
Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts

Pierrick Méaux1, Anthony Journault2, François-Xavier Standaert2, Claude Carlet3.

1 INRIA, CNRS, ENS and PSL Research University, Paris, France.
2 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.

3 LAGA, Department of Mathematics, University of Paris VIII and University of Paris XIII, France.

Abstract. Symmetric ciphers purposed for Fully Homomorphic Encryption (FHE) have recently been proposed
for two main reasons. First, minimizing the implementation (time and memory) overheads that are inherent to
current FHE schemes. Second, improving the homomorphic capacity, i.e. the amount of operations that one can
perform on homomorphic ciphertexts before bootstrapping, which amounts to limit their level of noise. Existing
solutions for this purpose suggest a gap between block ciphers and stream ciphers. The first ones typically allow
a constant but small homomorphic capacity, due to the iteration of rounds eventually leading to complex Boolean
functions (hence large noise). The second ones typically allow a larger homomorphic capacity for the first ciphertext
blocks, that decreases with the number of ciphertext blocks (due to the increasing Boolean complexity of the stream
ciphers’ output). In this paper, we aim to combine the best of these two worlds, and propose a new stream cipher
construction that allows constant and small(er) noise. Its main idea is to apply a Boolean (filter) function to a public
bit permutation of a constant key register, so that the Boolean complexity of the stream cipher outputs is constant.
We also propose an instantiation of the filter function designed to exploit recent (3rd-generation) FHE schemes,
where the error growth is quasi-additive when adequately multiplying ciphertexts with the same amount of noise. In
order to stimulate further investigation, we then specify a few instances of this stream cipher, for which we provide
a preliminary security analysis. We finally highlight the good properties of our stream cipher regarding the other
goal of minimizing the time and memory complexity of calculus delegation (for 2nd-generation FHE schemes). We
conclude the paper with open problems related to the large design space opened by these new constructions.

1 Introduction

Purpose: calculus delegation. Recent years have witnessed massive changes in communication technolo-
gies, that can be summarized as a combination of two trends: (1) the proliferation of small embedded devices
with limited storage and computing facilities, and (2) the apparition of cloud services with extensive storage
and computing facilities. In this context, the outsourcing of data and the delegation of data processing gains
more and more interest. Yet, such new opportunities also raise new security and privacy concerns. Namely,
users typically want to prevent the server from learning about their data and processing. For this purpose,
Gentry’s breakthrough Fully Homomorphic Encryption (FHE) scheme [Gen09] brought a perfect conceptual
answer. Namely, it allows applying processing on ciphertexts in a homomorphic way so that after decryption,
plaintexts have undergone the same operations as ciphertexts, but the server has not learned anything about
these plaintexts.1

Application scenario. Cloud services can be exploited in a plethora of applications, some of them surveyed
in [NLV11]. In general, they are always characterized by the aforementioned asymmetry between the
communication parties. For illustration, we start by providing a simple example where data outsourcing
and data processing delegation require security and privacy. Let us say that a patient, Alice, has undergone

1 In the remaining of the paper, and when not specified otherwise, the term FHE will also be used for related schemes such as
Leveled HE, SomeWhat HE, Scalable HE, etc.

a surgery and is coming back home. The hospital gave her a monitoring watch (with limited storage) to
measure her metabolic data on a regular basis. And this metabolic data should be made available to the
doctor Bob, to follow the evolution of the post-surgery treatment. Quite naturally, Bob has numerous patients
and no advanced computing facilities to store and process the data of all his patients. So this is a typical case
where sending the data to a cloud service would be very convenient. That is, Alice’s data could be sent to
and stored on the cloud, and associated to both her and the doctor Bob. And the cloud would provide Bob
with processed information in a number of situations such as when the metabolic data of Alice is abnormal
(in which case an error message should be sent to Bob), or during an appointment between Alice and Bob,
so that Bob can follow the evolution of Alice’s data (possibly after some processing). Bob could in fact even
be interested by accessing some other patient’s data, in order to compare the effect of different medications.
And of course, we would like to avoid the cloud to know anything about the (private) data it is manipulating.

Typical Framework. More technically, the previous exemplary application can be integrated in a quite
general cloud service application framework, that can be seen as a combination of 5 steps, combining
a symmetric encryption scheme and an asymmetric homomorphic encryption scheme, as summarised in
Figure 1 and described next:

1. Initialization. Alice runs the key generation algorithms H.KeyGen and S.KeyGen of the two schemes,
and sends her homomorphic public key pkH and the homomorphic ciphertext of her symmetric key
CH(skSi).

2. Storage. Alice encrypts her data mi with the symmetric encryption scheme, and sends CS(mi) to
Claude.

3. Evaluation. Claude homomorphically evaluates, with the H.Eval algorithm, the decryption CH(mi) of
the symmetric scheme on Alice’s data CS(mi).

4. Computation. Claude homomorphically executes the treatment f on Alice’s encrypted data.
5. Result. Claude sends a compressed encrypted result of the data treatment cH(f(mi)), obtained with the
H.Comp algorithm, and Alice decrypts it.

Note that if we assume the existence of a trusted third party active only during the initialization step, Alice
can avoid Step 1, which needs a significant computational and memory storage effort. Note also that this
framework is versatile: computation can be done in parallel (in a batch setting) or can be turned into a secret
key FHE.

FHE bottlenecks. The main limitation for the deployment of cloud services based on such FHE frameworks
relates to its important overheads, that can be related to two main concerns: computational and memory costs
(especially on the client side) and limited homomorphic capacity (i.e. noise increase). More precisely:

– The computational and memory costs for the client depend overwhelmingly on the homomorphic
encryption and decryption algorithms during the steps 1 and 5. The memory cost is mostly influenced
by the homomorphic ciphertexts and public key sizes. Solving these two problems consists in building
size-efficient FHE schemes with low computational cost [HS14, KGV14]. On the server side, this
computational cost further depends on the symmetric encryption scheme and function to evaluate.

– The homomorphic capacity relates to the fact that FHE constructions are built on noise-based
cryptography, where the unbounded amount of homomorphic operations is guaranteed by an expensive
bootstrapping technique. The homomorphic capacity corresponds to the amount of operations doable

1

Alice Claude

(skH , pkH)← H.KeyGen(λ)

1: Initialization skS ← S.KeyGen(λ)

CH(skSi) = H.Enc(skSi , pk
H)

CH(skSi), pk
H

−−−−−−−−−→ CH(skSi), pk
H

2: Storage CS(mi) = S.Enc(mi, sk
S)

CS(mi)−−−−−−−−−→ CS(mi)

CH(mi)

3: Evaluation =

H.Eval(S.Dec(CS(mi),C
H(skSi), pk

H)

4: Computation f
f−−−−−−−−−→ CH(f(mi)) = H.Eval(f(CH(mi))

cH(f(mi)) = H.Comp(CH(f(mi)))

5: Result cH(f(mi))
cH(f(mi))←−−−−−−−−−

f(mi) = H.Dec(cH(f(mi)), sk
H)

Fig. 1. Homomorphic Encryption - Symmetric Encryption framework. H and S respectively refer to
homomorphic and symmetric encryption schemes, for algorithms (e.g. H.KeyGen) or scheme components
(e.g. skS).

before the noise growing too much forcing to use bootstrapping. Therefore, and in order to reduce the
time and computational cost of the framework, it is important to manage the error growth during the
homomorphic operations (i.e. steps 3 and 4). Furthermore, since the 4th step is the most important one
from the application point-of-view (since this is where the useful operations are performed by the cloud),
there is strong incentive to minimize the cost of the homomorphic decryption in the 3rd step.

Previous works. In order to mitigate these bottlenecks, several works tried to reduce more and more the
homomorphic cost of evaluating a symmetric decryption algorithm. First attempts in this direction, which
were also used as benchmark for FHE implementations, used the AES for this purpose [GHS12, CLT14].
Various alternative schemes were also considered, all with error and sizes depending on the multiplicative
depth of the symmetric encryption scheme, such as BGV [BGV12] and FV [FV12]. Additional optimizations
exploited batching and bitslicing, leading to the best results of performing 120 AES decryptions in 4
minutes [GHS12].

Since the multiplicative depth of the AES decryption evaluation was a restrictive bound in these works,
other symmetric encryption schemes were then considered. The most representative attempts in this direction
are the family of block ciphers LowMC [ARS+15] and the stream cipher Kreyvium [CCF+15]. These
constructions led to reduced and more suitable multiplicative depths. Yet, and intuitively, these attempts
were still limited by complementary drawbacks. First for LowMC, the remaining multiplicative depth

2

remains large enough to significantly reduce the homomorphic capacity (i.e. increase the noise). Such a
drawback seems to be inherent in block cipher structures where the iteration of rounds eventually leads to
Boolean functions with large algebraic degree, which inevitably imply a constant per block but high noise
after homomorphic evaluation. For example, ciphers dedicated to efficient masking against side-channel
attacks [PRC12, GLSV14, GGNS13], which share the goal of minimizing the multiplicative complexity,
suffer from similar issues and it seems hard to break the barrier of one multiplication per round (and
therefore of 12 to 16 multiplications for 128-bit ciphers). Second for Kreyvium, the error actually grows
with the number of evaluated ciphertexts, which implies that at some point, the output ciphertexts are too
noisy, and cannot be decrypted (which requires either to bootstrap or to re-initialize the stream cipher).

Our contribution. In view of this state-of-the-art, a natural direction would be to try combining the best
of these two previous works. That is, to design a cipher inheriting from the constant noise property offered
by block ciphers, and the lower noise levels of stream ciphers (due to the lower algebraic degree of their
outputs), leading to the following contributions.

First, we introduce a new stream cipher construction, next denoted as a filter permutator (by analogy
with filter generators). Its main design principle is to filter a constant key register with a variable (public)
bit permutation. More precisely, at each cycle, the key register is (bit) permuted with a pseudorandomly
generated permutation, and we apply a non-linear filtering function to the output of this permuted key
register. The main advantage of this construction is to always apply the non-linear filtering directly on
the key bits, which allows maintaining the noise level of our outputs constant. Conceptually, this type of
construction seems appealing for any FHE scheme.

Second, and going deeper in the specification of a concrete scheme, we discuss the optimization
of the components in a filter permutator, with a focus on the filtering function (which determines the
output noise after homomorphic evaluation). For this purpose, we first notice that existing FHE schemes
can be split in (roughly) two main categories. On one hand the so-called 2nd-generation FHE (such
as [BGV12, CLT14]) where the metric for the noise growth is essentially the multiplicative depth of
the circuit to homomorphically evaluate. On the other hand, the so-called 3rd-generation FHE (such
as [GSW13, AP14]) where the error growth is asymmetric, and in particular quasi-additive when considering
a multiplicative chain. From these observations, we formalize a comb structure which can be represented as
a (possibly long) multiplicative chain, in order to take the best advantage of 3rd-generation FHE schemes.
We then design a filtering function based on this comb structure (combined with other technical ingredients
in order to prevent various classes of possible attacks against stream ciphers) and specify a family of filter
permutators (called FLIP).

Third, and in order to stimulate further investigations, we instantiate a few version of FLIP designs, for
80-bit and 128-bit security. We then provide a preliminary evaluation of their security against some of the
prevailing cryptanalysis from the open literature – such as (fast) algebraic attacks, (fast) correlation attacks,
BKW-like attacks [BKW03], guess and determine attacks, etc. – based on state-of-the-art tools. We also
analyze the noise brought by their filtering functions in the context of 3rd-generation FHE. In this respect,
our main result is that we can limit the noise after the homomorphic evaluation of a decryption to a level
of the same order of magnitude as for a single homomorphic multiplication - hence essentially making the
impact of the symmetric encryption scheme as small as possible.

We finally observe that our FLIP designs have a very reduced multiplicative depth, which makes
them suitable for 2nd-generation FHE schemes as well, and provide preliminary results of prototype

3

implementations using HElib that confirm their good behavior compared to state-of-the-art block and stream
ciphers designed for efficient FHE.

Overall, filter permutators in general and FLIP instances in particular open a large design space of
new symmetric constructions to investigate. Hence, we conclude the paper with a list of open problems
regarding these algorithms, their best cryptanalysis, the Boolean functions used in their filter and their
efficient implementation if concrete applications.

2 Background

2.1 Boolean functions

In this section, we recall the cryptographic properties of Boolean functions that we will need in the rest of
the paper (mostly taken from [Car10]).

Definition 1 (Boolean Function). A Boolean function f with n variables is a function from Fn2 to F2. The
set of all Boolean functions in n variables is denoted by Bn.

Definition 2 (Walsh Transform). Let f ∈ Bn a Boolean function. Its Walsh Transform Wf at a ∈ Fn2 is
defined as:

Wf(a) =
∑
x∈Fn2

(−1)f(x)+〈a,x〉,

where 〈a, x〉 denotes the inner product in Fn2 .

Definition 3 (Balancedness). A Boolean function f ∈ Bn is said to be balanced if its outputs are uniformly
distributed over {0, 1}.

Definition 4 (Non-linearity). The non-linearity NL of a Boolean function f ∈ Bn, where n is a positive
integer, is the minimum Hamming distance between f and all the affine functions g:

NL(f) = min
g
{dH(f, g)},

with dH(f, g) = #{x ∈ Fn2 | f(x) 6= g(x)} the Hamming distance between f and g. The non-linearity of a
Boolean function can also be defined by its Walsh Transform:

NL(f) = 2n−1 −
1

2
max
a∈Fn2

|Wf(a)|.

Definition 5 (Resiliency). A Boolean function f ∈ Bn is said m-resilient if any of its restrictions obtained
by fixing at most m of its coordinates is balanced. We will denote by res(f) the resiliency m of f and set
res(f) = −1 if f is unbalanced.

Definition 6 (Algebraic Immunity). The algebraic immunity of a Boolean function f ∈ Bn, denoted as
AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f ⊕ 1)g = 0},

where deg(g) is the degree of g. The function g is called an annihilator of f (or (f ⊕ 1)).

4

Definition 7 (Fast Algebraic Immunity). The fast algebraic immunity of a Boolean function f ∈ Bn,
denoted as FAI(f), is defined as:

FAI(f) = min{2AI(f), min
1≤deg(g)<AI(f)

(max[deg(g) + deg(fg), 3deg(g)])}.

Summarizing, the good balancedness, non-linearity and resiliency properties have to be ensured to
widthstand correlation attacks [Sie85] and fast correlation attacks [MS88]. The high algebraic immunity
and fast algebraic immunity have to be ensured to widthstand algebraic attacks [CT15].

2.2 (Ring) Learning With Errors

In this section, we recall useful notations and definitions needed about the decisional LWE problem and its
ring variation. For an integer modulus q, we denote by Zq the quotient ring of integers modulo q. We denote
vectors with bold letters e and matrices with bold capital letters A. The notation s ←$ S (resp. s ←$ χ)
denotes that s is picked uniformly at random from a finite set S (resp. from a distribution χ).

The decisional Learning With Error problem (dLWE) was introduced by Regev [Reg05].

Definition 8 (dLWE). For an integer q = q(n) ≥ 2, an adversary A and an error distribution χ = χ(n)

over Zq, we define the following advantage function:

Adv
dLWEn,m,q,χ
A := |Pr[A(A, z0) = 1]− Pr[A(A, z1) = 1]|,

where

A←$ Zn×mq , s←$ Znq , e←$ χ
m, z0 := s>A+ e> and z1 ←$ Zmq .

The dLWEn,m,q,χ assumption asserts that for all PPT adversaries A, the advantage Adv
dLWEn,m,q,χ
A is a

negligible function in n.

The ring variant was introduced by Lyubashevsky, Peikert and Regev in [LPR10].

Definition 9 (dR-LWE). For a polynomial ring R = Z[X]/f(X) with f of degree n, an integer q ≥ 2, an
adversary A and an error distribution χ over Rq = R/qR, R∨ being R dual fractional ideal, we define the
following advantage function:

Adv
dRLWER,q,χ

A := |Pr[A(a, z0) = 1]− Pr[A(a, z1) = 1]|,

where
a←$ Rq, s←$ R

∨
q , e←$ χ, z0 := a · s+ e and z1 ←$ R .

With f(X) a cyclotomic polynomial, the dRLWER,q,χ assumption asserts that for all PPT adversaries A,
the advantage Adv

dRLWER,q,χ

A is a negligible function in n.

For our constructions, we need to take the distribution χ as a subgaussian random variable which we
define hereafter. More details about the subgaussian distribution and the lemmas’ proof can be found in
[AP14, Ver10].

5

Definition 10 (Subgaussian Random Variables). Let X be a random variable. We say X is subgaussian
with parameter σ if there exists σ such that:

∀t ∈ R,E[etX] ≤ eσ2t2/2,

where E[etX] is the moment generating function of X .

Lemma 1 (Subgaussian Random Variables properties). Let X , X ′ be independent subgaussian random
variables of parameter σ and σ′ respectively. Assuming E(X) = E(X ′) = 0 we have the following
properties:

– Tails: ∀t ≥ 0 we have Pr[|X| ≥ t] ≤ 2e−πt
2/σ2

.
– Homogeneity: ∀c ∈ R, cX is subgaussian with parameter |c|σ.
– Pythagorean additivity: X +X ′ is subgaussian with parameter

√
σ2 + σ′2.

We extend the notion of subgaussianity to vectors and polynomials. Since the coefficients of a
polynomial are seen as a vector, we call subgaussian vector of parameter σ a vector where each coefficient
follows an independent subgaussian distribution with parameter σ.

Lemma 2 (Subgaussian Vector Norm, adapted from [AP14], Lemma 2.1). Let x ∈ Rn be a random
vector where each coordinates follows an independent subgaussian distribution of parameter σ. Then for
some universal constant C > 0 we have Pr [||x||2 > Cσ

√
n] ≤ 2−Ω(n) and therefore ||x||2 = O(σ

√
n).

2.3 Fully Homomorphic Encryption

In this section we recall the definition of (Fully) Homomorphic Encryption and present the Homomorphic
Encryption schemes we will use, both based on GSW [GSW13].

Definition 11 (Homomorphic Encryption Scheme). LetM be the plaintext space, C the ciphertext space
and λ the security parameter. A homomorphic encryption scheme consists of four algorithms:

– H.KeyGen(1λ). Output pkH and skH the public and secret keys of the scheme.
– H.Enc(m, pkH). From the plaintext m ∈M and the public key, output a ciphertext c ∈ C.
– H.Dec(c, skH). From the ciphertext c ∈ C and the secret key, output m′ ∈M.
– H.Eval(f, c1, · · · , ck, pkH). With ci = H.Enc(mi, pk

H) for 1 ≤ i ≤ k, output a ciphertext cf ∈ C such
that H.Dec(cf) = f(m1, · · · ,mk).

A homomorphic encryption scheme is called a Fully Homomorphic Encryption (FHE) scheme when
f can be any function and |C| is finite. A simpler primitive to consider is the SomeWhat Homomorphic
Encryption (SWHE) scheme, where f is restricted to be any univariate polynomial of finite degree.

Since the breakthrough work of Gentry [Gen09], the only known way to obtain FHE consists in adding
a bootstrapping technique to a SWHE. As bootstrapping computational cost is still expensive in comparison
to the other FHE algorithms, in the following part of the article we will only consider SWHE for our
applications.

6

GSW Homomorphic Encryption Scheme. In 2013, Gentry, Sahai and Waters [GSW13] introduced a
Homomorphic Encryption scheme based on LWE using a new technique stemming from the approximate
eigenvector problem. This new technique led to a new family of FHE, called 3rd-generation FHE, consisting
in Homomorphic Encryption schemes such that the multiplicative error growth is quasi-additive. Hereafter,
we present two schemes belonging to this generation, the first one with security based on dLWE and the
second one based on dRLWE. We first set some useful notations considering the different schemes.

For a matrix E we refer to the i-th row as e>i and to the j-th column as ej . The log q notation refers to
the logarithm in base 2 of q. The notation [a]q is for a mod q and b[a]qe2 ∈ {0, 1} is a function in a ∈ Zq
giving 1 if b q4c ≤ a ≤ b3q4 c mod q and 0 otherwise. We denote by [n] the set of integers {1, · · · , n}. We
finally use |x| and ||x||2 for the standard norms 1 and 2 on vectors x ∈ Rn.

Batched GSW. This scheme is a batched version of GSW presented in [HAO15], enabling to pack
independently r plaintexts in one ciphertext. From the security parameter λ and the considered applications,
we can derive the parameters n, q, r, χ of the scheme described below.

H.KeyGen(n, q, r, χ). On inputs the lattice dimension n, the modulus q, the number of bits by ciphertext r
and the error distribution χ do:

– Set ` = dlog qe, m = O(n`), N = (r + n)`,M = {0, 1}r and C = Z(r+n)×N
q .

– Pick A←$ Zn×mq , S′ ←$ χ
r×n and E←$ χ

r×m.

– Set S = [I| − S′] ∈ Zr×(r+n)q and B =

[
S′A+E

A

]
q

∈ Z(r+n)×m
q .

– For all m ∈ {0, 1}r:
• Pick Rm ←$ {0, 1}m×N .

• Set Pm =

BRm +


m1 · s>1

...

mr · s>r
0

G


q

∈ Z(r+n)×N
q .

with s>i the i-th row of S and G = (20, · · · , 2`−1)> ⊗ I ∈ Z(r+n)×N
q .

– Output pkH := ({Pm},B) and skH := S.

H.Enc(pkH ,m). On input pkH , and m ∈ {0, 1}r, do:

– Pick R←$ {0, 1}m×N , and output C = [BR+Pm]q ∈ Z(r+n)×N
q .

H.Dec(C, skH). On input the secret key skH , and a ciphertext C, do:

– For all i ∈ [r] : m′i = b[〈s>i , ci`〉]qe2 where cil is the column i` of C.
– Output m′1, · · · ,m′r ∈ {0, 1}r.

Note that SC = SBR+ SPm = ER+ERm +


m1 · s>1

...

mr · s>r

G = E′ +


m1 · s>1

...

mr · s>r

G.

7

The H.Eval algorithm finally consists in iterating, following a circuit f , the homomorphic operations
H.Add and H.Mul:

– H.Add(C1,C2) : C+ = C1 +C2.
– H.Mul(C1,C2) : C× = C1×G−1C2 with G−1 a function such that ∀C ∈ Z(r+n)×N

q ,GG−1(C) =

C and the values of G−1(C) follow a subgaussian distribution with parameter O(1) (see [MP12] for
the existence and proof of G−1).

The correctness and security of this scheme are proven in Appendix A.

Remark 1. For practical use, we only need to store r + 1 matrices Pm, namely the r + 1 ones with m of
hamming weight equal to 0 or 1 are sufficient to generate correct encryption of all m ∈ {0, 1}r with at most
r additions of the corresponding Pm matrices.

Ring-GSW This scheme is a ring version of GSW presented in [KGV14], transposing the approximate
eigenvector problem into the ring setting. From λ the security parameter and the considered applications,
we can derive the parameters n, q andM of the scheme described below.

H.KeyGen(n, q, χ,M). On inputs the lattice dimension n, which is set to a power of 2, the modulus q, the
error distribution χ and the plaintext spaceM do:

– Set R = Z[X]/(Xn + 1), Rq = R/qR, ` = dlog qe, N = 2` and C = R2×N
q .

– Set R0,1 = {P ∈ Rq, pi ∈ {0, 1}, 0 ≤ i < n}.
– Pick a←$ Rq, s′ ←$ χ and e←$ χ.

– Set s = [1| − s′]> ∈ R1×2
q and b =

(
s′a+ e

a

)
∈ R2×1

q .

– Output pkH := b and skH := s.

H.Enc(pkH ,m). On input pkH , and m ∈M, do:

– Pick E←$ χ
2×N .

– Pick r←$ R
N
0,1, and output C = [br> +mG+E]q ∈ R2×N

q .

H.Dec(C, skH). On input the secret key skH , and a ciphertext C, do:

– Compute m′ = b[< s, cl >]qe2.
– Output m′ ∈ Rq.

The H.Eval algorithm finally consists in iterating H.Add and H.Mul:

– H.Add(C1,C2) : C+ = C1 +C2.
– H.Mul(C1,C2) : C× = C1 ×G−1C2.

The correctness and security of this scheme are proven in Appendix B.

Remark 2. The plaintext spaceM has a major influence on the considered application in terms of quantity
of information contained in a single ciphertext and error growth. For our application we chooseM as the set
of polynomials with all coefficients of degree greater than 0 being zero, and the constant coefficient being
bounded.

8

. Key register K

Pi

F

plaintext

ciphertext

PRNG

Permutation
Generator

Fig. 2. Filter permutator construction.

3 New stream cipher constructions

In this section, we introduce our new stream cipher construction. We first describe the general filter
permutator structure. Next we list a number of Boolean building blocks together with their necessary
cryptographic properties. Third, we specify a family of filter permutators (denoted as FLIP) and analyze its
security based on state-of-the art cryptanalysis and design tools. Finally, we propose a couple of parameters
to fully instantiate a few examples of FLIP designs.

3.1 Filter permutators

The general structure of filter permutators is depicted in Figure 2. It is composed of three parts: a register
where the key is stored, a (bit) permutation generator parametrised by a Pseudo Random Number Generator
(PRNG) [BM84, KL07] (which is initialized with a public IV), and a filtering function which generates a
keystream. The filter permutator can be compared to a filter generator, in which the LFSR is replaced by
a permuted key register. In other words, the register is no longer updated by means of the LFSR, but with
pseudorandom bit permutations. More precisely, at each cycle (i.e. each time the filtering function outputs
a bit), a pseudo-random permutation is applied to the register and the permuted key register is filtered.
Eventually, the encryption (resp. decryption) with a filter permutator simply consists in XORing the bits
output by the filtering function with those of the plaintext (resp. ciphertext).

3.2 Boolean building blocks for the filter permutator

We will first exploit direct sums of Boolean functions defined as follows:

Definition 12 (Direct Sum). Let f1(x0, · · · , xn1−1) and f2(xn1 , · · · , xn1+n2−1) be two Boolean functions
in respectively n1 and n2 variables. The direct sum of f1 and f2 is defined as f = f1 ⊕ f2, which is a

9

Boolean function in n1 + n2 variables such that:

f(x0, · · · , xn1+n2−1) = f1(x0, · · · , xn1−1)⊕ f2(xn1 , · · · , xn1+n2−1).

They inherit from the following set of properties, proven in Appendix C.1.

Lemma 3 (Direct sum properties). Let f be the direct sum of f1 and f2 with n1 and n2 variables
respectively. Then f has the following cryptographic properties:

1. Non Linearity: NL(f) = 2n2NL(f1) + 2n1NL(f2)− 2NL(f1)NL(f2).
2. Resiliency: res(f) = res(f1) + res(f2) + 1.
3. Algebraic Immunity: AI(f1) + AI(f2) ≥ AI(f) ≥ max(AI(f1),AI(f2)).
4. Fast Algebraic Immunity: FAI(f) ≥ max(FAI(f1),FAI(f2)).

Our direct sums will then be based on three parts: a linear function, a quadratic function and triangular
functions, defined as follows.

Definition 13 (Linear functions). Let n > 0 be a positive integer, the Ln linear function is a n-variable
Boolean function defined as:

Ln(x0, · · · , xn−1) =
n−1∑
i=0

xi.

Definition 14 (Quadratic functions). Let n > 0 be a positive integer, the Qn linear function is a 2n-
variable Boolean function defined as:

Qn(x0, · · · , x2n−1) =
n−1∑
i=0

x2ix2i+1.

Definition 15 (Triangular functions). Let k > 0 be a positive integer. The k-th triangular function Tk is a
k(k+1)

2 -variable Boolean function defined as:

Tk(x0, · · · , x k(k+1)
2
−1) = Σk

i=1Π
i−1
j=0xj+Σi−1

`=0`
.

For example, the 4th triangular function T4 is:

T4 = x0 ⊕ x1x2 ⊕ x3x4x5 ⊕ x6x7x8x9.

These three types of functions allow us to guarantee the following properties.

Lemma 4 (Linear functions properties). Let Ln be a linear function in n variables, then Ln has the
following cryptographic properties:

1. Non Linearity: NL(Ln) = 0.
2. Resiliency: res(Ln) = n− 1.
3. Algebraic Immunity: AI(Ln) = 1.
4. Fast Algebraic Immunity: FAI(Ln) = 2.

10

Lemma 5 (Quadratic functions properties). Let Qn be a linear function in 2n variables, then Qn has the
following cryptographic properties:

1. Non Linearity: NL(Qn) = 22n−1 − 2n−1.
2. Resiliency: res(Qn) = −1.
3. Algebraic Immunity: AI(Q1) = 1 and ∀n > 1,AI(Qn) = 2.
4. Fast Algebraic Immunity: FAI(Q1) = 2 and ∀n > 1, FAI(Qn) = 4.

Lemma 6 (Triangular functions properties). Let k a positive integer and let Tk the k-th triangular
function. Then the following properties hold:

1. Non Linearity follows the recursive formula defined as:
(i) NL(T1 = 0),
(ii) NL(Tk+1) = (2k+1 − 2)NL(Tk) + 2k(k+1)/2.

2. Resiliency: res(Tk) = 0.
3. Algebraic Immunity: AI(Tk) = k.
4. Fast Algebraic Immunity: FAI(Tk) = k + 1.

The proof of Lemma 6 can be found in Appendix C.2 (Lemmas 4 and 5 are standard).

3.3 The FLIP family of stream ciphers

Based on the previous definitions, we specify the FLIP family of stream ciphers as a filter permutator using a
forward secure PRNG [BY01] based on the AES-128 (e.g. as instantiated in the context of leakage-resilient
cryptography [SPY13]), the Knuth shuffle (see below) as bit permutation generator and such that the filter
F is the N -variable Boolean function defined by the direct sum of three Boolean functions f1, f2 and f3 of
respectively n1, n2 and n3 variables, such that:

– f1(x0, · · · , xn1−1) = Ln1 ,
– f2(xn1 , · · · , xn1+n2−1) = Qn2/2,
– f3(xn1+n2 , · · · , xn1+n2+n3−1) is the direct sum of nb triangular function Tk, i.e. such that each Tk acts

on different and independent variables, that we denote as nb∆k.

That is, we have F : Fn1+n2+n3
2 → F2 the Boolean function such that:

F (x0, · · · , xn1+n2+n3−1) = Ln1 ⊕Qn2/2 ⊕
nb⊕
i=1

Tk.

In the following section, we provide a preliminary security analysis of the FLIP filter permutators against
a couple of standard attacks against stream ciphers, based on state-of-the-art tools. For this purpose, we
will assume that no additional weaknesses arise from its PRNG and bit permutation generator. In this
respect, we note that our forward secure PRNG does not allow malleability, so it should be hard to obtain
a collision in the chosen IV model better than with birthday probability. This should prevent collisions on
the generated permutations. Besides, the Knuth shuffle [Knu69] (or Fisher-Yates shuffle) is an algorithm
allowing to generate a random permutation on a finite set. This algorithm has the interesting property of
giving the same probability to all permutations if used with a random number generator. As a result, we

11

expect that any deviation between a bit permutation based on a Knuth shuffle fed with the PRNG will be
hard to exploit by an adversary. Our motivation for this assumption is twofold. First, it allows us to focus
on whether the filter permutator construction is theoretically sound. Second, if such a choice was leading
to an exploitable weakness, it remains possible to build a pseudorandom permutation based on standard
cryptographic constructions [LR88].

Remark 3. Since the permutation generation part of FLIP has only birthday security (with respect to the size
of the PRNG), it implies that it is only secure up to 264 PRNG outputs when implemented with the AES-128.
Generating more keystream using larger block ciphers should be feasible. However, in view of the novelty
of the FLIP instances, our claims are only made for this limited (birthday) data complexity so far, which
should not be limiting for the intended FHE applications. We leave the investigation of their security against
attacks using larger data complexities as a scope for further research. Besides, we note that using a PRNG
based on a tweakable block cipher [LRW11] (where a part of the larger IV would be used as tweak) could be
an interesting track to reduce the impact of a collision on the PRNG output in the known IV model, which
we also leave as an open research direction.

3.4 Security analysis

Since the filter permutator shares similarities with a filter generator, it is natural to start our investigations
with the typical attacks considered against such types of stream ciphers. For this purpose, we next study
the applicability of algebraic attacks and correlation attacks, together with more specialized cryptanalyses
that have been considered against stream ciphers. Note that the attacks considered in the rest of this section
frequently require to solve systems of equations and to implement a Gaussian reduction. Our complexity
estimations will consider Strassen’s algorithm for this purpose and assume ω = log 7 to be the exponent in
a Gaussian reduction. Admittedly, approaches based on Gröbner bases [Fau99] or taking advantage of the
sparsity of the matrices [Wie86] could lead to even faster algorithms. We ignore them for simplicity in these
preliminary investigations. Note also that we only claim security in the single-key setting.

Algebraic Attacks were first introduced by Courtois and Meier in [CM03] and applied to the stream cipher
Toyocrypt. Their main idea is to build an over-defined system of equations with the initial state of the LFSR
as unknown, and to solve this system with Gaussian elimination. More precisely, by using a nonzero function
g such that both g and h = gF have low algebraic degree, an adversary is able to obtain T equations with
monomials of degree at mostAI(f). It is easily shown that g can be taken equal to the annihilator of F or of
F ⊕ 1, i.e. such that gF = 0 or g(F ⊕ 1) = 0. After a linearisation step, the adversary obtains a system of T
equations in D =

∑AI(F)
i=0

(
N
i

)
variables. Therefore, the time complexity of the algebraic attack is O(Dω),

that is, O(NωAI(f)).

Fast Algebraic Attacks are a variation of the previous algebraic attacks introduced by Courtois at Crypto
2003 [Cou03]. Considering the relation gF = h, their goal is to find and use functions g of low algebraic
degree e, possibly smaller than AI(f), and h of low but possibly larger degree d, and to lower the degree
of the resulting equations by an off-line elimination of the monomials of degrees larger than e (several
equations being needed to obtain each one with degree at most e). Following [ACG+06], this attack can be
decomposed into four steps:

12

1. The search of the polynomials g and h generating a system of D + E equations in D + E unknowns,
where D =

∑d
i=0

(
N
i

)
and E =

∑e
i=0

(
N
i

)
. This step has a time complexity in O(

∑d
i=0

(
n
i

)
+∑e

i=0

(
n
i

)
)ω.

2. The search of linear relations which allows the suppression of the monomials of degree more than e.
This step has a time complexity in O(D log2(D)).

3. The elimination of monomials of degree larger than e using the Berlekamp-Massey algorithm. This step
has a time complexity in O(ED log(D)).

4. The resolution of the system. This step has a time complexity in O(Eω).

Given the FAI of F , the time complexity of this attack is in O(NFAI), or more precisely O(D log2D +

E2D + Eω) (ignoring Step 1 which is trivial for our choice of F).

Correlation Attacks. In their basic versions, correlation attacks try to distinguish the output sequence of
a stream cipher from a random one, by exploiting the bias δ of the filtering function. We can easily rule
out such attacks by considering a (much) simplified version of filter permutator where the bit permutations
Pi’s would be made on two independent permutations P 1

i and P 2,3
i (respectively acting on the n1 + 1 bits

of the linear part and the n2 + n3 − 1 bits of the non-linear part of F). Suppose for simplicity that P 1
i is

kept constant t times, then the output distribution of F has a bias δ and it can be distinguished for the right
choice of the n1 + 1 = res + 1 bits of the linear part. In this case, a correlation attack would have a data

complexity ofO(δ−2) and a time complexity ofO(2res(F)+1δ−2), with δ =
1

2
−

(
NL(F)

2N

)
. For simplicity,

we will consider this conservative estimation in our following selection of security parameters. Yet, we note
that since the permutation Pi of a filter permutator is acting on all the N bits of the filter F , the probability
that the linear part of F is kept invariant by the permutations t times is in fact considerably smaller than
what is predicted by the resilience.

BKW-like Attack. The BKW algorithm was introduced in [BKW03] as a solution to solve the LPN problem
using smart combinations of well chosen vectors and their associated bias. Intuitively, our stream cipher
construction simplified as just explained (with two independent permutations P 1

i and P 2,3
i rather than a

single one Pi) also shares similarities with this problem. Indeed, we could see the linear part as the parity of
an LPN problem and the non-linear one (with a small bias) as a (large) noise. Adapting the BKW algorithm
to our setting amounts to XOR some linear parts of F in order to obtain vectors of low Hamming weight,
and then to consider a distinguishing attack with the associated bias. Denoting h the target Hamming weight,
x the log of the number of XORs and δ the bias, the resulting attack (which can be viewed as an extension of
the previous correlation attack) has data complexityO(2hδ−2(x+1)) (more details are given in Appendix D).

Higher-Order Correlation Attacks were introduced by Courtois [Cou02] and exploit the so-called XL
algorithm. They look for good correlations between F and an approximation g of degree d > 1, in order
to solve a linearised system based on the values of this approximation. The value ε is defined such that g is
equal to F with probability greater than 1− ε. Such attacks have a (conservative) time complexity estimate:

O
((

N

D

)ω
(1− ε)−m

)
, where D ≥ d andm ≥

(
N
D

)(
N
D−d

).
13

Guess and Determine Attacks. Note that this section has been motivated by a private communication from
Sébastien Duval, Virginie Lallemand and Yann Rotella, of which the details will be available in an upcoming
ePrint report [DLR16]. Guess and determine attacks are generic attacks which consist in guessing ` bits of
the key in order to cancel some monomials. In our context, it allows an adversary to focus on a filtering
function restricted to a subset of variables. This weaker function can then be cryptanalyzed, e.g. analyzed
with the four aforementioned attacks, i.e. the algebraic attack, the fast algebraic attack, the correlation/BKW-
like attacks and the higher-order correlation attack. The complexity of a guess and determine attack against
a function F of N variables is min`{2`C(F [`])} where F [`] is a function of N [`] variables obtained by
fixing ` variables of F , C(F) is the complexity of the best of the four attacks considered on the filtering
function F and the minimum is taken over all `’s. The case ` = 0 corresponds to attack the scheme without
guess and determine. We next bound the minimal complexity over these four attacks considering the weakest
functions obtained by guessing. To do so, we introduce some notations and criteria allowing us to specify
the cryptographic properties of Boolean functions obtained by guessing ` variables of Boolean functions
being direct sums of monomials. As the impact of guessing is most relevant for fast algebraic attacks and
CA/BKW-like attacks, we defer the other part of the analysis and extra lemmas to the Appendix E.

Definition 16 (Direct Sum Vector). For a boolean function F of N variables obtained as a direct sum of
monomials we associate its direct sum vector : mF of length k = deg(F) : [m1,m2, · · · ,mk] such that mi

is the number of monomials of degree i of F and N =
∑k

i=1 imi. We define two quantities related to this
vector :

– m∗F is the number of nonzero values of mF .
– δmF = 1

2 −
NL(F)
2N

.

These notations will be useful to quantify the impact of guessing some bits on the cryptographic
properties of a Boolean function obtained by direct sums. mF , m∗F and δmF are easily computable from the
description of F , the latter can be computed recursively using Lemma 3.

Lemma 7 (Guessing and Direct Sum Vector). For all guessing of 0 ≤ ` ≤ N variables of a Boolean
function F in N variables obtained by direct sums associated with mF , we obtain a function F [`] in N [`]

variables associated with mF [`] such that :

1.
∑deg(F [`])

i=1 mi[`] ≥ (
∑deg(F)

i=1 mi)− `.
2. m∗F [`] ≥m∗F − b

`
min1≤i≤deg(F)mi

c.
3. δmF [`]

≤ δmF 2
`.

Hereafter we describe the bounds we have used in order to assess the security of our instances.

Lemma 8 (Guess And Determine & Fast Algebraic Attacks). Let F be a boolean function inN variables
and CGDFAA(F) be the minimum complexity of the Guess And Determine with Fast Algebraic Attacks on
F , then :

CGDFAA(F) ≥ min
0≤`≤N

[
2`
(
minN [`]

m∗F [`]

)
log2

(
minN [`]

m∗F [`]

)
+ (minN [`])2

(
minN [`]

m∗F [`]

)
+ (minN [`])ω

]
,

where m∗F [`] = m∗F − b
`

mini∈[deg(F)]mi
c.

14

Lemma 9 (Guess and Determine & CA/BKW-like Attacks). Let F be a boolean function in N variables
and CGDCA/BKW (F) be the minimum complexity of the Guess And Determine with Correlation/BKW
Attacks on F , then :

CGDCA/BKW (F) ≥ min
0≤`≤N

{2−`δ−2mF
}.

Other attacks. Besides the previous attacks that will be taken into account quantitatively when selecting
our concrete instances of FLIP designs, we also investigated the following other cryptanalyses. First, fast
correlation attacks were introduced by Meier and Staffelbach at Eurocrypt 1988 [MS88]. A recent survey
can be found in [Mei11]. The attack is divided into two phases. The first one aims at looking for relations
between the output bits ai of the LFSR to generate a system of parity-check equations. The second one
uses a fast decoding algorithm (e.g. the belief propagation algorithm) in order to decode the words of the

code zi = F (ai) satisfying the previous relations, where the channel has an error probability p =
NL(F)

2N
.

The working principles of this attack are quite similar to the ones of the previously mentioned correlation
attacks and BKW-like attacks. So we assume that the previous (conservative) complexity estimates rule out
this variation as well. Besides, note that intuitively, the belief propagation algorithm is best suited to the
decoding of low-density parities, which is what our construction (and the LPN problem) typically avoid.

Second, weak keys (i.e. keys of low or high hamming weights) can produce a keystream sufficiently
biased to determine this hamming weight, and then to recover the key among the small amount of possible
ones. The complexity of such attacks can be computed from the resiliency of F . However, since our N
parameter will typically be significantly larger than the bit-security of our filter permutator instances, we
suggest to restrict the key space to keys of Hamming weight N/2 to rule out this concern. For this purpose,
master keys can simply be generated by applying a first (secret) random permutation to any stream with
Hamming weight N/2.

Third, augmented function attacks are attacks focusing on multiple outputs of the function rather
than one. The goal is to find coefficients j1, · · · , jr such that a relation between the key and the outputs
si+j1 , · · · , si+jr can be exploited. This relation can be a correlation (as explained in [And94]) or simply
algebraic [FM07]. In both cases, a prerequisite is that the relation holds on a sufficient number of i. As
each bit output by FLIP depends on a different permutation, we believe that there is no exploitable relation
between different outputs.

Eventually, cube attacks were introduced by Dinur and Shamir at Eurocrypt 2009 [DS09] as a variant
of algebraic attacks taking advantage of the public parameters of a cryptographic protocol (plaintext in
block ciphers, IV in stream cipher) in order to generate a system of equations of low degree. However
in filter permutator constructions, the only such public parameter is the seed of the PRNG allowing to
generate the pseudo-random bit permutations Pi. Since controlling this seed hardly allow any control of
the F function’s inputs, such attacks do not seem applicable. A similar observation holds for conditional
differential cryptanalysis [KMN10] and for integral/zero-sum distinguishers [BC10, KW02].

3.5 Cautionary note and design tweaks

As already mentioned, all the previous analyzes are based on standard cryptanalysis and design tools. In
particular, the security of our FLIP designs is based on properties of Boolean functions that are generally
computed assuming a uniform input distribution. Yet, for filter permutators this condition is not strictly

15

respected since the Hamming weight of the key register is fixed (we decided to set it to N/2 in order to
avoid weak keys, but even without this condition, it would be fixed to an unknown value). This means the
input distribution of our linear, quadratic and triangle functions is not uniform. We verified experimentally
that the output of FLIP is sufficiently balanced despite this non-uniformity. More precisely, we could not
detect biases larger than 2

q
2 when generating 2q bits of keystream (based on small-scale experiments with

q = 32). But we did not study the impact of this non-uniformity for other attacks, which we leave as an
important research scope, both from the cryptanalysis and the Boolean functions points-of-view.

Note that in case the filter permutator of Section 3.1 turns out to have weaknesses specifically due to the
imbalanced F function’s inputs, there are tweaks that could be used to mitigate their impact. The simplest
one is to apply a public whitening to the input bits of the non-linear parts of F (using additional public
PRNG outputs), which has no impact on the homomorphic capacity. The adversary could then bias the F
function’s inputs based on his knowledge of the whitening bits, but to a lower extent than with our fixed
Hamming weight keys. Alternatively, one could add a (more or less complex) linear layer before the non-
linear part of F , which would then make the filter permutator conceptually more similar to filter generators,
and (at least for certain layers) only imply moderate cost from the FHE point-of-view.

3.6 80- & 128-bit security instances

We selected a few instances aiming at 80- and 128-bit security based on the previous bounds, leading to
the attack complexities listed in Table 1, where FLIP(n1, n2,

nb∆k) denotes the instantiation of FLIP with
linear part of n1 bits, quadratic part of n2 bits and nb triangular functions of degree k. These instances
are naturally contrasted. On the one hand, the bounds taken are conservative with respect to the attacks

Instance N AA ` FAA l CA/BKW ` HOC ` λ

FLIP(42, 128, 8∆9) 530 95 56 81 0 86 72 94 55 81

FLIP(46, 136, 4∆15) 662 91 52 81 52 80 72 90 48 80

FLIP(82, 224, 8∆16) 1394 156 112 140 40 134 120 155 109 134

FLIP(86, 238, 5∆23) 1704 149 105 137 105 133 124 128 74 128

Table 1. Attack complexities in function of n1, n2 and nb∆k. AA stands for algebraic attacks, FAA stands
for fast algebraic attacks, CA/BKW stands for correlation or BKW-like attacks, HOC stands for higher-
order correlation attacks and ` stands for the number of bits guessed leading to the best complexity for
guess and determine attacks. For the CA/BKW column, we reported the minimum complexity between the
correlation and BKW-like attack. Eventually, λ stands for the security parameter of F and is simply taken
as the minimum between AA, FAA,CA/BKW and HOC.

considered: if these attacks were the best ones, more aggressive instances could be proposed (e.g. in order
to reduce the key size). On the other hand, filter permutators are based on non-standard design principles,
and our security analysis is only preliminary, which naturally suggests the need of security margins. Overall,
we believe the proposed instances are a reasonable trade-off between efficiency and security based on our
current understanding of filter permutators, and therefore are a good target for further investigations.

16

3.7 Indirect sums

Before analyzing the FHE properties of filter permutators, we finally suggest FLIP designs based on indirect
sums as another interesting topic for evaluation, since they lead to quite different challenges. Namely, the
main motivation to use direct sums in the previous sections was the possibility to assess their cryptographic
properties based on existing tools. By contrast, filter permutator designs based on indirect sums seem harder
to analyze (both for designers and cryptanalysts). This is mainly because in this case, not only the inputs
of the Boolean functions vary, but also the Boolean functions themselves. For illustration, we can specify
“multi-FLIP ” designs, next denoted as b-FLIP designs, such that we compute b instances of FLIP in parallel,
each with the same filtering function but with different permutations, and then to XOR the b computed bits in
order to produce a keystream bit. We conjecture that such b-FLIP designs could lead to secure stream ciphers
with smaller states, and suggest 10-FLIP(10, 20, 1∆20) and 15-FLIP(15, 30, 1∆30) as exemplary instances
for 80- and 128-bit security.

4 Application to FHE

4.1 80- & 128-bit security parameters

For the security parameters choices, we follow the analysis of Lindner and Peikert [LP11] for the hardness
of LWE and RLWE, considering distinguishing and decoding attacks using BKZ [SE94, CN11]. We assume
that the distribution χ in the considered LWE instances is the discrete Gaussian distribution with mean 0 and
standard deviation σ. First we compute the best root Hermite factor δ of a basis (see [GN08]) computable
with complexity 2λ from the conservative lower bound of [LP11]:

log(δ) = 1.8/(110 + λ). (1)

The distinguishing attack described in [MR09, RS10, LP11] is successful with advantage ε by finding
vectors of length α q

σ with α =
√

ln(1/ε)/π. The length of the shortest vector that can be computed is
22
√
n log q log δ, leading to the inequation:

α
q

σ
< 22

√
n log q log δ. (2)

Given σ ≥ 2
√
n from Regev’s reduction [Reg05], we can choose parameters for n and q matching

equation (2) for the considered security parameter λ. The parameters we select for our application are
summarized in Table 2.

Security λ n log q

80 256 80

128 512 120

Table 2. (R)LWE parameters used in our applications.

17

4.2 Noise analysis

Considering our framework of Figure 1, Claude has at its disposal the homomorphic encryption of the
symmetric key CH(skSi), the homomorphic public key pkH and the symmetric encrypted messages CS(mi).
He has to perform the homomorphic evaluation of the symmetric decryption circuit, i.e. to perform
homomorphic operations on the ciphertexts CH(skSi) in order to get CH(mi), the homomorphic encryption
ofmi. In this section, we study the error growth in these ciphertexts after the application of the homomorphic
operations. As we are considering SWHE, we need to control the magnitude of the error and keep it below
a critical level to ensure the correctness of a final ciphertext. This noise management is crucial for the
applications, it is directly linked with the quantity of computation that the server can do for the client.
We now study the error growth stemming from the homomorphic evaluation of FLIP. In this case, all the
ciphertexts used by the server in the computation step will have a same starting error. The knowledge of
this starting error (defined by some parameter) and its growth for additions and multiplications (in a chosen
order) is enough to determine the amount of computation that can be performed correctly by the server.

In the remaining of this section we proceed in three steps. First we recall the error growth implied by the
H.Add andH.Mul operations: for GSW-like HE it has already been done in [GSW13, AP14, BV14, HAO15,
DM15]. As our homomorphic encryption schemes are slightly differently written to fit our applications
(batched version to perform in parallel the same computations, generic notations for various frameworks),
we give these error growth with our notations for completeness and consistency of the paper. Then we
analyse the error for a sub-case of homomorphic product, namely H.Comb, which gives a practical tool to
study the error growth in FLIP. As the asymmetric property of GSW multiplication and plaintext norm have
been pointed out relatively to the error growth, we consider important to focus on both when analysing this
error metric. Considering H.Comb types of operations is therefore suited to be consistent with this metric
and is very important for practical purpose (in term of real life applications). Finally we analyse the error in
a ciphertext output by FLIP and study some optimizations to reduce the noise growth further.

Error Growth in H.Add and H.Mul. We first need to evaluate the error growth of the basic homomorphic
operations, the addition and the multiplication of ciphertexts. We use the analysis of [AP14] based on
subgaussian distributions to study the error growth in these homomorphic operations. From a coefficient
or a vector following a subgaussian distribution of parameter σ, we can bound its norm with overwhelming
probability and then study the evolution of this parameter while performing the homomorphic operations.
Hence we can bound the final error to ensure correctness.

For simplicity we use two notations arising in the error growth depending on the arithmetic of the
underlying ring of the two schemes, γ the expansion factor (see [BGV12]) and Norm(mj) such that:

– Batched GSW: γ = 1 and Norm(mj) = |mj | (arithmetic in Z) .
– Ring GSW: γ = n and Norm(mj) = ||mj ||2 (arithmetic in R).

Lemma 10 (H.Add error growth). Suppose Ci for 1 ≤ i ≤ k are ciphertexts of a GSW based
Homomorphic Encryption scheme with error components ei of coefficients following a distribution of
parameter σi. Let Cf = H.Add(Ci, for 1 ≤ i ≤ k) and ef the related error with subgaussian parameter
σ′ such that:

σ′ =

√√√√ k∑
i=1

σ2i or σ′ = σ
√
k if σi = σ, ∀i ∈ [k].

18

Lemma 11 (H.Mul error growth). Suppose Ci for 1 ≤ i ≤ k are ciphertexts of a GSW based
Homomorphic Encryption scheme with error components ei, of coefficients following a subgaussian
distribution of parameter σi, and plaintext mi. Cf is the result of a multiplicative homomorphic chain
such that:

Cf = H.Mul(C1, H.Mul(C2, H.Mul(· · · , H.Mul(Ck,G)))),

and ef the corresponding error with subgaussian parameter σ′ such that:

σ′ = O

√Nγ
√√√√σ21 +

k∑
i=2

(
σiΠ

i−1
j=1Norm(mj)

)2 .

Lemmas 10 and 11 are proven in Appendix F.

Error Growth in H.Comb. For the sake of clarity, we formalize hereafter the comb homomorphic product
H.Comb and the quantity σcomb which stands for the subgaussian parameter. We study the error growth of
H.Comb as we will use it as a tool for the error growth analysis of FLIP.

Definition 17 (homomorphic comb H.Comb). Let C1, · · · ,Ck be k ciphertexts of a GSW based Homo-
morphic Encryption scheme with error coefficients from independent distributions with same subgaussian
parameter σ. We define H.Comb(y, σ, c, k) = H.Mul(C1, · · · ,Ck,G) where:

– y =
√
Nγ is a constant depending on the ring,

– c = max1≤i≤k(Norm(mi)) is a constant which depends on the plaintexts,

and Ccomb = H.Comb(y, σ, c, k) as error components following a subgaussian distribution of parameter
O(σcomb).

Lemma 12 (σcomb quantity). Let C1, · · · ,Ck be k ciphertexts of a GSW based Homomorphic Encryption
scheme with same error parameter σ and Ccomb = H.Comb(y, σ, c, k). Then we have:

σcomb(y, σ, c, k) = yσck, where ck =

√√√√k−1∑
i=0

c2i.

Proof. Thanks to Lemma 11 we obtain:

σcomb =
√
Nγ
√
σ2 +

∑k
i=2(σΠ

i−1
j=1Norm(mj))2,

σcomb = y
√
σ2 +

∑k
i=2(σc

i−1)2,

σcomb = yσ
√∑k

i=1(c
i−1)2,

σcomb = yσck.

The compatibility of this comb structure with the asymmetric multiplicative error growth property of
GSW enables us to easily quantify the error in our construction, with a better accuracy than computing the
multiplicative depth. In order to minimize the quantity σcomb, we choose the plaintext space such that c = 1

19

for freshly generated ciphertexts. The resulting σcomb(y, σ, 1, k) quantity is therefore yσ
√
k, growing less

than linearly in the number of ciphertexts. Fixing the constant c to be 1 is usual with FHE. As we mostly
consider Boolean circuits, it is usual to use plaintexts in {−1, 0, 1} to encrypt bits, leading to c = 1 and
therefore ck =

√
k.

Error Growth in FLIP In the previous paragraphs, we have evaluated the error growth in the basic
homomorphic operations H.Add, H.Mul and H.Comb. We will use them as building blocks in order to
evaluate the error growth in the homomorphic evaluation of FLIP. Coming back to the framework of
Figure 1, the error in the ciphertexts CH(mi) is of major importance as it will determine the possible
number of homomorphic computations f that Claude is able to perform.

The main feature of the filter permutator model, considering FHE settings, is that it allows to handle with
ciphertexts having the same error level, whatever the number of output bits. Consequently all ciphertexts
obtained by FLIP evaluation will have the same constant and small amount of noise and will be considered
as fresh start for more computation.

Evaluating homomorphically the FLIP decryption (resp. encryption) algorithm consists in applying
three steps of homomorphic operations on the ciphertexts CH(skSi) in our application framework, each
one encoding one bit of the key register. For each ciphertext bit, these steps are: a (bit) permutation, the
application of the filtering function F and a XOR with the ciphertext (resp. plaintext). The (bit) permutation
consists only in a public rearrangement of the key ciphertexts, leading to a noise-free operation. The last
XOR is done with a freshly encrypted bit. Hence the error growth depends mostly on the homomorphic
evaluation of F .

As H.Dec outputs quantities modulus 2, we can evaluate the XORs of F by H.Add and the ANDs by
H.Mul. We then determine the subgaussian parameter of the error of a ciphertext from the homomorphic
evaluation of F . For a given encrypted key, this parameter will be the same for every homomorphic
evaluation of FLIP and is computed from σcomb.

Lemma 13 (Error growth evaluating F). Let F be the FLIP filtering function in N variables defined in
Section 3.3. Assume that Ci for 0 ≤ i ≤ N −1 are ciphertexts of a GSW HE scheme with same subgaussian
parameter σ and c = 1. We define CF = H.Eval(F,Ci) the output of the homomorphic evaluation of the
ciphertexts Ci’s along the circuit F . Then the error parameter σ′ is:

σ′ = O
(
σ
√
n1 + y2(n2 + n3)

)
≈ O

(
σy
√
N
)
.

Proof. We first evaluate the noise brought by F for each of its components Ln1 , Qn2 , nb∆k, defining the
respective ciphertexts CLn1

,CQn2
,CTk (the last one standing for one triangle only) and the subgaussian

parameter of the respective error distributions (of the components of the error vectors) σLn1 , σQn2 , σTk :

– Ln1 : CLn1
= H.Eval(Ln1 ,C0, · · · ,Cn1−1) = H.Add(C0, · · · ,Cn1−1) then σLn1 = σ

√
n1.

– Qn2 : CQn2
= H.Add(H.Mul(Cn1+2j ,Cn1+2j+1,G)) for 0 ≤ j ≤ n2.

H.Mul(Cn1+2j ,Cn1+2j+1,G) = H.Comb(y, σ, 1, 2) has subgaussian parameterO(σcomb(y, σ, 1, 2)) =
O(yσ

√
2) for 0 ≤ j ≤ n2.

Then σQn2 = O(yσ
√
2
√

n2
2) = O(yσ√n2).

– Tk: CTk = H.Add(H.Mul(Cn1+n2+j+(i−1)(i−2)/2; 1 ≤ j ≤ i); 1 ≤ i ≤ k).
CTk = H.Add(H.Comb(y, σ, 1, i), 1 ≤ i ≤ k).

20

then σTk = O(
√∑k

i=1(yσ
√
i)2) = O(yσ

√
k(k+1)

2).
As nb∆k is obtained by adding nb independent triangles, we get:
Cnb∆k = H.Add(CTk,i, 1 ≤ i ≤ nb),
and σnb∆k = O(yσ

√
nb

√
k(k+1)

2) = O(yσ√n3).

By Pythagorean additivity the subgaussian parameter of CF is finally:

σ′ = O(
√

(σ
√
n1)2 + (yσ

√
n2)2 + (yσ

√
n3)2) = O(σ

√
n1 + y2(n2 + n3)).

Optimizations The particular error growth in GSW Homomorphic Encryption enables to use more
optimizations to reduce the error norm and perform more operations without increasing the parameter sizes.
The error growth in H.Comb depends on the quantity ck derived from bounds on norms of the plaintexts;
these quantities can be reduced using negative numbers. A typical example is in the LWE-based scheme
to use m ∈ {−1, 0, 1} rather than {0, 1}; the ck quantity is the same and in average the sums in Z are
smaller. Then the norm |

∑
mi| is smaller which is important when multiplying. Conserving this norm as

low as possible gives better bounds and ck coefficients, leading to smaller noise when performing distinct
levels of operations. An equivalent way of minimizing the error growth is to still useM = {0, 1} but with
H.Add(C1,C2) = C1 ±C2. This homomorphic addition is still correct because:

S−C2 = −E′2 −


m2,1 · s>1

...

m2,r · s>r

G = E′′2 +


−m2,1 · s>1

...

−m2,r · s>r

 ,

where the coefficients in E′′2 rows follow distribution of same subgaussian parameter as the one in E′2 by
homogeneity and −m = m mod 2.

4.3 Concrete results

Contrary to other works published in the context of symmetric encryption schemes for efficient FHE [GHS12,
CCF+15, ARS+15], our primary focus is not on the performances (see SHIELD [KGV14] for efficient
implementation of Ring-GSW) but rather on the error growth. As pointed out in [CCF+15], in most of these
previous works, after the decryption process the noise inside the ciphertexts was too high to perform any
other operation on them, whereas it is the main motivation for a practical use of FHE.

In this section, we consequently provide experimental results about this error growth in the ciphertexts
after different operations evaluated on the Ring GSW scheme. As the link between subgaussian parameter,
ciphertext error and homomorphic computation is not direct, we make some choices for representing these
results focusing on giving intuition on how the error behaves.

The choice of the Ring GSW setting rather than Batched GSW is for convenience. It allows to deal with
smaller matrices and faster evaluations, providing the same confirmation on the heuristic error growth. We
give the parameters n and ` defining the polynomial ring and fix σ = 2d

√
ne for the error distribution.

An efficient way of measuring the error growth within the ciphertexts is to compute the difference by
applying the rounding b·e2 in H.Dec between various ciphertexts with known plaintext. This difference

21

(for each polynomial coefficient or vector component) corresponds to the amount of noise contained in this
ciphertext. The correctness requires this quantity to be inferior to 2`−2. Then, considering its logarithm in
base 2, it enables to have an intuitive and practical measure of the ciphertext noise: this quantity grows
with the homomorphic operations until this log equals ` − 2. Concretely, in our experiments we encrypt
polynomials being m = 0 or m = 1, compute on the constant coefficient the quantity e = |(〈s, c`〉 −
m2`−1) mod q|, and give its logarithm. We give another quantity in order to provide intuition about the
homomorphic computation possibilities over the ciphertexts, by simply computing a percentage of the actual
level of noise relatively to the maximal level `− 2.

Remark 4. The quantity exhibited by our measures is roughly the subgaussian parameter of the distribution
of the error contained in the ciphertexts. Considering the simpler case of a real Gaussian distribution
N (0, σ2), the difference that we compute then follows a half normal distribution with mean σ

√
2√
π

.

We based our prototype implementation on the NTL library combined with GMP and the discrete
gaussian sampler of BLISS [DDLL13]. We report in Table 3 experimental results on the error growth for
different RLWE and FLIP parameters, based on an average over a hundred of samples.

The results confirm the quasi-additive error growth when considering the specific metric of GSW given
by the asymptotic bounds. The main conclusion of these results is that the error inside the ciphertexts after
a homomorphic evaluation of FLIP is of the same order of magnitude as the one after a multiplication.
The only difference between these noise increases is a term provided by the root of the symmetric key
register size, that is linear in λ. Therefore, with the FLIP construction the error growth is roughly the basic
multiplicative error growth of two ciphertexts. Hence, we conclude that filter permutators as FLIP release the
bottleneck of evaluating symmetric decryption, and lead the further improvement of the calculus delegation
framework to depend overwhelmingly on improvements of the homomorphic operations.

Ring (n, `) FLIP Fresh H.Add H.Mul H.Eval(FLIP)

log e % log e % log e % log e %

256 80 (42, 128, 8∆9) 13, 07 17 % 13, 96 18% 19, 82 25% 24, 71 31%

512 120 (82, 224, 8∆16) 14, 68 12 % 15, 14 13% 23, 27 20% 28, 77 24%

Table 3. Experimental error growth of Ring-GSW. Fresh, H.Add, H.Mul and H.Eval(FLIP) respectively
stands for the noise e measure after a fresh homomorphic encryption, the homomorphic addition of two
fresh ciphertexts, the homomorphic multiplication of two fresh ciphertexts and the homomorphic evaluation
of FLIP on fresh ciphertexts. The first value is the log of the error e inside the corresponding ciphertexts and
the percentage represents the proportion of the noise with respect to the capacity of decryption (i.e. `− 2).

4.4 Performances for 2nd-generation schemes

Despite our new constructions are primarily designed for 3rd-generation FHE, a look at Table 4 suggests
that also from the multiplicative depth point of view, FLIP instances bring good results compared to their
natural competitors such as LowMC [ARS+15] and Trivium/Kreyvium [CCF+15]. In Trivium/Kreyvium,
the multiplicative depth of the decryption circuit is at most 13, while the LowMC family has a record

22

multiplicative depth of 11 which is still larger than our FLIP instances. For completeness, we finally
investigated the performances of some instances of FLIP for 2nd-generation FHE schemes using HElib, as
reported in Table 5, where the latency is the amount of time (in seconds) needed to homomorphically decrypt
(Nb * Number of Slots) bits, and the throughput is calculated as (Nb * Number of Slots * 60)/latency. As

Algorithm Reference Multiplicative depth Security

SIMON-32/64 [LN14] 32 64

Trivium-12 [CCF+15] 12 80

Trivium-13 [CCF+15] 13 80

LowMc-80 [ARS+15] 11 80

FLIP(42, 128, 8∆9) This work dlog 9e = 4 80

AES-128 [GHS12, CLT14] 40 128

SIMON-64/128 [LN14] 44 128

Prince [DSES14] 24 128

Kreyvium-12 [CCF+15] 12 128

Kreyvium-13 [CCF+15] 13 128

LowMc-128 [ARS+15] 12 128

FLIP(82, 224, 8∆16) This work dlog 16e = 4 128

Table 4. Multiplicative depth of different symmetric ciphers.

in [CCF+15], we have considered two noise levels: a first one that does not allow any other operations on
the ciphertexts, and a second one where we allow operations of multiplicative depth up to 7. Note that
the (max) parenthesis in the Nb column recalls that for Trivium/Kreyvium, the homomorphic capacity
decreases with the number of keystream bits generated, which therefore bounds the number of such bits
before re-keying. We observe that for 80-bit security, our instances outperform the ones based on Trivium.
As for 128-bit security, the gap between our instances and Kreyvium is limited (despite the larger state
of FLIP), and LowMC has better throughput in this context. Note also that our results correspond to the
evaluation of the F function of FLIP (we verified that the time needed to generate the permutations only
marginally affects the overall performances of homomorphic FLIP evaluations). We finally mention that
these results should certainly not be viewed as strict comparisons, since obtained on different computers and
for relatively new ciphers for which we have limited understanding of the security margins (especially for
LowMC [DLMW15, DEM15] and FLIP). So they should mainly be seen as an indication that besides their
excellent features from the FHE capacity point-of-view, filter permutators inherently have good properties
for efficient 2nd-generation FHE implementations as well.

5 Conclusions and open problems

In the context of our Homomorphic Encryption - Symmetric Encryption framework, where most of the
computations are delegated to a server, we have designed a symmetric encryption scheme which fits the FHE
settings, with as main goal to get the homomorphic evaluation of the symmetric decryption circuit as cheap

23

Algorithm Security Nb L Number Latency Throughput
of Slots (sec) (bits/min)

Trivium-12
80 45 (max) 12 600 1417.4 1143.0
80 45 (max) 19 720 4420.3 439.8

Trivium-13
80 136 (max) 13 600 3650.3 1341.3
80 136 (max) 20 720 11379.7 516.3

Kreyvium-12
128 42 (max) 12 504 1715.0 740.5
128 42 (max) 19 756 4956.0 384.4

Kreyvium-13
128 124 (max) 13 682 3987.2 1272.6
128 124 (max) 20 420 12450.8 286.8

LowMC-128
? ≤ 128 256 13 682 3368.8 3109.6
? ≤ 128 256 20 480 9977.1 739.0

FLIP(42, 128, 8∆9)
80 1 5 378 4.72 4805.08
80 1 12 600 17.39 2070.16

FLIP(82, 224, 8∆16)
128 1 6 630 14.53 2601,51
128 1 13 720 102.51 421.42

Table 5. Timings of the homomorphic evaluation of several instances of the Boolean function of FLIP using
HElib on an Intel Core i7-3770. The other results are taken from [CCF+15]. L and Number of Slots are
HElib parameters which stand respectively for the level of noise and the number of bits packed in one
ciphertext. (Nb * Number of Slots) corresponds to the number of decrypted bits.

24

as possible, with respect to the error growth. In particular the error growth obtained by our construction,
only one level of multiplication considering the metric of third generation FHE, achieves the lowest bound
we can get with a secure symmetric encryption scheme. The use of zero-noise operations as permutations
enables us to combine the advantages of block ciphers and stream ciphers evaluation, namely constant noise
on the one hand and starting low noise on the other hand. As a result, the homomorphic evaluation of filter
permutators can be made insignificant relatively to a complete FHE framework.

The general construction of our encryption scheme – i.e. the filter permutator – and its FLIP instances
are admittedly provocative. As a result, we believe an important contribution of this paper is to open a wide
design space of symmetric constructions to investigate, ranging from the very efficient solutions we suggest
to more classical stream ciphers such as filter generators. Such a design space leads to various interesting
directions for further research. Overall, the main question raised by filter permutators is whether it is
possible to build a secure symmetric encryption scheme with aggressively reduced algebraic degree. Such a
question naturally relates to several more concrete problems. First, and probably most importantly, additional
cryptanalysis is needed in view of the non-standard design principles exploited in filter permutators. It
typically includes algebraic attacks tacking advantage of the sparsity of their systems of equations, attacks
exploiting the imbalances at the input of the filter, and the possibility to exploit chosen IVs to improve
those attacks. Second, our analyses also raise interesting problems in the field of Boolean functions, e.g. the
analysis of such functions with non-uniform input distributions and the investigation of the best fixed degree
approximations of a Boolean function (which is needed in our study of higher-order correlation attacks).
More directly related to the FLIP instances, it would also be interesting to refine our security analyses,
with a stronger focus on the attacks data complexity, and to evaluate whether instances with smaller key
register could be sufficiently secure. In case of new cryptanalysis results, the design tweaks we suggest in
the paper are yet another interesting research path. Eventually, and from the FHE application point-of-view,
optimizing the implementations of filter permutators, e.g. by taking advantage of parallel computing clusters
that we did not exploit so far, would be useful in order to evaluate their applicability to real-world scenarii.

Acknowledgements. We are highly grateful to Sébastien Duval, Virginie Lallemand and Yann Rotella for
sharing their ideas about guess and determine attacks before the publication of this paper, which allowed
us to modify the instances of FLIP accordingly. We are also indebted to Anne Canteaut for numerous
useful suggestions about the design of filter permutators, and for putting forward some important open
problems they raise. Finally, we would like to thank Thierry Berger, Sergiu Carpov, Raphaël Delpino, Malika
Izabachene, Nicky Mouha, Thomas Prest and Renaud Sirdey for their feedback about early (and less early)
versions of this paper. This work was funded in parts by the H2020 ICT COST CryptoAction, by the H2020
ICT Project SAFECrypto, by the H2020 ERC Staring Grant CRASH and by the INNOVIRIS SCAUT
project. François-Xavier Standaert is a research associate of the Belgian Fund for Scientific Research
(F.R.S.-FNRS).

References

[ACG+06] Frederik Armknecht, Claude Carlet, Philippe Gaborit, Simon Künzli, Willi Meier, and Olivier Ruatta. Efficient
Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks. In Advances in Cryptology -
EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, pages 147–164, 2006.

[And94] Ross J. Anderson. Searching for the optimum correlation attack. In Fast Software Encryption: Second International
Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings, pages 137–143, 1994.

25

[AP12] Jacob Alperin-Sheriff and Chris Peikert. Circular and KDM security for identity-based encryption. In Public Key
Cryptography - PKC 2012 - 15th International Conference on Practice and Theory in Public Key Cryptography,
Darmstadt, Germany, May 21-23, 2012. Proceedings, pages 334–352, 2012.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part I, pages 297–314, 2014.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. Ciphers for MPC
and FHE. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 430–454,
2015.

[BC10] Christina Boura and Anne Canteaut. Zero-sum distinguishers for iterated permutations and application to keccak-f
and hamsi-256. In Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors, Selected Areas in Cryptography -
17th International Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010, Revised Selected Papers,
volume 6544 of Lecture Notes in Computer Science, pages 1–17. Springer, 2010.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. In Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012,
pages 309–325, 2012.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the statistical query
model. J. ACM, 50(4):506–519, 2003.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo random bits. SIAM
J. Comput., 13(4):850–864, 1984.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In Innovations in Theoretical
Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages 1–12, 2014.

[BY01] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. IACR Cryptology ePrint Archive,
2001:35, 2001.

[Car10] Claude Carlet. Boolean Models and Methods in Mathematics, Computer Science, and Engineering, chapter Boolean
Functions for Cryptography and Error Correcting Codes., pages 257–397,. 2010.

[CCF+15] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, Marı́a Naya-Plasencia, Pascal Paillier, and
Renaud Sirdey. Stream ciphers: A practical solution for efficient homomorphic-ciphertext. IACR Cryptology ePrint
Archive, 2015:113, 2015.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully homomorphic encryption over
the integers. In Public-Key Cryptography - PKC 2014 - 17th International Conference on Practice and Theory in
Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings, pages 311–328, 2014.

[CM03] Nicolas Courtois and Willi Meier. Algebraic Attacks on Stream Ciphers with Linear Feedback. In Advances
in Cryptology - EUROCRYPT 2003, International Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, pages 345–359, 2003.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Proceedings, pages 1–20, 2011.

[Cou02] Nicolas Courtois. Higher Order Correlation Attacks, XL Algorithm and Cryptanalysis of Toyocrypt. In Information
Security and Cryptology - ICISC 2002, 5th International Conference Seoul, Korea, November 28-29, 2002, Revised
Papers, pages 182–199, 2002.

[Cou03] Nicolas Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings, pages 176–194, 2003.

[CT15] Claude Carlet and Deng Tang. Enhanced Boolean functions suitable for the filter model of pseudo-random generator.
Des. Codes Cryptography, 76(3):571–587, 2015.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal gaussians.
In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part I, pages 40–56, 2013.

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Higher-order cryptanalysis of lowmc. IACR Cryptology
ePrint Archive, 2015:407, 2015.

[DLMW15] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized interpolation attacks on lowmc. IACR Cryptology
ePrint Archive, 2015:418, 2015.

26

[DLR16] Sébastien Duval, Virginie Lallemand, and Yann Rotella. Cryptanalysis of the FLIP family of stream ciphers.
Cryptology ePrint Archive, Report 2016/???, 2016. http://eprint.iacr.org/.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less than a second. In
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 617–640, 2015.

[DS09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials. In Advances in Cryptology
- EUROCRYPT 2009, 28th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, pages 278–299, 2009.

[DSES14] Yarkin Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. Toward practical homomorphic evaluation of
block ciphers using prince. In Financial Cryptography and Data Security - FC 2014 Workshops, BITCOIN and
WAHC 2014, Christ Church, Barbados, March 7, 2014, Revised Selected Papers, pages 208–220, 2014.

[Fau99] Jean-Charles Faugre. A new efficient algorithm for computing grbner bases (f4). Journal of Pure and Applied Algebra,
139(13):61 – 88, 1999.

[FM07] Simon Fischer and Willi Meier. Algebraic immunity of s-boxes and augmented functions. In Fast Software
Encryption, 14th International Workshop, FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected
Papers, pages 366–381, 2007.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178, 2009.

[GGNS13] Benoı̂t Gérard, Vincent Grosso, Marı́a Naya-Plasencia, and François-Xavier Standaert. Block ciphers that are easier
to mask: How far can we go? In Cryptographic Hardware and Embedded Systems - CHES 2013 - 15th International
Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Proceedings, pages 383–399, 2013.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit. In Advances in
Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings, pages 850–867, 2012.

[GLSV14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici. Ls-designs: Bitslice encryption for
efficient masked software implementations. In Fast Software Encryption - 21st International Workshop, FSE 2014,
London, UK, March 3-5, 2014. Revised Selected Papers, pages 18–37, 2014.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting Lattice Reduction. In Advances in Cryptology - EUROCRYPT 2008,
27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,
April 13-17, 2008. Proceedings, pages 31–51, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from Learning with Errors: Conceptually-
Simpler, Asymptotically-Faster, Attribute-Based. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 75–92, 2013.

[HAO15] Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. Packing Messages and Optimizing Bootstrapping in GSW-
FHE. In Public-Key Cryptography - PKC 2015 - 18th IACR International Conference on Practice and Theory in
Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, pages 699–715, 2015.

[HS14] Shai Halevi and Victor Shoup. Algorithms in helib. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 554–571, 2014.

[KGV14] Alhassan Khedr, P. Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: scalable homomorphic implementation of
encrypted data-classifiers. IACR Cryptology ePrint Archive, 2014:838, 2014.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC Press, 2007.
[KMN10] Simon Knellwolf, Willi Meier, and Marı́a Naya-Plasencia. Conditional differential cryptanalysis of nlfsr-based

cryptosystems. In Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings,
volume 6477 of Lecture Notes in Computer Science, pages 130–145. Springer, 2010.

[Knu69] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms. Addison-Wesley, 1969.
[KW02] Lars R. Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen and Vincent Rijmen, editors, Fast

Software Encryption, 9th International Workshop, FSE 2002, Leuven, Belgium, February 4-6, 2002, Revised Papers,
volume 2365 of Lecture Notes in Computer Science, pages 112–127. Springer, 2002.

[LF06] Éric Levieil and Pierre-Alain Fouque. An Improved LPN Algorithm. In Security and Cryptography for Networks, 5th
International Conference, SCN 2006, Maiori, Italy, September 6-8, 2006, Proceedings, pages 348–359, 2006.

27

http://eprint.iacr.org/

[LN14] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryption schemes FV and YASHE. In
Progress in Cryptology - AFRICACRYPT 2014 - 7th International Conference on Cryptology in Africa, Marrakesh,
Morocco, May 28-30, 2014. Proceedings, pages 318–335, 2014.

[LP11] Richard Lindner and Chris Peikert. Better Key Sizes (and Attacks) for LWE-Based Encryption. In Topics in
Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA Conference 2011, San Francisco, CA, USA,
February 14-18, 2011. Proceedings, pages 319–339, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors over Rings. In
Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, pages 1–23, 2010.

[LR88] Michael Luby and Charles Rackoff. How to Construct Pseudorandom Permutations from Pseudorandom Functions.
SIAM J. Comput., 17(2):373–386, 1988.

[LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. J. Cryptology, 24(3):588–613, 2011.
[Mei11] Willi Meier. Fast Correlation Attacks: Methods and Countermeasures. In Fast Software Encryption - 18th

International Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers, pages 55–
67, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In Advances
in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 700–718, 2012.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. Springer, 2009.
[MS88] Willi Meier and Othmar Staffelbach. Fast Correlation Attacks on Stream Ciphers (Extended Abstract). In Advances

in Cryptology - EUROCRYPT ’88, Workshop on the Theory and Application of of Cryptographic Techniques, Davos,
Switzerland, May 25-27, 1988, Proceedings, pages 301–314, 1988.

[NLV11] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption be practical? In
Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011, Chicago, IL, USA, October 21,
2011, pages 113–124, 2011.

[PRC12] Gilles Piret, Thomas Roche, and Claude Carlet. PICARO - A block cipher allowing efficient higher-order side-channel
resistance. In Applied Cryptography and Network Security - 10th International Conference, ACNS 2012, Singapore,
June 26-29, 2012. Proceedings, pages 311–328, 2012.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 84–93, 2005.

[RS10] Markus Rückert and Michael Schneider. Estimating the security of lattice-based cryptosystems. IACR Cryptology
ePrint Archive, 2010:137, 2010.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum
problems. Math. Program., 66:181–199, 1994.

[Sie85] Thomas Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext Only. IEEE Trans. Computers,
34(1):81–85, 1985.

[SPY13] François-Xavier Standaert, Olivier Pereira, and Yu Yu. Leakage-resilient symmetric cryptography under empirically
verifiable assumptions. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 335–352, 2013.

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. CoRR, abs/1011.3027, 2010.
[Wie86] Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information Theory,

32(1):54–62, 1986.

A Correctness and security of Batch GSW

Lemma 14 (Correctness of Batch GSW scheme).
For every (pkH , skH) ← H.KeyGen(n, q, r, χ),m ∈ {0, 1}r and C ← H.Enc(pkH ,m) (respectively

Cf ← H.Eval(f,C1, · · · ,Ck, pk
H) such that for all i ∈ [r], |s>i ci` − mi2

`−1 mod q| < 2`−2 (where
x mod q ∈ [−q/2 + 1, q/2]) we have m = H.Dec(C, skH) (respectively f(m1, · · · ,mk) mod 2 =

H.Dec(Cf , sk
H)).

28

Proof. With the expression of SC for all i ∈ [r], s>i ci` can be written as (SC)i,i` = e′i,i`+2`−1mi mod q.
Then if |e′i,i` mod q| < 2`−2, the rounding in the decryption algorithm outputs mi. If the inequality is
correct for all i ∈ [r], m = H.Dec(C, skH).

Note that a sufficient condition for correctness is to ensure: ∀(i, j) ∈ [r]× [N], |e′i,j | < 2`−2;.

Lemma 15 (Security of Batch GSW scheme).
Let B,Rm,R be generated in H.KeyGen and H.Enc. Then the joint distribution (B,BRm,BR) is

computationally indistinguishable from uniform over Z(n+r)×m
q × Z

(n+r)×N
q × Z

(n+r)×N
q .

Proof. B is indistinguishable from uniform over Z
(n+r)×m
q using the dLWEq,n,m,χ assumption r times.

Then we can apply the leftover hash lemma on (B,BRm) and (B,BR) which concludes the proof.

B Correctness and security of Ring-GSW

Lemma 16 (Correctness of Ring-GSW scheme).
For every (pkH , skH) ← H.KeyGen(n, q, χ,M), m ∈ M and C ← H.Enc(pkH ,m) (respectively

Cf ← H.Eval(f,C1, · · · ,Ck, pk
H)) such that all the coefficients of |s>c` −m2`−1 mod q| are inferiors

to 2`−2 then we have m = H.Dec(C, skH) (respectively f(m1, · · · ,mk) mod 2 = H.Dec(Cf , sk
H)).

The proof follows directly the one of lemma 14 for each coefficient of the polynomial.

Lemma 17 (Security of Ring-GSW scheme). Let pkH ← H.KeyGen and C ← H.Enc(pkH ,m). Then
the joint distribution (b,C) is computationally indistinguishable from uniform over R2×1

q × R2×N
q .

Proof. b is computationally indistinguishable from uniform over R2
q using the dRLWER,q,χ assumption.

Applying the dRLWER,q,χ assumption with a secret from R0,1 on (b, r,E), (b,C) is indistinguishable from
uniform over R2×1

q × R2×N
q which concludes the proof.

C Proofs

C.1 Proof of Lemma 3

1,2. see [Car10] page 125.
3. For the first part of the inequality:

For i ∈ {1, 2}, let hi be an annihilator of fi or 1 ⊕ fi of degree AI(fi). Then h1 · h2 · f = 0 or
h1 · h2 · (1⊕ f) = 0.
Finally deg(h1h2) = AI(f1) + AI(f2), so AI(f) ≤ AI(f1) + AI(f2).
We prove the second part of the inequality by contradiction:
Consider that AI(f) < max(AI(f1),AI(f2)). Without loss of generality we have:

max{AI(f1),AI(f2)} = AI(f2) and AI(f) < AI(f2).

Then ∃ h such that fh = 0 or (1⊕ f)h = 0 with deg(h) = AI(f).

29

Hence we have two possibilities. Either we have:

f(0, · · · , 0, xn1 , · · · , xn1+n2−1)h(0, · · · , 0, xn1 , · · · , xn1+n2−1) = 0⇒ f2h = 0,

that is h is an annihilator of f2 of degree < AI(f2): there is a contradiction,
or we have:

(f(0, · · · , 0, xn1 , · · · , xn1+n2−1)⊕ 1)h(0, · · · , 0, xn1 , · · · , xn1+n2−1) = 0 ⇒ (f2 ⊕ 1)h = 0,

that is h annihilator of 1⊕ f2 of degree < AI(f2): there is a contradiction.
4. Analog to 3.

C.2 Proof of Lemma 6

1. The proof is by induction. T1 is a linear function so NL(T1) = 0. Then using Lemma 3.1, ∀k ∈
N∗, Tk+1 = Tk ⊕ Πk+1 (where Πk+1 is the monomial of degree k + 1 in the k + 1 last variables).
We have the following implications:
⇒ NL(Tk+1) = NL(Tk ⊕Πk+1),
⇒ NL(Tk+1) = 2k+1NL(Tk) + 2k(k+1)/2NL(Πk+1)− 2NL(Tk)NL(Πk+1),
⇒ NL(Tk+1) = (2k+1 − 2)NL(Tk) + 2k(k+1)/2 as NL(Πn) = 1,∀n ≥ 2.

2. By induction suppose that for k ≥ 1, res(Tk) = 0. The function T1 has one variable and therefore its
resiliency is 0. By construction, for ` ≥ 1, T`+1 is the direct sum of T` and a monomial of degree `+1.
This monomial has a resiliency of −1. By Lemma 3.2, res(T`+1) = 1 + res(T`) + res(Π`+1) = 0. In
conclusion for all k ∈ N∗ we have res(Tk) = 0.

3. By induction on k we prove that for all k ∈ N∗,AI(Tk) = k.
For k = 1 we have T1 = x0 of algebraic immunity AI(x0) ≥ 1 by definition. Hence 1⊕ x0 is a degree
1 annihilator of x0 and we have AI(T1) = 1.
For k = `, by the induction hypothesis we have that AI(T`) = `. We want now to determine AI(T`+1)

where T`+1 = T` ⊕Π`+1 with Π`+1 the product of the ` + 1 variables which are not in T`. Π`+1 is a
monomial of degree `+ 1, therefore its AI is 1. By Lemma 3 we have that `+ 1 ≥ AI(T`+1) ≥ `.
We prove the induction hypothesis by contradiction: suppose that AI(T`+1) = `, then ∃h such that
deg(h) = ` and h · T`+1 = 0 or h · (1⊕ T`+1) = 0. Hence we have two different cases:

– Case h ·T`+1 = 0. Let decompose h as hT ⊕hΠ⊕hmix, a decomposition of monomials of variables
taken respectively from T`, Π`+1 and the mixed part between the two.
Restricting the equation h ·T`+1 = 0 to the variables from T` we obtain hT ·T` = 0. So by induction
hypothesis we have deg(hT) = ` or hT = 0. Again two cases are possible:
• When deg(hT) = `. Then h · T`+1 = 0⇔ (hT ⊕ hΠ ⊕ hmix) · T`+1 = hT ·Π`+1 ⊕ hΠ · T` ⊕
hmix · T` ⊕ hmix ·Π`+1 = 0 The first polynomial hT ·Π`+1 contains at least one monomial of
degree 2` + 1 divisible by Π`+1. The degrees of the second and third polynomials are at most
2` ≥ deg(h)+deg(T`). By construction all the monomials of hmix have at most `− 1 variables
from T` then hmix · Π`+1 has no monomial of degree 2` + 1 and the equation is leading to a
contradiction.

• When hT = 0. Then h·T`+1 = 0⇔ (0⊕hΠ⊕hmix)·T`+1 = hΠ ·T`⊕hmix·T`+hmix·Π`+1 = 0.
Only the last polynomial contains monomials with all variables of Π`+1, then the equation is
false or h = 0, both leading to a contradiction.

30

– Case h · (1⊕ T`+1) = 0. We use the same decomposition technique leading to a contradiction.

To sum up, AI(T`+1) = ` + 1, so from the initialization step k = 1 and the induction step k = ` we
conclude that ∀k ∈ N∗, AI(Tk) = k.

4. By contradiction, let consider that FAI(Tk) < k + 1.
By definition we have:

min{2AI(Tk),max{deg(g · Tk) + deg(g), 3 deg(g)} | 1 ≤ deg(g) < AI(Tk)} < k + 1.

And by Lemma 6 we have:

min{2k,max{deg(g · Tk) + deg(g), 3 deg(g)} | 1 ≤ deg(g) < k)} < k + 1.

Hence it implies that:

∃g | deg(g · Tk) + deg(g) < k + 1 and 3 · deg(g) < k + 1.

We have that Tk ⊕ 1 is an annihilator of g · Tk. Then Tk(g · Tk ⊕ g) = 0 implies that g · Tk ⊕ g = 0 or
deg(g · Tk ⊕ g) ≥ k.
If g · Tk ⊕ g = 0 , we have either g = 0 or deg(g) ≥ k, which is a contradiction.
If deg(gTk ⊕ g) ≥ k then we get deg(g) ≥ k or deg(gTk) ≥ k. The first inequation leads to a
contradiction.
The second inequation leads to deg(g · Tk) + deg(g) ≥ k + 1 which is a contradiction.
To sum up, FAI(Tk) ≥ k+1 and taking g = 1⊕xk(k+1)/2−1, we have that deg(g ·Tk)+deg(g) = k+1

and therefore FAI(Tk) = k + 1.

D Details on BKW-like attack

Decomposing F in a linear and non-linear part, we can study our filtering function by analogy with LPN and
therefore consider the impact of BKW [BKW03] on our construction. Let s ←$ {0, 1}N . A LPN sample
is a couple (a, 〈a, s〉 + ν) such that a ←$ {0, 1}N and ν ←$ Bernoulli(ε) . At each cycle of the filter
permutator, the permutation on the linear part of F of ` bits is analogous to the random choice of a, with
the restriction that its hamming weight is fixed to `. Then the non-linear part of F can be considered as the
ν part of a LPN sample, such that the output bit follows a Bernoulli distribution with parameter ε = NL(F)

2N
.

As in our case the a distribution is restricted and the output bits are produced from dependent distributions,
we cannot formally reduce the filter permutator key recovery to the search-LPN problem. Nevertheless, we
can evaluate the computational cost of a strategy similar to the BKW algorithm to recover the key, based on
the LF1 algorithm complexity [LF06].

Namely, writing N as a ∗ b, the main point of the attack is to find a lot of groups of 2a well-chosen
vectors such that a1 ⊕ · · · ⊕ a2a = ej . With 2a a small number, the bias introduced by XORing 2a LPN
samples is not too small, enabling to recover sj from a majority vote over the different groups of 2a vectors,
since 〈s,a1⊕· · ·⊕a2a〉 = 〈s, ej〉 = sj . For our construction, the case a = 1 is impossible: as the Hamming
weight of each ai is the same, no difference can give a vector of Hamming weight 1. Therefore, at least two
XORs are needed to obtain a new vector with Hamming weight 1. Let δ = 0.5− ε be the bias of the original
vectors. This implies that the bias of such new vectors is δ3. To distinguish this bias and to recover sj , we
therefore need O(δ−6) operations. Such an attack can be extended by finding vectors such that the sum is

31

ei ⊕ ej , which leads to perform at least one XOR to obtain a targeted vector if ` > 2. The computational
cost of recovering one sum is then O(δ−4). It leads to a complexity O(Nδ−4) to recover all the key. For
the case where ` = 2, there is no need to perform XORs: the ai’s are already of Hamming weight 2 and the
corresponding attacks are therefore the correlation attack described in Section 3.4. But we can extend this
attack considering vectors of Hamming weight h ≤ `, and number of XORs x, leading to a (conservative)
complexity of O(2hδ−2(x+1)).

E Guess And Determine Proofs

Proof of lemma 7. 1. We prove this property by induction on `.

For ` = 0 : without guessing F [0] = F therefore
∑deg(F [`])

i=1 mi[`] =
∑deg(F)

i=1 mi and the property is
true.
From j to j + 1 : After guessing j variables we obtain F [j] satisfying the induction property. Without
loss of generality, let consider that we guess an extra variable xd contributing in a monomial of degree
d. We have then two distinct cases.

– Case xd = 0. The monomial of degree d containing xd is cancelled therefore mF [j+1] the resulting
vector is such that md[j + 1] = md[j] − 1 and ∀i 6= d;mi[j + 1] = mi[j] for all the coefficients
correctly defined (by definitionmi is defined if ∃k ≥ i such thatmk > 0, i.e. mF [j+1] can be shorter

than mF [j]). Then
∑deg(F [j+1])

i=1 mi[j + 1] = (
∑deg(F [j])

i=1 mi[j])− 1 ≥ (
∑deg(F)

i=1 mi)− (j + 1) ≥
(
∑deg(F)

i=1 mi)− ` ; the property is verified.
– Case xd = 1. The monomial of degree d containing xd is turned into a degree d − 1 monomial

therefore mF [j+1] the resulting vector is such thatmd[j+1] = md[j]−1,md−1[j+1] = md−1[j]+1

and ∀i 6= d or d − 1;mi[j + 1] = mi[j] for all the coefficients correctly defined (by definition mi

is defined if i > 0, i.e. d = 1 is the only case diminishing the sum). Then
∑deg(F [j+1])

i=1 mi[j + 1] ≥
(
∑deg(F [j])

i=1 mi[j])− 1 ≥ (
∑deg(F)

i=1 mi)− (j + 1) ≥ (
∑deg(F)

i=1 mi)− ` ; the property is verified.
In conclusion the property is true for all 0 ≤ ` ≤ N .

2. The precedent property on mF stands that at most one mi is diminished by each guessing therefore :
m∗F [`] ≥m∗F −maxπ∈Sdeg(F)

{j|(
∑j

k=1mπ(k)) ≤ `} with Sdeg(F) the group of permutation of deg(F)
elements.
This maximum corresponds to the maximal number of mi’s that can be cancelled with ` guesses. We
can bound it by: maxπ∈Sdeg(F)

{j|(
∑j

k=1mπ(k)) ≤ `} ≤ b `
min1≤i≤deg(F)mi

c.
Using this bound corresponding to the worst case (all mi’s being minimal) we get:

m∗F [`] ≥m∗F − b
`

min1≤i≤deg(F)mi
c.

3. First we study the parameter δmF on similar functions. We focus on δmF and δmG where F is the direct
sum of G (of N − d variables) and a monomial of degree d > 1.
By the property of nonlinearity of direct sums we have NL(F) = (2d − 2)NL(G) + 2N−d, then

NL(G) =
NL(F)− 2N−d

2d − 2
.

32

Therefore δmG = 1
2 −

NL(G)
2N−d

= (2d−1−1)2N−d−NL(F)+2N−d

(2d−1−1)2N−d+1 = 2N−1−NL(F)
2N

2d−1

2d−1−1 , meaning that

δmG = δmF

2d−1

2d−1 − 1
.

The last case to consider is when d = 1, then NL(F) = 2NL(G) by the property of nonlinearity of direct
sums and therefore δmF = δmG .
Then, using the property on mF and that 2d−1

2d−1−1 decreases when d increases we obtain the bound

δmF [`]
≤ δmFΠ

deg(F)
i=2 (2i−1

2i−1−1)
`i such that ∀i, `i ≤ mi and

∑deg(F)
i=1 `i = `.

This bound corresponds to the case when all variables are fixed to 0, otherwise fixing a variable to 1 is
equivalent to cancel a monomial and add a new one (except if d = 1 which does not add a new one).
Optimizing the choices for the `i we can give a tight upper bound on the product ; let denote j the integer
such that

∑
2≤i<jmi ≤ ` <

∑
2≤i≤jmi. Then we have:

Π
deg(F)
i=2 (

2i−1

2i−1 − 1
)`i ≤ (Π2≤i<j(

2i−1

2i−1 − 1
)mi)(

2j−1

2j−1 − 1
)`−

∑
2≤i<j mi .

As `2 ≤ ` we consider the worst case : `2 = `, giving Πdeg(F)
i=2 (2i−1

2i−1−1)
`i ≤ 2` and therefore the

conservative bound δmF [`]
≤ δmF 2

` .

Algebraic Attacks

Lemma 18 (Algebraic Attack on Direct Sums). Let F be a boolean function in N variables obtained by
direct sums, therefore AI(F) ≥m∗F .

Proof. F is an N variables function with associated vector mF , we thereafter write F as F (x1, · · · , xN).
Let d be the highest integer such that md = 0 and is well defined (i.e. it cannot be mk), we can pick two
variables of one monomial of F of degree d+ 1 and denote their product by the variable XN−1.

Reordering the variables we obtain a function FN−1(x1, · · · , xN−2, XN−1) with an associated vector
without 0 in d-th coordinate and with md+1 inferior by one from the previous vector or nonexistent if it
reached 0 and was the last coefficient of the vector and such that m∗FN−1

≥m∗F .
Therefore we can recursively apply this technique to obtain the function G = F (x1, · · · , Xj) in j

variables with associated vector mG being null or without coefficients equal to zero (the recursion is ending
because N =

∑k
i=1 imi is finite and applying the technique reduces N and the recursion ends if N = 0).

Considering the last function G and mG of length k′ = m∗G ≥ m∗F we have that G is the direct sum
of Tk′ (mTn is the n-length vector with all components being 1 by definition of Tn) and another function.
Then by the property of direct sums AI(G) ≥ AI(Tk′) therefore AI(G) ≥m∗G.

That means that there exists no annihilator of degree strictly inferior to m∗G for G or G + 1 in the
variables x1, · · · , Xj . Then by construction of the variables X there exists no annihilator of degree strictly
inferior to m∗F for F or F + 1 in the variables x1, · · · , xN . We conclude that AI(F) ≥m∗F .

Now we consider the best complexity of combining Guess And Determine and Algebraic Attacks.

33

Lemma 19 (Guess And Determine & Algebraic Attack). Let F be a boolean function inN variables and
CGDAA(F) (respectively CAA(F)) be the minimum complexity of the Guess And Determine with Algebraic
Attack (respectively Algebraic Attack) on F , then :

CGDAA(F) ≥ min
0≤`≤N

[
2`
(

minN [`]

m∗F − b
`

mini∈[deg(F)]mi
c

)ω]
.

Proof. CGDAA(F) = min(2`CAA(F [`])) by definition, with the minimum taken over all guessing of `
variables, with 0 ≤ ` ≤ N .

We then have CGDAA(F) = min[2`(
∑AI(F [`])

i=1

(
N [`]
i

)
)ω] ≥ min[2`

(N [`]
AI(F [`])

)
].

As for all Boolean function the algebraic immunity is less than half the number of its variables, for
all fixed ` we can use the bound

(N [`]
AI(F [`])

)
≥
(minN [`]
minAI(F [`])

)
where the minimum is taken over all functions

obtained by guessing ` variables.
Moreover AI(F [`]) ≥m∗F [`] ≥m∗F − b

`
mini∈[deg(F)]mi

c by lemmas 7.2 and 18. We recall that minN [`]

is the smallest number of variables of a function obtained by cancelling ` variables of F ; this quantity is
easily computable and may be smaller than the number of variables of the function used for the actual attack.

Putting all thing together leads to: CGDAA(F) ≥ min0≤`≤N [2
`
(minN [`]

m∗F−b
`

mini∈[deg(F)]mi
c

)
].

Fast Algebraic Attacks

Proof. Proof of Lemma 8
CGDFAA(F) = min(2`CFAA(F [`])) by definition, with the minimum taken over all guessing of `

variables, with 0 ≤ ` ≤ N .
Then for all Boolean function f , CFAA(f) = min[(D log2D + E2D + Eω)] where:

– the minimum is taken over all Boolean functions g and h such that fg = h,
– d = deg(h) and e = deg(g),
– D =

∑d
i=1

(
N
i

)
and E =

∑e
i=1

(
N
i

)
,

– ω is the exponent appearing in solving a linear system.

As we need to bound d and e for all guesses, we use the following property of the algebraic immunity:
fg = h ⇒ g = fh ⇒ f(g + h) = 0. By definition of AI(f), deg(g + h) ≥ AI(f) therefore max(d, e) ≥
AI(f).

As CFAA(f) is defined as a minimal value over all choices of g and h such that fg = h, we can restrict
the choices to 1 ≤ e ≤ d with d ≥ AI(f). Therefore we get:

CFAA(f) = min(D log2D + E2D + Eω) ≥ min(
(
N
d

)
log2

(
N
d

)
+
(
N
e

)2(N
d

)
+
(
N
e

)ω
).

CFAA(f) ≥
(
N

AI(f)

)
log2

(
N

AI(f)

)
+
(
N
1

)2(N
AI(f)

)
+
(
N
1

)ω
.

Using lemma 18 on our particular functions F [`] we obtain:

CFAA(F [`]) ≥
(
N [`]

m∗F [`]

)
log2

(
N [`]

m∗F [`]

)
+ (N [`])2

(
N [`]

m∗F [`]

)
+ (N [`])ω.

34

We can use the bound
(N [`]
m∗
F [`]

)
≥
(minN [`]

m∗F−b
`

mini∈[deg(F)]mi
c

)
using that AI(F [`]) ≤ N [`]

2 and lemma 7.

Therefore :

CGDFAA(F) ≥ min
0≤`≤N

[2`(C log2C + (minN [`])2C + (minN [`])ω)],

where C =
(minN [`]

m∗F−b
`

mini∈[deg(F)]mi
c

)
.

CA/BKW-like Attack

Lemma 20 (Guess and Determine & CA/BKW-like Attack). Let F be a boolean function inN variables
and CGDCA/BKW (F) be the minimum complexity of the Guess And Determine with Correlation/BKW
Attack on F , then :

CGDCA/BKW (F) ≥ min
0≤`≤N

{2−`δ−2mF
}.

Proof. CGDCA/BKW (F) = min{2`CCA(F [`]), 2`CBKW (F [`])} ≥ min{2`(δmF [`]
)−2} where CCA and

CBKW stand for the (data) complexity of the correlation and the BKW attack and δmF [`]
is the bias of the

function F [`], the minimum is taken over all guessing of ` variables, with 0 ≤ ` ≤ N .
From Lemma 7 we know that the bias increases the most when considering the restriction of F to the

N [`] variables canceling the monomials of degree 2. We can then derive the following bound from Lemma 7:

(δmF [`]
)−2 ≥ δ−2mF

· 2−2`.

Hence we have

CGDCA/BKW (F) ≥ min
0≤`≤N

{2−`δ−2mF
}.

HOC Attack The HOC attack leads to consider the best approximation of fixed degree of a Boolean
function, which corresponds to determine its non-linearity of order greater than 1. As this characteristic is
still generally unknown for almost all functions up to our knowledge, we approximate the non-linearity of
order d of a direct sum of monomials F by the distance between F and its restriction Fd to degrees up to d
monomials. We define Gd = F ⊕ Fd.

Let F be associated to mF = [m1, · · · ,md, · · · ,mk], thereafter we consider Fd associated to mFd =

[m1, · · · ,md, 0, · · · , 0] and Gd associated to mGd = [0, · · · , 0,md+1, · · · ,mk].

Lemma 21 (Guess and Determine and HOC). Let F be a boolean function in N variables of degree k
such that mF = [m1, · · · ,mk] :

CGDHOC = min
0≤`≤N

2` min
1≤d≤deg(F)

(minN [`]

D

)ω (1

2
+ δmGd

(
2d

2d − 1

)`)−m ,

where:

35

– d ≤ D ≤ minN [`]
2 , for each `.

– m ≥ (minN [`]
D)

(minN [`]
D−d)

, for each `.

Proof. CGDHOC = min(2`CHOC(F [`])) By definition, with the minimum taken over all guessing of `
variables, with 0 ≤ ` ≤ N .

Applying the complexity bound for the HOC attack :
CGDHOC = min(2`min1≤d≤deg(F)[

(N [`]
D

)ω
(1− ε)−m]),

where:

– d ≤ D ≤ N .
– ε = dH(F [`],g)

2N [`] with g a Boolean function of degree at most d.

– m ≥ (N [`]
D)

(N [`]
D−d)

.

First we bound the term (1 − ε), by definition of the non-linearity of order d, ming(
dH(F [`],g)

2N [`]) =

NLd(F [`]). We approximate F [`] by F [`]d and as F [`]⊕ F [`]d is a direct sum of monomials we obtain :
NLd(F [`]) ≈ dH(F [`],F [`]d)

2N [`] = NL(F [`]⊕F [`]d)

2N [`] .

We write G[`]d = F [`]⊕F [`]d for simplicity, then 1
2 −

NL(F [`]⊕F [`]d)

2N [`] = δmG[`]d
. As G[`]d contains only

monomials of degree greater than d we use Lemma 7(part 3) and get δmG[`]d
≤ δmGd

(2d

2d−1)
`.

We conclude (1− ε) ≥ (12 + δmGd
(2d

2d−1)
`).

Then we bound the term
(N [`]
D

)
and m in consequences. Following [Cou02] we assume D << N and

more precisely D ≤ minN [`]
2 where the minimum is taken over all guess of ` bits.

Putting all together we obtain :
CGDHOC = min0≤`≤N (2

`min1≤d≤deg(F)[
(minN [`]

D

)ω
(12 + δmGd

(2d

2d−1)
`)−m]),

where:

– d ≤ D ≤ minN [`]
2 , for each `.

– m ≥ (minN [`]
D)

(minN [`]
D−d)

, for each `.

F Error Growth Proofs

Proof of lemma 10

Proof. We first prove the lemma in the batched GSW setting following the analysis in [AP14] for the sum
of two ciphertexts. Considering the addition of two ciphertexts we can write:

SC+ = SC1 + SC2 = E′1 +


m1,1 · s>1

...

m1,r · s>r

G+E′2 +


m2,1 · s>1

...

m2,r · s>r

G.

36

The error of C+ is therefore E+ = E′1 + E′2 ∈ Zr×Nq ; each row e>+,j for 1 ≤ j ≤ r is the sum of e>1,j
and e>2,j . Then for 1 ≤ j ≤ r the N coefficients of e>1,j (respectively e>2,j) follow a subgaussian distribution
of parameter σ1 (respectively σ2) and by Pythagorean additivity each coefficient of e>+,j as subgaussian
parameter σ+ =

√
σ21 + σ22 .

Then we prove the analogous property in the ring setting. To add two ciphertexts we consider:

s>C+ = s>C1 + s>C2 = e′>1 +m1s
>G+ e′>2 +m2s

>G.

The error of C+ is therefore e>+ = e′>1 + e′>2 ∈ RN where each N coefficient is the sum of
polynomials where each component follows a subgaussian distribution of parameter respectively σ1 or σ2.
By Pythagorean additivity on subgaussian parameters, each component of the polynomials of the vector e>+
has therefore subgaussian parameter σ+ =

√
σ21 + σ22 .

Finally, in both cases the subgaussian parameter for the addition of k ciphertexts is simply obtained by
applying successively the formula of the addition of two ciphertexts. The case σ′ = σ

√
k is a subcase when

all ciphertexts error distributions have identical parameter σ.

Proof of lemma 11

Proof. We first prove the statement on batched-GSW following the same direction as [AP12] (considering
only the subcase of diagonal matrices as plaintexts). Let consider the noise in a product of two ciphertexts
SC×. We have the following relations:

SC× = SC1G
−1(C2) =

E′1 +


m1,1 · s>1

...

m1,r · s>r

G

G−1(C2),

= E′1G
−1(C2) +


m1,1 · s>1

...

m1,r · s>r

C2 = E′1G
−1(C2) +


m1,1 0 . . . 0

0 m1,2 . . . 0
...

...
. . .

...

0 0 . . . m1,n

SC2,

= E′1G
−1(C2) +


m1,1 0 . . . 0

0 m1,2 . . . 0
...

...
. . .

...

0 0 . . . m1,n

E′2 +


m1,1m2,1 · s>1

...

m1,rm2,r · s>r

G.

The error of C× is therefore E× = E′1G
−1(C2) +


m1,1 0 . . . 0

0 m1,2 . . . 0
...

...
. . .

...

0 0 . . . m1,n

E′2.

As G−1(C2) is an N ×N matrix from independent subgaussian distribution with parameter σG−1 = 1,
we can consider independently the r rows of E×, leading to:

37

e>×,j = e>1,jG
−1(C2) +m1,je

>
2,j .

The components of m1,je
>
2,j follow a subgaussian distribution of parameter |m1,j |σ2 by homogeneity,

with |m1,j | ∈ N the absolute norm of m1,j . By Pythagorean additivity, the components of e>1,jG
−1(C2)

follow a subgaussian distribution of parameter
√∑N

`=1(σG−1e>1,j,`)
2 = σG−1 ||e>1,j ||2 = O(σ1

√
N) by

Lemma 2.
The components of e>×,j are therefore following independent subgaussian distribution of parameter σ′ =

O
(√

(σ1
√
N)2 + (|m1,j |σ2)2

)
.

Applying this formula recursively for a multiplicative chain we obtain the following one for σ′:

O
(√

(σ1
√
N)2 + (|m1,j |σ2

√
N)2 + · · ·+ ((Πk−1

i=1 |mi,j |)σk
√
N)2 + ((Πk

i=1|mi,j |)σG)2
)
.

As G is a noiseless encryption of I, σG = 0 and we can conclude:

σ′ = O

√N
√√√√σ21 +

k∑
i=2

(σiΠ
i−1
j=1|mj |)2

 .

Then we prove the property in the ring setting.
We first recall that R is a cyclotomic polynomial of degree being a power of two. Hence we have the

following relations on a product of a, b ∈ Rq:

ab =
n−1∑
i=0

 i∑
j=0

ajbi−jX
i

+
n−2∑
i=0

 n−1∑
j=i+1

ajbn+i−jX
n+i

 mod Xn + 1.

Using the reduction modulus Xn + 1 we get:

ab =

n−1∑
i=0

 i∑
j=0

ajbi−jX
i

− n−2∑
i=0

 n−1∑
j=i+1

ajbn+i−jX
i

 ,

and for each coefficient:

(ab)i =

 i∑
j=0

ajbi−j

−
 n−1∑
j=i+1

ajbn+i−j

 ,

where each coefficient of a and b appears only once in the sum. This expression on the coefficients
enables then to obtain the subgaussian parameter of a product of subgaussian polynomials.

With a, b ∈ Rq, each coefficient of b following independent subgaussian distributions of parameter σb,
by Pythagorean additivity we obtain the subgaussian parameter σab of the coefficients of ab:

σab =

√√√√n−1∑
j=0

(ajσb)2 = σb||a||2. (3)

38

Hereafter, as in the batched setting, we obtain the subgaussian parameter in the simpler case of a product
of two ciphertexts. Multiplying two ciphertexts C1 and C2 we can consider the resultant error vector:

e>× = e>1G
−1(C2) +m1e

>
2 ∈ RN

q .

For the second part, we consider all polynomial of e2 with coefficient from subgaussian independent
distributions of parameter σ2. Then the subgaussian parameter obtained is σ2||m1||2 using relation 3.

For the first component e>1G
−1(C2), each polynomial of the result is the sum ofN independent products

from an element of e>1 and a polynomial with coefficients following subgaussian distributions of parameter

1 (by construction of G−1). The subgaussian parameter of the first part is
√∑N

i=1(||e>1i||2)2 by Relation 3.
Finally the subgaussian parameter σ× of the coefficients of the polynomials of e× is:

σ× = O
(√

(σ1
√
nN)2 + (σ2||m1||2)2

)
.

using Lemma 2 on the e1i and Pythagorean additivity.
We apply this formula recursively for a multiplicative chain ending by G. The resulting subgaussian

parameter is σ′:

O
(√

(σ1
√
nN)2 + (||m1,j ||2σ2

√
nN)2 + · · ·+ ((Πk−1

i=1 ||mi,j ||2)σk
√
nN)2 + ((Πk

i=1||mi,j ||2)σG)2
)
.

As G is a noiseless encryption of I, σG = 0 and we can conclude:

σ′ = O

√nN
√√√√σ21 +

k∑
i=2

(σiΠ
i−1
j=1||mj ||2)2

 .

39

	Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts
	Pierrick Méaux1, Anthony Journault2, François-Xavier Standaert2, Claude Carlet3.

