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Abstract—It has been six years since Ristenpart et al. [29]
demonstrated the viability of co-location and provided the first
concrete evidence for sensitive information leakage on a com-
mercial cloud. We show that co-location can be achieved and
detected by monitoring the last level cache in public clouds.
More significantly, we present a full-fledged attack that exploits
subtle leakages to recover RSA decryption keys from a co-
located instance. We target a recently patched Libgcrypt RSA
implementation by mounting Cross-VM Prime and Probe cache
attacks in combination with other tests to detect co-location in
Amazon EC2. In a preparatory step, we reverse engineer the
unpublished nonlinear slice selection function for the 10 core
Intel Xeon processor which significantly accelerates our attack
(this chipset is used in Amazon EC2). After co-location is detected
and verified, we perform the Prime and Probe attack to recover
noisy keys from a carefully monitored Amazon EC2 VM running
the aforementioned vulnerable libgcrypt library. We subsequently
process the noisy data and obtain the complete 2048-bit RSA
key used during encryption. This work reaffirms the privacy
concerns and underlines the need for deploying stronger isolation
techniques in public clouds.
Amazon EC2, Co-location Detection, RSA key recovery, Resource
Sharing, Prime and Probe

I. MOTIVATION

Cloud computing services are more popular than ever with
their ease of access, low cost and real-time scalability. With
increasing adoption of cloud services, concerns over cloud
specific attacks have been rising and so has the number of
research studies exploring potential security risks in the cloud
domain. A main enabler for cloud-specific security analysis is
the seminal work of Ristenpart et al. [29]. The work demon-
strated the possibility of co-location as well as the security
risks that come with co-location. The co-location detection
can be enabled and detected by resource sharing between
tenant Virtual Machines (VMs). Under certain conditions, the
same mechanism can also be exploited to extract sensitive
information from a co-located victim VM, resulting in security
and privacy breaches. Methods to extract information from
victim VMs have been intensely studied in the last few years
however infeasible within public cloud environments, e.g.
see [37], [28], [21], [30]. The potential impact of attacks on
crypto processes can be even more severe, since cryptography
is at the core of any security solution. Consequently, extracting
cryptographic keys across VM boundaries has also received
considerable attention lately. Initial studies explored the prime
and probe technique on L1 cache [38], [16]. Though requiring
the attacker and the victim to run on the same physical CPU
core simultaneously, the small number of cache sets and the

simple addressing scheme made the L1 cache a popular target.
Follow up works have step by step eliminated restrictions
and increased the viability of the attacks. Last level cache
(LLC) attacks now enable true cross-core attacks [34], [8],
[22] where the attacker and the victim share the same CPU,
but not necessarily the same core. Most recent LLC prime
and probe attacks no longer rely on deduplication [11], [19],
making them more widely applicable and harder to prevent.

With the increasing sophistication of attacks, participants
of the cloud industry ranging from Cloud Service Providers,
to hypervisor vendors, up all the way to providers of crypto
libraries have fixed many of the newly exploitable security
holes through patches [1], [4], [3]—many in response to
published attacks. Specifically, RSA, El-Gamal and AES ci-
pher implementations of OpenSSL, Libgcrypt, PolarSSL and
CyaSSL were updated to prevent cache attacks. However, most
of the recent works have focused on improving accuracy and
applicability of attack techniques in controlled lab environ-
ments.

In this work, we explore the current state of security in
public IaaS clouds and possibility of a cryptographic key
recovery attack by mounting a cache attack across two in-
stances (both controlled by the attacker) co-located in Amazon
EC2. While the attack is still possible, our results show
that, through combined efforts of all involved parties, the
bar for performing successful attacks in the cloud is quickly
rising. Specifically, we show that many co-location techniques
that gave high accuracy in 2009 no longer work. Similarly,
increased hardware complexity and better protected crypto-
graphic libraries increase the cost and required sophistication
of attacks to succeed. Nevertheless, many covert channels are
still exploitable and require further patches. We highlight these
remaining issues by what we believe is the first work in the
literature to succeed in a full-blown key recovery attack on
a recent cryptographic implementation in a commercial IaaS
cloud.

Our Contribution

This work presents a full key recovery attack on a modern
implementation of RSA in a commercial cloud and explores all
steps necessary to perform such an attack. In particular, the
work first revisits the co-location problem. Our experiments
show that the co-location techniques presented in [29] have
been addressed by AWS and no longer are a significant indica-
tor for co-location. In addition, we present new techniques that
show that co-location is still detectable in 2015 by using other



shared resources such as LLCs. Once co-located, we exploit
the LLC to recover the secret key of a modern sliding-window
exponentiation based implementation of RSA, across cores
and without relying on deduplication. We expand beyond the
techniques presented in [11] and [19] and show that a detailed
study of the LLC structure of the targeted processor yields a
much more efficient attack. In particular, we reverse engineer
the LLC non-linear slice selection algorithm of Intel Xeon E5-
2670 v2 chipset, which is dominant on Amazon EC2. Finally,
we present several techniques necessary for a cache attack to
succeed in a public cloud. Most notably, we present methods
to filter noise from the observed leakage at two levels: (i) by
using an alignment filter to reduce temporal noise introduced
by co-residing processes and the OS, (ii) by rejecting false
detections using a threshold technique on the aligned traces.
Finally we present an error correction algorithm that exploits
dependencies between the public key and the observed private
key to remove remaining errors and to recover error free RSA
keys.

A combination of the new co-location technique with the
advanced attack methods presented in this work highlights the
practicality and potential risk of cache attacks. The results urge
providers of cryptographic libraries to update their code to
ensure that cache based leakages no longer are exploitable, as
recently done by Libgcrypt in their 1.6.3 release. In summary,
this work describes how to retrieve information from co-
located VMs in public clouds. We divide the description into
4 main sections:
• We first demonstrate that previous presented techniques

to detect co-location do not work anymore and present
novel techniques to detect co-location across cores in a
public cloud

• Second, we obtain knowledge of the undocumented non-
linear slice selection algorithm implemented in Intel Xeon
E5-2670 v2 [2], the most common processor used in
Amazon EC2. This knowledge is beneficial to adapt our
spy process to accelerate the attack

• Third, we describe how to apply Prime and Probe
to obtain RSA leakage information from co-resident VMs

• Last, we present a detailed analysis of the necessary post
processing steps to recover the noise free RSA key.

II. PRIME AND PROBE IN THE LLC

In order to understand the Prime and Probe attack, we
first need to review the cache placement techniques in modern
processors. First of all, physical memory is protected and
not visible to the user, who only sees the virtual addresses
that his data obtains. Therefore a memory translation stage is
needed to map virtual to physical addresses. However, there
are some bits of the virtual address that remain untranslated,
i.e, the least significant plow bits with 2plow size memory
pages. These portion of bits are called the page offset, the
remaining translated bits are called the page frame number and
their combination make the physical address. The location of
a memory block in the cache is determined by its physical
address. Usually the physical address is divided in three

different sections to access n-way caches: the byte field, the
set field and the tag field. The length of the byte and set fields
are determined by the cache line size and the number of sets
in the cache, respectively. Note that the bigger the amount of
sets, the more bits that are needed from the page frame number
to select the set that a memory block occupies in the cache.

The Prime and Probe attack has been widely studied
in upper level caches [38], [5], but was first introduced for
the LLC in [11], [19] thanks to the usage of huge size pages.
Indeed, one of the main reasons why Prime and Probe
was never applied in last level caches is that regular pages
limit the amount of knowledge of the physical address, being
only able to infer the data location in small caches. With huge
size pages, the user has knowledge of the lowest 21 bits of
the physical address, being able to profile and monitor bigger
caches such as the LLC.

Profiling the LLC has many advantages over the upper
level caches. For instance, upper level caches are not shared
across cores, thereby limiting the practicality of the attack
to core co-resident tenants. However, last level caches are
shared across cores and a suitable covert channel for cross-
core attacks. Moreover, the access time difference between
upper level caches is much lower than the difference between
LLC and memory. Therefore, LLC side channel attacks have
more resolution and are less affected by noise.

On the other hand, last level caches are much bigger.
Therefore we can not profile the whole cache, but we have
to focus in a small portion of it. In addition to that, modern
processors divide their LLC into slices with a non-public hash
algorithm, making more difficult to predict where the data will
be located.

The Prime and Probe attack is divided in two main
stages:

Prime stage: In this step, the attacker fills a portion of the LLC
with his own created data and waits for a specified period of
time to detect if someone accesses the cache.

Probe stage: In this step, the attacker probes (reloads) the
primed data. If someone accessed the monitored of the cache,
one (or more) of his lines will not reside in the cache anymore,
and will have to be retrieved from the memory. This is
translated in a bigger probe time than when the attacker
retrieves all his data from the cache, i.e, when no one accessed
the cache during his monitorization activity.

As stated before, profiling a portion of the cache becomes
more difficult when the LLC is divided into slices. However,
as observed by [11] we can create an eviction set without
knowing the algorithm implemented. This involves a step prior
to the attack where the attacker finds the memory blocks
colliding in a specific set/slice. This can be done by creating a
large pool of memory blocks, and access them until we observe
that one of them is fetched from the memory (observing a
higher reload time). Then we simply identify the memory
blocks that created that eviction and group them. We will refer
to the group of memory blocks that fill one set/slice in the LLC
as the eviction set for that set/slice.



III. CO-LOCATING ON AMAZON EC2

The first step prior to implementing any cross-core side
channel attack in a public cloud is to show the ability to co-
locate two different instances in the same hardware. For that
purpose, we first revisit the methods used in [29] and present
new techniques to detect co-location in up-to-date Amazon
EC2. For the experiments, we launched 4 accounts (named A,
B, C and D) on Amazon EC2 and launched 20 m3.medium
instances in each of these accounts, 80 instances in total.
We will refer to these instances as A12, B1, C20, D15 etc.,
numbered according to their public IP addresses.

Using these four accounts, we performed our LLC co-
location detection test and obtained co-located instance pairs.
We even achieved a triple co-location meaning that 3 instances
from 3 different accounts co-located on the same physical
machine. However, as explained in Section III-C, these three
instances were scheduled for retirement shortly after the co-
location tests. In total, out of 80 instances launched from 4
different accounts around same time, we were able to obtain
7 co-located pairs and one triplet. Account A had 5 co-located
instances out of 20 while B and C had 4 and 7 respectively. As
for account D, we had no co-located instances. Overall, our
experiments show that, when we assume the account A is the
target, next 60 instances launched in accounts B, C, D have
8.3% probability of co-location. Note that all co-locations were
between machines from different accounts. The experiments
did not aim at obtaining co-location with a single instance,
for which the probability of obtaining co-location would be
lower.

In the following, we explore different methods to detect
co-location. Using the LLC test as our ground truth for
co-location, we revisited known methods used in [29] and
evaluated the viability of new methods. We also believe that
even though the methods explained below do not work on
Amazon EC2 (other than the LLC test), they can be applied
to other public clouds where stronger leakages still exist.

A. Revisiting Known Detection Methods

In [29], the authors use Hypervisor IP, Instance IP, Ping
Test and Disk Drive Test as tools for co-location detection.
We have tried these methods as well and found that, Amazon
in fact did a good job of fixing these attack vectors and they
are no longer useful.

Hypervisor IP: Using the traceroute tool, we collected
first hop IP addresses from our instances. The idea behind this
collection is that instances located in same physical machine
should have the same first hop address, presumably the hy-
pervisor IP. However, experiments show that there are only
few different first hop IP addresses used for large number of
instances, only four for our 80 instances. Also, with repeated
measurements we noticed that these addresses were actually
dynamic, rather than assigned IPs. Even further, we later
confirmed by LLC test results that co-located instances do
not share the same first hop address, making this detection
method useless.

Instance IP: Like [29], we also checked for any possible
algebraic relation or proximity between our instance IP ad-
dresses. After detecting co-located instances with the LLC
test, we checked both internal and external IP addresses of co-
located instances and concluded that IP address assignment is
random and does not leak any information about co-location
in Amazon EC2 anymore.

Ping Test: In a network, ping delay between two nodes depend
on various factors such as network adapters of nodes, network
traffic and most importantly the number of hops between
the nodes. In [29], authors used this information to detect
co-location on the assumption that co-located instances have
shorter ping delays. By sending pings from each instance to
all other 80, we obtained round trip network delays for all
instances. From each account we sent 20 repeated pings and
obtained maximum, average and minimum ping times. We
discarded the maximum ping values since they are highly
effected from network traffic and do not provide reliable
information. Average and minimum ping values on the other
hand are more directly related to the number of hops between
two instances. While co-location correlates with lower ping
times, it fails to provide conclusive evidence for co-location.
Figure 3 shows the heat map of our ping timings, dark
blue indicating lower and red representing high round trip
times. Also, x and y axes represent ping source and target
instances respectively. Visual inspection of the figure reveals:
(i) Diagonal representing the self-ping (through external IP)
time is clearly distinguishable and low compared to the rest
of the targets; (ii) Network delay of the source instance affects
the round trip time significantly, requiring an in depth analysis
to find relatively close instances; (iii) Last 20 instances that
belong to account D have significantly lower and uniform
overall ping delays than the rest of the accounts.

In order to eliminate the delay stemming from the source
instance, we decided to find the 3 closest neighbors of each
instance rather than applying a constant threshold. After fil-
tering strong outliers, we used multiple datasets with average
and minimum ping times to create a more reliable metric. For
different datasets, consistent closest neighbors to an instance
indicate either co-location or sharing the same subnet. Using
three datasets taken at different times of day, we created
Figures 1 and 2 that show consistent close neighbors according
to average and minimum ping times respectively, for all 80
instances. As seen from figures, network is highly susceptible
to noise which consistency of ping times significantly. Apart
from the instance 37 in Figure 1, no instance has consistent
low ping neighbors nearly enough to suspect a co-location. In
conclusion, even though the ping test reveals some information
about proximity of instance networks, as seen from self ping
times, it is not fine grain enough to be used for co-location
detection.

Disk Drive Benchmark: To replicate [29]’s disk drive test, we
used the dd tool due to its file size and repetition flexibility. dd
is a Unix command line utility used to copy files, backup disks
and perform disk benchmarks. In our performance degradation
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Fig. 1. Consistent Neighbors According to the Average Ping Time
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Fig. 2. Consistent Neighbors According to the Minimum Ping Time

tests, we used dd as a tool to measure disk performance
under simultaneous heavy load from multiple instances and
use the results to detect possible co-locations. Using dd, we
repeatedly wrote various size blocks of zeros to the disk drive
and measured the write speed. Also, in order to maximize the
performance degradation, we tried various file sizes ranging
from 1 KB to 2 GB to find an optimal detection point.
Instances from all four accounts were scheduled to perform
the test at the same time. In order to achieve synchrony,
we updated instance times to time.nist.gov prior to
each test. The aim of this test was to observe any potential
performance degradations in disk write speeds due to two or
more co-located instances.

Our dd test results are presented in Figure 4 where the
horizontal and vertical axis represent the instance number and
the disk write speed in MBps, respectively. Note that, we
did not include any results for files smaller than 1 MB since
dd does not provide stable results for such files. Figure 4
clearly shows that disk performance is almost constant for
all instances, including the co-located ones. This means that
either all 80 instances are using separate disk drives or more
likely that every instance has its disk access bandwidth limited
to a certain value to prevent bottlenecks. In conclusion, the
performance degradation in co-located instances is unstable,
negligibly low at about 2 ∼ 3 percent, and thus inconclusive.

B. New Detection Methods

Since the previously explored detection methods show very
low significance in our experiments, we explored additional
covert channels that can potentially be used to detect instance
co-location.
LLC Test: The LLC is shared across all cores of most
modern Intel CPUs, including the Intel Xeon E5-2670 v2
used (among others) in Amazon EC2. Accesses to LLC are
thus transparent to all VMs co-located on the same machine,

making it the perfect domain for covert communication and
co-location detection.

Our LLC test is designed to detect the number of cache
lines that are needed to fill a specific set in the cache. In order
to control the location that our data will occupy in the cache,
the test allocates and works with huge size pages [19], [11].
In normal operation with moderate noise, the number of lines
to fill one set is equal to LLC associativity, which is 20 in
Intel Xeon E5-2670 v2 used in Amazon EC2. However, with
more than one user trying to fill the same set at the same
time, one will notice that fewer than 20 lines are needed to
fill one set. By running this test concurrently on a co-located
VM pair, both controlled by the same user, it is possible to
verify co-location with high certainty. The test performs the
following steps:

• Prime one memory block b0 in a set in the LLC
• Access additional memory blocks b1, b2, . . . , bn that oc-

cupy the same set, but can reside in a different slice.
• Reload the memory block b0 to check whether it has

been evicted from the LLC. A high reload time indicates
that the memory block b0 resides in the RAM. Therefore
we know that the required m memory blocks that fill a
slice are part of the accessed additional memory blocks
b1, b2, . . . , bn.

• Subtract one of the accessed additional memory blocks
bi and repeat the above protocol. If b0 is still loaded from
the memory, bi does not reside in the same slice. If b0
is now located in the cache, it can be concluded that bi
resides in the same cache slice as b0 and therefore fill the
set.

As a result of this continuous cache line creation, when
multiple tests are executed concurrently on a system (and
therefore priming the same set), the test detects the high
number of accesses to the L3 cache by the line creation stage
of the other test and outputs high amount of cache lines that
evict the given cache set. Keep in mind that other processes
running in the system can create false positives as well, but
it does not affect the test output in a significant way and the
established covert channel can still detect co-location with high
accuracy.

The experiments show that the LLC test is the only decisive
and reliable test that can detect whether two of our instances
are running in the same CPU in Amazon EC2. We performed
the LLC test in two steps as follows:

1) Single Instance Elimination: The first step of the LLC
test is the elimination of single instances i.e. instances
that are not co-located with any instance in the instance
pool. In order to do so, we scheduled the LLC test to run
at all instances at the same time. Any instance detecting
no co-location is retired. For the remaining ones, the
pairs need to be further processed as explained in the
next step. Note that without this preliminary step, one
would have to perform n(n−1)/2 pair detection tests to
find co-located pairs, i.e. 3160 tests for our 80 instances.
This step yielded 22 possibly co-located instances out of



Fig. 3. Ping time heat map for all 80 instances created using minimum ping times for each source instance

Fig. 4. dd performance test results for various data sizes; 2 GB file copied
2 times, 200 MB file copied 5 times, 20 MB file copied 50 times, 1 MB file
copied 1000 times

80.
2) Pair Detection: Next we identify pairs for the possibly

co-located instances. The test is performed as a binary
search tree where each instance is tested against all the
others for co-location.

CPU Benchmark: To create a bottleneck at the CPU level,
we used Hardinfo CPU benchmark suite. The suite provides
a wide range of benchmarks, namely CryptoHash, Fibonacci
number calculation, N-Queens test, FFT calculation and Ray-
tracing. However, our experiments show that the instance
isolation and the resources management in Amazon EC2 pre-
vent this test from creating any performance degradation and
therefore does not provide the required stable, high resolution
results.
AES-NI Benchmark: AES-NI is the high performance AES
hardware module found in most modern Intel processors
including the ones used in Amazon EC2. The Intel Xeon E5-
2670 v2 datasheet [2] does not specify whether each core has
its own module or all cores use a single AES-NI module. We
suspected that by creating bottlenecks in the shared AES-NI
module we could detect co-location. However, our experiments

revealed that the AES-NI modules are not shared between
cores and each CPU core uses its own module, making this
method useless for cross-core detection.

C. Challenges and Tricks of Co-location Detection

During our experiments on Amazon EC2, we have over-
come various problems related to the underlying hardware and
software. Here we discuss what to expect when experimenting
on Amazon EC2 and how to overcome these problems.
Instance Clock Decay: In our experiments at Amazon EC2,
we have noticed that instance clocks degrade slowly over
time. More interestingly, after detecting co-location using the
LLC test, we discovered that co-located instances have the
same clock degradation with 0.05 milliseconds resolution.
We believe that this information can be used for co-location
detection.
Hardware Complexity: Modern Amazon EC2 instances have
much more advanced and complex hardware components like
10 core, 20 thread CPUs and SSDs compared to dual core
CPUs and magnetic HDDs used in [29]. Even further, these
SSDs are managed by the hypervisor specifically to allow
multiple read/write operations to run concurrently without
creating bottlenecks, making performance degradation much
harder to observe.
Hypervisor Hardware Obfuscation: In reaction to [29],
Amazon has fixed information leakages about the underlying
hardware by modifying their Xen Hypervisor. Currently, no
sensor data such as fan speed, CPU and system temperature
or hardware MAC address is revealed to instances. Serial
numbers and all other hardware identifiers are either emulated
or censored, mitigating any co-location detection using this
information.
Co-located VM Noise: Amazon EC2 is a versatile ecosystem
where customers perform wide range of computations and
provide services. Noise created by these co-located instances
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Fig. 5. LLC Noise over time

is hard to filter but not unpredictable. In order to cope with
this noise, two tricks can be used; running experiments at low
noise hours and using low noise instance types.

Compute cloud services including Amazon EC2 maintain a
variety of services and servers. Most user-based services, how-
ever, quiet down when users quiet down, i.e. after midnight.
Especially between 2 a.m. and 4 a.m. Internet traffic as well as
computer usage is significantly lower than the rest of the day.
We confirmed this assumption by measuring LLC noise in our
instances and collected data from 6 instances over the course
of 4 week days. Results are shown in Figure 5. As expected,
LLC noise and thus server load are at its peak around 8 p.m.
and lowest at 4 a.m. Low usage hours present valuable low
noise time window for both achieving co-location and running
the co-location checks. During these low noise hours, very
few additional instances are launched. Fewer new instances
translate to higher chance of co-locating with a specific target.

Secondly, instance type selection also affects noise in ex-
periments. In Amazon EC2, each instance has an IP address
and network connectivity whether it has 1 core or 16 cores.
So when a physical machine hosts 16 m3.medium single core
instances, it also supports 16 network connections. Reversely,
a physical machine hosting 2 m3.2xlarge instances with 8
cores each, it only supports network connections for the two.
Making the reasonable assumption that 16 instances create
more network traffic than 2, we believe that the ping test is
affected by the instance types hosted on the physical machine.
The probability of co-locating with an 8 core instance with
less noise is much lower than with a 2 core instance. In an
experimental co-location scenario, the trade-off between these
options must be carefully considered.
Clock Differences Between Instances: In order to run
performance degradation tests simultaneously, OS clocks in
instances must be synchronized. In order to assure synchro-
nization during tests, we have updated the system times using
ntpdatetime.nist.gov command multiple times during
experiments to keep the synchronization intact. Note that
without time synchronization, we have observed differences
of system times between instances of up to a minute.
Dual Socket machines: We did not find any evidence of
dual socket machine existence for the medium instances that
we used in both co-location and attack steps. Indeed once
co-located, our co-location test always succeeded over time,
even after three months. If our instances were to be placed in
dual socket machines, the co-location test would fail when the

attacker and the victim VMs were running in different sockets.
However, even in that case, repeated experiments would still
reveal co-location just by repeating the test after a time period
enough to allow a socket migration. Even further, after the
co-location is detected, the RSA key recovery attack that will
later be explained would succeed as well only by increasing
the number of traces.

Instance Retirement: A very interesting feature of Amazon
EC2 is instance retirement in case of perceived hardware
failure or overuse. Through constant resource monitoring EC2
detects significant performance degradation on one of the
hardware components such as disk drive, network adapter or
a GPU card in a physical system, and marks the instance for
retirement. If there is no malfunction or hazardous physical
damage to the underlying hardware, e-mail notifications are
sent to all users who have instances running on the physical
machine. If there is such an immediate hardware problem,
instances are retired abruptly and a notification e-mail is sent
to users afterwards. We observed this behavior on our triple
co-located instances (across three accounts). While running
our performance tests to create a bottleneck and determine
co-location, we received three separate e-mails from Amazon
to the three involved accounts notifying us that our instances
A5, B7 and C7 had a hardware failure and are scheduled
for instance retirement. The important thing to note here is
that, via our tests, we have previously determined that these
instances A5, B7 and C7 are co-located on the same physical
machine. We assume that our performance based co-location
tests were the cause of the detected performance degradation
in the system that raised flags with Amazon EC2 health
monitoring system, resulting in the instance retirement.

Placement Policy: In our experiments, instances launched
within short time intervals of each other were more likely
to be co-located. To exploit the placement policy and increase
chances of co-location, one should launch multiple instances
in a close time interval with the target. Note that two instances
from the same account are never placed on the same physical
machine. While this increases the probability of co-locating
with a victim in the in the actual attack scenario, it also makes
it harder to achieve co-location for experiments.

IV. OBTAINING THE NON-LINEAR SLICE SELECTION
ALGORITHM

Once co-location was achieved in Amazon EC2, we want
to check the possibility of implementing a cross-core LLC
side channel attack between co-located VMs. Unlike in [11],
[19] where the attacks run in systems which implement linear
slice selection algorithms (i.e power of two number of slices),
Amazon EC2 medium instances use Intel Xeon E5-2670 v2
machines, which implement a non-linear LLC slice selection
algorithm. It is important to note that Prime and Probe
attacks become much simpler when linear slice selection
algorithms are used, because the memory blocks to create an
eviction set for different set values do not change. This means
that we can calculate the eviction set for, e.g, set 0 and the



memory blocks will be the same if we profile a different set
s. As we will see in this section, this is not true for non-linear
slice selection algorithms (where the profiled set also affects
the slice selected). This fact makes the table and multiplication
function location finding step implemented in [11], [19] much
more difficult and time consuming. Although knowing the
slice selection algorithm implemented is not crucial to run
a Prime and Probe attack (since we could calculate the
eviction set for every set s that we want to monitor), the
knowledge of the non-linear slice selection algorithm can
save significant time, specially when we have to profile a
big number of sets. Indeed, in the attack step, we will select
a range of sets/slices s1, s2, ...sn for which, thanks to the
knowledge of the non-linear slice selection algorithm, we
know that the memory blocks in the eviction set will not
change.

Hund et al. [18] utilized a method based on a comparison of
hamming distances between varying addresses to reverse engi-
neer a 4 slice Sandy Bridge processor. The reverse engineered
Sandy Bridge slice selection algorithm turned out to use only
the address bits not involved in the set and byte fields. Indeed,
this seems to be true for all processors which have a linear
slice selection method, i.e., the number of slices is a power of
two. Liu et al. [11] and Irazoqui et al. [19] used this fact to
perform LLC side channel attacks.

However, this is not true when the number of slices is not
a power of two. The Intel Xeon E5-2670 v2, the most widely
used EC2 instance type, has a 25MB LLC distributed over
10 LLC slices. By just performing some small tests we can
clearly observe that the set field affects the slice selection
algorithm implemented by the processor. Indeed, it is also
clearly observable that the implemented hash function is a
non-linear function of the address bits, since the 16 memory
blocks mapped to the same set in a huge memory page cannot
be evenly distributed over 10 slices. Thus we describe the slice
selection algorithm as

H(p) = h3(p)‖h2(p)‖h1(p)‖h0(p) (1)

where each H(p) is a concatenation of 4 different functions
corresponding to the 4 necessary bits to represent 10 slices.
Note that H(p) will output results from 0000 to 1001 if
we label the slices from 0-9. Thus, a non-linear function is
needed that excludes outputs 10-15. Further note that p is
the physical address and will be represented as a bit string:
p = p0p1 . . . p35. In order to recover the non-linear hash
function implemented by the Intel Xeon E5-2670 v2, we
perform experiments in a fully controlled machine featuring
the same Intel Xeon E5-2670 v2 found in Amazon’s EC2
servers. We first generate ten equation systems based on
addresses colliding in the same slice by applying the same
methodology explained to achieve co-location and generating
up to 100,000 additional memory blocks. We repeat the same
process 10 times, changing the primed memory block b0
in each of them to target a different slice. This outputs 10
different systems of addresses, each one referring to a different
slice.
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Fig. 6. Number of addresses that each slice takes out of 100,000. The non-
linear slices take less addresses than the linear ones.

The first important observation we made on the 10 different
systems is that 8 of them behave differently from the remaining
2. In 8 of the address systems recovered, if 2 memory blocks
in the same huge memory page collide in the same slice, they
only differ in the 17th bit. This is not true for the remaining
two address systems. We suspect, at this point, that the 2
systems behaving differently are the 8th and 9th slice. We
will refer to these two slices as the non-linear slices.

Up to this point, one can solve the non-linear function
after a re-linearization step given sufficiently many equations.
However, one may not be able to recover enough addresses.
Recall that the higher the degree of the non-linear term the
more equations are needed. In order to keep our analysis
simpler we decided to take a different approach. The second
important observation we made is on the distribution of the
addresses over the 10 slices. It turns out that the last two
slices are mapped to with a lower number of addresses
than the remaining 8 slices. Figure 6 shows the distribution
of the 100,000 addresses over the 10 slices. The different
distributions seen for the last two slices give us evidence
that a non-linear slice selection function is implemented in
the processor. Even further, it can be observed that the linear
slices are mapped to by 81.25% of the addresses, while the
non-linear slices get only about 18.75%. The proportion is
equal to 3/16. We will make use of this uneven distribution
later.

We proceed to first solve the first 8 slices and the last 2
slices separately using linear functions. For each we try to
find solutions to the equation systems

Pi · Ĥi = 0̂, (2)

Pi · Ĥi = 1̂ . (3)

Here Pi is the equation system obtained by arranging the
slice colliding addresses into a matrix form, Ĥi is the matrix
containing the slice selection functions and 0̂ and 1̂ are the all
zero and all one solutions, respectively. This outputs two sets
of a linear solutions both for the first 8 linear slices and the
last 2 slices separately.

Given that we can model the slice selection functions sepa-
rately using linear functions, and given that the distribution is
non-uniform, we suspect that the hash function is implemented
in two levels. In the first level a non-linear function chooses
between either of the 3 linear functions describing the 8 linear



slices or the linear functions describing the 2 non-linear slices.
Therefore, we speculate that the 4 bits selecting the slice look
like:

H(p) =


h0(p) = h0(p)

h1(p) = ¬(nl(p)) · h′1(p)
h2(p) = ¬(nl(p)) · h′2(p)
h3(p) = nl(p)

where h0,h1 and h2 are the hash functions selecting bits 0,1
and 2 respectively, h3 is the function selecting the 3rd bit and
nl is a nonlinear function of an unknown degree. We recall
that the proportion of the occurrence of the last two slices is
3/16. To obtain this distribution we need a degree 4 nonlinear
function where two inputs are negated, i.e.:

nl = v0 · v1 · ¬(v2 · v3) (4)

Where nl is 0 for the 8 linear slices and 1 for the 2 non-
linear slices. Observe that nl will be 1 with probability 3/16
while it will be zero with probability 13/16, matching the
distributions seen in our experiments. Consequently, to find
v0 and v1 we only have to solve Equation (3) for slices 8
and 9 together to obtain a 1 output. To find v2 and v3, we
first separate those addresses where v0 and v1 output 1 for the
linear slices 0− 7. For those cases, we solve Equation (3) for
slices 0 − 7. The result is summarized in Table I. We show
both the non-linear function vectors v0, v1, v2, v3 and the linear
functions h0, h1, h2. These results describe the behavior of the
slice selection algorithm implemented in the Intel Xeon E5-
2670 v2. It can be observed that the bits involved in the set
selection (bits 6 to 16 for the LLC) are also involved in the
slice selection process, unlike with linear selection algorithms.
This means that for different sets, different memory blocks will
map to the same slice. However, with this result, we can now
easily predict the slice selection on the target processor in the
AWS cloud.

Note that the method applied here can be used to reverse
engineer other machines that use different non-linear slice
selection algorithms. By looking at the distribution of the
memory blocks over all the slices, we can always get the shape
of the non-linear part of the slice selection algorithm. The rest
of the steps are generic, and can be even applied for linear
slices selection algorithms.

V. CROSS-VM RSA KEY RECOVERY

To prove the viability of Prime and Probe attacks in
Amazon EC2 across co-located VMs, we present an expanded
version of the attack implemented in [11] by showing its
application to RSA. It is important to remark that the attack
is not processor specific, and can be implemented in any
processor with inclusive last level caches that allows the
allocation of huge size pages. There are some main differences
between this work and [11]:
• We make use of the fact that the offset of the address of

each table position entry does not change when a new
decryption process is executed. Therefore, we only need

to monitor a subsection of all possible sets, yielding a
lower number of traces when compared to [11].

• In contrast to the work in [11] in which both the multi-
plication and the table entry set are monitored, we only
monitor a table entry set in one slice. This avoids the
step where the attacker has to locate the multiplication
set, thereby avoiding an additional source of noise.

The attack targets a sliding window implementation of RSA-
2048 where each position of the pre-computed table will be
recovered. We will use Libgcrypt 1.6.2 as our target library,
which not only uses a sliding window implementation but
also uses CRT and message blinding techniques [26]. The
message blinding process is performed as a side channel
countermeasure for chosen-ciphertext attacks, in re-
sponse to studies such as [14], [13]. A description of the
RSA decryption process implemented by Libgcrypt is shown
in Algorithm 1. The sliding window implementation that
Libgcrypt uses is explained in Algorithm 2, where a table
holds values c3, c5, c7, . . . , c2

W−1.

Algorithm 1 RSA with CRT and Message Blinding
Input: c ∈ ZN , Exponents d, e, Modulus N = pq
Output: m
r

$← ZN with gcd(r,N) = 1 . Message Blinding
c∗ = c · re mod N
dp = d mod (p− 1) . CRT conversion
dq = d mod (q − 1)
m1 = (c∗)dp mod p . Modular Exponentiation
m2 = (c∗)dq mod q
h = q−1 · (m1 −m2) mod p . Undo CRT
m∗ = m2 + h · q
m = m∗ · r−1 mod N . Undo Blinding
return m

We use the Prime and Probe side channel technique
to recover the positions of the table T that holds the values
c3, c5, c7, . . . , c2

W−1 where W is the window size. For CRT-
RSA with 2048 bit keys, W = 5 for both exponentiations
dp, dq . Observe that, if all the positions are recovered correctly,
reconstructing the key is a straightforward step.

Recall that we do not control the victim’s user address
space. This means that we do not know the location of each
of the table entries, which indeed changes from execution to
execution. Therefore we will monitor a set hoping that it will
be accessed by the algorithm. However, our analysis shows a
special behavior: each time a new decryption process is started,
even if the location changes, the offset field does not change
from decryption to decryption. Thus, we can directly relate a
monitored set with a specific entry in the multiplication table.

Furthermore, the knowledge of the processor in which the
attack is going to be carried out is important to implement
the attack. In the Intel Xeon E5-2670 v2 processors, the LLC
is divided in 2048 sets and 10 slices. Therefore, knowing the
lowest 12 bits of the table locations, we will need to monitor
every set that solves s mod 64 = o, where s is the set number
and o is the offset for a table location. This increases the



TABLE I
RESULTS FOR THE HASH SELECTION ALGORITHM IMPLEMENTED BY THE INTEL XEON E5-2670 V2

Vector Hash function H(p) = h0(p)‖¬(nl(p)) · h′
1(p)‖¬(nl(p)) · h′

2(p)‖nl(p)
h0 p18 ⊕ p19 ⊕ p20 ⊕ p22 ⊕ p24 ⊕ p25 ⊕ p30 ⊕ p32 ⊕ p33 ⊕ p34
h′
1 p18 ⊕ p21 ⊕ p22 ⊕ p23 ⊕ p24 ⊕ p26 ⊕ p30 ⊕ p31 ⊕ p32

h′
2 p19 ⊕ p22 ⊕ p23 ⊕ p26 ⊕ p28 ⊕ p30

v0 p9 ⊕ p14 ⊕ p15 ⊕ p19 ⊕ p21 ⊕ p24 ⊕ p25 ⊕ p26 ⊕ p27 ⊕ p29 ⊕ p32 ⊕ p34
v1 p7 ⊕ p12 ⊕ p13 ⊕ p17 ⊕ p19 ⊕ p22 ⊕ p23 ⊕ p24 ⊕ p25 ⊕ p27 ⊕ p31 ⊕ p32 ⊕ p33
v2 p9 ⊕ p11 ⊕ p14 ⊕ p15 ⊕ p16 ⊕ p17 ⊕ p19 ⊕ p23 ⊕ p24 ⊕ p25 ⊕ p28 ⊕ p31 ⊕ p33 ⊕ p34
v3 p7 ⊕ p10 ⊕ p12 ⊕ p13 ⊕ p15 ⊕ p16 ⊕ p17 ⊕ p19 ⊕ p20 ⊕ p23 ⊕ p24 ⊕ p26 ⊕ p28 ⊕ p30 ⊕ p31 ⊕ p32 ⊕ p33 ⊕ p34
nl v0 · v1 · ¬(v2 · v3)

Algorithm 2 RSA Sliding-Window Exponentiation
Input: Ciphertext c ∈ ZN , Exponent d, Window Size w
Output: cd mod N
T [0] = c3 mod N . Table Precomputation
v = c2 mod N
for i from 1 to 2w−1 − 1 do

T [i] = T [i− 1] · v mod N
end for
b = 1, j = len(d) . Exponentiation Step
while j > 0 do

if ej == 0 then
b = b2 mod N
j = j − 1

else
Find ejej−1 . . . el | j − l + 1 ≤ w with el = 1

b = b2
j−l+1

mod N
if ej == 1 then

b = b · c mod N
else

b = b · T [(ei − 3)/2] mod N
end if
j = j − l − 1

end if
end while
return b

probability of probing the correct set from 1/(2048 · 10) =
1/20480 to 1/((2048 ·10)/64) = 1/320, reducing the number
of traces to recover the key by a factor of 64. Recall that the
address of the table entry varies from one encryption to the
other (although with the same offset). Thus our spy process
will monitor accesses to one of the 320 set/slices related to a
table entry, hoping that the RSA encryption accesses it when
we run repeated encryptions. Thanks to the knowledge of the
non linear slice selection algorithm, we will select a range
of sets/slices s1, s2, . . . , sn for which the memory blocks that
create the eviction sets do not change, and that allow us to
profile all the precomputed table entries. A short description
of the spy process is shown in Algorithm 3. The threshold is
different for each of the sets, since the time to access different
slices usually varies. Thus, the threshold for each of the sets
has to be calculated before the monitoring phase. In order

Algorithm 3 Spy Process Algorithm
for i from 0 to 2w−1 − 1 do

Find Set Offset(T [i])
end for
timeslots=0
while timeslots¡maximum do

prime
wait
t=probe
if t¿threshold then

Access[timeslots]=true
else

Access[timeslots]=false
end if

end while

to obtain high quality timing leakage, we synchronize the spy
process and the RSA decryption by initiating a communication
between the victim and attacker, e.g. by sending a TLS request.
Note that we are looking for a particular pattern observed for
the RSA table entry multiplications, and therefore processes
scheduled before the RSA decryption will not be counted as
valid traces. In short, the attacker will communicate with the
victim before the decryption. After this initial communication,
the victim will start the decryption while the attacker starts
monitoring the cache usage. In this way, we monitor 4,000
RSA decryptions with the same key and same ciphertext for
each of the 16 different sets related to the 16 table entries.

Finally, in a hypothetical case where a dual socket system
is used and VM processes move between sockets, our attack
would still succeed. By only increasing the number of traces
collected, we can obtain the same leakage information. In this
scenario, the attacker would collect traces and only use the
information obtained during the times the attacker and the
victim share sockets and discard the rest as missed traces.

VI. LEAKAGE ANALYSIS METHOD

Once the online phase of the attack has been performed,
we proceed to analyze the leakage observed. There are three
main steps to process the obtained data. The first step is to
identify the traces that contain information about the key.
Then we need to synchronize and correct the misalignment
observed in the chosen traces. The last step is to eliminate the
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Fig. 7. Different sets of data where we find a) noisy trace b) trace that does
not contain information c) trace that contains information about the key

noise and combine different graphs to recover the usage of
the multiplication entries. Among the 4,000 observations for
each monitored set, only a small portion contains information
about the multiplication operations with the corresponding
table entry. These will be recognized because their expo-
nentiation trace pattern differs from that of unrelated sets.
In order to identify where each exponentiation occurs in an
RSA decryption, we inspected 100 traces and created the
timeline shown in Figure 7(c). It can be observed that the
first exponentiation starts after 37% of the overall encryption
time. Note that, among all the traces recovered, only those that
have more than 20 and less than 100 peaks are considered.
The remaining ones are discarded as noise. Figure 7 shows
measurements where only noise was detected (Fig. 7(a)), no
correct pattern was detected (Fig. 7(b)), and where a correct
pattern was measured (Fig. 7(c)).

In general, after the elimination step, there are 8−12 correct
traces left per set. We observe that data obtained from each of
these sets corresponds to 2 consecutive table positions. This
is a direct result of CPU cache prefetching. When a cache
line that holds a table position is loaded into the cache, the
neighboring table position is also loaded due to cache locality
principle.

For each graph to be processed, we first need to align the
creation of the look-up table with the traces. Identifying the
table creation step is trivial since each table position is used
twice, taking two or more time slots. Figure 8(a) shows the
table access position indexes aligned with the table creation. In
the figure, the top graph shows the true table accesses while the

rest of the graphs show the measured data. It can be observed
that the measured traces suffer from misalignment due to noise
from various sources e.g. RSA, co-located neighbors etc.

For fixing the misalignment, we take most common peaks
as reference and apply a correlation step. To increase the
efficiency, the graphs are divided into blocks and processed
separately as seen in Figure 8(a). At the same time, Gaussian
filtering is applied to peaks. In our filter, the variance of the
distribution is 1 and the mean is aligned to the peak position.
Then for each block, the cross-correlation is calculated with
reference to the most common hit graph i.e. the intersection
set of all graphs. After that, all graphs are shifted to the
position where they have the highest correlation and aligned
with each other. After the cross-correlation calculation and
the alignment, the common patterns are observable as in
Figure 8(b). Observe that the alignment step successfully
aligns measured graphs with the true access graph at the top,
leaving only the combining and the noise removal steps. We
combine the graphs by simple averaging and obtain a single
combined graph.

In order to get rid of the noise in the combined graph, we
applied a threshold filter as can be seen in Figure 9. We used
35% of the maximum peak value observed in graphs as the
threshold value. Note that a simple threshold was sufficient
to remove noise terms since they are not common between
graphs.

Now we convert scaled time slots of the filtered graph to
real time slot indexes. We do so by dividing them with the spy
process resolution ratio, obtaining the Figure 10. In the figure,
the top and the bottom graphs represent the true access indexes
and the measured graph, respectively. Also, note that even if
additional noise peaks are observed in the obtained graph, it
is very unlikely that two graphs monitoring consecutive table
positions have noise peaks at the same time slot. Therefore,
we can filter out the noise stemming from the prefetching
by combining two graphs that belong to consecutive table
positions. Thus, the resulting indexes are the corresponding
timing slots for look-up table positions.

The very last step of the leakage analysis is finding the
intersections of two graphs that monitor consecutive sets. By
doing so, we obtain accesses to a single table position as seen
in Figure 11 with high accuracy. At the same time, we have
total of three positions in two graphs. Therefore, we also get
the positions of the neighbors. A summary of the result of the
leakage analysis is presented in Table II. We observe that more
than 92% of the recovered peaks are in the correct position.
However, note that by combining two different sets, the wrong
peaks will disappear with high probability, since the chance
of having wrong peaks in the same time slot in two different
sets is very low.

VII. RECOVERING RSA KEYS WITH NOISE

The leakage analysis described in the previous section re-
covers information on the CRT version of the secret exponent
d, namely dp = d mod (p− 1) and dq = d mod (q − 1). A
noise-free version of either one can be used to trivially recover
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TABLE II
SUCCESSFULLY RECOVERED PEAKS ON AVERAGE IN AN EXPONENTIATION

Average Number of traces/set 4000
Average number of correct graphs/set 10
Wrong detected peaks 7.19%
Missdetected peaks 0.65%
Correctly detected peaks 92.15%
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the factorization of N = pq, since gcd(m−medp , N) = p for
virtually any m [10]. However, in cases where the noise on
dp and dq is too high for a direct recovery with the above-
mentioned method, their relation to the known public key can
be exploited if the used public exponent e is small [17].

Almost all RSA implementations currently use e = 216 +1
due to the significant performance boost over a random and
full size e. For the CRT exponents it holds that edp = 1
mod (p − 1) and hence edp = kp(p − 1) + 1 for some 1 ≤
kp < e and similarly for dq , yielding kpp = edp + kp− 1 and
kqp = edq + kq − 1. Multiplying both equations gives us a
key equation which we will exploit in two ways

kpkqN = (edp + kp − 1)(edq + kq − 1). (5)

If we consider Equation (5) modulo e, the unknowns dp and dq
disappear and we obtain kpkqN = (kp−1)(kq−1) (mod e).
Therefore given kp we can recover kq and vice versa by
solving this linear equation.

Next, assume we are given the first t-bits of dp and dq , e.g.
dp(t) and dq(t). Since 1 ≤ kp < e represents an exhaustible
small space we can simply try all values for kp and compute
corresponding kq as shown above. For each kp we check



whether δ(dp(t), dq(t), t) = 0 where

δ(a, b, t) = kpkqN − (ea+ kp − 1)(eb+ kq − 1) (mod 2t)

This means we have a simple technique to check the correct-
ness of the least-significant t-bits of dp, dq for a choice of kp.
We can
• Check parts of dp and dq by verifying if the test
δ(dp(t), dq(t), t) = 0 holds for t ∈ [1, dlog(p)e].

• Fix alignment and minor errors by shifting and varying
dp(t) and dq(t), and then sieving working cases by
checking if δ(dp(t), dq(t), t) = 0,

• Recover parts of dq given dp (and vice versa) by solving
the error equation δ(dp(t), dq(t), t) = 0 in case the data
is missing or too noisy to correct.

Note that the algorithm may need to try all 216 values of kp
in a loop. Further, in the last case where we recover a missing
data part using the checking equation we need to speculatively
continue the iteration for a few more steps. If we observe too
many mistakes we may early terminate the execution thread
without reaching the end of dp and dq .

To see how this approach can be adapted into our setting,
we need to consider the error distribution observed in dp
and dq as recovered by cache timing. Furthermore, since the
sliding window algorithm was used in the RSA exponentiation
operation, we are dealing with variable size (1-5 bit) windows
with contents wp, wq, and window positions ip, iq for dp and
dq , respectively. The windows are separated by 0 strings. We
observed:
• The window wp contents for dp had no errors and were

in the correct order. There were slight misalignments in
the window positions ip with extra or missing zeroes in
between.

• In contrast, dq had not only alignment problems but also
few windows with incorrect content, extra windows, and
missing windows (overwritten by zeroes). The missing
windows were detectable since we do not expect unusu-
ally long zero strings in a random dq .

• Since the iterations proceed from the most significant
windows to the least we observed more errors towards
the least significant words, especially in dq .

Algorithm 4 shows how one can progressively error correct
dp and dq by processing groups of consecutive ` windows
of dp. The algorithm creates new execution threads when
an assumption is made, and kills a thread after assumptions
when too many checks fail to produce any matching on
different windows. In practice, it does suffice to use only
a few windows, e.g ` = 2 or 3. The higher ` the fewer
assumptions will be made. However, then the kill threshold
has to be increased and the depth of the computation threads
and more importantly the number of variations that need to be
tested increases significantly.

VIII. COUNTERMEASURES

Libgcrypt 1.6.3 update: Libgcrypt recently patched this
vulnerability by making the sliding window multiplication

Algorithm 4 Windowed RSA Key Recovery with Noise
for kp from 1 to e− 1 do

Compute kq = (1− kp)(kpN − kp + 1)−1 (mod e)
while i < |wp| do

Process windows wp[i], . . . , wp[i+ `]
Introduce shifts; vary ip[i], . . . , ip[i+ `]
for each dp variation do

Compute X =
∑i+`

j=0 wp[j]2
ip[j]

Identify wq that overlap with wp[i], . . . , wp[i+`]
Vary iq and wq for insertions/deletions
Set t as end of wp[i+ `]
for each dq variation do

Compute Y =
∑i+`′

j=0 wq[j]2
iq[j]

if δ(X,Y, t)=0 then
Update wp, ip, wq, iq
Create thread for i+ `

end if
end for
if if no check succeeded then

too many failures abandon tread
for each dq variation do

solve Y from δ(X,Y, t)=0
Update wp, ip, wq, iq
Create thread for i+ `

end for
end if

end for
end while

end for

table accesses indistinguishable from each other. Therefore, an
update to the latest version of the library avoids the leakage
exploited in this work albeit only for ciphers using sliding
window exponentiation.
Disabling Hugepages: Our Prime and Probe attack as
well as the LLC detection method accelerates by exploiting
huge sized pages. Therefore disabling hugepages on hypervi-
sor level would significantly slow down malicious adversaries.
A More Sophisticated Instance Placement Policy: As ex-
plained in [39], co-location resistant placement algorithms can
reduce the chances of co-location and protect customers from
potential adversaries.
Single-tenant Instances: Placing multiple instances of a user
on the same physical machine prevents co-location with a
malicious attacker. Most cloud service providers including
Amazon EC2 offer single tenant instances albeit as an expen-
sive option. This option offers a number of benefits including
isolation from other users.
Live Migration: In a highly noisy environment like the com-
mercial cloud, an attacker would need many traces to conduct
a side-channel attack. Live migration reaps the attacker from
luxury of having no time constraints and makes targeting a
specific instance harder. In the live migration scenario, the
attacker would have to first detect co-location and then carry



out an actual attack before either one of the attacker or the
target moves to another physical machine.

LLC Isolation: LLC is the most commonly used shared
resource between VMs. Compared to disk drives and network
adapters it is incredibly fast, allowing connection of large
amounts of data to be transferred in a short time. Also,
unlike the IP detection method, it does not require a pre-
detection stage which makes it the perfect attack vector. This
is why LLC isolation between CPU cores can mitigate both
co-location detection and the cache side channel attacks in the
cloud.

IX. RELATED WORK

This work combines techniques needed for co-location in
a public cloud with state-of-the art techniques in cache based
cross-VM side channel attacks.

Co-location detection: In 2009 Ristenpart et al. [29] demon-
strated that a potential attacker has the ability to co-locate and
detect co-location in public IaaS clouds. In 2011, Zhang et
al. [36] demonstrated that a tenant can detect co-location in
the same core by monitoring the L2 cache. Shortly after, Bates
et al. [7] implemented a co-location test based on network
traffic analysis. Recently, Zhang et al. [37] demonstrated that
deduplication enables co-location detection and information
extraction from co-located VMs in public PaaS clouds.

In follow-up to Ristenpart et al.’s work [29], Zhang et
al. [33] and Varadarajan et al. [31] explored co-location
detection in commercial public cloud in 2015. While the
former study explores the cost of co-location in Amazon
EC2, GCE and Microsoft Azure, the latter focuses only on
Amazon EC2. In both studies, authors use the memory bus
contention channel identified and explored by Wu et al. in
2012 [32] to detect co-location. In addition to the memory bus
contention, [33] also counts the number of hops in traceroute
trails of the VMs to achieve faster co-location detection and
increase the probability of co-location.

Memory bus contention is created by executing an atomic
operation that spans over multiple cache lines. Normally, when
an atomic operation is performed, only the cache line that is
operated on is locked. However, when the data spans more
than one cache line, all memory operations on all cores
and CPUs are flushed to ensure atomicity. Flushing of the
memory operations slows the overall system and allows for a
covert channel to be established between VMs. Capabilities
of this channel however is limited only to slowing down
co-located VM’s operations. Therefore only useful detecting
co-location, not for actually exploiting. Due to the limited
nature of the memory bus contention channel, there have
been no cryptographic key recovery attacks using this method.
Moreover, when used only for co-location detection, results
must be treaded lightly. Even though two VMs running on the
same motherboard but on different sockets can be detected as
co-located, the fact that they are running on different sockets
immediately eliminates the ability to run any known cache
side-channel attack. In other words, unless both the target and

the attacker are running in the same CPU, the co-location
is not exploitable, or at least not exploited for any known
cryptographic attack unless VMs migrate from one socket to
other.

Recovering cache slice selection methods: A basic technique
based on hamming distances for recovering and exploiting
linear cache slice selection was introduced in [18]. Irazoqui
et al. [20] and Maurice et al. [27] used a more systematic
approach to recover linear slice selection algorithms in a range
of processors, the latter pointing out the coincidence of the
functions across processors. In this work, we use a more
systematic approach by finding kernels in a vector space to
recover a non-linear slice selection algorithm of order 4. In
concurrent work, Yarom et al. [35] reverse engineered a 6 core
Intel slice selection algorithm.

Side channel attacks: on RSA have been widely studied
and explored as diverse side channels as time [25], [9],
Branch Prediction Units [6], power [24], EM [12], [13], and
even acoustic channels [14]. Attacks on RSA exploiting the
cache side channel include [5], [34]. While [38], [11] do not
explicitly target RSA but El Gamal instead, [11] targets a
sliding window implementation and relies on LLC leakage,
just like our attack. Unlike in that work, our work is performed
in a public cloud, not in a controlled lab setup. We also present
several new optimization techniques to reduce the number of
needed observations to detect side channel leakage and noise
reduction techniques. Recently, Gruss et al. [15] proved the
ability of implementing last level cache template attacks in
the presence of deduplication.

Due to the rich body of literature in side channel attacks
there are also other works that have explored methods to
reduce noise and recover keys from noisy CRT-RSA exponent
leakage, such as [10] and [23]. However, note that cache
based noise behaves significantly different from noise observed
through an EM side channel (cf. [23]), and our techniques have
been adapted to handle such cases well.

X. ETHICAL CONCERNS

Our experiments in public IaaS clouds were designed to
conform with Amazon’s acceptable use policy, the law, and
proper ethic. In this work, we took all necessary precautions
to make sure that we did not interfere with Amazon EC2’s
or its customer’s services in any way. We did not, willingly
or by accident obtain any information about Amazon EC2
customers.

During our co-location detection experiments, we only tried
to achieve co-location with our own instances and not with
other customers. We scheduled the co-location tests as well as
the RSA key recovery to early in the morning when the usage
is lowest to reduce the risk of interfering with other customers.
And only after we detected and confirmed co-location, we have
proceeded to the RSA key recovery step.

In RSA key recovery experiments, we synchronized our
Prime and Probe side channel technique with the RSA
execution, reducing the risk of obtaining any unauthorized



information. In addition to that, we ran our experiments with
one hour intervals between 2 a.m. and 4 a.m. when other
instances see minimum user activity. Hence, potential inter-
ference with other instances is minimized. We only monitored
a single cache set out of more than 2,000 sets in one slice,
causing minimal interference. Indeed, this is what made our
attack viable. We believe that this load is much lower than
regular Amazon EC2 workload.

The number of huge size pages allocated for experiments
was limited to the minimum necessary to perform the attack.
We allocated only 100 huge sized pages at most, reserving no
more than 200 MB memory space. By doing so, we reduced
any possible overhead that other co-located instances could
have experienced. We performed our experiments so that we
do not introduce any overhead other than the regular overhead
that workload from regular instances. Furthermore, the slice
selection algorithm was reverse engineered offline, on our lab
setup, further limiting our involvement with other instances.

Finally, we have notified and shared our results with the
AWS Security Team in June 2015.

XI. CONCLUSION

In conclusion, we show that even with advanced isolation
techniques, resource sharing still poses a security risk to
public cloud customers that do not follow the best security
practices. The cross-VM leakage is present in public clouds
and can become a practical attack vector for both co-location
detection and data theft. Therefore, users have a responsibility
to use latest improved software for their critical cryptographic
operations. Additionally, placement policies for public cloud
must be revised to diminish attacker’s ability to co-locate with
a targeted user. Even further, we believe that smarter cache
management policies are needed both at the hardware and
software levels to prevent side-channel leakages and future
exploits.
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