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Abstract.

Differential power analysis targets S-boxes to break ciphers that resist cryptanalysis.
We relax cryptanalytic constraints to lower S-box leakage, as quantified by the
transparency order. We apply genetic algorithms to generate 8-bit S-boxes, optimizing
transparency order and nonlinearity as in existing work (Picek et al. 2015). We apply
multiobjective evolutionary algorithms to generate a Pareto front. We find a tight
relationship where nonlinearity drops substantially before transparency order does,
suggesting the difficulty of finding S-boxes with high nonlinearity and low transparency
order, if they exist. Additionally, we show that the cycle crossover yields more efficient
single objective genetic algorithms for generating S-boxes than the existing literature.
We demonstrate this in the first side-by-side comparison of the genetic algorithms of
Millan et al. 1999, Wang et al. 2012, and Picek et al. 2015. Finally, we propose and
compare several methods for avoiding fixed points in S-boxes; repairing a fixed point
after evolution in a way that preserves fitness was superior to including a fixed point
penalty in the objective function or randomly repairing fixed points during or after
evolution.
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1 Introduction

Block ciphers are a versatile, foundational primitive within symmetric-key cryptogra-
phy. They underpin symmetric-key encryption schemes [Dwo01], message authentication
codes [Dwob], authenticated encryption schemes [Dwoa, Dwo07, Dwo10], and hash func-
tions [PGV93,BRSS10].

Internally, a block cipher often contains a sequence of mostly-identical rounds that
combine linear and nonlinear components. Many block ciphers provide nonlinearity by a
table lookup into a substitution box, or S-box. Block ciphers have built on S-boxes for 40
years, dating back to the Digital Encryption Standard and other early ciphers [Nat77]. Since
then, S-boxes have appeared in most Advanced Encryption Standard (AES) competition
entries [DR02,BAK98,Sch93,SKW 99, BCD 98, Mas93,Lim99, KMTMO0], ciphers based on
AES that maintain its S-box [JNP14, HKR15,Bor00,Nik14], lightweight ciphers using smaller
S-boxes [LPPS07,BCGT12,SMMK12,BKL*07], and more [DEMS14,BR00, ATK*00,Mer90].
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Proper S-box design requires careful analysis of conflicting features. First, the designer
must choose the size of the S-box, balancing cryptographic strength with performance.
Second, the S-box must resist mathematical cryptanalysis; at a minimum, it should have
high algebraic degree when expressed as a polynomial, and correlate poorly with any linear
function. Third, the S-box should be amenable to a hardware implementation that can
resist power-based side channel attacks [KJJ99]. Fourth, the S-box should lack any fized
points that might unravel the cipher’s round structure.

While our approach is size-agnostic, this paper focuses on 8-bit permutations such as
the S-box in AES and several other ciphers [Nat01, DR02,Mas93, KMTMO0]; these S-boxes
support practical speeds in hardware and software, yet their space of possibilities defies
exhaustive search. By contrast, the space of 4-bit permutations is enumerable—only 302
S-boxes exist up to affine equivalence [DCO7, pp. 88-94].

1.1 Related work

Researchers have been automatically generating S-boxes for a decade by using genetic
algorithms [MBC199, WWLL12,INN14, CF04]. Most of these approaches focused solely
on the cryptanalytic strength of the generated S-box while ignoring side channel attacks.

Side channel metrics. Two factors govern the strength of power-based side channel
attacks: the signal inherent in the cryptographic algorithm and the noise introduced by the
implementation. While one can measure the latter empirically on a test harness, designing
an objective function for a genetic algorithm requires analytical metrics. Transparency
order [CSMT15] captures how well differential power analysis (DPA) [KJJ99] will compute
the key given an infinite signal-to-noise ratio (SNR). In other words, it measures how
much an ideal distinguisher would leak through Hamming weight [CSM ™ 15]. Transparency
order is only well-defined for balanced functions, which suffices for permutations. Recently,
the confusion coefficient attempted to analytically capture the noise introduced by an
implementation [FLD12].

Transparency order indicates that highly nonlinear functions leak more than linear
functions. Correspondingly, prior works have demonstrated the difficulty of extracting
secret material from linear operations like xor via a power analysis attack [Jaf07, CMS™14].
Indeed, S-boxes provide the popular weak point to attack with power analysis.

Automatic generation of S-boxes. Picek et al. relaxed the cryptanalytic constraints to
design 8-bit S-boxes with improved side channel properties as measured by the original
transparency order and the confusion coefficient [PEB*14, PPE*14]. Note that in the
4-bit case they could simultaneously maximize both cryptanalytic and side channel prop-
erties [PEPT14]. When its authors redefined the transparency order to compensate for
oversights in the original definition [CSM*15], Picek et al. applied their genetic algorithms
approach to the corrected transparency order [PMMB15]. They asserted that “heuristics
like genetic algorithms are not appropriate” for larger (e.g., 8-bit) S-boxes. They found
that their approach on larger S-boxes generated worse values for nonlinearity and that the
modified transparency order took prohibitively long to evaluate.

Prior work either optimized a single criterion [MBC'99, WWLL12] or a weighted
sum of criteria [CF04, PEBT14, PPET14, PEPT 14, PMMB15]; which makes sense for
criteria of similar types, or when carefully weighting an understood trade-off. Work
that combined cryptanalytic and side channel properties failed to explore the trade-
off [PEB" 14, PPE*14, PEP 14, PMMB15], other than to provide loose bounds [MMS13].
Instead, it focused on generating a few S-boxes with superior properties.

Ivanov et al’s work on “reversed” genetic algorithms [INN14] applies multiple criteria
as thresholds, but evades direct comparison. In genetic algorithms, selection gradually



drives the population toward better individuals. Ivanov et al. define “acceptable” and
generate children until they obtain enough acceptable individuals. We consider this search
using several genetic operators instead of a genetic algorithm per se.

Theory of genetic algorithms. Foundational understanding of genetic algorithms arises
from schema theory: short, low-order, above-average schemata become exponentially more
prevalent [Hol68]. A schema is a template describing similarities at certain positions and
wildcards elsewhere. As good building blocks become more prevalent they lead to good
individuals, provided that the problem can be decomposed into relevant building blocks.

This building block concept applies when crossover is common and mutation is minimal,
as is traditionally recommended [DJ75]. For frequent, disruptive mutations (e.g., [PEB" 14,
PPE"14,PMMB15]) schema theory may no longer apply, because even short schema can
be frequently broken. In contrast, even when frequent, the swap mutation (Section 3)
preserves structure.

Fixed points. A fixed point through a round function can negate the security provided
by a multi-round cipher. Given flexibility, it seems prudent to avoid fixed points in
S-boxes, as Rijndael’s designers discuss [DR02]. Most previous work disregards fixed
points [MBCT99, CF04, WWLL12, MMS13,PEB*14, PPE* 14, PMMB15]. The exceptions
use affine transformations to remove them from 4-bit S-boxes [PEPT14] or check for them
in the final output [INN14]. Previous genetic algorithms work fails to include a fixed point
penalty in the objective function or repair fixed points.

1.2 Qur contributions

This paper makes four contributions. First, we describe the trade-off (empirically) between
nonlinearity and transparency order in 8-bit S-boxes. To accomplish this, we apply
multiobjective evolutionary algorithms to populate a Pareto front of S-boxes with high
nonlinearity and low transparency order. Multiobjective optimization is a mature approach
in genetic algorithms [DAPMO00,ZLT01], but we are the first to apply it to S-box generation.

Second, we find a more efficient genetic algorithm for generating S-boxes by drawing
from schema theory and choosing problem-relevant building blocks and genetic operators
that preserve and propagate them. To accomplish this, we are the first to apply the cycle
crossover [OSH87] to S-box generation.

Third, we provide the first side-by-side comparison of the genetic algorithms of Millan
et al. [MBC'99] (framework reused [CF04]), Wang et al. [WWLL12], and Picek et
al. [PMMB15] (same framework as in their other works [PEBT 14, PPE*14]). We evaluate
1,000 independent 12,000-evaluation runs of each algorithm. This reveals the efficiency
and expected performance of each algorithm. Existing work compares results with random
search, instead of with other existing work.

Fourth, we propose and compare several methods for finding S-boxes without fixed
points, such as including a fixed point penalty in the objective function or repairing fixed
points during and after evolution. Previous genetic algorithms work neglects to constrain
search to S-boxes that lack fixed points.

1.3 Organization

We structure the paper as follows: Section 2 investigates the empirical trade-off between
cryptanalytic and side channel properties. Section 3 introduces a new algorithm and
compares the efficiency of existing algorithms in generating S-boxes with good cryptanalytic
and side channel properties. Section 4 explores several ways to avoid fixed points and
investigates the impact of these approaches on other properties. Section 5 presents our
conclusions.



2 Trade-off Between Cryptanalytic and Side Channel Prop-
erties

2.1 Pareto front

We generate a Pareto front to display the empirical trade-off between transparency order
and nonlinearity. A Pareto front is the set of non-dominated individuals: for each
individual, no previously seen individual beats them under some criteria and equals
them under the remaining criteria. We populate this front with two multiobjective
genetic algorithms [DAPMO00, ZLT01] as implemented in the Distributed Evolutionary
Algorithms in Python toolbox [FDGT12]. SPEA2 and NSGA-II both primarily prefer
non-dominated individuals and secondarily prefer low density regions. SPEA2 considers
the set of individuals that dominate a solution and sums how many individuals each
member of the set dominates; 0 for non-dominated points, and high for points dominated
by many points or dominated by points that dominate many points. They estimate density
with the distance to the kth nearest point. They combine these preferences such that
being dominated always eclipses density. NSGA-II splits points by the front they belong
to, and then orders points belonging to the same front by density. They measure density
with distance to opposing neighbors along each objective. Past work has found that the
two approaches behave similarly [ZLTO01].

Rijndael variants score optimal cryptanalytic values, and affine functions score optimal
transparency order. Hence we seed these experiments with these individuals as well as
random ones; like Ivanov et al. [INN14], we start these optimizations in informed locations.
We used publicly available code for fast generation of Rijndael variant S-boxes [SV16]. We
apply the cycle crossover and swap mutation described in Section 3. The children result
from either crossover or mutation. The probability that a child is generated by crossover
is 0.7 and generated by mutation is 0.3. We apply a (u + A) evolutionary algorithm: it
selects the next generation from both the children and the parents. The population size is
20, and we run 1,000 independent trials each for 2,000 generations.

Specifically, we apply the Wilcoxon rank-sum test [Wil45] to determine whether SPEA2
and NSGA-II perform equivalently. We pair transparency order values based on nonlinearity
values (ignoring unpaired values). We find that SPEA2 performs slightly, but significantly
better (p < 0.001).

Figure 1 compares the multiobjective S-boxes with single objective S-boxes, manually
designed S-boxes, and random permutations. The Cycle data are generated as described
in Section 3 using the same crossover and mutation, but a single objective. The Picek
data, included from previous work [PMMB15], also depend on a single objective. Cycle,
the single objective equivalent of our multiobjective approach, covers less of the Pareto
front, but achieves better individuals on nonlinearity values where it produces results.

We also include the manually-designed 8-bit S-boxes from the AES [DR02], SAFER [Mas93],
Camellia [ATKT00], and E2 [KMTMO0] ciphers. The manually-designed S-boxes display
values similar to, but worse than the multiobjective S-boxes.

To identify typical values for random permutations, we generate 10,000 random permu-
tations and measure their transparency order and nonlinearity. The random permutations
concentrate tightly in the shaded area. As described in Section 3, the Picek and Cycle
algorithms start from a population of random permutations. While the results may be far
from the likely region relatively, they are near absolutely. That is, while in low probability
regions, they score similarly to random permutations.

2.2 Data requirements for linear cryptanalysis

To understand the cryptanalysis part of the trade-off, this section calculates the number
of plaintext/ciphertext pairs needed to break a cipher using linear cryptanalysis based on
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Figure 1: The Pareto front of the best individuals generated by the SPEA2 (blue dot)
and NSGA-II (blue circle) multiobjective genetic algorithms displays the trade-off between
transparency order and nonlinearity. Cycle (blue plus) and Picek et al. [PMMB15] (red
cross) provide single objective comparisons. Manually-designed 8-bit S-boxes from the
AES (green square), SAFER (orange triangle), Camellia (purple triangle), and E2 ciphers
(vellow diamond) provide additional comparisons. The most probable scores for random
permutations (gray region) also appear.



Table 1: Lower bound on the number of plaintext/ciphertext pairs D required to attack
an S-box with nonlinearity NL via linear cryptanalysis with 98% probability, assuming
that the cipher follows the round structure of AES.

NL | 112 86 75 64 54 44 24
D | 2300 9160 9128 9100 980 960 930

S-box nonlinearity. Notice that nonlinearity is a property of an S-box whereas resistance
to linear cryptanalysis is a property of the entire cipher. While there exist methods to
estimate the data requirements for general ciphers [BG09, BGT11], this section assumes
that the S-box is embedded in a cipher whose round structure matches AES so that we
may inherit the following theorem.

Theorem 1 (Wide-trail strategy). Let cg =1 — % denote the correlation between the
inputs and outputs of a given S-box, and let Cy denote the mazximum correlation contribution
of a linear trail through 4 rounds of the cipher. Then, Cy < c%.

Applying this theorem twice immediately yields a maximal correlation of C' < ¢’
through 8 rounds of the cipher. We assume generously that the remaining rounds of the
cipher cause no additional complications.

Next, let D denote the number of plaintext/ciphertext pairs at the attacker’s disposal.
Observe that linear cryptanalysis attempts to solve a system of linear equations that
is overconstrained (which is good for the attacker) but such that each equation is only
accurate with probability C' (which is bad for the attacker). Linear algebra shows that
the attacker requires D = O(C~2) plaintext/ciphertext pairs in order to solve this system

100
with constant probability [KR11, §8.2]. In particular, D > C~2 > (ﬁ) samples

suffice to solve the system with probability greater than 98%.

Concretely, Table 1 shows the nonlinearity required by an S-box in order to achieve
certain lower bounds on the data complexity of an attack. We observe that the high data
complexity bounds provide value to S-boxes whose nonlinearity is even worse than random,
justifying our multiobjective approach to study the entire Pareto front.

3 Algorithm Efficiency and S-box Quality

Genetic algorithms consist of three operations: selection according to fitness, crossover,
and mutation. Table 2 describes previous approaches’ choices for these operations. They
fall into the three general approaches of Millan et al. [MBC'99], Wang et al. [WWLL12],
and Picek et al. [PMMB15]. We substitute their fitness functions with that of Picek et
al. [PMMB15] for these experiments. Short descriptions of the operations follow; the
corresponding works present longer descriptions.

Selection Selection eliminates weaker individuals, strengthening future generations. The
relevant literature includes two selection methods. The first chooses the best k individuals
out of the population to survive. Millan et al. and Wang et al. select individuals in this
way. The second randomly selects three individuals without replacement; the better two
survive and reproduce such that their child replaces the worst of the three. Picek et al.
and Cycle select the best two of three for survival.

Crossover Crossover combines traits from multiple parents into children in structured,
randomized recombination. If two parents excel in independent ways, then a child might
inherent both and be exceptional. Partially matched crossover and order crossover are



Table 2: Previous genetic algorithm approaches for generating S-boxes. The literature
provides three existing frameworks. This work introduces the approach named Cycle.
Note that Millan et al. perform swap in a hybrid approach; their genetic algorithm lacks a
mutation step.

Approach Crossover Mutation  Fitness
Millan et al. ~ Assimilation (Swap) Nonlinearity or autocorrelation
[MBC*99)
[CFO04] Assimilation (Swap) Nonlinearity and difference unifor-
mity
Wang et al. Exchanges bits Swap Nonlinearity
[WWLL12] length 10
Picek et al. Partially matched Insert Nonlinearity and 2015 transparency
[PMMBI15] Order Inversion  order
[PEB*14] Partially matched  Insert Nonlinearity and 2005 transparency
Position-based Inversion  order
Order Swap
[PPE*14] Partially matched  Insert Nonlinearity and confusion coeffi-
Position-based Inversion  cient
Order
Cycle Cycle Swap Nonlinearity and 2015 transparency
(this work) order

classic crossovers for permutation individuals; the first respects absolute order, while the
second respects relative order. We used preexisting implementations of both [FDG*12].
Assimilation [MBC199] fills values into a child by choosing randomly between the parents
for each location. When the value from neither parent remains available (to maintain
bijectivity), a random unused value is chosen. Wang et al. exchange all the ith bits in one
parent for all the jth bits in the other parent.

The cycle crossover iteratively finds pairs of parental values by position to preserve
bijectivity [OSH87]. These cycles consider both parents, so they differ from cycles found
within a single permutation. This approach preserves a large amount of structure from
each parent. In fact, all structure comes from one of the parents. In contrast, assimilation
randomly chooses many later values when neither parental value remains available; this
introduces unrelated structure. Partially matched crossover exchanges chunks of values.
To compensate for differences in the value sets, reverse substitutions occur elsewhere. This
introduces structure unrelated to both parents. Order crossover preserves relative order
in a permutation by sliding entries; while sensible for the traveling salesman problem, it
makes less sense for S-boxes where the input-output mappings matter. Exchanging bits
requires extensive repair to achieve a permutation; this introduces unrelated structure.

Mutation Mutation is traditionally considered an insurance policy against the loss of
genetic material [Gol89]. A swap mutation replaces the values at two positions with each
other. It is possible to interchange sequences [WWLL12]. An insert mutation moves a
single value from one location to another, shifting other values to compensate. An inversion
mutation reverses the order of a sequence.



Table 3: Genetic algorithm parameters. We ran 1,000 independent trials for each algorithm.
These parameter choices approximate those of the original implementations, while reaching
12,000 evaluations.

Approach Parents Children Generations Mutation rate
Millan et al. [MBCT99] 10 45 267 -

Wang et al. [WWLL12] 10 40 300 0.5

Picek et al. [PMMBI15] 50 16 750 0.3

Cycle (this work) 20 6 2,000 0.3

3.1 Comparison of Genetic Algorithms

We implemented the three existing frameworks along with our own, and we tested them
as uniformly as possible. Table 2 lists the selection, crossover, and mutation type for
each algorithm. For homogeneity, we replaced the fitness functions with a single objective
summing nonlinearity and 2015 transparency order, as applied in Picek et al. [PMMB15].
Millan et al’s non-hybrid approach was used. For Wang et al., we replace the generation of
parameters from chaotic systems with pseudorandom numbers, as in the other algorithms.

Millan et al. prevented repeat individuals in the population pool. This traditional choice
prevents local optima from trapping the algorithm [Gol89]. We found that this improved
performance and applied it to all the algorithms. Table 3 describes the parameters for each
algorithm. Wang et al. generate 4,000 children each in more than 1,500 generations, which
we found infeasible for the measurement cost of the 2015 transparency order. Instead we
pull their number of evaluations into line with the others. While Picek et al. enable early
termination, we maintain a consistent number of generations. We run each algorithm to
reach 12,000 fitness function evaluations.

Figure 2 shows how the transparency order of the best individual in a run evolves over
time. The best individual in a population has the best fitness value (typically the best
transparency order of the individuals with the best nonlinearity). We measure time in
fitness function evaluations; generations would be unfair as the approaches differ in parent
populations and child ratios. For the 1,000 independent runs of each algorithm, we show
the median and range. The range indicates the best and worst values of the 1,000 best
individuals. The Cycle approach outperforms existing approaches at quickly reducing the
transparency order. The best runs of Millan near the median runs for Cycle. The best runs
for Picek and Wang reach the worst runs for Cycle. The small increases in transparency
order for Picek and Millan correspond to increases in nonlinearity.

Figure 3 shows how efficiently the algorithms improve nonlinearity. The coarse-grained
structure of nonlinearity leads us to evaluate performance differently. The algorithms
achieved few nonlinearity values, the best of which was 100. We consider all runs, of
1,000, that reach a nonlinearity of 100." We rank the runs within an algorithm, such that
we compare the most efficient runs with each other, the second most efficient runs with
each other, and so forth. Wang failed to achieve a nonlinearity of 100. Cycle and Millan
consistently outperform Picek. While less efficient than Cycle, more Millan runs achieve a
nonlinearity of 100. Note that our later comparison between Cycle and Millan changes
when we consider more individuals per run and exclude S-boxes with fixed points.

Figures 2 and 3 indicate how efficiently an algorithm achieves a good solution. The
efficiency figures describe the strength of the best individual over time. Some applications
may require a large pool of good individuals. Now, we compare the distributions of good
individuals generated by each algorithm.

ITechnically we measure when the best individual reaches a nonlinearity of 100, but these are equivalent
given the fitness function and our knowledge of the pareto front.
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Figure 2: Transparency order of best individual as a function of number of evaluations
(lower is better). The median of 1,000 independent runs (line) appears, as well as the
minimum and maximum (shaded region). The Cycle approach outperforms existing
approaches at reducing the transparency order.
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Figure 3: Number of evaluations until a run produces a nonlinearity of 100. We sort runs
by rank, comparing the most efficient runs, the second most efficient runs, and so forth.
Out of 1,000 runs, we only show those that reach a nonlinearity of 100. Cycle consistently
outperforms Picek. While less efficient than Cycle, more Millan runs achieve a nonlinearity
of 100. Lower is more efficient.
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Figure 4: Transparency order histograms of four genetic algorithms. We include the 20
best observed individuals per run for 1,000 runs, excluding duplicates and S-boxes with
fixed points. Farther left is better.

We collect the hall of fame, or 20 best individuals observed over a full evolution, from
each of 1,000 independent runs. As the algorithms have as similar as possible number of
evaluations? we find comparing the halls of fame fair. This produces 20,000 individuals
per algorithm. We remove S-boxes with fixed points as unusable and remove duplicates to
prevent double counting. We compare the halls of fame instead of the full final population.
Genetic algorithms often explore bad search regions, which enables escape from local
optima. We evaluate on the halls of fame to avoid penalizing this behavior.

Figure 4 shows the transparency order distributions of the halls of fame for the four
algorithms tested. Cycle produces individuals with lower transparency orders than the
other approaches. Millan produces the second best transparency orders, but the values
exhibit a large spread. The best individuals produced by Picek and Wang are no better
than the worst members of Cycle’s halls of fame in transparency order.

Figure 5 shows the nonlinearity distributions of the halls of fame for the four algorithms.
Cycle produces more hall of fame individuals with nonlinearity 100 than Millan, in contrast
to runs (Figure 3). Millan produces more nonlinearity 100 individuals than Picek. As
Wang failed to produce nonlinearity 100 runs, it lacks such individuals in its halls of fame.
Wang performed strikingly worse than the other algorithms, often having nonlinearity 96,
instead of 98.

To determine whether the differences observed in Figures 4 and 5 are statistically
significant, we apply the Mann-Whitney U test [MW47]. This test enable us to determine
whether an algorithm produces better values than another when the distributions are
non-normal and discrete. To minimize the number of statistical tests we do, we compare
closer distributions with each other. Cycle has a lower transparency order than Millan
(p < 0.001), which has a lower transparency order than Picek (p < 0.001), which has
a lower transparency order than Wang (p < 0.001). Cycle has a higher nonlinearities
than Millan and Picek (p = 0.01, p < 0.001), which have higher nonlinearities than Wang

2Millan et al. has 12,015 instead of 12,000.
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Figure 5: Nonlinearity histograms of four genetic algorithms. We include the 20 best
observed individuals per run for 1,000 runs, excluding duplicates and S-boxes with fixed
points. More Cycle individuals reach a nonlinearity of 100. Farther right is better.

(p < 0.001, p < 0.001). Millan has higher nonlinearities than Picek, but the difference
lacks statistical significance (p = 0.08).

4 Mitigating Fixed Points

A fixed point through a round function can break the security of a multi-round cipher.
This section considers how to proactively avoid fixed points in S-boxes.

When generating S-boxes without regard for fixed points, we found that few S-boxes
were free from (anti-)fixed points. Millan et al. yielded 14% of S-boxes without (anti-)fixed
points, Wang et al. yielded 13%, Picek et al. yielded 14%, and Cycle yielded 15%. These
results are no better than chance, since a uniformly-chosen 8-bit permutation lacks fixed
points with probability 0.134 [SV16]. This section considers strategies for improving the
yield, while attempting to maintain the other properties.

We compare four approaches to avoiding fixed points and anti-fixed points in S-boxes.
The first approach, Objective, places a penalty in the fitness function. The second approach,
Tterative, repairs fixed points directly (similar to bijectivity repair [WWLL12]). Specifically,
we repair (anti-)fixed points by permuting values when there are multiple points. When
there is a single fixed point or two fixed points that are the two’s complements we add
a random value into the exchange. We repeat until there are no fixed points. The third
approach, Final random, repairs fixed points in the same way but only at the end of the
evolution, instead of in every generation. The fourth approach, Final single, repairs single
fixed points at the end of the evolution, choosing the best swap of the fixed point value.
We built upon the Cycle approach, which we found most performant in Section 3.

We compare the halls of fame for Cycle, Objective, and Iterative. This produces 20,000
individuals per algorithm, except that we remove duplicates to prevent double counting
and remove S-boxes with fixed points. For Final random and Final single we repair S-boxes
from the Cycle halls of fame.

11
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Figure 6: Transparency order histograms for Cycle and four approaches to avoiding fixed
points. We restrict to S-boxes without fixed points. Farther left is better.

For these approaches we measure the number of fixed points, the transparency order,
and the nonlinearity. We find 15% of the Cycle hall of fame S-boxes free of fixed points. All
four repair approaches unsurprisingly reduce the number of fixed points; 98% of Objective,
100% of Tterative, 100% of Final random, 39% of Final single S-boxes were free of fixed
points. Iterative and Final random lack fix points because they remove all fixed points.
Final single removes the single fixed point from and S-box and ignores S-boxes with more
fixed points. Specifically, we search for the best value to swap; this could be considered
the Millan et al. hybrid approach applied to fixed points. Objective selects for S-boxes
without fixed points, but they remain possible given the other components of the objective
function.

Figure 6 shows the histograms for transparency order. The bin count records the
yield out of 20,000 individuals at a particular transparency order value. We test whether
the distributions differ for two approaches with the Mann-Whitney U test [MW47]. We
find that Final single has lower transparency orders than Cycle (p < 0.001), which has
lower transparency orders than Iterative (p = 0.005), which has lower transparency orders
than Objective (p < 0.001), which has lower transparency orders than Final random
(p < 0.001).

Figure 7 displays the nonlinearity histograms for each approach. We find no statistical
difference between the nonlinearities of Cycle and Final single (p = 0.27) or the nonlineari-
ties of Objective and Iterative (p = 0.16). We find Cycle and Final single to have higher
nonlinearities than Objective (p = 0.01, p = 0.01) and Iterative (p = 0.003, p < 0.001),
which have higher nonlinearities than Final random (p < 0.001, p < 0.001). These values
are statistically significant under the Holm-Bonferroni correction.

These tests compare the distributions, but ignore the yield. Inspection of the figures
reveals that if a higher yield is needed than Cycle provides, then Final single should be
used. If a much larger yield is needed, then Iterative should be used.

Like Cycle, Objective makes 12,000 fitness evaluations per run, but on an objective
function that includes a penalty for fixed points. Iterative performs the same number of
evaluations, but S-boxes with fixed points undergo random swaps until free of fixed points.
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Figure 7: Nonlinearity histograms for Cycle and four approaches to avoiding fixed points.
We restrict to S-boxes without fixed points. Farther right is better.

The approaches that repair at the end build upon a preexisting hall of fame. The random
repair approach makes no additional evaluations. The single repair approach makes 254
evaluations per individual with a single fixed point (which accounted for 25% of the hall
of fame).

5 Conclusion

This research aimed to take a rigorous approach to evolving 8-bit S-boxes with good
cryptanalytic and differential power analysis (DPA) properties.

We estimated the trade-off between nonlinearity and transparency order and represented
it as a Pareto front. To accomplish this, we were the first to apply multiobjective
evolutionary algorithms to S-box generation. We found SPEA2 to perform slightly better
than NSGA-II. The multiobjective algorithms produced solutions superior to manually
designed S-boxes (AES, SAFER, Camellia, and E2). Random permutations attained a
narrow range of transparency orders. We observed a tight relationship between nonlinearity
and transparency order; the nonlinearity drops substantially before the transparency order
does. Unfortunately, this suggests the difficulty of finding S-boxes with high nonlinearity
and low transparency order, if they exist.

We showed that the cycle crossover together with the swap mutation yields more
efficient genetic algorithms for generating S-boxes, both in number of good solutions and
speed to attain them. We demonstrated the efficiency of the cycle crossover in the first
side-by-side comparison of the genetic algorithms of Millan et al. [MBCT99], Wang et
al. [WWLL12], and Picek et al. [PMMB15]. The cycle crossover outperformed Millan,
which outperformed Picek, which outperformed Wang.

We proposed and compared several methods for finding S-boxes without fixed points.
We found that swapping a single fixed point with the best value on the final S-box produces
the best S-boxes, while random swaps to remove fixed points at the end produce the
worst S-boxes. Repairing fixed points during evolution or including a fixed point penalty
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in the objective function produced a higher yield of good S-boxes, but a worse overall
distribution.

We propose two directions for future work. First, our multiobjective evolutionary
algorithm should be extended to capture several cryptanalytic metrics simultaneously;
concretely, we plan to add support for delta uniformity and autocorrelation resistance.
Second, extending transparency order (which represents noiseless measurements) with an
analytical framework for noise would enable an argument about the relative impact of
collecting an additional trace versus capturing an extra plaintext/ciphertext pair, so that
the defender may have concrete guidance about the appropriate S-box to choose along the
Pareto front.
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