sElect: A Lightweight Verifiable Remote Voting System

Ralf Kiisters', Johannes Miiller', and Enrico Scapin' Tomasz Truderung?

! University of Trier, {kuesters, muellerjoh, scapin}@uni-trier.de
2 Polyas GmbH, ttruderung@gmail.com

Abstract. Modern remote electronic voting systems, such as the prominent Helios
system, are designed to provide vote privacy and verifiability, where, roughly
speaking, the latter means that voters can make sure that their votes were actually
counted. In this paper, we propose a new practical voting system called sElect
(secure/simple elections). This system, which we implemented as a platform
independent web-based application, is meant for low-risk elections and is designed
to be particularly simple and lightweight in terms of its structure, the cryptography
it uses, and the user experience. One of the unique features of sElect is that it
supports fully automated verification, which does not require any user interaction
and is triggered as soon as a voter looks at the election result. Despite its simplicity,
we prove that this system provides a good level of privacy, verifiability, and
accountability for low-risk elections.

1 Introduction

E-voting systems are used in many countries for national or municipal elections as well as
for elections within associations, societies, and companies. There are two main categories
of such systems. In the first category, voters vote in polling stations using electronic
voting machines, such as direct recording electronic voting systems or scanners. In the
second category, called remote electronic voting, voters vote over the Internet using
their own devices (e.g., desktop computers or smartphones). In addition, there are hybrid
approaches, where voters, via an additional channel, e.g., mail, are provided with codes
which they use to vote (code voting).

E-voting systems are complex hardware/software systems and as in all such systems
programming errors can hardly be avoided. In addition, these systems might deliberately
be tampered with when deployed in elections. This means that voters when using e-
voting systems, in general, do not have any guarantee that their votes were actually
counted and that the published result is correct, i.e., reflects the actual voters’ choices.
In fact, many problems have been reported (see, e.g., [1, 38]). Therefore, besides vote
privacy, modern e-voting systems strive for what is called verifiability. This security
property requires that voters are able to check the above, i.e., proper counting of their
own votes and integrity of the overall result, even if voting machines/authorities are
(partially) untrusted.

Several such e-voting systems have been proposed in the literature, including, for
example, such prominent systems as Helios [4], Prét & Voter [35], STAR-Vote [7], and
Remotegrity [40]. Some systems, such as Civitas [14] and Scantegrity [12], are designed
to, in addition, even achieve coercion-resistance, which requires that vote selling and

voter coercion is prevented. Several of these systems have been used in binding elections
(see, e.g., [5,12, 17]). In this paper, we are interested in remote electronic voting, which
is meant to enable the voter to vote via the Internet.

The design of practical remote e-voting systems is very challenging as many aspects
have to be considered. In particular, one has to find a good balance between simplicity,
usability and security. This in turn very much depends on various, possibly even con-
flicting requirements and constraints, for example: What kind of election is targeted?
National political elections or elections of much less importance and relevance, e.g.,
within clubs or associations? Should one expect targeted and sophisticated attacks against
voter devices and/or servers, or are accidental programming errors the main threats to the
integrity of the election? Is it likely that voters are coerced, and hence, should the system
defend against coercion? How heterogeneous are the computing platforms of voters?
Can voters be expected to have/use a second (trusted) device and/or install software?
Is a simple verification procedure important, e.g., for less technically inclined voters?
Should the system be easy to implement and deploy, e.g., depending on the background
of the programmers? Should authorities and/or voters be able to understand (to some
extent) the inner workings of the system?

Therefore, there does not seem to exist a “one size fits all” remote e-voting system.
In this work, we are interested in systems for low-risk elections, such as elections within
clubs and associations, rather than national elections, where—Dbesides a reasonable level
of security—simplicity and convenience are important.

The goal of this work is to design a particularly lightweight remote system which
(still) achieves a good level of security. The system is supposed to be lightweight both
from a voter’s point of view and a design/complexity point of view. For example, we do
not want to require the voter to install software or use a second device. Also, verification
should be a very simple procedure for a voter or should even be completely transparent
to the voter. More specifically, the main contributions of this paper are as follows.

Contributions of this paper. We present a new, particularly lightweight remote e-voting
system, called sElect (secure/simple elections), which we implemented as a platform
independent web application and for which we perform a detailed cryptographic security
analysis w.r.t. privacy of votes as well as verifiability and accountability. The system
combines several concepts, such as verification codes (see, e.g., [19]) and Chaumian mix
nets [13], in a novel way. sElect is not meant to defend against coercion and mostly tries
to defend against untrusted or malicious authorities, including inadvertent programming
errors or deliberate manipulation of servers, but excluding targeted and sophisticated
attacks against voters’ devices.

We briefly sketch the main characteristics of sElect, including several novel and
unique features and concepts which should be beneficial also for other systems. Besides
the technical account of sElect provided in the following sections, a general discussion
on sElect, including its limitations, is also provided in Section 8.

Fully automated verification. One of the important unique features of sElect is that
it supports fully automated verification. This kind of verification is carried out by the
voter’s browser. It does not require any voter interaction and is triggered as soon as a
voter looks at the election result. This is meant to increase verification rates and ease the
user experience. As voters are typically interested in the election results, combining the

(fully automated) verification process with the act of looking at the election result in fact
appears to be an effective way to increase verification rates as indicated by two small
mock elections we performed with sElect (see Section 7). In a user study carried out
in [3] for various voting systems, automated verification was pointed out to be lacking
in the studied systems, including, for example, Helios. It seems that our approach of
automated verification should be applicable and can be very useful for other remote
e-voting systems, such as Helios, as well.

Another important aspect of the automated verification procedure of sElect is that
it performs certain cryptographic checks and, if a problem is discovered, it singles out
a specific misbehaving party and produces binding evidence of the misbehavior. This
provides a high level of accountability and deters potentially dishonest voting authorities.

Voter-based verification (human verifiability). Besides fully automated verification,
sElect also supports a very easy to understand manual verification procedure: a voter
can check whether a verification code she has chosen herself when casting her vote
appears in the election result along with her choice. As further discussed in Section 8§,
this simple procedure has several obvious benefits. For example, it reduces trust assump-
tions concerning the voter’s computing platform (for fully automated verification the
voter’s computing platforms needs to be fully trusted). Also voter’s can easily grasp
the procedure and its purpose, essentially without any understanding of the rest of the
system, which should help to increase user satisfaction and verification rates. On the
negative side, such codes open the way for voter coercion (see also Section 8).

Simple cryptography and design. Unlike other modern remote voting systems, sElect
uses only the most basic cryptographic operations, namely, public key encryption and
digital signatures. And, as can been seen from Section 2, the overall design and structure
of sElect is simple as well. In particular, sElect does not rely on any more sophisti-
cated cryptographic operations, such as zero-knowledge proofs, verifiable distributed
decryption, universally verifiable mix nets, etc. Our motivation for this design choice is
twofold.

Firstly, we wanted to investigate what level of security (privacy, verifiability, and
accountability) can be obtained with only the most basic cryptographic primitives (public-
key encryption and digital signatures) and a simple and user-friendly design, see also
below.

Secondly, using only the most basic cryptographic primitives has several advantages
(but also some disadvantages), as discussed in Section 8.

Rigorous cryptographic security analysis. We perform a rigorous cryptographic analysis
of sElect w.r.t. end-to-end verifiability, accountability, and privacy. Since quite rarely
implementations of practical e-voting systems come with a rigorous cryptographic
analysis, this is a valuable feature by itself.

Our cryptographic analysis, carried out in Sections 4, 5, and 6 shows that sElect
enjoys a good level of security, given the very basic cryptographic primitives it uses.

Remarkably, the standard technique for achieving (some level of) end-to-end verifi-
ability is to establish both so-called individual and universal verifiability.> In contrast,
sElect demonstrates that one can achieve (a certain level of) end-to-end verifiability, as

3 As pointed out in [30], this combination does not guarantee end-to-end verifiability, though.

well as accountability, without universal verifiability. This is interesting from a concep-
tual point of view and may lead to further new applications and system designs.

Altogether, sElect is a remote e-voting system for low-risk elections which provides
a new balance between simplicity, usability, and security, emphasizing simplicity and
usability, and by this, presents a new option for remote e-voting. Also, some of its new
features, such as fully automated verification and triggering verification when looking
up the election result, could be used to improve other systems, such as Helios, and lead
to further developments and system designs.

Structure of the paper. In Section 2, we describe sElect in detail on a conceptual level.
Verifiability, accountability, and privacy of sElect are then analyzed in Sections 4, 5,
and 6, respectively, based on the model of sElect provided in Section 3. Details of our
implementation of sElect are presented in Section 7, with a detailed discussion of sElect
and related work provided in Section 8. We conclude in Section 9. Full details and proofs
can be found in the appendix of this paper; see [2] for the implementation and an online
demo of sElect.

2 Description of sElect

In this section, we present the sElect voting system on the conceptual level. Its imple-
mentation is described in Section 7.

Cryptographic primitives. sElect uses only basic cryptographic operations: public-key
encryption and digital signatures. More specifically, the security of sElect is guaranteed
for any IND-CCA2-secure public-key encryption scheme* and any EU-CMA-secure sig-
nature scheme, and hence, very standard and basic cryptographic assumptions. Typically,
the public-key encryption scheme will employ hybrid encryption so that arbitrarily long
messages and voter choices can be encrypted.

To simplify the protocol description, we use the following convention. First, whenever
we say that a party produces a signature on some message m, this implicitly means that
the signature is in fact computed on the tuple (elid,tag,m), where elid is an election
identifier (different for different elections) and rag is a tag different for signatures with
different purposes (for example, a signature on a list of voters uses a different tag
than a signature on a list of ballots). Similarly, every message encrypted by a protocol
participant contains the election identifier.

Set of participants. The set of participants of the protocol consists of an append-
only bulletin board B, n voters vi,...,v, and their voter supporting devices (VSDs)
vsdy,...,vsd,, an authentication server AS, m mix servers My,...,M,,, and a voting
authority VA. For sElect, a VSD is simply the voter’s browser (and the computing
platform the browser runs on).

We assume that there are authenticated channels from each VSD to the authentication
server AS. These channels allow the authentication server to ensure that only eligible

4 For the privacy property of sElect, we require that the public-key encryption scheme for every
public-key and any two plaintexts of the same length always yields ciphertexts of the same
length. This seems to be satisfied by all practical schemes.

voters are able to cast their ballots. By assuming such authenticated channels, we abstract
away from the exact method the VSDs use to authenticate to the authentication server;
in practice, several methods can be used, such as one-time codes, passwords, or external
authentication services (see Appendix A for a concrete instantiation).

We also assume that for each VSD there is one (mutual) authenticated and one
anonymous channel to the bulletin board B (see below for details). Depending on the
phase, the VSD can decide which channel to use in order to post information on the
bulletin board B. In particular, if something went wrong, the VSD might want to complain
anonymously (e.g., via a proxy) by posting data on the bulletin board B that identifies
the misbehaving party.

A protocol run consists of the following phases: the setup phase (where the parame-
ters and public keys are fixed), the voting phase (where voters choose their candidate and
let their VSDs create and submit the ballots), the mixing phase (where the mix servers
shuffle and decrypt the election data), and the verification phase (where the voters verify
that their ballots were counted correctly). These phases are now described in more detail.

Setup phase. In this phase, all the election parameters (the election identifier, list of
candidates, list of eligible voters, opening and closing times, etc.) are fixed and posted
on the bulletin board by VA.

Every server (i.e., every mix server and the authentication server) runs the key
generation algorithm of the digital signature scheme to generate its public/private (verifi-
cation/signing) keys. Also, every mix server M; runs the key generation algorithm of
the encryption scheme to generate its public/private (encryption/decryption) key pair
(skj, pk;). The public keys of the servers (both encryption and verification keys) are then
posted on the bulletin board B; proofs of possession of the corresponding private keys
are not required.

Voting phase. In this phase, every voter v; can decide to abstain from voting or to vote
for some candidate (or more generally, make a choice) m;. In the latter case, the voter
indicates her choice m; to the VSD. In addition, for verification purposes, a verification
code n; is generated (see below), which the voter is supposed to write down/store. At
the end of the election, the choice/verification code pairs of all voters who cast a vote
are supposed to be published so that every voter can check that her choice/verification
code pair appears in the final result, and hence, that her vote was actually counted. The
verification code is a concatenation n; = n!”"*"||n/*® of two nonces. The first nonce, n}"’",
which we call the voter chosen nonce, is provided by the voter herself, who is supposed
to enter it into her VSD (in our implementation, see Section 7, this nonce is a nine
character string chosen by the voter). It is not necessary that these nonces are chosen
uniformly at random. What matters is only that it is sufficiently unlikely that different
voters choose the same nonce. The second nonce, anSd, is generated by the VSD itself, the
VSD generated nonce. Now, when the verification code is determined, the VSD encrypts
the voter’s choice m; and the verification code n;, i.e., the choice/verification code pair
al. = (m;,n;), under the last mix server’s public key pk,, using random coins r/, , resulting

in the ciphertext oszl = Enc;f,'ém ((m;,n;)). Then, the VSD encrypts af’_’*l under pk,,_;

i
Tm—1

e (af), and

using the random coins /|, resulting in the ciphertext o/, , = Enc

so on. In the last step, it obtains
o = Enc;'k] ((Enc;','ém(m”n,)))

The VSD submits af) as v;’s ballot to the authentication server AS on an authenticated
channel. If the authentication server receives a ballot in the correct format (i.e., the ballot
is tagged with the correct election identifier), then AS responds with an acknowledgement
consisting of a signature on the ballot af); otherwise, it does not output anything. If the
voter/VSD tried to re-vote and AS already sent out an acknowledgement, then AS returns
the old acknowledgement only and does not take into account the new vote.

If a VSD does not receive a correct acknowledgement from the authentication server
AS, the VSD tries to re-vote, and, if this does not succeed, it files a complaint on the
bulletin board using the authenticated channel. If such a complaint is posted, it is in
general impossible to resolve the dispute and decide who is to be blamed: AS who might
not have replied as expected (but claims, for instance, that the ballot was not cast) or the
VSD who might not have cast a ballot but nevertheless claims that she has. Note that
this is a very general problem which applies to virtually any remote voting protocol. In
practice, the voter could ask the VA to resolve the problem.

When the voting phase is over, AS publishes two lists on the bulletin board, both in
lexicographic order and without duplicates and both signed by the authenticated server:
the list Cy containing all the cast valid ballots and the list LN containing the identifiers
of all voters who cast a valid ballot. It is expected that the list LN is at least as long as Cy
(otherwise AS will be blamed for misbehavior).

Mixing phase. The list of ciphertexts Cy posted by the authentication server is the

input to the first mix server My, which processes Cy, as described below, and posts its

signed output C; on the bulletin board. This output is the input to the next mix server

M,, and so on. We will denote the input to the j-th mix server by C;_; and its output

by C;. The output C,, of the last mix server My, is the output of the mixing stage and,

at the same time, the output of the election. It is supposed to contain the plaintexts

(m1,n1),...,(my,n,) (containing voters’ choices along with their verification codes) in

lexicographic order.

The steps taken by a mix server M; are as follows:

1. Input validation. M; checks whether C;_; has the correct format, is correctly signed,
arranged in lexicographic order, and does not contain any duplicates. If this is not
the case, it sends a complaint to the bulletin board and stops its process (this in fact
aborts the whole election process and the previous server is blamed for misbehaving).
Otherwise, M; continues with the second step.

2. Processing. M; decrypts all entries of C;_; under its private key sk;, removes dupli-
cates, and orders the result lexicographically. If an entry in C;_ cannot be decrypted
or is decrypted to a message in an unexpected format, then this entry is discarded
and not further processed. The sequence of messages obtained in such a way is then
signed by M; and posted on the bulletin board as the output C;.

Verification phase. After the final result C,, has been published on the bulletin board
B, the verification phase starts. As mentioned in the introduction, a unique feature of
sElect is that it supports the following two forms of verification, explained next: (pure)

voter-based verification, and hence human verifiability, and (fully automated) VSD-based
verification.

The first form is carried out by the voter herself and does not require any other party
or any device, and in particular, it does not require any trust in any other party or device,
except that the voter needs to be able to see the published result on the bulletin board.
As we will see below, the verification procedure is very simple. As proven in Section 4,
voter-based verification ensures verifiability even in the threat scenario that all VSDs are
corrupted.

VSD-based verification is carried out fully automatically by the voter’s VSD and
triggered automatically as soon as the voter takes a look at the final result, as further
explained in Section 7. It does not need any input from the voter. This is supposed to
result in high verification rates and further ease the user experience, as verification is
performed seamlessly from the voter’s point of view and triggered automatically. Under
the assumption that VSDs are honest, it yields verifiability, and even a high-level of
accountability (see Section 5).

We now describe how these two forms of verification work in detail.

Voter-based verification. For voter-based verification, the voter simply checks whether
her verification code, which in particular includes the voter chosen nonce n!°**", appears
next to her choice in the final result list. If this is the case, the voter would be convinced
that her vote was counted (see also Section 4). A voter v; who decided to abstain from
voting may check the list LN to make sure that her name (identifier) is not listed there.?

When checks fail, the voter would file a complaint.

VSD-based verification. For VSD-based verification, the voter’s VSD performs the
verification process fully automatically. In particular, this does not require any action
or input from the user. In our implementation, as further explained in Section 7, the
VSD-based verification process is triggered automatically whenever the voter goes to
see the election result. Clearly, this kind of verification provides security guarantees
only if the VSD is honest, and hence, for this kind of verification, the voter needs to
trust her device. Making use of the information available to the VSD, the VSD can
provide evidence if servers misbehaved, which can then be used to rightfully blame
misbehaving parties. The VSD-based verification process works as follows. A VSD vsd;
checks whether the originally submitted plaintext (m;,n;) appears in C,. If this is not
the case, the VSD determines the misbehaving party, as described below. Recall that a
VSD which did not obtain a valid acknowledgment from the authenticating server was
supposed to file a complaint already in the voting phase. The following procedure is
carried out by a VSD vsd; which obtained such an acknowledgement and cannot find the
plaintext (m;,n;) in C,,. First, the VSD vsd; checks whether the ballot af) is listed in the
published result Cy of the authentication server AS. If this is not the case, the VSD vsd;
anonymously publishes the acknowledgement obtained from AS on the bulletin board
B which proves that AS misbehaved (recall that such an acknowledgement contains a

5 Variants of the protocol are conceivable where a voter signs her ballot and the authentication
server presents such a signature in case of a dispute. This solution is conceptually simple. On
the pragmatic side, however, it is not always reasonable to expect that voters maintain keys and,
therefore, here we consider the simpler variant without signatures. Note that this design choice
was also made in several existing and prominent systems, such as Helios.

signature of AS on the ballot 046). Otherwise, i.e., if af) is in Cy, the VSD checks whether
o is listed in the published result C; of the first mix server M;. If C; contains o, the
VSD vsd; checks whether aé can be found in the published result C; of the second mix
server M>, and so on. As soon as the VSD vsd; gets to the first mix server M; which
published a result C; that does not contain aé- (such a mix server has to exist), the VSD
anonymously sends (J, a;, r;) to the bulletin board B. This triple demonstrates that M;
misbehaved: the encryption of o; under pk; with randomness r*; yields o, and hence,
since a;_l is in the input to M, a; should have been in M;’s output, which, however, is
not the case. The reason that an anonymous channel is necessary to submit the triple is
the fact that it might reveal how the voter voted, for example, if M; is the last mix server
and thus o/j contains the voter’s choice as a plaintext. In practice, the voter could, for
example, use a trusted proxy server, the Tor network, or some anonymous e-mail service.

We say that a voter v; accepts the result of an election if neither the voter v; nor her
VSD vsd; output a complaint. Otherwise, we say that v; rejects the result.

Remark 1. Note that the procedures for ballot casting and mixing are very simple. In
particular, a mix server needs to carry out only n decryptions. Using standard hybrid
encryption based on RSA and AES, it amounts to n RSA decryption steps (n modular
exponentiations) and n AES decryptions. This means that the mixing step is very efficient
and the system is practical even for very big elections: mixing 100000 ballots takes about
3 minutes and mixing one million ballots takes less than 30 minutes with 2048-bit RSA
keys on a standard computer/laptop.

3 Modeling

In this section, we formally model the sElect voting protocol, with full details provided
in Appendix B. This model is the basis for our security analysis of sElect carried out in
the following sections. The general computational model that we use follows the one
in [28, 30]. This model introduces the notions of processes, protocols, instances, and
properties, which we briefly recall before modeling sElect.

Process. A process is a set of probabilistic polynomial-time interactive Turing machines
(ITMs, also called programs), which are connected via named tapes (also called channels).
Two programs with a channel of the same name but opposite directions (input/output)
are connected by this channel. A process may have external input/output channels, those
that are not connected internally. In a run of a process, at any time one program is active
only. The active program may send a message to another program via a channel. This
program then becomes active and after some computation can send a message to another
program, and so on. A process contains a master program, which is the first program to
be activated and which is activated if the active program did not produce output (and
hence, did not activate another program). If the master program is active but does not
produce output, a run stops.

We write a process m as m = pj || -+ || pi, where pj ..., p; are programs. If 7} and
Ty are processes, then ; || 7 is a process, provided that the processes are connectible:
two processes are connectible if common external channels, i.e., channels with the same
name, have opposite directions (input/output); internal channels are renamed, if necessary.

A process m where all programs are given the security parameter ¢ is denoted by 70,
The processes we consider are such that the length of a run is always polynomially
bounded in ¢. Clearly, a run is uniquely determined by the random coins used by the
programs in 7.

Protocol. A protocol P specifies a set of agents (also called parties or protocol partici-
pants) and a set of channels these agents can communicate over. Moreover, P specifies,
for every agent a, a set 11, of all programs the agent a may run and a program 7, € I1,,
the honest program of a, i.e., the program that a runs if a is honest, and hence, follows
the protocol.

Instance. Let P be a protocol with agents ay,...,a,. An instance of P is a process of the
form m = (m,, || ... || ma,) With m,, € II,,. An agent a; is called honest in the instance T,
if m,; = 7a;. A run of P (with security parameter) is a run of some instance of P (with
security parameter ¢); we consider the instance to be part of the description of the run.
An agent a; is honest in a run r, if r is a run of an instance of P with honest a;.

Property. A property v of P is a subset of the set of all runs of P. By = we denote the
complement of ~.

Negligible, overwhelming, 6-bounded. As usual, a function f from the natural num-
bers to the interval [0, 1] is negligible if, for every ¢ > 0, there exists £y such that f(£) <
for all £ > ¢y. The function f is overwhelming if the function 1 — f is negligible. A
function f is A\-bounded if, for every ¢ > 0 there exists ¢y such that f(£) < A+ % for all
0> fy.

Modeling of sElect. The sElect system can be modeled in a straightforward way as a
protocol Pgree = Pygrees (n,m, 1, et pzﬁ[r;f, pzzrs'{) in the above sense, as detailed next.
By n we denote the number of voters and their voter supporting devices, and by m
the number of mix servers. By p we denote a probability distribution on the set of
candidates/choices, including abstention. An honest voter makes her choice according
to this distribution.® This choice is provided to her VSD and is called the actual choice
of the voter. By p'"7 € [0,1] we denote the probability that an honest voter who does
not abstain from voting verifies the result, i.e., performs the voter-based verification

verif

procedure. By p,, ;" € [0, 1] we denote the probability that an honest VSD of a voter who
verif

does not abstain from voting is triggered to verify the result. By p_ ;"' € [0, 1] we denote
the probability that an honest voter who abstains from voting verifies that her name is
not listed in the list LN output by the authentication server. Note that the set of valid
choices (candidates) is implicitly given by p. We assume that the choices are represented
by messages of the same length.

The set of agents of Pgje.s consists of all agents described in Section 2, i.e., the
bulletin board B, n voters vy,...,v,, n VSDs vsdy,...,vsd,, the authentication servers
AS, m mix servers My, ...,M,,, and in addition, a scheduler S. The latter party will play
the role of the voting authority VA and schedule all other agents in a run according to
the protocol phases. Also, it will be the master program in every instance of Pygjp;. All
agents are connected via channels with all other agents; honest agents will not use all of

6 This in particular models that adversaries know this distribution. In reality, the adversary might
not know this distribution precisely. This, however, makes our security results only stronger.

these channels, but dishonest agents might. The honest programs 7, of honest agents
are defined in the obvious way according to the description of the agents in Section 2.
We assume that the scheduler and the bulletin board are honest. Technically, this means
that the set of programs I7, of each of these agents contains only one program, namely,
the honest one. All other agents can possibly be dishonest. For these agents, the sets 11,
of their programs contain all probabilistic polynomial-time programs. We note that the
scheduler is only a modeling tool. It does not exist in real systems. The assumption that
the bulletin board is honest is common; Helios makes this assumption too, for example
(see also Section 8).

4 Verifiability

In this section, we formally establish the level of verifiability provided by sElect. We
show that sElect enjoys a good level of verifiability based on a generic definition of end-
to-end verifiability presented in [28]. Importantly, verifiability is ensured without having
to trust any of the VSDs or voting authorities. Verifiability is provided by the simple
voter-based verification mechanism (human verifiability), and the only assumption we
have to make is that each voter has access to the final result in order to check whether
her voter-generated verification code appears next to her chosen candidate (see also the
discussion in Section 8).

For brevity of presentation, we state a simple domain specific instantiation of the
general end-to-end verifiability definition in [28]. This definition is centered around
the goal that a system is supposed to achieve. Informally speaking, according to [28],
end-to-end verifiability postulates that if some parties (such as voting authorities) deviate
from the protocol in a “serious” way, then this deviation is noticed by honest participants
(such as voters or external observers) with high probability. Misbehavior is considered
serious if the goal of the protocol (which may be different for different domains) is
violated.

We start by introducing the goal for voting protocols.

4.1 Goal for Voting Protocols

In what follows, we assume that the result of the election is simply a multiset of choices,
as is the case for sElect. This multiset contains also vote abstention. Therefore, the
number of elements in this multiset always equals the total number of voters n in our
modeling of sElect (see Section 3).

Formally, for a (voting) protocol P, a goal is set of runs of P. The following definition,
with further explanation provided below, precisely defines the goal ~y; for voting. First,
recall from Section 3 that an honest voter’ v; first chooses a candidate m; (the actual
choice of v;) and then inputs the candidate to her VSD. The VSD is supposed to create
and cast a ballot containing this choice.

7 Also recall from Section 3 the definition of honest agents in runs of protocols and instances of
protocols.

10

Definition 1 (Goal ;). Let r be a run of some instance of a protocol with nj, honest
voters and ng = n— ny, dishonest voters. Let Cy, = {cy, ... ,cnh} be the multiset of actual
choices of the honest voters in this run, as described above (recall that the choices also
contain abstentions). We say that y is satisfied in r (or r €), if the published result
of the election is a multiset {¢\,...¢,} which contains at least nj, — k elements of the
multiset Cy,; if no election result is published in r, then ~y; is not satisfied in r.

The above definition says that in a run r the goal ~y; is satisfied if in the published
result all votes of honest voters are included, except for at most k votes, and for every
dishonest voter at most one choice is included. In particular, for k = 0, v guarantees
that all votes of the honest voters are counted and at most one vote of every dishonest
voter. We refer the reader to [29] for more discussion on ;.

4.2 Definition of Verifiability

As mentioned at the end of Section 2, every voter either accepts or rejects a protocol run,
where a voter accepts if neither the voter nor her VSD outputs a complaint according to
the description in Section 2; otherwise the voter rejects.

Now, the intuition behind the notion of verifiability is that, whenever the goal of the
protocol is violated, then with high probability some voters will notice it and reject the
run. Conversely, the probability that the goal is violated and yet all the voters accept
should be small. In the following definition, we bound this probability by a constant 4.

Definition 2 (Verifiability). An e-voting protocol P provides §-verifiability with toler-
ance k if, for every instance of P, the probability that in a run r of

(a) the goal v is violated in r (that is r ¢ ~;), and yet

(b) all voters accept r
is 6-bounded (i.e., bounded by 0 plus some negligible function, as defined in Section 3).

4.3 Analysis

In this section, we state the level of verifiability being offered by sElect according to
Definition 2. As already pointed out above, to achieve this verifiability level we only
have to assume that a voter has access to the final result. We do not need any other trust
assumptions. In particular, the mix servers, the authentication server, and all VSDs can
be dishonest.

The verifiability level of sElect depends on whether or not clashes occur, i.e., whether
two or more honest voters chose the same nonce. We denote the probability of having at
least one clash by pjusn and define pyociash = 1 — Peiasn- Under certain conditions, clashes
allow collaborating malicious participants, such as the VSDs or the servers, to drop the
vote of one of the affected honest voters and replace it by a different vote without being
detected: If two honest voters happened to choose the same voter chosen nonce and made
the same choice and the VSDs of both voters are malicious, the adversary (controlling
both VSDs) could inject another vote by making sure that the two honest voters obtain
the same choice/verification code pairs. The adversary can then just output one such pair

11

in the final result list, and hence, he could possibly inject another choice/verification
code. Such attacks are called clash attacks [31]. '

We now state the verifiability level provided by sElect. Recall that p!“"/ denotes the
probability that an honest voter who does not abstain from voting verifies the final result,
and that p"” denotes the probability that an honest voter who abstains from voting

abst
verifies that her name is not listed in the list LN output by the authentication server.

verif verif _verif

Theorem 1 (Verifiability). The sElect protocol Psgieci(n,m, b, Pyorers Py’ s Paps:) PTO-

verif:

vides 5k(p§§§3§7 P aps;)-verifiability w.r.t. the goal ~y, where

. . . A\ k+1
ko verif verif\ . verif verif
0 (pW”er’pabsr) = Pnoclash * (1 — min <pvotera Pabst =+ Pclash-

The theorem says that the probability that more than k votes of honest voters are
manipulated, i.e., changed, dropped, or added for honest voters who abstained (bal-

lot stuffing), but still no voter complaints, and hence, rejects the run, is bounded by
(5k(verif verif)

pvotera pabst

The formal proof of Theorem 1 is provided in Appendix C. The intuition behind the
definition of 6 (p'<7¥ p(vlzr;[f) is simple. If there are no clashes in a run, then the adversary
can manipulate a vote of an honest voter only if this voter does not verify the final result.
So, in order to manipulate more than k honest votes, and hence, violate v, at least k+ 1
honest voters should not check the final result. The probability for this very quickly
approaches 0 when k grows.

The other case is that a clash occurs. We note that the occurrence of a clash does not
necessarily mean that the adversary can manipulate more than k votes. For this, there
have to be sufficiently many clashes, and voters within a cluster of clashes have to vote
for the same candidate. Also, the VSDs of all of these voters have to be dishonest since
the probability for clashes among codes generated by honest VSDs is negligible. So,
sk(prert p;f:f[f) as stated in the theorem is not optimal and certainly smaller in practice,
and hence, the actual level of verifiability offered by sElect is better than what is stated
in the theorem. On the downside, the known results on user-generated passwords (see,
e.g., [11, 10]) suggest that the quality of “randomness” provided by users may be very
weak. However, it remains to be determined in a systematic and sufficiently large user
study how likely clashes are for voter-chosen verification codes.

5 Accountability

While verifiability requires that manipulation can be detected, roughly speaking, ac-
countability in addition requires that misbehaving parties can be blamed.

As already described, sElect employs two-factor verification: voter-based verifi-
cation/human verifiability and VSD-based verification. The verifiability result stated
above says that the voters, using only the former kind of verification, i.e., voter-based
verification, and without trusting any component of the voting system, including their
own devices (except that they need to be able to see the election result on the bulletin
board), can check that their votes have been counted correctly. Since human voters are

12

only asked to keep their verification codes but not the ciphertexts and the random coins
used to encrypt the choice-code pairs, they do not hold enough information to single
out possibly misbehaving parties and to prove the misbehavior of a specific participant
to the judge. The judge cannot tell whether a voter makes false claims or some servers
actually misbehaved.

Under the assumption that VSDs (of honest voters) are honest, we show, however,
that with VSD-based verification sElect provides strong accountability. For this, we use
the general definition of accountability proposed in [28], which we instantiate for sElect.
The detailed formal accountability result and full proofs are given in Appendix D. Here,
we only describe the most important aspects of this result.

Our accountability result for sElect says that once an honest voter (VSD) has suc-
cessfully cast a ballot and obtained a signed acknowledgement from the authentication
server, then in case of manipulation of the ballot, and in particular, in case the voter’s
vote is not counted for whatever reason, the VSD, when triggered in the verification
phase, can always produce valid evidence to (rightly) blame the misbehaving party.

6 Privacy

In this section, we carry out a rigorous privacy analysis of sElect. We show that sElect
has a high level of privacy for the class of adversaries which are not willing to take a high
risk of being caught cheating. This level is in fact very close to ideal when measuring
privacy of single voters.

We prove our privacy result under the assumption that one of the mix servers is
honest. Clearly, if all the mix servers were dishonest, privacy could not be guaranteed
because an adversary could then trace all ballots through the mix net. Obviously, we also
need to assume that the VSD of each honest voter is honest since the device receives
the chosen candidate of the voter in plaintext. In our formal analysis of privacy below,
we therefore consider the voter and the VSD to be one entity. In addition, we assume
that honest voters (VSDs) can successfully cast their ballots, i.e., when a voter casts a
ballot, then the authentication server returns a valid acknowledgment. As discussed in
Sections 2, not obtaining such acknowledgments is a general problem in remote voting
systems as servers could always ignore messages from voters; voters can complain in
such cases.

More specifically, we prove the privacy result for the modified protocol stélect =

J verif verif . P . verif verif _ verif'
RyElec[(n7m7:u‘7pv(ll’£’r7pabs[) which coincides with PSElECf (n7m7:u7pvoterapvsd 7pgbs[)’ €x-

cept for the following three changes. First, as mentioned before, we now consider the
voter and the VSD to be one agent. We therefore also consider only one probability of
performing the verification procedure, which we denote by p'“"” . Second, the set /I M;
of programs of the j-th mix server M; contains only the honest program of M, modeling
that in all instances of this protocol M; is honest. Third, as discussed above, the set
of programs II4s of the authentication server AS consists only of those programs that
respond with valid acknowledgments when honest VSDs cast their ballots; we stress that
otherwise the programs of AS can perform arbitrary (dishonest) actions, e.g., drop the
voter’s ballot nevertheless.

13

Roughly speaking, our privacy result says that no adversary is able to distinguish
whether some voter (called the voter under observation) voted for candidate ¢ or ¢/,
where the voter under observation runs her honest program.

In what follows, we first introduce the class of adversaries we consider and present
the definition of privacy we use. We then state the privacy result for sElect.

6.1 Semi-Honest Adversaries

An adversary who controls the first mix server, say, could drop or replace all ballots,
except for the one of the voter under observation. The final result would then contain
only the vote of the voter under observation, and hence, the adversary could easily tell
how this voter voted, which breaks privacy as formalized below.

However, such an attack is extremely risky: recall that the probability of being caught
grows exponentially in the number k of honest votes that are dropped (see Section 4).
Hence, in the above attack where k is big, the probability of the adversary to be caught
would be very close to 1 (see also the discussion in Section 6.3). In the context of
e-voting where misbehaving parties that are caught have to face severe penalties or loss
of reputation, this attack seems completely unreasonable.

A more reasonable adversary could consider dropping some small number of votes,
for which the risk of being caught is not that huge, in order to weaken privacy to
some degree. To analyze this trade-off, we now introduce the notion of k-semi-honest
adversaries. Intuitively, a k-semi-honest adversary manipulates, i.e., drops or changes,
at most £ entries of honest voters in a protocol run; apart from this restriction, such an
adversary can perform any adversarial action. Jumping ahead, we show in Section 6.3
that for sElect kK must be quite high to weaken privacy even by a small amount. So
altogether, dropping/changing votes of honest voters in order to break privacy is not a
reasonable thing to do for an adversary who avoids being caught cheating.

We now formulate k-semi-honest adversaries for the protocol stElect (see above).
However, the general concept should be applicable to other protocols as well.

To define k-semi-honest adversaries, we consider the set 712 of runs of Ps]Elect which
is defined similarly to -y, (see Section 4.1) but is concerned only with honest voters who
actually cast a ballot. Then, for a k-semi-honest adversary we require that running this
adversary with PYJEI ve; Yields a run in ;.

Formally, 'y]’c is defined as follows. Let r be a run of some instance of P_;,%]e o and let
C, ={(c1,n1),...,(cy,ny)} be the multiset of vote-nonce pairs in the ballots successfully

cast by honest voters in r, where ¢; is the actual choice of such an honest voter and #; is
the verification code.® We say that 7, is satisfied in r (or r € ;) if the list of published
vote-nonce pairs in r (the output C,, of the last mix server), as a multiset, contains at
least I’ — k elements of the multiset C;, where !’ is the number of elements of C,; if no
election result is published in r, and hence, no vote-nonce pairs, then 'y,/c is not satisfied
inr.

8 Recall the definition of actual choices of honest voters from Section 4.1. Also note that with
overwhelming probability, the multiset C}, does not contain duplicates as the verification codes
will be different with overwhelming probability.

14

Definition 3 (k-semi-honest adversaries). We say that an adversary is k-semi-honest
in a run r (of Ps]Elect)’ if the property vy, is satisfied in this run.’ An adversary (of an

instance T of stEl o) 18 k-semi-honest if it is k-semi-honest with overwhelming probability
(over the set of runs of).

The following result shows that, under any circumstances, not being k-semi-honest
involves a high and predictable risk of being blamed (which means that some VSD
outputs valid evidence for blaming the adversary). More specifically, it demonstrates
that whenever the adversary is not k-semi-honest, the probability that he will be caught
is at least 1 — (1 — plri ykt1,

To state this result, we use the following notation. Recall that a run r of an instance
m of PgElm is determined by the random coins the dishonest parties in 7 (the adversary)
and the honest parties use. Let w denote the random coins used in ». We can represent
w as {w',w,) where w, are the random coins used by the honest voters to determine
whether they check their verification codes (see Section 2, the verification phase) and
w' contains the remaining part of w. Note that w’ completely determines the run of the
protocol up to the verification phase. In particular, w’ determines the output of the last

mix server and it determines whether the goal y; is satisfied or not (-y; does not depend

on wy). Let us interpret w’ as an event, i.e., a set of runs of PSJElm where the random coins
are partially fixed to be w’ and w, is arbitrary. Then there are two possible cases. Either
the adversary is k-semi-honest in all runs of w’, and hence, w' C fy,’c, or the adversary is

not k-semi-honest in all runs of ', i.e., w' Ny, = 0.

Lemma 1. Let 7 be an instance ofPSJElm. For all (but negligibly many) ' such that the
adversary in 7 is not k-semi-honest in w', we have that

PrB|u'] >1—-(1 — Pre),

where IB denotes the event that individual blame is assigned, i.e., one of the voters
(VSDs) outputs valid evidence for a dishonest server.

This lemma, with the proof provided in Appendix E, can be interpreted as follows.
Whenever an adversary (controlling the dishonest servers) has produced an election
output where he dropped/manipulated more than k vote-nonce pairs of honest voters,
then he knows that he, i.e., some of the dishonest servers, will be caught and blamed
(i.e., evidence for blaming the dishonest server will be produced) with a probability of

atleast 1 — (1 — p¥)k+1 This risk is enormous even for quite modest k and realistic

probabilities p}jz;g; (see also below). So, unless an adversary does not care being caught,
not being k-semi honest is not reasonable. As argued below, increasing k does not buy
the adversary much in weakening privacy, but dramatically increases his risk of being

caught.

9 Recall that a run is a run of some instance of PjEl oc; and that the adversary consists of the
dishonest agents in this instance.

15

6.2 Definition of Privacy

In our analysis of the sElect system, we use the definition of privacy for e-voting
protocols proposed in [30], but where adversaries are restricted to be k-semi-honest. As
opposed to simulation-based definitions (see, for instance, [24]) and related game-based
definitions (e.g., [9]) which take a binary view on privacy and reject protocols that do
not provide privacy on the ideal level, the definition of [30] allows one to measure the
level of privacy a protocol provides. This ability is crucial in the analysis of protocols
which provide a reasonable but not perfect level of privacy. In fact, strictly speaking,
most remote e-voting protocols do not provide a perfect level of privacy: this is because
there is always a certain probability that voters do not check their receipts. Hence, the
probability that malicious servers/authorities drop or manipulate votes without being
detected is non-negligible. By dropping or manipulating votes, an adversaries obtains
some non-negligible advantage in breaking privacy. Therefore, it is essential to be able
to precisely tell how much an adversary can actually learn.

As briefly mentioned above, following [30], we formalize privacy of an e-voting
protocol as the inability of an adversary to distinguish whether some voter v (the voter
under observation), who runs her honest program, voted for a candidate ¢ or ¢’.

To define this notion formally, we first introduce the following notation. Let P be
an (e-voting) protocol in the sense of Section 3 with voters, authorities, etc. Given a
voter v and a choice ¢, the protocol P induces a set of instances of the form (#,(c) || 7*)
where 7,,(c) is the honest program of the voter v under observation which takes c as
the candidate for whom v votes and where 7* is the composition of programs of the
remaining parties. In the case of sElect, 7" would include the scheduler, the bulletin
board, all other voters, the authentication server, and all mix servers.

Let Pr[(#,(c) || 7)) ~ 1] denote the probability that the adversary, i.e., the dishon-
est agents in 7*, writes the output 1 on some dedicated channel in a run of #,(c) || 7*
with security parameter ¢ and some candidate ¢, where the probability is taken over the
random coins used by the agents in 7, (p) || 7.

Now, we define privacy with respect to k-semi-honest adversaries.

Definition 4. Let P be a protocol with a voter under observation v and let 6 € [0, 1]. We
say that P with [honest voters achieves J-privacy w.r.t. k-semi-honest adversaries, if

Pri(#y(e) | 7)) = 1] = Pr[(y (') | 7)) = 1] M

is 6-bounded as a function of the security parameter {, for all candidates c,c’ (c,c’ #
abstain) and all programs ©* of the remaining parties such that at least | voters are
honest in T (excluding the voter under observation v) and such that the adversary (the
dishonest parties in 7*) is k-semi-honest.

The requirement c¢,c’ # abstain says that we allow the adversary to distinguish
whether or not a voter voted at all.

Since § typically depends on the number / of honest voters, privacy is formulated
w.r.t. this number. Note that a smaller § means a higher level of privacy. However, even
for the ideal e-voting protocol, where voters privately enter their votes and the adversary
sees only the election outcome, d cannot be 0: there is, for example, a non-negligible

16

chance that all honest voters, including the voter under observation, voted for the same
candidate, in which case the adversary can clearly see how the voter under observation
voted. We denote the level of privacy of the ideal protocol by §fi, where [is the number
of honest voters and y the probability distribution used by the honest voters to determine
their choices (see Appendix F for an explanation of how (5% is calculated).

6.3 Analysis

0.3 :
I k=0 (also ideal)
M In k=1

In k=2

S 02f M Im k=5 -

= 0o k=10

k3

z

z

& 0.1 n

0
20 50 100 200 500

number of honest voters (/)

Fig. 1. Privacy level §;_; for sElect with k-semi-honest adversary, for different number of honest
voters [and different k. The honest voters vote for two candidates, with probabilities 0.4 and 0.6.
Note that the case k = 0 also equals the ideal case.

We now prove that sElect provides a high level of privacy w.r.t. k-semi-honest
adversaries and in case (at least) one mix server is honest. Where “high level of privacy”
means that d-privacy is provided for a ¢ that is very close to the ideal one mentioned
above.

The level of privacy clearly depends on the number of cast ballots by honest voters.
In our analysis, to have a guaranteed number of honest voters casting their ballots, we
therefore in what follows assume that honest voters do not abstain from voting. Note
that the adversary would know anyway which voters abstained and which did not. Also
abstaining voters can be simulated as dishonest voters by the adversary. Technically, our
assumption means that in the distribution y the probability of abstention is zero.

We have the following formal privacy result for sElect. The proof is provided in
Appendix F, where we reduce the privacy game for sElect with / honest voters, as
specified in Definition 4, to the privacy game for the ideal voting system with [/ — k voters,
using a sequence of games.

Theorem 2 (Privacy). The protocol Pl (nym, pu, prend pzzgl{) with [honest voters
achieves 5;d_ k. Privacy w.rt. k-semi-honest adversaries, with 55,% as defined in Sec-
tion 6.2.

17

In Figure 1, we present some selected values of 6;{ ko which, by the above theorem,
express the privacy level of sElect when k-semi-honest adversaries are considered. As
can be seen from Figure 1, the privacy level for different k’s changes only very little
for 20 honest voters and almost nothing for more honest voters. Conversely, the risk of
the adversary being caught increases dramatically with increasing %, i.e., the number of
dropped votes. For example, even if we take p = 0.2 for the verification rate (which is
much less than the verification rates obtained in our mock elections, see Section 7), the
risk is 36% for k =2, 67% for k = 5, and 89% for k = 10; with p = 0.5 similar to our
mock elections, we obtain 75% for k = 2, 97% for k = 5, and ~ 100% for k = 10. This
means that unless adversaries do not care being caught at all, privacy cannot be broken.

7 Implementation of sElect

In this section, we shortly describe our prototypical implementation of sElect. A more
detailed overview is given in Appendix A. We also briefly report on two small mock
elections we carried out with sElect, with the main intention to get a first feedback
on the verification rates for our fully automated VSD-based verification mechanism (a
full-fledged usability study is out of the scope of this paper and left for future work).

We have implemented sElect as a platform independent web application. Voters
merely need a browser to vote and to verify their votes. In order to vote, voters go to a
web site that serves what we call a voting booth. More precisely, a voting booth is a web
server which serves a collection of static HTML/CSS/JavaScript files. There otherwise
is no interaction between the voter’s browser and the voting booth server: ballot creation,
casting, and verification are then performed within the browser, as explained below
(of course for ballot casting, the voter’s browser communicates with the authentication
server). The idea is that the voter can choose a voting booth, i.e., a web server, among
different voting booths that she trusts and that are independent of the election authority.
Voting booths might be run by different organizations as a service and independently of
a specific election (see also the discussion in Section 8). So what abstractly was called a
VSD in the previous sections, in our implementation comprises the voter’s computing
platform, including her browser, as well as some voting booth server which the voter
picks and which serves the static JavaScript files to be executed. The JavaScript code
performs the actual actions of the VSD described in Section 2 within the browser and
without further interaction with the voting booth server.

A voter enters her vote in the browser (on the voting booth’s web site) and then ballot
creation and verification of acknowledgments are carried out locally within the voters’
browser. Votes only leave the browser encrypted (as ballots), to be submitted to the
authentication server; see Appendix A for the details of authentication. Full receipts, i.e.,
all the information required for the VSD-based verification process, are saved using the
browser’s local storage (under the voting booth’s origin); other web sites cannot access
this information. When the election is over, the voter is prompted to go to her voting

10 0On a mobile device one could, for example, also provide an app to the voter which performs the
task of the VSD; again there might be more apps from which the voter could choose. This of
course assumes that the voter installs such an app on her device. Since the idea is that a voting
booth can be used independently of a specific election, this is reasonable as well.

18

booth again in order to check the election result. When the voter opens the voting booth
in this phase, it automatically fetches all the necessary data and carries out the automated
verification procedure; if the voter’s ballot has not been counted correctly, cryptographic
evidence against a misbehaving server is produced, as described in Section 2 (see also
Section 5). In addition to this fully automated check, the voter is given the opportunity
to visit the bulletin board (web site), where she can see the result and manually check
that her verification code is listed next to her choice.

Two small mock elections. To obtain user feedback and, in particular, get a first estimate
of the verification ratio for the fully automated verification, we carried out two mock
elections. We used a slightly modified version of the voting booth which allowed us to
gather statistics concerning the user behavior. We emphasize that these field tests were
not meant to be full-fledged and systematic usability studies, which we leave for future
work.

The participants of these mock elections were students of our department and re-
searchers of a national computer science project. In the former case, out of 52 cast ballots,
30 receipts were checked automatically; in the latter case, out of 22 cast ballots, 13 were
checked automatically. As one can see, the verification ratio was quite high in both cases
(57.5% and 59.1%). In fact, with such a high ratio, the dropping or manipulation of even
a very small number of votes is detected with very high probability, according to our
results in Sections 4, 5, and 6. Moreover, we can expect that some number of verification
codes were checked manually, so the overall verification ratio might be even higher (we
do not have, however, reliable data about voter-based verification).

We believe that for real elections one might obtain similar ratios: voters might be
even more interested in the election outcome than in a mock election and, hence, they
would tend to check the result and trigger the automated verification procedure.

8 Related Work and Discussion

In what follows, we first briefly mention further related work and then discuss features
and limitations of sElect.

8.1 Related work

The basic idea of combining the choice of a voter with an individual verification code
has already been mentioned in an educational voting protocol by Schneier [37].

The F2FV boardroom voting protocol [6] is based on the concept of verification
codes too. In that protocol, it is assumed that all voters are located in the same room and
use their devices in order to submit their vote-nonce pairs as plaintexts to the bulletin
board. As pointed out in [6], F2FV is mainly concerned with verifiability, but not with
privacy.

Several remote e-voting protocols have been proposed in the literature (see also the
introduction), with Helios [4] being the most prominent one.

In Helios, a voter, using her browser, submits a ballot (along with specific zero-
knowledge proofs) to a bulletin board. Afterwards, in the tallying phase, the ballots on
the bulletin board are tallied in a universally verifiable way, using homomorphic tallying

19

and verifiable distributed decryption. Helios uses so-called Benaloh challenges to ensure
that browsers encrypt the actual voters’ choices (cast-as-intended). For this purpose, the
browser, before submitting the ballot, asks whether the voter wants to audit or cast the
ballot. In the former case, the browser reveals the randomness used to encrypt the voter’s
choice. After that, the voter should copy/paste this information to another (then trusted)
device to check that the ballot actually contains the voter’s choice. The voter is also
supposed to check that her ballot appears on the bulletin board, which together with the
homomorphic tallying and verifiable distributed decryption then implies that the voter’s
vote is counted.

Helios-C [16] is a modification of Helios where a registration authority creates
public/private key pairs for all voters. Voters sign their ballots in order to prevent ballot
stuffing even if the bulletin board is dishonest.

8.2 Discussion

We now provide a more detailed discussion of the main features of sElect, which were
already mentioned in the introduction, including limitations of the systems.

Fully automated verification. Fully automated verification, put forward in this paper, is
a main and unique feature of sElect, which would also be very useful for other systems,
such as Helios. This kind of verification is performed without any interaction required
from the voter, and hence, is completely transparent to the user. In particular, the voter
does not have to perform any cumbersome or complex task, which thus eases the voter’s
experience. This, and the fact that fully automated verification is triggered when the
voter visits the voting booth again (to later look up the election result on the bulletin
board), should also help to improve verification rates, as hinted at by our two small mock
elections. Moreover, this kind of verification importantly also provides a high-level of
accountability, as we proved (see Section 5).

Obviously, for fully automated verification we need to assume that (most of) the
VSDs can be trusted. Recall from Section 7 that in our implementation of sElect a VSD
consists of the voter’s computing platform (hardware, operating system, browser) and
the voting booth (server), where the idea is that the voter can choose a voting booth she
trusts among a set of voting booths.

As mentioned, we assume low-risk elections (e.g., elections in clubs and associations)
where we do not expect targeted and sophisticated attacks against voters’ computing
platforms.' ' Also, as mentioned in Section 7, the idea is that several voting booth services
are available, possibly provided by different organizations and independently of specific
elections, among which a voter can choose one she trusts. So, for low-risk elections
it is reasonable to assume that VSDs are trusted. In addition, voter-based verification
provides some mitigation for dishonest VSDs (see also the discussion below and our
analysis in Section 4).

It seems that even for high-stake and high-risk elections some kind of fully automated
verification might be better than completely relying on actions performed by the voter,

! For high-stake elections, such as national elections, untrusted VSD are certainly a real concern.
This is in fact a highly non-trivial problem which has not been solved satisfactorily so far when
both security and usability are taken into account (see, e.g., [20]).

20

as is the case for all other remote e-voting systems. So, other systems should profit from
this approach as well.!2

Voter-based verification (human verifiability). The level of verifiability provided by
voter-based verification (manual checking of voter-generated verification codes) has
been analyzed in detail in Section 4.

On the positive side, voter-based verification provides a quite good level of verifiabil-
ity, with the main problem being clashes (as discussed in Section 4.3). With voter-based
verification the voter does not have to trust any device or party, except that she should
be able to look up the acrual election outcome on a bulletin board, in order to make
sure that her vote was counted (see also below). In particular, she does not have to trust
the voting booth (she chose) at all, which is one part of her VSD. Moreover, trust on
the voter’s computing platform (hardware, operating system, browser), which is the
other part of her VSD, is reduced significantly with voter-based verification: in order
to hide manipulations, the voter’s computing platform would have to present a fake
election outcome to the voter. As mentioned before, our underlying assumption is that
(for low-risk elections) such targeted attacks are not performed on the voter’s computing
platform. (Of course, voters also have the option to look up the election result using a
different device.)

Voter-based verification is also very easy for the voter to carry out and the voter
easily grasps its purpose. In particular, she can be convinced that her vote was actually
counted without understanding details about the system, e.g., the meaning and workings
of universally verifiable mix nets or verifiable distributed decryption. In other systems,
such as Helios, voters have to have trust in the system designers and cryptographic
experts in the following sense: when their ballots appear on the bulletin board, then some
universally verifiable tallying mechanism—which, however, a regular voter does not
understand—guarantees that her vote is actually counted. Also, other systems require
the voter to perform much more complex and cumbersome actions for verifiability and
they typically assume a second trusted device in order to carry out the cryptographic
checks, which altogether often discourages voters from performing these actions in the
first place.!3

On the negative side, verification codes could be easily misused for coercion. A voter
could (be forced to) provide a coercer with her verification code before the election result

12 For high-risk elections one might have to take extra precautions for secretly storing the voter’s
receipt in the voter’s browser or on her computer.

13 For example, Helios demands voters i) to perform Benaloh challenges and ii) to check whether
their ballots appear on the bulletin board. However, regular voters often have difficulties
understanding these verification mechanisms and their purposes, as indicated by several usability
studies (see,

e.g., [3,22,23,33, 34, 39]). Therefore, many voters are not motivated to perform the verifica-
tion, and even if they attempt to verify, they often fail to do so. Furthermore, the verification
process, in particular the Benaloh challenge, is quite cumbersome in that the voter has to
copy/paste the ballot (a long randomly looking string) to another, then trusted, device in which
cryptographic operations need to be performed. If this is done at all, it is often done merely in a
different browser window (which assumes that the voter’s platform and the JavaScript in the
other window is trusted), instead of a different platform.

21

is published, and hence, once the result is published, a coercer can see how the voter
voted.'

We note, however, that in any case, for most practical remote e-voting systems,
including sElect and, for instance, Helios, there are also other simple, although perhaps
not as simple, methods for coercion. Depending on the exact deployment of these
systems, a coercer might, for example, ask for the credentials of voters, and hence,
simply vote in their name. Also, voters might be asked/forced to cast their votes via a
(malicious) web site provided by the coercer, or the coercer asks voters to run a specific
software. So, altogether preventing coercion resistance is extremely hard to achieve in
practice, and even more so if, in addition, the system should still be simple and usable.
This is one reason that coercion-resistance was not a design goal for sElect.

Simple cryptography and design. Unlike other modern remote e-voting systems, sElect
employs only the most basic and standard cryptographic operations, namely, public key
encryption and digital signatures, while all other verifiable remote e-voting systems
use more sophisticated cryptographic operations, such as zero-knowledge proofs, ver-
ifiable distributed decryption, universally verifiable mix nets, etc. The overall design
and structure of sElect is simple as well. As already mentioned in the introduction, the
motivation for our design choices were twofold: Firstly, we wanted to investigate what
level of security (privacy, verifiability, and accountability) can be achieved with only the
most basic cryptographic primitives and a simple and user-friendly design. Secondly,
using only the most basic cryptographic primitives has several advantages: 1) The imple-
mentation can use standard cryptographic libraries and does not need much expertise
on the programmers side. In fact, simplicity of the design and implementation task is
valuable in practice in order to avoid programming errors, as, for example, noted in [3].
ii) The implementation of sElect is also quite efficient (see Section 2). iii) sElect does
not rely on setup assumptions. In particular, unlike other remote voting systems, we do
not need to assume common reference strings (CRSs) or random oracles.'> We note that
in [25, 26] very complex non-remote voting systems were recently proposed to obtain
security without such assumptions. iv) Post-quantum cryptography could easily be used
with sElect, because one could employ appropriate public key encryption schemes and
signature schemes. v) In sElect, the space of voters’ choices can be arbitrarily complex
since, if hybrid encryption is employed, arbitrary bit strings can be used to encode voters’
choices; for systems that use homomorphic tallying (such as Helios) this is typically
more tricky, and requires to adjust the system (such as certain zero-knowledge proofs) to
the specific requirements.

On the downside, with such a very simple design one does not achieve certain
properties one can obtain with more advanced constructions. For example, sElect, un-
like for instance Helios, does not provide universal verifiability (by employing, for
example, verifiable distributed decryption or universally verifiable mix nets). Universal
verifiability can offer more robustness as it allows one to check (typically by verifying
zero-knowledge proofs) that all ballots on the bulletin board are counted correctly. Every

14 In very recent work, a mitigation for this problem has been considered [36], but this approach
assumes, among others, a public-key infrastructure for all voters.

15 We note that the underlying cryptographic primitives, i.e., the public key encryption scheme
and the signature scheme, might use a random oracle, depending on the schemes employed.

22

voter still has to check, of course, that her ballot appears on the bulletin board and that it
actually contains her choice (cast-as-intended and individual verifiability).

Since sElect employs Chaumian mix nets, a single server could refuse to perform its
task, and hence, block the tallying. Clearly, those servers who deny their service could be
blamed, which in many practical situations should deter them from misbehaving. There-
fore, for low-risk elections targeted in this work, we do not think that such a misbehavior
of mix servers is a critical threat in practice. Other systems use different cryptographic
constructions to avoid this problem, namely, threshold schemes for distributed decryption
and (universally verifiable) reencryption mix nets.

Bulletin board. We finally note that in our security analysis of sElect and also in its
implementation, we consider an (honest) bulletin board. This has been done for simplicity
and is quite common; for example, the same is done in Helios. The key property required
is that every party has access to the bulletin board and that it provides the same view to
everybody. This can be achieved in different ways, e.g., by distributed implementations
and/or observers comparing the (signed) content they obtained from bulletin boards (see,
e.g., [18]); such approaches are orthogonal to the rest of the system, though.

9 Conclusion

We proposed a new practical voting system, sElect, which is intended for low-risk
elections. It provides a number of new features and compared to existing modern remote
voting systems is designed to be particularly simple and lightweight in terms of its
structure, the cryptography it uses, and the user experience.

One of the unique features of sElect is its fully automated verification procedure
(VSD-based verification), which allows for seamless verification without voter interac-
tion and provides a good level of accountability, under the assumption that the voter’s
VSD is honest. Moreover, fully automated verification is linked with the act of looking
up the election outcome, which should further increase verification rates.

sElect also supports voter-based verification which provides a very simple and easy
to grasp manual verification mechanism (human verifiability) and which mitigates the
trust in the VSD.

We provided a detailed cryptographic analysis of the level of verifiability, account-
ability, and privacy sElect offers. Along the way, we introduced the new concept of
k-semi honest adversaries and showed that the level of privacy sElect provides is close
to ideal for the class of k-semi-honest adversaries. We also show that while increasing k
(i.e., the number of dropped/manipulated votes) buys almost nothing in terms of breaking
privacy, the risk of being caught increases drastically, and hence, unless an adversary
does not care being caught at all, privacy cannot be broken. Our security analysis of
sElect is a valuable feature by itself, as rigorous cryptographic analysis of practical
systems is rare, and it moreover shows that even with very simple cryptographic means,
one can achieve a relatively good level of security.

Altogether, sElect provides a new balance between simplicity, convenience, and
security. It is an interesting new option for low-risk remote electronic voting. Some
of its new features can probably also be integrated into other systems or might inspire
new designs. While we carried out two small mock elections with sElect, mainly to get

23

first feedback on VSD-based verification rates, relevant future work includes to perform
a systematic and broad usability study and to try out sElect in bigger and real-world
elections.

Acknowledgements. This work was partially supported by Deutsche Forschungsgemein-
schaft (DFG) under Grant KU 1434/6-3 within the priority programme 1496 “Reliably
Secure Software Systems — RS3”.

References

1.

10.

11.

12.

13.

14.

15.

http://www.computerworld.com/s/article/9233058 /Election_watchdogs_keep_
wary_eye_on_paperless_e_voting_systems, October 30th 2012.

. Ralf Kiisters, Johannes Miiller, Enrico Scapin, and Tomasz Truderung. sElect: Implementation,

2015. Source code available at https://github.com/escapin/sElect, online demo at https:
//select.uni-trier.de.

. C. Acemyan, P. Kortum, M. Byrne, D. Wallach. Usability of Voter Verifiable, End-to-end

Voting Systems: Baseline Data for Helios, Prét a Voter, and Scantegrity II. USENIX Journal
of Election Technology and Systems (JETS), 2014.

. Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX 2008, pages 335-348.

USENIX Association, 2008.

. Ben Adida, Olivier de Marnefte, Olivier Pereira, and Jean-Jaques Quisquater. Electing a

University President Using Open-Audit Voting: Analysis of Real-World Use of Helios. In
(EVT 2009), 2009.

. Mathilde Arnaud, Véronique Cortier, and Cyrille Wiedling. Analysis of an Electronic Board-

room Voting System. In VOTE-ID, volume 7985 of LNCS, pages 109-126. Springer, 2013.

. S. Bell, J. Benaloh, M. Byrne, D. DeBeauvoir, B. Eakin, G. Fischer, Ph. Kortum, N. McBurnett,

J. Montoya, M. Parker, O. Pereira, Ph. Stark, D. Wallach, and M. Winn. STAR-Vote: A Secure,
Transparent, Auditable, and Reliable Voting System. USENIX Journal of Election Technology
and Systems (JETS), 1:18-37, August 2013.

. D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi. A comprehensive analysis

of game-based ballot privacy definitions. Technical Report 2015/255, Cryptology ePrint
Archive, 2015. To appear in S&P 2015.

. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not to Prove Yourself: Pitfalls

of the Fiat-Shamir Heuristic and Applications to Helios. In ASTACRYPT 2012, volume 7658
of LNCS, pages 626—643. Springer, 2012.

J. Bonneau, and S. Preibusch, and R. Anderson. A birthday present every eleven wallets? The
security of customer-chosen banking PINs, In Financial Cryptography and Data Security,
volume 7397 of LNCS, pages 25-40. Springer, 2012.

J. Bonneau. The science of guessing: analyzing an anonymized corpus of 70 million passwords,
In 2012 IEEE Symposium on Security and Privacy (S&P), pages 538-552. IEEE, 2012.

R. Carback, D. Chaum, J. Clark, adn J. Conway, E. Essex, P.S. Herrnson, T. Mayberry,
S. Popoveniuc, R. L. Rivest, E. Shen, A. T. Sherman, and PL. Vora. Scantegrity II Municipal
Election at Takoma Park: The First E2E Binding governmental Elecion with Ballot Privacy.
In USENIX 2010. USENIX Association, 2010.

David Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Commun. ACM, 24(2):84-88, 1981.

M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a Secure Voting System. In
S&P 2008, pages 354-368. IEEE Computer Society, 2008.

Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An analysis of ballot secrecy.
Journal of Computer Security, 21(1):89-148, 2013.

24

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachene. Election
Verifiability for Helios under Weaker Trust Assumptions. In ESORICS 2014, volume 8713 of
LNCS, pages 327-344. Springer, 2014.

Chris Culnane, Peter Y. A. Ryan, Steve Schneider, and Vanessa Teague. vVote: a Verifiable
Voting System (DRAFT). CoRR, abs/1404.6822, 2014. Available at http://arxiv.org/abs/
1404.6822.

C. Culnane, S. Schneider. A Peered Bulletin Board for Robust Use in Verifiable Voting
Systems. In CSF 2014, pages 169-183. IEEE Computer Society, 2014.

Richard A. DeMillo, Nancy A. Lynch, and Michael Merritt. Cryptographic Protocols. In
STOC 1982, pages 383—400. ACM, 1982.

G. Grewal, M. Ryan, L. Chen, M. Clarkson Du-Vote: Remote Electronic Voting with Untrusted
Computers. In CSF 2015, pages 155-169. IEEE Computer Society, 2015.

J. Heather, P. Y. A. Ryan, and V. Teague. Pretty Good Democracy for More Expressive Voting
Schemes. In ESORICS 2010, volume 6345 of LNCS, pages 405-423. Springer, 2010.

Fatih Karayumak, Maina M. Olembo, Michaela Kauer, and Melanie Volkamer. Usability
Analysis of Helios - An Open Source Verifiable Remote Electronic Voting System. In
EVI/WOTE’11. USENIX Association, 2011.

F. Karayumak, M. Kauer, M. Olembo, T. Volk, M. Volkamer. User study of the improved
Helios voting system interfaces. In STAST 2011, pages 37-44. IEEE Computer Society, 2011.
Shahram Khazaei, Tal Moran, and Douglas Wikstrom. A Mix-Net from Any CCA2 Secure
Cryptosystem. In ASIACRYPT 2012, volume 7658 of LNCS, pages 607-625. Springer, 2012.
A. Kiayias, T. Zacharias, B. Zhang. End-to-End Verifiable Elections in the Standard Model.
In EUROCRYPT 2015, volume 9057 of LNCS, pages 468—498. Springer, 2015.

A. Kiayias, T. Zacharias, B. Zhang. DEMOS-2: Scalable E2E Verifiable Elections without
Random Oracles. In CCS 2015, pages 352-363. ACM, 2015.

Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. A Game-based Definition of Coercion-
Resistance and its Applications. In CSF 2010, pages 122—-136. IEEE Computer Society,
2010.

Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. Accountability: Definition and Relation-
ship to Verifiability. In CCS 2010, pages 526-535. ACM, 2010.

Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. Accountabiliy: Definition and Re-
lationship to Verifiability. Technical Report 2010/236, Cryptology ePrint Archive, 2010.
http://eprint.iacr.org/2010,/236.

Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. Verifiability, Privacy, and Coercion-
Resistance: New Insights from a Case Study. In S&P 2011, pages 538-553. IEEE Computer
Society, 2011.

Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. Clash Attacks on the Verifiability of
E-Voting Systems. In S&P 2012, pages 395-409. IEEE Computer Society, 2012.

Stephan Neumann, Christian Feier, Perihan Sahin, and Sebastian Fach. Pretty Understandable
Democracy 2.0. Technical Report 2014/625, Cryptology ePrint Archive, 2014. http://
eprint.iacr.org/2014/625.

S. Neumann, M. Olembo, K. Renaud, M. Volkamer. Helios Verification: To Alleviate, or to
Nominate: Is That the Question, or Shall we Have Both?. In EGOVIS 2014, volume 8650 of
LNCS, pages 246-260. Springer, 2014.

Maina M. Olembo, Steffen Bartsch, and Melanie Volkamer. Mental Models of Verifiability in
Voting. In Vote-ID 2013, volume 7985 of LNCS, pages 142-155. Springer, 2013.

P. Y. A. Ryan, D. Bismark, J. Heather, S. Schneider, and Z. Xia. The Prét a Voter Verifiable
Election System. Technical report, Universities of Luxembourg and Surrey, 2010. http:
/ /www.pretavoter.com/publications/PretaVoter2010.pdf.

P. Y. A. Ryan, P. B. Roenne, and V. Iovino. Selene: Voting with Transparent Verifiability and
Coercion-Mitigation. Cryptology ePrint Archive, Report 2015/1105.

25

37. B. Schneier Applied Cryptography. John Wiley& sons, New York, 1996.

38. D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti, M. MacAlpine, and J. A. Hal-
derman. Security Analysis of the Estonian Internet Voting System. In CCS 2014, pages
703-715. ACM, 2014.

39. J. Weber, U. Hengartner Usability Study of the Open Audit Voting System Helios. http:
//www.jannaweber.com/wp-content /uploads/2009/09/858Helios.pdf.

40. F. Zagorski, R. Carback, D. Chaum, J. Clark, A. Essex, and P. L. Vora. Remotegrity: Design
and Use of an End-to-End Verifiable Remote Voting System. In ACNS 2013, volume 7954 of
LNCS, pages 441-457. Springer, 2013.

A Implementation of sElect

In this section, we provide an overview of our implementation of sElect (see [2] for the
code). We also briefly report on two small mock elections we carried out with sElect,
with the main intention to get a first feedback on the verification rates for the fully
automated verification (a full-fledged usability study is out of the scope of this paper and
left for future work).

We have implemented sElect as a web application. That is, voters simply use a
browser to vote, without the need to install other software, browser extensions, or plug-
ins, and hence, they can vote on many platforms (desktop computers, smartphones, etc.)
We have implemented the core of the mix servers in Java, while the remaining parts of
the servers are implemented in node.js. The cryptographic core of the system, and the
code of the mix server in particular, is very simple, which, as already mentioned in the
introduction, is a valuable feature of sElect. In fact, the bulk of the code has to do with
user interfaces and networking.

In order to vote, voters visit a web site which serves what we call a voting booth.
Except for serving static files (html/JavaScript), the voting booth server does not play any
role in the voting process. All the computations, including in particular ballot creation
and verification of acknowledgements, are carried out locally on the voters’ machine
within the browser. Votes only leave the browser encrypted (as ballots), to be submitted
to the authorization server.

While for the mock elections, only one server serving the voting booth was set up,
the idea would be that a voter can choose a voting booth of any organization/company it
trusts or even set up its own voting booth (server).

In our implementation, we use only one authorization method: one time passwords.
These are sent to the voters’ e-mail addresses when voters initiate the voting process.
However, it would not be a problem to support different authorization methods. Also, in
the current implementation of the system, the voting booth is involved in the authorization
process, as described below. For example, so far the voter enters her email address into
the voting booth. However, one could as well separate the voting booth from voter
authentication completely so that the voting booth does not learn the voter’s identity.

Details of the implementation. We now describe our implementation of sElect in more
detail, with screenshots illustrating the user experience.

When a user opens the voting booth (in a browser), she is asked for her e-mail address
(Figure 2). The voting booth forwards this e-mail address to the authentication server
which (if the voter is eligible) generates a one-time password for the voter and sends it to

26

Secure elections powere: sElect

Welcome to

Your Favorite Superhero Election

(election identifier: F42C 99DD 2A66 FAGE E469 01D0 2978 1AAC BBID 767F)
This is the election of the Greatest Superhero Ever.

Please provide your e-mail address to continue:

a@ema.il Proceed to voting

We will send you a one-time password to this e-mail address, which is
used to authenticate you in the next step.

Fig. 2.

Secure elections powere sElect

Your Favorite Superhero Election

(election identifier: F42C 99DD 2A66 FAGE E469 01D0 2978 1AAC BBID 767F)
This is the election of the Greatest Superhero Ever.

Please copy the one-time password from this e-mail and enter it in
the field below

If you cannot find an e-mail with a one-time password, please check your
spam folder.

Fig. 3.

27

owere: sElect

Your Favorite Superhero Election

(election identifier: F42C 99DD 2A66 FAGE E469 01D0 297B 1AAC BBID 767F)

Please enter a code consisting of 9 randomly chosen characters:

These code will be part of the verification code which will allow you to
check whether your vote has been properly counted.

Fig. 4.

ecure elections powere: sElect

Your Favorite Superhero Election

(election identifier: F42C 99DD 2A66 FA6E E469 01D0 297B 1AAC BBID 767F)

Who is Your Favorite Superhero?

© Bugs Bunny

Cast your vote

Fig. 5.

28

sElect

Your Favorite Superhero Election

(election identifier: F42C 99DD 2A66 FA6E E469 01D0 297B 1AAC BB9ID 767F)

Your ballot has been accepted by the collecting server.

When the election is over, you can manually check that your ballot is in the final tally. If you want to do
this, you need to

save/write down the following verification code

and look it up in the result of the election: it should appear next to your choice.

Your verification code: wk%m5=QIv442F0105

The first 9 characters are the code you entered, while the remaining part was generated randomly by
the system

Thank you!

Fig. 6.

Secure elections powered by sElect

Your Favorite Superhero Election

(election identifier: F42C 99DD 2A66 FAGE E469 01D0 297B 1AAC BB9ID 767F)

The election is closed and the result is ready and available.

To see the result and check your verification code, you can now

go to the result web page

Independently, an automatic verification procedure is being carried out to check that the ballot with
the following verification code has in fact been counted: wk%m5=Q!v442F0105

Verification successful /

Fig.7.

29

Secure elections powered by sElect

Your Favorite Superhero Election

(election identifier: F42C 99DD 2A66 FAGE E469 01D0 297B 1AAC BB9ID 767F)

The election is closed and the result is ready and available.

To see the result and check your verification code, you can now

go to the result web page

Independently, an automatic verification procedure is being carried out to check that the ballot with
the following verification code has in fact been counted: &a_1a:8c93823E9CF

VERIFICATION FAILED: ballot with verification code &a_1a:8c93823E9CF Is missing!
Looking for the misbehaving party.
Ballot &a_1a:8¢93823E9CF has been dropped by the collecting server

The following data contains information necessary to hold the misbehaving party accountable.
Please copy it and provide to the voting authorities.

{"electionID":"f42c99dd2a66fabee46901d0297blaacbb9d767f", "signature": "7499d1le5e2c10ed849:

3

Fig. 8.

Description
This is the election of the Greatest Superhero Ever.

Verification Codes List of Voters Additional Details

Result of the election

Choice Number of votes
Iron Man 0
Batman 0

Wonder Woman 0
Spider Man 1

Dr. Manhattan 1

Hulk 0
Superman 0
Bugs Bunny 2

Fig. 9.

30

Description
This is the election of the Greatest Superhero Ever.

Summary Verification Codes List of Voters Additional Details

List of Votes

Please check that your choice is listed next to your verification code.

verification code cholce

am<:-)62680BDE436 Dr. Manhattan
b27sh:][11CAB26F Spider Man
vbi{as32FBAA5E3EQ Bugs Bunny

wk%mb5=QIv442F0105 Bugs Bunny

Fig. 10.

her e-mail address. The user is then supposed to enter this one-time password (copy and
paste from her e-mail) to the voting booth (Figure 3). Then, the user is asked to provide
a random code of nine characters, which will be used as part of the verification code
(Figure 4). Next, the user is prompted by the voting booth to make her choice (Figure
5). Then, the voting booth, in the background, generates a random verification code,
concatenates it with the code entered by the voter, and creates a ballot. This ballot is
then, along with the one-time password, sent by the voting booth to the authentication
server (also called collecting server in our implementation). The server is supposed to
reply with an acknowledgement which is verified by the voting booth. After that, the
verification code is displayed to the voter, who can then copy her verification code or
save it as a picture (Figure 6). Independently, the verification code along with the full
receipt (the data necessary to blame misbehaving parties in case something should go
wrong) is stored in the browser’s local storage, an HTMLS feature for storing data within
the user’s browser.'® We note that data is stored in the local storage by origin.!” By the
Same Origin Policy (SOP), only JavaScript running under that origin can access this

16 We emphasize that we deliberately wanted to keep the user interface very simple. Therefore,
only the verification code is shown to the voter (a concept voters should understand). The rest
of the receipt, which is used for accountability purposes, is stored and checked only by the
voting booth on the voter’s browser.

17" An origin is defined by a domain name plus the information whether the connection to this
domain is via HTTP or HTTPS.

31

data. In our case, the idea is that a voting booth runs in its own (HTTPS) origin, and
hence, only (the JavaScript loaded from) this voting booth can access the receipt stored
in the user’s browser.

When the election is over, the voter is prompted to open her voting booth again. In
our deployment, e-mails were sent to the voters informing them that the result of the
election was ready and that the voter can see the result and check her verification code
following a link to her voting booth. When the voter opens the voting booth in this phase,
it fetches the information stored in the browser’s local storage, which should contain
the full receipt, and the result of the election from the bulletin board, and then verifies
signatures and makes sure that the verification code is listed in the final result along
with the chosen candidate. If this is the case, the voter is informed that her vote has
been counted correctly (Figure 7). Otherwise, the evidence for blaming a (dishonest)
party is generated and the voter is informed that the verification procedure failed. In
particular, the complaint singles out the misbehaving party and provides evidence of
the misbehavior. For instance, in Figure 8 the authentication/collecting server has been
singled out as the misbehaving party. In addition to this fully automated check (carried
out as soon the voter visits her voting booth), the voter is given the opportunity to visit
the bulletin board, where she can see the result (Figure 9) and manually check that her
verification code is listed next to her choice (Figure 10).

Discussion. One central point of the design of sElect is the very simple voter-based
verification procedure (human verifiability), where the voter is asked to check whether
her verification code and choice appear in the result. Another central point of the design is
also the fully automated verification, which, in addition, is coupled with the act of looking
up the election outcome: while voters are typically interested in the election outcome,
less voters might be interested in the verification process. Since the verification process
is triggered and carried out fully automatically without any effort by the voter, almost
all voters who check the election outcome seamlessly and automatically also perform
the verification (see also the remark below). The voter-based (manual) verification can
be seen as an orthogonal mechanism, which does not assume trust in other parties or
devices (except that the voter needs to be able to look at the election outcome). This
gives the voters direct understanding that their votes were actually counted.

Under some circumstances, for example, if voters clean their browsing data, which
may include the local storage, or if they use different browsers to cast their votes and
to verify the result, the automated verification procedure cannot be carried out. Note
that, even in this case, the voter can perform the manual verification. Also, note that to
guarantee a high level of accountability/verifiability and privacy for sElect, we do not
require that 100% of the voters check the result; much less suffices to make manipulation
very risky, as proven in Sections 4, 5, and 6. With our mock elections (see below) we
provide first estimates about the verification ratio for fully automated verification when
the system is used in practice.

Mitigating coercion resistance. The sElect voting system, just as Helios, was not
designed to provide coercion resistance and, in fact, in the current implementation, vote
selling and voter coercion is quite easy: a voter can simply forward her verification code
to a coercer who can use this code to check which candidate the voter voted for.

32

Still, to mitigate this problem to some extent and to make coercion less easy, one can
consider the following variants of sElect.

First, we can consider a variant where voter-based verification is dropped and the ver-
ification codes are not shown to the voter (but only stored internally in the browser’s local
storage). This, of course, means that the verification would be done only automatically
by the voting booth; the voter could not carry out manual verification.

One can also consider a variant where the whole receipt, including the verification
code (again the voter’s part of the code would be dropped), is not computed and stored
within the browser but on the server site of the voting booth. In this variant, as opposed
to the implemented variant, the voting booth server plays an active role. In particular, it
would perform the verification procedure itself (or delegate this to another party).

Note that without trusting the voting booth, coercion resistance and even privacy
would be much harder to achieve. We emphasize that the voter is free to choose a voting
booth she trusts, and as discussed before, for low-risk and low-coercion elections trusting
the voting booth (and the client platform) will in many cases be reasonable.

Two small mock elections. To obtain user feedback and, in particular, get a first estimate
of the verification ratio for the fully automated verification, we carried out two mock
elections. We used a slightly modified version of the voting booth which allowed us to
gather statistics concerning the user behavior. We emphasize that our field tests were
not meant to be full-fledged and systematic usability studies, which we leave for future
work.

The participants in our first mock election were students of our department (who
voted for the “Greatest Superhero Ever”): 52 voters cast their ballots and 30 (out of 52)
verification codes/receipts were checked automatically by the voting booth.!® This gives
a verification ratio of 57.7%. We can expect that some number of verification codes were
checked manually, so the overall verification ratio might be even higher. However, we
do not have reliable data about voter-based verification.

The participants of our second mock election were researchers of a national computer
science project (who voted on their favorite text editor). In this case, we recorded 22 cast
ballots and 13 (out of 22) verification codes/receipts were checked automatically, which
gives a verification ratio of 59.1%.'° Again, the overall verification ratio might be even
higher considering possible voter-based verification.

As one can see, in both cases, the verification ratio was quite high. In fact, with
such a high ratio, the dropping or manipulation of even a very small number of votes is
detected with very high probability, according to our results in Sections 4, 5, and 6.

The hope is that for real elections one might obtain similar ratios: voters might be
even more interested in the election outcome than in a mock election, and hence, when
invited, for example by email, to take a look at the election outcome via the voting booth,
the verification procedure carried out in the voting booth within the browser will be
triggered automatically.

18 Bugs Bunny won.
19 Emacs won.

33

B Formal Model of sElect

Set of participants. In addition to the participants listed in Section 3, we also have a
judge J (see Appendix D).

In what follows, we define the set I, of programs of all agents a in Pygj.;, including
their honest program 7.

The sets 11, (trust assumptions). We assume that the scheduler S, the judge J and the
bulletin board B are honest. Technically, this means that the set of programs of each of
these agents contains only one program, namely, the honest one. All other agents can
possibly be dishonest. For these agents, the sets of their programs contain all probabilistic
polynomial-time programs.

Next, we describe the honest programs 7, of every agent a in Pygjc;.

Judge J. The honest program of J carries out the procedure described in Appendix D.2.

Bulletin board B. Running its honest program, the bulletin board B accepts messages
from all agents. If the bulletin board B receives a message via an authenticated channel, it
stores the message in a list along with the identifier of the agent who posted the message.
Otherwise, if the message is sent anonymously, it only stores the message. On request,
the bulletin board sends its stored content to the requesting agent.

Voter v;. A voter v;, when triggered by the scheduler in the voting phase, picks a
choice m; according to the probability distribution p. A choice may be either a distinct
value abstain, which expresses abstention from voting, or a candidate name (or whatever
real choices are possible). If m; = abstain, then the voter program stops. Otherwise, if
m; is a candidate name, the program continues and produces a random nonce n}".
She then sends (m;,n)”"*") to her voter supporting device vsd;. The voter v;, when
triggered by the scheduler in the verification phase, carries out the following steps,
depending on whether her choice m; was abstain or not. If m; was abstain, the voter,
with probability p/“"/, verifies that her name is not listed in the list LN of names output
by the authentication server. She files a complaint if this is not the case, as described
in Section 2. If m; # abstain, the voter, with probability p'“ follows the verification
procedure to check that her choice/verification code-pair is listed in the final result. If

this is not the case, she files a complaint as described in Section 2.

Voter supporting device vsd;. When the voter supporting device vsd; receives a tuple
(m,n) by v;, it produces and casts a ballot as described in Section 2. The voter supporting
device expects to get back an acknowledgement (a signature of AS on the submitted
ballot). When this happens, the voter supporting device verifies the acknowledgement.
If the acknowledgement is incorrect, the voter supporting device posts a complaint on
the bulletin board via her authenticated channel. Note that the program of the voter
supporting device may not get any response from AS in case AS is dishonest. To enable
the voter supporting device in this case to post a complaint on the bulletin board, the
scheduler triggers the voter supporting device again (still in the voting phase). The
voter supporting device vsd;, when triggered by the scheduler in the verification phase,
carries out the following steps. If it did not receive an input by v; in the voting phase, its
program stops. Otherwise, the voter supporting device, with probability px:;f, follows

34

the verification procedure to check that v;’s choice/verification code-pair is listed in the
final result. If this is not the case, it files a complaint as described in Section 2.

Authentication server AS. The honest authentication server AS carries out the steps
described in Section 2, with one additional step: when AS is asked for the ballots of
the voters, AS provides all ballots collected so far to the requester (even before AS
published them on B). This models the assumption that the channel from the voter to AS
is authenticated, but does not necessarily provide secrecy.

Mix server M;. The honest program of M; carries out the procedure described in
Section 2.

Scheduler S. In every instance of P, the honest program 7s of S plays the role of
the master program (in the sense of Section 3). We assume that it is given information
about which agents are honest and which are dishonest in order to be able to schedule the
agents in the appropriate way. In what follows, we implicitly assume that the scheduler
triggers the adversary (any dishonest party) at the beginning of the protocol run and at
the end of this run. Also, the adversary is triggered each time an honest party finishes its
computations (after being triggered by the scheduler in some protocol step). This keeps
the adversary up to date and allows it to output its decision at the end of the run. By this,
we obtain stronger security guarantees. Similarly, we assume that the judge is triggered
each time any other party (honest or dishonest) finishes its computation (after being
triggered by the scheduler). This gives the judge the chance to output its verdict after
each protocol step. If the judge posts a message on the bulletin board B which indicates
to stop the whole protocol (see section D), then the scheduler triggers once more the
adversary (to allow it to output its decision) and then halts the whole system. This means
that no participants are further triggered.

In the remaining part of the section, we precisely describe the honest program of the
scheduler depending on the voting phase.

Scheduling the setup phase. At the beginning of the election, the scheduler generates
a random number id, the election identifier, with the length of the security parameter
£ and sends it to the bulletin board B which publishes id. After that, the scheduler first
triggers all the honest servers, which are supposed to generate their signing/verification
key pairs and publish the public (verification) keys on the bulletin board B, and then all
the dishonest ones. The analogous process is carried out for generation and publishing
of encryption keys.

Scheduling the voting phase. The scheduler first triggers all the honest voters and then
the dishonest ones, allowing them to cast their ballots to the authentication server AS
using their VSDs. After each such step (when the computations of a voter, her VSD
and the authentication server are finished), the scheduler triggers the VSD again, to
allow the VSD to post a complaint, if it does not get a valid acknowledgment from
the authentication server. Recall that the authentication server AS is modeled in such a
way that it provides all collected ballots (even before AS publishes them on the bulletin
board B) to an arbitrary participant who requests these ballots. Afterwards, the scheduler
triggers the authentication server which is supposed to publish the lists LN (containing
the names of those eligible voters who cast a valid ballot) and the list Cy (containing the
(first) valid ballot cast by each eligible voter) on the bulletin board B.

35

Scheduling the mixing phase. In this phase, the scheduler triggers all the mix servers,
from M, to M,, (recall that the judge and the adversary are triggered after each such
step).

Scheduling the verification phase. Similar to the voting phase, the scheduler triggers
first the honest voters and their VSDs who are supposed to verify the result. Recall that,
if a voter abstained, she is supposed to verify with probability p:l;’;{ whether her name
appears in the list LN, and, if this is not the case, to file a complaint as described in
the description, section 2. If the voter did not abstain, she and her VSD are supposed
to verify with probability /o and p'“’¥, respectively, whether the voter’s submitted
choice appears in the final result C,,, and, if this is not the case, to file a complaint
as described in the description, section 2. Afterwards, the scheduler triggers all the

dishonest voters.

C Verifiability Proof

In this section we prove Theorem 1 which expresses the verifiability property of the
sElect protocol.

Proof. Let accept be the property of the sElect protocol Pygj..; which consists of those
runs which are accepted by all voters, in particular all honest voters. Let no clash be the
property of the sElect protocol Pygj.., which consists of those runs in which no clashes
of voter-generated verification codes occur.

Let 7 be an instance of the protocol Pygec(n,m, ju, prnt pzj:;f, p;Z'[f) We have to
prove that

verif verif

k+1
Pr ,”(12) — <_‘7k /\accept/\no ClaSh)] < Proclash * (1 — min (pvoterapahst>)

holds true.

We denote the set of those honest voters whose choices are not included in the pure
result of a run by V.20 Recall that, if ~k is not satisfied in a run, then we have |V| > k+ 1.
Let verify, be the property that at least one of the honest voters in V or her associated
voter supporting device verifies the final result as described in section 2.

We will first show that

Pr |:7T(1€) — (—yk Aaccept A verifyy Ano clash)}

IN

Pr {W(lg) — (accept Averifyy A no Clash)}
=0

holds true. To prove this, we argue that for each voter v; in V the probability that the
voter verifies and also accepts the final result is 0. Let be a run of . Now, let v; be a
voter in V. The first possibility for a voter v; to be in V is that v; did not submit a ballot

20 A pure result describes the final result without the choices of the dishonest voters (see Ap-
pendix F).

36

but her actual choice “abstention” is not included in the pure result. Therefore, her name
appears in the list of names LN which is published by the authentication server AS. If
the voter v; then performs the verification procedure described in section 2, she will
observe that her name is in LN. Therefore, v; complains and does not accept the run. The
second possibility for a voter v; to be in V is that the voter v; created a vote-nonce pair
(mi,n}°") and gave the tuple to her voter supporting device vsd; (which is supposed to
produce and submit the ballot) but her actual choice m; is not included in pure result.
If v; then performs the verification procedure described in section 2, she will check
whether (m;,n}*"||x) is in the final result C,, for some number x. If this is not the case,
v; complains and does not accept the run. Otherwise, if (m;,n}”""||x) is in the final result
C,, for some number x, there must a voter v;, i # j, such that (m;,n}”") = (m;, n;"’”).
If, however, no clash holds true, this case is impossible. To see this, recall that in the
definition of ~; only honest voters are considered. Therefore, we can conclude that we
have Pr [7(1%) — (= Aaccept Averify, Ano clash)| = 0.

For all voters v; and all voter supporting devices vsd;, the probability that the indi-

vidual verification procedure is not carried out is < 1 —min (ngg;, pzebrs'tf) In addition,

the decision of each voter whether to verify the final result is (information theoretically
and, thus, statistically) independent of, first, the decision of each other voter to verify,
second, of whether ~; holds true or not, and third, of whether no clash holds true or not.
Therefore, we have that

Pr [w(lf) — (= A accept A —verifyy Ano clash)]

< Pr [w(lg) — (—yk A —verifyy) Ano clash}
y N K1
< Pnoclash * (1 — min (pr)gfra pZZ?{))

holds true.
By what we have shown above and the fact that

~

Pr{m(1%) — (—vyk/\accept)}

~

= Pr|n(1°) — (—y Aaccept Ano clash)}

IN

(
(
Pr -’/T(ll) — (= A accept A verifyy Ano clash)]

. verif _verif k+1
< Puoclash - { 1 —min Pvoters Pabst + Pclash;

the claim follows. O

37

D Accountability

In this section, we first briefly recall from [28] the general, domain-independent definition
of accountability and its instantiation to e-voting. We then use this definition to precisely
specify and prove the level of accountability sElect provides.

As demonstrated in [28], verifiability is a weaker form of accountability. For veri-
fiability, one requires only that, if some goal of the protocol is not achieved (e.g., the
election outcome does not correspond to how the voters actually voted, see Section 4.1),
then the judge will not accept such a run, but he is not required to blame misbehaving
parties. Conversely, accountability requires that misbehaving parties are blamed. In
practice, as already pointed out in the introduction and other work (see, e.g., [28]), it is
very important that an e-voting scheme provides accountability, not only verifiability.

D.1 Definition of Accountability

The definition of accountability is w.r.t. an agent J of the protocol who is supposed to
blame protocol participants in case of misbehavior. The agent J, sometimes referred to
as a judge, can be a “regular” protocol participant or an (external) judge, who is typically
provided with additional information by other, possibly untrusted protocol participants.
Informally speaking, accountability requires two conditions to be satisfied:

(1) (fairness) J (almost) never blames protocol participants who are honest, i.e., run
their honest program.
(ii) (completeness) If, in a run, some desired goal of the protocol is not met—due to the
misbehavior of one or more protocol participants—then J blames those participants
who misbehaved, or at least some of them (see below).

As in the case of verifiability (see Section 4.1) a desired goal for voting protocols
would be that the published result of the election corresponds to the actual votes cast by
the voters. The completeness condition then guarantees that if in a run of the protocol
the published result of the election does not correspond to the actual votes cast by the
voters (a fact that must be due to the misbehavior of one or more protocol participants),
then one or more participants are held accountable by J; by the fairness condition they
are rightly held accountable.

To specify the completeness condition in a fine-grained way, the notions of verdicts
and accountability properties are used.

Verdicts. A verdict can be output by the judge (on a dedicated output channel) and
states which parties are to be blamed (that is, which ones, according to the judge, have
misbehaved). In the simplest case, a verdict can state that a specific party a misbehaved
(behaved dishonestly). Such an atomic verdict is denoted by dis(a). It is also useful to
state more fine grained or weaker verdicts, such as “a or b misbehaved”. Therefore, in
the general case, we will consider verdicts which are boolean combinations of atomic
verdicts. In fact, in our formal analysis of sElect, we use in some cases verdicts of the
form dis(v;) V dis(AS) stating that either the i-th voter v; or the authentication server AS
misbehaved (but the verdict leaves open, as it might not be clear, which one of them).
Given an instance 7 of a protocol P, we say that a verdict v is true in 7, written 7 |= 1),

38

iff the formula ¢ evaluates to true with the proposition dis(a) set to false if a is honest in
7 (as defined in Section 3), and set to true otherwise.

Accountability constraints. An accountability constraint is a tuple (a, 1, .., 1Y),
written (o = v | -+~ | ¢x), where « is a property of P (recall that, formally, this is
a set of runs of P) and 1,...,9y are verdicts. Such a constraint covers a run r, if
r € . Intuitively, in a constraint I' = (o =) | --- | ¢%) the set « contains runs in
which some desired goal of the protocol is not met (due to the misbehavior of some
protocol participant). The formulas vy, ..., are the possible (minimal) verdicts that
are supposed to be stated by J in such a case; J is free to state stronger verdicts (by the
fairness condition these verdicts will be true). Formally, for a run r, J ensures I in r, if
either r ¢ o or J states a verdict ¢ in r that implies one of the verdicts 11, .. ., (in the
sense of propositional logic).

Individual verifiability. In practice, so-called individual accountability is highly desir-
able in order to deter parties from misbehaving. Formally, («v = 1)y | -« | 4%) provides
individual accountability, if for every i € {1,...,k}, there exists a party a such that
1; implies dis(a). In other words, each 11, ..., determines at least one misbehaving
party.

Accountability property. A set ¢ of accountability constraints for a protocol P is called
an accountability property of P. An accountability property @ should be defined in such a
way that it covers all relevant cases in which a desired goal for P is not met, i.e., whenever
some desired goal of P is not satisfied in a given run » due to some misbehavior of some
protocol participant, then there exists a constraint in ¢ which covers r. In particular, in
this case the judge is required to state a verdict.

Notation. Let P be a protocol with the set of agents X' and an accountability property &
of P. Let 7 be an instance of P, and J € X be an agent of P. We write Pr[r(1¢) = —(J :)]
to denote the probability that 7, with security parameter 1¢, produces a run such that J
does not ensure [’ in this run for some I" € .

Computational fairness. An agent J is computationally fair in P, if, for all instances m
of P, J states false verdicts only with negligible probability, where a verdict ¢ is false in
arun r of 7 if w = 1.

Definition 5 (Accountability [28]). Let P be a protocol with the set of agents X, J €
X, an accountability property Y of P, and 6 € [0,1]. We say that J ensures (P,0)-
accountability for protocol P (or P is (®,d)-accountable w.r.t. J) if
(i) (Fairness) J is computationally fair in P and
(i) (Completeness) for every instance 7 of P, the probability Pr [r(1/) = —(J : @)] is
d-bounded as a function of {.
In the completeness condition, it is of course desirable that § = 0, i.e., the probability
that J fails to ensure a constraint is negligible. However, this is typically too demanding,
as illustrated already in [28], and also by our formal analysis of sElect presented below.

D.2 Analysis of sElect

To apply the definition of accountability to sElect, we first extend the modeling of this
protocol, as given in Appendix B, by adding an additional agent J, namely the judge

39

whose role it is, as explained above, to state verdicts (blaming misbehaving parties). We
also extend the scheduler’s program to make sure that the judge is triggered sufficiently
often. Additionally, since the (human) voter does not play a role for accountability, we
will identify each voter with her voter supporting device. In this model, we will then state
the level of accountability provided by sElect for the goal 7 as defined in Section 4.1.

Unification of voter and VSD. Recall that in sElect, the VSDs keep all the information
necessary to be able to individually blame (potentially) misbehaving servers. In contrast,
voters only keep the user generated part of the verification code which, in case their
vote-nonce pair is not included in the final result, does not provide evidence as to which
party is to be blamed. This means that the voter-based verification does not contribute to
accountability. Therefore, in what follows, we consider only the automated verification
procedure which is carried out by the VSD and distinct between the voter and her VSD
anymore, but simply call the unification of these two participants the voter. As before,
we denote the probability that an honest voter who does not abstain from voting verifies
the result by pfgg, € [0,1], and the probability that an honest voter who abstains from
voting verifies that her name is not listed in the list LN output by the authentication

server by p"7 ¢ [0, 1].

abst

Judging procedure of sElect. We assume that J is honest. (Formally, this means that
1I; in the protocol Pyg.., contains the honest program 7; of J only.) We note that this
program, as defined below, uses only the publicly available information, and therefore
every party, including the voters as well as external observers, can run the judging
procedure.

The program 7;, whenever triggered by the scheduler, reads data from the bulletin
board and verifies its correctness, including correctness of posted complaints. The judge
outputs its verdicts (as described below) on a distinct tape. More precisely, the judge
outputs verdicts in the following situations:

(J1) If a server S does not publish data when expected or the published data is not in
the expected format, this server is blamed by the judge, i.e., the judge outputs the
verdict dis(S), and the whole election process is halted.

(J2) If a voter v; posts an authenticated complaint in the voting phase that the authentica-
tion server has not responded with a valid acknowledgement, then the judge outputs
the verdict dis(v;) V dis(AS), which means that (the judge believes that) either v; or
AS is dishonest but cannot determine which of them.

(J3) If a voter v; posts an authenticated complaint claiming that she did not vote, but
her name was posted by the authentication server, the judge outputs the verdict
dis(v;) V dis(AS).

(J4) If, in the verification phase, a valid complaint is posted containing an acknowledge-
ment of AS, i.e. the complaint contains a signature of AS on a ballot o, while « is
not listed in the output Cy of AS, then the judge blames AS outputting the verdict
dis(AS).

(J5) If, in the verification phase, a valid complaint of the form (j, , r) is (anonymously)
posted, i.e., Enc;kj(a) is in Cj_y, but « is not in Cj, then the judge blames M,
outputting the verdict dis(M).

40

Accountability property. We investigate the accountability level of sElect with respect
to the goal ~; as defined in Definition 1. Recall that v, formalizes the property that
malicious participants cannot manipulate or drop more than k honest votes. We will now
define an accountability property @; which covers the goal ;.

Let x; contain all runs of Pyg,.; where (J2) occurs, i.e., the voter complains that
she did not get a receipt from AS. Similarly, let X? contain all runs of Pygj..s where (J3)
occurs, i.e., the voter complains that she did not vote, but her identifier is listed in LN
published by AS. Let x = Ujc1,..ny Xi UX}-

Now, we define 9 as the accountability property consisting of the following con-
straints (fori € {1,...,n}):

Xi = dis(v;) V dis(AS)
X; = dis(v;) V dis(AS)
—y Ay = dis(AS) | dis(M) | ... | dis(My,)

Clearly, this accountability property covers —y; by construction, i.e., if ~ is not satisfied,
these constraints require that the judge has to blame some party.

Note also that, in the runs covered by the last constraint, all the verdicts are atomic.
This means that &, requires that except for the cases where x holds, whenever the goal
i is violated, an individual party is blamed. Conversely, if y; occurs, the judge cannot
be sure whether AS or a voter v; misbehaved. As already discussed in Section 2, this is
a very general problem, which applies to virtually any remote voting protocol but for
which there are pragmatic solutions. The case X} is a common problem as well. This
could be solved, for example, when voters have public/private keys. Then they could be
required to sign their ballots, and hence, AS would have proof that a voter voted.

Accountability result. We are now able to precisely state and prove the accountability
verif

level of sElect. Recall that p,,". € [0, 1] is the probability that an honest voter who does
not abstain from voting verifies the result, and pzzr;{ € [0, 1] is the probability that an
honest voter who abstains from voting verifies that her name is not listed in the list LN

output by the authentication server.

Theorem 3 (Accountability). Let the judge J be as defined above. Then J ensures

verif _ verif verif _verif

(@kv 6k (pvotera pabst)) —accountabilityfor R?Elect (I’l, m, [y Pyoters pabst)’ where

, . . . k+1
k(v nin

The proof of this theorem follows from Lemma 2 and Lemma 3 (see below). It is a
rather straightforward reduction argument, which uses only EUF-CMA-security of the
signature scheme and correctness of the encryption scheme.

This theorem means that the probability that more than k votes of honest voters
have been dropped or manipulated, but the judge nevertheless did not blame any party,

is at most 6% (pr¥ p:;]rf,f) If, as discussed above, voters would sign their ballots, then
one could get rid of p'"/ in the definition of 5*(p}ore., p'<’), as in this case one could

require AS to provide a signed ballot for every voter listed in LN. In practice, the problem

41

is that voters often do not have signing keys. This is why, for example, in Helios too
such signatures are not required. So if it cannot be proven that voters voted, the above
accountability result really is the best one can hope for in general: if voters do not check
the published data (with their receipt), manipulation might go undetected with the stated
probability.

Lemma 2 (Fairness). The judge J is computationally fair in Pygjee;(n,m, p, pxzféf,, PZZ?{)
Proof. To prove fairness we will show that, with overwhelming probability, the judge
does not post incorrect verdicts.

In a run with property y;, the voter v; complains that she did not receive a valid
acknowledgement by AS although she submitted a valid ballot. If the judge J reads such
an authenticated complaint, it outputs dis(v;) V dis(AS) (see (J2)). Since the complaint
is authenticated and the bulletin board B is honest, the complaint was indeed posted
by v;. We consider two cases. First, if the voter is dishonest, the verdict clearly is
true. Otherwise, if voter v; is honest, by the definition of the honest program, the voter
submitted a valid ballot but did not receive a valid acknowledgement. In this case, AS
must have misbehaved. Therefore, in this case the verdict dis(v;) V dis(AS) holds true as
well.

In a run with property X/, the voter v; complains that she did not vote although
her identifier is listed in LN published by AS. The list LN is supposed to contain the
identifiers of those voters who submitted a vote to AS. If the judge J reads such an
authenticated complaint, it outputs dis(v;) V dis(AS) (see (J3)). Again, the complaint
was indeed posted by v;. Additionally, the list LN was signed by AS with overwhelming
probability; otherwise, the process would have been aborted before this complaint. Using
analogous reasoning as above, we can infer that the verdict dis(v;) V dis(AS) holds true
with overwhelming probability.

According to (J1), the judge states dis(S) for some server S if the server did not
publish a result when expected, or the published data was not in the expected format.
Clearly, this verdict is fair because the bulletin board B is honest.

According to (J4), the judge states dis(AS) if someone posted a complaint in the
verification phase which contains a valid acknowledgement of AS for a ballot that does
not appear in the list Cy signed by AS. We demonstrate that, if AS is honest, then this
may happen only with negligible probability. First, the list Cy carries a valid signature of
AS. Because the honest program of AS never reveals its private keys, Cop must have been
produced by AS (with overwhelming probability, by the security of the used signature
scheme). Second, the acknowledgement also carries a valid signature of AS. Again,
it means that (with overwhelming probability) it was produced by AS. However, the
honest program of the authentication server always puts a ballot for which it signs an
acknowledgement in the list Cyy. Therefore, the case considered here does not occur if AS
is honest, except for the negligible set of runs, where one of the signatures was forged.

According to (J5), the judge states dis(M;) if someone posted a complaint in the
verification phase that contains a triple (j, a,r) for which Enc;kj(a) is in C;_; while
a is not in C;. Since all lists Cy, ...,C,, are signed correctly (otherwise the run would
have been aborted immediately after the respective publication), each published list was
indeed posted by the respective server, except for a set of runs of negligible probability

42

where fake signatures are forged. There are three reasons for an honest mix server not
to add the decrypted result of an entry from the input list to the output list. First, if the
entry cannot be decrypted. Second, if the decrypted entry is not in the correct format.
Third, if the decrypted result is a duplicate of a different entry which is already in the
output list. However, none of these reasons can hold true for a triple (j,a,r) as above
because the encryption scheme is correct. Therefore, in an overwhelming set of runs the
verdict dis(M;) is fair.

The above cases cover all possible runs where a verdict is stated by the judge, which
completes the proof. O

Lemma 3 (Completeness). For every instance © of Pygiee(n,m, i, it pZZ’{) we

have
V4 . k verif _ verif . verif _ verif k1
Pr |:7T(1) = _‘(J N Qk):| S 6 (pvotempgbst) = (1 —min (pvolerapabst)>
with overwhelming probability as a function of £.

Proof. In order to prove the lemma, we have to show that the probabilities

Pr [mf) s (i A—dis(v) A ﬁdis(AS))] 2)
Pr [w(ﬂ) — (X A —dis(v;) /\ﬁdis(AS))] 3)
Pr [W(ﬂ) s (= A=y A—dis(AS) A ... A ﬂdis(Mm))] @

are 6k (p* | pzzzf)-bounded forevery i€ {1,...,n}.

The first two probabilities, (2) and (3), are equal to 0. In fact, if a voter complains
in an authenticated way that she did not receive a valid acknowledgement although
she submitted a valid ballot (i.e., when y; holds true), or if the voter complains in an
authenticated way that she abstained from voting although her name appears in Cy
(i.e., when x} holds true), then, by the definition of the honest programs, the honest
bulletin board publishes the respective complaint and the judge outputs the verdict
dis(v;) V dis(AS).

To complete the proof, we need to show that the probability (4) of the event

X = (e A=x A —dis(AS) ... A —dis(M,))

is 5k (pret pZZ:’tf) -bounded.

Let = x1U---Uxy and §' = x| U---Ux;, (note that =y = =5 A—/’). Let IB denote
the event that no individual blame is stated by the judge and, finally, let Y = (= A —f3)
. We can now write X =Y A/’ A—IB.

To show that X is 6% (p!¥ pZZ"Z)—bounded, we will show a stronger fact, namely,
verif:

we will show that Pr[-IBA -8 | Y] < 6k (pte¥ por) (assuming that the probability of
Y is > 0, as otherwise the proof is trivial).

First, let us observe that in runs in Y the following is true. Since = holds true, we
know that —y; holds true for every voter v;. In particular, this means that no honest voter

43

who cast a ballot claims that she has not received a valid acknowledgement. Therefore,
for all runs in Y, each honest voter must have received a valid acknowledgement if she
cast a ballot. It follows that every honest voter who cast a ballot has all the data necessary
to individually blame a server (acknowledgement and random coins used to encrypt her
vote), if this server manipulates her vote (i.e., if the pair o/, does not appear in the result
list).

Now, let w and (w',w,) be defined as in Section 6.1. Recall that w’ completely
determines the run of the protocol up to the verification phase. In particular w’ determines
the output of the last mix server and it determines whether the goal v is satisfied or not
(7 does not depend on w,) and whether 5 is satisfied or not. It means, in particular, that
either w’ CY or w' NY = 0. (As mentioned in Section 6.1, we can consider w’ to be an
event.)

Let 2y be the set of those w' that are inside Y. To complete the proof, it is enough to
show that, for each w’ € {2y we have

Pr[~IBA—B | o] < 5 (promr PLo).)

Let us recall that w’ completely determines the run up to the audit coins (which are
drawn, when the result is already determined). In particular, w’ determines whether or
not a result is published at all. If no result is published, then, by (J1) of the judging
procedure, some server will be blamed individually, and hence, /B would be true. So,
in this case Pr[—/BA -3 | '] = 0. Otherwise, if a result is output, w’ also determines
the set V; of those honest voters who did not vote, but are listed in LN and the set V5 of
those honest voters v; who cast their ballots, but their vote/verification code pairs ain
are not listed in the final result. One can see, by the definition of the goal ~y; (which is
violated in '), that |V} | + |V»| > k (otherwise this goal would not be violated).

Now given V; and V5, it is easy to compute the probability =/B A =’ given w':
this events happens only when none of the voters in V| and V, verifies the result. Note
that, indeed, if a voter in V; verifies the result, she complains and 3’ is automatically
satisfied. Similarly, if a voter in V, verifies the result, she complains by providing a valid
evidence of misbehaviour (as discussed above) and the judge states individual blame
(IB is satisfied). This probability is (1 — pe™"\Vil(1 — ptor?)2l because the voters in V
and V; carry out the verification process with probability p(ﬁr"tf and pxzfgi, respectively,
independently of anything else (the random coins used in this choices are independent
of w’ and of each other). Recall that |V;| + |V2| > k. Therefore we have:

Pr(~IBA=B' | W] = (1=)" (1 = piien)™”

< (1= min(ply, i)

= 5% (pror, plor.

This completes the proof. O

E Individual Blaming of k-semihonest Adversaries

In this section, we provide the proof of Lemma 1.

44

Proof. 1f in the runs of w’ no result is published, then, by the judging procedure, a server
is blamed individually. The probability of this is thus 1.

Otherwise, if in w’ a result is published and the nonces (verification codes) chosen
by the voters are pairwise different (this is obviously the case for all or none of the runs
in w’), then the adversary is not caught cheating only if none of the honest voters whose
ballots were dropped verify the result. Note that if the adversary is caught cheating,
then he can be blamed individually because, by assumption, honest voters receive an
acknowledgment when they cast a ballot from the authentication server. So, when the
authentication server misbehaved he can be blamed individually. Also, in any case if one
of the mix servers misbehaved they can be blamed individually as well.

Since the runs in w’ are not k-semi-honest, more than k vote-nonce pairs of honest
voters must have been dropped/manipulated. So, the probability that none of these voters
verify the result is (1 — p/“7)k+1,

Since the nonces generated by voters (VSDs) for the verification codes have length
> ¢ (security parameter), the probability that nonces chosen by honest voters coincide is
negligible. Hence, the above argument holds true for all but negligible many w’. O

F Privacy Proof

In this section, we prove Theorem 2 which establishes the privacy level of sElect. This
level can be expressed using the privacy level of the ideal voting protocol. Therefore, we
formally introduce the ideal voting protocol in the following definition.

Definition 6 (Ideal voting protocol). The ideal voting protocol Pigeq(n, i) consists
of the following participants. There are n honest voters. We denote the program of
an honest voter by #,,, 1 <i < n. There is one honest voting authority with direct
channels to each single honest voter. We denote its honest program by 7tya;. There is one
(dishonest) observer. The set Ilp of programs of the observer contains all probabilistic
polynomial-time programs. All agents are connected via direct channels.

The honest program ., of each voter can be triggered by the voting authority. In
this case, 7t,, chooses a candidate according to the distribution p and outputs the choice
on the direct channel to the voting authority. The honest program Tty of the voting
authority can be triggered by the observer which plays the role of the master program.
In this case, Ttya; successively triggers all honest voters and collects all choices that
are submitted via direct channels from the honest voters. When every honest voter has
been triggered, and hence, all votes have been collected, the voting authority randomly
permutates all collected votes and sends the resulting list to the observer.

Altogether, an instance of Pigeqi(n, 1) is of the form o || &y, || -+ || &y, || fvar with
7o € Ilp. We also consider instances of the form wo || #t,(c) || fivar where #,(c) is the
composition of n — 1 honest voters plus an honest voter under observation. This voter
votes for c instead of making her choice according to p.

We now recall the level of privacy 5;%1 of the above ideal voting system from [30].
As we will see, this level depends on the number [of honest voters and the probability
distribution p used by the honest voters to determine their choices.

45

To define this level, we need the following terminology. Let {c1,...,c;} be the set
of valid choices. Since the adversary knows the choices of the dishonest voters, he
can subtract these choices from the final result and obtain the so-called pure result
r=(r1,...,ry) of the protocol, where r;, i € {1,...,k}, is the number of votes for ¢; in
the result, after subtracting the votes of dishonest voters. Note that, if / is the number of
honest voters, then r; +- - - +r, = [+ 1 (I honest voters plus the voter under observation).
We denote by Res the set of all pure results. Let A denote the probability that the choices
made by the honest voters yield the pure result r, given that the voter under observation
submits c;. Note that A’ depends on [and p. Further, let M; y = {r € Res : A]. < Ail}.
Now, 5% is obtained according to the following intuition: If the observer, given a pure
result r, wants to decide whether the observed voter submitted ¢; or ¢ s the best strategy
of the observer is to opt for ¢ if r € M; y, i.e., the pure result is more likely if the voter

submitted c . Now the level of privacy for the ideal voting protocol with / honest voters,

as established in [30], is

5% = max Z (A"'/—Aj).

By the result of [30] and the definition of privacy we therefore have

Pri(mo || #alc) [#var) ™ = 1] = Pr[(mo || #a(c') || yar) D = 1]| <64, (6)
for every observer mp € Il and all candidates ¢ and ¢’ (¢, ¢’ # abstain). This means that
in the ideal protocol the advantage of every observer mp € 1o to correctly guess whether
the voter under observation voted for ¢ or ¢’ is bounded by (5}{1#.

Recall that, by assumption, for all honest voters in Py, (11,m, 1, pyorr, prorl) the
length of the candidate plaintext as well as the length of the nonce, respectively, have
the same size in each run of the protocol, given a security parameter. Also, recall from
Section 2 that for the public-key encryption scheme we require that for every public-key
and any two plaintexts of the same length their encryption always yields ciphertexts of
the same length. It follows that for each mix server M the ciphertext

. r, i

o'y = Enc ,;,;j,(...(Encg;;m (mi,ny))...)

computed by an honest voter v; for M; must have the same size for all honest voters.
Hence, there exists a function 77 in the security parameter such that for every instance
7 of Ryjélect(n,m,u,p,q) and for every honest voter v; in 7 and every run of 70
the size |a5./| of aj, is 77;7(£). In what follows, we simply write n"}./ = 77;/ (£). In order to
determine 7;; one can take an arbitrary candidate and an arbitrary nonce of correct size
and encrypt the pair under the public keys pky,, ..., pkj.

Recall that in order to prove the theorem for the protocol P{Ele MUNCNTS et pZZ'If)

with the voter v under observation we have to show that

Pr((A(e) [| 7)Y = 1] =Pr(((c) || 7)Y = 1] ™

46

is 6}‘1 ,W-bounded as a function of the security parameter £, for all candidates c,c’
(c,c’ # abstain) and all programs 7* of the remaining parties such that at least [voters
are honest in 7* (excluding the voter under observation v) and such that the adversary
(the dishonest parties in 77*) is k-semi-honest.

We can split up the composition 7* in its honest and its (potentially) dishonest part.
Let HV be the set of all honest voters (without the voter under observation) and 7yy
be the composition of their honest programs. Recall that the judge J, the scheduler S,
the bulletin board B, the voting authority VA, and the j-th mix server M; are honest.
Therefore, the honest part, which we denote by 7y = #; || #va || 75 || 7s || 7m; || Frv,
consists of the honest programs 7y, Ays7g, s, ﬁM, , gy of the judge J, the bulletin board
B, the scheduler S, the honest mix server M;, and the honest voters HV, respectively.
By 75 (c) we will denote the composition of all honest program including the program
of the voter under observation, i.e., g (c) = &g || #v(c). All remaining programs are
subsumed by the adversarial process 74. This means that we can write #,(c) || 7* as
Fr(c) || ma.

Recall that, by assumption, there are two restrictions imposed on the adversary 4.
First, the adversary is k-semi-honest. Second, the set of programs 45 of the authentica-
tion server AS consists only of those programs that respond with valid acknowledgments
when honest voters cast their ballots; otherwise the programs of AS can perform arbitrary
(dishonest) actions. In particular, this is the case for the authentication server within 74.

In order to prove the result, we use a sequence of games. We fix a candidate ¢ and
start with Game O which is simply the process 7, (c) | 7* = #n(c) || wa. Step by step, we
transform Game 0 into Game 4 which is the composition 7, (¢) || 4 for some process
7y, (c) and the same adversarial process 74. Game 4 will be proven indistinguishable
from Game O from the adversary’s point of view, which means that

[Prlue) | ma)© = 1] = Prl(my (€) [l ma)® = 1] ®)

is negligible as a function of ¢ for a fixed candidate c¢. On the other hand, it will be
straightforward to show that in Game 4 for arbitrary candidates ¢ and ¢’ (c,c’ # abstain)

[PriCin, (e) 1 7a)® = 1) = PG, () || 2a) 0 = 1) ©)

is bounded by §i¢ . because #p, (c) and #p, (¢’) use the ideal voting functionality for
| — k honest voters. Using the triangle inequality we can therefore deduce that

PriCu(e) | ma)® = 1] = Prl(n(c') | ma)® = 1] (10)

is (5{{ klu—bounded for all candidates ¢ and c’.

Game 0. In what follows we write 7y, (c) for 77(c) and consider 7, (c) as one atomic
process (one program) and not as a composition of processes.”! Now, Game 0 is the
process @y, (¢) || ma- A

In the first step, we construct Game 1 which will be proven indistinguishable from
Game 0 in Claim F based on the IND-CCA2-security of the public-key encryption

21 This is w.l.0.g. since every (sub-)process can be simulated by a single program.

47

scheme. More precisely, the adversary will only receive fake ballots encrypting a random
string at the beginning. These fake ballots will then be replaced in the honest mixing
phase by ciphertexts encrypting the real choices.

Game 1. For Game 1, we modify 7, (c) in the following way in order to obtain 7, (¢).
Apart from the modifications below, 7y, (c) and 7y, (c) are identical.

Ballot creation (simulated): Recall that, in order to create her ballot af), an honest
voter v; first chooses a candidate (either c, if under observation, or according to i,
otherwise) and a nonce n;, and then encrypts the tuple under the public keys of the mix
servers, starting with the public key pk, of the last mix server and then going to the
public key pk; of the first mix server.

To simulate the process 7, of an arbitrary honest voter v;, the process 7y, (c) follows
#y, until the encryption of v;’s choice under the public key pk;, | of the mix server M, :
#m, (¢) first chooses a candidate and a nonce as before and encrypts it with the public

keys pky,..., pkjy1 of the mix servers behind the honest mix server M; to obtain aj»

(which is supposed to be the output of M;). Now, however, 4, (¢) does not encrypt o
(containing the choice) further. Instead, 74, (¢) encrypts a random string of length 7);
under the remaining public keys pk;, pkj_1, ..., pki to obtain the ciphertexts 0‘5’—1 Seees 046,
where 7); is defined as above. The pair a;, 0‘3‘—1 is logged by 7, (¢) for replacement later
on. After that and before simulating the process ﬁ'Mj of the honest mix server M;, fip, (¢)
and 7p, (c) are identical. This means that the ciphertext af) encrypting 0"/ is supposed to
fake the ballot of v;.

Honest mixing (simulated): #tg, (c) simulates ﬁMj in the following way. Let C;_; be
the input to the (simulated) honest mix server M; (from the adversary’s point of view).
For all voters v; whose associated ciphertext 0‘3‘—1 is in C;_1 (recall that ciphertexts can
be dropped or manipulated by the adversary), 7y, (c) adds a; to its output C; (which
is supposed to fake the output of the honest mix server M;). Apart from this, 7, (¢)
follows 7y, In particular, if the input to M; contains a ciphertext z which is not logged
before as 0‘3‘—1’ then this ciphertext is decrypted (using the decryption key of M) and, if
successful, added to the output of M;. A

Game 1 and Game 2 are completely identical with the difference being that the
simulator (i.e., A, (¢) in Game 1 and 7, (c) in Game 2) halts if the adversary dropped
or manipulated more than k honest voters’ ciphertexts prior to the (simulated) honest
mix server M;. In Claim F we will show that this can only happen with negligible
probability if the adversary is k-semi-honest. Therefore, Game 1 and Game 2 can be
proven computationally indistinguishable as stated in Claim F.

Game 2. The process 7y, (c) is completely identical to 74, (¢) with only one modifica-
tion: 7y, (¢) halts if there are less than I — k ciphertexts associated to the honest voters in
the input C;_; of the (simulated) honest mix server M;. In this case, 7y, (c) halts when
it is triggered the first time after the publication of C;_;. A

We modify 7y, (c) in such a way that the point when the honest voters are supposed
to pick their candidates is postponed to the point when the honest mix server is triggered
to mix its input. Game 2 and Game 3 are perfectly indistinguishable as stated in Claim F.
Game 3. For Game 3, we modify 74, (c) in the following way in order to obtain 7g;, (c).
Apart from the modifications below, 7y, (c) and 7y, (c) are identical.

48

Ballot creation (simulated): Let v; be an arbitrary honest voter. In contrast to 7, (¢),
7m, (c) does not pick a candidate when creating the ballot oy, and therefore does not
encrypt the candidate under the public keys pky, ..., pkji1 to obtain ;. Instead, 7y, (¢)
only encrypts a randomly chosen bit string of length 7; under the first j public keys
pkj,pkj_1,...,pki in reverse order to build and publish the fake ballot af) for the voter v;
as in 7y, (c). The pair (a_,v;) is logged by #a, (c).

Honest mixing (simulated): Let C;_1 be the input to the (simulated) honest mix server
M; (from the adversary’s point of view). For all voters v; whose associated ciphertext
a"l.fl isin Cj_y, 7h, (c) picks a candidate (c or according to 1, respectively) and encrypts
1
T
Afterwards 7y, (c) adds oz; to the output C; (which is supposed to fake the output of the
mix server M;). Apart from this, 74, (¢) follows 7y, (c). A

it along with a randomly chosen nonce under the public keys pky,, ..., pkj1 to obtain a

The only difference between Game 3 and Game 4 is that the simulator in Game 4,
ie., fig, (¢), uses the ideal voting protocol for / — k honest voters in order to receive
| — k honest choices including the choice of the voter under observation. The simulator
receives these choices in a completely random order and as plaintexts. If necessary,
the simulator generates remaining choices itself. Then it continues as before. As stated
in Claim F both games are perfectly indistinguishable. Additionally, and this is the
central idea of the proof, the advantage of the adversary to decide what the voter under
observation voted for is bounded by 5;"1 ko To see this, assume that the adversary also
controlled the simulator without the ideal voting protocol for / — k honest voters. In this
case the advantage is obviously bounded by ¢, . This is Claim F.

Game 4. 7y, is identical to 7y, except for the simulation of the honest mix server
M;. In the honest mixing phase the process 7y, (which is now independent of ¢) uses
the ideal voting protocol (which now depends on c) to generate the choices of the first
[— k — 1 honest voters and the voter under observation (as described below).

Honest mixing (simulated): Let C;_; be the input to the (simulated) honest mix
server M;. Note that, according to Game 2, 7y, halts if C;_; contains less that [— k
ciphertexts associated to the honest voters. This is done in 7y, as well. Otherwise,
at the beginning of the honest mixing phase, 7y, triggers the ideal voting protocol
#1_k(c) || #var (see Definition 6); we implicitly compose the program of the observer in
the ideal voting protocol with the adversary 74. The ideal voting protocol then outputs
the list of permutated candidates (as plaintexts) that have been chosen by / —k — 1 honest
voters plus the voter under observation (inside the ideal voting protocol and independently
of &y,). Now, #ty, calculates the number x of ciphertexts 043‘—1 associated to the honest
voters in the input Cj_; of the (simulated) honest mix server M;. If k — (I —k) > 0,
then 7y, picks x — (I —k) candidates according to . Afterwards, 7y, has a list of &
plaintexts: / — k from the ideal functionality and x — (I — k) generated by itself. For each
of these plaintexts, 7y, generates a nonce and encrypts the vote-nonce pair under the
public keys pky, ..., pkjy1 as in the previous games. Afterwards, it adds them to the
output C;. The rest of 7y, is identical to 7y, (c). So, altogether Game 4 has the form
T1-i(e) || #var || Fuy || 7a- A

We prove that each game is computationally (or even perfectly) indistinguishable of
the previous one (if any). We will also prove that in the final game (Game 4) for every

49

adversary 4 the advantage to correctly guess the candidate the voter under observation
voted for is bounded by the privacy level of the ideal voting protocol for / — k honest
voters. This result in combination with the indistinguishability of all games allows us to
derive Theorem 2.

Claim. Game 0 and Game 1 are computationally indistinguishable, i.e., we have that
Pr((tmy (c) [ma)) = 1) = Pr[(Fes, (e) || ma)) = 1] (1

is negligible as a function of £.

Proof. We prove that, if m4 can distinguish between Game 0 and Game 1 for some
candidate c, then there exists an attacker 74 who can break the IND-CCA2-security of
the public-key encryption scheme by using 74 (see Definition 10). So, let us assume that
the difference (11) is non-negligible.

Let #ic(b) = #c(pkj,skj,b) be a challenger as in Definition 9, meaning that ¢ (b)
outputs a ciphertext of x;, under pk; when given two vectors (xo,x1). In what follows,
we will construct an attacker w4/ on the public-key encryption scheme with key pair
(pkj,skj) such that for the adversary m4 the process w4 || T || #c(b) is identical to
7H,(c) || ma, if b= 0, and to 7y, (¢) || ma, if b= 1.

The process m is defined to be identical to 7y, (c) until the encryption of the
ciphertexts ai- under the public key pk;. This step is modified in the following way.
The attacker 4 sends two vectors to the challenger #¢(b): the first vector contains the
ciphertexts a§ of all honest voters and the second vector contains a randomly chosen bit
string of length 7); at each position. Then, using the public key pk; the challenger #¢(b)
encrypts and returns the first vector, if » = 0, and the second vector, if b = 1. Afterwards
and until the end, 74/ follows the process 7y, (¢) with one exception explained below. In
particular this means that 74, encrypts the vector of ciphertexts it has received from the
challenger under the remaining public keys pk;_1,..., pko. Also for each honest voter
v; whose associated ciphertext o/, is in C;_1, my adds o, to its output C;. The only
difference between 7y, (c) and 74 at this point is that whenever 7y, (¢) would decrypt
a ciphertext z (where z is in the input to M; but it is not one of the logged a;_l), T
obtains the decryption of z by querying the decryption oracle of the challenger.

Observe that for b = 0, the ciphertext aj.il is an encryption of ozj» under pk; as in
Game 0, and for b = 1, the ciphertext aj;l is an encryption of a random bit string of
length 7; under pk; as in Game 1. Also note that in neither game, and hence, also not in
ma || mar || #ic(b) honest voters blame the honest mix server M; since if a"FI is in the

input of M;, M; adds aj. to its output. In particular, honest voters do not need to be able
to provide evidence for the misbehavior of M;, which in 74 || 74/ || 7c(b) they would not
be able to do as encryption is done by the challenger. Now, it is straightforward to see
that from the point of view of the adversary 74 the process 74 || mas || #ic(b) is identical
to Game 0, if » =0, and to Game 1, if b= 1.

By assumption, the adversary m4 can distinguish between Game 0 and Game 1.
Defining that 74/ outputs O, if w4 outputs 1, and 1, otherwise, the attacker 7, has a
non-negligible advantage in the IND-CCA2-security game with the challenger ¢ (D)
(see Definition 10). Therefore, the IND-CCAZ2-security of the public-key encryption

50

scheme is broken, in contradiction to the assumption that the public-key encryption
scheme is IND-CCA2-secure. Therefore, the claim follows. O

Claim. The adversary 7, is k-semi-honest in Game 1 (meaning that with overwhelming
probability a run of the system does not stop before C,, is published and there are at least
| — k vote-nonce pairs in C,,, chosen by honest voters).

Proof. By assumption, 74 is k-semi-honest in Game 0. Now, the claim follows imme-
diately from the proof of Claim F: one could modify 74/ in such a way that it checks
whether fy,’(is satisfied or not (which 74/ can do efficiently). O

Claim. The probability that in a run of the process 7y, (¢) || 7a, there are at least [—k
ciphertexts associated to the honest voters in the input C;_; of the (simulated) honest
mix server M; is overwhelming.

Proof. From Claim F we know that with overwhelming probability in a run of 7y, (¢) ||
w4 there are at least [— k vote-nonce pairs in C,, that have been chosen by different
honest voters. We will now show that the probability (over all possible runs of the process
7tg, (¢) || ma) that there are less than [— k ciphertexts associated to the honest voters in
the input C;_; of the (simulated) honest mix server M is negligible as a function of the
security parameter /.

Let r be an arbitrary run of the system 7, (¢) || w4 in which there are at least / — k vote-
nonce pairs of honest voters in C,, while there are less than / — k ciphertexts associated to
the honest voters in the input of the honest mix server C;_;. Then there exists an honest
voter 7, (or 7, (c)) whose associated ciphertext ozj-_ 1 isnot in C;_; while her vote-nonce
pair (m;,n;) is in the final output C,,. Since a;_l is not in C;_1, the process 7y, (c) does
not add O‘.i/‘ to its output C;. By the definition of Game 1, it is straightforward to see that
therefore, the adversary m4 does not receive any information about the vote-nonce pair
(m;,n;) throughout the whole run. That is, the run is independent of n;.

Let 7, be an arbitrary honest voter. We split up the set 2 of random bit strings used
to determine the runs of 7y, (c) || w4 into £2; which consists of all random coins used
to determine the nonce of #,, and {2/ which consists of the remaining random coins.
This means that {2 can be represented as 2; x 2. Now, let E; be the event that 043'—1 is
not in C;_; while the vote-nonce pair of #,, is in the final output C,, (recall that 74 is
k-semi-honest and thus C,,, is published).

Let r be arun in E; and let w € {2 be the random coins of this run. Let wyonce € £2; be
the random coins used to determine the nonce of #,, in r and w’ € {2/ be the remaining
random coins. This means that {Wyonce,w’) represents w as described above. Note that
by w’ up to and including the publication of the result, the view of the adversary is
completely determined and independent of wy,,,c.. Thus we have that

Pr(E; |] < 5. (12)

(Recall that n is the number of voters and ¢ is the size of the nonces/verification codes of

honest voters). Therefore, we know that
Prig]= Y PrlE o] -Prw]= Y %Pr W] :% (13)

w'es w'es]

51

holds true.

Now, let E be the event that there are less than [— k ciphertexts associated to the
honest voters in the input C;_; of the (simulated) honest mix server M; in the process
g, (¢) || ma. Let E' be the event that an adversary in a run of 7, (¢) || 7 is k-semi-honest.
Since the probability for E’ is overwhelming, it suffices to show that the probability of
ENE'is negligible. From what we have shown above, we can conclude that

! ! n-l
UEi] <Y rPriE]= > (14)

i=1 i=1

PrlENE'] =Pr

Hence, Pr[E N E’] is negligible. O

Claim. Game 1 and Game 2 are computationally indistinguishable, i.e., for each candi-
date ¢ we have that

Pr((a, (¢) || ma) ') = 1] = Pr{(ftm () || 7)) = 1] (15)
is negligible as a function of ¢.

Proof. This follows immediately from Claim F. O

Claim. Game 2 and Game 3 are perfectly indistinguishable, i.e., for each candidate ¢
we have that

Pr((#a, (c) || 7)) = 1] = Pr[(7m, (c) || ma)) = 1] =0 (16)
holds true.

Proof. The postponed creation of all 043- in Game 3 has no impact on the information the

adversary can derive throughout the game because the ciphertexts aé in Game 2 are not
output before the honest mixing phase. Therefore, the claim holds true. O

Claim. Game 3 and Game 4 are perfectly indistinguishable, i.e., for each candidate ¢
we have that

Pr((7m; (o) ||) = 1] = Pr[(7ii(c) || #var || #ay | 7a)) = 1)) =0 (A7)
holds true.

Proof. The only difference between Game 3 and Game 4 is the fact that in Game 4 [— k
honest choices are not generated by 7z, but by the ideal voting protocol. But this is done
in the same way. So the two games are essentially identical. O

Claim. For Game 4, we have that
Pr((#1—i(c) || Avar || #ay | wa) > 1] = Pr(F1_i(¢)) || Fvar || Ay || 7a)) = 1]
is bounded by §i¢ . for all candidates ¢ and ¢’ (¢, ¢’ # abstain).

Proof. This follows immediately from (6) for 7o = 7y, || 7a. O

From these claims, Theorem 2 follows immediately.

52

G IND-CCA2-secure public key encryption and EUF-CMA -secure
signatures

G.1 IND-CCA2 Encryption

Definition 7 (Public-key encryption schemes). A public-key encryption scheme con-
sists of a triple of algorithms (Gen, Enc,Dec), where

1. Gen, the key generation algorithm, is a probabilistic algorithm that takes a security
parameter ¢ and returns a pair (pk,sk) of matching public and secret keys.

2. Enc, the encryption algorithm, is a probabilistic algorithm that takes a public key
pk and a message x € {0,1}* to produce a ciphertext y.

3. Dec, the decryption algorithm, is a deterministic algorithm which takes a secret key
sk and a ciphertext y to produce either a message x € {0,1}* or a special symbol |
to indicate that the ciphertext was invalid.

We require that for all (pk,sk) which can be output by Gen(1%), for all x € {0,1}*, and
for all 'y that can be output by Encpi(x), we have that Decg (y) = x. We also require that
Gen, Enc and Dec can be computed in polynomial time.

Definition 8 (Encryption of vectors). Let (Gen, Enc, Dec) be a public-key encryption
scheme. Let x = (x1,...,x,) and y = (y1,...,yn) be vectors of entries in {0,1}*. We write

Encpi(x) = (Encp(x1), ..., Encpr(xn))
DECSk(y) = (Decsk(y])a "'aDeCSk(yn))

for every public key pk and every secret key sk.

Definition 9 (Challenger). Let (Gen, Enc,Dec) be a public-key encryption scheme. The
challenger C is a probabilistic polynomial-time algorithm that takes a bit b as well as a
key pair (pk,sk) and that serves two types of queries:

1. For a vector of messages y, the challenger returns the decryption of y, that is
Decg(y).

2. For a pair of vectors of messages (xo, x|) where both vectors have the same size and
all messages at the same position in the vectors have the same length, the challenger
encrypts X, under pk and returns the vector of ciphertexts, that is Enc i (xp).

Definition 10 (IND-CCA2-security). Let (Gen, Enc,Dec) be a public-key encryption
scheme with security parameter £ and let C be the challenger. Then the encryption scheme
(Gen, Enc,Dec) is IND-CCA2-secure, if for every polynomially bounded adversary A
who never submits decryption queries for (parts of) a vector of messages 'y previously
returned by a challenge query, we have that

Pr [(pk,sk) Gen(1');b/ + ACWPkSO (1€ pry:pf = 1}
—Pr [(pksk) = Gen(1°);b' <= ACOPRI (1, k)1’ = 0]

is a negligible function in £.

53

G.2 EUF-CMA Signatures

Definition 11 (Signature schemes). A digital signature scheme consists of a triple of
algorithms (Gen, Sig, Ver), where

1. Gen, the key generation algorithm, is a probabilistic algorithm that takes a security
parameter { and returns a pair (sk, pk) of matching secret and public keys.

2. Sig, the signing algorithm, is a (possibly) probabilistic algorithm that takes a private
key sk and a message x € {0,1}* to produce a signature o.

3. Ver, the verification algorithm, is a deterministic algorithm which takes a public key
pk, a message x € {0,1}* and a signature o to produce a boolean value.

We require that for all (sk, pk) which can be output by Gen(1%), for all x € {0,1}*, and
for all o that can be output by Sig . (x), we have that Verg(x,0) = true. We also require
that Gen, Sig and Ver can be computed in polynomial time.

Definition 12 (EUF-CMA-security). Let (Gen, Sig, Ver) be a signature scheme with se-
curity parameter (. Then the signature scheme is existentially unforgeable under adaptive
chosen-message attacks (EUF-CMA-secure) if for every probabilistic polynomial-time
algorithm A who has access to a signing oracle and who never outputs tuples (x,o) for
which x has previously been signed by the oracle, we have that

Pr | (sk, pk) < Gen(1%); (x,0) <—ASig5k<'>(lz,pk);Verpk(x,a) = true}

is negligible as a function in ¢.

54

