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Abstract. We present a new constant round additively homomorphic commitment scheme with
(amortized) computational and communication complexity linear in the size of the string committed to.
Our scheme is based on the non-homomorphic commitment scheme of Cascudo et al. presented at PKC
2015. However, we manage to add the additive homomorphic property, while at the same time reducing
the constants. In fact, when opening a large enough batch of commitments we achieve an amortized
communication complexity converging to the length of the message committed to, i.e., we achieve
close to rate 1 as the commitment protocol by Garay et al. from Eurocrypt 2014. A main technical
improvement over the scheme mentioned above, and other schemes based on using error correcting
codes for UC commitment, we develop a new technique which allows to based the extraction property
on erasure decoding as opposed to error correction. This allows to use a code with significantly smaller
minimal distance and allows to use codes without efficient decoding.
Our scheme only relies on standard assumptions. Specifically we require a pseudorandom number
generator, a linear error correcting code and an ideal oblivious transfer functionality. Based on this we
prove our scheme secure in the Universal Composability (UC) framework against a static and malicious
adversary corrupting any number of parties.
On a practical note, our scheme improves significantly on the non-homomorphic scheme of Cascudo
et al. Based on their observations in regards to efficiency of using linear error correcting codes for
commitments we conjecture that our commitment scheme might in practice be more efficient than all
existing constructions of UC commitment, even non-homomorphic constructions and even constructions
in the random oracle model. In particular, the amortized price of computing one of our commitments is
less than that of evaluating a hash function once.

Keywords: Commitments, UC, Homomorphic, Minimal Assumptions, Linear Error Correcting Codes,
Erasure Codes.

1 Introduction

Commitment schemes are the digital equivalent of a securely locked box: it allows a sender Ps to hide a secret
from a receiver Pr by putting the secret inside the box, sealing it, and sending the box to Pr. As the receiver
cannot look inside we say that the commitment is hiding. As the sender is unable to change his mind as he has
given the box away we say the commitment is also binding. These simple, yet powerful properties are needed
in countless cryptographic protocols, especially when guaranteeing security against a malicious adversary
who can arbitrarily deviate from the protocol at hand. In the stand-alone model, commitment schemes can
be made very efficient, both in terms of communication and computation and can be based entirely on the
existence of one-way functions. These can e.g. be constructed from cheap symmetric cryptography such as
pseudorandom generators [Nao90].
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In this work we give an additively homomorphic commitment scheme secure in the UC-framework of
[Can01], a model considering protocols running in a concurrent and asynchronous setting. The first UC-secure
commitment schemes were given in [CF01, CLOS02] as feasibility results, while in [CF01] it was also shown
that UC-commitments cannot be instantiated in the standard model and therefore require some form of setup
assumption, such as a CRS. Moreover a construction for UC-commitments in such a model implies public-key
cryptography [DG03]. Also, in the UC setting the previously mentioned hiding and binding properties are
augmented with the notions of equivocality and extractability, respectively. These properties are needed to
realize the commitment functionality we introduce later on. Loosely speaking, a scheme is equivocal if a
single commitment can be opened to any message using special trapdoor information. Likewise a scheme
is extractable if from a commitment the underlying message can be extracted efficiently using again some
special trapdoor information.

Based on the above it is not surprising that UC-commitments are significantly less efficient than con-
structions in the stand-alone model. Nevertheless a plethora of improvements have been proposed in the
literature, e.g. [DN02, NFT09, Lin11, BCPV13, Fuj14, CJS14] considering different number theoretic hardness
assumptions, types of setup assumption and adversarial models. Until recently, the most efficient schemes
for the adversarial model considered in this work were that of [Lin11, BCPV13] in the CRS model and
[HMQ04, CJS14] in different variations of the random oracle model [BR93].

Related Work. In [GIKW14] and independently in [DDGN14] it was considered to construct UC-commitments
in the OT-hybrid model and at the same time confining the use of the OT primitive to a once-and-for-all setup
phase. After the setup phase, the idea is to only use cheap symmetric primitives for each commitment thus
amortizing away the cost of the initial OTs. Both approaches strongly resembles the “MPC-in-the-head” line
of work of [IKOS07, HIKN08, IPS08] in that the receiver is watching a number of communication channels
not disclosed to the sender. In order to cheat meaningfully in this paradigm the sender needs to cheat in many
channels, but since he is unaware where the receiver is watching he will get caught with high probability.
Concretely these schemes build on VSS and allow the receiver to learn an unqualified set of shares for a secret
s. However the setup is such that the sender does not know which unqualified set is being “watched”, so when
opening he is forced to open to enough positions with consistent shares to avoid getting caught. The scheme
of [GIKW14] focused primarily on the rate of the commitments in an asymptotic setting while [DDGN14]
focused on the computational complexity. Furthermore the secret sharing scheme of the latter is based on
Reed-Solomon codes and the scheme achieved both additive and multiplicative homomorphisms.

The idea of using OTs and error correction codes to realize commitments was also considered in [FJN+13]
in the setting of two-party secure computation using garbled circuits. Their scheme also allowed for additively
homomorphic operations on commitments, but requires a code with a specific privacy property. The authors
pointed to [CC06] for an example of such a code, but it turns out this achieves quite low constant rate due to
the privacy restriction. Care also has to be taken when using this scheme, as binding is not guaranteed for all
committed messages. The authors capture this by allowing some message to be “wildcards”. However, in their
application this is acceptable and properly dealt with.

In [CDD+15] a new approach to the above OT watch channel paradigm was proposed. Instead of basing
the underlying secret sharing scheme on a threshold scheme the authors proposed a scheme for a particular
access structure. This allowed realization of the scheme using additive secret sharing and any linear code,
which achieved very good concrete efficiency. The only requirement of the code is that it is linear and the
minimum distance is at least 2s+ 1 for statistical security s. To commit to a message m it is first encoded
into a codeword c. Then each field element ci of c is additively shared into two field elements c0

i and c1
i and

the receiver learns one of these shares via an oblivious transfer. This in done in the watch-list paradigm where
the same shares c0

i are learned for all the commitments, by using the OTs only to transfer short seeds and
then masking the share c0

i and c1
i for all commitments from these pairs of seeds. This can be seen as reusing

an idea ultimately going back to [Kil88, CvT95]. Even if the adversary commits to a string c′ which is not a
codeword, to open to another message, it would have to guess at least s of the random choice bits of the
receiver. Furthermore the authors propose an additively homomorphic version of their scheme, however at
the cost of using VSS which imposes higher constants than their basic non-homomorphic construction.
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Finally in the very recent work of [CDD+16] the asymptotics of our proposed commitment scheme are
improved as the authors give a protocol for additively homomorphic commitments that achieves linear time
and close to rate 1. This work does not achieve the linear time property. Furthermore, [CDD+16] introduces
the notion of interactive proximity testing which is crucial for our proof of security.1 Their protocol is however
very similar in design to both [CDD+15] and the one presented here, but constructs and uses a binary linear
time encodable code with non-trivial distance and rate close to 1 to achieve the mentioned results.

Motivation. As already mentioned, commitment schemes are extremely useful when security against a
malicious adversary is required. With the added support for additively homomorphic operations on committed
values even more applications become possible. One is that of maliciously secure two-party computation
using the LEGO protocols of [NO09, FJN+13, FJNT15]. These protocols are based on cut-and-choose of
garbled circuits and require a large amount of homomorphic commitments, in particular one commitment for
each wire of all garbled gates. In a similar fashion the scheme of [AHMR15] for secure evaluation of RAM
programs also make use of homomorphic commitments to transform garbled wire labels of one garbled circuit
to another. Thus any improvement in the efficiency of homomorphic commitments is directly transferred to
the above settings as well.

FROT interacts with a sender Ps, a receiver Pr and an adversary S and it proceeds as follows:

Transfer: Upon receiving (transfer, sid, otid, k) from both Ps and Pr, forward this message to S and wait
for a reply. If S sends back (no-corrupt, sid, otid), sample l0, l1 ∈R {0, 1}k and b ∈R {0, 1} and output(
deliver, sid, otid,

(
l0, l1

))
to Ps and

(
deliver, sid, otid,

(
lb, b
))

to Pr.

If S instead sends back
(
corrupt-sender, sid, otid,

(
l̃0, l̃1

))
or
(

corrupt-receiver, sid, otid,
(
l̃b̃, b̃
))

and
the sender, respectively the receiver is corrupted, proceed as above, but instead of sampling all values at
random, use the values provided by S.

Fig. 1. Ideal Functionality FROT.

Our Contribution. We introduce a new, very efficient, additively homomorphic UC-secure commitment scheme
in the FROT-hybrid model. The FROT-functionality is fully described in Fig. 1. Our scheme shows that:

1. The asymptotic complexity of additively homomorphic UC commitment is the same as the asymptotic
complexity of non-homomorphic UC commitment, i.e., the achievable rate is 1− o(1). In particular, the
homomorphic property comes for free.

2. In addition to being asymptotically optimal, our scheme is also more practical (smaller hidden constants)
than any other existing UC commitment scheme, even non-homomorphic schemes and even schemes in
the random oracle model.

In more detail our main contributions are as follows:

– We improve on the basic non-homomorphic commitment scheme of [CDD+15] by reducing the requirement
of the minimum distance of the underlying linear code from 2s+ 1 to s for statistical security s. At the
same time our scheme becomes additively homomorphic, a property not shared with the above scheme.
This is achieved by introducing an efficient consistency check at the end of the commit phase, as described
now. Assume that the corrupted sender commits to a string c′ which has Hamming distance 1 to some
codeword c0 encoding message m0 and has Hamming distance s− 1 to some other codeword c1 encoding
message m1. For both the scheme in [CDD+15] and our scheme this means the adversary can later open
to m0 with probability 1/2 and to m1 with probability 2−s+1. Both of these probabilities are considered
too high as we want statistical security 2−s. So, even if we could decode c′ to for instance m0, this might

1 An earlier version of this paper included an error in the number of random linear combinations required for the
commitment phase challenge, e.g. for the binary field the requirement is increase from s to 2s.
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not be the message that the adversary will open to later. It is, however, the case that the adversary cannot
later open to both m0 and m1, except with probability 2−s as this would require guessing s of the random
choice bits. The UC simulator, however, needs to extract which of m0 and m1 will be opened to already at
commitment time. We introduce a new consistency check where we after the commitment phase ask the
adversary to open 2s random linear combinations of the committed purported codewords. These linear
combinations will with overwhelming probability in a well defined manner “contain” information about
every dirty codeword c′ and will force the adversary to guess some of the choice bits to successfully open
them to some close codeword c. The trick is then that the simulator can extract which of the choice bits
the adversary had to guess and that if we puncture the code and the committed strings at the positions
at which the adversary guessed the choice bits, then the remaining strings can be proven to be codewords
in the punctured code. Since the adversary guesses at most s − 1 choice bits, except with negligible
probability 2−s we only need to puncture s− 1 positions, so the punctured code still has distance 1. We
can therefore erasure decode and thus extract the committed message. If the adversary later open to
another message he will have to guess additional choice bits, bringing him up to having guessed at least s
choice bits. With the minimal distance lowered the required code length is also reduced and therefore
also the amount of required initial OTs. As an example, for committing to messages of size k = 256 with
statistical security s = 40 this amounts to roughly 33% less initial OTs than required by [CDD+15].

– We furthermore propose a number of optimizations that reduce the communication complexity by a factor
of 2 for each commitment compared to [CDD+15] (without taking into account the smaller code length
required). We give a detailed comparison to the schemes of [Lin11, BCPV13, CJS14] and [CDD+15] in
Section 4 and show that for the above setting with k = 256 and s = 40 our new construction outperforms
all existing schemes in terms of communication if committing to 319 messages or more while retaining the
computational efficiency of [CDD+15]. This comparison includes the cost of the initial OTs. If committing
to 10,000 messages or more we see the total communication is around 1/3 of [BCPV13], around 1/2 of the
basic scheme of [CDD+15] and around 1/21 of the homomorphic version.

– Finally we give an extension of any additively homomorphic commitment scheme that achieves an
amortized rate close to 1 in the opening phase. Put together with our proposed scheme and breaking a
long message into many smaller blocks we achieve rate close to 1 in both the commitment and open phase
of our protocol. This extension is interactive and is very similar in nature to the introduced consistency
check for decreasing the required minimum distance. Although based on folklore techniques this extension
allows for very efficiently homomorphic commitment to long messages without requiring correspondingly
many OTs.

2 The Protocol

We use κ and s to denote the computational and statistical security parameter respectively. This means that
for any fixed s and any polynomial time bounded adversary, the advantage of the adversary is 2−s+negl(κ) for
a negligible function negl. i.e., the advantage of any adversary goes to 2−s faster than any inverse polynomial
in the computational security parameter. If s = Ω(κ) then the advantage is negligible. We will be working
over an arbitrary finite field F.

We will use as shorthand [n] = {1, 2, . . . , n}, and e ∈R S to mean: sample an element e uniformly at
random from the set S. When r and m are vectors we write r‖m to mean the vector that is the concatenation
of r and m. We write y ← P (x) to mean: perform the (potentially randomized) procedure P on input x and
store the output in variable y. We will use x := y to denote an assignment of x to y. We will interchangeably
use subscript and bracket notation to denote an index of a vector, i.e. xi and x[i] denotes the i’th entry
of a vector x which we will always write in bold. Furthermore we will use πi,j to denote a projection of a
vector that extracts the entries from index i to index j, i.e. πi,j (x) = (xi, xi+1, . . . , xj). We will also use
πl (x) = π1,l (x) as shorthand to denote the first l entries of x.

In Fig. 2 we present the ideal functionality FHCOM that we UC-realize in this work. The functionality
differs from other commitment functionalities in the literature by only allowing the sender Ps to decide the
number of values he wants to commit to. The functionality then commits him to random values towards a
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receiver Pr and reveals the values to Ps. The reason for having the functionality commit to several values at
a time is to reflect the batched nature of our protocol. That the values committed to are random is a design
choice to offer flexibility for possible applications. In Appendix A we show an efficient black-box extension of
FHCOM to chosen-message commitments.

FHCOM interacts with a sender Ps, a receiver Pr and an adversary S, working over a finite field F.

Init: Upon receiving a message (init, sid, k) from both parties Ps and Pr, store the message length k.
Commit: Upon receiving a message (commit, sid, γ) from Ps, forward this message to S and wait for a reply. If
S sends back (no-corrupt, sid) proceed as follows:
Sample γ uniformly random values rj ∈ Fk and associate to each of these a unique unused identi-
fier j and store the tuple (random, sid, j, rj). We let J denote the set of these identifiers. Finally send(
committed, sid,J , {rj}j∈J

)
to Ps and (receipt, sid,J ) to Pr and S.

If Ps is corrupted and S instead sends back
(
corrupt-commit, sid, {r̃j}j∈J

)
, proceed as above, but instead

of sampling the values at random, use the values provided by S.
Open: Upon receiving a message

(
open, sid, {(c, αc)}c∈C

)
from Ps, if for all c ∈ C, a tuple (random, sid, c, rc)

was previously recorded and αc ∈ F, send
(
opened, sid, {(c, αc)}c∈C ,

∑
c∈C αc · rc

)
to Pr and S. Otherwise,

ignore.

Fig. 2. Ideal Functionality FHCOM.

2.1 Protocol ΠHCOM

Our protocol ΠHCOM is cast in the FROT-hybrid model, meaning the parties are assumed access to the ideal
functionality FROT in Fig. 1. The protocol UC-realizes the functionality FHCOM and is presented in full in
Fig. 4 and Fig. 5. At the start of the protocol a once-and-for-all Init step is performed where Ps and Pr only
need to know the size of the committed values k and the security parameters. We furthermore assume that
the parties agree on a [n, k, d] linear code C in systematic form over the finite field F and require that the
minimum distance d ≥ s for statistical security parameter s. The parties then invoke n copies of the ideal
functionality FROT with the computational security parameter κ as input, such that Ps learns n pairs of κ-bit
strings l0i , l1i for i ∈ [n], while Pr only learns one string of each pair. In addition to the above the parties also
introduce a commitment counter T which simply stores the number of values committed to. Our protocol is
phrased such that multiple commitment phases are possible after the initial ROTs have been performed, and
the counter is simply incremented accordingly.

Next a Commit phase is described where at the end, Ps is committed to γ pseudorandom values. The
protocol instructs the parties to expand the previously learned κ-bit strings, using a pseudorandom generator
PRG, into row-vectors s̄bi ∈ FT +γ+2s for b ∈ {0, 1} and i ∈ [n]. The reason for the extra 2s commitments will
be apparent later. We denote by J = {T + 1, . . . , T + γ + 2s} the set of indices of the γ + 2s commitments
being setup in this invocation of Commit. After the expansion Ps knows all of the above 2n row-vectors,
while Pr only knows half. The parties then view these row-vectors as matrices S0 and S1 where row i of Sb

consists of the vector s̄bi . We let sbj ∈ Fn denote the j’th column vector of the matrix Sb for j ∈ J . These
column vectors now determine the committed pseudorandom values, which we define as rj = r0

j + r1
j where

rbj = πk(sbj) for j ∈ J . The above steps are also pictorially described in Fig. 3.
The goal of the commit phase is for Pr to hold one out of two shares of each entry of a codeword of

C that encodes the vector rj for all j ∈ J . At this point of the protocol, what Pr holds is however not of
the above form. Though, because the code is in systematic form we have by definition that Pr holds such
a sharing for the first k entries of each of these codewords. To ensure the same for the rest of the entries,
for all j ∈ J , Ps computes tj ← C(rj) and lets c0

j = πk+1,n(s0
j). It then computes the correction value

c̄j = πk+1,n(tj)− c0
j −πk+1,n(s1

j ) and sends this to Pr. Fig. 3 also gives a quick overview of how these vectors
are related.
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Generation of commitments
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Fig. 3. On the left hand side we see how the initial part of the Commit phase of ΠHCOM is performed by Ps when
committing to γ messages. On the right hand side we look at a single column of the two matrices S0,S1 and how
they define the codeword tj for column j ∈ J , where J = {T + 1, . . . , T + γ + 2s}.

When receiving the correction value c̄j , we notice that for the columns s0
j and s1

j , Pr knows only the
entries wij = sbi

j [i] where bi is the choice-bit it received from FROT in the i’th invocation. For all l ∈ [n− k], if
bk+l = 1 it is instructed to update its entry as follows:

wk+l
j := c̄j [l] + wk+l

j = tj [k + l]− c0
j [l]− s1

j [k + l] + wk+l
j = tj [k + l]− c0

j [l] .

Due to the above corrections, it is now the case that for all l ∈ [n− k] if bk+l = 0, then wk+l
j = c0

j [l] and if
bk+l = 1, wk+l

j = tj [k+ l]− c0
j [l]. This means that at this point, for all j ∈ J and all i ∈ [n], Pr holds exactly

one out of two shares for each entry of the codeword tj that encodes the vector rj .
The Open procedure describes how Ps can open to linear combinations of previously committed values.

We let C be the indices to be opened and αc for c ∈ C be the corresponding coefficients. The sender then
computes r0 =

∑
c∈C αc ·r0

c , r1 =
∑
c∈C αc ·r1

c , and c0 =
∑
c∈C αc ·c0

c and sends these to Pr. When receiving
the three values, the receiver computes the codeword t ← C(r0 + r1) and from c0 and t it computes c1. It
also computes w =

∑
c∈C αc ·wc and verifies that r0, r1, c0, and c1 are consistent with these. If everything

matches it accepts r0 + r1 as the value opened to.
If the sender Ps behaves honestly in Commit of ΠHCOM, then the scheme is UC-secure as it is presented

until now. In fact it is also additively homomorphic due to the linearity of the code C and the linearity of
additive secret sharing. However, this only holds because Pr holds shares of valid codewords. If we consider
a malicious corruption of Ps, then the shares held by Pr might not be of valid codewords, and then it is
undefined at commitment time what the value committed to is. To see this consider a corrupt Ps that sends
shares so that Pr holds shares of something that has e.g. distance d− 1 to one codeword and distance 1 to
another. Then it can open to any one of these values at a later time (although not both) with probability
1− 2−d+1 or 1− 2−1, neither of which are negligible when d ≥ s. To achieve UC-security for a commitment
scheme, the committed values need to be well-defined and extractable for a polynomial time simulator S at
commitment time. It is therefore crucial for guaranteeing extractability that the shares Pr holds are in fact
shares of a codeword, or ensure that he can only open successfully to a single well-defined codeword. In the
following section we explain how our protocol ensures this.

2.2 Optimizations over [CDD+15]

The work of [CDD+15] describes two commitment schemes, a basic and a homomorphic version. For both
schemes therein the above issue of sending correct shares is handled by requiring the underlying code C with
parameters [n, k, d] to have minimum distance d ≥ 2s+ 1, as then the committed values are always defined to
be the closest valid codewords of the receivers shares. This is however not enough to guarantee binding when
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ΠHCOM describes a protocol between a sender Ps and a receiver Pr. We let PRG : {0, 1}κ → Fpoly(κ) be a
pseudorandom generator with arbitrary polynomial stretch taking a κ-bit seed as input and outputting elements
of a predetermined finite field F.

Init:
1. On common input (init, sid, k) we assume the parties agree on a linear code C in systematic form over F

with parameters [n, k, d]. The parties also initialize an internal commitment counter T = 0.
2. For i ∈ [n], both parties send (transfer, sid, i, κ) to FROT. It replies with

(
deliver, sid, i,

(
l0i , l

1
i

))
to Ps

and
(
deliver, sid, i,

(
lbi
i , bi

))
to Pr.

Commit:
1. On common input (commit, sid, γ), for i ∈ [n], both parties use PRG to extend their received seeds into

vectors of length T + γ + 2s. These are denoted s̄0
i , s̄

1
i ∈ FT+γ+2s where Ps knows both and Pr knows s̄bi

i .
Next define the matrices S0,S1 ∈ Fn×(T+γ+2s) such that for i ∈ [n] the i’th row of Sb is s̄bi for b ∈ {0, 1}.

2. Let J = {T + 1, . . . , T + γ + 2s}. For j ∈ J let the column vector of these matrices be s0
j , respectively s1

j .
For b ∈ {0, 1}, Ps lets rbj = πk

(
sbj
)
and lets rj = r0

j+r1
j . Also Pr lets wj =

(
w1
j , . . . , w

n
j

)
and (b1, . . . , bn)← b

where wij = sbi
j [i] for i ∈ [n].

3. For j ∈ J , Ps computes tj ← C
(
rj
)
and lets c0

j = πk+1,n
(
s0
j

)
. It then computes the correction value

c̄j = πk+1,n
(
tj
)
− c0

j − πk+1,n
(
s1
j

)
.

4. Finally Ps sends the set
{

c̄j
}
j∈J

to Pr. For l ∈ [n− k] if bk+l = 1, Pr updates wk+l
j := c̄j [l] + wk+l

j .
Consistency Check
5. For g ∈ [2s] Pr samples xg1, . . . , xgγ ∈R F and sends these to Ps.
6. Ps then computes

r̃0
g = r0

T+γ+g +
γ∑
j=1

xgjr
0
T+j , r̃1

g = r1
T+γ+g +

γ∑
j=1

xgjr
1
T+j , c̃0

g = c0
T+γ+g +

γ∑
j=1

xgjc
0
T+j

and sends the 2s tuples
(
r̃0
g, r̃

1
g, c̃

0
g

)
to Pr.

7. For g ∈ [2s] Pr computes w̃g = wT+γ+g +
∑γ

j=1 x
g
jwT+j and t̃g ← C

(
r̃0
g + r̃1

g

)
. It lets c̃g ← πk+1,n

(
t̃g
)
and

lets c̃1
g = c̃g − c̃0

g. Finally for u ∈ [k] and v ∈ [n− k], Pr verifies that

r̃bu
g [u] = w̃g[u] , c̃

bk+v
g [v] = w̃g[k + v] .

If any of the 2s checks fail Pr outputs abort and halts.
Output
8. Both parties increment their local counter T := T + γ. Ps now holds opening information{(

r0
j , r

1
j , c

0
j

)}
j∈[T ]

and Pr holds the verifying information
{

wj

}
j∈[T ]

. Let J = J \{T + γ + 2s}. Ps outputs(
committed, sid,J , {rj}j∈J

)
and Pr outputs

(
receipt, sid,J

)
.a

a For clarity we assume that Ps and Pr locally discard the 2s extra commitments used for blinding. This includes
the bookkeeping of the index offset this creates when generating multiple batches.

Fig. 4. Protocol ΠHCOM UC-realizing FHCOM in the FROT-hybrid model – part 1.

allowing homomorphic operations. To support this, the authors propose a version of the scheme that involves
the sender Ps running a “MPC-in-the-head” protocol based on a verifiable secret sharing scheme of which the
views of the simulated parties must be sent to Pr.

Up until now the scheme we have described is very similar to the basic scheme of [CDD+15]. The main
difference is the use of FROT as a starting assumption instead of FOT and the way we define and send the
committed value corrections. In [CDD+15] the corrections sent are for both the 0 and the 1 share. This means
they send 2n field elements for each commitment in total. Having the code in systematic form implies that
for all j ∈ J and i ∈ [k] the entries wi

j are already defined for Pr as part of the output of the PRG, thus
saving 2k field elements of communication per commitment. Together with only sending corrections to the
1-share, we only need to send n− k field elements as corrections. Meanwhile this only commits the sender to
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Open:
1. On input

(
open, sid, {(c, αc)}c∈C

)
where each αc ∈ F, if for all c ∈ C, Ps holds

(
r0
c , r

1
c , c

0
c

)
it computes

r0 =
∑
c∈C

αc · r0
c , r1 =

∑
c∈C

αc · r1
c , c0 =

∑
c∈C

αc · c0
c

and sends
(
opening, {c, αc}c∈C ,

(
r0, r1, c0)) to Pr. Else it ignores the input message.

2. Upon receiving the message
(
opening, {c, αc}c∈C ,

(
r0, r1, c0)) from Ps, if for all c ∈ C, Pr holds wc it lets

r = r0 + r1 and computes
w =

∑
c∈C

αc ·wc, t ← C (r) .

It lets c = πk+1,n (t) and computes c1 = c − c0.
Finally for i ∈ [k] and l ∈ [n− k], Pr verifies that

rbi [i] = w[i] , cbk+l [l] = w[k + l] .

If all checks are valid Pr outputs
(
opened, sid, {(c, αc)}c∈C , r

)
. Else it aborts and halts.

Fig. 5. Protocol ΠHCOM UC-realizing FHCOM in the FROT-hybrid model – part 2.

a pseudorandom value, so to commit to a chosen value another correction of k elements needs to be sent. In
total we therefore save a factor 2 of communication from these optimizations.

However the main advantage of our approach comes from ensuring that the shares held by Pr binds the
sender Ps to his committed value, while only requiring a minimum distance of s. On top of that our approach
is also additively homomorphic. The idea is that Pr will challenge Ps to open 2s random linear combinations
of all the committed values and check that these are valid according to C. Recall that γ + 2s commitments
are produced in total. The reason for this is to guarantee hiding for the commitments, even when Pr learns a
random linear combinations of these. Therefore, each linear combination is “blinded” by a pseudorandom
value only used once and thus it appears pseudorandom to Pr as well. This is the reason committing to 2s
additional values for each invocation of Commit.

The intuition why the above approach works is that if the sender Ps sends inconsistent corrections, it
will get challenged on these positions with high probability. In order to pass the check, Ps must therefore
guess which choice-bit Pr holds for each position for which it sent inconsistent values. The random linear
combinations therefore force Ps to make a decision at commitment time which underlying value to send
consistent openings to, and after that it can only open to that value successfully. In fact, the above approach
also guarantees that the scheme is homomorphic. This is because all the freedom Ps might have had by
sending maliciously constructed corrections is removed already at commitment time for all values, so after
this phase commitments and shares can be added together without issue.

To extract all committed values when receiving the openings to the linear combinations the simulator
identifies which rows of S0 and S1 Ps is sending inconsistent shares for. For these positions it inserts erasures
in all positions of tj (as defined by S0,S1, c̃j and C). As there are at most s− 1 positions where Ps could
have cheated and the distance of the linear code is d ≥ s the simulator can erasure decode all columns to a
unique value, and this is the only value Ps can successfully open to.2

2.3 Protocol Extension

The protocol ΠHCOM implements a commitment scheme where the sender commits to pseudorandom values.
In many applications however it is needed to commit to chosen values instead. It is know that for any
UC-secure commitment scheme one can easily turn a commitment from a random value into a commitment
of a chosen one using the random value as a one-time pad encryption of the chosen value. For completeness,
in Appendix A, we show this extension for any protocol implementing FHCOM.
2 All linear codes can be efficiently erasure decoded if the number of erasures is ≤ d− 1.
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In addition we also highlight that all additively homomorphic commitment schemes support the notion
of batch-opening. For applications where a large amount of messages need to be opened at the same time
this has great implications on efficiency. The technique is roughly that Ps sends the values he wants to open
directly to Pr. To verify correctness the receiver then challenges the sender to open to ŝ = s/log2(|F|) random
linear combinations of the received messages. It is easy to see that if for any commitment the sender sent
a message different from the committed one, then a random linear combination of the commitments will
commit to a message different from the same random linear combination of the claimed message except with
probability 1/|F|. Therefore the sender is caught except with probability (1/|F|)ŝ = 2−s. Using this method the
overhead of opening the commitments is independent of the number of messages opened to and therefore
amortizes away in the same manner as the consistency check and the initial OTs. However this way of opening
messages has the downside of making the opening phase interactive, which is not optimal for all applications.
See Appendix A for details.

The abovementioned batch-opening technique also has applicability when committing to large messages.
Say we want to commit to a message m of length M . The naive approach would be to instantiate our scheme
using a [nM ,M, s] code. However this would require nM ≥M initial OTs and in addition only achieve rate
M/(M+nM ) ≥ 1/2 in the opening phase. Instead of the above, the idea is to break the large message of length
M into blocks of length l for l << M . There will now be N = dM/le of these blocks in total. We then
instantiate our scheme with a [ns, l, s] code and commit to m in blocks of size l. When required to open
we use the above-mentioned batch-opening to open all N blocks of m. It is clear that the above technique
remains additively homomorphic for commitments to the large messages. In [GIKW14] they show an example
for messages of size 230 where they achieve rate 1.046−1 ≈ 0.95 in both the commit and open phase. In
Appendix A we apply our above approach to the same setting and conclude that in the commit phase we
achieve rate ≈ 0.974 and even higher in the opening phase. This is including the cost of the initial OTs.

3 Security

In this section we prove the following theorem.

Theorem 1. The protocol ΠHCOM in Fig. 4 and Fig. 5 UC-realizes the FHCOM functionality of Fig. 2 in the
FROT-hybrid model against any number of static corruptions.

In the proof we will need a technical lemma, which we state and prove first. Let F be a finite field and
let C be a F-linear code with parameters [n, k, d]. Let C�m ⊂ Fn×m consist of the set of matrices for which
each column is from C. We can think of C�m as a linear code of length n with symbols from Fm. For a
matrix M ∈ Fn×m we use ‖M‖0 to denote the number of rows of M which are not all-zero. This is also the
Hamming weight of M when viewed as a n long vector of m-bit symbols. The minimum distance of C�m is
then d′ = min{‖M‖0 |M ∈ C�m}. It is easy to see that d′ ≥ d.

We can view each matrix H ∈ Fm×` as specifying a linear function H : Fn×` → Fn×m by M 7→M ◦H>,
where ◦ denotes matrix product and > denotes transposition of a matrix; We write M ′ = H(M). Notice that
if M ∈ C�` and M ′ = H(M), then M ′ ∈ C�m.

For a matrix M ∈ Fn×m we let DC(M) = {D ∈ Fn×m \ C�m |M +D ∈ C�m} denote the set of possible
errors D that would explain M as a codeword plus the error D. For a matrix D ∈ Fn×m we let δ(D) ⊆ [n] be
the set which contains i iff row i in D is not all-zero. We let ∆C(M) = {δ(D) | D ∈ DC(M)}. This is the
set of possible error positions E that would explain M as a codeword plus errors in the rows i ∈ E. We let
dC(M) = min{|E| | E ∈ ∆C(M)} with δC(M) = 0 if M ∈ C�m. This is the Hamming distance of M to the
code C�m.

Lemma 1. There exist a property P : F2d×`×Fn×` → {⊥,>} such that for all H ∈ F2d×` and all M ∈ Fn×`
one of the following conditions are true:

1. P (H,M) = >,
2. ∆C(H(M)) ⊆ ∆C(M),
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3. δC(H(M)) ≥ d.

Furthermore, for a fixed M ∈ Fn×` and a uniformly random H ∈ F2d×` it holds that P (H,M) = > with
probability at most 2−d.

In words the lemma says that if you fix a matrixM ∈ Fn×` and pick a uniformly random matrix H ∈ F2d×`

and compute M ′ = H(M) ∈ Fn×2d, then except with probability 2−d the result M ′ will have maximal
distance d to C�2d or any subset of rows E ⊆ [n] which allows to see all the columns of M ′ as codewords plus
errors only in rows i ∈ E will have the property that we can also see all the columns of M as codewords plus
errors only in rows i ∈ E. If we have ` > 2d this therefore gives us a way to boil down all the errors in M
into the much shorter M ′.

Proof of Lemma 1. First note that each H ∈ F2d×` can be seen as a function H : F` → F2d by x 7→ Hx. It is
well known and easy to check that if we sample a uniformly random H ∈ F2d×`, then we have a 2-universal
hash function family, which means that it in particular is a 0-almost 2-universal hash function family. Then
use Theorem 1 from [CDD+16] with t = 0.

Proof of Theorem 1. We prove security for the case with a dummy adversary, so that the simulator is
outputting simulated values directly to the environment and is receiving inputs directly from the environment.
We focus on the case with one call to Commit. The proof trivially lifts to the case with multiple invocations.
The case with two static corruptions is trivial. The case with no corruptions follows from the case with a
corrupted receiver, as in the ideal functionality FHCOM the adversary is given all values which are given to
the receiver, so one can just simulate the corrupted receiver and then output only the public transcript of the
communication to the environment. We now first prove the case with a corrupted receiver and then the case
with a corrupted sender.

Assume that Pr is corrupted. We use P̆r to denote the corrupted receiver. This is just a mnemonic
pseudonym for the environment Z. The main idea behind the simulation is to simply run honestly until
the opening phase. In the opening phase we then equivocate the commitment to the value received from
the ideal functionality FHCOM by adjusting the bits s̄1−bi

j not being watched by the receiver. This will be
indistinguishable from the real world as the vectors s̄1−bi

i are indistinguishable from uniform in the view of
P̆r and if all the vectors s̄1−bi

i were uniform, then adjusting the bits not watched by P̆r would be perfectly
indistinguishable.

We first describe how to simulate the protocol without the step Consistency Check. We then discuss how
to extend the simulation to this case.

The simulator S will run Init honestly, simulating FROT to P̆r. It then runs Commit honestly. On input(
opened, sid, {(c, αc)}c∈C , r

)
it must simulate an opening.

In the simulation we use the fact that in the real protocol Pr can recompute all the values received from
Ps given just the value r and the values wc, which it already knows, and assuming that the checks

rbi [i] = w[i] , cbk+l [l] = w[k + l]

at the end of Fig. 5 are true. This goes as follows: First compute

w =
∑
c∈C

αc ·wc, t = C (r) , c = πk+1,n(t) , (1)

as in the protocol. Then for i ∈ [k] and l ∈ [n− k] define

rbi [i] = w[i] , cbk+l [l] = w[k + l] . (2)

r1−bi [i] = r[i]− rbi [i] , c1−bk+l [l] = c[l]− cbk+l [l] . (3)

In (2) we use that the checks are true. In (3) we use that r = r0 + r1 and c1 = c− c0 by construction of Pr.
This clearly correctly recomputes (r0, r1, c0).
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On input
(
opened, sid, {(c, αc)}c∈C , r

)
from FHCOM, the simulator will compute (r0, r1, c0) from r and

the values wc known by P̆r as above and send
(
opening, {c, αc}c∈C ,

(
r0, r1, c0)) to P̆r.

We now argue that the simulation is computationally indistinguishable from the real protocol. We go via
two hybrids.

We define Hybrid I as follows. Instead of computing the rows s̄1−bi
i from the seeds l1−bi

i the simulator
samples s̄1−bi

i uniformly at random of the same length. Since P̆r never sees the seeds l1−bi
i and Ps only uses

them as input to PRG, we can show that the view of P̆r in the simulation and Hybrid I are computationally
indistinguishable by a black box reduction to the security of PRG.

We define Hybrid II as follows. We start from the real protocol, but instead of computing the rows s̄1−bi
i

from the seeds l1−bi
i we again sample s̄1−bi

i uniformly at random of the same length. As above, we can show
that the view of P̆r in the protocol and Hybrid II are computationally indistinguishable.

The proof then concludes by transitivity of computational indistinguishability and by observing that
the views of P̆r in Hybrid I and Hybrid II are perfectly indistinguishable. The main observation needed for
seeing this is that in Hybrid I all the bits rj [i] are chosen uniformly at random and independently by FHCOM,
whereas in Hybrid II they are defined by rj [i] = r0

j [i] + r1
j [i] = rbi

j [i] + r1−bi
j [i], where all the bits r1−bi

j [i] are
chosen uniformly at random and independently by S. This yields the same distributions of the values rj . All
other value clearly have the same distribution.

We now address the step Consistency Check. The simulation of this step follows the same pattern as
above. For g ∈ [2s] define r̃g = r̃0

g + r̃1
g. This is the value from which t̃g is computed in Step 7 in Fig. 4. In

the simulation and Hybrid I, instead pick r̃g uniformly at random and then recompute the values sent to P̆r
as above. In Hybrid II compute r̃g as in the protocol (but still starting from the uniformly random s̄1−bi

i ).
Then simply observe that r̃g has the same distribution in Hybrid I and Hybrid II. In Hybrid I it is uniformly
random. In Hybrid II it is computed as

r̃0
g + r̃1

g = (r0
T +γ+g + r1

T +γ+g) +
γ∑
j=1

xgjrT +j ,

and it is easy to see that r0
T +γ+g + r1

T +γ+g is uniformly random and independent of all other values in the
view of P̆r.

We now consider the case where the sender is corrupted who we denote P̆s. The simulator will run
the code of Ps honestly, simulating also FROT honestly. It will record the values (bi, l0i , l1i ) from Init.
The remaining job of the simulator is then to extract the values r̃j to send to FHCOM in the command(

corrupt-commit, sid, {r̃j}j∈J
)
. This should be done such that the probability that the receiver later

outputs (opened, sid, {(c, αc)}c∈C , r) for r 6=
∑
c∈C αcr̃c is at most 2−s. We first describe how to extract

the values r̃j and then show that the commitments are binding to these values.
We use the Consistency Check performed in the second half of Fig. 4 to define a set E ⊆ {1, . . . , n}. We

call this the erasure set. This name will make sense later, but for now think of E as the set of indices for
which the corrupted sender P̆s after the consistency checks knows the choice bits bi for i ∈ E and for which
the bits bi for i 6∈ E are still uniform in the view of P̆s.

We first describe how to compute the erasure set for a single of the 2s consistency checks and then discuss
how to compute the joint set. We therefore omit the consistency check index g in the following and use the
first of the 2s extra commitments as the blinding value.

Define the column vectors s0
j and s1

j as in the protocol. This is possible as the seeds from FROT are well
defined. Following the protocol, and adding a few more definitions, define

r0
j = πk(s0

j ) , r1
j = πk(s1

j ) , rj = r0
j + r1

j ,

u0
j = πk+1,n(s0

j ) , u1
j = πk+1,n(s1

j ) ,uj = u0
j + u1

j , tj = C(rj) , cj = πk+1,n(tj) ,
c0
j = u0

j , c1
j = cj − c0

j ,d
0
j = u0

j , d1
j = u1

j + c̄j , dj = d0
j + d1

j = uj + c̄j , w0
j = r0

j‖d0
j , w1

j = r1
j‖d1

j .
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Notice that if Ps is honest, then
c̄j = cj − uj

and therefore
dj = d0

j + d1
j = u0

j + u1
j + c̄j = cj .

Hence d0
j and d1

j are the two shares of the non-systematic part cj the same way that r0
j and r1

j are the two
shares of the systematic part rj . If the sender was honest we would in particular have that

w0
j + w1

j = rj‖dj = rj‖cj = C(rj) ,

i.e., w0
j and w1

j would be the two shares of the whole codeword.
We can define the values that an honest Ps should send as

r̃0 = r0
T+γ+1 +

∑
j

xjr
0
j , r̃1 = r1

T+γ+1 +
∑
j

xjr
1
j , c̃0 = c0

T +γ+1 +
∑
j

xjc
0
j .

These values can be used to define values

r̃ = r̃0 + r̃1 , t̃ = C(r̃) , c̃ = πk+1,n(t̃) , c̃1 = c̃− c̃0 , w̃0 = r̃0‖c̃0 , w̃1 = r̃1‖c̃1 .

We use (r̆0, r̆1, c̆0) to denote the values actually sent by P̆s and we let the following denote the values
computed by Pr (plus some extra definitions).

r̆ = r̆0 + r̆1 , t̆ = C(r̆) , c̆ = πk+1,n(t̆) ,
c̆1 = c̆− c̆0 , w̆0 = r̆0‖c̆0 , w̆1 = r̆1‖c̆1 , w̆ = w̆0 + w̆1 .

The simulator computes
w̃ = wT +γ+1 +

∑
j

xjwT+j (4)

as Pr in the protocol. For later use, define w̃0 = w0
T +γ+1 +

∑
j xjw

0
T +j and w̃1 = w1

T+γ+1 +
∑
j xjw

1
T+j .

The check performed by Pr is then simply to check for u = 1, . . . , n that

w̆bu [u] = w̃[u] . (5)

Notice that in the protocol we have that

wj = b ∗ (w1
j −w0

j ) + w0
j ,

where ∗ denotes the Schur product also known as the positionwise product of vectors. To see this notice that
(b ∗ (w1

j −w0
j ) + w0

j )[i] = bi(w1
j [i]−w0

j [i]) + w0
j [i] = wbi

j [i]. In other words,

wj [i] = wbi
j [i] .

It then follows from (4) that
w̃ = b ∗ (w̃1 − w̃0) + w̃0 ,

from which it follows that
w̃[u] = w̃bu [u] .

From (5) it then follows that P̆s passes the consistency check if and only if for u = 1, . . . , n it holds that

w̆bu [u] = w̃bu [u] . (6)
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We make some definitions related to the check in (6). We say that a position u ∈ [n] is silly if w̆0[u] 6= w̃0[u]
and w̆1[u] 6= w̃1[u]. We say that a position u ∈ [n] is clean if w̆0[u] = w̃0[u] and w̆1[u] = w̃1[u]. We say that
a position u ∈ [n] is probing if it is not silly or clean. Let E denote the set of probing positions u. Notice that
if there is a silly position u, then w̆bu [u] 6= w̃bu [u] so P̆s gets caught. We can therefore assume without loss of
generality that there are no silly positions. For the probing positions u ∈ E, there is by definition a bit cu
such that w̆1−cu [u] 6= w̃1−cu [u] and such that w̆cu [u] = w̃cu [u]. This means that P̆s passes the test only if
cu = bu for all u ∈ E. Since P̆s knows cu it follows that if P̆s does not get caught, then it can guess bu for
u ∈ E with probability 1.

We compute a set E like above for each of the 2s checks and let E be the union of these. Clearly P̆s
passes the 2s tests only if it can guess bu for u ∈ E with probability 1.

Before we proceed to describe the extractor, we are now going to show two facts about E. First we will
show that |E| < s, except with probability 2−s. This follows from the simple observation that each bu for
u ∈ E is uniformly random and P̆s passes the consistency test if and only if cu = bu for u ∈ E and the only
information that P̆s has on the bits bu is via the probing positions. Hence P̆s passes the consistency test with
probability at most 2−|E|. We can therefore assume for the rest of the proof that |E| < s.

Second, let C−E be the code obtained from C by puncturing at the positions u ∈ E, i.e., a codeword of
C−E can be computed as t = C(r) and then outputting t−E , i.e., the vector t where we remove the positions
u ∈ E. We show that for all j = T + 1, . . . , T + γ it holds that

(w0
j + w1

j )−E ∈ C−E(Fk) ,

except with probability 2−s. This is equivalent to proving that

E ∈ ∆C((w0
j + w1

j )
T +γ
j=T+1) .

Since the vectors (w0
j + w1

j )
T+γ
j=T +1 are fixed at the point where the receiver samples the linear combinations

we can use Lemma 1 to conclude that except with probability 2−s either |E| ≥ s or

∆C((w̃0
g + w̃1

g)2s
g=1) ⊆ ∆C((w0

j + w1
j )
T +γ
j=T+1) , (7)

where w̃0
g and w̃1

g are the values of w̃0 and w̃1 in test number g. Since we have assumed that |E| < s, we
can assume that (7) holds except with probability 2−s (as d ≥ s). It is therefore sufficient to prove that

E ∈ ∆C((w̃0
g + w̃1

g)2s
g=1) .

To see that E ∈ ∆C((w̃0
g + w̃1

g)2s
g=1), observe that by construction we have that (w̆0 + w̆1)−E ∈ C−E(Fk), so if

a (w̃0
g + w̃1

g)−E 6∈ C−E(Fk) we either have that (w̃0
g)−E 6= (w̆0)−E or (w̃1

g)−E 6= (w̆1)−E . Since there are no
silly positions, this implies that we have a new probing position u 6∈ E, a contradiction to the definition of E.

We can now assume without loss of generality that |E| < s and that (w0
j + w1

j)−E ∈ C−E(Fk). From
|E| < s and C having minimal distance d ≥ s we have that C−E has minimal distance ≥ 1. Hence we can
from each j and each (w0

j + w1
j )−E ∈ C−E(Fk) compute r̃j ∈ Fk such that

(w0
j + w1

j )−E = C−E(r̃j) .

These are the values that S will send to FHCOM.
We then proceed to show that for all {(c, αc)}c∈C the environment can open to (opened, sid, {(c, αc)}c∈C ,

r̃) for r̃ =
∑
c∈C αcr̃c with probability 1. The reason for this is that if P̆s computes the values in the opening

correctly, then clearly (w̆0)−E = (w̃0)−E and (w̆1)−E = (w̃1)−E . Furthermore, for the positions u ∈ E it
can open to any value as it knows bu. It therefore follows that if P̆s can open to (opened, sid, {(c, αc)}c∈C , r)
for r 6=

∑
c∈C αcr̃c, then it can open {(c, αc)}c∈C to two different values. Since the code has distance d ≥ s,

it is easy to see that after opening some {(c, αc)}c∈C to two different values, the environment can compute
with probability 1 at least s of the choice bits bu, which it can do with probability at most 2−s, which is
negligible.
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4 Comparison with Recent Schemes

In this section we compare the efficiency of our scheme to the most efficient schemes in the literature realizing
UC-secure commitments with security against a static and malicious adversary. In particular, we compare our
construction to the schemes of [Lin11], [BCPV13], [CJS14] and [CDD+15]. We omit the scheme of [CDD+16]
in the following as in terms of communication it is equivalent to ours and our concrete comparison does not
reflect the asymptotic differences in computation time.

The scheme of [BCPV13] (Fig. 6) is a slightly optimized version of [Lin11] (Protocol 2) which implement
a multi-commitment ideal functionality. Along with [CJS14] these schemes support commitments between
multiple parties natively, a property not shared with the rest of the protocols in this comparison. We therefore
only consider the two party case where a sender commits to a receiver. The schemes of [Lin11, BCPV13] are
in the CRS-model and their security relies on the DDH assumption. As the messages to be committed to are
encoded as group elements the message size and the level of security are coupled in these schemes. For large
messages this is not a big issue as the group size would just increase as well, or one can break the message
into smaller blocks and commit to each block. However, for shorter messages, it is not possible to decrease
the group size, as this would weaken security. The authors propose instantiating their scheme over an elliptic
curve group over a field size of 256-bits so later in our comparison we also consider committing to values of
this length. This is optimal for these schemes as the overhead of working with group elements of 256-bits
would become more apparent if committing to smaller values.

The scheme of [CJS14] in the global random oracle model can be based on any stand-alone secure trapdoor
commitment scheme, but for concreteness we compare the scheme instantiated with the commitment scheme
of [Ped92] as also proposed by the authors. As [Ped92] is also based on the DDH assumption we use the same
setting and parameters for [CJS14] as for the former two schemes.

We present our detailed comparison in Table 1. The table shows the costs of all the previously mentioned
schemes in terms of OTs required, communication, number of rounds and computation. For the schemes
of [CDD+15] we have fixed the sharing parameter t to 2 and 3 for the basic and homomorphic version,
respectively. To the best of our knowledge this is also the optimal choice in all settings. Also for the scheme
of [CJS14] we do not list the queries to the random oracle in the table, but remark that their scheme
requires 6 queries per commitment. For our scheme, instead of counting the cost of sending the challenges
(xg1, x

g
2, . . . , x

g
γ) ∈ F for g ∈ [2s], we assume the receiver sends a random seed of size κ instead. This is then

used as input to a PRG whose output is used to determine the challenges.

Scheme Homo OTs Communication Rounds Computation(2
1

) (3
2

)
Commit Open Commit Open Commit Open

Exp. Enc. Exp. Enc.
[Lin11] 7 0 0 4g 6g + 4l + k 1 5 5 0 181/3 0
[BCPV13] 7 0 0 4g 5g + 3l + k 1 3 10 0 12 0
[CJS14] 7 0 0 4g + 2l + h 3l + 2h+ 3κ+ k 2 3 5 0 5 0
[CDD+15], basic 7 n 0 2nf (k + n+ 1)f 1 1 0 1 0 1
[CDD+15], homo X 0 n 6(k+2n)nf/k (k + 2n+ 1)f 1 1 0 8n/k + 2 0 1
This Work X n 0 (2s·2nf+κ)/γ + nf (k + n+ 1)f 3 1 0 2s·2/γ + 1 0 1

Table 1. Comparison of the most efficient UC-secure schemes for committing to γ messages of k components. Sizes are
in bits. Legend: g is size of a group element, l is size of a scalar in the exponent, h is the output length of the random
oracle, f is the size of a finite field element, Exp. denotes the number of modular exponentiations, Enc. denotes the
number of encoding procedures of the corresponding codes which have length n and n. The schemes of [CDD+15] are
presented with the sharing parameter t set to 2 for the basic and 3 for the homomorphic.

To give a flavor of the actual numbers we compute Table 1 for specific parameters in Table 2. We fix
the field to F2 and look at computational security κ = 128, statistical security s = 40 and instantiate the
random oracle required by [CJS14] with SHA-256. As the schemes of [Lin11, BCPV13, CJS14] rely on the
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hardness of the DDH assumption, a 256-bit EC group is assumed sufficient for 128-bit security [SRG+14].
As already mentioned we look at message length k = 256 as this is well suited for these schemes.3 The
best code we could find for the schemes of [CDD+15] in this setting has parameters [631, 256, 81] and is
a shortened BCH code. For our scheme, the best code we have identified for the above parameters is a
[419, 256, 40] expurgated BCH code [SS06]. Also, we recall the experiments performed in [CDD+15] showing
that exponentiations in a EC-DDH group of the above size require roughly 500 times more computation time
compared to encoding using a BCH code for parameters of the above type.4 In their brief comparison with
[HMQ04], another commitment scheme in the random oracle model, the experiments showed that one of the
above BCH encodings is roughly 1.6 times faster than 4 SHA-256 invocations, which is the number of random
oracle queries required by [HMQ04]. This therefore suggests that one BCH encoding is also faster than the 6
random oracle queries required by [CJS14] if indeed instantiated with SHA-256.

Scheme Homo OTs Communication Rounds Computation(2
1

) (3
2

)
Commit Open Commit Open Commit Open

Exp. Enc. Exp. Enc.
[Lin11] 7 0 0 1,024 2,816 1 5 5 0 181/3 0
[BCPV13] 7 0 0 1,024 2,304 1 3 10 0 12 0
[CJS14] 7 0 0 1,792 1,920 2 3 5 0 5 0
[CDD+15], basic, γ = 319 7 631 0 4,301 888 1 1 22 1 0 1
[CDD+15], homo, γ = 319 X 0 631 35,615 1,519 1 1 88 22 0 1
This Work, γ = 319 X 419 0 2,648 676 3 1 15 1.5 0 1
[CDD+15], basic, γ = 1, 000 7 631 0 2,232 888 1 1 7 1 0 1
[CDD+15], homo, γ = 1, 000 X 0 631 26,649 1,519 1 1 28 22 0 1
This Work, γ = 1, 000 X 419 0 1,130 676 3 1 5 1 0 1
[CDD+15], basic, γ = 10, 000 7 631 0 1,359 888 1 1 0 1 0 1
[CDD+15], homo, γ = 10, 000 X 0 631 22,869 1,519 1 1 3 22 0 1
This Work, γ = 10, 000 X 419 0 491 676 3 1 0 1 0 1
[CDD+15], basic, γ = 100, 000 7 631 0 1,272 888 1 1 0 1 0 1
[CDD+15], homo, γ = 100, 000 X 0 631 22,491 1,519 1 1 0 22 0 1
This Work, γ = 100, 000 X 419 0 427 676 3 1 0 1 0 1

Table 2. Concrete efficiency comparison of the most efficient UC-secure schemes for committing to messages of size
k = 256, κ = 128, h = 256 and s = 40 where the field is F2. In the table γ represents the number of commitments the
parties perform. These numbers include the cost of performing the initial OTs, both in terms of communication and
computation.

To give as meaningful comparisons as possible we also instantiate the initial OTs and include the cost
of these in Table 2. As the homomorphic version of [CDD+15] require 2-out-of-3 OTs in the setup phase,
using techniques described in [LOP11, LP11], we have calculated that these require communicating 26 group
elements and 44 exponentiations per invocation. The standard 1-out-of-2 OTs we instantiate with [PVW08]
which require communicating 6 group elements and computing 11 exponentiations per invocation.

In Table 2 we do not take into consideration OT extension techniques [Bea96, IKNP03, Nie07, NNOB12,
Lar15, ALSZ15, KOS15], as we do so few OTs that even the most efficient of these schemes might not improve
the efficiency in practice. We note however that if in a setting where OT extension is already used, this would
have a very positive impact on our scheme as the OTs in the setup phase would be much less costly. On a
technical note some of the ideas used in this work are very related to the OT extension techniques introduced
in [IKNP03] (and used in all follow-up work that make black-box use of a PRG). However an important
and interesting difference is that in our work we do not “swap” the roles of the sender and receiver for the
3 We here assume a perfect efficient encoding of 256-bit values to group elements of a 256-bit EC group.
4 They run the experiments with a shortened BCH code with parameters [796, 256, 121], which therefore suggests
their observations are also valid for our choice of parameters.
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initial OTs as otherwise the case for current OT extension protocols. This observation means that the related
work of [GIKW14], which makes use of OT extension, would look inherently different from our protocol, if
instantiated with one of the OT extension protocols that follow the [IKNP03] blueprint.

As can be seen in Table 2, our scheme improves as the number of committed values γ grows. In
particular we see that at around 319 commitments, for the above message sizes and security parameters, our
scheme outperforms all previous schemes in total communication, while at the same time offering additive
homomorphism.
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A Protocol Extension

As the scheme presented in Section 2 only implements commitments to random values we here describe an
efficient extension to chosen message commitments. Our extension ΠEHCOM is phrased in the FHCOM-hybrid
model and it is presented in Fig. 6. The techniques presented therein are folklore and are known to work
for any UC-secure commitment scheme, but we include them as a protocol extension for completeness. The
Chosen-Commit step shows how one can turn a commitment of a random value into a commitment of a
chosen value. This is done by simply using the committed random value as a one-time pad on the chosen
value and sending this to Pr. The Extended-Open step describes how to open to linear combinations of
either random commitments, chosen commitments or both. It works by using FHCOM to open to the random
commitments and the commitments used to one-time pad the chosen commitments. Together with the
previously sent one-time pad the receiver can then learn the designated linear combination.

Finally we present a Batch-Open step that achieves very close to optimal amortized communication
complexity for opening to a set of messages. The technique is similar to the consistency check of ΠHCOM.
When required to open to a set of messages, the sender Ps will start by sending the messages directly to the
receiver Pr. Next, the receiver challenges the sender to open to ŝ = s/log2(|F|) random linear combinations
of all the received messages. Notice that unlike the initial commit step where 2s linear combinations are
required, only ŝ ≤ s combinations are required for batch opening. See Section 2.3 for an explanation why ŝ
suffices for Batch-Open. When receiving the opening from FHCOM, Pr verifies that it is consistent with the
previously received messages and if this is the case it accepts these. For the exact same reasons as covered
in the proof of Theorem 1 it follows that this approach of opening values is secure. For clarity and ease of
presentation the description of batch-opening does not take into account opening to linear combinations of
random and chosen commitments. However the procedure can easily be extended to this setting using the
same approach as in Extended-Open.

In terms of efficiency, to open N commitments with message-size l, the sender needs to send lN field
elements along with the verification overhead ŝÔ + κ where Ô is the cost of opening to a commitment using
FHCOM. Therefore if the functionality is instantiated with the scheme ΠHCOM, the total communication for
batch-opening is ŝ(k + n)f + κ+ kNf bits where k is the length of the message, n is the length of the code
used, f is the size of a field element.

We now elaborate on the applicability of batch-opening for committing to large messages as mentioned in
Section 2.3. Recall that there we split the large message m of size M into N blocks of size l and the idea is to
instantiate ΠHCOM with a [ns, l, s] code and commit to m in blocks of size l. This requires ns initial OTs to
setup and requires sending ŝ · 2nsf + κ+ nsNf bits to commit to all blocks. For a fixed ŝ this has rate close
to 1 for large enough l. In the opening phase we can then use the above batch-opening technique to open
to all the blocks of the original message, and thus achieve a rate of Mf/(ŝ(l+ns)f+κ+lNf) ≈ 1 in the opening
phase as well.

In [GIKW14] the authors present an example of committing to strings of length 230 with statistical
security s = 30 achieving rate 1.046−1 ≈ 0.95 in both the commit and open phase. To achieve these
numbers the field size is required to be very large as well. The authors propose techniques to reduce the
field size, however at the cost of reducing the rate. We will instantiate the approach described above using a
binary BCH code over the field F2 and recall that these have parameters [n− 1, n− dd−1/2e log(n+ 1),≥ d].
Using a block length of 213 and s = 30 therefore gives us a code with parameters [8191, 7996, 30]. Thus
we split the message into 134, 285 = d230

/7996e blocks. In the commitment phase we therefore achieve rate
230
/(30·2·8191+128+8191·134,285) ≈ 0.976. Using the batch-opening technique the rate in the opening phase is even

higher than in the commit phase, as this does not require any “blinding” values. In the above calculations we
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ΠEHCOM describes a protocol between a sender Ps and a receiver Pr.

Chosen-Commit:
1. On input (chosen-commit, sid, cid,m), Ps picks an already committed to value rj and computes m̃ = m−rj .

It then sends (chosen, sid, cid, j, m̃) to Pr. Else it ignores the message.
2. Pr stores (chosen, sid, cid, j, m̃) and outputs (chosen-receipt, sid, cid).

Extended-Open:
1. On input

(
extended-open, sid, {(j, αj)}j∈Cr

, {(l, βl)}l∈Cc

)
with βl ∈ F for l ∈ Cc and αj ∈ F, for j ∈ Cr,

Ps verifies that and it has previously committed to a value rj using FHCOM for j ∈ Cr. Else it ignores the
message. For all l ∈ Cc Ps verifies that it previously sent the message

(
chosen, sid, l, j, m̃l

)
to Pr. Let J

be the set of the corresponding indices j, similarly let βj = βl for the corresponding ID l. Ps then sends(
open, sid, {(j, αj)}j∈Cr

∪
{(
j̄, βj̄

)}
j∈J

)
to FHCOM.

2. Upon receiving
(

open, sid, {(j, αj)}j∈Cr
∪
{(
j̄, βj̄

)}
j∈J

, r
)

from FHCOM, Pr iden-

tifies the previously received messages
(
chosen, sid, l, j, m̃l

)
and outputs(

extended-opened, sid, {(j, αj)}j∈Cr
, {(l, βl)}l∈Cc

, r +
∑

l∈Cc
βl · m̃l

)
.

Batch-Open:
1. On input (batch-open, sid, Cr, Cc). For all j ∈ Cr Ps verifies that it has previously committed to a value

rj using FHCOM. Else it ignores the message. For all l ∈ Cc Ps verifies that it previously sent the message(
chosen, sid, l, j, m̃l

)
to Pr. Ps then sends

(
batch-open, sid, {(j, rj)}j∈Cr

, {(l,ml)}l∈Cc

)
to Pr, where rj

and ml are random and chosen messages, respectively, previously committed to.
2. Let tr = |Cr|, tc = |Cc| and ŝ = s/log2(|F|). For g ∈ [ŝ] Pr then samples random values xg1, . . . , x

g
tr
, yg1 , . . . , y

g
tc
∈R

F and sends these to Ps.
3. Then for g ∈ [ŝ] Ps and Pr run Extended-Open with input(

extended-open, sid, {(ju, xgu)}u∈[tr ] , {(lv, y
g
v)}v∈[tc]

)
where ju and lv are the u’th and v’th element of Cr and Cc respectively, under an arbitrary ordering.

4. Pr lets
(
extended-opened, sid, {(ju, xgu)}u∈[tr ] , {(lv, y

g
v)}v∈[tc] ,ng

)
be the output of running Extended-

Open. Finally for g ∈ [ŝ] Pr now verifies that

ng =
∑
u∈[tr ]

xgu · rju +
∑
v∈[tc]

ygv ·mlv .

If true then Pr outputs
(
batch-opened, sid, {(j, rj)}j∈Cr

∪ {(l,ml)}l∈Cc

)
. Else it aborts and halts.

Fig. 6. Protocol ΠEHCOM in the FHCOM-hybrid model.

do not take into account the 8191 initial OTs required to setup our scheme. However using the OT-extension
techniques of [KOS15], each OT for κ-bit strings can be run using only κ initial “seed” OTs and each extended
OT then requires only κ bits of communication. Instantiating the seed OTs with the protocol of [PVW08] for
κ = 128 results in 6 · 256 · 128 + 8191 · 128 = 1, 245, 056 extra bits of communication which lowers the rate to
0.974.

Finally, based on local experiments with BCH codes with the above parameters, we observe that the
running time of an encoding operation using the above larger parameters is roughly 2.5 times slower than an
encoding using a BCH code with parameters [796, 256, 121]. This suggests that the above approach remains
practical for implementations as well.
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