability.

It is easy to verify that the procedure Refresh” of Figure 3| verifies the rerandomizing property.
First of all, it is evident that the two shares output by Refresh™ are indeed a correct masking
for the input secret, since
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(L',R) =

= (L,R)+ (U,R) = (L,R) + Y1, Ui - R} =

= (L, R) + Y0 g Ai- Bi - (R); - R = (L, R') + (4, B) =

= (L, R) + (L, U) + (A, B) = (L, R) + >i_ o Li - Ui + (A, B) =

= (L, R+ oLi- Ly - A;- B+ (A, B) = (L,R) + (A, B) + (A, B) =
= (L, R).

To see that L' are R’ are independent from the input, we set U = R’ — R and U=1L —L.
From the condition (L, R) = (L', R") follows (L,U) = —(U, R’) which is the constraint of Op.
Therefore O outputs samples of the correct distribution to make L/, R’ independent of L, R.

A reconstructor for Refresh” was given in [And12]. We present it in Figure

Input: (L, L) € ((F\ {0})")? is given to P;, and
(R,R') € ((F\ {0})™)? is given to Pr
Output: view;, and viewg
Offline:

V,V) v,V & (V,V)

P ]

AZ:Lz‘/;fOI‘ZE[n]
U:=R —R;
B; = VZ._I-U,- for i € [n]

B;:=R. -V for i € [n]

(2

output (L, L', V,V, A, A) output (R, R',V,V,B,B)

Figure 4: Reconstructor. The above algorithm describes a reconstructor for the procedure Refresh™.
The only communication between the parties is the sampling of random vectors V' and V', which can be
done offline.

The author provides a proof that the above procedure is an e-reconstructor for Refresh™ with

e=0.

B A shrinking procedure for the Inner Product LRS

The Shrink operation is presented in Figure [5| It transforms an encoding of length m into an
encoding of length n+1. It is based on the implicit shrinking procedure used in the multiplication
gadget in [DF12].
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Input: L € (F\ {0})™ is given to P, and R € (F\ {0})™ to Pgr
Output: L' € (F\ {0})"*! and R’ € (F\ {0})""! such that (L', R') = (L, R)

I [ Pe |

(L, R) := Refresh™(L, R)
£ o= (Bnsal- - Em)

R R:=(Rps1ll... | Rm)
if (L,R) =0
abort and restart;
L= (Ly||... | Lall(T, R)) R = (Ra|...||Rall1)
output L/ output R’

Figure 5: Shrinking Procedure. The procedure Shrink described in this figure is used to reduce the
size of the shares of a secret.

The algorithm Shrink is interactive, so we need to analyze its security carefully. The reason
for this is that for example Pp, learns during the execution the value of ﬁ, which reveals some
partial information about the secret state of Pg. An adversary can use this fact and query a
leakage function, which depends partially on both of the encodings, and thus break the security
of LRS.

We already introduced reconstruct ability in Appendix[A] Reconstructability implies that the
interaction between two parties does not contradict the leakage resilience. Since the views of Pr,
and Pg during a reconstructable procedure can be simulated by a non-interactive reconstructor.
This reconstructor only uses Oracles which sample randomness which is independent of sensitive
values and he does not require any interaction between P, and Pg.

Theorem B.1. Shrink is 0-reconstructable.

Proof. The reconstructor for the S/\hri/rjk operation is presented on Fig. 6l We need to show
that reconstructed views (L, L L L, R) and (R, R, R, R) have the same distribution as in the
shrink down procedure. This is already clear for L, R and L', R’ since the input is identical. In
the shrink procedure L and R are uniform elements in (F\ {0})™ " and their inner product is
@, ﬁ) = L,;1. The presented reconstructor samples L such that this is the case. The correct
distribution of L, R follows from the correct distribution of L', R’ and E, R: The first n field
elements of L, R are identical to the first n field elements of L', R and the last m — n field
elements are identical to E, R. The reconstructability of the view during the refresh procedure
follows from the reconstructability of the refresh procedure. O
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Input: L € (F\ {0})™ L € (F\ {0})""! is given to P, and
R e (F\{0})™ R € (F\ {0})"! is given to Pg

Output: view;, and viewg
Offline:

~

R RE@\{ohmn _R

I . P ]
Sample L € (F\ {0})™™
st. (L,R) =1L/,
L= (L[ ... [| L, L) R= (Ri[|...[|R,|[R)

Run the reconstructor for Refresh™ with inputs (L, L) and (R, R)
output (L, L, L', L, R) output (R, R, R, R)

Figure 6: Reconstructor. The above algorithm describes a reconstructor for the procedure Shrink.
The views created by the reconstructor for Refresh are treated as part of the output.
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