
More Efficient Oblivious Transfer Extensions∗

Gilad Asharov† Yehuda Lindell‡ Thomas Schneider§ Michael Zohner§

December 5, 2017

Abstract

Oblivious transfer (OT) is one of the most fundamental primitives in cryptography and is
widely used in protocols for secure two-party and multi-party computation. As secure com-
putation becomes more practical, the need for practical large scale oblivious transfer protocols
is becoming more evident. Oblivious transfer extensions are protocols that enable a relatively
small number of “base-OTs” to be utilized to compute a very large number of OTs at low cost.
In the semi-honest setting, Ishai et al. (CRYPTO 2003) presented an OT extension protocol for
which the cost of each OT (beyond the base-OTs) is just a few hash function operations. In the
malicious setting, Nielsen et al. (CRYPTO 2012) presented an efficient OT extension protocol
for the setting of malicious adversaries, that is secure in a random oracle model.

In this work we improve OT extensions with respect to communication complexity, compu-
tation complexity, and scalability in the semi-honest, covert, and malicious model. Furthermore,
we show how to modify our maliciously secure OT extension protocol to achieve security with re-
spect to a version of correlation robustness instead of the random oracle. We also provide specific
optimizations of OT extensions that are tailored to the use of OT in various secure computation
protocols such as Yao’s garbled circuits and the protocol of Goldreich-Micali-Wigderson, which
reduce the communication complexity even further. We experimentally verify the efficiency
gains of our protocols and optimizations.

Note (December 5, 2017): This version includes an important fix of the protocol for the case
of a corrupted malicious sender.

Keywords: Oblivious transfer extensions, concrete efficiency, secure computation

1 Introduction

In the setting of secure two-party computation, two parties P0 and P1 with respective inputs x
and y wish to compute a joint function f on their inputs without revealing anything but the

∗This paper is a combined and extended version of [ALSZ13] (ACM CCS 2013) and [ALSZ15] (Eurocrypt 2015).
†IBM T.J. Watson Research Center, NY. Some of the work was done while at the School of Computer Science

and Engineering, The Hebrew University of Jerusalem, Israel, and while at the Department of Computer Science,
Bar-Ilan University, Israel. gsasharo@us.ibm.com
‡Department of Computer Science, Bar-Ilan University, Israel. lindell@biu.ac.il
§Department of Computer Science, TU Darmstadt, Darmstadt, Germany.

{thomas.schneider,michael.zohner}@crisp-da.de

1

output f(x, y). This captures a large variety of tasks, including privacy-preserving data mining,
anonymous transactions, private database search, and many more.

Protocols for secure computation provide security in the presence of adversarial behavior. A
number of adversary models have been considered in the literature. The most common adversaries
are: passive or semi-honest adversaries who follow the protocol specification but attempt to learn
more than allowed by inspecting the protocol transcript, and active or malicious adversaries who
run any arbitrary strategy in an attempt to break the protocol. In both these cases, the security of a
protocol guarantees that nothing is learned by an adversary beyond its legitimate output. Another
notion is that of security in the presence of covert adversaries; in this case the adversary may follow
any arbitrary strategy, but is guaranteed to be caught with good probability if it attempts to cheat.
The ultimate goal in designing efficient protocols is to construct protocols that are secure against
strong (active or covert) adversaries while adding very little overhead compared to the passive
variant. Within this goal, optimizing the efficiency of protocols in the semi-honest model serves as
an important stepping stone. In our paper, we optimize protocols in the semi-honest model and
show how to achieve covert and malicious security at low additional cost.

Practical secure computation. Secure computation has been studied since the mid 1980s,
when powerful feasibility results demonstrated that any efficient function can be computed se-
curely [Yao86, GMW87]. However, until recently, the bulk of research on secure computation
was theoretical in nature. Indeed, many held the opinion that secure computation will never
be practical since carrying out cryptographic operations for every gate in a circuit computing
the function (which is the way many protocols work) will never be fast enough to be of use.
Due to many works that pushed secure computation further towards practical applications, e.g.,
[MOR03, MNPS04, FAZ05, BNP08, EFG+09, HEKM11, Mal11, Ker11, SK11, HFKV12, CHK+12,
NNOB12, NWI+13, BHKR13, DZ13, KSS13, DLT14, LOS14, DSZ15, FKOS15, BLN+15, LR15],
this conjecture has proven to be wrong and it is possible to carry out secure computation of com-
plex functions at speeds that five years ago would have been unconceivable, both in the semi-honest
model as well as in the malicious model. For example, in [KSS13] it was shown that a single AES
evaluation can be securely computed in 12 ms even with security against malicious adversaries.
This has applications to private database search and also to mitigating server breaches in the cloud
by sharing the decryption key for sensitive data between two servers and never revealing it (thereby
forcing an attacker to compromise the security of two servers instead of one). In addition, several
applications have a circuit size of several million up to billions of AND gates, which would have
until recently been thought impossible to evaluate securely. For instance, the Edit-Distance circuit
of [HEKM11] has a size of 1.29 billion AND gates. Hence, the underlying cryptographic operations
that are performed in secure computation protocols need to efficiently process large-scale circuits.

Oblivious transfer and extensions. In an oblivious transfer (OT) [Rab81, EGL85], a sender
with a pair of input strings (x0, x1) interacts with a receiver who inputs a choice bit r. The result
is that the receiver learns xr without learning anything about x1−r, while the sender learns nothing
about r. Oblivious transfer is an extremely powerful tool and the foundation for almost all efficient
protocols for secure computation. Notably, Yao’s garbled-circuits protocol [Yao86] requires OT for
every input bit of one party, and the GMW protocol [GMW87] requires OT for every AND gate of
the circuit. Accordingly, the efficient instantiation of OT is of crucial importance as is evident in
many recent works that focus on efficiency, e.g., [MNPS04, HKS+10, HCE11, HEKM11, HMEK11,
HEK12, KSS12, NNOB12, GKK+12, CHK+12, NNOB12, SZ13, LOS14, PSZ14, DLT14, DSZ15,
FKOS15, BLN+15, LR15]. The best known OT protocol in the semi-honest and malicious case is

2

that of [CO15], which achieves around 10,000 1-out-of-2 OTs per second using one thread. However,
if millions or even billions of oblivious transfers need to be carried out, this will become prohibitively
expensive. We give concrete examples for typical applications requiring a large number of OTs next:

Example 1.1 The AES circuit has ∼ 10,000 AND gates (cf. [NNOB12]) and requires 20,000
passively secure OTs when evaluated with GMW and ∼ 220 actively secure OTs when evaluated
with TinyOT (≥ 40 OTs (aBits) per AND gate [LOS14]).

Example 1.2 The PSI circuit (Sort-Compare-Shuffle) of [HEK12] has O(bn log n) AND gates and
for n = 65,536 elements with b = 32-bits the circuit has 225 AND gates and requires 226 passively
secure OTs when evaluated with GMW and ∼ 230 actively secure OTs when evaluated with TinyOT.

Example 1.3 The PSI protocol of [DCW13] needs 1.44kn OTs for both, the passively- and actively
secure versions of the protocol. For n = 1,000,000 elements and security parameter k = 128, this
amounts to ∼ 227 OTs (∼ 180 OTs per element).

To meet this large-scale demand of OTs, OT extensions [Bea96, IKNP03] can be used. An OT
extension protocol works by running a small number of base-OTs (say, 80 or 128) that are used as a
base for obtaining many OTs via the use of cheap symmetric cryptographic operations only. This is
conceptually similar to hybrid encryption where instead of encrypting a large message using RSA,
which would be too expensive, only a single RSA computation is carried out to encrypt a symmetric
key and then the long message is encrypted using symmetric operations only. Such an OT extension
can actually be achieved with extraordinary efficiency; specifically, the protocol of [IKNP03] requires
only three hash function computations on a single block per oblivious transfer (beyond the initial
base-OTs). For active adversaries, OT extensions are somewhat more expensive. Prior to this work,
the best known protocol for OT extensions with security against active adversaries was introduced
by [NNOB12], which added an overhead of approximately 8

3 (= 266%) to the passively secure OT
extension protocol of [IKNP03].

1.1 Our Contributions and Outline

In this paper, we present more efficient protocols for OT extensions in the semi-honest, covert,
and malicious model. Our improvements in the semi-honest model (§4) seem somewhat surprising
since the protocol of [IKNP03] sounds optimal given that only three hash function computations
are needed per transfer. Interestingly, our protocols do not lower the number of hash function
operations. However, we observe that significant cost is incurred due to other factors than the hash
function operations. We propose several optimizations that improve computation and communi-
cation and outline how to parallelize the semi-honest OT extension. We build on the efficiency
improvements of the semi-honest OT extension protocol of [IKNP03] and outline how to extend
the protocol to covert and malicious adversaries at a lower cost than the previously best malicious
secure OT extension protocol of [NNOB12] (§5). In short, our protocol improves the overhead that
comes with extending the passively secure OT extension protocol of [IKNP03] to malicious adver-
saries from 266% to 150%. Finally, we outline different OT flavors that are specifically designed
to be used in secure computation protocols and which reduce the communication and computation
even further (§6). We apply our optimizations to the OT extension implementation of [SZ13] (which

3

is based on [CHK+12]) and demonstrate the improvements by extensive experiments (§7).1 After
presenting related work in §3 and preliminaries in §2 our paper is structured as follows:

Faster semi-honest OT extensions §4. We present an improved version of the original OT
extension protocol of [IKNP03] with reduced communication and computation complexity. Fur-
thermore, we demonstrate how the OT extension protocol can be processed in independent blocks,
allowing OT extension to be parallelized and yielding a much faster runtime (§4.1). In addition,
we show how to implement the matrix transpose operation using a cache-efficient algorithm that
operates on multiple entries at once (§4.2); this significantly reduces the run-time of the protocol
to 41% as can be seen in the LAN experiments in Table 1. Finally, we show how to reduce the
communication from the receiver to the sender to 50% (§4.3). This is of great importance since
local computations of the OT extension protocol are so fast that the communication is often the
bottleneck, especially when running the protocol over the Internet or even wireless networks (cf.
WAN results in Table 1 and Figure 2).

Faster covert and malicious OT extensions §5. We present our improved malicious OT exten-
sion protocol which improves on the previously best malicious OT extension protocol of [NNOB12].
We first present the basic protocol (§5.1) and prove its security (§5.2). The basic protocol adds very
low communication overhead to the semi-honest version but incurs a high computation overhead.
We show how to reduce the computation at the cost of increased communication, which results
in better overall efficiency (§5.3). The resulting protocol decreases the communication overhead
for obtaining actively secure OT extension from 266% for [NNOB12] to 150%. We then outline
how to modify the protocol to replace the random oracle with a weaker correlation robustness
assumption (§5.4). Finally, we show how to modify our protocol to achieve covert security (§5.5).

Extended OT functionality §6. Our improved protocols can be used in any setting that regular
OT can be used. However, with a mind on the application of secure computation, we further
optimize the protocol by taking into account its use in secure computation in §6. We outline
four OT flavors that are specifically designed to be used in secure computation protocols and
which reduce the communication and computation even further: Correlated OT, Sender Random
OT, Receiver Random OT, and Random OT. Correlated OT (C-OT, §6.1) is suitable for secure
computation protocols that require varying correlated inputs, such as Yao’s garbled circuits protocol
with the free-XOR technique [Yao86, KS08] or the arithmetic multiplication routine of [DSZ15].
Sender Random OT (SR-OT, §6.2) and Receiver Random OT (RR-OT, §6.3) are suitable where
the input of the sender (or receiver) can be random but the input of the receiver (sender) needs
to be chosen. Finally, Random OT (R-OT §6.4) is a combination of Sender Random and Receiver
Random OT and can be used where the inputs of sender and receiver can be random, such as
GMW with multiplication triples [GMW87, SZ13] (cf. §2.7). In all cases, the communication from
the sender to the receiver is reduced to 50% (or even less) of the original protocol of [IKNP03].

Experimental evaluation §7. We experimentally verify the performance improvements of our
proposed optimizations for OT extension and special purpose OT functionalities in a LAN and a
WAN setting. A summary of our results for 224 random OT extensions on 1-bit strings using 4
threads is given in Table 1. Overall, our optimizations improve the run-time and communication of
the passively secure OT extension protocol of [IKNP03] by factor 2-3 and 2, respectively, and the
run-time and communication for actively secure OT extension by factor 1.3-1.7 and 1.7, respectively.

1Our implementation is available online at http://encrypto.de/code/OTExtension.

4

http://encrypto.de/code/OTExtension

Prot.
Comm. Run-Time [s]

Base-OTs Security
[MB] LAN WAN

Passive
[IKNP03] 508 9.2 39.9 128 CRF
[KK13] 154 7.8 20.8 256 RO
This (§4) 254 3.8 18.8 128 CRF

Covert
This (§5.5) 330 4.5 26.1 166 CRF / RO

Active
[Lar14] 196,688∗ - - 323 CRF
[NNOB12] 682 9.1 50.4 342 RO
This (§5) 378 7.3 30.5 190 CRF / RO
[KOS15] 256* - - 128 RO

Table 1: Empirical communication and run-time for 224 random OT extensions on 1-bit strings
with κ = 128 bit security evaluated using 4 threads in a LAN and WAN setting (cf. §7). The
security assumption is given as correlation robust function assumption (CRF) or random oracle
assumption (RO) cf. §2.2. Numbers with * are estimated.

1.2 Concurrent and Independent Related Work

Parallel to and independently of our work on passively secure OT extension, [KK13] introduced
an efficient 1-out-of-N OT extension protocol and outlined the same optimization for reducing the
communication from the receiver to the sender by 50% that we propose in §4.3. When transferring
short strings, their 1-out-of-N OT extension protocol can be broken down into log2(N) 1-out-of-2
OTs that require less communication than log2(N) executions of our 1-out-of-2 OT extension
protocol (cf. Table 1). We implement and compare their protocol on 1-out-of-2 OT on 1 bit in §7.4.

Most recently, a new actively secure OT extension protocol has been introduced in [KOS15]
which works in the random oracle model and achieves nearly the same communication and compu-
tation overhead as the passively secure protocol of [IKNP03]. Their protocol is conceptually similar
to ours (and to that of [NNOB12]) but performs the checks on the base-OTs in parallel instead
of checking individual pairs. Furthermore, their check routine can be implemented very efficiently
using the AES new instructions (AES-NI), resulting in very little computational overhead over the
passively secure variant. The authors prove that, if one uses κ base-OTs, the protocol provides 2κ−c

computational security against a malicious receiver who is able to learn c bits with probability at
most 2−c where κ is the computational security parameter. In contrast to the work of [KOS15], we
prove that our protocol is secure in the weaker, min-entropy correlation-robust model (cf. §5.4).

1.3 Extensions over Previous Work

This work combines and extends our works previously published at ACM CCS 2013 [ALSZ13] and
Eurocrypt 2015 [ALSZ15]. We have made the following improvements over these versions:

• §5: Detailed proof of the malicious OT extension and parameter estimation (§5.2).

• §6: Extended special purpose OT functionalities in particular Receiver Random OT for
GMW (§6.3) and formal proofs of security.

5

• §7: Extended experiments, in particular comparison with the passively-secure 1-out-of-N OT
extension of [KK13] and using parallelism for actively secure OT extension (§7.4), and the
k-min entropy correlation (§7.5).

2 Preliminaries

In the following we give preliminaries for our paper. We describe our security paramters (§2.1)
and definitions (§2.2) and give an overview of oblivious transfer (§2.3), oblivious transfer ex-
tensions (§2.4), Yao’s garbled circuits protocol (§2.5), the GMW protocol of Goldreich-Micali-
Wigderson (§2.6), and outline how to evaluate AND gates in GMW using oblivious transfer (§2.7).

2.1 Security Parameters

Our protocols use a computational (symmetric) security parameter κ and a statistical security
parameter ρ. Asymptotically, this means that our protocols are secure for any adversary run-
ning in time poly(κ), except with probability µ(κ) + 2−ρ (a formal definition follows and is based
on [LP11]). In our experiments we set κ = 128 and ρ = 40, which is considered to be secure
beyond 2030.2 Table 2 lists usage times (time frames) for different values of the symmetric security
parameter κ (SYM) and corresponding field sizes for elliptic curve cryptography (ECC) as recom-
mended by NIST [NIS12]. For ECC we use Koblitz curves which had the best performance in our
experiments (cf. [EFLL12]).

Security (Time Frames) SYM ECC

Short (legacy) 80 K-163

Medium (< 2030) 112 K-243

Long (> 2030) 128 K-283

Table 2: Security parameters and recommended key sizes.

2.2 Definitions

We let κ denote the security parameter and let ρ denote the statistical security parameter. For a
set A, x ∈R A denotes that the element x is chosen uniformly at random from A. We first define
indistinguishability respectively to both security and statistical security parameter, as in [LP11].
A distribution ensemble X = {X(a, κ, ρ)}κ,ρ∈N,a∈{0,1}κ is an infinite sequence of random variables.

Two distribution ensembles X,Y are (κ, ρ)-computationally indistinguishable, denoted X
κ,ρ
≡ Y if

there exists a constant 0 < c ≤ 1 such that for every nonuniform polynomial time distinguisher D,
every ρ ∈ N, every polynomial p(·) and all large enough κ ∈ N it holds that for every a ∈ {0, 1}∗:

|Pr [D (X(a, κ, ρ), a, κ, ρ) = 1)]− Pr [D (Y (a, κ, ρ), a, κ, ρ)]| < 1

p(κ)
+

1

2c·ρ
(1)

In protocols where we do not use a statistical security parameter (as the semi-honest protocols in
this paper), we use the standard computational indistinguishability definition, which is a special

2According to the summary of cryptographic key length recommendations at http://keylength.com.

6

http://keylength.com

case of the definition above. Specifically, the ensembles X and Y are indexed by a and κ only,
and we omit the quantification over ρ and the term 1

2c·ρ in Eq. (1). We denote this (standard)

indistinguishability by X
c≡ Y .

Correlation Robust Function. We recall the standard definition of a correlation robust func-
tion from [IKNP03], as well as a stronger version of the assumption. Let U` denote the uniform
distribution over strings of length `.

Definition 2.1 (Correlation Robustness) An efficiently computable function H : {0, 1}κ →
{0, 1}n is correlation robust if it holds that:

{t1, . . . , tm, H(t1 ⊕ s), . . . ,H(tm ⊕ s)} c≡ {Um·κ+m·n}

where t1, . . . , tm, s ∈ {0, 1}κ are uniformly and independently distributed. H is strongly correlation
robust if for every t1, . . . , tm ∈ {0, 1}κ it holds that:

{H(t1 ⊕ s), . . . ,H(tm ⊕ s)} c≡ {Um·n}

where s ∈ {0, 1}κ is uniform.

Secure Two-Party Computation. We refer the reader to [Gol04, Chap. 7] and [Can00] for
the definitions of security for two-party computation in the presence of semi-honest and malicious
adversaries. In the semi-honest we require the standard computational-indistinguishability. For the
malicious case, we require (κ, ρ)-indistinguishability between the ideal and the real distributions,
rather than just regular computational indistinguishability. We also consider the model of covert
adversaries, and refer the reader to [AL10] for appropriate definitions.

2.3 Oblivious Transfer

Oblivious transfer (OT) was first introduced by Rabin [Rab81] as a function where a receiver receives
a message, sent by a sender, with probability 1/2, while the sender remains oblivious whether the
message was received. It was later re-defined to the 1-out-of-2 OT functionality more commonly
used today by [EGL85], where the sender inputs two messages (x0, x1) and the receiver inputs a
choice bit r and obliviously receives xr without learning any information about x1−r. Formally,
the 1-out-of-2 OT functionality on n-bit strings is defined as OTn((x0, x1), r) = (λ, xr) where λ
denotes the empty string and x0, x1 ∈ {0, 1}n. In this paper we focus on the general (and most
applicable) functionality, which is equivalent to m invocations of the 1-out-of-2 OT functionality
on n-bit strings. That is, the sender inputs m pairs of n-bit strings (x0

j , x
1
j) for 1 ≤ j ≤ m and the

receiver inputs m selection bits r = (r1, . . . , rm). The output of the receiver is (xr11 , . . . , x
rm
m) while

the sender has no output. We denote this functionality as m × OTn and call the sender PS or P0

and the receiver PR or P1.
Several protocols for OT based on different cryptographic assumptions and attacker models

were introduced. Most notable are the passively secure OT protocol of [NP01] and the actively
secure OT protocols of [PVW08] and [CO15], which are among the most efficient today. However,
the impossibility result of [IR88] showed that OT protocols require costly asymmetric cryptography,
which greatly limits their efficiency.

7

2.4 OT Extension

In his seminal work, Beaver [Bea96] introduced OT extension protocols, which extend few costly
base-OTs using symmetric cryptography only. While the first construction of [Bea96] was inefficient
and mostly of theoretical interest, the protocol of [IKNP03] showed that OT can be extended
efficiently and with very little overhead. We give the semi-honest secure OT extension protocol
of [IKNP03] in Protocol 1.

PROTOCOL 1 (Semi-honest secure OT extension protocol of [IKNP03])

• Input of PS: m pairs (x0
j , x

1
j) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m selection bits r = (r1, . . . , rm).

• Common Input: Symmetric security parameter κ and number of base-OTs ` = κ.

• Oracles and cryptographic primitives: The parties have an oracle access to the ` × OTκ
functionality and use a pseudorandom generator G : {0, 1}κ → {0, 1}m and a correlation robust-
function H : [m]× {0, 1}` → {0, 1}n (see Def. 2.1).

1. Initial OT Phase:

(a) PS initializes a random vector s = (s1, . . . , s`) ∈ {0, 1}` and PR chooses ` pairs of seeds k0
i ,k

1
i

each of size κ.

(b) The parties invoke the ` × OTκ-oracle, where PS acts as the receiver with input s and PR
acts as the sender with inputs (k0

i ,k
1
i) for every 1 ≤ i ≤ `.

Let T = [t1| . . . |t`] be a random m × ` bit matrix that is generated by PR where its ith column
is ti for 1 ≤ i ≤ `. Let tj denote the jth row of T for 1 ≤ j ≤ m.

2. OT Extension Phase:

(a) PR computes u(i,0) = ti ⊕G(k0
i) and u(i,1) = ti ⊕G(k1

i)⊕ r, and sends (ui,0,ui,1) to PS for
every 1 ≤ i ≤ `.

(b) For every 1 ≤ i ≤ `, PS defines qi = u(i,si) ⊕G(ksii). (Note that qi = (si · r)⊕ ti.)

(c) Let Q = [q1| . . . |q`] denote the m × ` bit matrix where its ith column is qi. Let qj denote
the jth row of the matrix Q. (Note that qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .)

(d) PS sends (y0
j , y

1
j) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕H(j,qj) and y1
j = x1

j ⊕H(j,qj ⊕ s)

(e) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

3. Output: PR outputs (x1, . . . , xm); PS has no output.

2.5 Yao’s Garbled Circuits Protocol

Yao’s garbled circuits protocol [Yao86] allows two parties to securely compute an arbitrary function
that is represented as Boolean circuit. The sender PS encrypts the Boolean gates of the circuit
using symmetric keys and sends the encrypted function together with the keys that correspond to
his input bits to the receiver PR. PR then uses a m × OTκ to obliviously obtain the keys that
correspond to his m input bits and evaluates the encrypted function by decrypting it gate by gate.
To obtain the output, PR sends the resulting output keys to PS or PS provides a mapping from
keys to output bits.

8

2.6 The GMW Protocol

The protocol of Goldreich, Micali, and Wigderson (GMW) [GMW87] also represents the function to
be computed as a Boolean circuit. Both parties secret-share their inputs using the XOR operation
and evaluate the Boolean circuit as follows. An XOR gate is computed by locally XORing the shares
while an AND gate is evaluated interactively with the help of a multiplication triple [Bea91] which
can be precomputed by two random 1-out-of-2 OTs on bits (cf. §2.7). To reconstruct the outputs,
the parties exchange their output shares. The performance of GMW depends on the number of OTs
and on the depth of the evaluated circuit, since the evaluation of AND gates requires interaction.

2.7 GMW with Random 1-out-of-2 OTs

An AND gate in the GMW protocol can be computed efficiently using the multiplication triple
functionality [Bea91], denoted as fmult:

fmult(λ, λ) = ((a0, b0, c0), (a1, b1, c1)) ∈R {0, 1}6 s.t. c0 ⊕ c1 = (a0 ⊕ a1)(b0 ⊕ b1) ,

where λ denotes the empty string.
In order to precompute the multiplication triples, previous works suggest to use 1-out-of-4 bit

OT [CHK+12, SZ13]. In the following, we present a different approach for generating multiplication
triples using two random 1-out-of-2 OTs on bits (R-OT). The R-OT functionality is exactly the
same as OT, except that the sender gets two random messages (x0, x1) and the receiver gets a
random choice-bit a and xa as output. Later in §6.4, we will show that R-OT can be extended
more efficiently than OT. In comparison to 1-out-of-4 bit OTs, using two R-OTs only slightly
increases the computation complexity (one additional evaluation of G and H and two additional
matrix transpositions), but reduces the communication complexity by a factor of 2. Alternatively
one could use the 1-out-of-N OT from [KK13] and break it down to 1-out-of-4 bit OT, which again
reduces communication at the cost of increased computation (cf. §7.4).

In order to generate a multiplication triple, we first introduce the fab functionality that is
implemented in Protocol 2 using R-OT. The fab functionality is defined as follows:

fab(λ, λ) = ((b, v), (a, u)) ∈R {0, 1}4 s.t. ab = u⊕ v .

The implementation of this functionality is as follows.

PROTOCOL 2 (Implementing fab in the R-OT hybrid model)

1: PS and PR perform a R-OT with PS as sender and PR as receiver.
PS obtains bits x0, x1 and PR obtains random choice bit a and xa as output.

2: PR sets u = xa; PS sets b = x0 ⊕ x1 and v = x0.
[Note that ab = u⊕ v as ab = a(x0 ⊕ x1) = (a(x0 ⊕ x1)⊕ x0)⊕ x0 = xa ⊕ x0 = u⊕ v.]

3: PR outputs (a, u) and PS outputs (b, v).

Note that in Protocol 2, the parties do not send any messages, they just invoke the R-OT
functionality and “translate” its output. The security of this protocol is shown via the following
argument. There exists, in fact, a bijective function between fab and the R-OT functionalities,
and therefore the security of the two is equivalent both in the presence of a semi-honest adversary.
Protocol 2 is in fact a transformation from R-OT to fab. A transformation from fab to R-OT can
be shown as follows: Given (a, u), the receiver just outputs them both. Given (b, v), the receiver

9

outputs (v, b ⊕ v). Since these two functionalities are equivalent, a secure protocol for computing
R-OT implies secure protocol for fab, and a secure protocol for fab implies secure protocol for
R-OT.

We are now ready to implement the fmult functionality in the fab-hybrid model:

PROTOCOL 3 (Implementing fmult in the fab-hybrid model)

1: The parties invoke the fab functionality where P0 obtains (b0, v0) and P1 obtains (a1, u1). Note that
a1b0 = u1 ⊕ v0.

2: The parties invoke the fab functionality where P0 obtains (a0, u0) and P1 obtains (b1, v1). Note that
a0b1 = u0 ⊕ v1.

3: Each party outputs ci = aibi ⊕ ui ⊕ vi, and outputs (ai, bi, ci).

Claim 2.2 Protocol 3 securely computes the fmult-functionality in the fab-hybrid model, both in
presence of a static (probabilistic polynomial time) semi-honest adversary.

Proof Sketch: Regarding correctness, note that:

c0 ⊕ c1 = (a0b0 ⊕ u0 ⊕ v0)⊕ (a1b1 ⊕ u1 ⊕ v1) = a0b0 ⊕ (u0 ⊕ v1)⊕ (u1 ⊕ v0)⊕ a1b1

= a0b0 ⊕ a0b1 ⊕ a1b0 ⊕ a1b1 = (a0 ⊕ a1)(b0 ⊕ b1) .

Regarding simulation, assume that P0 is corrupted. The simulator receives as input (a0, b0, c0, v0)
and has to produce the view of the corrupted party, i.e., the messages (b0, v0) and (a0, u0). It sets
u0 = c0 ⊕ a0b0 ⊕ v0, and thus the view is a deterministic function of the output of P0 (which is the
input of the simulator). The simulation is perfect. The case of corrupted P1 is shown analogously.

3 Related Work

In this section, we review related work on semi-honest OT extension (§3.1) and malicious OT
extension (§3.2).

3.1 Semi-Honest OT Extension

In the semi-honest model, the protocol of [IKNP03] was implemented by the FastGC frame-
work [HEKM11]. In [HS13], the memory footprint of the OT extension implementation in [HEKM11]
was improved by splitting the OT extension protocol sequentially into multiple rounds and speedups
were obtained by instantiating the pseudorandom generator with AES instead of SHA-1. In [KK13],
a 1-out-of-N OT extension protocol was introduced that is based on the OT extension protocol
of [IKNP03] and, for 1-out-of-2 OT on short strings, achieves sub-linear communication in the
number of OTs. In particular, for 1-out-of-2 OT on 1-bit strings, their protocol improves commu-
nication compared to [IKNP03] by factor 1.6. This improvement in communication comes with
an increased cost in computation, since the number of evaluations of the random oracle H for the
sender is increased from 2 log2(N) to N . In §7.4 we compare our protocols to [KK13] for 1-out-of-2
OT on 1-bit strings in order to evaluate this computation / communication trade-off. However, we
would like to point out that our work is orthogonal to theirs, since our OT protocols maintain their

10

efficiency when obliviously transferring long strings in a 1-out-of-2 OT while their work achieves
better efficiency when performing 1-out-of-N OT.

The above works all consider the concrete efficiency of OT extensions. The theoretical feasi-
bility of OT extensions was established in [Bea96], and further theoretical foundations were laid
in [LZ13]. [IKOS08] introduced a non-black-box technique for extending OTs with asymptotic
constant computation / communication overhead. Their protocol assumes the existence of a poly-
nomial stretch pseudo-random generator in NC0, i.e., the set of functions that can be computed by
a constant depth circuit with bounded fan-in where each output bit depends on a constant number
of input bits. The high level idea of the protocol is to use the PRG in the scheme for extending
OTs of [Bea96]. However, their scheme is extremely costly in concrete terms and the security of
the PRG in NC0 requires non-standard security assumptions.

3.2 Malicious OT Extension

Due to its importance, a number of previous works have tackled the question of OT extensions
with security for malicious/active adversaries. There exist several approaches for achieving security
against malicious adversaries for OT extensions. All of the known constructions build on the semi-
honest protocol of [IKNP03], and add consistency checks of different types to the OT extension
protocol, to ensure that the receiver sent consistent values. (Note that in [IKNP03], the sender
cannot cheat and so it is only necessary to enforce honest behavior for the receiver.)

The first actively secure version of OT extension used a cut-and-choose technique and was
already given in [IKNP03]. This cut-and-choose technique achieves a security of 2−ρ by performing ρ
parallel evaluations of the basic OT extension protocol.

This was improved on by [Nie07, HIKN08], who show that active security can be achieved at a
much lower cost. Their approach works in the random oracle model and ensures security against
a malicious receiver by adding a low-cost check per extended OT, which uses the uncertainty of
the receiver in the choice bit of the sender. As a result, a malicious receiver who wants to learn p
choice bits of the sender risks being caught with probability 2−p. However, this measure allows a
malicious sender to learn information about the receiver’s choice bits. They prevent this attack by
combining S ∈ {2, 3, 4} OTs and ensuring the security of one OT by sacrificing the remaining S−1
OTs. Hence, their approach adds an overhead of at least S ≥ 2 compared to the semi-honest OT
extension protocol of [IKNP03] for a reasonable number of OTs (with S = 2 and approximately
107 OTs, they achieve security except with probability 2−25, cf. [Nie07]).

An alternative approach for achieving actively secure OT extension was given in [NNOB12].
Their approach also works in the random oracle model but, instead of performing checks per ex-
tended OT as in [Nie07, HIKN08], they perform consistency checks per base-OT. Their consistency
check method involves hashing the strings that are transferred in the base-OTs and is highly ef-
ficient. In their approach, they ensure the security of a base-OT by sacrificing another base-OT,
which adds an overhead of factor 2. In addition, a malicious receiver is able to learn p choice
bits of the sender in the base-OTs with probability 2−p. [NNOB12] shows that this leakage can
be tolerated by increasing the number of base-OTs from κ to d8

3κe. The [NNOB12] protocol has
been optimized and implemented on a GPU in [FN13]. We give a full description of the [NNOB12]
protocol with optimizations of [FN13] in Appendix §A.

An approach for achieving actively secure OT extension that works in the standard model
has recently been introduced in [Lar14]. Their approach achieves less overhead in the number of
base-OTs at the expense of substantially more communication during the check routine (cf. Ta-

11

ble 1 on page 5) and is therefore considerably less efficient. Nevertheless, we point out that the
work of [Lar14] is of independent interest since it is based on the original correlation robustness
assumption only.

Since it is the previous best, we compare our protocol to that of [NNOB12]. Our approach
reduces the number of base-OTs by removing the “sacrifice” step of [NNOB12] (where one out
of every 2 base-OTs are opened) but increases the workload in the consistency check routine.
Indeed, we obtain an additive factor of a statistical security parameter, instead of the multiplicative
increase of [NNOB12]. This can be seen as a trade-off between reducing communication through
fewer base-OTs while increasing computation through more work in the consistency check routine.
We empirically show that this results in a more efficient actively secure OT extension protocol,
which only has 60%− 90% more time and 50% more communication than the passively secure OT
extension protocol of [IKNP03] in the LAN- and WAN setting compared to 90%− 175% more time
and 166% more communication for [NNOB12] (cf. Table 1).

In [IPS08] it was shown how to achieve actively secure OT extension with constant overhead
from the passively secure protocol of [IKNP03]. Their approach involves the sender and receiver
“simulating” additional parties and then running an outer secure computation protocol with secu-
rity against honest majority. In addition, they show that their transformation can make black-box
use of any passively secure OT protocol. Overall, this approach improves on the asymptotic com-
munication of [HIKN08] but the exact constants involved in this approach have not been analyzed.

4 Faster Semi-Honest OT

In the following we describe algorithmic optimizations that improve the scalability and compu-
tational complexity of OT extension protocols. We identified computational bottlenecks in OT
extension by micro-benchmarking the 1-out-of-2 OT extension implementation of [SZ13].3 We
found that the combined computation time of PS and PR was mostly spent on two operations:
the matrix transposition (61%) and the evaluation of H, implemented with SHA-256 (32%). (The
remaining time was mostly spent on XOR operations (5%) and the evaluation of G, implemented
with AES (2%)). Furthermore, for networks with low bandwidth, the communication of OT quickly
became the bottleneck. To speed up OT extension, we propose to use parallelization (§4.1), an
efficient algorithm for bit-matrix transposition (§4.2), and a protocol optimization that allows to
reduce the communication from PR to PS by half (§4.3). Note that these implementation optimiza-
tions are of general nature and can be applied to our, but also to other OT extension protocols
with security against stronger active adversaries.

4.1 Blockwise Parallelized OT Extension

Previous OT extension implementations [CHK+12, SZ13] improved the performance of OT ex-
tension by using a vertical pipelining approach, i.e., one thread is associated to each step of the
protocol: the first thread evaluates the pseudorandom generator G and the second thread evaluates
the correlation robust function H (cf. §2.4). However, as evaluation of G is faster than evaluation
of H, the workload between the two threads is distributed unequally, causing idle time for the first
thread. Additionally, this method for pipelining is designed to run exactly two threads and thus

3Note that the implementation in [SZ13] performs 1-out-of-4 OT, but we adapted their implementation since our
protocol optimizations target 1-out-of-2 OT extension.

12

cannot easily be scaled to a larger number of threads.
As observed in [IKNP03, HS13], a large number of OT extensions can be performed by sequen-
tially running the OT extension protocol on blocks of fixed size. This reduces the total memory
consumption at the expense of more communication rounds.
We propose to use a horizontal pipelining approach that splits the matrices processed in the OT
extension protocol into independent blocks that can be processed in parallel using multiple threads
with equal workload, i.e., each of the N threads evaluates the OT extension protocol for m

N inputs
in parallel. Each thread uses a separate socket to communicate with its counterpart on the other
party, s.t. network scheduling is done by the operating system.

4.2 Efficient Bit-Matrix Transposition

The computational complexity of cryptographic protocols is often measured by counting the num-
ber of invocations of cryptographic primitives, since their evaluation often dominates the overall
run-time. However, non-cryptographic operations can also have a high impact on the overall run-
time of executions although they might seem insignificant in the protocol description. Matrix
transposition is an example for such an operation. It is required during the OT extension protocol
to transpose the m× ` bit-matrix T (cf. §2.4), which is created column-wise but hashed row-wise.
Although transposition is a seemingly trivial operation, it has to be performed individually for each
entry in T , making it a very costly operation.
We propose to efficiently implement the matrix transposition using Eklundh’s algorithm [Ekl72],
which uses a divide-and-conquer approach to recursively swap elements of adjacent rows (cf. Fig-
ure 1). This decreases the number of swap operations for transposing a n×n matrix from O(n2) to
O(n log2 n). Additionally, since we process a bit-matrix, we can perform multiple swap operations
in parallel by loading multiple bits into one register. Thereby, we again reduce the number of swap
operations from O(n log2 n) to O(dnr e log2 n), where r is the register size of the CPU (r = 64 for
the machines used in our experiments). Jumping ahead to the evaluation in §7.2, this reduced the
total time for the matrix transposition by approximately a factor of 22 from 17.4 s to 0.8 s per
party for 224 OTs and reduced the total time for the OTs from 30.4 s to 13.2 s when using a single
thread.

10 11 129

14 15 1613

6 7 85

2 3 41

13 11 159

14 12 1610

6 4 82

5 3 71

7 11 153

8 12 164

6 10 142

5 9 131

Figure 1: Efficient matrix transposition of a 4× 4 matrix using Eklundh’s algorithm.

4.3 Optimized Semi-Honest OT Extension

In the following, we optimize the m×OTn extension protocol of [IKNP03], described in §2.4. Note
that this optimization was independently outlined in [KK13]. Recall, that in the first step of
the protocol in [IKNP03], PR chooses a huge m × ` matrix T = [t1| . . . |tκ] while PS waits idly
(for the semi-honest OT extension protocol we can set ` = κ; for the malicious OT extension

13

protocol, ` needs to be increased). The parties then engage in a `×OTm protocol, where the
inputs of the receiver are (ti, ti⊕ r) where r is its input in the outer m×OTn protocol (m selection
bits). After the OT, PS holds ti ⊕ (si · r) for every 1 ≤ i ≤ `. As described in the appendices
of [IKNP03, HMEK11], the protocol can be modified such that PR only needs to choose two small
` × κ matrices K0 = [k0

1| . . . |k0
`] and K1 = [k1

1| . . . |k1
`] of seeds. These seeds are used as input to

`×OTκ; specifically PR’s input as sender in the i-th OT is (k0
i ,k

1
i) and, as in [IKNP03], the input

of PS is si. To transfer the m-bit tuple (ti, ti ⊕ r) in the i-th OT, PR expands k0
i and k1

i using
a pseudorandom generator G, sends (u(i,0),u(i,1)) = (G(k0

i) ⊕ ti, G(k1
i) ⊕ ti ⊕ r), and PS recovers

G(ksii)⊕ u(i,si).
Our main observation is that, instead of choosing ti randomly, we can set ti = G(k0

i). Now, PR
needs to send only one m-bit element ui = G(k0

i)⊕G(k1
i)⊕ r to PS (whereas in previous protocols

of [IKNP03, HMEK11] two m-bit elements were sent). Observe that if PS had input si = 0 in the
i-th OT, then it can just define its output qi to be G(k0

i) = G(ksii). In contrast, if PS had input
si = 1 in the i-th OT, then it can define its output qi to be G(k1

i) ⊕ ui = G(ksii) ⊕ ui. Since
ui = G(k0

i) ⊕ G(k1
i) ⊕ r, we have that G(k1

i) ⊕ ui = G(k0
i) ⊕ r = ti ⊕ r, as required. The full

description of our protocol is given in Protocol 4. This optimization is significant in applications of
m×OTn extension where m is very large and n is short, such as in GMW. In typical use-cases for
GMW, m is in the size of several millions to a billion (cf. examples in §1), while n is one. Thereby,
the communication complexity of GMW is almost reduced by half.
In addition, observe that the initial OT phase in Protocol 4 is completely independent of the actual
inputs of the parties. Thus, the parties can compute the initial base-OTs before their inputs are
determined.
Finally, another problem that arises in the original protocol of [IKNP03] is that the entire m × `
matrix is transmitted together and processed. This means that the number of OTs to be obtained
must be predetermined and, if m is very large, this results in considerable latency as well as memory
management issues. As in [HS13], splitting the matrix into smaller blocks that are processed in a
pipelined fashion reduces latency, computation time, and avoids memory management problems.
In addition, it is possible to continually extend OTs, with no a priori bound on m. This is very
useful in a secure computation setting, where parties may interact many times together with no a
priori bound. We state and prove security of our optimizations next.

Theorem 4.1 Assuming that G is a pseudorandom generator and H is a correlation-robust func-
tion (as in Definition 2.1), Protocol 4 correctly and privately computes the m×OTn-functionality
in the presence of semi-honest adversaries, in the `×OTκ-hybrid model.

Proof: We first show that the protocol implements the m×OTn-functionality. Then, we prove
that the protocol is secure where the sender is corrupted, and finally that it is secure when the
receiver is corrupted.

Correctness. We show that the output of the receiver is (xr11 , . . . , x
rm
m) in an execution of the

protocol where the inputs of the sender are ((x0
1, x

1
1), . . . , (x0

m, x
1
m)) and the input of the receiver is

r = (r1, . . . , rm). We have two cases:

1. rj = 0: Recall that qj = (rj · s)⊕ tj , and so qj = tj . Thus:

xj = y0
j ⊕H(j, tj) = x0

j ⊕H(j,qj)⊕H(j, tj)

= x0
j ⊕H(j, tj)⊕H(j, tj) = x0

j

14

PROTOCOL 4 (Optimized semi-honest secure OT extension protocol)

• Input of PS: m pairs (x0
j , x

1
j) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m selection bits r = (r1, . . . , rm).

• Common Input: Symmetric security parameter κ and number of base-OTs ` = κ.

• Oracles and cryptographic primitives: The parties have an oracle access to the ` × OTκ
functionality and use a pseudorandom generator G : {0, 1}κ → {0, 1}m and a correlation robust-
function H : [m]× {0, 1}` → {0, 1}n (see Def. 2.1).

1. Initial OT Phase:

(a) PS initializes a random vector s = (s1, . . . , s`) ∈ {0, 1}` and PR chooses ` pairs of seeds k0
i ,k

1
i

each of size κ.

(b) The parties invoke the ` × OTκ-oracle, where PS acts as the receiver with input s and PR
acts as the sender with inputs (k0

i ,k
1
i) for every 1 ≤ i ≤ `.

For every 1 ≤ i ≤ `, let ti = G(k0
i). Let T = [t1| . . . |t`] denote the m× ` bit matrix where its ith

column is ti for 1 ≤ i ≤ `. Let tj denote the jth row of T for 1 ≤ j ≤ m.

2. OT Extension Phasea:

(a) PR computes ti = G(k0
i) and ui = ti ⊕G(k1

i)⊕ r, and sends ui to PS for every 1 ≤ i ≤ `.
(b) For every 1 ≤ i ≤ `, PS defines qi = (si · ui)⊕G(ksii). (Note that qi = (si · r)⊕ ti.)

(c) Let Q = [q1| . . . |q`] denote the m × ` bit matrix where its ith column is qi. Let qj denote
the jth row of the matrix Q. (Note that qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .)

(d) PS sends (y0
j , y

1
j) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕H(j,qj) and y1
j = x1

j ⊕H(j,qj ⊕ s)

(e) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

3. Output: PR outputs (x1, . . . , xm); PS has no output.

aThis phase can be iterated. Specifically, R can compute the next κ bits of ti and ui (by applying G
to get the next κ bits from the PRG for each of the seeds and using the next κ bits of its input in r) and
send the block of κ× κ bits to S (κ bits from each of u1, . . . ,uκ).

2. rj = 1: In this case qj = s⊕ tj , and so:

xj = y1
j ⊕H(j, tj) = x1

j ⊕H(j,qj ⊕ s)⊕H(j, tj)

= x1
j ⊕H(j, tj)⊕H(j, tj) = x1

j

Corrupted Sender. The view of the sender during the protocol contains the output from the
`×OTκ invocation and the messages u1, . . . ,u`. The simulator S0 simply outputs a uniform string
s ∈ {0, 1}` (which is the only randomness that PS chooses in the protocol, and therefore w.l.o.g. can
be interpreted as the random tape of the adversary), ` random seeds ks11 , . . . ,k

s`
` , which are chosen

uniformly from {0, 1}κ, and ` random strings u1, . . . ,u`, chosen uniformly from {0, 1}m. In the real
execution, (s,ks11 , . . . ,k

s`
`) are chosen in exactly the same way. Each value ui for 1 ≤ i ≤ ` is defined

as G(k0
i)⊕G(k1

i)⊕ r. Since k1−si
i is unknown to PS (by the security of the `×OTκ functionality),

we have that G(k1−si
i) is indistinguishable from uniform, and so each ui is indistinguishable from

uniform. Therefore, the view of the corrupted sender in the simulation is indistinguishable from its
view in a real execution.

15

Corrupted Receiver. The view of the corrupted receiver consists of its random tape and the
messages ((y0

1, y
1
1), . . . , (y0

m, y
1
m)) only. The simulator S1 is invoked with the inputs and outputs

of the receiver, i.e., r = (r1, . . . , rm) and (xr11 , . . . , x
rm
m). S1 then chooses a random tape ρ for

the adversary (which determines the k0
i ,k

1
i values), defines the matrix T , and computes y

rj
j =

x
rj
j ⊕H(j, tj) for 1 ≤ j ≤ m. Then, it chooses each y

1−rj
j uniformly and independently at random

from {0, 1}n. Finally, it outputs (ρ, (y0
1, y

1
1), . . . , (y0

m, y
1
m)) as the view of the corrupted receiver.

We now show that the output of the simulator is indistinguishable from the view of the receiver in
a real execution. If rj = 0, then qj = tj and thus (y0

j , y
1
j) = (x0

j ⊕H(j, tj), x
1
j ⊕H(j, tj ⊕ s)). If

rj = 1, qj = tj ⊕ s and therefore (y0
j , y

1
j) = (x0

j ⊕ H(j, tj ⊕ s), x1
j ⊕ H(j, tj)). In the simulation,

the values y
rj
j are computed as x

rj
j ⊕H(j, tj) and therefore are identical to the real execution. It

therefore remains to show that the values (y1−r1
1 , . . . , y1−rm

m) as computed in the real execution are
indistinguishable from random strings as output in the simulation. As we have seen, in the real
execution each y

1−rj
j equals x

1−rj
j ⊕H(j, tj ⊕ s). Since H is a correlation robust function, it holds

that:
{t1, . . . , tm, H(j, t1 ⊕ s), . . . ,H(j, tm ⊕ s)} c≡ {Um·`+m·n}

for random s, t1, . . . , tm ∈ {0, 1}`, where Ua defines the uniform distribution over {0, 1}a (see Defini-
tion 2.1). In the protocol we derive the values t1, . . . , tm by applying a pseudorandom generator G
to the seeds k0

1, . . . ,k
0
` and transposing the resulting matrix. We need to show that the values

H(j, t1 ⊕ s), . . . ,H(j, tm ⊕ s) are still indistinguishable from uniform in this case. However, this
follows from a straightforward hybrid argument (namely, that replacing truly random ti values in
the input to H with pseudorandom values preserves the correlation robustness of H). We conclude
that the ideal and real distributions are computationally indistinguishable.

5 Faster Malicious OT

On the Malicious Security of [IKNP03]. The key insight to understanding how to secure OT
extension against malicious adversaries is to understand that a malicious party only has very limited
possibilities for an attack. In fact, the original OT extension protocol of [IKNP03] already provides
security against a malicious PS . In addition, the only attack for a malicious PR is in Step 2a of
Protocol 1, where PR computes and sends ui = ti ⊕ G(k1

i) ⊕ r (cf. [IKNP03]). A malicious PR
could choose a different r for each ui (for 1 ≤ i ≤ `), and thereby extract PS ’s choice bits s. Hence,
malicious security can be obtained if PR can be forced to use the same choice bits r in all messages
u1, . . . ,u`.

5.1 Overview of our Malicious Secure Protocol

All we add to the semi-honest protocol (Protocol 1) is a consistency check for the values r that are
sent in Step 2a, and increase the number of base-OTs. Let ri = ti ⊕ G(k1

i) ⊕ ui, i.e., the value
that is implicitly defined by ui. We observe that if the receiver PR uses the same choice bits ri

and rj for some distinct i, j ∈ [`]2, they cancel out when computing their XOR, i.e., ui ⊕ uj =
(ti⊕G(k1

i)⊕ri)⊕(tj⊕G(k1
j)⊕rj) = G(k0

i)⊕G(k1
i)⊕G(k0

j)⊕G(k1
j). After the base-OTs, PS holds

G(ksii) and G(k
sj
j) and in Step 2a of Protocol 1, PR computes and sends ui = G(k0

i)⊕G(k1
i)⊕ ri

and uj = G(k0
j)⊕G(k1

j)⊕ rj . Now note that PS can compute the XOR of the strings he received

16

in the base-OTs G(ksii)⊕G(k
sj
j) as well as the “inverse” XOR of the strings received in the base-

OTs G(ksii) ⊕ G(k
sj
j) = G(ksii) ⊕ G(k

sj
j) ⊕ ui ⊕ uj if and only if PR has correctly used ri = rj .

However, PS cannot check whether the “inverse” XOR is correct, since it has no information about
G(ksii) and G(k

sj
j) (this is due to the security of the base-OTs that guarantees that PS receives the

keys ksii ,k
sj
i only, and learns nothing about ksii ,k

sj
j). PR cannot give these values to PS since this

will reveal its choice bits. However, PR can send the hashes of these inverse values. Specifically,
the PR commits to the XORs of all strings hp,qi,j = H(G(kpi) ⊕ G(kqj)), for all combinations of

p, q ∈ {0, 1}. Now, given h
si,sj
i,j , h

si,sj
i,j , PS checks that h

si,sj
i,j = H(G(ksii) ⊕ G(k

sj
j)), and that

h
si,sj
i,j = H(G(ksii)⊕G(k

sj
i)⊕ ui ⊕ uj) = H(G(ksii)⊕G(k

sj
j)). This check passes if ri = rj and hp,qi,j

were set correctly.
If a malicious PR tries to cheat and has chosen ri 6= rj , it has to convince PS by computing

hp,qi,j = H(G(kpi) ⊕ G(kqj) ⊕ ri ⊕ rj) for all p, q ∈ {0, 1}. However, PS can check the validity of

h
si,sj
i,j = H(G(ksii)⊕G(k

sj
j)) while PR remains oblivious to si, sj . Hence, PR can only convince PS

by guessing si, sj , computing h
si,sj
i,j correctly and set h

si,sj
i,j = H(G(ksii)⊕G(k

sj
j)⊕ri⊕rj), which PR

cannot do better than with probability 1/2. This means that PR can only successfully learn ρ bits
but will be caught except with probability 2−ρ. The full description of our new protocol is given
in Protocol 4. We give some more explanations regarding the possibility of the adversary to cheat
during the consistency check in §5.2.

We note that learning few bits of the secret s does not directly break the security of the protocol
once |s| > κ. In particular, the values {H(j, tj ⊕ s)}j are used to mask the inputs {x1−rj

j }j .
Therefore, when H is modelled as a random oracle and enough bits of s remain hidden from the
adversary, each value H(j, tj ⊕ s) is random, and the adversary cannot learn the input x

1−rj
j . For

simplicity we first prove security of our protocol in the random oracle model. We later show that
H can be replaced with a variant of a correlation-robustness assumption.

The advantage of our protocol over [NNOB12] is that PS does not need to reveal any information
about si, sj when checking the consistency between ri and rj (as long as PR does not cheat, in which
case it risks getting caught). Hence, it can force PR to check that ri equals any rj , for 1 ≤ j ≤ `
without disclosing any information.

Section outline. In the following, we describe our basic protocol and prove its security (§5.2). We
then show how to reduce the number of consistency checks to achieve better performance (§5.3),
and how to replace the random oracle with a weaker correlation robustness assumption (§5.4).
Finally, we show how our protocol can be used to achieve covert security (§5.5).

17

PROTOCOL 5 (Our actively secure OT extension protocol)

• Input of PS: m pairs (x0
j , x

1
j) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m selection bits r = (r1, . . . , rm).

• Common Input: Symmetric security parameter κ and statistical security parameter ρ. It is
assumed that the number of base-OTs is ` = κ+ ρ.

• Oracles and cryptographic primitives: The parties use an ideal `× OTκ functionality, pseu-
dorandom generator G : {0, 1}κ → {0, 1}m+κ, and random-oracle H (see §5.4 for instantiation
of H.)

1. Initial OT Phase:

(a) PS initializes a random vector s = (s1, . . . , s`) ∈ {0, 1}` and PR chooses ` pairs of seeds k0
i ,k

1
i

each of size κ.

(b) The parties invoke the `×OTκ-oracle, where PS acts as the receiver with input s and PR acts
as the sender with inputs (k0

i ,k
1
i) for every 1 ≤ i ≤ `.

For every 1 ≤ i ≤ `, let ti = G(k0
i). Let T = [t1| . . . |t`] denote the (m + κ) × ` bit matrix where

its ith column is ti for 1 ≤ i ≤ `. Let tj denote the jth row of T for 1 ≤ j ≤ m.

2. OT Extension Phase (Part I):

(a) PR chooses a random string τ ∈ {0, 1}κ, and defines r′ = r||τ .

(b) PR computes ti = G(k0
i) and ui = ti ⊕G(k1

i)⊕ r′, and sends ui to PS for every 1 ≤ i ≤ `.

3. Consistency Check of r′: (the main change from Protocol 1)

(a) For every pair α, β ⊆ [`]2, PR defines the four values:

h0,0
α,β = H(G(k0

α)⊕G(k0
β)) , h0,1

α,β = H(G(k0
α)⊕G(k1

β)) ,

h1,0
α,β = H(G(k1

α)⊕G(k0
β)) , h1,1

α,β = H(G(k1
α)⊕G(k1

β)) .

It then sends Hα,β = (h0,0
α,β , h

0,1
α,β , h

1,0
α,β , h

1,1
α,β) to PS .

(b) For every pair α, β ⊆ [`]2, PS knows sα, sβ ,k
sα
α ,k

sβ
β ,u

α,uβ and checks that:

i. h
sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)).

ii. h
sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)⊕ uα ⊕ uβ) (= H(G(ksαα)⊕G(k

sβ
β)⊕ rα ⊕ rβ)).

iii. uα 6= uβ .

In case one of these checks fails, PS aborts and outputs ⊥.

4. OT Extension Phase (Part II):

(a) For every 1 ≤ i ≤ `, PS defines qi = (si · ui)⊕G(ksii). (Note that qi = (si · r)⊕ ti.)

(b) Let Q = [q1| . . . |q`] denote the (m + κ) × ` bit matrix where its ith column is qi. Let qj
denote the jth row of the matrix Q. (Note that qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .)

(c) PS sends (y0
j , y

1
j) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕H(j,qj) and y1
j = x1

j ⊕H(j,qj ⊕ s)

(d) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

5. Output: PR outputs (x1, . . . , xm); PS has no output.

18

5.2 The Security of Our Protocol

Malicious sender. The original OT extension protocol of [IKNP03] already provides security
against a malicious PS . In an earlier version of this paper, we claimed that our checks in Step 3
of the protocol do not provide a malicious PS with any new capabilities, and we derived security
directly from the semi-honest case with no further proof.

However, as pointed out by [Sch17], adding the checks for consistency of r provides an “oracle”
for checking whether a particular candidate r̃ is the input of the receiver or not. In fact, given uα,
G(ksαα) and G(k

sβ
β) (note that ksαα and k

sβ
β are sent to the sender during the base OT stage), the

malicious sender can check whether r = r̃ or not, by first computing tsαα = uα ⊕ G(ksαα) ⊕ r̃ and

then checking whether h
sα,sβ
α,β = H(tsαα ⊕G(k

sβ
β)).

In order to prevent this subtle attack, we modify the protocol such that PR first appends to r
some random string τ ∈ {0, 1}κ resulting in a string r′ = r||τ (this is Step 2a in the protocol). This
adds entropy to the choice of r and therefore prevents the above attack. Note that in the second
part of the OT extension phase, the transfer is done on only on the first m rows of the matrix Q
and not m + κ. In Appendix B we formally prove that the protocol is secure in the presence of a
malicious sender, assuming that the function H is modeled as κ-min-entropy strongly correlation
robust (see §5.11 regarding this assumption). We also note that the change in the efficiency of the
protocol is minor, as m� κ.

Simulating a malicious receiver. In the case of a malicious receiver, the adversary may not use
the same r in the messages u1, . . . ,u`, and as a result learn some bits from the secret s. Therefore,
we add a consistency check of r to the semi-honest protocol of [IKNP03]. However, this verification
of consistency of r is not perfectly sound, and the verification may still pass even when the receiver
sends few u’s that do not define the same r. This makes the analysis a bit more complicated.

For every 1 ≤ i ≤ `, let ri
def
= ui ⊕ G(k0

i) ⊕ G(k1
i) that is, the “input” ri which is implicitly

defined by ui and the base-OTs.
We now explore how the matrices Q,T are changed when the adversary uses inconsistent r’s.

Recall that when the receiver uses the same r, then qi = (si ·r)⊕ ti and qj = (rj · s)⊕ tj . However,
in case of inconsistent r’s, we get that qi = (si · ri) ⊕ ti. The case of qj is rather more involved;
let R =

[
r1 | . . . | r`

]
denote the m× ` matrix where its ith column is ri, and let rj denote the jth

row of the matrix R. For two strings of the same length a = (a1, . . . , ak),b = (b1, . . . , bk), let a ∗ b
define the entry-wise product, that is a ∗ b = (a1 · b1, . . . , ak · bk). We get that qj = (rj ∗ s) ⊕ tj
(note that in an honest execution, rj is the same bit everywhere). The sender masks the inputs
(x0
j , x

1
j) with (H(j,qj), H(j,qj ⊕ s)).

In order to understand better the value qj , let r = (r1, . . . , rm) be the string that occurs the
most from the set {r1, . . . , r`}, and let U ⊂ [`] be the set of all indices for which ri = r for all i ∈ U .
Let B = [`] \ U be the complementary set, that is, the set of all indices for which for every i ∈ B
it holds that ri 6= r. As we will see below, except with some negligible probability, the verification
phase guarantees that |U| ≥ `− ρ. Thus, for every 1 ≤ j ≤ m, the vector rj (which is the jth row
of the matrix R), can be represented as rj = (rj ·1)⊕ej , where 1 is the all one vector of size `, and
ej is some error vector with Hamming distance at most ρ from 0. Note that the non-zero indices
in ej are all in B. Thus, we conclude that:

qj = (s ∗ rj)⊕ tj = (s ∗ (rj · 1⊕ ej))⊕ tj = (rj · s)⊕ tj ⊕ (s ∗ ej) .

19

Recall that in an honest execution qj = (rj · s) ⊕ tj , and therefore the only difference is the term
(s ∗ ej). Moreover, note that s ∗ ej completely hides all the bits of s that are in U , and may expose
only the bits that are in B. Thus, the consistency check of r guarantees two important properties:
First, that almost all the inputs are consistent with some implicitly defined string r, and thus the
bits rj are uniquely defined. Second, the set of inconsistent inputs (i.e., the set B) is small, and
thus the adversary may learn only a limited amount of bits of s.

The consistency checks of r. We now examine what properties are guaranteed by our consistency
check, for a single pair (α, β). The malicious receiver PR first sends the set of keys K = {k0

i ,k
1
i } to

the base-OT protocol, and then sends all the values (u1, . . . ,u`) and the checks H = {Hα,β}α,β. In
the simulation, the simulator can choose s only after it receives all these messages (this is because
the adversary gets no output from the invocation of the OT primitive). Thus, for a given set of
messages that the adversary outputs, we can ask what is the number of secrets s for which the
verification will pass, and the number for which it will fail. If the verification passes for some given
T = (K,u1, . . . ,u`,H) and some secret s, then we say that T is consistent with s; In case the
verification fails, we say that T is inconsistent.

In the following, we let Tα,β denote all messages that the receiver sends and which are relevant

for to the verification of the pair (α, β), that is, Tα,β =
(
k0
α,k

1
α,k

0
β,k

1
β,u

α,uβ,Hα,β
)

. Note that T ,

the set of all messages that the receiver sends, is defined as T =
⋃
α,β Tα,β = (K,u1, . . . ,u`,H),

exactly as considered above.
The following Lemma considers the values that the adversary has sent regarding some pair (α, β),

and considers the relation to the pair of bits (sα, sβ) of the secret s. We have:

Lemma 5.1 Let Tα,β = {{kbα}b, {kbβ}b,uα,uβ,Hα,β} and assume that H is a collision-resistant
hash-function. Then, the following holds, except with negligible probability::

1. If rα 6= rβ and Tα,β is consistent with (sα, sβ), then it is inconsistent with (sα, sβ).

2. If rα = rβ and Tα,β is consistent with (sα, sβ), then it is consistent also with (sα, sβ).

Proof: For the first item, assume that rα 6= rβ and that Tα,β is consistent both with (sα, sβ) and
(sα, sβ). Thus, from the check of consistency of (sα, sβ):

h
sα,sβ
α,β = H

(
G(ksαα)⊕G(k

sβ
β)
)
, h

sα,sβ
α,β = H

(
G(ksαα)⊕G(k

sβ
β)⊕ uα ⊕ uβ

)
,

and that uα 6= uβ. In addition, from the check of consistency of (sα, sβ) it holds that:

h
sα,sβ
α,β = H

(
G(ksαα)⊕G(k

sβ
β)
)
, h

sα,sβ
α,β = H

(
G(ksαα)⊕G(k

sβ
β)⊕ uα ⊕ uβ

)
,

and that uα 6= uβ. This implies that:

H
(
G(ksαα)⊕G(k

sβ
β)
)

= h
sα,sβ
α,β = H

(
G(ksαα)⊕G(k

sβ
β)⊕ uα ⊕ uβ

)
,

and from the collision resistance property of H, except for some negligible probability we get that:

G(ksαα)⊕G(k
sβ
β) = G(ksαα)⊕G(k

sβ
β)⊕ uα ⊕ uβ .

Recall that rα
def
= uα ⊕G(k0

α)⊕G(k1
α), and rβ

def
= uβ ⊕G(k0

β)⊕G(k1
β). Combining the above, we

get that rα = rβ, in contradiction.

20

For the second item, once rα = rβ, we get that uα ⊕ uβ = G(k0
α) ⊕ G(k1

α) ⊕ G(k0
β) ⊕ G(k1

β)
and it is easy to see that if the consistency check of (sα, sβ) holds, then the consistency check of
(sα, sβ) holds also.

Lemma 5.1 implies what attacks the adversary can do, and what bits of s it can learn from each
such an attack. In the following, we consider a given partial transcript Tα,β = ((k0

α,k
1
α,k

0
β,k

1
β),

(uα,uβ),Hα,β) and analyze what the messages might be, and what the adversary learns in case the
verification passes. Let rα = uα⊕G(k0

α)⊕G(k1
α) and rβ defined analogously. We consider 4 types:

1. Type 1: rα = rβ and Hα,β is correct. That is, for every (a, b) ∈ {0, 1}2: ha,bα,β =

H
(
G(kaα)⊕G(kbβ)

)
. In this case, the verification passes for every possible value of (sα, sβ).

2. Type 2: rα = rβ, but Hα,β is incorrect. In this case, the adversary sent uα,uβ that
define the same r. However, it may send hashes Hα,β that are incorrect (i.e., for some

(a, b) ∈ {0, 1}2, it may send: ha,bα,β 6= H(G(kaα) ⊕ G(kbβ))). However, from Lemma 5.1, if

rα = rβ and Hα,β is consistent with (sα, sβ) then it is also consistent with (sα, sβ).

Thus, a possible attack of the adversary, for instance, is to send correct hashes for some
bits (0, 0) and (1, 1), but incorrect ones for (0, 1) and (1, 0). The verification will pass with
probability 1/2, exactly if (sα, sβ) are either (0, 0) or (1, 1), but it will fail in the other two
cases (i.e., (1, 0) or (0, 1)). We therefore conclude that the adversary may learn the relation
sα ⊕ sβ, and gets caught with probability 1/2.

3. Type 3: rα 6= rβ and Hα,β is incorrect in two positions. In this case, for instance,

the adversary can set the values h0,0
α,β, h

0,1
α,β correctly (i.e., h0,0

α,β = H(G(k0
α) ⊕ G(k0

β)) and

h0,1
α,β = H(G(k0

α) ⊕ G(k1
β))) and set values h1,0

α,β, h
1,1
α,β, accordingly, such that the verification

will pass for the cases of (sα, sβ) = (0, 0) or (0, 1). That is, it sets:

h1,0
α,β = H(G(k0

α)⊕G(k1
β)⊕ uα ⊕ uβ)

(and it sets h1,1
α,β in a similar way). In this case, the adversary succeeds with probability 1/2

and learns that sα = 0 in case the verification passes. Similarly, it can guess the value of
sβ and set the values accordingly. For conclusion, the adversary can learn whether its guess
was correct, and in which case it learns exactly one of the bits sα or sβ but does not learn
anything about the other bit.

In case where Hα,β is correct in only one position but rα 6= rβ, the probability of success

is even smaller. For instance, assume that ha,bα,β = H(G(kaα) ⊕ G(kbβ)) for (a, b) = (0, 0),

(0, 1), (1, 0), but the adversary sends h1,1
α,β incorrectly as above. In this case, the verification

will fail for (sα, sβ) = (1, 1) and, in addition, also for the cases where (sα, sβ) = (0, 1) or
(1, 0), since rα 6= rβ. Similarly, for the case where Hα,β is incorrect in only one position, for
which the adversary only succeeds with probability 1/2. Therefore, it is more beneficial for
the adversary to send two positions incorrectly.

4. Type 4: rα 6= rβ and Hα,β is incorrect in three positions. In this case, the adversary

may guess both bits (sα, sβ) = (a, b) and set ha,bα,β correctly, set ha,bα,β accordingly (i.e., such that
the verification will pass for (a, b)), but will fail for any one of the other cases. In this case,
the adversary learns the values (sα, sβ) entirely, but succeeds with probability at most 1/4.

21

Note that whenever rα 6= rβ, the adversary may pass the verification of the pair (α, β) with
probability at most 1/2. This is because it cannot send consistent hashes for all possible values of
(sα, sβ), and must, in some sense, “guess” either one of the bits, or both (i.e., Type 3 or Type 4).
However, an important point that makes the analysis more difficult is the fact that the two checks
are not necessarily independent. That is, in case where rα 6= rβ and rβ 6= rγ , although the
probability to pass each one of the verification of (α, β) and (β, γ) separately is at most 1/2, the
probability to pass both verifications together is higher than 1/4, and these two checks are not
independent. This is because the adversary can guess the bit sβ, and set the hashes as in Type 3 in
both checks. The adversary will pass these two checks if it guesses sβ correctly, with probability 1/2.

Proving security of the protocol. Before proceeding to the full proof of security, we first provide
a proof sketch. The simulator S invokes the malicious receiver and plays the role of the base-OT
trusted party and the honest sender. It receives from the adversary its inputs to the base-OTs,
and thus knows the values {k0

i ,k
1
i }`i=1. Therefore, it can compute all the values r1, . . . , r` when it

receives the messages u1, . . . ,u`. It computes the set of indices U , and extracts r. It then performs
the same checks as an honest sender, in Step 3 of Protocol 5, and aborts the execution if the
adversary is caught cheating. Then, it sends the trusted party the value r that it has extracted,
and learns the inputs xr11 , . . . , x

rm
m . It computes qj as instructed in the protocol (recall that these

qj may contain the additional “shift” s ∗ ej) and use some random values for all {yrjj }mj=1.

Since the values {yrjj }mj=1 are random in the ideal execution, and equal {xrjj ⊕H(j,qj⊕s)} in the
real execution, a distinguisher may distinguish between the real and ideal execution once it makes
a query of the form (j,qj ⊕ s) to the random oracle. We claim, however, that the probability that
the distinguisher will make such a query is bounded by (t+1)/|S|, where t is the number of queries
it makes to the random oracle, and S is the set of all possible secrets s that are consistent with
the view that it receives. Thus, once we show that |S| > 2κ, the probability that it will distinguish
between the real and ideal execution is negligible in κ.

However, the above description is too simplified. First, if the adversary performs few attacks
of Type 2, it learns information regarding s from the mere fact that the verification has passed.
Moreover, recall that y

rj
j = x

rj
j ⊕H(j, tj ⊕ (s ∗ ej)), and that the adversary can control the values

tj and ej . Recall that ej is a vector that is all zero in positions that are in U , and may vary in
positions that are in B. This implies that by simple queries to the random oracle, and by choosing
the vectors ej cleverly, the adversary can totally reveal the bits sB quite easily. We therefore have
to show that the set B is small, while also showing that the set of consistent secrets is greater
than 2κ (that is, |S| ≥ 2κ). We now proceed to a formal statement of the theorem and formal proof
of security, where there we prove the two informal claims that were just mentioned.

Theorem 5.2 Assume that H is a random oracle and that G is a pseudorandom generator. Then,
Protocol 5 with ` = κ+ ρ securely computes the m×OTn functionality in the `×OTκ-hybrid model
in the presence of a static malicious adversary, where κ is the symmetric security parameter and ρ
is the statistical security parameter.

Proof: Recall that security against malicious sender can be proven by a simple reduction to the
original OT extension protocol of [IKNP03], which is already secure against malicious sender, using
the fact that our checks consist of messages that go from the receiver to the sender only. In the
following we will give the proof for a malicious receiver. Since we already gave some proof sketch,
we start directly with a formal description of the simulator S:

22

The simulator S.

1. The simulator invokes the adversary A on the auxiliary input z.

2. Initial OT phase: The adversary A outputs ` pairs of κ-bits each {k0
i ,k

1
i }`i=1 as input to

the `×OTκ-functionality. It receives no output from this invocation.

3. First part of OT extension phase: The adversary A outputs ` strings u1, . . . ,u`.

4. Consistency check of r:

(a) For every α, β ∈ [`]2, the adversaryA outputs the quadrupleHα,β = (h0,0
α,β, h

0,1
α,β, h

1,0
α,β, h

1,1
α,β).

(b) The simulator chooses a string s uniformly at random from {0, 1}`.
(c) Given the values {{k0

i ,k
1
i }`i=1,u

1, . . . ,u`, {Hα,β}α,β} and the chosen secret s, the simu-
lator can perform all the needed checks as the honest sender in the real execution. In
case where one of the verification fails, the simulator halts.

5. Second part of the OT extension phase:

(a) The simulator computes the matrices T , Q and R, where for every i, ti = G(k0
i),

qi = (si · ri)⊕ ti and ri = G(k0
i)⊕G(k1

i)⊕ ui.

(b) From all the vectors r1, . . . , r`, let r be the vector that is mostly repeated (as we will see,
the verification process guarantees that there exists a vector that is repeated at least
`− ρ times).

(c) Send r to the trusted party, and receive xr11 , . . . , x
rm
m . Define the values ej for every

1 ≤ j ≤ m (explicitly, define the matrix R as the matrix for which its ith column is ri,
and let rj denote its jth row. Then, ej = (rj · 1) ⊕ rj . Then, for every 1 ≤ j ≤ m, set

y
rj
j = x

rj
j ⊕H(j, tj ⊕ (s ∗ ej)), and set y

rj
j uniformly at random. Send {(y0

j , y
1
j)}mj=1 to

the adversary A, output whatever it outputs and halt.

Let T = {{k0
i ,k

1
i }`i=1,u

1, . . . ,u`, {Hα,β}α,β}, i.e., the values that the adversary gives during
the execution of the protocol. Observe that the simulator chooses the secret s only after T is
determined (since the adversary receives no output from the execution of the OT primitive, we can
assume that). We divide all possible choices of T into two sets, Tgood and Tbad, defined as follows:

Tgood =
{
T | Pr

s
[consistent(T , s) = 1] > 2−ρ

}
and Tbad =

{
T | Pr

s
[consistent(T , s) = 1] ≤ 2−ρ

}
.

where consistent(T , s) is a predicate that gets 1 when the verification passes for the transcript T
and the secret s, and 0 otherwise. The probability is taken over the choice of s. For a given T ,
let S(T) be the set of all possible secrets s ∈ {0, 1}`, that are consistent with T . That is: S(T) =
{s ∈ {0, 1}` | consistent(T , s) = 1}. Therefore, it holds that:

Pr
s

[consistent(T , s) = 1] =
|S(T)|

2`

and thus |S(T)| = 2` · Pr [consistent(T , s) = 1]. As a result, for every T ∈ Tgood, it holds that
|S(T)| > 2` · 2−ρ = 2`−ρ = 2κ. That is, in case a transcript T ∈ Tgood passes the consistency check

23

of r, there are at least 2κ different secrets s that are consistent with the given transcript, each are
likely with the same probability, and thus the adversary may guess s with probability at most 2−κ.

Let U be the largest set of indices such that for every i, j ∈ U , ri = rj . Let B be the comple-
mentary set, that is, B = [`] \ U . From the definition of the sets, for every α ∈ U and β ∈ B, it
holds that rα 6= rβ.

We claim that if |U| < `− ρ (i.e., |B| > ρ), then it must hold that T ∈ Tbad and the adversary
gets caught with high probability. That is:

Claim 5.3 Let T be as above, and let U be the largest set of indices such that for every α, β ∈ U ,
rα = rβ. Assume that |U| < `− ρ. Then:

Pr
s

[consistent(T , s) = 1] ≤ 2−ρ

and thus, T ∈ Tbad.

We will prove the claim below. Let T ∈ Tgood, and let U and B be as above. Using the claim
above, we have that |B| < ρ. We now focus on the set of secrets s that are consistent with this
transcript T , i.e., the set S(T). For a set of indices A, we let sA denote all the bits in s with indices
from A, that is sA = (sa)a∈A. We now claim that the bits sB are common to all the secrets in
S(T), and thus, even when we give the adversary the bits sB in the clear once the verification is
completed, the adversary still has to guess s from a set of at least 2κ secrets. Formally:

Claim 5.4 Let T ∈ Tgood, and let U and B as above. Then, there exists a string w ∈ {0, 1}|B|,
such that for every s′ ∈ S(T), it holds that: s′B = w.

Proof: From the definition of the sets B and U , it holds that for every α ∈ U and β ∈ B, rα 6= rβ.
Consider two secrets s, s′ that are consistent with T (since T ∈ Tgood, there are many such T ’s).
We show the following:

• If there exists an index β ∈ B such that sβ 6= s′β, then for every α ∈ U it holds that sα = s′α
(that is, sU = s′U).

• Similarly, if there exists an index α ∈ U such that sα 6= s′α then for every β ∈ B it holds that
sβ = s′β (that is, sB = S ′B).

We show the first claim. Assume that sB 6= s′B, thus, there must exist an index β ∈ B such that
sβ 6= s′β, i.e., s′β = sβ. Now, consider some α ∈ U , we show that sα = s′α and thus sU = s′U .
Recall that T is consistent with s, and therefore is consistent with (sα, sβ). From Lemma 5.1,
it is inconsistent with (sα, sβ) = (sα, s

′
β). However, recall that T is consistent also with s′, and

therefore it is consistent with (s′α, s
′
β). We therefore conclude that it must hold that sα 6= s′α and

thus sα = s′α. The second claim is proven analogously.
We now claim that the set S(T) either shares the same sB for all its elements, or shares the

same sU for all elements (and of course, not both). In order to see this, let S(T) = {s1, . . . , sn}.
Assume, without loss of generality, that s1

U 6= s2
U (and so, from above, s1

B = s2
B). We now claim

that all the other elements share the same bits in B. If not, that is, if there exists an element
si ∈ S(T) such that siB 6= s1

B, it must hold that siU = s1
U . However, s1

U 6= s2
U , which implies that

siU 6= s2
U and thus siB = s2

B = s1
B, in contradiction.

We further claim that the set S(T) must share the same sB and cannot share the same sU .
This is a simple counting argument: Since |B| < ρ, a set S(T) that shares the same sU has size of

24

at most 2|B| ≤ 2ρ. However, since T ∈ Tgood, it holds that |S(T)| > 2κ. Therefore, the set must
share the same sB, and the claim follows.

We now show that the distinguisher distinguishes between the ideal and real executions with
relatively small probability, even when it asks the oracle H as (polynomially) many queries as it
wishes.

First, assume that the distinguisher cannot make any queries to H. We claim that the distri-
butions of the real and ideal executions are statistically close. Intuitively, if the adversary outputs
T ∈ Tbad, then clearly the distinguisher may succeed only if the consistency check fails, which
happens with probability at most 2−ρ. On the other hand, in case where the adversary outputs
T ∈ Tgood, then, except for negligible probability (in ρ) it holds that |U| ≥ ` − ρ = κ, and
|S(T)| ≥ 2κ, where all the elements in S(T) share the same bits sB. Thus, even if the distinguisher
receives sB in the clear, the values H(j,qj), H(j,qj ⊕ s) that are used for masking the inputs are
uniformly random and independent of each other. Therefore, the simulation is indistinguishable
from the real-execution.

Now, assume that the distinguisher can also make queries to the random oracle H. In this case,
we claim that the distinguisher can distinguish only if it makes a “critical query”, where:

Definition 5.5 For every 1 ≤ j ≤ m, a query made by the distinguisher or the receiver to the
random oracle is a critical query if it is of the form (j, ((1− rj) · s)⊕ qj) for some j.

Note that a critical query can also be represented as H(j, (rj · s)⊕ tj ⊕ (s ∗ ej)). Clearly, a critical

query totally reveals x
rj
j . Conditioned on the event that the distinguisher (or the receiver) never

queries such a critical query and that sU 6= 0, the distributions of the real and ideal executions are
statistically close. On the other hand, as long as sU 6= 0, and as long as no such a critical query
is made, the answers to the queries are independent of the value of s, and the distinguisher does
not learn anything new from the queries themselves. Any query to H is distributed uniformly and
independently at random, and since s is distributed uniformly in S(T), the probability to “hit” a
critical query is bounded by 1/|S(T)|. We therefore conclude the following claim:

Claim 5.6 The probability that the distinguisher or the receiver make a critical query is bounded
by: (t+ 1)/|S(T)| ≤ (t+ 1) · 2−κ, where t is an upper-bound on the number of their queries.

This completes the proof.

We now restate Claim 5.3 and prove it. This claim is in fact, an analysis of the consistency
check phase of the protocol.

Claim 5.7 (Claim 5.3, restated) Let T be as above, and let U be the largest set of indices such
that for every α, β ∈ U , rα = rβ. Assume that |U| < `− ρ. Then:

Pr
s

[consistent(T , s) = 1] ≤ 2−ρ

and thus, T ∈ Tbad.

Proof: Let T be the values that the adversary outputs, i.e., the values

T =
{
{k0

i ,k
1
i }i, {ui}i, {Hα,β}α,β

}

25

For a pair α ∈ U , β ∈ B, we claim that the adversary passes the verification of the pair (α, β) with
probability at most 1/2. This is because rα 6= rβ and due to Lemma 5.1, if T is consistent with
some (sα, sβ) then it is inconsistent with (sα, sβ). Thus, there are at most 2 possible values (sα, sβ)
that are consistent with T , and the adversary gets caught for the 2 other values.

We define the inconsistency graph Γ = (V,E) as follows. The set of vertices is the set [`]. The
set of edges contains all the pairs that define different r’s, that is, there exists an edge (α, β) if
rα 6= rβ. Note that since (α, β) are not consistent, the adversary gets caught in the check (α, β)
with probability at least 1/2. We sometimes consider the complement graph (or, the consistency
graph) Γ = (V,E). In Γ, each edge represents that the two vertices define the same implicit input r.

We now analyze the size of the set U .

1. Case 1: ρ ≤ |U| < ` − ρ. In this case, we have a large enough set which is consistent
within itself, but is inconsistent with all the others. We claim that in this case, the adversary
will get caught with probability 1− 2−ρ.

In order to see this, consider the set B = [`]\U . Since B∪U = [`], we have that ρ < |B| ≤ `−ρ
as well.

Moreover, consider the inconsistency graph Γ, and remove all the edges that are between
two elements of B (this can be interpreted as follows: although there is some possibility that
the adversary gets caught because of these checks, we ignore them and do not consider these
inconsistencies as cheating). As a result, we have a bipartite graph where the set of vertices
is divided to B and U . Moreover, when considering the complement graph for the resulting
graph, we have two cliques, B and U , and the maximal clique in this graph is at most `− ρ.

According to König’s theorem [LP86], in any bipartite graph the number of edges in the
maximal matching equals the minimal vertex cover. Moreover, it is easy to see that the sum
of the minimum vertex cover in some graph, and the maximal clique of its complement graph
equals to the overall number of vertices `. We therefore conclude that the maximal matching
in the graph Γ is at least ρ.

Each edge in the graph represents a check where the adversary gets caught with probability
at least 1/2. Since there are at least ρ edges in the maximal matching in the inconsistency
graph, there are at least ρ pairs for which the adversary gets caught with probability at
least 1/2. Moreover, since we have a matching, each pair and check are independent. We
therefore conclude that the adversary succeeds in its cheating with probability at most 2−ρ,
and therefore it gets caught with probability at least 1− 2−ρ.

2. Case 2: |U| < ρ. Similarly to the previous case, we can just find a superset U ′ that
contains U of size at least ρ for which we assume (artificially) that is all consistent. That is,
for this set U ′ we just ignore the checks between the elements in this set and assume that
they are all consistent. After we obtain this clique (by ignoring some of the checks), we are
back to the previous case.

For conclusion, we have the following: if T is such that |U| < `− ρ, then :

Pr
s

[consistent(T , s) = 1] < 2−ρ

26

5.3 Reducing the Number of Checks

In Protocol 5, in the consistency check of r, we check all possible pairs (α, β) ∈ [`]2. In order to
achieve higher efficiency, we want to reduce the number of checks.

Let G = (V,E) be a graph for which V = [`], and an edge (α, β) represents a check between
rα and rβ. In Protocol 5 the receiver asks for all possible edges in the graph (all pairs). In order
to achieve better performance, we would like to reduce the number of pairs that we check. In
particular, the protocol is changed so that in Step 3 of Protocol 5 the sender chooses some set of
pairs (edges) E′ ⊆ V 2, and the receiver must respond with the quadruplesHα,β for every (α, β) ∈ E′
that it has been asked for. The sender continues with the protocol only if all the checks have passed
successfully.

Observe that after sending the values u1, . . . ,u`, the sets U and B (which are both subsets of [`])
are implicitly defined. In case that the set B is too large, we want to catch the adversary cheating
with probability at least 1− 2−ρ. In order to achieve this, we should have ρ edges between B and
U that are pairwise non-adjacent. That is, in case the adversary defines B that is “too large”, we
want to choose a set of edges E′ that contains a matching between B and U of size of at least ρ.

Note, however, that the sender chooses the edges E′ with no knowledge whatsoever regarding
the identities of U and B, and thus it needs to choose a graph such that (with overwhelming
probability), for any possible choice of a large B, there will be a ρ-matching between B and U .

In protocol 6 we modify the consistency check of r that appears in Step 3 of Protocol 5. The
sender chooses for each vertex α ∈ [`] exactly µ out-neighbours uniformly at random. We later
show that with high probability the set E′ that is chosen contains a ρ-matching between the two
sets B and U , even for a very small value of µ (for instance, µ = 3 or even µ = 2).

PROTOCOL 6 (Modification for Protocol 5, Fewer Checks)

The parties run Protocol 5 with the following modifications:
Step 3 – Consistency Check of r: (modified)

1. PS chooses µ functions φ0, . . . , φµ−1 uniformly at random, where φi : [`]→ [`]. It sends φ0, . . . , φµ−1

to the receiver PR.

2. For every pair α ∈ [`], i ∈ [µ], let (α, β) = (α, φi(α)). PR defines the four values:

h0,0
α,β = H(G(k0

α)⊕G(k0
β)) h0,1

α,β = H(G(k0
α)⊕G(k1

β)) ,

h1,0
α,β = H(G(k1

α)⊕G(k0
β)) h1,1

α,β = H(G(k1
α)⊕G(k1

β)) .

It then sends Hα,β = (h0,0
α,β , h

0,1
α,β , h

1,0
α,β , h

1,1
α,β) to PS .

3. PS checks that it receives Hα,φi(α) for every α ∈ [`] and i ∈ [µ]. Then, for each pair (α, β) =
(α, φ(α)) it checks that:

(a) h
sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)).

(b) h
sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)⊕ uα ⊕ uβ) (= H(G(ksαα)⊕G(k

sβ
β)⊕ rα ⊕ rβ)).

(c) uα 6= uβ .

In case one of these checks fails, PS aborts and outputs ⊥.

In our modified protocol, the adversary again first outputs T = {{k0
i ,k

1
i }`i=1,u

1, . . . ,u`}.
Then, the set of checks Φ = {φ0, . . . , φµ−1} is chosen, and the adversary responds with H =
{{Hα,φi(α)}α,φi}. We can assume that the actual secret s is chosen only after T ,Φ and H are
determined. Similarly to the proof of Theorem 5.2, for a given transcript (T ,Φ,H) and a secret s,

27

we define the predicate consistent((T ,Φ,H), s) that gets 1 if and only if the verification is passed
for the secret s (that is, that the sender does not output ⊥). For a given T and set of checks Φ, let
HT ,Φ be the set of responses that maximizes the probability to pass the verification, that is:

HT ,Φ
def
= argmaxH{Pr [consistents((T ,Φ,H), s) = 1]} .

We separate all possible transcripts (T ,Φ) to two sets Tgood and Tbad such that:

Tgood = {(T ,Φ) | Prs [consistent((T ,Φ,HT ,Φ), s) = 1] > 2−ρ} and

Tbad = {(T ,Φ) | Prs [consistent((T ,Φ,HT ,Φ), s) = 1] ≤ 2−ρ} .

Observe that if a pair (T ,Φ) ∈ Tbad, then no matter what set H the adversary sends, it gets
caught with probability at least 1− 2−ρ.

The following claim is the analogue of Claim 5.3, and it bounds the size of the set B. It states
that if the adversary A outputs T that defines |U| < κ, then with probability 1 − 2−ρ the sender
will choose Φ such that (T ,Φ) ∈ Tbad.

Claim 5.8 Let T be as above, and let U be the largest set of indices such that for every α, β ∈ U ,
rα = rβ. For appropriate choice of parameters µ, `, for every T such that |U| ≤ κ it holds that:

Pr
Φ

[(T ,Φ) ∈ Tbad] ≥ 1− 2−ρ.

Proof: The partial transcript T defines the two sets B and U . Viewing the ` base-OTs as vertices in
a graph, and the pairs of elements that are being checked as edges E′ = {(α, φi(α)) | α ∈ [`], i ∈ [µ]},
we have a bipartite graph (B ∪U , E′) where each vertex has at least µ out edges. We want to show
that with probability 1 − 2−ρ (over the choice of Φ), there exists a ρ-matching between U and B.
Once there is a ρ-matching, the adversary passes the verification phase with probability at most
2−ρ, and thus the pair (T ,Φ) is in Tbad.

In order to show that in a graph there is a ρ-matching between B and U , we state the following
theorem which is a refinement of Hall’s well-known theorem (see [LP86]). Let NU (S) denote the set
of neighbours in U , for some set of vertices S ⊆ B, that is, NU (S) = {u ∈ U | ∃v ∈ S, s.t. (u, v) ∈
E′}. We have:

Theorem 5.9 There exists a matching of size ρ between B and U if and only if, for any set S ⊆ B,
|NU (S)| ≥ |S| − |B|+ ρ.

Note that we need to consider only subsets S ⊆ B for which |S| ≥ |B| − ρ (otherwise, the
condition holds trivially).

The choice of Φ is equivalent to choosing µ out edges for each vertex uniformly. We will show
that for every subset of S ⊆ B with |S| ≥ |B| − ρ, it holds that |NU (S)| ≥ |S| − |B|+ ρ.

Let S ⊆ B and T ⊂ U . Let XS,T be an indicator random variable for the event that all the
out-edges from S go to B ∪ T , and all the out-edges of U \ T do not go to S (we use the term
“out edges” even though the graph is not directed; our intention is simply to address the edges
that connect the vertexes in the sets). As a result, |NU (S)| ≤ |T |. Then, the probability that XS,T

equals 1 is the probability that all the µ · |S| out edges of S go to B∪T only, and all the µ ·(|U|−|T |)
out edges of U \ T go to {`} \ S only. Since we have independence everywhere, we have:

Pr [XS,T = 1] =

(
|B|+ |T |

`

)|S|·µ
·
(
`− |S|
`

)(|U|−|T |)·µ

28

We are interested in the event
∑
XS,T for all S ⊆ B, T ⊆ U s.t. |B| − ρ ≤ |S| ≤ |B|, |T | ≤

|S| − |B| + ρ (denote this condition by (?)), and we want to show that it is greater than 0 with
very low probability. We have:

Pr

 ∑
S,T, s.t. (?)

XS,T > 0

 ≤ ∑
S,T s.t. (?)

Pr [XS,T = 1] (2)

≤
∑

S,T s.t. (?)

(
|B|+ |T |

`

)|S|·µ
·
(
`− |S|
`

)(|U|−|T |)·µ

=

|B|∑
|S|=|B|−ρ

|S|−|B|+ρ∑
|T |=0

(
|B|
|S|

)
·
(
|U|
|T |

)
·
(
|B|+ |T |

`

)|S|·µ
·
(
`− |S|
`

)(|U|−|T |)·µ

We proceed to show an asymptotic analysis for the above, and show that it is bounded by 2−ρ

for appropriate choice of parameters and large enough µ. We remark that we did not attempt to
provide a tight asymptotic analysis since for concrete use, we compute the parameters from the
exact bound given above; see Table 3.

In the asymptotic analysis, we omit the last term. Since |B| − ρ ≤ |S| ≤ |B| and 0 ≤ |T | ≤
|S| − |B|+ ρ ≤ ρ and have that:(

|B|+ |T |
`

)|S|·µ
≤
(
|S|+ ρ

`

)|S|·µ
≤
(
|B|+ ρ

`

)(|B|−ρ)·µ
.

Moreover,
(|B|
|S|
)

= |B|!
|S|!·(|B|−|S|)! , where, for every |B| − ρ ≤ |S| ≤ |B|, it holds that

(|B|
|S|
)
≤ |B|ρ.

Likewise,
(|U|
|T |
)
≤ |U|ρ for every 0 ≤ |T | ≤ |S| − |B|+ ρ ≤ ρ.

Pr

 ∑
S,T, s.t. (?)

XS,T > 0

 ≤
|B|∑

|S|=|B|−ρ

|S|−|B|+ρ∑
|T |=0

(
|B|
|S|

)
·
(
|U|
|T |

)
·
(
|B|+ |T |

`

)|S|·µ
·
(
`− |S|
`

)(|U|−|T |)·µ

≤ ρ2 · |B|ρ · |U|ρ ·
(
|B|+ ρ

`

)(|B|−ρ)·µ
.

which is bounded by 2−ρ as long as

µ ≥ ρ+ 2 log ρ+ ρ log |B|+ ρ log |U|
(|B| − ρ) · (log `− log(|B|+ ρ))

. (3)

As a result from the previous Claim, we get the following corollary:

Corollary 5.10 Assuming that H is a random oracle and G is a pseudorandom generator, Proto-
col 6 with appropriate choice of parameters (`, µ) securely computes the m × OTn functionality in
the `×OTκ-hybrid model in the presence of a static malicious adversary.

29

Proof: We choose (`, µ) as described in the proof of Claim 5.8. The proof is based on the proof
of Theorem 5.2. The simulator is the same, except for the fact that it chooses the set of checks Φ
as the honest sender in the real execution, sends it to the malicious receiver and receives the set of
hashes H. It then continues with the simulation as in the previous proof.

Note that the verification is passed with the exact same probability in the real and in the ideal
execution. If (T ,Φ) ∈ Tbad, then the verification is passed with probability at most 2−ρ. On the
other hand, if the verification is passed and (T ,Φ) ∈ Tgood, then the number of consistent secrets
with (T ,Φ,H) is at least 2κ. Moreover, from Claim 5.8, |U| > κ and it holds also that |U| > |B|.
This implies that Claim 5.4 holds here as well. As a result, even if we give the distinguisher the bits
sB in the clear, there are still more than 2κ possible secrets and the simulation is indistinguishable
for the same reasons as previously.

Concrete choice of parameters. Claim 5.8 states that the bound is achieved for an appro-
priate choice of parameters. We numerically computed the probability in Eq. (2) for a variety
of parameters, and obtained that the probability is less than 2−ρ with ρ = 40, for the following
parameters:

κ 128 80

µ 2 3 4 5 6 8 15 3 4 5 10
` 190 177 174 172 171 170 169 133 128 125 122

#-checks 380 531 696 860 1,026 1,360 2,535 399 512 625 1,220

Table 3: Concrete choice of parameters for Protocol 6. µ is computed by bounding Eq. (2) above
with 2−ρ, where |U| = κ, |B| = ` − |U|, and ρ = 40. Total #-checks is computed as µ`. Each
column achieves probability less than 2ρ (cf. Eq. (2).)

We recall that in case we check all pairs (i.e., Protocol 5), we have either ` = κ+ρ = 128+40 =
168 base-OTs with

(
`
2

)
= 14,028 checks, or ` = κ+ ρ = 80 + 40 = 120 base-OTs with 7,140 checks.

5.4 Correlation Robustness Instead of a Random Oracle

In this section, we show how a correlation robustness assumption (with respect to a high min-
entropy source) suffices for proving the security of our protocol.

Correlation robust function. We first recall the standard definition of a correlation robust
function given in Def. 2.1 as well as the stronger version of the assumption. Let U` denote the
uniform distribution over strings of length `. Another way of looking at the correlation robust
function H is as a type of pseudorandom function. Specifically, define Fs(t) = H(t⊕s). Then, H is
correlation robust if and only if F is a weak pseudorandom function, and H is strongly correlation
robust if and only if F is a (non-adaptive) pseudorandom function. For proving the security
of our protocol, we need to consider the above notions but where s is chosen from a high min-
entropy source. Thus, we consider the case where H has a similar property to that of an extractor:
generating highly random output from a somewhat weak random source (with sufficiently large
min-entropy).

Let X be a random variable taking values from {0, 1}`. The min-entropy of X , denoted H∞(X),

is: H∞(X)
def
= minx

{
log 1

Pr[X=x]

}
= − log (maxx {Pr [X = x]}) . If a source X has a min entropy κ

30

we say that X is a “κ-source”. For instance, a κ-source may be κ uniform and independent bits,
together with some ` − κ fixed bits (in an arbitrary order), or κ uniform bits with some ` − κ
bits that depends arbitrarily on the first random bits. We are now ready to define min-entropy
correlation robustness.

Definition 5.11 (Min-Entropy Correlation Robustness) An efficiently computable function
H : {0, 1}` → {0, 1}n is κ-min-entropy correlation robust if for all (efficiently samplable) κ-sources
X on {0, 1}` it holds that:

{t1, . . . , tm, H(t1 ⊕ s), . . . ,H(tm ⊕ s)} c≡ {Um·`+m·n}

where t1, . . . , tm are chosen uniformly and independently at random from {0, 1}`, and s ← X . H
is κ-min-entropy strongly correlation robust if for all (efficiently samplable) κ-sources X on {0, 1}`
and every (distinct) t1, . . . , tm ∈ {0, 1}` it holds that:

{H(t1 ⊕ s), . . . ,H(tm ⊕ s)} c≡ {Um·n}

where s← X .

In Protocol 5, the values that are used to mask the inputs of the sender are H(j, tj), H(j, tj ⊕ s)
(or, H(j, tj ⊕ (s ∗ ej)), H(j, tj ⊕ (s ∗ ej)⊕ s) in case the adversary uses different ri’s). Since the
receiver is the one that effectively chooses the tj ’s values, it may choose values that are not dis-
tributed uniformly or even choose them maliciously. As a result, we prove the security of Protocol 5
in its current form using the strong κ-min-entropy correlation robustness assumption.

However, it is also possible to modify the protocol and rely only on κ-min-entropy correlation
robustness, as follows. In Step 4c (of Protocol 5), in each iteration 1 ≤ j ≤ m, the sender chooses
a random value dj ∈ {0, 1}`, and sends the values (dj , y

0
j , y

1
j), where:

y0
j = x0

j ⊕H(j,qj ⊕ dj) and y1
j = x1

j ⊕H(j,qj ⊕ dj ⊕ s) .

Then, PR computes xj = y
rj
j ⊕ H(j, tj ⊕ dj). Since the dj values are chosen last, this ensures

that the values used inside H are always uniformly distributed. Thus, κ-min-entropy correlation
robustness suffices.

In Step 3 of Protocol 4 we also use the function H; however, the properties needed from H for
these invocations are collision resistance (for the case of a corrupted receiver) and κ-min entropy
correlation robustness (for the case of a corrupted sender). In order to emphasize the differences
between the function used for the verification and the function used for the transfer phase, we
denote the former by h (i.e., the one used in Step 3 of the protocol), and the latter by H (i.e., the
one used in Step 4c).

Theorem 5.12

1. Assume that H is strongly κ-min-entropy correlation robust, h is a collision resistant and
κ-min-entropy correlation robust function, and G is a pseudo-random generator. Then, Pro-
tocol 4 securely computes the m×OTn functionality in the `×OTκ-hybrid model in the presence
of a static malicious adversary.

31

2. Assume that H is κ-min-entropy correlation robust, h is a collision resistant and κ-min-
entropy correlation robust function, and G is a pseudo-random generator. Then, the above-
described modified protocol securely computes the m×OTn functionality in the `×OTκ-hybrid
model in the presence of a static malicious adversary.

Proof: We prove the first item in the theorem. The second is proven in almost the same way.
Moreover, we consider for now the original protocol (i.e., Protocol 5, where the checks of all pairs
are performed). We later show how to consider the protocol with the reduced number of checks.

We conclude security for the corrupted sender as in Claim B.1 in Appendix B.1.
Recall that in both the ideal and real executions, the outputs of the execution consist of the

randomness of the adversary, its view (the messages it receives during the execution) and the output
of the honest party. The randomness of the adversary uniquely defines the messages it sends in the
first round T = {k0

i ,k
1
i }`i=1,u

1, . . . ,u`,Hα,β}. The view of the adversary consists of the messages
it receives in the last round of the protocol, that is, {y0

i , y
1
i }mi=1. We now consider two cases; the

first in which the randomness of the adversary defines T for which T ∈ Tbad and the second case
where T ∈ Tgood.

A outputs T ∈ Tbad. In such a case, in both executions the adversary gets caught with probability
1−2−ρ. This is because both the simulator in the ideal execution and the honest sender in the real
execution choose a secret s uniformly at random in {0, 1}`, and it holds that:

Pr [consistent(T , s) = 1] ≤ 2−ρ

In case the verification does not pass, both the simulator in the ideal execution and the honest sender
in the real execution halt the execution immediately and do not transfer the values {y0

i , y
1
i }`i=1. As

a result, the two execution are clearly identical, since the adversary has no view and the output of
the honest party in both cases are ⊥. The only possibility of failure is in case where the verification
passes although T ∈ Tbad, which happens with probability 2−ρ.

A outputs T ∈ Tgood. Even though T ∈ Tgood, there is still a noticeable probability that the
verification will not pass. Since the secret s is chosen exactly the same way in both executions, the
verification passes or fails with the exact same probability.

If the verification does not pass, i.e., s 6∈ S(T), then in both the real and the ideal executions
there is no transmission, and therefore both executions are identical as above.

We left with the case where T ∈ Tgood and that s ∈ S(T). In such a case, there is a transmission
in both executions. We show that the two are indistinguishable by a mental experiment and consider
the following three executions:

1. The real execution, conditioned on the event where T ∈ Tgood and s ∈ S(T).

2. The real execution, conditioned on the event that T ∈ Tgood and s is chosen from the κ-
source X (T). Below, in Claim 5.13 we show how one can sample from the set S(T) = {s ∈
{0, 1}` | consistent(T , s) = 1} efficiently.

3. The ideal execution, conditioned on the event that T ∈ Tgood and s ∈ S(T).

The only difference between execution 2 and execution 3 are the values {y1−rj
j }mj=1. We recall that

in the ideal execution, these values are uniform and independent, whereas in the real execution for
j = 1, . . . ,m, it holds that y

1−rj
j = x

1−rj
j ⊕H(j, t′j ⊕ s). However, from the fact that H is a strongly

32

κ-min entropy correlation robust (as in Definition 5.11), executions 2 and 3 are computationally
indistinguishable.

The only difference between execution 1 and 2 is the way s is chosen. In the real execution, we
condition on the case where s ∈ S(T), and thus s is distributed uniformly in S(T). In execution 2,
s is chosen uniformly from the set S(T). These two executions are distributed identically.

The case of Protocol 6. We now consider the protocol with the fewer number of checks. Again,
the messages T = {{k0

i ,k
1
i }`i=1,u

1, . . . ,u`} depends only on the randomness of A and therefore are
the same in both executions. Both the honest sender in the real execution, and the simulator in
the ideal execution, choose the functions Φ with the same distribution, and therefore the hashes
H = {Hα,φ(α)}α∈[`],φ∈Φ have the same distribution. As the previous protocol, the case where
(T ,Φ) ∈ Tbad happens with the same probability in both executions and the view of the adversary
is the same in both executions.

Given (T ,Φ,H), the case of (T ,Φ) ∈ Tgood, but for which s 6∈ S(T ,Φ,H), where S(T ,Φ,H) =
{s ∈ {0, 1}` | consistent((T ,Φ,H), s) = 1} also occurs with the same probability, and the view of
the adversary and the output of the honest party are clearly the same in both execution.

The case where (T ,Φ) ∈ Tgood and s ∈ S(T ,Φ,H) is handled as in the equivalent case above.
Specifically, consider an execution where s is chosen from the source X (T ,Φ,H) is defined be-
low. This execution is identical to the real, and by the correlation robustness property of H, this
execution is indistinguishable from the real, since H is a strongly κ-min entropy correlation robust.

Claim 5.13 For any given transcript T ∈ Tgood, there exists an efficient procedure that samples a
uniform secret s from S(T). This procedure is a κ-source.

Proof: We want to show that given the transcript that the adversary has outputted, we can
extract the constraints that are defined by these values, and the bits that are learned from the fact
that the verification has passed. This will give us the ability to sample a value from S(T). Note
that just sampling a random s ∈ {0, 1}`, and performing the same checks as in the honest execution
is not enough, since there are {0, 1}` possible secrets overall, whereas |S(T)| may be an order of 2κ.
As a result, the probability that a random s ∈ {0, 1}` is a consistent secret may be too small.

For a pair (α, β), consider Hα,β = (h0,0
α,β, h

0,1
α,β, h

1,0
α,β, h

1,1
α,β). Let correctp,q(Hα,β) ∈ {0, 1}4 be a

predicate that its value is 1 if and only if hp,qα,β = H(G(kpα)⊕G(kqβ)). Finally, let

correct(Hα,β)
def
= (correct0,0(Hα,β), correct0,1(Hα,β), correct1,0(Hα,β), correct1,1(Hα,β)) .

We also assume that in cases where rα 6= rβ, whenever the adversary sets hp,qα,β that is incorrect,

it sets its value to be H(G(kpα)⊕G(kqβ)⊕uα⊕uβ) in order to maximizes the success probability of
the verification. We note that this condition can be verified as well, and generate new constraints
in case it does not hold. Algorithm 1 describes how one can sample a consistent secret s from a
given transcript T .

33

ALGORITHM 1 (The κ-source X (T): sampling a uniform s from S(T))

Input: A transcript T = {{k0
i ,k

1
i }`i=1,u

1, . . . ,u`,Hα,β}.
1. Extract the following constraints regarding s and store them. For every pair (α, β) extract rα =

uα ⊕G(k0
α)⊕G(k1

α) and rβ in a similar manner. Then:

(a) If rα = rβ :

i. If correct(Hα,β) = (1, 1, 1, 1) then no new constraint is added.

ii. If correct(Hα,β) = (1, 0, 0, 1) then add the constraint sα ⊕ sβ = 0.

iii. If correct(Hα,β) = (0, 1, 1, 0) then add the constraint sα ⊕ sβ = 1.

(b) If rα 6= rβ :

i. If correct(Hα,β) = (1, 1, 0, 0) then add the constraint sα = 0.

ii. If correct(Hα,β) = (0, 0, 1, 1) then add the constraint sα = 1.

iii. If correct(Hα,β) = (1, 0, 1, 0) then add the constraint sβ = 0.

iv. If correct(Hα,β) = (0, 1, 0, 1) then add the constraint sβ = 1.

(c) If rα 6= rβ and only one position of Hα,β is correct - learn both (sα, sβ) and add this as a
constraint. (e.g., if correct(Hα,β) = (1, 0, 0, 0) then add the constraint (sα, sβ) = (0, 0)).)

2. If some of the constraints are contradicting, abort and output ⊥.

3. Otherwise, choose a random s ∈ {0, 1}` under the constraints that were stored above, and output
it.

It is easy to see that the possible outputs of the algorithm are exactly the set S(T). Moreover,
since T ∈ Tgood, it holds that |S(T)| ≥ 2κ. As a result, for every possible output s of the algorithm
X (T), it holds that Pr [X (T) = s] ≤ 2−κ, and thus the min-entropy of X (T) is κ.

Algorithm 1 was designed for the variant of the protocol where we check all pairs. An equiv-
alent source X (K,Φ,H) for the variant of the protocol that does not check all pairs, can also be
constructed in a similar manner. The only difference between the two algorithms is that we do not
run over all possible pairs (α, β) in Step 1 of the algorithm, but rather only all pairs (α, φ(α))φ∈Φ.
This is a κ-source for every (T ,Φ) ∈ Tgood, since the number of possible outputs S is at least 2κ.

5.5 Achieving Covert Security

In this section, we present a more efficient protocol (with fewer base-OTs and checks) with the
property that any deviation from the protocol that can result in a breach of security will be
detected with probability at least 1/2. For details on the definition of covert security, we refer
to [AL10]. Our protocol below is secure under the strong explicit-cheat formulation with deterrent
factor ε = 1

2 .
As in the malicious case, given the set of keys {k0

i ,k
1
i }, and the messages u1, . . . , u`, the sets B

and U are implicitly defined, and we want to catch the adversary if its behaviour defines a set B
with “high” cardinality. Here, we will be content with catching the adversary with probability 1/2,
instead of 1− 2−ρ as in the case of malicious adversaries. As we will show below, our approach for
the consistency check of r enables us to achieve a deterrent factor of 1/2 at the cost of very few
consistency checks. Concretely, it will be enough to use 7 checks of pairs only.

The protocol. In Step 3 of Protocol 5, the sender chooses t random pairs {(αi, βi)}ti=1 uniformly
and independently at random, and sends them to the receiver. The receiver sends Hαi,βi for each
pair (αi, βi) that it was asked. Then, the sender performs the same checks as in the previous

34

protocol: It checks that the receiver replied with hashes for all the pairs (αi, βi) that it was asked
for, and that the hashes that were sent are correct (i.e., as in Step 3b of Protocol 5). We proceed
with a formal statement of the theorem and the proof. We state and prove the theorem with respect
to some concrete choice of parameters.

Theorem 5.14 Assume that H is strongly κ-min-entropy correlation robust, h is a collision resis-
tant and κ-min-entropy correlation robust function, and G is a pseudorandom generator. Assume
the above protocol with the following parameters: ` is the total number of base OTs, t is the number
of checks and ε is the deterrent factor. The protocol computes the m × OTn functionality in the
`×OTκ-hybrid model in the presence of a covert adversary with ε-deterrent factor, if the following
conditions hold:

1. Let δ
def
= (`− κ) · κ− 2t(`− t). Then, we require that δ > 0, and

2. t > log(1−ε)
log

(
1− δ

`2

) .

Proof: The simulator is exactly the same as in Theorem 5.2, where the only difference is the
consistency check. The simulator, as the sender in the real execution, chooses t random pairs
{(αi, βi)}ti=1 uniformly and independently at random. We now show that any cheating attempt
gets caught with probability at least ε.

We again consider the graph of checks, and let V = [`] and the edges are all possible checks.
We divide [`] to B and U as in the proof of Theorem 5.2, and we show that when using t checks,
the probability that the adversary succeeds to pass the verification when B is too “large” is less
than 1 − ε. That is, we show that for every |B| > ` − κ (and thus, |U| < κ), the probability that
the adversary passes the verification is smaller than 1− ε.

There are `2 edges overall, where 2|B| · |U| are edges between B and U , and |B|2 + |U|2 edges
are between B and B, or U and U . We say that an edge is “good” if it goes between B and U .
Recall that in such a check, the adversary is caught with probability at least 1/2.

For the first edge that is chosen, the probability that it is a good edge is 2|B| · |U|/`2. However,
once this specific edge between B and U is chosen, an edge between B and U that is pairwise non-
adjacent with the previously chosen edge is no longer good, since the probability that the adversary
will get caught here is not 1/2. Therefore, we denote by goodi the probability of choosing the
(i+ 1)th “good” edge. That is, the probability that edge ej is good, conditioned on the event that
i good edges were previously chosen in the set {e1, . . . , ej−1}. We have that:

goodi =
2 · (|B| − i) · (|U| − i)

`2
.

This holds because once a good edge is chosen, we do not want to choose an edge that is adjacent
to it. As a result, with each good edge that is chosen, the effective size of the set B and U is
decreased by 1.

In contrast, we denote by badi the probability that the next chosen edge is bad, given that
there were i previous good edges. That is, a bad edge is either an edge between B and B, an edge
between U and U , or is adjacent to one of the 2i vertices of the previously chosen good edges. This
probability is as follows:

badi =
|B|2 + |U|2 + 2i · |U|+ 2i · |B| − 2i2

`2
=
|B|2 + |U|2 + 2i(`− i)

`2

35

That is, a bad edge can be either an edge from B to B, U to U , or an edge between the i vertices
that were chosen with any other vertex. Note, however, that there are some edges that are counted
twice and thus we remove 2i2. In addition, observe that goodi + badi = 1.

When we have t checks, we may have between 0 to t good edges. In case there are d good edges,
the probability that the adversary succeeds to cheat is 2−d. In order to ease the calculation, let
good be the maximal probability of good0, . . . , goodt−1, and let bad be the maximal probability of
bad0, . . . , badt. We get that:

good =
2 · |B| · |U|

`2

and for t < `/2:

bad =
|B|2 + |U|2 + 2t(`− t)

`2
.

Now, consider the edges e1, . . . , et. The probability that the adversary succeeds in its cheating is
the union of succeeds in cheating in each possible combination of checks. In particular, we may
have d = 0, . . . , t good edges, and for each d, there are

(
t
d

)
possible ways to order d good edges

and t − d “bad” edges. Finally, when we have d good edges, the probability that the adversary
succeeds to cheat is 2−d. We therefore have that the probability that the adversary successfully
cheats without being caught is less than:

t∑
d=0

(
t

d

)
· goodd · badt−d · 2−d =

t∑
d=0

(
t

d

)
·
(

1

2
· good

)d
· badt−d =

(
1

2
· good + bad

)t
Recall that δ = (` − κ) · κ − 2t(` − t) and that δ > 0. For every κ < |B| < `/2 it holds that

(`− κ) · κ < |B| · |U|, and thus 2t(`− t) < |B| · |U| − δ which implies that:(
1

2
· good + bad

)t
≤

(
|B|2 + |U|2 + 2t(`− t) + |B| · |U|

`2

)t
≤
(
|B|2 + |U|2 + 2|B| · |U| − δ

`2

)t
≤

(
(|B|+ |U|)2 − δ

`2

)t
=

(
1− δ

`2

)t
< 1− ε ,

Where the last step is true since t > log(1− ε)/ log(1− δ
`2

).

It is easy to verify that the statement holds for κ = 128, ` = 166, ε = 0.5 and t = 7. We will
use these parameters in our experiments.

6 Special Purpose OT Functionalities

The protocols described up until now implement the m×OT` functionality. In the following, we
present further optimizations that are specifically tailored to the use of OT extensions in secure
computation protocols summarized in Table 4: Correlated OT (§6.1), Sender Random OT (§6.2),
Receiver Random OT (§6.3), and Random OT (§6.4). We first give the intuition and overview of
the functionalities and then present a formal definitions and proofs of security.

6.1 Correlated OT (C-OT)

When performing OT extension, often the sender does not need to transfer two independent n-
bit strings (x0

j , x
1
j). In some protocols, x0

j and x1
j only need to be correlated by a value ∆j and a

36

correlation function f∆j , while one of the two strings can be constant and publicly known or random.
For instance, the Private Set-Intersection protocol of [DCW13] fixes x0

j = 0 and transfers only x1
j

(hence, we can set ∆j = x1
j and f∆j (x

0
j) = ∆j) and the Hamming Distance Protocol of [BCP13]

requires a random x0
j and a correlated x1

j = f∆j (x
0
j) = x0

j + ∆j . We can alter the functionality of

our OT extension protocols to compute correlated OT as follows. Since x0
j is just a random value,

PS can set x0
j = H(j,qj) and x1

j = f∆j (x
0
j) and can send the single value yj = x1

j ⊕H(j,qj ⊕ s).
PR defines its output as H(j, tj) if rj = 0 or as yj ⊕H(j, tj) if rj = 1. For OT on n-bit strings, we
thereby reduce the communication from PS to PR from 2n+ ` to n+ ` per OT.

Defining the functionality. The input x0
j of the sender is implicitly defined by the protocol.

Nevertheless, the sender may choose x1
j in any arbitrarily way, including as an arbitrary function

of x0
j . That is, in the protocol the sender has the freedom to choose x1

j as a function of x0
j . When

defining the corresponding functionality, we need to model this fact. As a result, the functionality
C-OT is defined as a reactive functionality, where the functionality chooses x0

j at random, gives

it to the sender, and then the sender replies with its choice for x1
j . We proceed with a formal

description of the functionality (Functionality 1), the protocol (Protocol 7) and its proof of security
(Theorem 6.1).

FUNCTIONALITY 1 (The Correlated OT Functionality C-OT)

1. PR sends its input r = (r1, . . . , rm).

2. The functionality chooses m random n-bit strings x01, . . . , x
0
m and send them to PS .

3. PS sends x11, . . . , x
1
m to the functionality.

4. PR gets as output xr11 , . . . , x
rm
m .

PROTOCOL 7 (Implementing Correlated OT (C-OT))

We follow protocol 4, where the sender has input f∆1 , . . . , f∆m instead of (x0
1, x

1
1), . . . , (x0

m, x
1
m). In

Step 4c, we have the following modification:

1. PS defines x0
j = H(j,qj) and x1

j = f∆j (x
0
j).

2. PS sends yj for every 1 ≤ j ≤ m, where: yj = x1
j ⊕H(j,qj ⊕ s) .

3. For 1 ≤ j ≤ m, PR computes xj = H(j, tj) if rj = 0, and xj = yj ⊕H(j, tj) otherwise.

Output: PS outputs (x0
1, x

1
1), . . . , (x0

m, x
1
m), PR outputs r.

Theorem 6.1 Assuming that H is a programmable random oracle and G is a pseudorandom gener-
ator, then Protocol 7 (with appropriate choice of parameters, as in Claim 5.8 and Table 3) securely
computes the C-OT functionality (Functionality 1) in the `×OTκ-hybrid model in the presence of
a static malicious adversary.

Proof Sketch: We sketch the simulator and the proof, and relate to the full proof of the protocol
(Theorem 5.2).

The case of corrupted Sender. The case of corrupted sender here is more subtle than the proof
of the general protocol, and the functionality is now a reactive one. Moreover, we prove security in
the programmable random oracle model.

37

The simulator chooses a random input r and follows the execution of the protocol with the
corrupted sender and with an honest receiver with input r. Specifically, the adversary first outputs a
vector s of size `. The simulator chooses random {k0

i ,k
1
i }`i=1 and sends them back to the adversary,

together with the ui messages and the necessary checks Hα,β, all set according to the protocol
specifications. Note that this determines the matrices T and Q.

The simulator then receives the inputs x0
1, . . . , x

0
m from the trusted party, and it programs the

random oracle H such that for every 1 ≤ j ≤ m, H(j,qj) = x0
j and chooses random output

for H(j,qj ⊕ s). In case the adversary has already queried H for one of these values before the
simulator programs it, the simulator is failed. The simulator receives from the adversary the
messages y1, . . . , ym, defines for every 1 ≤ j ≤ m the input x1

j = yj ⊕H(j,qj ⊕ s), and sends the

inputs x1
1, . . . , x

1
m to the trusted party.

Clearly, the probability that the adversary that makes at most q queries to H(j,qj) or H(j,qj⊕
s) before it receives the messages u1, . . . ,u` is bounded by q · 2−`, and therefore the probability
that the simulation fails is bounded by this amount.

The case of corrupted Receiver. The simulator is the same as in Theorem 5.2, where in the
last step, instead of sending to the adversary the two messages y0

j , y
1
j , it sends only y1

j . Note that

if no critical query (as in Definition 5.5) then the input x
1−rj
j is hidden from the adversary or the

distinguisher. Specifically, in case rj = 0, the value tj = qj and therefore H(j,qj⊕s) is distributed
uniformly, and the value yj = x1

j ⊕H(j,qj ⊕ s) is distributed uniformly as well. In case rj = 1 it

holds that tj = qj ⊕ s, which implies that x0
j = H(j,qj) = H(j, tj ⊕ s) is distributed uniformly

and hidden from the adversary.

6.2 Sender Random OT (SR-OT)

When using OT extensions for implementing the OT-based Private Set Intersection (PSI) protocol
of [PSZ14, PSSZ15], the efficiency can be improved even further. In this case, the inputs for PS
in every OT are independent random strings m0 and m1. Thus, the sender can allow the OT
extension protocol (functionality) Sender Random OT (SR-OT) to determine both of its inputs
randomly. This is achieved in the OT extension protocol by having PS define m0 = H(j,qj)
and m1 = H(j,qj ⊕ s). Then, PR computes mrj just as H(j, tj). With this optimization, we
obtain that the entire communication in the OT extension protocol consists only of the initial
base-OTs, together with the messages u1, . . . ,uκ, and there are no yj messages. This is a dramatic
improvement of bandwidth. In particular, for the OT-PSI protocol of [PSZ14, PSSZ15], which
performs O(nσ) OTs on ρ + 2 log2(n) bit-strings, where n is the number of elements in both
parties sets, σ is the bit-length of each element, and ρ is the statistical security parameter, the
communication from PS to PR is reduced from O(nσ) to O(n).

Formal description of the functionality. We proceed with a formal description of the func-
tionality (Functionality 2), the protocol (Protocol 8) and its proof of security (Theorem 6.2).

Theorem 6.2 Assuming that H is a programmable random oracle, G is a pseudorandom generator,
Protocol 8 (with appropriate choice of parameters, as in Claim 5.8 and Table 3) securely computes
the SR-OT functionality (Functionality 2) in the `× OTκ-hybrid model in the presence of a static
malicious adversary.

Proof Sketch: The case of corrupted Sender. We prove security in the programmable random

38

FUNCTIONALITY 2 (Sender Random OT)

• Input: PS holds no input, PR holds r = (r1, . . . , rm).

• The functionality: The functionality chooses m pairs of random strings of size n each,
(x01, x

1
1), . . . , (x0m, x

1
m).

• Output: PS outputs (x01, x
1
1), . . . , (x0m, x

1
m). PR outputs (xr11 , . . . , x

rm
m).

PROTOCOL 8 (Implementing Sender Random OT (SR-OT))

We follow Protocol 4, where the sender does not have any input. In Step 4c, we have the following
modification:

1. PS defines x0
j = H(j,qj) and x1

j = H(j,qj ⊕ s) for every 1 ≤ j ≤ m.

2. PR defines x
rj
j = H(j, tj) for every 1 ≤ j ≤ m. Note that there is no interaction between the

parties in this step.

Output: The sender outputs (x0
j , x

1
j), the receiver outputs x

rj
j .

oracle model.
The simulator chooses a random input r and follows the execution of the protocol with the

corrupted sender and with an honest receiver with input r. Specifically, the adversary first outputs a
vector s of size `. The simulator chooses random {k0

i ,k
1
i }`i=1 and sends them back to the adversary,

together with the ui messages and the necessary checks Hα,β, all set according to the protocol
specifications. Note that this determines the matrices T and Q.

The simulator then receives the inputs (x0
1, x

1
1), . . . , (x0

m, x
1
m) from the trusted party, and it

programs the random oracle H such that for every 1 ≤ j ≤ m, H(j,qj) = x0
j and H(j,qj⊕s) = x1

j .

The case of corrupted Receiver. The simulator is the same as in Theorem 5.2, where the only
modification is that the simulator does not send the receiver any message in the transfer phase.
Assuming that the receiver or the distinguisher do not make any critical query (Definition 5.5), the
value H(j, tj ⊕ s) is hidden and distributed uniformly. In case where rj = 0, this value is x1

j and in

case where rj = 1, it is x0
j . The theorem follows.

6.3 Receiver Random OT (RR-OT)

Analogously to the Sender Random OT, in the Receiver Random OT (RR-OT), PR obtains his
input choice bits r as random output of the protocol execution. Our instantiation of RR-OT in OT
extension allows PR to save one bit of communication per OT. Recall that in Step 2(a) in Protocol 4,
PR sends ui = G(k0

i)⊕G(k1
i)⊕ r for 1 ≤ i ≤ `. However, if we allow r to be randomly chosen, we

can set r = G(k0
1)⊕G(k1

1) and t1 = G(k0
1) and only need to transfer ui

′
= G(k0

i′)⊕G(k1
i′)⊕ r for

2 ≤ i′ ≤ `. PS can then compute q1 = G(ks11) and, as before, qi
′

= (si′ · ui
′
) ⊕ G(k

si′
i′). Thereby,

the communication from PR to PS is reduced by one bit per OT.
We proceed with a formal description of the functionality (Functionality 3), protocol (Protocol 9)

and its proof of security (Theorem 6.3).

Theorem 6.3 Assuming that H is a random oracle, G is a pseudorandom generator, Protocol 9
(with appropriate choice of parameters, as in Claim 5.8 and Table 3) securely computes the RR-OT
functionality (Functionality 3) in the ` × OTκ-hybrid model in the presence of a static malicious
adversary.

39

FUNCTIONALITY 3 (The Receiver Random OT Functionality (RR-OT))

• Input: PS holds m pairs (x01, x
1
1), . . . , (x0m, x

1
m) of n-bit strings.

• In case of corrupted receiver: PR sends m-bits r = (r1, . . . , rm) to the functionality.

• In case of honest receiver: PR has not input. The functionality chooses m random bits
r = (r1, . . . , rm).

• Output: PS has no output; PR outputs (xr11 , . . . , x
rm
m) and r.

PROTOCOL 9 (Implementing Receiver Random OT (RR-OT))

We follow Protocol 4 with the following modifications:

1. PR has no input.

2. Given the chosen keys {k0
i ,k

1
i }`i=1, PR sets r = G(k0

1)⊕G(k1
1).

3. For every 2 ≤ i ≤ `, PR sets ui = G(k0
i)⊕G(k1

i)⊕ r, and sends u2, . . . ,u` to PS . Note that u1 is
not sent.

4. In case of our actively secure OT extension protocol, the parties check consistency as previously.

5. PR defines T = [t1 | . . . | t`] where ti = G(k0
i) for every 1 ≤ i ≤ ` as in Protocol 4.

6. PS defines Q = [q1 | . . . | q`] where q1 = G(ks11), and for every 2 ≤ i ≤ `, qi is defined as in
Protocol 4, i.e., qi = G(k0

i) if si = 0; otherwise, set qi = ui ⊕G(k1
i).

7. The parties proceed with the execution as in Protocol 4.

Proof Sketch: Note that the random oracle does not have to be programmable. Regarding
correctness, for every 2 ≤ i ≤ ` it holds that qi = ti ⊕ (si · r). For i = 1, if s1 = 0 then
q1 = G(k0

1) = ti; in case s1 = 1 then q1 = G(k1
1) = G(k0

1)⊕r = ti⊕r, and therefore q1 = t1⊕(s1 ·r)
as well.

The case of corrupted sender. The simulator is exactly the same as in Theorem 5.2, i.e., the
simulator chooses an random r′ and plays the role of an honest receiver with input r′. There is
no contradiction between the simulated execution (where the input of the receiver is r′) and the
actual value r chosen by the trusted party, for the same reasons that the simulator in Theorem 5.2
succeeds with the simulation for some random input r′ whereas the receiver uses its true input r
to the trusted party.

The case of corrupted receiver. The only difference is that the simulator sends the messages
u2, . . . ,u` (excluding u1). In particular, the input r that the simulator extracts is the most re-
peated ri value according to the messages u2, . . . ,u`, and define r1 as G(k0

i)⊕G(k1
i). The theorem

follows from the correctness argument as above, and Theorem 5.2.

6.4 Random OT (R-OT)

In a random OT, both PS and PR obtain their input as random output of the protocol. The random
OT functionality can be obtained by combining the SR-OT protocol with the RR-OT protocol.
Random OT can be used in the GMW protocol when pre-computing random multiplication triples
(see §2.7). We proceed with a formal description of the functionality (Functionality 4), the protocol
(Protocol 10) and its proof of security (Theorem 6.4).

40

FUNCTIONALITY 4 (Functionality Random OT R-OT)

• Inputs: PS has no input, and the functionality chooses m pairs of n-bit strings
(x01, x

1
1), . . . , (x0m, x

1
m).

• In case of corrupted receiver: PR sends m-bits r = (r1, . . . , rm) to the functionality.

• In case of honest receiver: PR has no input. The functionality chooses m random bits
r = (r1, . . . , rm).

• Output: PS outputs (x01, x
1
1), . . . , (x0m, x

1
m). PR outputs (xr11 , . . . , x

rm
m) and r.

PROTOCOL 10 (Implementing Random-OT R-OT)

This is a simple combination of Protocols 8 and 9. Specifically, PR defines its input as G(k0
1) ⊕G(k1

1),
and PS defines its inputs x0

j , x
1
j according to H(j,qj), H(j,qj ⊕ s), respectively, for every 1 ≤ j ≤ m.

There is no transmission of u1 from PR to PS , and there is no transmission of y0
j , y

1
j from PS to PR for

every 1 ≤ j ≤ m.

Theorem 6.4 Assuming that H is a programmable random oracle, G is a pseudorandom generator,
Protocol 10 (with appropriate choice of parameters, as in Claim 5.8 and Table 3) securely computes
the R-OT functionality (Functionality 4) in the ` × OTκ-hybrid model in the presence of a static
malicious adversary.

Proof Sketch: The proof follows from Theorems 6.3 and 6.2. In particular, in case of corrupted
sender the simulator receives the inputs (x0

1, x
1
1), . . . , (x0

m, x
1
m) from the trusted party, and it pro-

grams the random oracle H such that for every 1 ≤ j ≤ m, H(j,qj) = x0
j and H(j,qj ⊕ s) = x1

j .
In case of a corrupted receiver, the input r that the simulator extracts and sends to the trusted
party is the most repeated ri value according to the messages u2, . . . ,u` (where r1 is defined as
G(k0

1)⊕G(k1
1)).

Summary. The original OT extension protocol of [IKNP03] and our proposed improvements for
m×OTn are summarized in Tab. 4. We compare the communication complexity of PR and PS for
m parallel 1-out-of-2 OT extensions of n-bit strings, with security parameter κ and ` base-OTs (we
omit the cost of the initial κ×OTκ). We also compare the assumption on the function H needed
in each protocol, where CR denotes Correlation Robustness and RO denotes Random Oracle.

Protocol Applicability PR → PS PS → PR H

Original [EGL85]+[IKNP03] All applications m` 2mn CR
C-OT §6.1 x0

j random; x1
j correlated with ∆j m` mn RO

SR-OT §6.2 x0
j , x

1
j random, rj chosen m` 0 RO

RR-OT §6.3 x0
j , x

1
j chosen, rj random m(`− 1) 2mn RO

R-OT §6.4 x0
j , x

1
j , rj random m(`− 1) 0 RO

Table 4: Bits sent for sender PS and receiver PR for m 1-out-of-2 OT extensions of n-bit strings and
security parameter κ for the semi-honest OT extension protocol of [IKNP03] with our optimizations.

41

7 Experimental Evaluation

In this section, we empirically evaluate our optimizations and proposed protocols. In §7.1 we
describe our benchmarking environment and implementation. In §7.2 we evaluate the optimizations
on the passively secure OT extension protocol of [IKNP03], outlined in §4. In §7.3, we evaluate the
special purpose OT functionalities, presented in §6. In §7.4, we evaluate the performance of our
covert and actively secure OT extension protocol, presented in §5. Finally, in §7.5, we evaluate the
overhead for the min-entropy correlation robustness assumption from §5.4 compared to the random
oracle assumption.

7.1 Benchmark Setting

Parameters and Instantiation. In all our experiments, we assume long-term security (cf. Ta-
ble 2), i.e., we set the symmetric security parameter κ = 128-bit and use the 283-bit Koblitz curve
of [NIS12]. We instantiate the pseudorandom generator using AES-CTR and the correlation-robust
function as well as the random oracle using SHA256. We process the OTs blockwise with blocks
of size w = 219. We use the OT protocol of [NP01] in the random oracle model as base-OT pro-
tocol for the passively secure OT extension protocols and the OT protocol of [CO15] as base-OT
protocol for the actively secure OT extension protocols. As parameters for our actively secure
protocol we use 190 base-OTs and 380 checks and for our covert secure protocol we use 166 base-
OTs and 7 checks as these parameters resulted in the best performance. For the actively secure
protocol of [NNOB12], we use the parameters in the paper, i.e. 342 base-OTs and 171 checks. Our
implementation is available online at http://encrypto.de/code/OTExtension.

3-step OT Extension. To generate large numbers m > w = 219 of OTs for the actively secure
OT extension protocols, we perform a 3-step OT, where PS and PR first perform ` base-OTs, then
extend these ` OTs to dm`/we OTs using the respective OT extension protocols, and finally split
these dm`/we OTs into m/w blocks of ` OTs and extend each block to w OTs again using the
respective OT extension protocol to obtain the m OTs. In case m > wbw/`c, one can simply
extend this approach again and do a 4-step OT.

1-out-of-2 R-OT on bits via 1-out-of-N OT [KK13]. For the passively secure 1-out-of-N OT
extension protocol of [KK13], we use N = 16, since this resulted in the lowest communication, and
hence convert one 1-out-of-16 OT to four 1-out-of-2 OTs. In particular, we compute the SR-OT
functionality and convert the i-th 1-out-of-16 OT with 4-bit outputs values (z0

i , ..., z
15
i) ∈ {0, 1}64

to the 4i-th to (4i + 3)-th 1-out-of-2 OTs with single bit output values (x0
4i, x

1
4i), ..., (x

0
4i+3, x

1
4i+3)

as: (x0
4i||x0

4i+1||x0
4i+2||x0

4i+3) = z0
i and (x1

4i||x1
4i+1||x1

4i+2||x1
4i+3) = z15

i . For the remaining values

(z1
i , ..., z

14
i), PS sends 4-bit correction values yji = zji ⊕ (xj04i ||x

j1
4i+1||x

j2
4i+2||x

j3
4i+3) for 1 ≤ j ≤ 14,

j = j0||j1||j2||j3 and j0 is the least significant bit of j. Thereby, we do not need to send the correction
values for z0

i and z15
i which saves 8-bits of communication per 1-out-of-16 OT. To compute the RR-

OT functionality, PR randomly selects four bit positions that uniquely determine the codeword
in the base-OTs and omits the sending of the correction values u for these positions. Note, that
the [KK13] OT can also be instantiated with N ∈ {2, 4, 8}, which would increase communication
but reduce computation complexity. As a special case, if N = 2 and when using a repetition code,
the [KK13] protocol would be equal to the [IKNP03] protocol.

Benchmark Environment. We perform our experiments in two settings: a LAN setting and
a WAN setting. In the LAN setting, we run the sender and receiver routines on two Desktop

42

http://encrypto.de/code/OTExtension

PCs, each equipped with an Intel Haswell i7-4770K CPU with 4 cores and AES-NI support and 16
GB RAM that are connected by Gigabit Ethernet. In the WAN setting, we run the sender on an
Amazon EC2 m3.xlarge instance with a 2.5 GHz Intel Xeon E5-2670v2 CPU with 4 virtual CPUs
(vCPUs) and 15 GB RAM, located in North Virginia (US EAST) and the receiver routine on one of
our Desktop PCs in Europe. The average bandwidth between these two machines was 120MBit/s
and the average ping latency (round-trip time) was 100 ms.

7.2 Evaluation of Semi-Honest OT Extension

In the following, we evaluate the performance gains from our optimizations on the passively secure
OT extension protocol of [IKNP03] described in §4. We benchmark the protocol in three versions:
the original passively secure OT extension protocol of [IKNP03] with naive matrix transposition, the
protocol of [IKNP03] with the Eklundh matrix transposition (cf. §4.2), and our improved passively
secure OT extension protocol (cf. §4.3), including the Eklundh matrix transposition. We evaluate
all three versions using the Random OT functionality (cf. §6.4) as this functionality reduces the
overhead for the last step in the protocol and hence lets us evaluate the core-efficiency of the
protocol more precisely. We vary the number of OTs from 210 (=1,024) to 224 (=16,777,216) and
fix the bit-length of the transferred strings to 128. The results in the LAN and WAN setting are
given in Figure 2.

In both the LAN and WAN setting, we were able to decrease the run-time by factor 2-3. In
the LAN setting, the efficient matrix transposition from §4.2 had the highest impact while our
protocol optimization from §4.3 only slightly decreased the run-time. This can be explained by
the computation being the bottleneck in the LAN setting, hence the communication improvement
from our protocol optimization had only little effect. In the WAN setting, on the other hand, the
communication improvement from our protocol optimization resulted in a higher run-time decrease
than the efficient matrix transposition because in this setting communication is the main bottleneck.
For smaller number of OTs, the base-OTs have a high impact on the total run-time, hence the run-
time of all protocols is similar. However, the base-OTs amortize for higher number of OTs and the
improvements on the OT extension protocols can be seen more clearly. Note that the dent for 219

OTs for both the LAN and WAN setting is due to the block size of our implementation. More than
219 OTs are processed in multiple blocks, resulting in a better amortization.

7.3 Evaluation of Special Purpose OT Functionalities

Next we evaluate the performance of the special purpose OT functionalities, outlined in §6. We use
the performance of the Random OT (R-OT) (cf. §6.4) as base-line and evaluate the overhead that is
added when using the the original OT, Correlated OT (C-OT) (cf. §6.1), and Sender Random OT
(SR-OT) (cf. §6.2) functionalities. Simialar to the evaluation of semi-honest protocol optimizations,
we vary the number of OTs from 210 (=1,024) to 224 (=16,777,216) and fix the bit-length of the
transferred strings to 128. The results for the LAN and WAN scenario are given in Figure 3.

From the results we can observe that the standard OT functionality and the C-OT functionality
are both slower than the R-OT functionality. The SR-OT, on the other hand, has a similar
performance as the R-OT since R-OT only reduces the communication by a single bit per OT.
In the LAN setting, the performance difference is nearly negligible (224 R-OTs need 13.1 s while
the same number of OTs require 13.6 s), since the improvements from R-OT mainly affect the
communication complexity which is not the bottleneck in the LAN setting. In the WAN setting,

43

 0.01

 0.1

 1

 10

 100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
tim

e
(s

)

Number of OTs (2x)

[IKNP03]
EMT §4.2

 Full Opt §4.3

{30.4 s}
{13.2 s}
{13.1 s}

(a) LAN Setting

 0.01

 0.1

 1

 10

 100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
tim

e
(s

)

Number of OTs (2x)

[IKNP03]
EMT §4.2

 Full Opt §4.3

{44.9 s}
{37.6 s}
{19.5 s}

(b) WAN Setting

Figure 2: Run-time for passively secure R-OT extension on 128-bit strings in the LAN (a)- and
WAN (b) setting. Time for 224 OTs given in {}.

however, the performance improvements of (S)R-OT are higher, since the communication is the
bottleneck and the C-OT and standard OT functionality have to send messages from the sender
to the receiver. Evaluating 224 OTs in the WAN setting requires 23.0 s for the standard OT
functionality, 20.7 s for the C-OT functionality, 19.7 s for SR-OT, and 19.5 s for R-OT.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
tim

e
O

ve
rh

ea
d

(s
)

Number of OTs (2x)

Standard OT
C−OT §6.1

 SR−OT §6.2

{0.5 s}
{0.4 s}
{0.0 s}

(a) LAN Setting

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
tim

e
O

ve
rh

ea
d

(s
)

Number of OTs (2x)

Standard OT
C−OT §6.1

 SR−OT §6.2

{3.5 s}
{1.2 s}
{0.2 s}

(b) WAN Setting

Figure 3: Run-time overhead over R-OT for different OT flavors using the semi-honest OT extension
on 128-bit strings in the LAN (a)- and WAN (b) setting. Run-time overhead for 224 OTs given
in {}.

44

 0.01

 0.1

 1

 10

 100

 1000

101112131415161718192021222324252627282930

R
un

−
tim

e
(s

)

Number of OTs (2x)

[NNOB12] (act)
This work (act)

 This work (cov)
[KK13] (pas)

This work (pas)

{17.2 s}
{16.6 s}
{12.8 s}
{27.1 s}
{11.3 s}

(a) LAN Setting Single Thread

 0.01

 0.1

 1

 10

 100

 1000

101112131415161718192021222324252627282930

R
un

−
tim

e
(s

)

Number of OTs (2x)

[NNOB12] (act)
This work (act)

 This work (cov)
[KK13] (pas)

This work (pas)

{9.1 s}
{7.3 s}
{4.5 s}
{7.8 s}
{3.8 s}

(b) LAN Setting Four Threads

 0.1

 1

 10

 100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
tim

e
(s

)

Number of OTs (2x)

[NNOB12] (act)
This work (act)

 This work (cov)
[KK13] (pas)

This work (pas)

{52.7 s}
{28.9 s}
{24.3 s}
{38.8 s}
{19.0 s}

(c) WAN Setting Single Thread

 0.1

 1

 10

 100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
tim

e
(s

)

Number of OTs (2x)

[NNOB12] (act)
This work (act)

 This work (cov)
[KK13] (pas)

This work (pas)

{50.4 s}
{30.5 s}
{26.1 s}
{20.8 s}
{18.8 s}

(d) WAN Setting Four Threads

Figure 4: Run-time for single thread (a,c) and multi thread (b,d) passively, covert, and actively
secure R-OT extension protocols on 1-bit strings in the LAN (a,b)- and WAN (c,d) setting. Time
for 224 OTs given in {}.

7.4 Evaluation of Actively Secure OT Extension

Here we evaluate our covert- and actively secure OT extension protocols of §5 and compare their
performance to the actively secure protocol of [NNOB12], the passively secure 1-out-of-N OT
protocol of [KK13], and our optimized version of the passively secure protocol of [IKNP03]. We
benchmark all five protocols on the 1-bit Random OT functionality and vary the number of OTs
from 210 (=1,024) to 230 (=1,073,741,824) in the LAN setting and to 224 (=16,777,216) in the
WAN setting. We evaluate the protocols once using one thread for both parties and once using
four threads for both parties to highlight the effect of increased computing power. The single-
and multi-thread results are given in Figure 4. To evaluate the improvement when using multiple

45

threads in parallel, we benchmark all protocols in the LAN setting on a fixed number of 226 random
OTs with increasing number of threads from 1 to 4 and give the results in Table 5.

Single Thread. As expected, we can observe that the run-time increases with the provided security
as our passively secure OT extension protocol outperforms our covert secure protocol which again
outperforms both actively secure protocols in both LAN and WAN. The only exception to this
is the passively secure 1-out-of-N OT extension of [KK13], which is slowest in the LAN setting
and second slowest in the WAN setting due to its higher computational overhead. In the LAN
setting, the actively secure protocol of [NNOB12] outperforms our actively secure protocol since our
protocol has a larger computational overhead for the check routine. In the WAN setting, however,
the communication becomes the bottleneck and the overhead for the communication of [NNOB12]
outweighs the computational overhead for the check routine of our protocol. In fact, in the WAN
setting, the run-time overhead of the covert- and actively secure OT extension protocols over
the passively secure protocol is proportional to their communication overhead. Our covert secure
protocol has a communication and run-time overhead of 130%, our actively secure protocol has a
communication overhead of 148% and a run-time overhead of 152%, and the actively secure protocol
of [NNOB12] has a communication overhead of 267% and a run-time overhead of 277%.

Multiple Threads. The main improvement when increasing the number of threads can be seen in
the LAN setting, were the run-time of all protocols was improved. In particular the passively secure
OT extension protocol of [KK13] and our actively secure protocol benefit most from the increased
number of threads (cf. Table 5). The better scaling of these protocols can again be explained by
their lower communication, which becomes the bottleneck when using multiple threads even in the
LAN setting. In the WAN setting, the run-times for nearly all protocols remain unchanged even
when using multiple threads since already a single thread is able to utilize the full bandwidth. The
only exception to this is the passively secure protocol of [KK13], which nearly achieves the same
run-times as our passively secure protocol.

Protocol 1 Thread 2 Threads 3 Threads 4 Threads Improvement 1 7→ 4

[NNOB12] (act) 65.8 s 34.6 s 27.2 s 27.3 s 2.4×
This work (act) 64.7 s 33.1 s 23.7 s 18.8 s 3.4×
This work (cov) 49.9 s 25.8 s 18.2 s 15.1 s 3.3×
This work (pas) 44.1 s 22.7 s 15.9 s 13.2 s 3.3×
[KK13] (pas) 107.7 s 54.6 s 37.4 s 29.5 s 3.7×

Table 5: Run-time for increasing number of threads and time improvement of 4 threads over 1
thread when evaluating 226 random OT extensions on 1-bit strings in the LAN setting.

7.5 Evaluation of Min-Entropy Correlation Robustness

We empirically evaluate the overhead when using the min-entropy correlation robust (MECR)
version (cf. §5.4) instead of the random oracle (RO) version (cf. §5.1) of our actively secure OT
extension protocol. Recall, that we achieve the min-entropy correlation robustness by changing
Step 4c in Protocol 5 such that the sender chooses random dj ∈ {0, 1}` and computes y0

j =

x0
j ⊕H(j,qj⊕dj) and y1

j = x1
j ⊕H(j,qj⊕dj⊕s). The sender then sends (dj , y

0
j , y

1
j) to the receiver

who computes xj = y
rj
j ⊕H(j, tj ⊕ dj). We benchmark the protocol on 210 to 224 actively secure

46

random OTs on 1-bit strings in the LAN setting and give the overhead of the MECR version over
the RO version in Figure 5.

From the results we can observe that the MECR version adds a constant overhead per block of
OTs. While this overhead remains constant and low for less than 219 OTs, it grows linearly in the
number of OTs that are processed. For 224 OTs, the difference amounts to 1.4 s, where the MECR
version has a run-time of 30.3 s, while the RO version has a run-time of 28.9 s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
tim

e
O

ve
rh

ea
d

(s
)

Number of OTs (2x)

 MECR §5.3 {1.4 s}

Figure 5: Run-time overhead of the min-entropy correlation robustness (MECR) version of our
actively secure OT extension protocol compared to the random oracle version using random OT
on 1-bit strings in the LAN setting. Time overhead for 224 OTs given in {}.

Acknowledgements

This work is partially supported by the European Union’s Seventh Framework Program (FP7/2007-
2013) grant agreement n. 609611 (PRACTICE). The first author is supported by the Israeli Centers
of Research Excellence (I-CORE) Program (Center No. 4/11). The second author is supported
by the European Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC consolidators grant agreement n. 615172 (HIPS). The third and fourth
authors are supported by the German Federal Ministry of Education and Research (BMBF) within
CRISP, by the DFG as part of project E4 within the CRC 1119 CROSSING, and by the Hessian
LOEWE excellence initiative within CASED. We would like to thank the anonymous reviewers of
the Journal of Cryptology for their valuable comments on our work. Moreover, we thank Peter
Scholl for pointing out a security flaw for the case of a corrupted malicious sender in an earlier
version of this paper.

References

[AL10] Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for
realistic adversaries. In Journal of Cryptology, volume 23(2), pages 281–343. Springer,
2010.

47

[ALSZ13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer
and extensions for faster secure computation. In ACM Computer and Communications
Security (CCS’13), pages 535–548. ACM, 2013. Code: http://encrypto.de/code/

OTExtension.

[ALSZ15] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer
extensions with security for malicious adversaries. In Advances in Cryptology – EU-
ROCRYPT’15, volume 9056 of LNCS, pages 673–701. Springer, 2015. Full version:
http://eprint.iacr.org/2015/061.

[BCP13] J. Bringer, H. Chabanne, and A. Patey. SHADE: secure hamming distance computation
from oblivious transfer. In Financial Cryptography and Data Security (FC’13), volume
7862 of LNCS, pages 164–176. Springer, 2013.

[Bea91] D. Beaver. Efficient multiparty protocols using circuit randomization. In Advances in
Cryptology – CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer, 1991.

[Bea96] D. Beaver. Correlated pseudorandomness and the complexity of private computations.
In Symposium on the Theory of Computing (STOC’96), pages 479–488. ACM, 1996.

[BHKR13] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key
blockcipher. In IEEE Symposium on Security and Privacy (S&P’13), pages 478–492.
IEEE, 2013.

[BLN+15] S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini, P. Scholl,
and N. P. Smart. High performance multi-party computation for binary circuits based
on oblivious transfer. IACR Cryptology ePrint Archive, 2015:472, 2015.

[BNP08] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: a system for secure multi-party
computation. In ACM Computer and Communications Security (CCS’08), pages 257–
266. ACM, 2008.

[Can00] R. Canetti. Security and composition of multiparty cryptographic protocols. J. Cryp-
tology, 13(1):143–202, 2000.

[CHK+12] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein. Secure multi-party
computation of Boolean circuits with applications to privacy in on-line marketplaces.
In Cryptographers’ Track at the RSA Conference (CT-RSA’12), volume 7178 of LNCS,
pages 416–432. Springer, 2012.

[CO15] T. Chou and C. Orlandi. The simplest protocol for oblivious transfer. In Progress in
Cryptology – LATINCRYPT’15, volume 9230 of LNCS, pages 40–58. Springer, 2015.

[DCW13] C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: An
efficient and scalable protocol. In ACM Computer and Communications Security
(CCS’13), pages 789–800. ACM, 2013.

[DLT14] I. Damg̊ard, R. Lauritsen, and T. Toft. An empirical study and some improvements
of the MiniMac protocol for secure computation. In Security and Cryptography for
Networks (SCN’14), volume 8642 of LNCS, pages 398–415. Springer, 2014.

48

http://encrypto.de/code/OTExtension
http://encrypto.de/code/OTExtension
http://eprint.iacr.org/2015/061

[DSZ15] D. Demmler, T. Schneider, and M. Zohner. ABY - a framework for efficient mixed-
protocol secure two-party computation. In Network and Distributed System Security
(NDSS’15). The Internet Society, 2015.

[DZ13] I. Damg̊ard and S. Zakarias. Constant-overhead secure computation of Boolean circuits
using preprocessing. In Theory of Cryptography Conference (TCC’13), volume 7785 of
LNCS, pages 621–641. Springer, 2013.

[EFG+09] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. Privacy-
preserving face recognition. In Privacy Enhancing Technologies Symposium (PETS’09),
volume 5672 of LNCS, pages 235–253. Springer, 2009.

[EFLL12] Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell. SCAPI: the secure computation
application programming interface. Cryptology ePrint Archive, Report 2012/629, 2012.
Online: http://eprint.iacr.org/2012/629.

[EGL85] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
In Communications of the ACM, volume 28(6), pages 637–647. ACM, 1985.

[Ekl72] J. O. Eklundh. A fast computer method for matrix transposing. In IEEE Transactions
on Computers, volume C-21(7), pages 801–803. IEEE, 1972.

[FAZ05] K. Frikken, M. Atallah, and C. Zhang. Privacy-preserving credit checking. In Electronic
Commerce (EC’05), pages 147–154. ACM, 2005.

[FKOS15] T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. A unified approach to MPC
with preprocessing using OT. In Advances in Cryptology – ASIACRYPT’15, volume
9452 of LNCS, pages 711–735. Springer, 2015.

[FN13] T. K. Frederiksen and J. B. Nielsen. Fast and maliciously secure two-party computation
using the GPU. In Applied Cryptography and Network Security (ACNS’13), volume
7954 of LNCS, pages 339–356. Springer, 2013.

[GKK+12] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and Y. Vahlis.
Secure two-party computation in sublinear (amortized) time. In ACM Computer and
Communications Security (CCS’12), pages 513–524. ACM, 2012.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In Symposium on Theory of
Computing (STOC’87), pages 218–229. ACM, 1987.

[Gol04] O. Goldreich. Foundations of Cryptography, volume 2: Basic Applications. Cambridge
University Press, 2004.

[HCE11] Y. Huang, P. Chapman, and D. Evans. Privacy-preserving applications on smartphones.
In Hot topics in security (HotSec’11). USENIX, 2011.

[HEK12] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better
than custom protocols? In Network and Distributed System Security (NDSS’12). The
Internet Society, 2012.

49

http://eprint.iacr.org/2012/629

[HEKM11] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using
garbled circuits. In USENIX Security’11, pages 539–554. USENIX, 2011.

[HFKV12] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith. Secure two-party computations in
ANSI C. In ACM Computer and Communications Security (CCS’12), pages 772–783.
ACM, 2012.

[HIKN08] D. Harnik, Y. Ishai, E. Kushilevitz, and J. Buus Nielsen. OT-combiners via secure
computation. In Theory of Cryptography Conference (TCC’08), volume 4948 of LNCS,
pages 393–411. Springer, 2008.

[HKS+10] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for
Automating Secure Two-partY computations. In ACM Computer and Communications
Security (CCS’10), pages 451–462. ACM, 2010.

[HMEK11] Y. Huang, L. Malka, D. Evans, and J. Katz. Efficient privacy-preserving biometric iden-
tification. In Network and Distributed Security Symposium (NDSS’11). The Internet
Society, 2011.

[HS13] W. Henecka and T. Schneider. Faster secure two-party computation with less mem-
ory. In ACM Symposium on Information, Computer and Communications Security
(ASIACCS’13), pages 437–446. ACM, 2013.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers effi-
ciently. In Advances in Cryptology – CRYPTO’03, volume 2729 of LNCS, pages 145–
161. Springer, 2003.

[IKOS08] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant
computational overhead. In ACM Symposium on Theory of Computing (STOC’08),
pages 433–442. ACM, 2008.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer
- efficiently. In Advances in Cryptology – CRYPTO’08, volume 5157 of LNCS, pages
572–591. Springer, 2008.

[IR88] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permu-
tations. In Advances in Cryptology – CRYPTO’88, volume 403 of LNCS, pages 8–26.
Springer, 1988.

[Ker11] F. Kerschbaum. Automatically optimizing secure computation. In ACM Computer and
Communications Security (CCS’11), pages 703–714. ACM, 2011.

[KK13] V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short secrets.
In Advances in Cryptology – CRYPTO’13, volume 8043 of LNCS, pages 54–70. Springer,
2013.

[KOS15] M. Keller, E. Orsini, and P. Scholl. Actively secure OT extension with optimal over-
head. In Advances in Cryptology - CRYPTO’15, volume 9215 of LNCS, pages 724–741.
Springer, 2015.

50

[KS08] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and ap-
plications. In International Colloquium on Automata, Languages and Programming
(ICALP’08), volume 5126 of LNCS, pages 486–498. Springer, 2008.

[KSS12] B. Kreuter, A. Shelat, and C. Shen. Billion-gate secure computation with malicious
adversaries. In USENIX Security’12, pages 285–300. USENIX, 2012.

[KSS13] M. Keller, P. Scholl, and N. P. Smart. An architecture for practical actively secure MPC
with dishonest majority. In ACM Computer and Communications Security (CCS’13),
pages 549–560. ACM, 2013.

[Lar14] E. Larraia. Extending oblivious transfer efficiently, or - how to get active security
with constant cryptographic overhead. In Progress in Cryptology – LATINCRYPT’14,
volume 8895 of LNCS, pages 368–386. Springer, 2014.

[LOS14] E. Larraia, E. Orsini, and N. P. Smart. Dishonest majority multi-party computation
for binary circuits. In Advances in Cryptology – CRYPTO’14, volume 8617 of LNCS,
pages 495–512. Springer, 2014.

[LP86] L. Lovász and M.D. Plummer. Matching Theory. Akadémiai Kiadó, Budapest, 1986.
Also published as Vol. 121 of the North-Holland Mathematics Studies, North-Holland
Publishing, Amsterdam.

[LP11] Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious
transfer. In Theory of Cryptography Conference (TCC’11), volume 6597 of LNCS, pages
329–346. Springer, 2011.

[LR15] Y. Lindell and B. Riva. Blazing fast 2pc in the offline/online setting with security
for malicious adversaries. In ACM Computer and Communications Security (CCS’15),
pages 579–590. ACM, 2015.

[LZ13] Y. Lindell and H. Zarosim. On the feasibility of extending oblivious transfer. In Theory
of Cryptography Conference (TCC’13), volume 7785 of LNCS, pages 519–538. Springer,
2013.

[Mal11] L. Malka. VMCrypt - modular software architecture for scalable secure computation. In
ACM Computer and Communications Security (CCS’11), pages 715–724. ACM, 2011.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party compu-
tation system. In USENIX Security’04, pages 287–302. USENIX, 2004.

[MOR03] P. MacKenzie, A. Oprea, and M. K. Reiter. Automatic generation of two-party com-
putations. In ACM Computer and Communications Security (CCS’03), pages 210–219.
ACM, 2003.

[Nie07] J. B. Nielsen. Extending oblivious transfers efficiently - how to get robustness almost
for free. Cryptology ePrint Archive, Report 2007/215, 2007. Online: http://eprint.
iacr.org/2007/215.

[NIS12] NIST. NIST Special Publication 800-57, Recommendation for Key Management Part
1: General (Rev. 3). Technical report, NIST, 2012.

51

http://eprint.iacr.org/2007/215
http://eprint.iacr.org/2007/215

[NNOB12] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical
active-secure two-party computation. In Advances in Cryptology – CRYPTO’12, volume
7417 of LNCS, pages 681–700. Springer, 2012.

[NP01] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Symposium on Discrete
Algorithms (SODA’01), pages 448–457. ACM/SIAM, 2001.

[NWI+13] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft. Privacy-
preserving ridge regression on hundreds of millions of records. In IEEE Symposium on
Security and Privacy (S&P’13), pages 334–348. IEEE, 2013.

[PSSZ15] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection
using permutation-based hashing. In USENIX Security’15, pages 515–530. USENIX,
2015.

[PSZ14] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on ot
extension. In USENIX Security’14, pages 797–812. USENIX, 2014.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and com-
posable oblivious transfer. In Advances in Cryptology – CRYPTO’08, volume 5157 of
LNCS, pages 554–571. Springer, 2008.

[Rab81] M. O. Rabin. How to exchange secrets with oblivious transfer, TR-81 edition, 1981.
Aiken Computation Lab, Harvard University.

[Sch17] P. Scholl. Private correspondence, Oct 2017.

[SK11] A. Schröpfer and F. Kerschbaum. Demo: secure computation in JavaScript. In ACM
Computer and Communications Security (CCS’11), pages 849–852. ACM, 2011.

[SZ13] T. Schneider and M. Zohner. GMW vs. Yao? Efficient secure two-party computation
with low depth circuits. In Financial Cryptography and Data Security (FC’13), volume
7859 of LNCS, pages 275–292. Springer, 2013.

[Yao86] A. C. Yao. How to generate and exchange secrets. In Foundations of Computer Science
(FOCS’86), pages 162–167. IEEE, 1986.

A Active Secure OT Extension of [NNOB12]

In Protocol 11 we depict the actively-secure OT extension protocol of [NNOB12] with optimizations
from [FN13].

52

PROTOCOL 11 (Active secure OT extension protocol of [NNOB12])
• Input of PS: m pairs (x0

j , x
1
j) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m selection bits r = (r1, . . . , rm).

• Common Input: Symmetric security parameter κ and number of base-OTs ` = d 8
3
κe.

• Oracles and cryptographic primitives: The parties have an oracle access to the ` × OTκ
functionality, and use a pseudorandom generator G : {0, 1}κ → {0, 1}m and a random oracle H
(see §5.4 for instantiation of H).

1. Initial OT Phase:

(a) PS initializes a random vector s = (s1, . . . , s`) ∈ {0, 1}` and PR chooses ` pairs of seeds k0
i ,k

1
i

each of size κ.

(b) The parties invoke the `×OTκ-functionality, where PS acts as the receiver with input s and
PR acts as the sender with inputs (k0

i ,k
1
i) for every 1 ≤ i ≤ `.

For every 1 ≤ i ≤ `, let ti = G(k0
i). Let T = [t1| . . . |t`] denote the m× ` bit matrix where its ith

column is ti for 1 ≤ i ≤ `. Let tj denote the jth row of T for 1 ≤ j ≤ m.

2. OT Extension Phase:

(a) PR computes ti = G(k0
i) and ui = ti ⊕G(k1

i)⊕ r, and sends ui to PS for every 1 ≤ i ≤ `.
(b) For every 1 ≤ i ≤ `, PS defines qi = (si · ui)⊕G(ksii). qi = (si · r)⊕ ti.)

3. Consistency Check of r:

(a) PS chooses a uniform random permutation π : {1, ..., `} 7→ {1, ..., `} with π(π(i)) = i and
sends π to Bob. Let Π(π) = {i|i ≤ π(i)}.

(b) For all i ∈ Π(π), PS computes di = si ⊕ sπ(i) and zi = qi ⊕ qπ(i) sends di to PR.

(c) PR computes z′i = (di · r)⊕ ti ⊕ tπ(i).

(d) PS and PR check equality between Z = z1||...||zb`/2c and Z′ = z′1||...||zb`/2c as follows:

i. PS samples w ∈R {0, 1}κ, computes c = H ′(Z||w), sends c to PR.

ii. PR then sends Z′ to PS .

iii. PS checks Z
?
= Z′ and aborts on failure. Else sends (Z,w) to PR.

iv. PR checks that Z
?
= Z′ and c

?
= H ′(Z′||w) and aborts on failure.

(e) For all b`/2c indices in i ∈ Π(π) where i is the kth index with 1 ≤ k ≤ b`/2c, PS sets q′k = qi
and s′k = si and PR sets t′k = ti.

4. OT Extension (continued):

(a) Let Q′ = [q′1| . . . |q′b`/2c] denote the m × b`/2c bit matrix where its ith column is q′i. Let
q′j denote the jth row of the matrix Q′. (Note that q′i = (s′i · r)⊕ t′i and q′j = (rj · s′)⊕ t′j .)

(b) PS sends (y0
j , y

1
j) for every 1 ≤ j ≤ m, where y0

j = x0
j ⊕H(j,q′j) and y1

j = x1
j ⊕H(j,q′j ⊕ s′).

(c) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, t′j).

5. Output: PR outputs (x1, . . . , xm); PS has no output.

B Security in the Presence of a Malicious Sender

We prove that our protocols are secure in the presence of a malicious Sender. We have:

Claim B.1 Protocol 5 is secure in the presence of a malicious sender, assuming that H is a κ-min
entropy correlation robust function.

53

Proof: We start with the description of the simulator S.

The simulator S.

• Upon receiving auxiliary input z, invoke the adversary A (controlling the corrupted sender)
on z.

• The simulator fixes r = 0m. It then simulates an honest execution of a receiver with input
r′ = 0m||τ with the adversary A for a random τ . In particular, it chooses the random keys
k0
i ,k

1
i . Then, it simulates the base OTs functionality for the adversary, and upon receiving

the string s = (s1, . . . , s`) it sends it {ksii }`i=1. It then sends

ui = G(k0
i)⊕G(k1

i)⊕ (0m||τ)

for every i = 1, . . . , `. Finally, for every pair (α, β) ∈ [`]2, it computes

h
sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)) ,

h
sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)) = H(ui ⊕ uj ⊕G(ksαα)⊕G(k

sβ
β))

and sets h
sα,sβ
α,β and h

sα,sβ
α,β uniformly at random of the appropriate length.

• When the adversary sends during the transfer phase the values (y0
j , y

1
j) for every j = 1, . . . ,m,

the simulator extracts the inputs (x0
j , x

1
j) using the function H, the matrix T and the string s.

It then sends these inputs to the trusted parties as the input of the corrupted sender.

• The simulator outputs whatever A outputs, and halts.

We now show that no distinguisher succeeds to distinguish between the output of the ideal
execution and the real execution. Essentially, the key idea is to show that for every possible
input r, no distinguisher can distinguish between an honest execution of r′ = r||τ and r′′ = 0m||τ ,

and that the values h
sα,sβ
α,β and h

sα,sβ
α,β are distributed uniformly.

We now show that the joint distribution of the outputs of the parties is indistinguishable in
the real world and in the ideal world. Towards this end, consider the following sequence of hybrid
games:

• hyb0: This is the real execution (in the base OT hybrid model) with the true input r′. The
output of the execution is the output of the adversary (without loss of generality, its view)
and the output of the honest receiver.

• hyb1: In this execution, we have a trusted party for computing the output of the receiver.
Specifically, let r′ be the input of the honest receiver, we run an execution of the real protocol
with the adversary A and the receiver with input r′. When the adversary sends the messages
{(y0

j , y
1
j)}mj=1 in the last step of the protocol, we use the string s that it has sent to the base

OT functionality, and use it to extract the inputs {(x0
j , x

1
j)}mj=1, which are sent to the trusted

party as the input of the corrupted sender. The execution then replaces the output of the
honest receiver with the values x

rj
j .

54

• hyb2: This is like hyb1, where here we change the definition of the base OTs functionality. It
first receives s from the corrupted sender, sends it to the honest receiver, which then sends
back to the trusted party uniform keys ksii . The receiver also (locally) chooses keys ksii .

Moreover, we compute the verification hashes h
sα,sβ
α,β as H(ui⊕uj⊕G(ksαα)⊕G(k

sβ
β)) instead

of H(G(ksαα)⊕G(k
sβ
β)).

• hyb3: This execution is like hyb2, where for every pair (α, β) ∈ [`]2 we replace h
sα,sβ
α,β , h

sα,sβ
α,β

with uniformly and independent random values of the appropriate length. Note that now
each string G(ksii) appears only in the transmission of ui.

• hyb4: Here, we change the input of the receiver when interacting with the adversary, and use
the input 0m instead of the string r.

It is easy to see that hyb0, hyb1 and hyb2 have the same output. The two executions hyb2 and
hyb3 are indistinguishable since H is a κ-min entropy correlation robust function. In particular,
the distinguisher receives the values {ksii }`i=1, (u1, . . . ,u`), as well as r. Together with H, this

uniquely determines the values {hsα,sβα,β , h
sα,sβ
α,β }(α,β)∈[`]2 . Moreover, from each ui and G(ksii), it can

conclude G(ksii)⊕ (0m||τ) as ui ⊕G(ksii)⊕ (τ ||0κ). In fact, for every (α, β) ∈ [`]2, it can conclude

the value
(
G(ksαα)⊕ (0m||τ)

)
⊕ G(k

sβ
β) and G(ksαα) ⊕ (G(k

sβ
β) ⊕ (0m||τ)). On the other hand, for

every (α, β) ∈ [`]2 we have:

h
sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)) = H

(
t1α,β ⊕ (0m||τ)

)
h
sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)) = H

(
t2α,β ⊕ (0m||τ)

)
where

t1α,β =
(
G(ksαα)⊕ (G(k

sβ
β)⊕ (0m||τ))

)
and t2α,β =

(
G(ksαα)⊕ (0m||τ))⊕G(k

sβ
β)
)
,

and t1α,β and t2α,β are both known to the distinguisher. Since τ is chosen uniformly from {0, 1}κ,

assuming that H is a κ-min entropy strongly correlation robust function, the hash values h
sα,sβ
α,β

and h
sα,sβ
α,β are distributed uniformly in the respective domain.

As for hyb3 and hyb4, for every i the key G(ksii) is a one-time-pad for the string r, and therefore
hides it due to the pseudorandom property of G.

55

	Introduction
	Our Contributions and Outline
	Concurrent and Independent Related Work
	Extensions over Previous Work

	Preliminaries
	Security Parameters
	Definitions
	Oblivious Transfer
	OT Extension
	Yao's Garbled Circuits Protocol
	The GMW Protocol
	GMW with Random 1-out-of-2 OTs

	Related Work
	Semi-Honest OT Extension
	Malicious OT Extension

	Faster Semi-Honest OT
	Blockwise Parallelized OT Extension
	Efficient Bit-Matrix Transposition
	Optimized Semi-Honest OT Extension

	Faster Malicious OT
	Overview of our Malicious Secure Protocol
	The Security of Our Protocol
	Reducing the Number of Checks
	Correlation Robustness Instead of a Random Oracle
	Achieving Covert Security

	Special Purpose OT Functionalities
	Correlated OT (C-OT)
	Sender Random OT (SR-OT)
	Receiver Random OT (RR-OT)
	Random OT (R-OT)

	Experimental Evaluation
	Benchmark Setting
	Evaluation of Semi-Honest OT Extension
	Evaluation of Special Purpose OT Functionalities
	Evaluation of Actively Secure OT Extension
	Evaluation of Min-Entropy Correlation Robustness

	Active Secure OT Extension of NNOB12
	Security in the Presence of a Malicious Sender

