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Abstract—Cloud data owners encrypt their documents before outsourcing to provide their privacy. They could determine a search control policy
and delegate the ability of search token generation to the users whose attributes satisfy the search control policy. Verifiable attribute-based
keyword search (VABKS) where the users can also verify the accuracy of cloud functionality is one of such schemes. In this paper, the first generic
construction for VABKS is proposed. To this end, the notion of hierarchical identity-based multi-designated verifier signature (HIB-MDVS) has
been introduced and existential forgery under chosen message attack (EF-CMA) is formally defined for its unforgeability. Furthermore, anonymity
against chosen identity vector set and chosen plaintext attack (Anon-CIVS-CPA) has been defined as the security definition of hierarchical identity-
based broadcast encryption (HIBBE) in a formal way. The proposed construction is built in a modular structure by using HIBBE, HIB-MDVS, and
Bloom filter as the building blocks. We prove that the security of proposed construction is based on the unforgeability of HIB-MDVS and the
anonymity of HIBBE. Finally, the concept of verifiable ranked keyword search will be introduced and a construction of this primitive will be
presented which is based on proposed VABKS.

Index Terms—Cloud computing, searchable encryption, keyword ranked search, attribute-based encryption, privacy preserving, hierarchical
identity-based cryptography, provable security.
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1 Introduction

The need for secure cloud computing and cloud storage sys-
tems has made encrypted data potential target of numerous

research studies. If a user wishes to outsource its sensitive data
in an untrusted cloud, it will be necessary to encrypt them before
outsourcing them to the cloud. Therefore, to retrieve special
data among the stored data, the cloud provider should be able
to search on encrypted documents which cause difficulty in
some cases. One solution for this problem is using searchable
encryption schemes.

In the literature, two types of searchable encryption schemes
can be considered for this primitive which are referred to as
public key and symmetric key searchable encryptions. Song et.al.
for the first time, proposed symmetric searchable encryption [1],
and Boneh et.al. introduced the concept of public key encryption
with keyword search (PEKS) [2]. In a symmetric searchable en-
cryption, a user, who is the sole authority capable of generating a
search token, uses a secret randomness to generate a searchable
ciphertext. In some cases where a network contains too many
users, it would be more efficient to use public key searchable
encryption because the users know the receivers’ public key and
could generate a searchable ciphertext such that the entities with
the corresponding secret keys be the ones who can generate some
valid search tokens. In what follows, the public key searchable
encryption will be elaborated on in more detail.

1.1 Public Key Searchable Encryption
After the introduction of the concept of PEKS, this primitive
was followed by many researchers and consequently various
structures were proposed to improve its security and enhance
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its efficiency. The existing constructions can be classified in two
groups of generic and concrete constructions.

Boneh et.al. applied PEKS to intelligent email routing, defined
the indistinguishability under chosen keyword attack (IND-
PEKS-CKA) and proved that their proposed concrete construc-
tion is IND-PEKS-CKA secure [2]. They also proposed a generic
construction of PEKS based on identity-based encryption (IBE)
[3]. Also, Abdalla et.al. [4], defined consistency of PEKS and
presented a generic construction of anonymous identity-based
encryption [5] to PEKS. They also introduced identity-based en-
cryption with keyword search (IBEKS) and public key encryption
with temporary keyword search (PETKS) and defined PETKS-
IND-CPA security. Finally, they proposed a generic construction
of PETKS with PETKS-IND-CPA security from anonymous hier-
archical identity-based encryption (HIBE) [4].

The PEKS scheme needs a secure channel between the re-
ceiver and the gateway. Thus, Beak et.al. proposed a solution
to eliminate the requirements of a secure channel [6]. They
defined secure channel free public key encryption with keyword
search (SCF-PEKS) and indistinguishability under chosen key-
word attack (IND-SCF-CKA) [6].

In the real world, the number of keywords which are used
as the auxiliary information for conducting the search operation
is limited, the PEKS schemes are susceptible to offline keyword
guessing attack. Byun et.al. for the first time in 2006, applied
offline keyword guessing attack to PEKS [7]. In 2009, Tang et.al.
proposed the concept of public key encryption with registered
keyword search (PERKS) [8]. In this scheme, the sender registers
both keyword and its corresponding receiver, before generating
a search token. Although the process of keyword preregistration
makes searchable encryption more complex, it makes the scheme
immune to the offline keyword guessing attack.

In 2010, for the first time, Li et.al. introduced the notion of
public key fuzzy keyword search over encrypted data [9]. In
this variant, to enhance search efficiency and keyword privacy,
the cloud returns the documents which contain both the same
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and similar keywords to the queried keywords, except for those
which contain the exact keywords. In 2012, Nishioka defined
perfect keyword privacy (PKP) and IND-PKP as a security
definition for PEKS [10]. In 2013, Peng et.al. proposed the notion
of public key encryption with fuzzy keyword search (PEFKS)
which is secure against offline keyword guessing attack [11].
They defined semantic security under chosen keyword attack (SS-
CKA) and indistinguishability of keywords under non-adaptively
chosen keywords and keyword guessing attack (IK-NCK-KGA)
and presented a generic construction from anonymous identity-
based encryption to PEFKS. They proved that the resulting
PEFKS is SS-CKA secure. In 2013, Zhang et.al. [12], studied
the relation between predicate encryption (PE) [13] and PEKS
and they introduced public key encryption with fine grained
keyword search (PEFKS). They defined IND-PEFKS-CPA security
and designed a generic construction of PE for PEFKS. In 2014
Han et.al. introduced attribute-based encryption with keyword
search (ABEKS) and presented a generic construction of key
policy attribute-based encryption (KP-ABE) [14] for ABEKS [15].

In 2014, Zheng et.al. proposed the notion of attribute-based
keyword search (ABKS) and proposed a concrete construction
based on bilinear pairings. In this model, the data owner de-
termines a search control policy and generates a searchable
ciphertext according to this policy and sends it to the cloud for
storage. Then specific set of data users who satisfies the search
control policy are allowed to generate a search token for an
arbitrary set of keywords requiring no interactions between the
data users and the data owners [16]. In [15] the same scenario
will happen whereas the interaction between the data users and
data owner is undeniable. The data user sends the generated
search token to the cloud to search for the required encrypted
data. It may happen that the cloud try to send an invalid search
result to the data users. Zheng et.al. also constructed a verifiable
ABKS (VABKS) in a modular fashion by using attribute-based
encryption, bloom filter, digital signature, and ABKS, to verify
the accuracy of search results received from the cloud. They
also defined the security of VABKS against the selectively chosen
keyword attack (SCKA) and verifiability of VABKS as the security
definitions of VABKS.

As IBE and designated multi verifier signature scheme
(DMVS) [17], [18] are considered to have a close relationship
to ABE [14], we have found that hierarchical identity-based
broadcast encryption (HIBBE) [19] and hierarchical identity-
based multi-designated verifier signature (HIB-MDVS) could be
useful to construct a generic scheme for VABKS.

1.2 Our Contributions

The contribution of the present paper is three-fold. First, we
introduce a cryptographic notion called HIB-MDVS, and also
present formal definitions for its unforgeability, the existential
forgery under chosen-message attack (EF-CMA). We also define
anonymity of HIBBE against chosen identity vector set and
chosen plaintext attack (Anon-CIVS-CPA) in the standard model.
Second, a generic construction for VABKS which is built based
on a bloom filter [20], HIBBE [19] and the new cryptographic
notion HIB-MDVS. HIB-MDVS is used to establish the search
control policy and provide verifiability. We also used HIBBE
for generating a searchable ciphertext for a group of legitimate
data users. Security of the proposed construction is based on the
unforgeability of HIB-MDVS and the anonymity of HIBBE which

is formally proved in this paper. Third, introducing the concept of
verifiable ranked keyword search and proposing a construction
for this primitive which is based on our generic construction of
VABKS. The notable feature of our proposed scheme of verifiable
ranked keyword search is that it eliminates the interactions
between the data owners and users for exchanging the secret
key which is used for generating the search tokens and this is
important because we can reduce the communication overhead
of ranked keyword search schemes. And the other notable feature
of our verifiable ranked keyword search scheme is that this
scheme is constructed based on our generic construction of
VABKS which its security has already been proved.

1.3 Organization
The rest of this paper is organized as follows. Section II re-
views using notation and cryptographic primitives. Section III
expresses the system and security model. Section IV presents
the genetic construction for VABKS based on HIB-MDVS and
HIBBE. Section V analyzes the security of the proposed generic
construction and in section VI we introduce the concept of
verifiable ranked keyword search and present a construction by
using the proposed VABKS. Finally, we conclude the paper in
section VII.

2 Preliminaries
In an attribute-based encryption [14], the ciphertext is generated
for a group of users with some specific attributes according
to an access control policy. We use IKeyGen to specify the set
of attributes for each user, and IEnc, as the set of attributes
which determines the access control policy. Also notation T (., .)
is used here to check whether a set of attributes satisfies an
access control policy. If IKeyGen satisfies access control policy
IEnc then T (IKeyGen, IEnc) = 1; otherwise, T (IKeyGen, IEnc) =⊥.
Notation a

$← S denotes selecting element a from set S
uniformly at random, |S| denotes the cardinality of set S,
ID = (ID1, ID2, . . . , IDd′) denotes an identity vector, and
||ID|| = d′ denotes the depth of ID. The network has a hierar-
chical structure like a tree and each user is associated with an
identity vector. The existing identities are indexed with a number
according to the tree-like hierarchical structure of the network
and the identity vector of each user contains two parts: the first
part is identity vector of its parents and the second part is user’s
identity. Figure 1 shows a network with hierarchical structure
and the identity vectors of the users of this network in more
detail. Denote d as the maximum value of d′ which expresses the
number of level of hierarchy in the network. V is defined here
as a set of identity vectors, where ||V|| = max{||ID|| : ID ∈ V}
denotes the maximal depth of V. Furthermore, the identity vector
set Par(ID) = {(ID1, ID2, . . . , IDd′′) : d′′ ≤ d′} is defined
as the parent of the identity vector ID = (ID1, ID2, . . . , IDd′)
and consequently Par(V) =

⋃
ID∈V Par(ID) is the parent set

of V. Table 1 is a list of notations which are commonly used in
this paper.

2.1 Bloom Filter
Let an entity would like to check whether an element is a
member of a set and its elements are not known. Bloom filter
(BF) - was proposed for the first time in 1970 [20] - can be used
to solve this problem. The output of a BF is a m-bit array where
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𝐈𝐃𝐝𝟏 = 𝐈𝐃 𝐝−𝟏 𝟏 , 𝐼𝐷𝑑1   

𝐈𝐃𝟎 = 𝐼𝐷𝑇𝐴 

𝐈𝐃𝟏𝟏 = 𝐈𝐃𝟎, 𝐼𝐷11  
𝐈𝐃𝟏𝟐 = 𝐈𝐃𝟎, 𝐼𝐷12  

𝐈𝐃𝟏𝟑 = 𝐈𝐃𝟎, 𝐼𝐷13  

𝐈𝐃𝟐𝟏 = 𝐈𝐃𝟏𝟏, 𝐼𝐷21  

⋮ 

⋯ ⋯ 

⋮ 

Fig. 1. Hierarchical model of the network. IDTA expresses the identity of
trusted authority and IDij denotes the identity of jth user in the ith level of
hierarchy and IDij is the identity vector of the user whose identity is IDij

TABLE 1
Frequently Used Notations

Symbols Description
IDij The identity vector of each user

of network, denotes as ID =
(ID1, . . . , IDd′)

V Identity vectors set, denotes as V =
{ID1, . . . , ID|V |}

Par(ID) The parents of identity vector ID
Par(V) The parent of identity vector set V
||ID|| Depth of identity vector ID
a

$← S Randomly selection of a from set S
IEnc Expresses the access control policy in

ABE
IKeyGen Set of attributes of a user
KG The set of keywords, KG =

{ω1, . . . , ωn}
Doc The set of all files which should be

outsourced in encrypted format to the
cloud, Doc = {F1, . . . , Fm}

F(ωi) The set of all files which contain key-
word ωi, F(ωi) = {Fij : ωi ∈ Fij}

|S| Denotes the cardinality of set S
Out← Alg(In) Denotes that algorithm Alg outputs

Out on input In
A := B Allocating the value of B to A

all of the m bits are initialized as zero. The BF uses a group of k
collision resistant hash functionsH ′

1,H
′
2, . . . , H

′
k with the same

ranges, i.e. for 1 ≤ i ≤ k,H ′
i : {0, 1}∗ → {0, . . . ,m− 1}, and

the output of this hash functions determines the index of a bit in
them-bit array (We remind that the index of each bit in the BF is
numbered from 0 to m− 1). Let S = {ω1, . . . , ωn} and ω be an
arbitrary element of S. To compute the output of the BF it should
have been computed indj = H ′

j(ω) for all 1 ≤ j ≤ k and set
the indjth bit ofm-bit array to 1. When an entity wants to check
the existence of ω in S, it should compute indj = H ′

j(ω) for
all 1 ≤ j ≤ k and check whether indjth bit of BF is equal to
1. If for all 1 ≤ j ≤ k, indjth bit of BF is equal to 1, then ω
belongs to the set S with a high probability; otherwise, ω does
not belong to S. In what follows, the two algorithms which are

used to generate and verify a m-bit BF are expressed [20].

• BF ← BFGen({H ′
1, . . . , H

′
k}, {ω1, . . . , ωn}): This algo-

rithm takes k universal hash functions {H ′
1, . . . , H

′
k}

and data set S = {ω1, . . . , ωn} as input to generate a
m-bit BF.

• {0, 1} := BFverify({H ′
1, . . . , H

′
k},BF, ω): The output of

this algorithm is 1 if the element ω ∈ S, and otherwise
the output is 0.

3 System and Security Model
3.1 Verifiable Attribute Based Encryption with Keyword
Search (VABKS)
Each VABKS consists of four parties [16]: (1) Data Owner, who
outsources its encrypted documents to the cloud in a searchable
manner, (2) The Cloud Provider, who stores a massive amount
of data and can search on encrypted data, (3) Data User, who
obtains its required documents associated with some special
keywords which have been encrypted and stored in the cloud by
data owner, and (4) Trusted Authority (TA), who generates secret
keys of users and issues them to the data users and data owners
through a secure and authenticated channel. The architecture of
VABKS is shown in Figure 2.

Suppose that the data owner wishes to generate a verifi-
able searchable keyword ciphertext for just one keyword group
KG = {ω1, . . . .ωn}. Note that we encrypt the keywords
which belong to the keywords group KG to generate searchable
ciphertexts. Typically, each VABKS contains six polynomial time
algorithms: Setup, KeyGen, BuildIndex, TokenGen, SearchIndex,
Verify [16]. These algorithms are presented as follows.

• (PP,MSK)← Setup(λ): This algorithm takes security
parameter λ as input, and generates master secret key
MSK , and public parameter PP .

• (SK) ← KeyGen(MSK, IKeyGen): This algorithm takes
user’s attribute set IKeyGen and master secret key MSK ,
to generate secret key SK of the user associated to
IKeyGen.

• (Dcph, Index) ← BuildIndex(IEnc,KG): This algorithm
takes access control policy IEnc and keyword group KG
as inputs. The output of this algorithm is tuple ciphertext
(Dcph, Index) where Dcph is the searchable encryption of
keywords group KG and Index is the auxiliary informa-
tion. The cloud runs the search operation on Dcph and
uses Index to prove to the data user that the result of
search is correct.

• (stω)← TokenGen(SK,ω): This algorithm takes secret
key SK and keyword ω as inputs and generates search
token stω as the outputs of this algorithm.

• {(proof, rslt)} ← SearchIndex(stω, Index, Dcph): This
algorithm takes search token stω , tuple ciphertext
(Dcph, Index) as inputs and generates the result and
proof pair {(proof, rslt)}. The cloud provider runs this
algorithm and sends result and proof pair {(proof, rslt)}
to the data user. proof proves to the data user that
the cloud has run the search operation correctly. This
algorithm return 1 as the result of search if

– T (IKeyGen, IEnc) = 1 & (The attributes set of data
user (IKeyGen) satisfies access control policy IEnc
which is determined by the data owner.)
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Fig. 2. The VABKS model in the network. The data users encrypt their docu-
ments and the data user generates a search token and sends it to the cloud.
The cloud uses this token to search for queried documents and returns the
search result and the proof of the search.

– ω ∈ KG (Keywords group KG contains the
keyword corresponding to search token stω .)

• {0, 1} := Verify(SK,ω, st, proof, rslt): This algorithm
takes secret key SK , keyword ω, search token st, result
and proof pair (rslt, proof) as inputs to verify whether
the search results are valid or not. This algorithm returns
1 if (rslt, proof) is valid with reference to search token
st; otherwise return 0.

3.1.1 SCKA Security Game for VABKS

In the SCKA security game, the following scenario will happen
[16]. This definition is formalized according to a security game
between any probabilistic polynomial time (PPT) adversary A
and challenger C.

Setup: Adversary A selects a challenge I∗Enc and sends it to
challenger C. Then challenger C runs (MSK,PP )← Setup(λ)
to obtain public parameter PP and master secret key MSK .

Phase 1: Adversary A is allowed to query the following
oracles, and C keeps an initially empty keyword list LKW . These
oracles are as follows:

• SK ← O KeyGen(IKeyGen): If T (IKeyGen, I∗Enc) = 1, then
stop; otherwise, challenger C returns secret key SK
corresponding to IKeyGen to adversary A.

• stω ← OTokenGen(IKeyGen, ω): Challenger C generates
secret key SK corresponding to IKeyGen and runs algo-
rithm TokenGen on inputs SK and ω to obtain search
token stω , and sends this token to adversary A. If
T (IKeyGen, I

∗
Enc) = 1, then C adds ω to LKW .

Challenge: AdversaryA, selects two keywords ω0 and ω1 where
ω0, ω1 /∈ LKW . Then challenger C flips a random coin b ←
{0, 1}, and computes challenge ciphertext (D∗

cph, Index
∗) ←

BuildIndex(I∗Enc, ωb) and sends it to adversary A. If ω0, ω1 ∈
LKW , adversary A is prevented to issue his queries to oracle
OTokenGen.

Phase 2: Adversary A goes on to issue his queries to
oracles O KeyGen and OTokenGen, as in the first phase. Note

that (IKeyGen, ω0) and (IKeyGEn, ω1) can-not be quired to oracle
O TokenGen if T (IKeyGen, I∗Enc) = 1.

Guess: Finally, adversary A try to guess the value of b and
outputs bit b′, and wins the game if b′ = b. In this game, the
advantage of adversary A is defined as follows:

AdvSCKA
A,V ABKS(λ) = | Pr[b′ = b]− 1

2
| (1)

Definition 1 (SCKA Security). A VABKS system is selectively
secure against chosen keyword attack if the advantage of any
PPT adversary A winning the SCKA game is a negligible
function in terms of security parameter λ and

AdvSCKA
A,V ABKS(λ) ≤ negl(λ) (2)

3.1.2 Verifiability Game of VABKS
In the verifiability security game, the following scenario will
happen [16]. This definition is formalized according to a security
game between PPT adversary A and challenger C and both of
them are given security parameter λ.

Setup: Challenger C runs (PP,MSK) ← Setup(λ) on
input security parameter λ. Then adversary A chooses keyword
groupKG and access tree IEnc and delivers them to challenger C.
Challenger C runs (Dcph, Index) ← BuildIndex(IEnc,KG) and
sends (Dcph, Index) to A.

Phase 1: Adversary A is allowed to query the following
oracles polynomially many times.

• SK ← OKeyGen(IKeyGen): Challenger C sends to adver-
sary A secret key SK associating to IKeyGen. Then this
oracle adds IKeyGen to initially empty list LKeyGen.

• stω ← O TokenGen(IKeyGen, ω): Challenger C generates
secret key SK associated to IKeyGen and runs algorithm
TokenGen where the inputs are secret key SK and
queried keyword ω, to generate search token stω . Then
adversary C sends it to adversary A.

• b ← O Verify(IKeyGen, ω, stω, rslt, proof): Challenger C
generates secret key SK corresponding to IKeyGen, then
runs b = Verify(SK,ω, stω, rslt, proof) and returns b to
adversary A.

Challenge: Adversary A selects I∗KeyGen, satisfying the access
control policy which is determined by the data owner and
keyword ω∗ and gives them to C. Challenger C randomly chooses
I∗KeyGen which satisfies the access tree, i.e. T (I∗KeyGen, IEnc) =
1, and generates secret key SK∗ corresponding to I∗KeyGen and
runs algorithm stω∗ ← TokenGen(SK∗, ω∗) and returns search
token stω∗ to A.

Guess: Finally, adversary A outputs a pair (rslt∗, proof∗)
and sends it to challenger C. Challenger C also runs algo-
rithm (rslt, proof) ← SearchIndex(Dcph, Index, stω∗) to know
what is the correct search result. Adversary A wins the
verifiability game, i.e. ExpVrfyA,VABKS(λ) = 1, when 1 ←
Verify(SK∗, ω∗, stω∗, rslt∗, proof∗) and rslt 6= rslt∗. The advan-
tage of adversary A to win the game is defined as follows:

Adv
Vrfy
A,VABKS(λ) , Pr[ExpVrfyA,VABKS(λ) = 1] (3)

Definition 2 (Verifiability of VABKS). A VABKS system is
verifiable if the advantage of any PPT adversaryA to win the
verifiability game is negligible in terns of security parameter
λ and

Adv
Vrfy
A,VABKS(λ) ≤ negl(λ) (4)



5

3.2 Hierarchical Identity BasedBroadcast Encryption (HI-
BBE)

Horwitz et.al. for the first time proposed the concept of hier-
archical identity-based encryption (HIBE) [21]. In HIBE, public
key generator (PKG) shares its burden of generating users’
secret keys with the users higher in the hierarchy. Therefore,
in the hierarchical model of a network, the users higher in
the hierarchy are able to generate secret keys for all of their
subordinates. Gentry et.al. [22] presented a HIBE scheme based
on the assumption of the difficulty of the bilinear Diffie-Hellman
problem. Later, in 2004, Boneh and Boyen [23] presented a HIBE
scheme with selective-ID security without needing to the random
oracles model. In 2005, Boneh et.al. [24] proposed a secure
HIBE with fixed size ciphertext and Gentry et.al. in 2009 [25]
constructed the first HIBE for the networks with polynomially
numerous hierarchical levels. In 2014, Liu presented a HIBBE to
apply existing HIBE systems in multicast and broadcast networks
[19] and in 2015, he proposed a practical chosen ciphertext secure
HIBBE [26].

Typically, each HIBBE scheme contains four polynomial time
algorithms: Setup, Extract,BroadEnc, and BroadDec. These four
algorithms are presented in the following.

• (PP,MSK)← Setup(λ): This algorithm takes security
parameter λ as input and generates master secret key
MSK and public parameter PP .

• USKID ← Extract(USKPar(ID), ID, PP ): The inputs
of this algorithm are USKPar(ID) as the parent’s secret
key corresponding to identity vector ID, identity vector
ID and public parameter PP . It outputs secret key
USKID of the user associated to identity vector ID. Note
that we can consider trusted authority as a user of 0-level
hierarchy with identity vector ID0 = IDTA. So, his
secret key is denoted as USK0 = MSK .

• C ← BroadEnc(PP,M,V): This algorithm takes public
parameter PP , messageM ∈M, and identity vector set
V as input and encrypt message M where the output is
ciphertext C .

• M := BroadDec(PP,C, SKID): This algorithm takes as
input public parameter PP , ciphertext C , and secret key
SKID. If ID ∈ Par(V), then the output of this algorithm
is the decryption of C , i.e. M .

3.2.1 Anonymous HIBBE

In the following, we define anonymity against the chosen iden-
tity vector set and chosen plaintext attacks (Anon-CIVS-CPA) for
the HIBBE. In an anonymous HIBBE scheme, it is required that
the adversary does not infer any information about the identities
of designated receivers by knowing the ciphertext. This means
that the identity of receivers should stay anonymous. As an
application of anonymous HIBBE, it should be reminded that
this primitive is used as a building block in the proposed generic
construction of VABKS.

In Anon-CIVS-CPA security model, adversary A try to learn
some information about the identity of receivers by knowing
the ciphertext and is allowed to access the extraction oracle
adaptively to obtain the user secret key associated with its chosen
identity vector ID. Adversary A is not allowed to query secret
key of the parents of the challenged receivers of its selection.
We formally define Anon-CIVS-CPA security of HIBBE, through

a game between challenger C and PPT adversary A. Note that
both of them are given security parameter λ.

Setup: Challenger C runs the (MSK,PP ) ← Setup(λ)
algorithm on input security parameter λ to generate public
parameter PP and master secret keyMSK and sends the public
parameter PP to adversary A.

Phase 1: Adversary A is allowed to access to the following
oracle on his selected identity vector ID.

• SKID ← OExtract(ID): In this oracle, adversary A adap-
tively issues the identity vector ID polynomially many
times, to challenger C. Challenger C selects an empty set
of identity vector like LID and generates secret key SKID
associated to the identity vector ID and adds ID to list
LID and sends it to adversary A.

Challenge: Adversary A selects two identity vector
sets V0, V1 that their parents are not in list LID, i.e.,
LID

⋂
{
⋃

i=0,1 Par(Vi)} = ∅, challenge message M ∈ M,
and sends them to challenger C. Then challenger flips a random

coin b
$← {0, 1} and encrypts message M by using identity

vector set Vb. Then challenger C sends challenge ciphertext
Cb = BroadEnc(PP,M,Vb) to adversary A.

Phase 2: AdversaryA continues issuing his queries to oracle
OExtract(ID) to receive the secret key of identity vector ID such
that ID /∈ Par(V0) ∪ Par(V1).

Guess: Finally, adversary A outputs a bit b′ ∈ {0, 1} as a
guess for the value of b, and wins the game, if b = b′.

We define the advantage of the PPT adversaryA in attacking
the HIBBE system with security parameter λ as follows:

AdvAnon−CIV S−CPA
A,HIBBE (λ) = | Pr[b′ = b]− 1

2
| (5)

Definition 3 (Anon-CIVS-CPA). A HIBBE is Anon-CIVS-CPA
secure against PPT adversaryA if its advantage is as follows:

AdvAnon−CIV S−CPA
A,HIBBE (λ) ≤ negl(λ) (6)

where the notation negl(λ) is a negligible function in terms of
security parameter λ.

3.3 Hierarchical Identity-Based MDVS (HIB-MDVS)
In multi designated verifier signature, a signer determines a
specific group of users to sign a message for them and only
these designated users could verify the signature by means of
their secret key. Typically, in these kinds of signatures, there
exist three parties which are PKG, original signer and designated
verifiers.

Designated verifier signature (DVS) was introduced for the
first time by Jakobsson et.al. in 1996 [27]. They also discussed the
security notion of strong DVS (SDVS) and after that, in 2004,
this security requirement was defined in a formal way [28].
Laguillaumie et.al. [29], presented an anonymous and efficient
DVS construction based on the bilinear map. Desmedt [17],
introduced the notion of designated multi verifier signature
scheme (DMVS), where a set of legitimate users are able to
verify the signature. Laguilaumie et.al. [18], constructed a DMVS
scheme where the signer selects a fixed set of designated verifiers
to sign a message for them. In 2006, for the first time, Chow
[30] presented an identity-based strong multi designated verifier
signature (IB-SMDVS). In 2007, Laguillaumie et.al. [31] defined
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signer’s privacy and presented the first MDVS scheme to protect
the signers anonymity without encryption. The security of their
scheme reduced to the bilinear Diffie-Hellman problem.

In the following, we will introduce the concept of HIB-MDVS,
where the users are in a network with a tree-like construction,
and the generation of users’ secret keys is in a hierarchical
setting, such that the users higher in the hierarchy can generate
a secret key for the children of his domain. We introduce the
notion of HIB-MDVS and define the security model for its
unforgeability and will use this primitive as a building block in
our generic construction to establish search and access control
policies and provide verifiability.

A HIB-MDVS scheme consists of four polynomial-time al-
gorithms: Setup, Extract,MDVSig and MDVSVrfy. These four
algorithms are as follows:

• (PP,MSK) ← Setp(λ): This algorithm takes security
parameter λ as input and generates public parameter PP
and master secret key MSK .

• USKID ← Extract(USKPar(ID), ID): This algorithm
takes as input identity vector ID and its parent secret
key USKPar(ID) to generate user secret key USKID
associated to the identity vector ID. As mentioned before,
MSK = USK0 is the secret key of user with 0-level
hierarchy (PKG).

• σ ← MDVSig(PP,USKIDs,M,V): In this algorithm,
the signer with identity vector IDs, generates signature
σ for message M ∈ M and the authorized users could
verify this signature and the users whose identity vectors
are in identity vector set V are authorized users.

• {0, 1} := MDVSVrfy(PP, IDs, USKID, σ): It is a deter-
ministic algorithm which takes as input public parameter
PP , identity vector of signer IDs, multi designated
verifier signature σ, and user secret key USKID and
tests whether the signature σ is a valid signature. If
ID ∈ Par(V), then the user with identity vector ID can
check the validity of signature σ. This algorithm returns
1 if, (1) ID ∈ Par(V) and (2) signature σ is a valid
signature; otherwise, returns 0.

3.3.1 Security Model of HIB-MDVS

In the following, we will define security notion existential
forgery against adaptively chosen message attack (EF-CMA)
for HIB-MDVS according to the following game which is held
between challenger C and adversary A.

Setup: Challenger C runs algorithm (MSK,PP ) ←
Setup(λ) on security parameter λ as input, to generate public pa-
rameter PP and master secret key MSK . Challenger C selects
identity vector IDs of the signer and generates its corresponding
secret key SKIDs

. Then he sends the identity vector of signer,
public parameter PP and security parameter λ to adversary A.

Phase 1: Adversary A is allowed to query adaptively to
the following oracles for polynomially many time queries. The
challenger keeps messages list LM which is initially empty.

• USKID ← OExtract(ID): This oracle gets the identity
vector ID and generates secret key USKID and sends it
to adversary A. Note that if ID ∈ Par(IDs), this oracle
stops to answer to these queries.

• σi ← OSign(Mi,V): The adversary issues message
Mi to the signing oracle to receive a valid signature

of Mi which is signed for set of designated veri-
fiers V. Then this oracle runs sign algorithm σi ←
MDVSign(PP,V, SKIDs

,Mi) to generate signature σi

and sends it to adversary A. This oracle adds message
Mi to list LM for each query.

Guess: The adversary tries to output a forgery σF as a
valid signature of message MF where never queried before
(MF /∈ LM ). The adversary wins the game if the signature σF is
a valid HIB-MDVS signature for the message MF . The EF-CMA
security is defined via the experiment ExpEF−CMA

HIB−MDV S,A(λ) and
ExpEF−CMA

HIB−MDV S,A(λ) = 1 means that adversary A wins the
game. The advantage of adversaryA in this experiment is defined
according to Equation (7).

AdvEF−CMA
HIB−MDV S,A = Pr[ExpEF−CMA

HIB−MDV S,A(λ) = 1] (7)

Definition 4 (EF-CMA security of HIB-MDVS).TheHIB-MDVS
system is EF-CMA secure against PPT adversary A if the
advantage of adversaryA is a negligible function like negl(λ)
as follows:

AdvEF−CMA
HIB−MDV S,A ≤ negl(λ) (8)

4 Generic Construction of VABKS
In this section, we present our generic construction which is built
based on HIBBE, HIB-MDVS, and BF. In this construction, we
use HIB-MDVS to establish the access control policy and provide
verifiability. We also used HIBBE for generating a searchable
ciphertext for a specific group of data users where their attributes
satisfy the access control policy.

4.1 Transformation
The proposed generic construction of VABKS is designed based
on identity base primitives. Therefore, the first step in this
construction is mapping the set of users’ attributes onto a unique
identity. Then the data owner designates a specific set of data
users - who are authorized to generate a valid search token - and
generates a verifiable searchable ciphertext for them by using
BF, HIB-MDVS and HIBBE. With the inspiration of Abdalla’s
transformation of IBE to PEKS [4], HIBBE is used for encrypting
the search keywords.

To determine the access control policy, the data owner picks a
random number and signs it by using HIB-MDVS, and outsources
it in the cloud. Then, one of the delegated data users generates a
search token which contains two parts, and sends it to the cloud.
The first part plays the role of verifying secret key of outsourced
signature. To find the data which are stored for the data user,
the cloud receives the search token and starts to verify all of the
outsourced signatures in the cloud by using the first part of the
search token. If there exists some valid signatures, it means that
the documents corresponding to these signatures are stored for
the data user and this data user satisfies the access control policy
which is determined by data owner.

The data owner, also generates a BF for each keyword group
and encrypts it with HIBBE to make the construction verifiable
and signs all of the ciphertexts according to the HIB-MDVS to
protect the integrity of the messages for the receiver. The cloud
runs the search operation on stored encrypted data by means of
the received token and sends the search result with the proof of
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search accuracy to the data user. The data user first checks the
integrity of the received messages and then verifies the search
result by means of its secret key and the received proof.

In this transformation, three injective functions are used:
H0 : {0, 1}∗ → ID, H1 : IKeyGen → ID, and H2 : IEnc → V ,
where function H0 maps each string with arbitrary length to
an element in identity space ID, function H1 maps each set of
attributes IKeyGen to an element in identity vector space ID and
function H2 maps each access control policy IEnc to an element
in identity vectors space V . In the following, we will explain
this construction in detail and express how we can design the
six algorithms of VABKS by using the building blocks of HIBBE,
HIB-MDVS and BF.

As aforementioned, each VABKS system, contains six poly-
nomially time algorithms which are: SetupVABKS, KeyGen,
BuildIndex, TokenGen, SearchIndex, and Verify. Note that in this
transformation, it is assumed that the trusted authority (TA) with
zero level of hierarchy knows master secret key MSK .

To compute master secret key MSK and public parameter
PP , the TA runs (MSK,PP )← Setup(λ) as follows:

(MDVS.msk,MDVS.pp) ← SetupHIB−MDVS(λ)

(BE.msk,BE.pp) ← SetupHIBBE(λ)

MSK := (MDVS.msk,BE.msk) (9)

PP := (MDVS.pp,BE.pp) (10)

The trusted authority runs key generation algorithm USK ←
KeyGen(IKeyGen,MSK), to generate the secret key of the user
associated to the attributes set IKeyGen. In the first step, it maps
the set of attributes IKeyGen to a unique identity vector IDKeyGen

by using function H1 and then acts as follows:

MDVS.sk ← ExtractHIB−MDVS(MDVS.msk, IDKeyGen)

BE.sk ← ExtractHIBBE(BE.msk, IDKeyGen)

USKIDKeyGen := (MDVS.sk,BE.sk) (11)

The data owner runs search index generation algorithm
(Index, Dcph) ← BuildIndex(PP,KG, IEnc), according to Al-
gorithm 1. It first computes identity vector set V0 = H2(IEnc) as
the set of authorized data users. Then vector set V0 is also used
for encrypting the BF and signing the encrypted ciphertexts to
provide their integrity. Then the data owner determines identity
vector sets V and Vi according to the V0. V is used to sign a
random message to determine the access control policy. Each
data user whose identity vector is in V0 is able to generate a
valid secret key for the cloud to verify the signature, and after
verifying, the cloud realizes weather this user satisfies the search
control policy. Vi is determined for each keyword ωi ∈ KG, as
one of the inputs of algorithm BroadEnc, to generate a searchable
ciphertext related to keyword ω.
Finally, the data owner outsources ciphertext vector CPH to the
cloud.

For constructing algorithm stω∗,j ← TokenGen(SKj, ω
∗),

the data user with attributes set IKeyGenj and secret key SKj ,
generates search token stω∗,j , as depicted in Algorithm 2. As
the data user with identity vector IDj is the parent of identity
vectors IDj,j and IDj,ω∗ , it is able to generate secret keys
associating to these identity vectors. Generated vector key stω∗,j

is the search token related to keyword ω∗ and the data user sends
it to the cloud to run the search operation.

The cloud receives search token stω∗,j and runs search
algorithm {(rslt, proof)}← SearchIndex(stω∗,j,CPH) according

Algorithm 1 Search index generation algorithm:
(Index, Dcph)← BuildIndex(PP,KG, IEnc)

Input: (PP,KG, IEnc)
Output: (Index, Dcph)
1: V0 = H2(IEnc) =

{
ID1, ID2, . . . , IDt

}
2: V =

{(
ID1,H0(ID1)

)
, . . . ,

(
IDt,H0(IDt)

)}
3: R

$← {0, 1}λ,M $← {0, 1}m
4: σKG ← MDVSig(MDVS.pp,V, R,MDVS.sks)
5: for 1 ≤ i ≤ |KG| do

6: IDωi
= H0(ωi)

7: Vi =

{(
ID1, IDωi

)
, . . . ,

(
IDt, IDωi

)}
8: Cωi ← BroadEnc(BE.pp,Vi, R)
9: σCωi

← MDVSig(MDVS.pp,V0, Cωi,MDVS.sks)
10: end for
11: BFKG ← BFGen({H ′

1, . . . , H
′
k},KG)

12: CBFKG
← BroadEnc(BE.pp,V0,M)

13: σCBFKG
← MDVSig(MDVS.pp,V0, CBFKG

,MDVS.sks)
14: BF′KG = M ⊕ BFKG

15: σBF′KG
← MDVSig(MDVS.pp,V0,BF′KG,MDVS.sks)

16: Dcph := (Cω1
, . . . , Cωn

, CBFKG
,BF′KG)

17: Index := (R, σKG, σCω1
, . . . , σCωn

, σCBFKG
, σBF′KG

)
18: return CPH := (Dcph, Index)

Algorithm 2 Token generation algorithm:
stω∗,j ← TokenGen(SKj, ω

∗)

Input: (SKj, ω
∗)

Output: stω∗,j

1: IDω∗ = H0(ω
∗)

2: IDj = H1(IKeyGenj)
3: IDj,ω∗ = (IDj, IDω∗)
4: IDj,j =

(
IDj,H0(IDj)

)
5: d1 ← ExtractHIBBE(BE.skj, IDj,ω∗)
6: d2 ← ExtractHIB−MDVS(MDVS.skj, IDj,j)
7: return stω∗,j := (d1, d2)

to Algorithm 3. To check whether the data user with identity
vector IDj is authorized, it verifies signature σKG ∈ CPH by
using received key d2 ∈ stω∗,j .

According to Algorithm 3, if v = 1, then the user is
authorized and the cloud searches for queried keyword on behalf
of data user IDj . The cloud computes result rslt and search proof
proof according to two scenarios: (1) The result of search is
zero, (ω∗ /∈ KG ). In this case, the result of search is rslt =
(CBFKG

,BF′KG), and the proof is proof = (σCBFKG
, σBF′KG

).
(2) Keyword ω∗ ∈ KG in this case the search result is
rslt = (Cω∗, R), and the proof is proof = (σCω∗σKG). To
run the search operation, the cloud decrypts all of the keyword
ciphertexts Cωi ∈ Dcph. If there exists a keyword ciphertext whit
equal decryption to R ∈ CPH, then the keyword associated to
search token stω∗,j exists in keyword group KG. To this end,
the cloud acts according to the procedure presented in Algorithm
3.

As the last step, the data user with identity vector IDj checks
the validity of the search results by running algorithm {0, 1} ←
Verify(SKj, ω

∗, stω∗,j, rslt, proof) by means of its secret key
SKj , keyword ω∗, and pair rslt, proof according to Algorithm
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Algorithm 3 Search algorithm which is done by the cloud:
{rslt, proof} ← SearchIndex(stω∗,j,CPH)

Input: (stω∗,j,CPH)
Output: ({rslt, proof})
1: v = MDVSVrfy(MDVS.pp, IDowner, σKG, d2)
2: if v == 1 then

3: F (IKeyGen, IEnc) = 1
4: for 1 ≤ i ≤ |KG| do
5: Ri = BroadDec(BE.pp, d1, Cωi)
6: R = R∪Ri

7: end for
8: if ∃Ri ∈ R s.t. Ri == R then
9: ω∗ ∈ KG&
10: rslt = (Cωi, R)&
11: proof = (σCωi

, σKG)
12: else
13: ω∗ /∈ KG
14: rslt = (CBFKG

,BF′KG)
15: proof = (σCBFKG

, σBF′KG
)

16: end if
17: else

18: F (IKeyGen, IEnc) = 0
19: rslt = ⊥ & proof = ⊥

20: end if
21: return {(rslt, proof)}

4. If ω∗ ∈ KG, the data user, after verifying the integrity of
received pair {(rslt, proof)}, runs the search operation on result
rslt. If keyword ω∗ /∈ KG, then the result contains the ciphertext
of BFKG and the proof contains the signature of the ciphertext of
BFKG. In this case, the data user first verifies the integrity of rslt,
by using proof proof, then decrypts the ciphertext of BFKG, then
it runs algorithm BFverify to check the existence of keyword ω∗

in the keyword group associated to this BF. This procedure is
presented in Algorithm 4 with more details.

In Algorithm 4, if v′ = 1, it means that the cloud runs
the search operation honestly and the received search result are
valid.

In the next section, we analyze the security of our construc-
tion.

5 Security Proof
In this section, we will prove that the proposed generic construc-
tion of VABKS is verifiable and secure against selectively chosen
keyword attack. In what follows, we will prove if there exists
a HIBBE with Anon-HIBBE-CPA security, then the resulting
VABKS is SCKA-secure against all PPT adversaries and if there
exists a HIBBE with Anon-HIBBE-CPA security and HIB-MDVS
with EF-CMA security, then the constructed VABKS is secure in
the verifiability game.

Theorem 1 (SCKA-Security). If there exists a HIBBE system
with Anon-CIVS-CPA security, then the advantage of PPT
adversary A to win the SCKA game is a negligible function
and we have:

AdvSCKA
A,V ABKS ≤ negl(λ) (12)

Proof. We will show that if the advantage PPT adversary A
to win the SCKA game be a non-negligible function, then there

Algorithm 4 The verification algorithm which is run by data
user: {0, 1} := Verify(SKj, ω

∗, stω∗,j, rslt, proof)

Input: (SKj, ω
∗, stω∗,j, rslt, proof)

Output: {0, 1}
{The data user checks the integrity of the received messages}

1: if ω∗ ∈ KG then
2: R′ = BoradDec(BE.pp, d1, Cω∗)
3: if R′ == R then
4: v′ = 1
5: else
6: v′ = 0
7: end if

8: else
9: M = BroadDec(BE.pp, CBFKG

,BE.skj)
10: BFKG = BF′KG ⊕M {Where BF′KG ∈ rslt }
11: vBF ← BFverify(BFKG, ω

∗)
12: if vBF == 1 then
13: v′ = 0⇒ ω∗ /∈ KG
14: else
15: v′ = 1
16: end if

17: end if
18: return v′

exists a PPT adversary B who wins the Anon-CIVS-CPA security
game with a non-negligible advantage. So, adversary B simulates
the SCKA game to win the Anon-CIVS-CPA security game as
follows.

Setup: Adversary A selects challenge access control policy
I∗Enc and gives it to adversary B (B plays the role of the
challenger in the view of adversary A). Challenger B computes
V∗ = H2(I

∗
Enc) = {ID∗

1, . . . , ID∗
t}. According to security

parameter λ, challenger of Anon-CIVS-CPA, runs algorithm
(BE.pp,BE.msk) ← SetupHIBBE(λ) and sends public parameter
BE.pp to adversary B and protects master secret key BE.msk.
Then adversary B runs algorithm (MDVS.pp,MDVS.msk) ←
SetupHIB−MDVS(λ) and sends public parameters BE.pp and
MDVS.pp to adversary A.

Phase 1: Adversary A can query the following oracles
adaptively and polynomially many times. Note that adversary
B keeps keyword list Lkw which is initially empty.

• OKeyGen(IKeyGen): Adversary B receives attributes set
IKeyGen from adversary A and computes ID =
H1(IKeyGen). If ID ∈ Par(V∗) then adversary
B stops; otherwise, B sends identity vector ID
to challenger and receives secret key BE.skID ←
ExtractHIBBE(BE.msk, ID) corresponding to attribute set
IKeyGen. Then adversary B runs algorithm MDVS.skID ←
ExtractHIB−MDVS(MDVS.msk, ID). The resulting secret
key associated to ID is SKID := (MDVS.skID,BE.skID)
and is sent to adversary A.

• OTokenGen(IKeyGen, ω): Adversary B receives attribute set
IKeyGen, and keyword ω form adversary A and it should
compute search token stω for A. So, adversary B
computes ID = H1(IKeyGen) and sends identity vec-
tor ID to challenger C and he sets identity vector
IDω = (ID,H0(ω)). The challenger computes secret
key BE.skID ← ExtractHIBBE(BE.msk, ID) and sends this
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TABLE 2
Required building blocks in proposed generic construction of VABKS. For example, to construct algorithm Setup of VABKS two algorithms SetupHIBBE and

SetupHIB−MDVS are required.

The building blocks of VABKS
Setup KeyGen BuildIndex TokenGen SearchIndex Verify

SetupHIBBE X - - - - -
SetupHIB−MDVS X - - - - -
ExtractHIBBE - X - X - -
ExtractHIB−MDVS - X - X - -
BroadEnc - - X - - -
BroadDec - - - - X X
MDVSig - - X - - -
MDVSVrfy - - - - X X
BFGen - - X - - -
BFVerify - - - - - X
H0 - - X X - X
H1 - X - - - -
H2 - - X - - -

secret key to adversary B. Adversary B runs algorithm
MDVS.skID ← ExtractHIB−MDVS(MDVS.msk, ID), com-
putes search token stω ← Extract(SKID, IDω) where
SKID = (MDVS.skID,BE.skID) and sends stω to ad-
versary A. If ID ∈ Par(V∗) then the adversary adds
keyword ω to keyword list Lkw.

Challenge Phase: Adversary A chooses two keywords ω0 and
ω1 (ω0, ω1 /∈ Lkw) and sends them to adversary B. In this
case, adversary B computes H0(ω0) and H0(ω1) and sets two
identity vectors V0 =

{
(ID∗

1,H0(ω0)), . . . , (ID∗
t ,H0(ω0))

}
and V1 =

{
(ID∗

1,H0(ω1)), . . . , (ID∗
t ,H0(ω1))

}
. Then it selects

string R
$← {0, 1}λ uniformly at random, as the message that

challenger C wants to encrypt. Then adversary B sends R, V0

and V1 to the challenger. The challenger selects a random bit

b
$← {0, 1} and computes Cb ← BroadEnc(BE.pp,Vb, R) and

sends it to adversary B. Adversary B sets C∗ := Cb and invokes
adversary A to guess the correct value of bit b where C∗ is the
challenge keyword ciphertext in SCKA game.

Phase 2: Adversary A continues to query the same as the
first phase, but he could not query (IKeyGen, ω0) and (IKeyGen, ω1)
to oracle OTokenGen(., .) if the H1(IKeyGen) ∈ Par(V∗).

Guess: In this part, adversary B should guess the value of b.
To do this, after adversaryA outputs the value of b′ he sends it to
challenger C as a guess for b. We supposed that adversaryAwins
the SCKA game with non-negligible advantage, therefore we can
conclude that adversary B wins the Anon-CIVS-CPA security
game with non-negligible advantage.

In what follows, we will compute the advantage of adversary
B in the Anon-CIVS-CPA game.

AdvSCKA
A,V ABKS , ε(λ) (13)

AdvAnon−CIV S−CPA
B,HIBBE = | Pr[b′ = b]− 1

2
|

= AdvSCKA
A,V ABKS = ε(λ)

⇒ AdvAnon−CIV S−CPA
B,HIBBE = ε(λ)

In Equation (13), function ε(λ) is a non-negligible function.
According to the above equations, it is obvious that the advan-
tage of adversary B to win the Anon-CIVS-CPA game is non-
negligible function in terms of security parameter λ where this

contradicts with the assumption that the HIBBE system is Anon-
CIVS-CPA secure. So, the constructed VABKS is SCKA secure.

Theorem 2 (Verifiability). If there exists a HIB-MDVS system
with EF-CMA security, then the resulting VABKS from the
proposed generic construction is verifiable against PPT ad-
versary A.
Proof. In this proof, it is supposed that the constructed

VABKS is not verifiable. So, there exists a PPT adversary like
A who can find a pair {rslt, proof} where rslt is not a correct
result and the output of algorithm Verify is 1, with non-negligible
advantage in terms of security parameter λ. Then it is shown
that there is a PPT adversary like B, who wins the EF-CMA
experiment with non-negligible probability. Adversary B invokes
adversary A to win EF-CMA experiment.

Setup: Challenger C runs (MDVS.msk,MDSVS.pp) ←
SetupHIB−MDVS(λ) and sends security parameter λ, public pa-
rameter MDSVS.pp, and identity vector of the data owner IDs

to adversary B. The challenger generates secret key MDVS.sks
of the data owner. Adversary B runs (BE.msk,BE.pp) ←
SetupHIBBE(λ) and sends PP = (MDVS.pp,BE.pp) and secu-
rity parameter λ to A. Adversary A selects IEnc and keyword
group KG and sends them to adversary B. Then adversary B
determines identity vector set V0 = {ID1, . . . , IDt} = H2(IEnc)
and generates verifiable searchable ciphertext (Dcph, Index) ←
BuildIndex(KG, IEnc) and sends it to adversary A. To generate
the ciphertexts and index, he acts as follows:

V =

{(
ID1,H0(ID1)

)
, . . . ,

(
IDt,H0(IDt)

)}
R

$← {0, 1}λ;M $← {0, 1}m

∀ωi ∈ KG : {

Vi =

{(
ID1,H0(ωi)

)
, . . . ,

(
IDt,H0(ωi)

)}
Cωi← BroadEnc(BE.pp,Vi, R)

}
CBFKG

← BroadEnc(BE.pp,V0,M)

BF ← BFGen({H ′
1, . . . , H

′
k},KG)

BF′KG := M ⊕ BF
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Then adversary B queries R and the encrypted messages to the
signing oracle according to the VABKS construction to receive
the following signatures:

σKG ← MDVSig(MDVS.pp,V, R,MDVS.sks)

σCωi
← MDVSig(MDVS.pp,Vi, Cωi

,MDVS.sks)

σCBFKG
← MDVSig(MDVS.pp,V0, CBFKG

,MDVS.sks)

σBF ′
KG

← MDVSig(MDVS.pp,V0,BF
′
KG,MDVS.sks)

Note that random value R is signed for de-
termining the access control policy and 1 ←
MDVSVrfy(σKG, IDs,MDVS.sk(IDj,H0(IDj)), R) means that the
user with identity vector IDj satisfies the access control policy.
After receiving the signatures from signing oracle, adversary B
sets (Index, Dcph) as follows and sends them to adversary A.

Dcph = (Cω1
, . . . , Cωn

, CBFKG
,BF′KG)

Index = (R, σKG, σCω1
, . . . , σCωn

, σCBFKG
, σBF′KG

)

Phase1: In this phase, adversary B should simulate three oracles
OKeyGen,OExtract,OVrfy for adversary A by using the signing and
extraction oracles of the experiment ExpEF−CMA

B,HIB−MDV S(λ). So,
adversary A queries the mentioned oracles as follows:

• OKeyGen(IKeyGen): Adversary A sends IKeyGen to adver-
sary B. Adversary B computes ID = H1(IKeyGen)
and sends it to the extraction oracle and receives re-
lated secret key MDVS.skID. Then adversary B runs
algorithms (BE.msk,BE.pp) ← SetupHIBBE(λ) and
BE.skID ← ExtractHIBBE(BE.msk, ID) and sends SKID =
(MDVS.skID,BE.skID) to adversary A.

• OTokenGen(IKeyGenj , ω): Adversary B receives IKeyGenj and
keyword ω and generates a search token. B computes
IDj = H1(IKeyGenj) and sends this identity to challenger
C and receives secret key MDVS.skIDj and generates
search token stω,IDj as follows:

IDω = (IDj,H0(ω))

IDj,j = (IDj,H0(IDj))

BE.skIDj ← ExtractHIBBE(BE.msk, IDj)

d1 ← ExtractHIBBE(BE.skIDj , IDω)

d2 ← ExtractMDVS(MDVS.skIDj , IDj,j)

stω,IDj := (d1, d2)

• OVrfy(IKeyGen, ω, st, rslt, proof): Adversary B computes
ID = H1(IKeyGen) and sends it to challenger C
and receives secret key MDVS.skID and generates
secret key BE.skID. Then it runs algorithm ν ←
Vrfy(SKID, ω, st, rslt, proof) and sends ν to adversary
A where SKID = (MDVS.skID,BE.skID).

Challenge Phase: Adversary A selects challenge access
control policy I∗Enc and challenge keyword ω∗ and sends
them to adversary B. Adversary B first computes V∗ =
{ID∗

1, . . . , ID∗
t} = H2(I

∗
Enc), then selects identity vector ID∗

j ∈
V∗, and then sends it to the extraction oracle to receive se-
cret key MDVS.skID∗

j
. Next, it generates BE.skID∗

j
and sets

SKID∗ = (MDVS.skID∗
j
,BE.skID∗

j
). After that, adversary B

uses secret key SKID∗ to generate search token stω∗,ID∗
j
←

TokenGen(SKID∗
j
, ω∗) and sends this token to adversary A.

Guess: Adversary A outputs result and proof pair
(rslt∗, proof∗) and sends them to adversary B. It has been
supposed that adversary A wins the game with non-negligible
advantage and its advantage of winning the game is Pr[1 ←
Vrfy(SKID∗, ω∗, stω∗,ID∗

j
, rslt∗, proof∗)] = ε(λ) where func-

tion ε(λ) is a non-negligible function in terms of security
parameter λ. Note that adversaryA wins the game if rslt 6= rslt∗

where (rlst, proof)← SearchIndex(Dcph, Index, stω∗,ID∗
j
). There

are two states for ω∗ when adversary A wins the game, which
are mentioned as follows:

• State 1: If ω /∈ KG, in this case, rslt is the ciphertext
of BFKG and its signature is in proof. So, adversary A
should encrypt the BF as rslt∗ and make a valid signature
for it as proof∗ to win this game. It means that adversary
A can find a forgery of message rslt∗ which has never
been queried before to the signing oracle. So, adversary
B sends tuple (rslt∗, proof∗,V∗

0) to the challenger. Thus,
adversary B wins experiment ExpEF−CMA

B,HIB−MDV S(λ)with
a non-negligible function.

• State 2: If ω /∈ KG, rslt is keyword ciphertext Cω∗ . So,
rslt∗ must be a different keyword ciphertext for ω∗. In
this case, the adversary should make a valid signature on
the new ciphertext. The same as previous state, it means
that adversaryA can break unforgeability of HIB-MDVS.

In what follows, we will compute the advantage of adversary B
to win this experiment.

Pr[ExpVrfyA,V ABKS] = ε(λ) (14)

Pr[ExpEF−CMA
B,HIB−MDV S = 1]

= Pr[B win]

= Pr[1←Vrfy(SKID∗, ω∗, stω∗, rslt∗, proof∗) ∧ rslt 6= rslt∗]

= Pr[ExpVrfyA,V ABKS] = ε(λ)

⇒ Pr[ExpEF−CMA
B,HIB−MDV S = 1] = ε(λ)

So, the advantage of adversary B to find a forgery for the HIB-
MDVS scheme is a non-negligible function which contradicts
the signature’s assumption of EF-CMA security. So, the VABKS
scheme, which is constructed from the proposed generic con-
struction, is verifiable.

6 Verifiable RankedKeyword Search overOut-
sourced Encrypted Data in Cloud Using VABKS
Searchable encryption schemes are commonly used in cloud
computing to provide a secure environment for cloud storage.
In some cases, the data users would like to receive the most
relevant documents to the queried keywords. For this aim,
the suggested solution is secure ranked keyword search over
encrypted cloud data which was defined for the first time in
[32]. In the ranked keyword search schemes, the score of each
file which includes the queried keyword is computed based on
the number of times the term appears in this file. The cloud
provider searches on encrypted data and returns the data users
the top k-ranked documents (The value of k is chosen by data
user). These approaches enhance system usability, because they
ensure the data users that they have received the most relevant
documents to the queried keyword.
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In 2014, Cao et.al. introduced the concept of multi-keyword
ranked search and proposed a secure construction where the data
user is able to send a search query related to a set of keywords to
the cloud [33], [34]. In another work, in 2014, Li et.al. presented
an efficient multi-keyword ranked search scheme over encrypted
mobile cloud data through blind storage [35]. For verifying the
accuracy of received search results, in 2014, Sun et.al. proposed
a verifiable multi-keyword text search in the cloud which is
supporting similarity-based ranking. In their proposed scheme,
the keywords of each document are extracted as a vector and the
cloud try to find the k-top similar keyword vector to the queried
terms [36]. Recently, some other works have been done to apply
the semantic search to the multi-keyword ranked search schemes
and improve their efficiency and enhance their security, e.g. [37]
and [38].

In this section, as the example of one application of proposed
generic construction of VABKS it will be shown that this generic
scheme can be used to construct a verifiable ranked keyword
search scheme over encrypted cloud data. In what follows the
construction of keyword ranked search is presented in more de-
tails. To adjust the proposed VABKS scheme for this application
we will change algorithm BuildIndex to RanBuildIndex according
to Algorithm 5. The performance of algorithm RanBuildIndex
is the same as BuildIndex and the only different is that in
RanBuildIndex, the score of each keyword is also encrypted and
forms one part of the encryption of keyword. Typically, each
keyword ranked search consists of two phases setup and retrieval
as follows.

• Setup phase: TA runs algorithm (msk, pp)← Setup(λ)
and protects master secret key msk and broadcasts public
parameter pp and generates the secret keys of all of the
users and distributes the generated keys among them
through a secure and authenticated channel. Then the
data owner determines the search and access control
policy and encrypts the documents according to the
access control policy and generates a secure search index
according to the search policy and outsources them to
the cloud. Note that access and search control policy are
not necessarily equal. The detail are given in Table 3.
In Table 3, IEnc and IEnc′ respectively denote search and
access control policy.

• Retrieval phase: The data users Uj runs algorithm
stω∗,j ← TokenGen(SKUj

, ω∗) and send search to-
ken stω∗,j to the cloud. The cloud receives the
search token and runs algorithm {rslt, proof} ←
SearchIndex(stω∗,j,CPH) on the stored encrypted data
and returns user Uj the results of search. The data
user verifies the correctness of search results by running
algorithm {0, 1} := Verify(SKj, ω

∗, stω∗,j, rslt, proof).
If the results of search is valid and the cloud server
has founded some documents which are related to the
queried keyword, the data user decrypts the second part
of Cω∗ , i.e., CS∗ and choses the top ranked documents
and sends the cloud id(Fi1), . . . , id(Fik) to receive the
required documents.

By using verifiable ranked keyword search we can verify
the cloud performance and the integrity of stored messages and
received the most relevant documents to the queried keyword.
We can also reduce the communication cost because the cloud
doesn’t send the data users all of the documents which contain

Algorithm 5 Search index generation algorithm:
(Index, Dcph)← RankBuildIndex(PP, (KG,S), (IEnc, IEnc′))

Input: (PP,KG, IEnc)
Output: (Index, Dcph)
1: V0 =

{
ID1, ID2, . . . , IDt

}
2: V′

0 = H2(IEnc′) { IEnc′ is the access control policy.}

3: V =

{(
ID1,H0(ID1)

)
, . . . ,

(
IDt,H0(IDt)

)}
4: R

$← {0, 1}λ,M $← {0, 1}m
5: σKG ← MDVSig(MDVS.pp, Ṽ , R,MDVS.sks)
6: for 1 ≤ i ≤ |KG| do

7: IDωi
= H0(ωi)

8: Vi =

{(
ID1,H0(ωi)

)
, . . . ,

(
IDt,H0(ωi)

)}
9: C ′

ωi
← BroadEnc(BE.pp,Vi, R)

10: CSi
← BroadEnc(BE.pp,V′

0, Si) {Si ∈ S and S is
computed according to Table 3}

11: Cωi
:= C ′

ωi
||CSi

12: σCωi
← MDVSig(MDVS.pp,V0, Cωi

,MDVS.sks)
13: end for
14: BFKG ← BFGen({H ′

1, . . . , H
′
k},KG)

15: CBFKG
← BroadEnc(BE.pp,V0,M)

16: σCBFKG
← MDVSig(MDVS.pp,V0, CBFKG

,MDVS.sks)
17: BF′KG = M ⊕ BFKG

18: σBF′KG
← MDVSig(MDVS.pp,V0,BF′KG,MDVS.sks)

19: Dcph := (Cω1, . . . , Cωn, CBFKG
,BF′KG)

20: Index := (R, σKG, σCω1
, . . . , σCωn

, σCBFKG
, σBF′KG

)
21: return CPH := (Dcph, Index)

the queried keyword and just returns back the top-k most
relevant documents. The comparison of existing ranked keyword
search schemes is presented in Table 4. According to Table 4
all of the mentioned schemes in this table except our proposed
scheme need an interaction between the data owner and the
data users to share a secret key which is used for generating the
search trapdoors. In our scheme, the data users use their secret
key which are received form TA to generate the search tokens.
As a result of this situation, we can reduce the communication
overhead of ranked keyword search schemes.

7 Conclusion
In this paper, a new cryptographic notion which is called HIB-
MDVS was introduced and its security definition was defined
based on EF-CMA security game. Furthermore, a formal defini-
tion of HIBBE’s i.e., anonymity against chosen identity vector
set and chosen message attack, was presented. The first generic
construction for VABKS in a modular structure was also pro-
posed based on BF, HIBBE, and HIB-MDVS as the required
building blocks. Then, it was shown that the security of proposed
scheme is based on the unforgeability of HIB-MDVS and the
anonymity of HIBBE. We also used our generic construction to
construct a verifiable ranked keyword search as the example of
one application of our generic construction. The notable feature
of our proposed construction of verifiable ranked keyword search
is that it eliminates the interactions between the data owners
and users and this is important because we can reduce the
communication overhead of ranked keyword search schemes.
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TABLE 3
The detail of our proposed verifiable ranked keyword search which is constructed based on our proposed generic construction of VABKS.

Verifiable Ranked Keyword Search Using Proposed Generic Construction of VABKS

• Setup:

1. The TA runs setup algorithm (msk, pp) ← Setup(n) to generate public parameter pp and master secret key msk and broadcasts
pp. It also selects the symmetric encryption algorithm π : {C ← Encπ(m,K),m := Decπ(C,K)}.

2. The TA runs algorithm skUi
← KeyGen(IKeyGen,msk) and sends users Ui secret key skUi

through a secure and authenticated
channel.

3. The data owner extracts keyword group KG = {ω1, . . . , ωn} from document set Doc = {F1, . . . , Fm} and for each ωi ∈ KG,

a) builds F(ωi) = {Fij : ωi ∈ Fij}
b) for 1 ≤ j ≤ |F(ωi)|:

i) Calculating the score of file Fij which is denoted as Sij = Q(Fij, ωi). FunctionQ(., .) is used for computing the score
of file Fij .

ii) Si = {(Si1, id(Fij)), . . . , (Si|F(ωi)|, id(Fi|F(ωi)|))} (id(Fi) is the identifier of file Fi which is defined in Table 1. )

4. S := (S1, . . . , Sn)
5. (Index, Dcph)← RankBuildIndex(pp, (KG,S), (IEnc, IEnc′))
6. The data owner encrypts of documents Doc as follows:

a) V′
0 = H2(IEnc′)

b) KEncKey
$← {0, 1}λ, CKEnc

← BroadEnc(BE.pp,V′
0,KEnc)

c) ∀1 ≤ j ≤ m : CFj
= Encπ(Fj,KEnc)

d) DocCph := (CKEnc
, CF1

, . . . , CFm)

7. Outsources searchable ciphertext
(
(Index, Dcph),DocCph

)
• Retrieval:

1. stω∗,j ← TokenGen(SKUj
, ω∗)

2. Data user Uj sends the cloud generated search token stω∗,j
3. The cloud runs search algorithm {rslt, proof} ← SearchIndex(stω∗,j, (Index, Dcph))
4. The data user verifies the correctness of search result by running {0, 1} := Verify(SKj, ω

∗, stω∗,j, rslt, proof)
5. If the search result is valid and documents which contain ω∗ have found, then rslt = (Cω∗ = Cω∗||CS∗, R) and data user acts

as follows:

a) S∗ := BroadDec(BE.pp, CS∗,BE.skj)
b) Request to download the top-k relevant files with identifiers id(Fi1), . . . , id(Fik)
c) The cloud finds the encryption of files corresponding to identifiers id(Fi1), . . . , id(Fik) i.e., (CKEnc

, CFi1
, . . . , CFik

)

6. The data user who satisfies the access control policy can decrypt (CKEnc
, CFi1

, . . . , CFik
) as follows:

a) KEnc := BroadDec(BE.pp, CKEnc
,BE.skj)

b) ∀1 ≤ j ≤ k : Fi1 := Decπ(CFi1
,KEnc)

TABLE 4
The comparison of the existing ranked keyword search schemes.

References No interaction be-
tween data user
and data owner

Verifiability Multi
keywords
search

Fuzzy
search

Exact
search

Semantic
search

Provable
security

[37] 7 7 3 3 7 3 7
[32] 7 7 7 7 3 7 7
[36] 7 3 3 3 7 7 3
[35] 7 7 3 3 7 7 7
[39] 7 7 3 3 7 7 7
[34] 7 7 3 3 7 7 7
[38] 7 3 3 3 7 3 3
Ours 3 3 7 7 3 7 3
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