Verifiable and Delegatable Constrained Pseudorandom
Functions for Unconstrained Inputs

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur
Kharagpur-721302, India
{pratishdatta,ratna, sourav}@maths.iitkgp.ernet.in

Abstract. Constrained pseudorandom functions (CPRF) are a fundamental extension of the no-
tion of traditional pseudorandom functions (PRF). A CPRF enables a master PRF key holder to
issue constrained keys corresponding to specific constraint predicates over the input domain. A
constrained key can be used to evaluate the PRF only on those inputs which are accepted by the
associated constraint predicate. However, the PRF outputs on the rest of the inputs still remain
computationally indistinguishable from uniformly random values. A constrained verifiable pseudo-
random function (CVPRF) enhances a CPRF with a non-interactive public verification mechanism
for checking the correctness of PRF evaluations. A delegatable constrained pseudorandom function
(DCPREF) is another extension which augments a CPRF to empower constrained key holders to del-
egate further constrained keys that allow PRF evaluations on inputs accepted by more restricted
constraint predicates compared to ones embedded in their own constrained keys. Until recently,
all the proposed constructions of CPRF’s and their extensions(i) either could handle only bounded
length inputs, (ii) or were based on risky knowledge-type assumptions. In EUROCRYPT 2016,
Deshpande et al. have presented a CPRF construction supporting inputs of unconstrained polyno-
mial length based on indistinguishability obfuscation and injective pseudorandom generators, which
they have claimed to be selectively secure. In this paper, we first identify a flaw in their security
argument and resolve this by carefully modifying their construction and suitably redesigning the
security proof. Our alteration does not involve any additional heavy duty cryptographic tools. Next,
employing only standard public key encryption (PKE), we extend our CPRF construction, presenting
the first ever CVPRF and DCPRF constructions that can handle inputs of unbounded polynomial
length. Finally, we apply our ideas to demonstrate the first known atéribute-based signature (ABS)
scheme for general signing policies supporting signing attributes of arbitrary polynomial length.

Keywords: constrained pseudorandom functions, verifiable constrained pseudorandom function,
key delegation, indistinguishability obfuscation

1 Introduction

Constrained Pseudorandom Functions: Constrained pseudorandom functions (CPRF),
concurrently introduced by Boneh and Waters [BW13|, Boyle et al. [BGI14], as well as Kiayias
et al. [KPTZ13|, are promising extension of the notion of standard pseudorandom functions
(PRF) |[GGMS6| — a fundamental primitive in modern cryptography. A standard PRF is a deter-
ministic keyed function with the following property: Given a key, the function can be computed
in polynomial time at all points of its input domain. But, without the key it is computationally
hard to distinguish the PRF output at any arbitrary input from a uniformly random value, even
after seeing the PRF evaluations on a polynomial number of inputs. A CPRF is an augmentation
of a PRF with an additional constrain algorithm which enables a party holding a PRF key, also
referred to as a master PRF key, to derive constrained keys that allow the evaluation of the PRF
over certain subsets of the input domain. However, PRF evaluations on the rest of the inputs
still remain computationally indistinguishable from random.

Since their inception, CPRF’s have found countless interesting applications in various branches
of cryptography ranging from broadcast encryption [BW13] and attribute-based encryption
[DKW 16| to policy-based key distribution [BW13] and multi-party (identity-based) non-interactive
key exchange [BZ14] ([BW13]). Even the simplest class of CPRF’s, known as puncturable pseu-
dorandom functions (PPRF) [SW14], have turned out to be a powerful tool in conjunction

2 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

with indistinguishability obfuscation |[GGH' 13, GLSW15|. In fact, the combination of these
two primitives have led to solutions of longstanding open problems including deniable encryp-
tion [SW14], full domain hash [HSW14], adaptively secure functional encryption for general func-
tionalities [Wat15], and functional encryption for randomized functionalities |[GJKS15] through
the classic punctured programming technique introduced in [SW14].

Over the last few years there has been a significant progress in the field of CPRF’s. In terms of
expressiveness of the constraint predicates, starting with the most basic type of constraints such
as prefix constraints [BW13,|[BGI14) KPTZ13] (which also encompass puncturing constraints)
and bit fixing constraints [BW13,|FKPR14], CPRF’s have been constructed for highly rich con-
straint families such as circuit constraints [BW13,[BV15,BFP™15 HKKW14] employing diverse
cryptographic tools and based on various complexity assumptions. In terms of security, most
of the existing CPRF constructions are only selectively secure. The stronger and more realis-
tic notion of adaptive security seems to be rather challenging to achieve without complexity
leveraging. In fact, the best known results so far on adaptive security of CPRF’s require super-
polynomial security loss [FKPR14], or work for very restricted form of constraints [HKW15|, or
attain the security in non-collusion mode [BV15], or accomplish security in the random oracle
model [HKKW14].

Constrained Verifiable Pseudorandom Functions: An interesting enhancement of the
usual CPRF’s is verifiability. A verifiable constrained pseudorandom function (CVPRF), indepen-
dently introduced by [Fucl4, CRV14], is the unification of the notions of a verifiable random
function (VRF) [MRV99] and a standard CPRF. In a CVPRF system, just like a traditional VRF,
a public verification key is set along with the master PRF key. Besides enabling the evaluation
of the PRF, the master PRF key can be utilized to generate a non-interactive proof of the cor-
rectness of evaluation. This proof can be verified by any party using only the public verification
key. On the other hand, as in the case of a CPRF, here also the master PRF key holder can
give out constrained keys for specific constraint predicates. A constrained key corresponding to
some constraint predicate p allows the evaluation of the PRF together with the generation of a
non-interactive proof of correct evaluation for only those inputs z for which p(z) = 1. In essence,
CVPRF’s resolve the issue of trust on a CPRF evaluator for the correctness of the received PRF
output. In [Fucl4,|CRV14], the authors have shown that the CPRF constructions of [BW13] for
the bit fixing and circuit constraints can be augmented with the verifiability feature without
incurring any significant additional cost.

Delegatable Constrained Pseudorandom Functions: Key delegation is another vital en-
richment of standard CPRF’s. This feature empowers the holder of a constrained key, corre-
sponding to some constraint predicate p belonging to certain constraint family P over the input
domain of the PRF, with the ability to distribute further restricted keys corresponding to the
joint predicates p A p, for constraints p € P. Such a delegated key can be utilized to evaluate
the PRF on only those inputs z for which [p(z) = 1] A [p(x) = 1], whereas, the PRF outputs on
the rest of the inputs are computationally indistinguishable from random values. The concept of
key delegation in the context of CPRF’s has been recently introduced by [CRV14], who have also
shown how to extend the bit fixing and circuit-based CPRF constructions of [BW13| to support
key delegation.

CPRF’s for Unconstrained Inputs: Until recently, the research on CPRF’s has been confined
to inputs of apriori bounded length. In fact, all the CPRF constructions mentioned above could
handle only bounded length inputs. Abusalah et al. [AFP14] have taken a first step forward
towards overcoming the barrier of bounded input length. They have also demonstrated highly
motivating applications of CPRF’s supporting apriori unbounded or unconstrained length in-
puts such as broadcast encryption with an unbounded number of recipients and multi-party

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 3

identity-based non-interactive key exchange with no pre-determined bound on the number of
parties. They presented a selectively secure CPRF for unconstrained length inputs by viewing the
constraint predicates as Turing machines (TM) that can handle inputs of arbitrary polynomial
length. In a more recent work, Abusalah and Fuchsbauer |[AF16] have made progress towards
efficiency improvements by constructing TM-based CPRF’s with much shorter constrained keys
compared to the CPRF construction of [AFP14].

However, both the aforementioned CPRF constructions rely on the existence of public-
coin differing-input obfuscators [[PS15] and succinct non-interactive arguments of knowledge
[BCCT12,GW11], which are believed to be risky assumptions due to their inherent extractabil-
ity nature. Deshpande et al. [DKW16] have very recently built a selectively secure CPRF for
TM constraints, supporting inputs of unbounded polynomial length, based on the existence of
indistinguishability obfuscators (I0) for circuits and injective pseudorandom generators. Cur-
rently, there is no known impossibility or implausability result on 10 and, moreover, in the
last few years, there has been a significant progress towards constructing 10 based on standard
complexity assumptions |[GLSW15|AJ15,/AJS15]. Unfortunately however, as we find out in this
paper, the security argument of [DKW16| has a flaw. In view of this fact, the ambitious goal
of constructing CPRF’s for unconstrained inputs from IO for circuits still remains unaddressed.
Furthermore, all known constructions of CVPRF’s and CPRF’s endored with key delegation can
only support inputs of apriori bounded length.

Our Contributions

Our work in this paper is manifold:

e We first resolve the flaw in the security argument of the CPRF construction of [DKW16]
by carefully modifying the construction and suitably redesigning the security proof. While
modifying the CPRF construction of [DKW16|, we only additionally use a somewhere statis-
tically binding (SSB) hash function [HW15,O0PWW 15| beyond the cryptographic tools used
by [DKW16]|. In effect, our modified CPRF construction stands out as the first 10-based selec-
tively secure CPRF system for TM constraints that can handle inputs of arbitrary polynomial
length.

e Our second and more significant contribution is to enhance our CPRF construction with
verifiability and key delegation features, thereby, developing the first 10-based selectively
secure CVPRF and delegatable CPRF (DCPRF) constructions supporting inputs of unbounded
polynomial length. Towards achieveing those two augmentations of our CPRF, we only assume
the existence of a perfectly correct and chosen plaintext attack (CPA) secure public key
encryption scheme, which is evidently a minimal assumption.

e Finally, applying an analogous idea as the one used in our CVPRF construction, we build
the first (key-policy) attribute-based signature (ABS) scheme for general signing policies
supporting signing attributes of arbitrary polynomial length. In a (key-policy) ABS scheme
[MPR11,|OT14}|TLL14,[SAH16], a setup authority holds a master signing key and publishes
system public parameters. Using its master signing key, the authority can distribute restricted
signing keys corresponding to specific signing policies. Such a constrained signing key enables
a signer to sign messages with respect to only those signing attributes which are accepted by
the signing policy embedded within the signing key. The signatures are verifiable by anyone
using solely the public parameters. By verifying a signature on some message with respect to
some signing attributes, a verifier gets convinced that the signature is indeed generated by a
signer possessing a signing key corresponding to some signing policy that accepts the signing
attributes. However, the verifier cannot trace the exact signer or signing policy used to gener-
ate the signature. Our ABS only uses an existentially unforgeable digital signature scheme in

4 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

addition to the cryptographic building blocks employed in our CPRF construction. We note
that using a similar technique as that of our DCPRF construction, our ABS scheme can be
further enriched to support delegation of signing keys. We would also like to mention that
using the technique of universal TM, our key-policy ABS construction can be transformed
into a ciphertext-policy variant.

2 Preliminaries

Here we give the necessary background on various cryptographic primitives we will be using
throughout this paper. Let A € N denotes the security parameter. For n € N and a,b € NU {0}
(with @ < b), we let [n] = {1,...,n} and [a,b] = {a,...,b}. For any set S, v &g represents
the uniform random variable on S. For a randomized algorithm R, we denote by 1 = R(v;p)
the random variable defined by the output of R on input v and randomness p, while 1 & R(v)
has the same meaning with the randomness suppressed. Also, if R is a deterministic algorithm
1 = R(v) denotes the output of R on input v. We will use the alternative notation R(v) —
as well to represent the output of the algorithm R, whether randomized or deterministic, on
input v. For any string s € {0, 1}*, |s| represents the length of the string s. For any two strings
s,8 € {0,1}*, s||s’ represents the concatenation of s and s’. A function negl is negligible if for
every integer ¢, there exists an integer k such that for all A > k, |negl(\)| < 1/A°.

2.1 Turing Machines

A Turing machine (TM) M is a 7-tuple M = (Q, Xixp, Zrapre, 0, G0, gac, Gres) With the following
semantics:

— @: The finite set of possible states of M.

— Yvp: The finite set of input symbols.

— Yrape: The finite set of tape symbols such that X C Xrapp and there exists a special blank
symbol ‘2 € Xpppp\ Xixp.

— 0 :Q X Xppp — Q X Xpppp X {41, —1}: The transition function of M.

— go € @: The designated start state.

— gac € Q: The designated accept state.

— Gres(# qac) € Q: The distinguished reject state.

For any t € [T = 2], we define the following variables for M, while running on some input

(without the explicit mention of the input in the notations):

— POSp¢: An integer which denotes the position of the header of M after the gth
POSp0 = 0.

— SYMpst € Yrape: The symbol stored on the tape at the PoOS M7tth location.

- SYME\\E{ITE) € Yrape: The symbol to be written at the POSM,t_lth location during the t* step.

— 8Tare € Q: The state of M after the ™ step. Initially, STM,0 = qo-

step. Initially,

At each time step, theTM M reads the tape at the header position and based on the current
state, computes what needs to be written on the tape at the current header location, the next
state, and whether the header must move left or right. More formally, let (¢,¢, 5 € {+1,—1}) =

§(STars—1,SYMprs—1). Then, $Tary = g, SYME\‘Z?ITE) = ¢, and POS)r¢ = POSr4—1 + . M accepts

at time ¢ if STpr¢ = gac. In this paper we consider Xy = {0,1} and Yrypp = {0,1,_}. Given
any TM M and string « € {0,1}*, we define M (z) = 1, if M accepts = within T steps, and 0,
otherwise.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 5

2.2 Indistinguishability Obfuscation

The following formalization of indistinguishability obfuscation (10) is due to Garg et al. [GGH™13].

Definition 2.1 (Indistinguishability Obfuscation: 10). An indistinguishability obfuscator
(I0) ZO for a circuit class {Cy}, is a probabilistic polynomial-time (PPT) uniform algorithm
satisfying the following conditions:

» Correctness: ZO(1*, C) preserves the functionality of the input circuit C, i.e., for any
C € C,, if we compute C' = ZO(1*,C), then C’(v) = C(v) for all inputs v.

» Indistinguishability: For any security parameter A and any two circuits Cp, C7 € Cy with
the same functionality, the circuits ZO(1*, Cy) and ZO(1*, C}) are computationally indistin-
guishable. More precisely, for all (not necessarily uniform) PPT adversaries D = (Dj, D2),
there exists a negligible function negl such that, if

Pr[(Co,C1,€) & Di(1Y) : Vu,Co(v) = Ci(v)] = 1 — negl(N),
then |Pr[Dy(¢, ZO(1%, Cp)) = 1] — Pr[Ds(£,TO(1*,C1)) = 1]] < negl()).

We remark that the two distinct algorithms D; and Ds, which pass state £, can be viewed
equivalently as a single stateful algorithm D. In this paper we employ the latter approach,
although here we present the definition as it appears in [GGH'13]. When clear from the context,
we will drop 1* as an input to ZO and X as a subscript of C.

The circuit class we are interested in are polynomial-size circuits, i.e., when C, is the collec-
tion of all circuits of size at most A. This circuit class is denoted by P/poly. The first candidate
construction of 10 for P/poly was presented by Garg et al. [GGHT13| in a generic model of
encoded matrices. Later, Pass et al. [PST14] and Gentry et al. [GLSW15| have shown that |0
for P/poly can be developed based on a single instance-independent assumption.

2.3 Puncturable Pseudorandom Function

Puncturable pseudorandom functions, first defined by Sahai and Waters [SW14], are a special
class of constrained pseudorandom functions, which we will formally define in Section Here
we present the definition of puncturable pseudorandom functions following [SW14].

Definition 2.2 (Puncturable Pseudorandom Function: PPRF). A puncturable pseudo-
random function (PPRF) F : Kpprp X Xpprr — Vepre consists of an additional punctured key space
Kpprr-punc Other than the usual key space Kpprr and PPT algorithms (F.Setup, F.Eval, F.Puncture,
F.Eval-Punctured) described below. Here, Xpppr = {0, 1}rreene and Voppe = {0, 1}frmeorr where
Loprrne and Cpprrour are polynomials in the security parameter A,

F.Setu p(l/\) — K : The setup authority takes as input the security parameter 1* and uniformly
samples a PPRF key K € Kppgp.

F.Eval(K,z) — r : The setup authority takes as input a PPRF key K € Kppgp along with an
input x € Xpprr. It outputs the PPRF value r € Vppre on x. For simplicity, we will represent
by F(K,x) the output of this algorithm.

F.Puncture(K,z) — K{z} : Taking as input a PPRF key K € Kpprr along with an element
x € Xpprr, the setup authority outputs a punctured key K{z} € Kpprp-punc-

6 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

F.Eval-Puncured(K{z},z’) — r or L : An evaluator takes as input a punctured key K{z} €
Kpprr-runce along with an input o’ € Xppgre. It outputs either a value r € Ypprye or a distin-
guished symbol L indicating failure. For simplicity, we will represent by F(K{z},2’) the
output of this algorithm.

The algorithms F.Setup and F.Puncture are randomized, whereas, the algorithms F.Eval and
F .Eval-Punctured are deterministic. The algorithms satisfy the following properties:

» Correctness under Puncturing: Consider any security parameter X\, K € Kpprp, T € Xpprr,
and K{x} & F.Puncture(K, z). Then it must hold that

N F(K,), if 2’ #x
F(K{z},27) = {J_, otherwise

» Selective Pseudorandomness at Punctured Points: This property of a PPRF is defined
through the following experiment between an adversary B and a challenger C:

e B submits a challenge input x* € Xpprr to C.

e C chooses uniformly at random a PPRF key K* l Kppre and a random bit b & {0,1}. It
computes the punctured key K*{z*} & F.Puncture(K*, 2*). If b = 0, it sets r* = F(K*, 2*).
Otherwise, it selects r* & Yreprre- It sends back (K*{z*},r*) to B.

e B outputs a guess bit b’ € {0,1}.

The PPRF F is selectively pseudorandom at punctured points if for any PPT adversary B, for
any security parameter A,

Advz PR = [Pr[b = §] — 1/2] < negl()\)

for some negligible function negl.

Boneh and Waters [BW13], Boyle et al. [BGI14], as well as Kiayias et al. [KPTZ13] have concur-
rently shown that the tree-based PRF constructed by Goldreich et al. [GGMS86| can be modified
in a straightforward fashion to build a PPRF from one-way functions.

2.4 10-Compatible Cryptographic Primitives

In this section, we present certain |0-friendly cryptographic tools which we will be using in the
sequel.

2.4.1 Somewhere Statistically Binding Hash Function

We provide the definition of somewhere statistically binding hash function as defined by Hubacek
et al. [HW15].

Definition 2.3 (Somewhere Statistically Binding Hash Function: SSB Hash). A some-
where statistically binding (SSB) hash consists of the PPT algorithms (SSB.Gen, H, SSB.Open,
SSB.Verify) along with a block alphabet Yygp gk = {0, 1}ZSSB'BLK, output size fsgp-nasu, and open-
ing space s = {0, 1}€SSB’OPEN, where fsspprx, Lssp-nasn, Lss-openy are some polynomials in the
security parameter \. The algorithms have the following syntax:

SSB.Gen(1*, ngsp-pLx, i*) — HK : The setup authority takes as input the security parameter 1%,
an integer ngspprx < 2° representing the maximum number of blocks that can be hashed,
and an index i* € [0, ngsppx — 1] and publishes a public hashing key HK.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 7

Hux : © € Xz — b€ {0, 1}t This is a deterministic function that has the hash key
HK hardwired. A user runs this function on input = zg|| . .. || Tnem—1 € ZesEk to obtain
as output h = Hy(x) € {0, 1} s,

SSB.Open(HK, x, i) — Tssp : Taking as input the hash key HK, input x € Xssspix | and an index
i € [0, ngsp-pLx — 1], a user creates an opening mgsp € Issp.

SSB.Verify(HK, h, i, u, Tsgp) — Be {0,1} : On input a hash key HK, a hash value h € {0, 1}fssmsn
an index i € [0,ngsppx — 1], a value u € Yy prk, and an opening mgsp € Ilsgs, a verifier
outputs a bit 5 € {0,1}.

The algorithms SSB.Gen and SSB.Open are randomized, while the algorithm SSB.Verify is de-
terministic. An SSB hash satisfies the following properties:

» Correctness: For any security parameter)\, integer nggpprx < 2N it € [0, ssp-BLk —

1], HK & SSB.Gen(1*, ngspoprk, i*), © € XUsmrkand megp i SSB.Open(HK, z,7), we have
SSB.Verify(HK, Huk (), i, 24, Tssp) = 1.

» Index Hiding: The index hiding property of an SSB hash is defined through the follow-
ing experiment between an adversary B and a challenger C:

e 3 chooses an integer nggp-prx < 27 together with a pair of indices if, i} € [0, ngsp-pLx — 1], and
submits them to C.

e C selects a random bit b & {0,1} and computes HK & SSB.Gen(1*, nssp-pr, ig), and returns
HK to B.

e B eventually outputs a guess bit ¥’ € {0,1}.

The SSB hash is said to be index hiding if for any PPT adversary B, for any security parameter
A,
AdviEPM (\) = |Pr[b = 8] — 1/2| < negl()\)

for some negligible function negl.

» Somewhere Statistically Binding: An SSB hash key HK is said to be statistically binding
for an index i* € [0, nssp-px — 1] if there do not exist any h € {0, 1}fssvmsn 4 £ o/ € Ygep ik,
and Tgsp, They € Ilssp such that SSB.Verify(HK, h, i*, u, msss) = 1 = SSB.Verify(HK, h, i*, v/, miyy).

The SSB hash is defined to be somewhere statistically binding if for any security parameter
A, integer nsgpprx < 2%, index i* € [0, ngsp-prx — 1], the hash key HK & SSB.Gen(1*, ngsp-pik, i*)

is statistically binding for *. Note that this is an information theoretic property.

The first construction of an SSB hash is presented by Hubacek et al. [HW15|. Their con-
struction is based on fully homomorphic encryption (FHE) [Gen09|. Recently, Okamoto et
al. [OPWW15| provides alternative constructions of SSB hash based on various standard number
theoretic assumptions.

In this paper, we will consider lssppix = 1 and ngspprx = 27,

2.4.2 Positional Accumulator

We will now present the notion of a positional accumulator as defined by Koppula et al. [KLW15].

Definition 2.4 (Positional Accumulator). A positional accumulator is comprised of the
PPT algorithms (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-Enforce-Write, ACC.Prep-Read,
ACC.Prep-Write, ACC.Verify-Read, ACC.Write-Store, ACC.Update) along with a block alphabet

8 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

EACC—BLK = {O,].}ZACC»BLK, aCCumulatOr SiZe EACC—ACCUMULATE’ pI‘OOf Space HACC = {0,]_}KACC_PROOF
where £5ccpLi, Lacc-accumunate, Laco-proor are some polynomials in the security parameter A. The
algorithms have the following syntax:

ACC.Setup(1*, nacepik) — (PPace, Wo, STOREQ) : The setup authority takes as input the secu-
rity parameter 1* and an integer nacc-pLk < 22 representing the maximum number of blocks
that can be accumulated. It outputs the public parameters PP,cc, an initial accumulator
value wy, and an initial storage value STORE.

ACC.Setup-Enforce-Read (1, nace-pix, ((1,71), - - -, (T, ix)),7*) — (PPacc, wo, STOREg) : On in-
put the security parameter 1%, an integer naccpix < 2 representing the maximum number
of blocks that can be accumulated, a sequence of symbol-index pairs ((x1,71), ..., (Zx,ix)) €
(Xroc-srx X [0, nacepx — 1])7, and an additional index ¢* € [0, nycc-pLx — 1], the setup author-
ity publishes the public parameters PP,¢¢, an initial accumulator value wg, together with an
initial storage value STOREy.

ACC.Setup-Enforce-Write(1*, nacc-pii, (1,71); -+ -, Tryix))) — (PPace, wo, STOREg) : On input
the security parameter 1’\, an integer Nyccprk < 22 denoting the maximum number of blocks
that can be accumulated, and a sequence of symbol-index pairs ((x1,71),...,(Zx,ix)) €
(Xaco-sik X [0, nacesx — 1])7, the setup authority publishes the public parameters PP ¢,
an initial accumulator value wq, as well as, an initial storage value STOREy.

ACC.Prep-Read(PP,cc, STORE, iiv) — (ZTour, Tacc) : A storage-maintaining party takes as in-
put the public parameter PP,¢c, a storage value STOREy, and an index iy € [0, naccprx — 1]
It outputs a symbol zour € Yaco-sx U{€} (€ being the empty string) and a proof mace € ace.

ACC.Prep-Write(PPcc, STOREy, iix) — AUX : Taking as input the public parameter PP,cc, a
storage value STOREy, together with an index iy € [0, nsccsk — 1], a storage-maintaining
party outputs an auxiliary value AUX.

ACC.Verify-Read(PPcc, Wix, T, Gins Tace) — Be {0,1} : A verifier takes as input the public pa-
rameter PP,cc, an accumulator value wyy € {0, 1}““'“’““”“"“, a symbol z;y € Xycopik U {€},
an index iy € [0, nacc-pk — 1], and a proof myoe € ace. It outputs outputs a bit § € {0,1}.

ACC.Write-Store(PP s¢c, STOREy, i1y, T1x) — STOREqur : On input the public parameters PP ¢,
a storage value STORE, an index iy € [0,7acosx — 1], and a symbol zy € Xicepik, @
storage-maintaining party computes a new storage value STOREqyr.

ACC.Update(PPcc, Wi, Tin, iy, AUX) — wWopr or L @ An accumulator-updating party takes as
input the public parameters PP,¢¢, an accumulator value wyy € {0, 1}ZACM“’W”LATE7 a symbol
Ty € Yacopik, an index iy € [0, nacopx — 1], and an auxiliary value AUX. It outputs the
updated accumulator value woyr € {0, 1}faccaccummnare o the designated reject string L.

Following [KLW15,DKW16], we will consider the algorithms ACC.Setup, ACC.Setup-Enforce-Read,
and ACC.Setup-Enforce-Write as randomized while all other algorithms as deterministic in this
paper. The algorithms satisfy the following properties:

» Correctness: Consider any symbol-index pair sequence ((x1,41), ..., (Zx,ix)) € (Xaco-Lx X
[07 TLACC_BLK -];:I)’i FlX any (PPAcc,wo,STOREO) é ACC.SetUp(].)\7nACC_BLK). FOI‘] ==]., “ .. ,K/,
iteratively define the following:

— STORE; = ACC.Write-Store(PPcc, STORE;_1, i}, L;)
— AUX; = ACC.Prep-Write(PP,cc, STORE;_1, i)

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 9

- wj = ACC.Update(PPACC, Wji—1,Tj, ij, AUXJ’)
The following correctness properties are required to be satisfied:

i) For any security parameter \, nycopx < 2A, index i* € [0, nace-sx — 1], sequence of symbol-
. . . . $
index pairs ((z1,41), ..., (Tx,ix)) € (Zacc-pix X [0, Nacc-pix — 1])", and (PP acc, wo, STOREQ) <
ACC.Setup(1*, nsce-pix), if STORE, is computed as above, then ACC.Prep-Read (PP ycc, STORE,
i*) returns (zj, maoc) where j is the largest value in [] such that i; = i*.

ii) For any security parameter \, ncopx < 27, sequence of symbol-index pairs ((21,41), .. . , (Zx,
. . $
ix)) € (Yaccsix X [0,Maccmix — 1])%, % € [0,nsco-mx — 1], and (PPcc, wo, STOREg) <=
ACC.Setup(1*, nxceoprx), if STORE, and w,, are computed as described above and (zoyr, Tace) =
ACC.Prep-Read(PP 4o, STORE, i*), then ACC.Verify-Read (PP o, Wi, Tour, i¥, Tace) = 1.

» Indistinguishability of Read Setup: This property of a positional accumulator is defined
through the following experiment between an adversary B and a challenger C:

e BB chooses a bound nacopx < 2 of the number of blocks, & symbol-index pairs ((z1,41), ...,
(Twyix)) € (Xacesik X [0, nacesx — 1])7, and an index i* € [0, nyco-pk — 1]. It submits all of
those to C.

e C sclects a random bit b & {0,1}. If b = 0, C generates (PP Acc, o, STORE) & ACC.Setup(1*,

Nace-srk) - Otherwise, C generates (PP ycc, wo, STORE() Ll ACC.Setup-Enforce-Read(1*, nyco-prx,
((x1,71), -y (X, 0x)),7%). It returns (PPoc, wo, STOREY) to B.
e 3 outputs a guess bit b’ € {0,1}.

The positional accumulator is said to satisfy indistinguishability of read setup if for any PPT
adversary B, for any security parameter A\, we have

Adviy @NPEEAD Ny — 1Pr[b = B] — 1/2] < negl(\)
for some negligible function negl.

» Indistinguishability of Write Setup: This property of a positional accumulator is de-
fined through the following experiment between an adversary B and a challenger C:

e B chooses a bound nyceprix < 2* of the number of blocks and « symbol-index pairs ((z1,41), .. .,
(X, ik)) € (Xacesrx X [0, naco-sx — 1])*. It submits all of those to C.

e C sclects a random bit b & {0,1}. If b = 0, C generates (PP Acc, o, STORE) & ACC.Setup(1*,

Naco-prk). Otherwise, C generates (PP ¢, wo, STORE() & ACC .Setup-Enforce-Write(1*, nycc-pr,
((x1,71)s ..., (%, ix))). It returns (PPrcc, wo, STORE) to B.
e B outputs a guess bit b’ € {0,1}.

A positional accumulator is said to satisfy indistinguishability of write setup if for any PPT
adversary B, for any security parameter A\, we have

AdVABCCJND—WRITE()\) _]Pr[l; _ 6/] _ 1/2| < neg|()\)

for some negligible function negl.

» Read Enforcing: Consider any security parameter A, nacepx < 2%, ((#1,41), ..., (24, ix)) €
(EACC—BLK X [0; NAcc-BLK — 1])H7 and * € [07 N ACC-BLK — 1]-
Let (PPacc, wo, STOREg) <~ ACC.Setup-Enforce-Read (1%, niacconis (21,1)s - -« (2, i), %)

For j =1,...,k, iteratively define the following:

— STORE; = ACC.Write-Store(PPcc, STORE;_1, i}, L;)

10 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

— AUX; = ACC.Prep-Write(PP,cc, STORE;_1, i)
- w; = ACC.Update(PPACC, Wj—1,Tj, ij, AUXj)

The positional accumulator is said to be read enforcing if ACC.Verify-Read (PP cc, Wy, Tix, 0¥, Tacco)
= 1 implies either [i* ¢ {i1,...,ix}] A [rw = €| or a1y = x; for the largest j € [k] such that
1j = i*. Note that this is an information theoretic property.

» Write Enforcing: Consider any security parameter A, nycopx < 2, and ((z1,41), ..., (24,
ix)) € (Zacesix X [0,nacc-x — 1])*. Let (PPycc, wo, STORE() & ACC.Setup-Enforce-Write(1?,
Nacc-srk, ((T1,71)s .-+, (Tw,ix))). For j = 1,..., K, iteratively define the following:

— STORE; = ACC.Write-Store(PPcc, STORE;_1, 1}, ;)
— AUX; = ACC.Prep-Write(PP,co, STORE; 1, i)
- wj = ACC.Update(PPACC, Wi—1,Tj, ij, AUX]‘)

The positional accumulator is defined to be write enforcing if ACC.Update(PPycc, Wr—1, Tk, ix,
AUX) = wour # L, for any AUX, implies woyr = w,;. Observe that this is an information theoretic
property as well.

The first construction of a positional accumulator is presented by Koppula et al. [KLW15]
based on 10 and one-way function. Recently, Okamoto et al. [OPWW 15| provided an alternative
construction of positional accumulator from standard number theoretic assumptions.

2.4.3 Iterator

Here we describe the concept of a cryptographic iterator again following Koppula et al. [KLW15].
In the same paper, a construction of the primitive from 10 and one-way function is demonstrated.

Definition 2.5 (Iterator). A cryptographic iterator consists of the PPT algorithms (ITR.Setup,
ITR.Set-Enforce, ITR.Iterate) along with a message space My = {0, 1}ms¢ and iterator state
size lirp-sr, where firp_vsa, firrest are some polynomials in the security parameter A. The algo-
rithms have the following syntax:

ITR.Setup(1*, nyr) — (PPirg,vg) : The setup authority takes as input the security parameter
1" along with an integer bound nyy < 2* on the number of iterations. It outputs the public
parameters PPz and an initial state vy € {0, 1}&“"“.

ITR.Setup-Enforce(1*, nyrr, (f11, - - - » fire)) — (PPrrg, vo) : Taking as input the security parameter
1%, an integer bound ny, < 27, together with a sequence of k messages (fi1, ..., ix) € Mg,
where £ < nypr, the setup authority publishes the public parameters PPz and an initial
state vg € {0, 1}fmmsr,

ITR.Iterate(PPyyp, vy € {0, 114757 11) — woyr : On input the public parameters PPy, a state
vy, and a message 1 € Mg, an iterator outputs an updated state voyr € {0, 1}£ITR*ST. For any

integer £ < nyrr, we will write ITR.Iterate”(PPirg, vo, (11, - - -, f4x)) to denote ITR.Iterate(PPyg,
Uk—1,), Where v; is defined iteratively as v; = ITR.Iterate(PPirg, vj—1,p;) for all j =
1,...,k—1.

The algorithm ITR.Iterate is deterministic, while the other two algorithms are randomized. The
algorithms satisfy the following properties:

» Indistinguishability of Enforcing Setup: This property of a cryptographic iterator is
defined through the following experiment between an adversary B and a challenger C:

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 11

e BB chooses an integer bound nyy < 2%, along with a sequence of x messages (1, ..., tix) €
M., and submits them to C.

o C selects a random bit b < {0,1}. If b = 0, C generates (PP, vg) & ITR.Setup(1*, nyrr). Else,

C generates (PPig,vp) & ITR.Setup-Enforce(1*, nyrn, (f11, - - - » fix)). It sends back (PP, vg)
to B. .
e B outputs a guess bit b’ € {0,1}.

The cryptographic iterator is said to satisfy indistinguishability of enforcing setup if for any
PPT adversary B, for any security parameter A,

AdVIZ;fR,IND—ENF(/\) _ ‘Pr[i) — B’] —1/2] < negl())

for some negligible function negl.

» Enforcing: Consider any security parameter \, nirg < 2%,k < nyrg, and (ug, . . ., i) € My,

Let (PPirg, v0) & ITR.Set-Enforce(1*, nyrp, (1, . . - , itx)) and vj = ITR.Iterate’ (PPyyy, vo, (1, - - -
;) for all j € [k]. The cryptographic iterator is said to be enforcing if vy, = ITR.Iterate(PPipg, v/,
w') implies (v', 1) = (vg—1, pr). Note that this is an information theoretic property.

2.4.4 Splittable Signature

The following background on splittable signatures is taken verbatim from Koppula et al. [KLW 15|
as well.

Definition 2.6 (Splittable Signature: SPS). A splittable signature scheme (SPS) for mes-
sage space Mgps = {0, 1}5735¢ and signature space Ssps = {0, 1}57551¢ where fsps_usc, fsps-sic are

some polynomials in the security parameter A, consists of PPT algorithms (SPS.Setup, SPS.Sign,
SPS.Verify, SPS.Split, SPS.Sign-ABO) which are described below:

SPS.Setup(1?) — (SKgps, VKsps, VKsps-rey) : The setup authority takes as input the security pa-
rameter 1* and generates a signing key SKgps, a verification key VKgps, together with a reject
verification key VKgps -

SPS.Sign(SKsps, m) — 0gps : A signer given a signing key SKgpg along with a message m € Mgpg,
produces a signature ogps € Ssps.

SPS.Verify(VKgps, m, Ogpg) — B € {0,1} : A verifier takes as input a verification key VKgpg, a
message m € Mgps, and a signature ogpg € Sgps. It outputs a bit 5 € {0,1}.

SPS.Split(SKsps, m*) — (Osps-one,m*» VKsps-ongs SKsps-apo; VKsps-apo) : On input a signing
key SKgps along with a message m* € Msgpg, the setup authority generates a signature
Tsps-onm,m* = SPS.Sign(SKsps, m*), a one-message verification key VKgps-ong, and all-but-one
signing-verification key pair (SKgsps-apo, VKsps-aBo)-

SPS.Sign-ABO(SKgps-apo, M) — 0gps Or L : An all-but-one signer given an all-but-one signing
key SKgps-apo and a message m € Mgpg, outputs a signature ogps € Sgps Or a distinguished
string L to indicate failure. For simplicity of notation, we will often use SPS.Sign(SKgps a0, M)
to represent the output of this algorithm.

We note that among the algorithms described above, SPS.Setup and SPS.Split are randomized
while all the others are deterministic. The algorithms satisfy the following properties:

. $
» Correctness: For any security parameter A, message m* € Mgps, (SKsps, VKsps, VKsps-res) —

SPSSetUp(lA), and (O-SPS—ONE,’VTL*7VKSPS—ONE7SKSPS—AB07VKSPS—ABO) i SPSSpht(SKSpS,m*) the fOl—
lowing correctness conditions hold:

12 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

i) Vm € Mgpg, SPS.Verify(VKgps, m, SPS.Sign(SKgps, m)) = 1.

ii) Vm # m* € Mgpg, SPS.Sign(SKsps, m) = SPS.Sign-ABO(SKgps- a0, M)-

iii) Vogps € Ssps, SPS.Verify(VKgps-onm, m*, osps) = SPS.Verify(VKgps, m*, ogps).
iv) Vm # m* € Mgps, Ogps € Ssps, SPS.Verify(VKsps-apo, M, 0sps) = SPS.Verify(VKgps, m, ogps).
v) Vm # m* € Mgps, 0sps € Ssps, SPS.Verify(VKsps-ong, M, 0sps) = 0.

vi) Vogps € Ssps, SPS.Verify(VKgps-apo, m*, ogps) = 0.

vii) Vm € Mgps, 0sps € Ssps, SPS.Verify(VKgps gy, M, osps) = 0.

> VKgpsrey Indistinguishability: This property of a splittable signature scheme is defined

through the following experiment between an adversary B and a challenger C:

e C generates (SKsps, VKsps, VKsps-ruy) & SPS.Setup(1?). Next it chooses a random bit b &
{0,1}. If b = 0, it sends VKgpg to B. Otherwise, it sends VKgps pgy to B.
e B3 outputs a guess bit b’ € {0, 1}.

The splittable signature scheme is said to be VKgpg grp; indistinguishable if for any PPT adversary
B, for any security parameter A,

Advig NPT () = |Pr[b = '] — 1/2] < negl()\)
for some negligible function negl.
> VKgpsong Indistinguishability: This feature of a splittable signature scheme is defined
through the following experiment between an adversary B and a challenger C:

e B submits a message m* € Mgpg to C.
e C generates (SKgps, VKsps, VKsps-rey) ul SPS.Setup(1*). Next it computes (Osps-ong,m* » VKsps-ongs

SKgps-aB0s VKsps-ABo) é SPS.Split(sKsps, m*). Then it chooses a random bit b ﬁ {0,1}. If
b =0, it returns (Osps-onp,m*, VKsps-one) to B. Else, it returns (osps-ons,m=*, VKsps) to B.
e B3 outputs a guess bit b’ € {0, 1}.

The splittable signature scheme is said to be VKgps ong indistinguishable if for any PPT adversary
B, for any security parameter A,

Advig SN ONE () = |Prib = 8] — 1/2] < negl()\)
for some negligible function negl.
> VKgpsapo Indistinguishability: This feature of a splittable signature scheme is defined

through the following experiment between an adversary B and a challenger C:

e 3 submits a message m* € Mgpg to C.
e C generates (SKgps, VKsps, VKsps-rey) il SPS.Setup(1?). Next it computes (Osps-ong,m* » VKsps-ongs

SKgps-aB0s VKsps-ABo) ﬁ SPS.Split(SKgps, m*). Then it chooses a random bit b ﬁ {0,1}. If
b =0, it returns (SKsps-apo, VKsps-ano) to B. Else, it returns (SKsps-apo, VKgps) to B.
e B outputs a guess bit b’ € {0,1}.

The splittable signature scheme is said to be VKgpg apo indistinguishable if for any PPT adversary
B, for any security parameter A,

AdV%PSJND-ABO()\) _ |Pr[l§ _ 5/] —1/2| < negl()\)

for some negligible function negl.

» Splitting Indistinguishability: This feature of a splittable signature scheme is defined
through the following experiment between an adversary B and a challenger C:

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 13

e 3 submits a message m* € Mgpg to C.
o C forms (SKsps, VKsps, VKsps rey) il SPS.Setup(1?), (SK.pg, VK:pss VKhps i) il SPS.Setup(1?).

Next it computes (Osps-ong,m*, VKsps-ongs SKsps-apos VKsps-aso) <— SPS.Split(SKsps, m™) as well

/ ! / !/ $ H !/ :
as (Obps-onmm*» VKips-ones SKeps asor VKipsano) < SPS.Split(SK¢pg, m*). Then it chooses a ran-

dom bit b & {0,1}. If b= 0, it returns (sps-one,m* s VKsps-ones SKsps-apo, VKsps-ago) to B. Else,
lt returns (O-SPS—ONEJH* 9 VKSPS—ONE7 SK/SPS—ABO7 VKgPS—ABO) tO B
e B outputs a guess bit b’ € {0,1}.

The splittable signature scheme is said to be splitting indistinguishable if for any PPT adversary
B, for any security parameter A,

AdVSBPS,IND—SPL(A) _ \Pr[l; _ B/] _ 1/2‘ < negl(A)

for some negligible function negl.

Koppula et al. [KLW15] have constructed a splittable signature scheme using 10 and one-way
function.

3 Our Constrained Pseudorandom Function for Turing Machines

3.1 Notion

We start by formally defining the notion of constrained pseudorandom functions (CPRF’s) follow-
ing Deshpande et al. [DKW16]. Informally, a CPRF extends the idea of standard pseudorandom
functions (PRF), enabling the master PRF key holder to generate ‘constrained keys’ that allow
PRF evaluation on certain inputs, while the PRF evaluation on remaining inputs ‘looks’ ran-
dom to any computationally bounded party holding only a constrained key. As in [DKW16],
in order to allow unbounded polynomial length inputs, we associate the constrained keys to
polynomial-time TM’s.

Definition 3.1 (Constrained Pseudorandom Function for Turing Machines: CPRF).
Let My be a family of TM’s with (worst case) running time bounded by T' = 2*. A constrained
pseudorandom function (CPRF) with key space Kcpgr, input domain Xepre C {0, 1}*, and output
space Veprr C {0,1}* for the TM family M, consists of an additional key space Keprr-const and
PPT algorithms (CPRF.Setup, CPRF.Eval, CPRF.Constrain, CPRF.Eval-Constrained) described as
follows:

CPRF.Setup(1*) — SKeprr : The setup authority takes as input the security parameter 1* and
generates the master CPRF key SKcprr € Kepre-

CPRF.Eval(SKcprr,) — y : On input the master CPRF key SKcprp along with an input
r € Xeprr, the setup authority computes the value of the CPRF y € Yiprp. For simplic-
ity of notation, we will use CPRF(SK¢pry,) to indicate the output of this algorithm.

CPRF.Constrain(SK¢prr, M) — SKeprr{M } : Taking as input the master CPRF key SK¢prr and
a TM M € M, the setup authority provides a constrained key SKcpre{M } € Kcprr-consr t0
a legitimate user.

CPRF.Eval-Constrained(SKcprp{ M },z) — y or L : A user takes as input a constrained key
SKcpre{ M} € Keprr-const, corresponding to a legitimate TM M € M), along with an input
T € Xeprp. It outputs either a value y € Veprr or L indicating failure.

14 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

The algorithms CPRF.Setup and CPRF.Constrain are randomized, whereas, the other two are
deterministic. The algorithms satisfy the following properties:

» Correctness under Constraining: Consider any security parameter A\, SKcprr € Keprr,
M € M), and SKcpre{ M} i CPRF.Constrain(SKgprr, M). The following must hold:

CPRF(SKCPRF, .1:)7 lf M(l’) - 1

CPRF.Eval-Constrained(SKcpre{ M }, z) = {J_ otherwise

» Selective Pseudorandomness: This property of a CPRF is defined through the following
experiment between an adversary A and a challenger B:

e A submits a challenge input z* € Xeprp to B.
e B generates a master CPRF key SKcpry & CPRF.Setup(1*). Next it selects a random bit
b & {0,1}. If b = 0, it computes y* = CPRF(SK¢prr, z*). Otherwise, it chooses a random

y* & YVepre- It returns y* to A.
e A may adaptively make a polynomial number of queries of the following kinds to B:

— Evaluation query: A queries the CPRF value at some input € Xeprp such that z # x*.
B provides the CPRF value CPRF(SK¢pgy,) to A.

— Key query: A queries a constrained key corresponding to TM M € M subject to the con-

straint that M (z*) = 0. B gives the constrained key SK¢prp{ M } & CPRF.Constrain(SKcprr,
M) to A.
e A eventually outputs a guess bit ' € {0,1}.

The CPREF is said to be selectively pseudorandom if for any PPT adversary A, for any security
parameter A,
Adv SN = [Pr[b =] — 1/2] < negl())

for some negligible function negl.

Remark 3.1. As pointed out in [HKKW14,/CRV14], note that in the above selective pseudo-
randomness experiment, without loss of generality we may assume that the adversary A only
makes constrained key queries and no evaluation query. This is because any evaluation query at
input x € Xcprr can be replaced by constrained key query for a TM M, € M, that accepts only
x. Since, the restriction on the evaluation queries is that « # z*, M, (z*) = 0, and thus M, is a
valid constrained key query. We will use this simplification in our proof.

3.2 The CPRF Construction of Deshpande et al.

In EUROCRYPT 2016, Deshpande et al. [DKW16| have presented a CPRF construction support-
ing inputs of unconstrained polynomial length based on indistinguishability obfuscation and in-
jective pseudorandom generators, which they have claimed to be selectively secure.Unfortunately,
their security argument has a flaw. In this section, we give an informal description of their CPRF
construction and point out the flaw in their security argument.

Overview of the CPRF Construction of [DKW16|: The principle ideas behind the CPRF
construction of [DKW16] are as follows: To produce the CPRF output their construction uses a
PPRF F and a positional accumulator. A master CPRF key consists of a key K for the PPRF
F and a set of public parameters PP, of the positional accumulator. The CPRF evaluation
on some input * = xg...xp,—1 € Xeprr C {0,1}* is simply F(K,wp), where wp is the
accumulation of the bits of x using PP,cc.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 15

A constrained key of the CPRF, corresponding to some TM M, comprises of PP,qc along with
two programs P; and Peprr, which are obfuscated using 10. The first program Py, also known
as the initial signing program, takes as input an accumulator value and outputs a signature on
it together with the initial state and header position of the TM M. The second program Pcpgp,
also called the next step program, takes as input a state and header position of M along with
an input symbol and an accumulator value. It essentially computes the next step function of M
on the input state-symbol pair, and eventually outputs the proper PRF value, if M reaches the
accepting state. The program Pcprr also performs certain authenticity checks before computing
the next step function of M in order to prevent illegal inputs. For this purpose, Pcprr additionally
takes as input a signature on the input state, header position, and accumulator value, together
with a proof for the positional accumulator. The program Pcprr verifies the signature as well as
checks the accumulator proof to get convinced that the input symbol is indeed the one placed at
the input header position of the underlying storage of the input accumulator value. If all these
verifications pass, then Pgprr determines the next state and header position of M, as well as,
the new symbol that needs to be written to the input header position. The program Pcpgr then
updates the accumulator value by placing the new symbol at the input header position as well
as signs the updated accumulator value along with the computed next state and header position
of M. The signature scheme used by the two programs is a splittable signature. In order to
deal with the positional accumulator related verifications and updations, the program Pgprr has
PP, cc hardwired.

Evaluating the CPRF on some input z using a constrained key, corresponding to some TM M,
consists of two steps. In the first step, the evaluator computes the accumulation wyyp of the bits
of = using PP,cc, which are also included in the constrained key, and then obtains a signature on
wiyp together with the initial state and header position of M by running the program P;. The
second step is to repeatedly run the program Pepry, each time on input the current accumulator
value, current state and header position of M, along with the signature on them. Additionally, in
each iteration the evaluator also feeds wiyp to Peprr. The iteration is continued until the program
Perrr either outputs the PRF evaluation or the designated null string L indicating failure.

The Flaw: In order to prove selective pseudorandomness of the above CPRF construction, the
authors of [DKW16| extends the techniques introduced in [KLW15| in the context of proving
security of message-hiding encoding scheme for TM’s. More precisely, the authors of [DKW16|
proceed as follows: During the course of the proof, the authors aim to modify the constrained keys
given to the adversary A in the selective pseudorandomness experiment, discussed in Section 3.1}
to embed the punctured PPRF key K{wj,} punctured at w;y, instead of the full PPRF key K,
which is part of the master CPRF key sampled by the challenger B. Here, w;y, is the accumulation
of the bits of the challenge input z*, submitted by the adversary A, using PP ¢, included within
the master CPRF key generated by the challenger B. In order to make this substitution, it is to be
ensured that the obfuscated next step programs included in the constrained keys never outputs
the PRF evaluation for inputs corresponding to wijy, even if reaching the accepting state. The
proof transforms the constrained keys one at a time through multiple hybrid steps. Suppose that
the total number of constrained keys queried by A be §. Consider the transformation of the vt
constrained key (1 < v < §) corresponding to the TM M () that runs on the challenge input z*
for t*(*) steps and reaches the rejecting state. In the course of transformation, the obfuscated next
step program Pélf,)RF of the v*! constrained key is first altered to one that never outputs the PRF
evaluation for inputs corresponding to wy, within the first t*() steps. Towards accomplishing
this transition, the challenger B at various stages needs to generate PP,¢¢ in read /write enforcing
mode where the enforcing property should be tailored to the steps of execution of the specific
TM M® on 2*. For instance, at some point of transformation of the v** constrained key, PP yoc
needs to be set in the read enforcing mode by B on input (i) the entire sequence of symbol-
position pairs arising from iteratively running M®) on z* upto the ¢ step and (ii) the enforcing

16 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

index corresponding to the header position of M*) at the ¢*" step while running on z*, where
1 <t < t*®), Evidently, B can determine those symbol-position pairs only after receiving the TM
M®) from A. However, B would also require PP, while creating the constrained keys queried
by A before making the v*® constrained key query and even possibly for preparing the challenge
value for A. Thus, it is immediate that B must generate PP, prior to receiving the v query
from A. This is impossible as setting PP, in read enforcing mode requires the knowledge of the
TM M®), which is not available before the vt constrained key query of A. A similar conflict
also arises when B attempts to setup PP,¢c in the write enforcing mode tailored to M (), This
serious flaw renders the security argument of [DKW16| invalid.

3.3 Overview of Our Techniques to Fix the Flaw of [DKW16|

Observe that a set of public parameters of the positional accumulator must be included within
each constrained key. This is mandatory due to the required updatability feature of positional
accumulator, which is indispensable to keep track of the current situation while running the
obfuscated next step program Pcpgr iteratively in the course of evaluating the CPRF on some
input. The root cause of the problem in the security argument of [DKW16| is the use of a single
set of public parameters PP,¢¢ of the positional accumulator throughout the system. Therefore,
as a first step, we attempt to assign a fresh set of public parameters of the positional accumulator
to each constrained key. However, for compressing the PRF input to a fixed length, on which F
can be applied producing the PRF output, we need a system-wide compressing tool. We employ
SSB hash for this purpose. The idea is that while evaluating the CPRF on some input z using
a constrained key, corresponding to some TM M, the evaluator first computes the hash value
h by hashing x using the system wide SSB hash key, which is part of the master key. The
evaluator also computes the accumulator value wyp by accumulating the bits of x using the
public parameters of positional accumulator included in the constrained key. Then, using the
obfuscated initial signing program P, included in the constrained key, the evaluator will obtain
a signature on wiyp along with the initial state and header position of M. Finally, the evaluator
will repeatedly run the obfuscated next step program Peprr, included in the constrained key,
each time giving as input all the quantities as in the evaluation algorithm of [DKW16|, except
that it now feeds the SSB hash value h in place of wyp in each iteration. This is because, in case
Perrr reaches the accepting state, it would require A to apply F for producing the PRF output.

However, this approach is not completely sound yet. Observe that, a possibly malicious
evaluator can compute the SSB hash value h on the input x, on which it wishes to evaluate the
CPRF although M does not accepts it, and initiates the evaluation by accumulating the bits of
only a substring of x or some entirely different input, which is accepted by M. To prevent such
malicious behavior, we include another 10-obfuscated program P within the constrained key,
known as the accumulating program, whose purpose is to restrict the evaluator from accumulating
the bits of a different input rather than the hashed one. The program Ps takes as input an SSB
hash value h, an index ¢, a symbol, an accumulator value, a signature on the input accumulator
value (along with the initial state and header position of M), and an opening value for SSB. The
program P, verifies the signature and also checks whether the input symbol is indeed present at
the index 7 of the string that has been hashed to form h, using the input opening value. If all
of these verifications pass, then Py updates the input accumulator value by writing the input
symbol at the 7" position of the accumulator storage. We also modify the obfuscated initial
signing program P;, included in the constrained key, to take as input a hash value and output
a signature on the accumulator value corresponding to the empty accumulator storage, along
with the initial state and header position of M.

Moreover, for forbidding the evaluator from performing the evaluation by accumulating an
M-accepted substring of the hashed input, we define our PRF output as the evaluation of F on
the pair (hash value, length) of the input in stead of just the hash value of the input. Note that,

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 17

without loss of generality, we can set the upper bound of the length of PRF inputs to be 2%,
where A is the underlying security parameter in view of the fact that by suitably choosing A we
can accommodate inputs of any polynomial length. This setting of upper bound on the input
length is implicitly considered in [DKW16] and also explicitly used in [BGJS15] while dealing
with multi-input functional encryption for unbounded arity functions. Now, as the input length
is bounded by 2%, the input length can be expressed as a bit strings of length A. Thus, the
PRF input length can be safely fed along with the SSB hash value of PRF input to F, which
can handle only inputs of apriori bounded length. Hence, the obfuscated next step programs
Perrr included in our constrained keys must also take as input the length of the PRF input for
producing the PRF value if reaching to the accepting state.

Therefore, to evaluate the CPRF on some input using a constrained key, corresponding to
some TM M, an evaluator first hash the PRF input. The evaluator also obtains a signature on
the empty accumulator value included in the constrained key, by running the obfuscated initial
signing program P; on input the computed hash value. Next, it repeatedly runs the obfuscated
accumulating program Ps to accumulate the bits of the PRF input. Finally, it runs the obfuscated
next step program Pgpry iteratively on the current accumulator value along with other legitimate
inputs until it obtains either the PRF output or L.

Regarding the proof of security, notice that the problem with enforcing the public parameters
of the positional accumulator while transforming the queried constrained keys will not appear in
our case as we have assigned a separate set of public parameters of positional accumulator to each
constrained key. However, our actual security proof involves many subtleties that are difficult to
describe with this high level description and is provided in full details in the sequel. We would
only like to mention here that to cope up with certain issues in the proof we further include
another |0-obfuscated program Ps in the constrained keys, known as the signature changing
program, that changes the signature on the accumulation of the bits of the PRF input before
starting the iterative computation with the obfuscated next step program Pcpre.

We follow the same novel technique introduced in [DKW16| for handling the tail hybrids in
the final stage of transformation of the constrained keys. Note that as in [DKW16], we are also
considering TM’s which run for at most 7' = 2 steps on any input. Unlike [KLW15|, the authors
of [DKW16] have devised a beautiful approach to obtain an end to end polynomial reduction to
the security of 10 for the tail hybrids by means of an injective pseudorandom generator (PRG).
We directly adopt that technique to deal with the tail hybrids in our security proof. A high level
overview of the approach is sketched below. Let us call the time step 27 as the 7" landmark and
the interval [27,27+1 — 1] as the 7*® interval. Like [DKW16|, our obfuscated next step programs
Perrr included within the constrained keys take an additional PRG seed as input at each time
step, and perform some additional checks on the input PRG seed. At time steps just before a
landmark, the programs output a new pseudorandomly generated PRG seed, which is then used
in the next interval. Using standard 10 techniques, it can be shown that for inputs corresponding
to (h*, £*), if the program Pcpgr outputs L, for all time steps upto the one just before a landmark,
then we can alter the program indistinguishably so that it outputs L at all time steps in the next
interval. Here h* and £* are respectively the SSB hash value and length of the challenge input z*
submitted by the adversary A in the selective pseudorandomness experiment. Employing this
technique, we can move across an exponential number of time steps at a single switch of the
next step program Peppyp-

3.4 Formal Description of Our CPRF Construction

Now we will formally present our CPRF construction where the constrained keys are associ-
ated with TM’s. Let A be the underlying security parameter. Consider the family M of TM’s,
the members of which have (worst-case) running time bounded by T = 2*, input alphabet

18 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Y = {0, 1}, and tape alphabet Xy, pp = {0, 1, _}. Our CPRF construction utilizes the following
cryptographic building blocks:

i) ZO: An indistinguishability obfuscator for general polynomial-size circuits.

ii) SSB = (SSB.Gen, H,SSB.Open, SSB.Verify): A somewhere statistically binding hash function
with Sspne = {0, 1}.

iii) ACC = (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-Enforce-Write, ACC.Prep-Read,
ACC.Prep-Write, ACC.Verify-Read, ACC.Write-Store, ACC.Update): A positional accumulator
with Yycopk = {0, 1, _}.

iv) ITR = (ITR.Setup, ITR.Setup-Enforce, ITR.Iterate): A cryptographic iterator with an appro-
priate message space Mrg.

v) SPS = (SPS.Setup, SPS.Sign, SPS.Verify, SPS.Split, SPS.Sign-ABO): A splittable signature
scheme with an appropriate message space Mgps.

vi) PRG: {0,1}* — {0,1}?*: A length-doubling pseudorandom generator.

vii) F = (F.Setup, F.Puncture, F.Eval): A puncturable pseudorandom function whose domain
and range are chosen appropriately. For simplicity, we assume that F has inputs and outputs
of bounded length instead of fixed length inputs and outputs. This assumption can be easily
removed by using different PPRF’s for different input and output lengths.

Our CPRF construction is described below:

CPRF.Setu p(l/\) — SKeprr = (K, HK): The setup authority takes as input the security parameter
1* and proceeds as follows:

1. It first chooses a PPRF key K & F.Setup(1?).

2. Next it generates HK & SSB.Gen(1*, ngsp-prx = 2*,4* = 0).
3. It sets the master CPRF key as SK¢prr = (K, HK).

CPRF.Eval(SK¢prr,) — y = F(K, (h,{;)): Taking as input the master CPRF key SKcprp =
(K,HK) along with an input x = zg...2¢,—1 € Xepre, where |z| = ¢, the setup authority
executes the following steps:

1. Tt computes h = Hyk ().
2. It outputs the CPRF value on input = to be y = F(K, (h, {3)).

CPRFCOnStI’ain(SKCpRF, M) — SKCPRF{M} — (HI{7 PPACC? ’wo, STOREO, PPITR7 'UO’ Pl, 7)27 P3, PCPRF):
On input the master CPRF key SKcprr = (K, HK) and a TM M = (Q, Xixp, Zrape, 0, 40, gacs
drey) € My, the setup authority performs the following steps:

1. At first, it selects PPRF keys K1, ..., Kx, Ksps 4, Ksps,E & .F.Setup(l/\).

2. Next, it generates (PPscc, wo, STORE() vl ACC.Setup(1*, nacepk = 2%) and (PPirg, vo) &
ITR.Setup(1*, nyry = 2%).
3. Then, it constructs the following obfuscated programs:
— P1 = ZO(Init-SPS.Prog|qo, wo, vo, Ksps. E]),
— Py = ZO(Accumulate.Prog[nsss sk = 2%, HK, PPscc, PPirw, Ksps 1)),
— P3 = ZO(Change-SPS.Prog|Ksps A, Ksps E]),
— Peprr = ZO(Constrained-Key.Progpuw[M, T = 2}, PPycc, PPy, K, K1, . . ., K, Ksps a),

where programs Init-SPS.Prog, Accumulate.Prog, Change-SPS.Prog, and Constrained-Key.Prog ..

are depicted respectively in Figs. and

4. Tt Provides the constrained key SKcprp{M } = (HK, PP, Wo, STOREq, PPrg, Vg, P1, P2, Ps,
Perrr) € Keprr-const to a legitimate user.

CPRF.Eval-Constrained(SKepre{M },) — y = F(K, (h,{;)) or L: A user takes as input its con-
strained key SKcpre{M} = (HK, PPcc, Wo, STOREq, PPirr, V0, P1, P2, P3, Peprr) € Keprr-const
corresponding to some legitimate TM M = (Q, Xp, Xrare, 9, 90s dac, Grey) and an input
T=2x0...T0,—1 € Xoprr With |z| = £;. It proceeds as follows:

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 19

Constants: Initial TM state go, Accumulator value wo, Iterator value vg, PPRF key K g
Input: SSB hash value h
Output: Signature Osps,ouT

1. Compute rsps, g =]:(KSPS,E, (h, 0))7 (SKSPS,E, VKsps, E, VKSPS—REJ,E) = SPS-SetUp(l)\; T'SPS,E)-
2. Output osps,our = SPS.Sign(SKses, 2, (vo, qo, wo, 0)).

Fig. 3.1. Init-SPS.Prog

Constants: Maximum number of blocks for SSB hash ngssix = 2”, SSB hash key HK, Public parameters for
positional accumulator PP,cc, Public parameters for iterator PPz, PPRF key Ksps £

Inputs: Index i, Symbol SYMy, TM state ST, Accumulator value wi, Auxiliary value AUX, Iterator value
vin, Signature ospsiv, SSB hash value h, SSB opening value 7ggs

Output: (Accumulator value wour, Iterator value vour, Signature osps-our), or L

1.(a) Compute rss,m = F(Ksps 1, (R, 1)), (SKsps, 5, VKsps, 5, VKsps.nes,) = SPS.Setup(1®; 7sps, 1)
(b) Set mux = (v, ST, wi, 0). If SPS.Verify(VKses, 2, My, Osps,iv) = 0, output L.
If SSB.Verify(HK, h, %, SYMy, ssp) = 0, output L.
(a) Compute wour = ACC.Update(PPacc, Win, SYMu, 4, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPix, Vi, (ST, wix, 0)).
4'(3‘) Compute réPS,E = F(KSF’S,Ev (h,l + 1))7 (SKéPS,E7 VK;‘PS,E, VK;PS—REJ,E) = SPS-SetuP(l)\§ T;PS,E)'
(b) Set mour = (Vour, ST, Wour, 0). Compute osps our = SPS.Sign(SKps, 5, Mour)-
5. OUtPUt (wOUT7 Vour, UspspUT)-

2.
3.

Fig. 3.2. Accumulate.Prog

Constants: PPRF keys Kgps, 4, Ksps,E

Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length fip,
Signature ogps v

Output: Signature osps our, or L

1~(a) Compute Tsps,E =]:(KSPS,E7 (h7 g[NP)y (SKSPS,E7 VKsps, E, VKSPS-M‘,J,E) = SPS-SetUP(1A§ TSPS,E)~
(b) Set m = (v,ST,w,0). If SPS.Verify(VKses, £, M, osps,v) = 0, output L.

2.(a) Compute 7sps,a = F(Ksps, A, (h, lixe, 0)), (SKses, 4, VKsps, A, VKsps-res, A) = SPS.Setup(lA; Tsps,A)-
(b) Output ospsovr = SPS.Sign(SKsps, 4, m).

Fig. 3.3. Change-SPS.Prog

1. It first computes h = Hpuk ().

2. Next, it computes Ggps o = P1(h).

3. Then for j =1,...,4,, it iteratively performs the following:
(a) It computes Tssp j—1 & SSB.Open(HK, x,j — 1).

(b) It computes AUX; = ACC.Prep-Write(PP,cc, STORE; 1,7 — 1).

c¢) It computes oUT = Po(j — 1, Tj—1,q0,Wj—1,AUX;}, Vj_1,Ospsj—1, N, TrSSB,j—l)-

(d) If out = L, it outputs OUT. Else, it parses OUT as OUT = (wj, vj, Osps,j)-

(e) It computes STORE; = ACC.Write-Store(PP ¢, STORE; 1,7 — 1,2j-1).

4. It computes osps,0 = P3(qo, We, , Ve, , Ny be, Tsps e,)-

. It sets POSy1,0 = 0 and SEEDg = e.

6. Suppose, M runs for t, steps on input x. For ¢ = 1,...,t,, it iteratively performs the
following steps:
(a) It computes (SYMpst—1, Tacc,i—1) = ACC.Prep-Read(PPcc, STORE(, 441, POSpr¢—1).
(b) It computes AUXy, ++ = ACC.Prep-Write(PPcc, STORE, 11, POSAft—1)-
(C) It computes ouT = Pchp(t, SEED;—1, POSpf,t—1, SYMAft—1, ST —1, Wey4t—15 Tacc,t—15

AUXg, 445 Ve t—1, Ny oy Osps t—1)-

ot

20 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = (Q, Xixr, Xrare, 8, @0, Gac, Gres), Time bound T' = 2>‘7 Public parameters for positional
accumulator PP,cc, Public parameters for iterator PPir, PPRF keys K, K1, ..., Kx, Ksps, 4

Inputs: Time ¢, String SEED,, Header position POSy, Symbol Sym,y, TM state STy, Accumulator value
win, Accumulator proof myce, Auxiliary value AUX, Iterator value v, SSB hash value h, length
Uivp, Signature osps v

Output: CPRF evaluation F(K, (h,fne)), or Header Position (POSour, Symbol SYMour, TM state STour,
Accumulator value wour, Iterator value vour, Signature ogps our, String SEEDouyr), or L

1. Identify an integer 7 such that 27 <t < 271,
If [PRG(SEED) 2 PRG(F (K, (hy b)) A [t > 1], output L.

2. If ACC.Verify-Read(PPacc, Win, SYMiy, POSin, Tacc) = 0, output L.
3(3) Compute Tsps,A =]:(KSPS,A7 (h»7 Lixp, t — 1)), (SKSPS,A, VKsps, A, VKSPS—RHJ,A) = SPS-SetUP(1A§ Tsps,A)~
(b) Set mux = (Vix, STin, Win, POSiy). If SPS.Verify(VKses, 4, Mun, 0sps,iv) = 0, output L.
4.(a) Compute (STour, SYMour, 3) = 0(STw, SYMi) and POSour = POSiy + 3.
(b) If STour = grus, output L.
Else if STour = gac, output F(K, (h, lwe)).
5.(a) Compute wour = ACC.Update(PPacc, Win, SYMour, POSiy, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Vi, (STin, Win, POSx))-
6.(a) Compute 1l 4 = F(Ksrs,a, (B lixe, 1))y (SKhps, 4> VKSps 4+ VRipsns,a) = SPS.Setup(1*; rlps 4)-
(b) Set Mour = ('UOL‘T7 STour, Wour, POSOUT)»

Compute osps,ovr = SPS-Sign(SK;p37A7 Mour)-
7. Ift+1=2", set SEEDour = F (K, (h, lu)).
Else, set SEEDour = €.
8. Output (POSour, SYMour, STour; Wour, Vout; Tsps,out, SEEDour).

Fig. 3.4. Constrained-Key.Prog

(d) Ift = t,, it outputs OUT. Otherwise, it parses OUT as OUT = (POS)y, SYM%‘Z?ITE), STar 4,

W+t Vey+ts Osps,ts SEEDY).
(e) It computes STOREy, 1 = ACC.Write-Store(PP,cc, STORE, 4+—1, POSA 11, SYME\Z[V?TE))

Security

Theorem 3.1 (Security of the CPRF Construction of Section . Assuming TO is a
secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom func-
tion as per Definition SSB is a somewhere statistically binding hash function according to
Definition [2.3, ACC is a secure positional accumulator according to Definition[2.4), ITR is a se-
cure cryptographic iterator as per Definition [2.5, SPS is a secure splittable signature scheme as
defined in Definition|2.6, and PRG is a secure injective pseudorandom generator,the CPRF con-
struction of Section[3.]) satisfies correctness under constraining and selective pseudorandomness
as defined in Definition|3.1].

The proof of Theorem is provided in Appendix [A]

4 QOur Constrained Verifiable Pseudorandom Function for Tur-
ing Machines

4.1 Notion

We extend the notion of constrained pseudorandom functions for Turing machines to constrained
verifiable pseudorandom function (CVPRF) for Turing machines in the same spirit as it has been
extended in case of circuits by Fuchsbauer et al. [Fucl4] and Chandran et al. [CRV14]. As noted
earlier, we involve TM’s as opposed to circuits in order to accommodate unbounded inputs.
Roughly, in case of a (CVPRF), in addition to generating a master evaluation key, the setup

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 21

authority also publishes a public verification key. Given, a constrained key associated with a TM
and an input accepted by that TM, a user computes the PRF value along with a proof of the
fact that the computed PRF value is correct, which can be verified with respect to the public
verification key. The formal definition follows:

Definition 4.1 (Constrained Verifiable Pseudorandom Function for Turing Machines:
CVPRF). Let My, be a family of TM’s with (worst-case) running time bounded by T = 2*. A
constrained verifiable pseudorandom function (CVPRF) for M, with key space Kcyprr, input
domain Xeypre C {0, 1}*, and output space Vevpre C {0, 1}* consists of a constrained key space
Kcverr-const, @ proof space I1gyprr, along with the PPT algorithms (CVPRF.Setup, CVPRF.Eval,
CVPRF.Prove, CVPRF.Constrain, CVPRF.Prove-Constrained, CVPRF.Verify) which are described
below:

CVPRF.Setup(1*) — (SKcvprr; VKevprr) : The setup authority takes as input the security pa-
rameter 1* and generates a master CVPRF key SKoyprr along with a public verification key

VKcvpRE-

CVPRF.Eval(SKcyprr, ©) — v : Taking as input the master CVPRF key SKeypre and an input
x € Xgevprr, the trusted authority outputs the value of the function y € Veyprr. For simplicity
of notation, we will denote by CVPRF(SK¢yprr,) the output of this algorithm.

CVPRF.Prove(SKcvprr, ©) — Toverr @ Laking as input the master CVPRF key SKcyprp and an
input x € Xevprr, the trusted authority outputs a proof weyprr € Hevpre-

CVPRF.Constrain(SKeypre, M) — SKevere{ M } : On input the master CVPRF key SKcyprr and a
TM M € M, the setup authority provides a constrained key SKcypre{M } to a legitimate user.

CVPRF.Prove-Constrained (SKcypre{ M },) — (y, Teyprr) Or L @ A user takes as input its con-
strained key SK¢yprr{ M } corresponding to a legitimate TM M € M, and an input © € Xoypge-
It outputs either a value-proof pair (y, Teverr) € Yeverr X evere or (L, L) indicating failure.

CVPREF Verify(VKcyprr, €, Y, Tevprr) — B € {0,1} : A verifier takes as input the public ver-
ification key VKcyprr, an input x € Xeyprr, @ value y € Yevprr, together with a proof
Toverr € Hevere- It outputs a bit beta € {0,1}.

The algorithms CVPRF.Setup, CVPRF.Prove, CVPRF.Constrain and CVPRF.Prove-Constrained are
randomized, while the other two algorithms are deterministic. The algorithms satisfy the follow-
ing properties:

» Provability: For any security parameter A, (SKovere, VKcvprr) & CVPRF.Setup(1?),

M € M), SKovere{M} & CVPRF.Constrain(SKoypre, M), * € Xoyprr, and (Y, Toverr) &
CVPRF.Prove-Constrained (SKcypre{ M }, x), the following holds:

o If M(x) =1, then y = CVPRF(SKcyprr,) and CVPRF.Verify(VKcypre, T, Y, Toverr) = 1.
o If M(x) =0, then (y77rCVPRF) = (J—a J—)-

» Uniqueness: For any security parameter X\, VKcvprr, T € Xcverr, Y0,Y1 € Yoverr, and
WCVPRF,O) WCVPRF,I S HCVPRF7 one Of the fOHOWlng hOldS:

® Yo =Y1-
[] [CVPRFVenfy(VKCVPRF, l‘, y07 WCVPRF,O) - 0] v [CVPRFVenfy(VKCVPRF, 137 yl’ WCVPRF,I) = O]

» Constraint Hiding: For any security parameter A, (SKcyprr, VKcverr) ﬁ CVPRF.Setup(l/\),
M € M), SKevpre{M} & CVPREF.Constrain(SKcypre, M), and € Xoyprr, the second output

22 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Teverr Of CVPRF.Prove-Constrained(SKeypre{ M }, z) and the output of CVPRF.Prove(SKcyprr,)
are distributed identically.

» Selective Pseudorandomness: This property of a CVPRF is defined through the following
experiment between an adversary A and a challenger B:

e A submits a challenge input z* € Xoyprr to B.
e 3 generates (SKcyprr, VKcvprr) & CVPRF.Setup(1*). Next it selects a random bit b & {0,1}.

If b = 0, it computes y* = CVPRF(SKcyprr, *). Otherwise, it chooses a random y* ﬁ YoveRe-
It returns (VKevere, ¥*) to A.
e A may adaptively make a polynomial number of queries of the following kinds to B:
— Proof query: A queries the CVPRF value along with a proof at some input € Xeyprr
such that = # x*. B provides (CVPRF(SKoyprr,), CVPRF.Prove(SKcyprr,)) to A.

— Key query: A queries a constrained key corresponding to TM M € M, subject to the con-

straint that M (z*) = 0. B gives the constrained key SKeypre{ M } & CVPRF.Constrain(SKcypge,
M) to A.
e A eventually outputs a guess bit &’ € {0,1}.

The CVPRF is said to be selectively pseudorandom if for any PPT adversary A, for any security

parameter A,
AdVJCLlVPRF,SEL—PR()\) _ |Pr[b — b/] _ 1/2| < negl()\)

for some negligible function negl.

Remark 4.1. Note that following the arguments given in Remark we may assume without
loss of generality, that the adversary A in the above selective pseudorandomness experiment
only makes constrained key queries and no evaluation query.

4.2 Construction

Here we will provide our CVPRF for TM’s. This construction is obtained by extending our CPRF
construction described in Section Let A\ be the underlying security parameter. Let M be a
class of TM’s, the members of which have (worst-case) running time bounded by 7' = 22 input
alphabet Y\\p = {0,1}, and tape alphabet X1 pp = {0,1,_}. Our CVPRF construction for TM
family M, will employ all the building blocks utilized in our CPRF construction. Additionally,
we will use a perfectly correct and chosen plaintext attack (CPA) secure public key encryption
scheme PKE = (PKE.Setup, PKE.Encrypt, PKE.Decrypt) with an appropriate message space. The
formal description of our CVPRF construction follows:

CVPRF.Setup(lA) — (SKeverr = (K, Kpgp, HK), VKeypre = (HK, Veyprr)): The setup authority

takes as input the security parameter 1* and proceeds as follows:

1. It first chooses PPRF keys K, Kpxg & F.Setup(1?).

2. Next it generates HK & SSB.Gen(1*, ngsp-prx = 2*,4* = 0).

3. Then, it creates the obfuscated program Veyperr = ZO(Verify.Progqyprr [K, Kpki]), where
the program Verify.Prog s is described in Fig.

4. Tt sets the master CVPRF key as SKcyprr = (K, Kpkg, HK) and publishes the public verifi-
cation key VKcyprr = (HK, Vovprr)-

CVPRF.Eval(SKcyprr,) = y = F(K, (h, £;)): Taking as input the master CVPRF key SKcyprr =
(K, Kpkg, HK) along with an input * = x¢...2¢,—1 € Xoverr, Where |z| = {5, the setup
authority executes the following steps:

1. Tt computes h = Hyk(z).

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 23

Constants: PPRF keys K, Kpkg
Inputs: SSB hash value h, Length £ixp
Output: (PKE public key PKpxe, Encryption of CVPRF value EEPKE)

1. Compute PPKE,1”7A’PKE,2 =]:(kam (h7 KINP))7 (ﬁPKE7 S/I\(PKE) = PKE-SetUP(]-)\} fPKE,1)~
2. Compute CTpxs = PKE.Encrypt(PKexe, F (K, (R, biw)); Prxe,2)-
3. Output (PKps, CTpxs)-

Fig.4.1. Verify.Prog.yppr

2. Tt outputs the CVPRF value on input z to be y = F(K, (h,{;)).

CVPRF.Prove(SKcvprr,) — Toverr = (PKpke, Tpkr,2): The setup authority takes as input the
master CVPRF key SKcypre = (K, Kpkg, HK) along with an input x = zg...x¢, -1 € Xoverr,
where |z| = ;. It proceeds as follows:

1. At first, it computes h = Hyux(z).
2. Then, it computes 7pkp,1||7pxp,2 = F (Krxr, (1, £2)), (PKpke, SKpkr) = PKE.Setup(1*; TpKE,1)-
3. It outputs meverr = (PKpke, T'prp,2)-

CVPREF.Constrain(SKcypres M) — SKevpre{ M} = (HK, PPcc, Wo, STOREQ, PPirg, Vo, P1, P2, P3,
PCVPRF): On input the HlaSteI‘ CVPRF key SKCVPRF = (K, KPKE7 HK) and a TM M = <Q’ EINP)
Yrares 0y 40, Qacs Grey) € My, the setup authority performs the following steps:

1. At first, it selects PPRF keys K1, ..., Ky, Ksps., Ksps.iz <= F.Setup(1*).

2. Next, it generates (PPscc, wo, STORE() ¥l ACC.Setup(1*, nscepk = 2%) and (PPirg, vo) &
ITR.Setup(1*, nyry = 2%).
3. Then, it constructs the obfuscated programs
- P11 = IO(Init—SPS.Prog[qo, wo, Vo, KSPS,ED,
— Py = ZO(Accumulate.Prog[nsss sk = 2%, HK, PPscco, PPrrg, Ksps 1)),
— P3 = ZO(Change-SPS.Prog[Kgps 4, Ksps.E]),
— Peverr = ZO(Constrained-Key.Prog . pue[M, T = 2}, PPycc, PPirw, K, Kpip, K1, .. ., Ky,
KSPS,A]):
where the programs Init-SPS.Prog, Accumulate.Prog, and Change-SPS.Prog are as depicted
respectively in Figs. and [3.3]in Section [3.4] while program Constrained-Key.Prog.,pp
is described in Fig.
4. Tt provides the constrained key SKoypre{M } = (HK, PPcc, Wo, STOREq, PPyrg, Vg, P1, P2, Ps,
Peverr) to a legitimate user.

CVPREF.Prove-Constrained(SKcypre{ M },) = (y = F(K, (h,{y)), Toyprr = (PKpkg, Tpkr,2)) OF L:
A user takes as input its constrained key SKcypre{M } = (HK, PP,¢c, Wo, STORE, PPirg, Vg, P1,
Pa, P3, Poverr) corresponding to some legitimate TM M = (Q, Xixp, Zrape, 0, Q0 gacs Gres) and
an input = xg... 2,1 € Xoyprr With |z| = £5. It proceeds as follows:

1. Tt first computes h = Hyk(z).
2. Next, it computes Fgps o = P1(h).
3. Then for j =1,...,4,, it iteratively performs the following:
(a) It computes 7gsp j—1 & SSB.Open(HK, z,j — 1).
(b) It computes AUX; = ACC.Prep-Write(PP,cc, STORE;_1,j — 1).
(C) It computes ouT = 7)2(] — 1, Tj—-1,40, Wj—1,AUX;, Vj_1, &Sps’j_l, h, WSSB,j—l)-
(d) If ouT = L, it outputs OUT. Else, it parses OUT as OUT = (wj, v, Tsps j)-
(e) It computes STORE; = ACC.Write-Store(PPcc, STORE;j—1,j — 1,2j_1).
4. It computes osps 0 = P3(qo, we, , Ve, s 1y la, Tsps e,)-
5. It sets POSpr,0 = 0 and SEEDg = €.

24 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = (Q, Xixr, Xrare, 8, @0, Gac, Gres), Time bound T' = 2>‘7 Public parameters for positional
accumulator PP,cc, Public parameters for iterator PPz, PPRF keys K, Kpxi, K1, ..., Kx, Ksps, 4

Inputs: Time ¢, String SEED,, Header position POSy, Symbol Sym,y, TM state STy, Accumulator value
win, Accumulator proof myee, Auxiliary value AUX, Iterator value v, SSB hash value h, Length
Uivp, Signature osps v

Output: (CVPRF evaluation F(K, (h,fne)), CVPRF proof mevere = (PKpks, exe,2)) or Header Position
(POSour, Symbol SYMour, TM state STour, Accumulator value wour, Iterator value vour, Signature
Osps,our, String SEEDour), or L

1. Identify an integer T such that 27 <t < 271,
If [PRG(SEEDw) # PRG(F (K, (h,twe))] A [t > 1], output L.

2. If ACC.Verify—Read(PPAcm Win, SYMn, POSy, 7TAcc) =0, output L.

3.(a) Compute rops,a = F(Ksws,a, (B, five, t — 1)), (SKses, 4, VKsrs, 4, VEsps s, 4) = SSB.Setup(1%; rovs,4).
(b) Set muy = (vIN7 STy, Win, POSIy). If SPS-Verify(VKSPSxA7 M, USPS‘IN) = 0, output L.

4.(a) Compute (STour, SYMour,) = 0(STix, SYMi) and POSour = POSw + f3.
(b) If STOIZT == QRE.Iy Output J‘

Else if STour = qac, perform the following;:
(I) ComPUte TpKE,1 HTPKH,Z = -F(Kpm:, (h»7 gINP))y (PKPKE7 SKPKH) = PKE-SetUP(1A§ TPKE,l)-
(H) Output (]:(k, (hy‘elNP)), TCVPRF = (PKPKE,TPKE,2))-

5.(a) Compute wour = ACC.Update(PPacc, Win, SYMour, POSiy, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Vi, (STin, Win, POSx))-

6(3) Compute TéPS,A =]:(KSPS’A7 (h’v ZINP? t))v (SK;PS,A? VK;PS,A? VK;PS-REJ,A) = SPS.Setup(l)‘; r;PS,A)'
(b) Set mour = (Vour, STour, Wour, POSour). Compute osps our = SPS.Sign(SKeps 4, Mout)-

’
7. Ift4+1=2", set SEEDoyr = F (K7, (h, lip)).
Else, set SEEDoyr = €
8. Output (POSOUT, SYMour, STour, Wout, Vour, Tsps,0uT, SEEDOUT)~

Fig.4.2. Constrained-Key.Prog o

6. Suppose, M runs for t, steps on input x. For t = 1,...,t,, it iteratively performs the

following steps:

(a) It computes (SYMpst—1, Tacc,t—1) = ACC.Prep-Read(PP o, STORE(, 4+—1,POSpf¢—1).

(b) It computes AUXy, 1+ = ACC.Prep-Write(PP oo, STOREy, 41, POSp—1).

(c) It computes OUT = Poyprr(t, SEED¢—1, POSMt—1, SYMALt—1, STM t—1, Wey4t—1, Tacc,t—1,
AUXp, 445 Veyit—15 P, ey Osps t—1)-

(d) Ift = tg, it outputs OUT. Otherwise, it parses OUT as OUT = (POSyy ¢, SYMg\VXzITE), ST ¢
Wey+ts Vly+ts OsPs,ts SEEDy).

(e) It computes STOREy, ; = ACC.Write-Store(PPcc, STOREy, 441, POSpr 41, SYM%‘ZI;ITE))

CVPREF Verify(VKcvprr, T, Ys Toverr) — B € {0,1}: A verifier takes as input the public verifica-
tion key VKcypre = (HK, Voverr), an input @ = xq...xp, 1 € Xoyprr, where |x| = £, a value
Y € Yoverr, and a proof moyprr = (PKpke, 7') € evpre- It executes the following:

1. Tt first computes h = Hyk ().

2. Next, it computes (PKpkg, CTpxr) = Voverr (B, £z).

3. If [PKpxpy = PKpki] A [PKE.Encrypt(PKpkg,y;7) = CTpkg|, it outputs 1. Otherwise, it
outputs 0.

Security

Theorem 4.1 (Security of the CVPRF Construction of Section . Assuming TO is
a secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom
function as per Definition[2.3, SSB is a somewhere statistically binding hash function according
to Definition [2.3, ACC is a secure positional accumulator as defined in Definition[2.4, ITR is a
secure cryptographic iterator as per Definition SPS is a secure splitable signature scheme
according to Definition PRG is a secure injective pseudorandom generator, and PKE is a

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 25

perfectly correct CPA secure public key encryption scheme, the CVPRF construction described in

Section[4.4 satisfies all the properties of a secure CVPRF defined in Definition[{.1] of Section[{.1].

The proof of Theorem is given in Appendix

5 Our Delegatable Constrained Pseudorandom Function for Tur-
ing Machines

5.1 Notion

We now proceed to define the notion of key delegation in the context of CPRF’s for TM’s along the
same line as it has been introduced by Chandran et al. [CRV14]. Roughly, delegatable constrained
pseudorandom functions (DCPRF) are the extension of standard CPRF’s in which a user holding
a constrained key corresponding to some TM can issue constrained keys with the restriction that
the issued constrained keys does not enable the evaluation of the PRF value on any additional
input beyond those learnable using its own constrained key. Here again the use of TM’s in place
of circuits, as in [CRV14], allows us to support inputs of appriory unbounded length. The formal
definition of DCPRF is described below. We note that although here we consider only one level
of delegation, our definition can naturally be extended to support multiple delegation levels.

Definition 5.1 (Delegatable Constrained Pseudorandom Function for Turing Ma-
chines: DCPRF). Let M, be a family of TM’s with (worst-case) running time bounded by 7' =
2*. A delegatable constrained pseudorandom function (DCPRF) with key space Kpcpry, input do-
main Xpepre C {0, 1}, and output space Vpcprr C {0, 1} for the TM family M, consists of an ad-
ditional key space Kpcprr-const and PPT algorithms (DCPRF.Setup, DCPRF.Eval, DCPRF.Constrain,
DCPRF.Delegate, DCPRF.Eval-Constrained) described as follows:

DCPRF.Setup(1*) — SKpcprr : The setup authority takes as input the security parameter 1}
and generates the master DCPRF key SKpcprr € Kpeprr-

DCPRF.Eval(SKpcprr,) — y : On input the master DCPRF key SKpcprr along with an input
x € Xpeprr, the setup authority computes the value of the DCPRF y € Vycpre. For simplicity
of notation, we will use DCPRF(SKpcprr,) to indicate the output of this algorithm.

DCPREF.Constrain(SKpcprr, M) — SKpepre{M} : On input the master DCPRF key SKpcprr €
Kperre and a TM M € M, the setup authority provides a constrained key SKpcpre{M } €
Kbeprr-const t0 a legitimate user.

DCPRF.Delegate(SKpcprr{ M }, M) — SKpeprriM A M} Taking as input a constrained key
SKDCPRF{M } € Kpeprr-const corresponding to a legitimate TM M € M), along with another
TM M € M, a user gives a delegated constrained key SKpcprr{M A M} € Kpcprr-const tO
a legitimate delegate.

DCPRF.Eval-Constrained(SKpcpre{ M } /SKpcere {M A M},z) — y or L : A user takes as input a
constrained key SKpcprr{M } € Kpcprr-const Obtained from the setup authority, corresponding
to TM M € M, or a delegated constrained key SKpcpre{M A M} € Kpeprr-consr delegated
by a constrained key holder holding the constrained key SKpcprr{M} € Kpcprr-consr, COT-
responding to TM M € M,, along with an input © € AXpcpre. It outputs either a value
Y € Vpeprr Or L indicating failure.

The algorithms DCPRF.Eval and DCPRF.Eval-Constrained are deterministic, while, all the others
are randomized. The algorithms satisfy the following properties:

26 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

» Correctness under Constraining/Delegation: Let us consider any security parameter A,
T € XDCPRF) SKDCPRF ﬁ DCPRFSetup(l)‘), M, M S MA, SKDCPRF{M} ﬁ DCPRF.ConStrain(SKDchp,
M) and SKpepre{M A M} <& DCPRF.Delegate(SKpepre { M}, M). The following must hold:

DCPRF.Eval-Constrained(SKpcprp{ M } /SKpcpre {M A M},) =

{DCPRF(SKDCPRF,:C), it M(z)=1/[M(z)=1] A []\7(90) =1]
L otherwise

Y

» Selective Pseudorandomness: This property of a DCPRF is defined through the following
experiment between an adversary A and a challenger B:

e A submits a challenge input * € Xpcprr to B.
e 3 generates SKpcprr & DCPRF. Setup(1*) and selects a random bit b {0 1}.Ifb =0, B

computes y* = DCPRF(SKpcprr, 2*). Otherwise, B chooses y* & Voepre- B returns y* to A.
e A may adaptively make a polynomial number of queries of the following types:
— Constrained key query: A queries a constrained key corresponding to TM M € M,

subject to the constraint that M (z*) = 0. B hands the constrained key SKpcpre{M } &
DCPRF.Constrain(SKpcprr, M) to A.

— Delegated key query: A queries a delegated key by sending a pair of TM’s
(M, M) < M3 subject to the constraint that [M(z*) = 0] V [M(z*) = 0]. B
first checks Whether SKpcpre{ M} has already been generated while answering

any previous constrained key or delegated key query, and if so, then it creates

SKperre{M A M} & DCPRF.Delegate(SKpopne{M}, M). On the other hand, if

SKpcprr{ M} has not yet been generated, then B forms SKpepre{M A M } &

DCPRF.Delegate(vDCPRF.Constrain(SKDCpRF,M),]Tj). B gives the delegated key
SKDCPRF{M /\ M} tO A.

— Evaluation query: A queries the DCPRF value at some input & € Xpcpre such that

x # x*. B returns DCPRF(SKpcprr,) to A.
e At the end of interaction A outputs a guess bit &’ € {0, 1}.

The DCPREF is said to be selectively pseudorandom if for any PPT adversary A, for any security

parameter A,
AdVZCPRF,SEL—PR<)\) = |Pr[b = b’] —1/2| < negl(X)

for some negligible function negl.

Remark 5.1. Note that by a similar reasoning as in Remark in the above experiment we
can, without loss of generality, replace an evaluation query for some input x # z* € Xpcpre
with a constrained key query corresponding to a TM M, € M, such that M, accepts only =x.
Also, note that without loss of generality, we may assume that for any delegated key query of
A corresponding to TM pair (M, M) € M3, it holds that [M(z*) = 1] A [M(2*) = 0] as any
delegated key query corresponding to TM pair (M, M) € M3 with M(z*) = 0 can be replaced
with a valid constrained key query for TM M in view of the fact that once A posses a constrained
key SKpcprr{ M} it can generate the delegated key SKpopre{M A M } for any M € M, on its
own. We will use these simplifications in our proof.

5.2 Construction

In this section, we will present our DCPRF for TM’s. The construction presented here considers
only one level of delegation, however, it can readily be generalized to support multiple delegation

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 27

levels. Let A be the underlying security parameter. Consider the class My of TM’s, the members
of which have (worst-case) running time bounded by T' = 2%, input alphabet Y = {0, 1},
and tape alphabet Xy pp = {0, 1, _}. Our DCPRF construction is an augmentation of our CPRF
construction with a delegation functionality and employs all the cryptographic building blocks
utilized by our CPRF construction. In addition, we use a perfectly correct and CPA secure pub-
lic key encryption scheme PKE = (PKE.Setup, PKE.Encrypt, PKE.Decrypt) with an appropriate
message space. The formal description of our DCPRF follows:

DCPRF.Setup(1*) — SKpeprr = (K, HK): The setup authority takes as input the security pa-
rameter 1* and proceeds as follows:

1. It first chooses a PPRF key K & F .Setup(1?).

2. Next it generates HK & SSB.Gen(1*, ngsp-prx = 27,4* = 0).
3. It sets the master DCPRF key as SKpcpre = (K, HK).

DCPRF.Eval(SKpcprr,) — y = F (K, (h, £;)): Taking as input the master DCPRF key SKpcprr =
(K,HK) along with an input = zg...x¢, 1 € Xpcpre, Where |z| = £, the setup authority
executes the following steps:

1. It computes h = Hux(z).
2. Tt outputs the DCPRF value on input x to be y = F(K, (h, l,)).

DCPRFCOnStrain(SKDCpRF, M) — SKDCPRF{M} =5 (K/, HK, PPACC) /LUO7 SrFOlKIEO7 PPITR) UO, 7)17 P2,
P377DDCPRF): On lnput the master DCPRF key SKDCPRF — (K, HK) and a TM M — <Q, EINP’
Yrares 0, 40, Gacs Grey) € My, the setup authority performs the following steps:

1. At first, it selects PPRF keys K, K7, ..., Ky, Ksps 4, Ksps £ & F.Setup(11).

2. Next, it generates (PPacc, W, STORE) & ACC.Setup(1*, npycepx = 2V) and (PPyg, v0) bl
ITR.Setup(1*, nyrr = 27).
3. Then, it constructs the obfuscated programs
— P11 = IO(Init—SPS.Prog[qo, wo, Vo, KSPS,E'D)
— Py = ZO(Accumulate.Prog[nsss sk = 2%, HK, PPscc, PPrrw, Ksps 1)),
— P3 = ZO(Change-SPS.Prog[Kgps 4, Ksps.E]),
— Ppeprr = ZO(Constrained-Key.Prog,cpop[M, T = 2%, PPycc, PPims, K, K/, K1, ..., Ky,
KSPS,A])J
where the programs Init-SPS.Prog, Accumulate.Prog, and Change-SPS.Prog are depicted re-
spectively in Figs. [3.2/and [3.3]in Section [3.4] while the program Constrained-Key.Prog,cpyyp
is described in Fig.
4. Tt provides the constrained key SKpcpre{ M } = (K', HK, PP scc, Wo, STORE(, PPy, Vg, P1, P2,
Ps3, Pocrrr) to a legitimate user.

DCPRF.Delegate(SKpcpre{ M },]\7)~—> SKpcprr{ M A]\7} = (E’, HK, PP acc, PPacc, Wo, Wo, STORE,
S/T_aﬁo, PPrrr, PPrrg, V0, U0, P1, P1, P2, P2, P3, P3, Pocerr, Pooere): A user takes as input a con-
strained key SKpcprr{M} = (K',HK, PPycc, Wo, STOREq, PPrrg, Vo, P1, P2, P3, Pocprr), corre-
sponding to a legitimate TM M € M), and another TM M = (Q, Xxp, X1are, 0, G0, Gacs Gres) €
M. It proceeds as follows:

1. Tt first picks fresh PPRF keys K', K1, . .. ,%)\,%SP&A,%SP&E & F.Setup(1?).

2. Next it generates (PPacc, Wo, STOREQ) & ACC.Setup(1*, npcepk = 2*) and (PPirg, To) &
ITR.Setup(1*, nyrr = 2*) afresh.

3. Then, it constructs the obfuscated programs
— Py = ZO(Init-SPS.Prog]Go, @Wo, U0, Ksps.i)),

- 732 — IO(ACCUmUlate.Prog[nSSB_BLK - 2)\, HK, f)\f)ACCa IS\ISITR7 ?SP&E]),
— P3 = ZO(Change-SPS.Prog[Ksps A, Ksps E]),

28 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = (Q, Xixr, Xrare, 8, @0, Gac, Gres), Time bound T' = 2>‘7 Public parameters for positional
accumulator PP,cc, Public parameters for iterator PPy, PPRF keys K, K', K1, ..., Kx, Ksps, a

Inputs: Time ¢, String SEED,, Header position POSy, Symbol Sym,y, TM state STy, Accumulator value
win, Accumulator proof myce, Auxiliary value AUX, Iterator value v, SSB hash value h, Length
Uivp, Signature osps v

Output: Encryption of DCPRF value CTexs, or Header Position (POSour, Symbol SYMour, TM state STour,
Accumulator value wour, Iterator value vour, Signature ogps our, String SEEDouyr), or L

1. Identify an integer 7 such that 27 <t < 271,
If [PRG(SEEDw) 2 PRG(F (K, (hy b)) A [t > 1], output L.

2. If ACC.Verify-Read(PPacc, Wi, SYMiy, POSi, Tace) = 0, output L.

3.(3«) Compute rgps, 4 = -F(KSPS,A7 (hwg[NF‘:t - 1)): (SKSPS,AyVKSPS,A7VKSPS—RHJ,A) = SPS-SetUP(1A§ 7"5Ps,A)~
(b) Set muy = (UIN7 STin, Win, POSIN)- If SPS-Verify(VKSPSvA7 M, GSPS’IN) = 0, output L.

4(&) Compute (STOUT7 SYMour, ﬁ) = (S(STIN7 SYI\/IIN) and POSoyr = POSiy + B
(b) If STour = Gres, output L.

Else if STour = gac, perform the following steps:
(I) Compute 7exe,1 ||Trxs,2 = F(K', (B, bixw)), (PKpis, SKexs) = PKE.Setup(1*; 7pis,1)-
(IT1) Output CTexe = PKE.Encrypt(PKexe, F (K, (h, bixe)); Texn,2)-

5.(a) Compute wour = ACC.Update(PPacc, Win, SYMour, POSy, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Ui, (STin, Win, POSI))-

6(3) ComPUte TéPS,A =]:(KSPS,Av (h'v glNP: t))7 (SK;PS,A7 VK;PS,A? VK;PS—REJ,A) = SPS-SetUP(:lA; TéPS,A)'
(b) Set moyr = (UOI'T7 STour, Wour, POSOUT)-

Compute osps.ovr = SPS.Sign(SKeps, 4, Mour)-
7. Ift+1=2", set SEEDour = F (K1, (h, b))
Else, set SEEDoyr = €.
8. Output (POSOUT, SYMourt, STout, Wout, Vours Tsps,0uTs SEEDOUT)~

Fig.5.1. Constrained-Key.Prog, prr

— Pocrrr = Z(’)(Constrained—Key.ProgDCPRF[M,T = 2) PPuoc, PP, K/, K/, K1, . .., K,
KSPS,A])a
where the programs Init-SPS.Prog, Accumulate.Prog, and Change-SPS.Prog are depicted re-
spectively in Figs. B-2]and[3.3]in Section[3.4] while the program Constrained-Key.Progpcppy
is described in Fig. [5.1}
4. It gives the delegated key SKpcprr{M A]\Z} = (?’,EK, PP cc, PP acc, Wo, Wo, STORE,
STOREq, PPirg, PPrrr, V0, 00, P1, P1, P2, Pa, P3, P3, Pocerrs Pocerr) t0 a legitimate delegate.

DCPRF.Eval-Constrained(SKpcprr{ M }/SKpcprr{ M A M}, x) =y =F(K,(h L)) or L: A user
takes as input a constrained key SKpcpre{ M} = (K’, HK, PPcc, Wo, STOREq, PPy, Vo, P1, P2,
Ps3, Pocrrr) Obtained from the setup authority, corresponding to some legitimate TM M =
(Q, Xixpy Xrare, 9, qo, qA/c’,_q\R_E/J) € My, or a delegated key SKpcprr{M A M} = (K’ HK, PPcc,
PP,cc, Wo, Wo, STORE(, STORE(, PPirg, PPy, V0, 00, P1, P1, P2, P2, P3, Ps, PDCPRF)BDCPRE) obta-
ined from the holder of the constrained key SKpcprr{M }, corresponding to TM M = (Q, Yy,
Yrapes 05§05 Gacs Gris) € My, along with an input @ = zg... 2,1 € Xpepre With |z] = £5. Tt
proceeds as follows:

(A) If M(z) =0, it outputs L. Otherwise, it performs the following steps:

1. It first computes h = Hyx ().

2. Next, it computes dgps g = P1(h).

3. Then for j =1,...,4,, it iteratively performs the following:
(a) It computes mssp j—1 & SSB.Open(HK, z, j — 1).
(b) It computes AUX; = ACC.Prep-Write(PPcc, STORE;_1,j — 1).
(C) It computes oUT = P3 (,7 -1, Tj-1,90, Wj—1, AUX;, V51, &Sps7j_1, h, 7TSSB7]‘_1).
(d) If our = L, it outputs OUT. Else, it parses OUT as OUT = (wj, v, Osps,j)-

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 29

(e) It computes STORE; = ACC.Write-Store(PPcc, STORE;j_1,j — 1,2j_1).
4. It computes Osps,0 = 7)3(q0a Wey 5 Vey s h) Exv USPS,&;)'
5. It sets POSp70 = 0 and SEEDg = .
6. Suppose, M accepts = in t, steps. For t = 1,...,t,, it iteratively performs the following
steps:
(a) It computes (SYMps¢—1, Tacot—1) = ACC.Prep-Read(PP,cc, STORE, 411, POSAt—1)-
(b) It computes AUXy, 1+ = ACC.Prep-Write(PPcc, STOREy, 411, POSA1—1)-
(c) It computes OUT = Ppcprp(t, SEED;—1, POSAL1—1, SYMALt—1, STM t—1, Wey+t—15 TACC,t—15
AUXy, 45 Vot —15 Py Ly Osps t—1)-
(d) Ift = t,, it sets CTpyxp = OUT. Otherwise, it parses OUT as OUT = (POS s, SYME&V?ITE),
STM,t, We,y 4, Ve, it Tsps,ts SEED).
WRITE
(e) It computes STOREy, 1+ = ACC.Write-Store(PP yoc, STORE/, 1+—1, POSp 41, SYMg\“))

(B) If the user is using the constrained key SKpcpre{M }, then it computes rpxp1||7pre2 =
F(K', (h,Ly)), (PKpke, SKpk) = PKE.Setup(1*; 7pkp1), and outputs PKE.Decrypt(SKpxs,
CTpkg). On the other hand, if the user is using the delegated key SKpcpre{M A M } and
M (z) = 0, then it outputs L, while if M (z) = 1, it further executes the following steps:
1. It computes gsp&o = P1(h).

2. Then for j =1,...,4,, it iteratively performs the following:
(a) It computes Tssp j—1 & SSB.Open(HK, z,j — 1).
(b) It computes AUX; = ACC.Prep-Write(PP ycc, STORE;_1,5 — 1).

)
(c) It computes OUT = Pa(j — 1, %1, o, Wj—1, AUX;, Dj—1, Tsps,j—1, h Tssn,j—1)-
(d) If ouT = 1, it it outputs OuUT. Else, it parses OUT as OUT = (@j, Uj, Ogps.j)-
(e) It computes STOREJ = ACC.Write- Store(PPACC7 m] 1,J—1Lxj1).
3. It computes Tgps o = Pg(f(]g,/wgz o h Ex,aspsg).
4. It sets POSMO = 0 and SEED(= €.
5. Suppose, M accepts x in t, steps. For t = 1,. .., t,, it iteratively performs the following
steps:

(a) It computes (SYM]\~“ 1,7~rAcct 1) = ACC.Prep- Read(PPACC,STOREg 1¢-1,POS—~
(b) It computes AUXy, ;¢ = ACC.Prep-Write(PPcc, STORE, (1, POS~

M- 1)
Mai1):
(c) It computes OUT = PDCPRF(t SEED;_1, POSG, 1sSYMgr, ST o, W, +1—15 Tacc,t—1,

AUngH, Vpytt—1, 1y oy Tspsp—1)-

(d) Ift = t,, it sets CTpyxp = OUT. Otherwise, it parses OUT as OUT = (pOSM . SYME\\;VIIITE)7
STM + &\J/Ezﬁ»t) ’D/Ez+t, 55133 ts SEEDt)
STORE STORE (WRITE)
(e) It computes STOREy, ¢ = ACC.Write-Store(PPscc, STORE, 41, POS - 4-1SYM).

(C) Finally, it computes
- ?PKEl”?PKEQ — -/T(K' ())
— (PKpxg, SKpig) = PKE. Setup(A Toke1)s
— Tpke,1]|7pxe,2 = PKE. Decrypt(SKPKEu CTPKE)
— (PKpks, SKpii) = PKE.Setup(17; TPKE,1)s
and outputs PKE.Decrypt(SKpkg, CTpkg)-

Security

Theorem 5.1 (Security of the DCPRF Construction of Section . Assuming ZO is
a secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom
function as per Definition[2.3, SSB is a somewhere statistically binding hash function according
to Definition ACC is a secure positional accumulator as defined in Definition ITR

30 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

is a secure cryptographic iterator as per Definition SPS is a secure splittable signature
scheme according to Definition PRG is a secure injective pseudorandom generator, and
PKE is CPA secure, the DCPRF construction of Section[5.3 satisfies the correctness and selective

pseudorandomness properties defined in Definition [5.1].

The proof of Theorem is given in Appendix [C]

6 Application: Attribute-Based Signature for Turing Machines

6.1 Notion

Here we will formally define the notion of an attribute-based signature scheme where signing
policies are associated with TM’s. This definition is similar to that defined in [TLL14,|SAH16]
for circuits. However, due to the use of TM’s as opposed to circuits, the scheme can handle
signing attribute strings of arbitrary polynomial length.

Definition 6.1 (Attribute-Based Signature for Turing Machines: ABS). Let M) be a
class of TM’s, the members of which have (worst-case) running time bounded by T = 2*. An
attribute-based signature (ABS) scheme for signing policies associated with the TM’s in M)
comprises of an attribute universe Usps C {0,1}*, a message space Mg = {0, 1}fmswse g
signature space Syps = {0, 1}6“33’5“3, where £ ps-msas Lass-sic are some polynomials in the security
parameter A, and PPT algorithms (ABS.Setup, ABS.KeyGen, ABS.Sign, ABS.Verify) described
below:

ABS.Setup(1}) — (PPaps, MSKps) : The setup authority takes as input the security parameter
1*. Tt publishes the public parameters PP,y while generates a master secret key MSK,pg for
itself.

ABS.KeyGen(MSK sps, M) — SKaps(M) : Taking as input the master secret key MSK,ps and a
signing policy TM M € M, of a signer, the setup authority provides the corresponding sign-
ing key SK,ps(M) to the legitimate signer.

ABS.Sign(SKups(M), z,msg) — ops or L : On input the signing key SK,gs(M) correspond-
ing to the legitimate signing policy TM M € M), a signing attribute string z € U,ps, and
a message msg € M g, a signer outputs either a signature o,55 € Spps or L indicating failure.

ABS . Verify (PP ps, , mSg, Oaps) — 3 € {0,1} : A verifier takes as input the public parameters
PPAgs, @ signing attribute string x € U,gzs, @ message msg € M g, and a purported signature
Oaps € Sags. It outputs a bit 5 € {0,1}.

We note that all the algorithms described above except ABS.Verify are randomized. The algo-
rithms satisfy the following properties:

» Correctness: For any security parameter A, (PP,pg, MSK,ps) & ABS.Setup(1}), M € M,

SKaps(M) & ABS.KeyGen(MSKags, M), © € Usps, and msg € M,gg, if M(z) = 1, then

ABS.Sign(SKyps(M), x, msg) outputs o,ps € Saps such that ABS.Verify(PP,gs, x, msg, oaps) = 1.

» Signer Privacy: An ABS scheme is said to provide signer privacy if for any security param-
eter A, message msg € M pg, (PPaps, MSKps) & ABS .Setup(1%), signing policies M, M’ € My,
signing keys SK,ps(M) & ABS.KeyGen(MSK gg, M), SKps (M) & ABS.KeyGen(MSK gg, M),
x € Uyps such that M(z) = 1 = M'(z), the distributions of the signatures outputted by
ABS.Sign(SKaps(M), 2, msg) and ABS.Sign(SKaps(M'), z, msg) are identical.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 31

» Existential Unforgeability against Selective Attribute Adaptive Chosen Message
Attack: This property of an ABS scheme is defined through the following experiment between
an adversary A and a challenger B5:

e A submits a challenge attribute string x* € U,gs to B.

e B generates (PPps, MSK apg) & ABS .Setup(1*) and provides A with PP 4.

e A may adaptively make a polynomial number of queries of the following types:
— Signing key query: When A queries a signing key corresponding to a signing policy

TM M € M, subject to the restriction that M (z*) = 0, B gives back SK,ps(M) &

ABS.KeyGen(MSK aps, M) to A.

— Signature query: When A queries a signature on a message msg € M,gs under an
attribute string x € Uyps, B samples a signing policy TM M € M, such that M(z) = 1,

creates a signing key SK,ps(M) & ABS.KeyGen(MSK g5, M), and generates a signature

O ABS l ABS.Sign(SKaps(M), z, msg), which B returns to A.
e At the end of interaction A outputs a message-signature pair (msg*,o%.s). A wins if the
following hold simultaneously:
i) ABS.Verify(PP,gs, 2%, msg*, o%ps) = 1.
ii) A has not made any signature query on msg* under x*.

The ABS scheme is said to be existentially unforgeable against selective attribute adaptive chosen
message attack if for any PPT adversary A, for any security parameter A,

Adv > (N) = PrA wins] < negl())
for some negligible function negl.

Remark 6.1. Note that in the existential unforgeability experiment above without loss of gen-
erality, we can consider signature queries on messages only under the challenge attribute string
x*. This is because any signature query under some attribute string « # x* can be replaced by a
signing key query for a signing policy TM M, € M, that accepts only the string z. Since = # x*,
M, (z*) = 0, and thus M, forms a valid signing key query. We will use this simplification in our
proof.

6.2 Construction

In this section we will present our ABS scheme for TM’s. Let A be the underlying security
parameter. Let M denote a family of TM’s, the members of which have (worst case) running
time bounded by T' = 2%, input alphabet Y = {0,1}, and tape alphabet Yi\pp = {0,1,_}.
Our ABS scheme closely resembles our CPRF construction described in Section and utilizes
the same underlying cryptographic tools. Additionally, here we use a digital signature scheme
SIG = (SIG.Setup, SIG.Sign, SIG.Verify) which is existentially unforgeable against chosen message
attack (CMA). The formal description of our ABS construction follows:

ABS.Setup(1}) — (PPaps = (HK, Vips), MSKaps = (K, HK)): The setup authority takes as input
the security parameter 1* and proceeds as follows:

1. It first chooses a PPRF key K il F.Setup(1?).
2. Next it generates HK ﬁ SSB.Gen(l/\,nSSB_BLK =2\ i* = 0).

3. Then, it creates the obfuscated program V,ps = ZO(Verify.Prog,s[K]), where the program
Verify.Prog, . is described in Fig.

32 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: PPRF key K
Inputs: SSB hash value h, Length £p
Output: SIG verification key VR

1. Compute e = F(K, (h, lose)), (SKsie, VKsie) = SIG.Setup(1*; fse).
2. Output VK.

Fig.6.1. Verify.Prog, ¢

4. Tt keeps the master secret key MSK,ps = (K,HK) and publishes the public parameters
PP,ps = (HK, Vaps)-

ABS.KeyGen(MSK s, M) — SKaps(M) = (HK, PPacc, wo, STOREQ, PPrg, V0, P1, P2, P3, Paps): On
input the master secret key MSK,ps = (K, HK) and a signing policy TM M = (Q, Xixp, Xraps, 0,
40, gacs Gres) € My, the setup authority performs the following steps:

1. At first, it selects PPRF keys K1, ..., Kx, Ksps A, Ksps,E & F.Setup(1?).

2. Next, it generates (PPacc, o, STORE) & ACC.Setup(1*, npycepx = 2) and (PPig, vo) &
ITR.Setup(1*, nyrr = 27).
3. Then, it constructs the obfuscated programs

— P11 = IO(Init—SPS.Prog[qo, wo, Vo, KSPS,E'D)

— Py = ZO(Accumulate.Prog[nsss sk = 2%, HK, PPscc, PPirw, Ksps 1)),

— P3 = ZO(Change-SPS.Prog|Ksps A, Ksps E]),

— Paps = ZO(Constrained-Key.Prog, . [M,T = 2*, PPacc, PPirr, K, K1, . . ., Ky, Ksps a)),
where the programs Init-SPS.Prog, Accumulate.Prog, and Change-SPS.Prog are as depicted
respectively in Figs. 3.2/and [3.3]in Section [3.4] while the program Constrained-Key.Prog,
is described in Fig.

4. Tt provides the constrained key SKups(M) = (HK, PPacc, Wo, STOREq, PPirg, Vo, P1, P2, Ps,
Pass) to a legitimate signer.

ABS.Sign(SKags(M), x,msg) — oaps = (VKsie, 0siq) or L: A signer takes as input its signing
key SKaps(M) = (HK, PPcc, Wo, STOREQ, PPirg, V0, P1, P2, P3, Pass), corresponding to its le-
gitimate signing policy TM M = (Q, Xixp, Xrare, 9, 90, Gac, Gres) € My, an attribute string
T =T0...Tq,—1 € Usps with |z| = £;, and a message msg € M,gs. If M(z) = 0, it outputs
L. Otherwise, it proceeds as follows:

1. Tt first computes h = Hpuk ().

2. Next, it computes Fgps 0 = Pi1(h).

3. Then for j =1,...,4,, it iteratively performs the following:
(a) It computes 7gsp j—1 i SSB.Open(HK, 2,5 — 1).
(b) It computes AUX; = ACC.Prep-Write(PP,cc, STORE;_1,j — 1).
(C) It computes ouT = PQ(] — 1, Tj—1,40, Wj—1,AUX;, V51, &Sps’jfl, h, TrSSB,jfl)-
(d) If ouT = L, it outputs OUT. Else, it parses OUT as OUT = (wj, v, Tsps j)-
(e) It computes STORE; = ACC.Write-Store(PPcc, STORE;_1,j — 1,25_1).

4. It computes osps,0 = P3(qo, We, , Ve, , Ny ba, Osps e,)-

5. It sets POSpr0 = 0 and SEEDg = €.

6. Suppose, M accepts x in t, steps. For t = 1,...,t,, it iteratively performs the following

steps:

(a) It computes (SYMpst—1, Tacc,t—1) = ACC.Prep-Read(PP o, STORE(, 4¢—1,POSp¢—1).

(b) It computes AUXy, 1+ = ACC.Prep-Write(PPcc, STORE, 11, POSArt—1)-

(c) It computes OUT = Paps(t, SEED;_1, POSMt—1, SYMALt—1, STMt—1, Wey4t—1, Tacc,t—1,
AUXg, 445 Ve t—1, N oy Osps t—1)-

(d) If t = t,, it parses OUT as OUT = (SKgq, VKgic). Otherwise, it parses OUT as OUT =

(WRITE)
(POSM,t, SYMM’t s STM ity W+t Veyp+ts TspS,ts SEEDt)-

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 33

Constants: TM M = (Q, Xixr, Xrare, 8, @0, Gac, Gres), Time bound T' = 2>‘7 Public parameters for positional
accumulator PP,cc, Public parameters for iterator PPir, PPRF keys K, K1, ..., Kx, Ksps, 4

Inputs: Time ¢, String SEED,, Header position POSy, Symbol Sym,y, TM state STy, Accumulator value
win, Accumulator proof myee, Auxiliary value AUX, Iterator value v, SSB hash value h, Length
Uivp, Signature osps v

Output: (SIG signing key SKs, SIG verification key VKg), or Header Position (POSour, Symbol SYMoyr,
TM state STour, Accumulator value wour, Iterator value vour, Signature oeps our, String SEEDour),
or L

1. Identify an integer T such that 27 <t < 271,
If [PRG(SEEDW) # PRG(F (K, (h,lwe)))] A [t > 1], output L.

2. If ACC.Verify—Read(PPAcm Win, SYMn, POSy, 7TAcc) = 0, output L.

3.(a) Compute reps,a = F(Ksws,a, (B, fve, t — 1)), (SKses, 4, VKsrs, 4, VEsps s, 4) = SSB.Setup(1%; rovs,4).
(b) Set muy = (vIN7 STin, Win, POSIN)‘ If SPS-Verify(VK5P51A7 M, USPS‘IN) = 0, output L.

4.(a) Compute (STour, SYMour,) = 0(STix, SYMi) and POSour = POS + f3.
(b) If STOIZT == QRE.Iy Output J‘

Else if STour = qac, perform the following;:
(I) Compute rge = F(K, (h, lixe)), (SKsie, VKsie) = SIG.Setup(1; rsc).
(H) Output (SKSIG,VKSIG)-

5.(a) Compute wour = ACC.Update(PPacc, Win, SYMour, POSiy, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Vi, (STix, Win, POSx))-

6(&) Compute TéPS,A =]:(KSPS’A7 (h” ZINP? t))v (SK;PS,A? VK;PS,A? VK;PS-REJ,A) = SPS.Setup(l)‘; r;PS,A)'
(b) Set mour = (Vour, STour, Wour, POSour). Compute osps our = SPS.Sign(SKeps 4, Mout)-

’
7. Ift4+1=2", set SEEDoyr = F (K7, (h, lip)).
Else, set SEEDour = €
8. Output (POSour, SYMour, STour; Wour, Vour, Tsps,out, SEEDout).

Fig.6.2. Constrained-Key.Prog, ¢

(e) It computes STORE,, 14 = ACC.Write-Store(PP ¢, STORE(, +¢—1, POSAr¢—1, SYMg\VJ?ITE)).

7. Finally, it computes ogq il SIG.Sign(SKgiq, msg).
8. It outputs the signature o s = (VKsia, Osic) € Saps-

ABS.Verify(PP g5, 2, msg, 0aps) — [€ {0,1}: A verifier takes as input the public parameters
PPps = (HK, Vaps), an attribute string @ = xo...xy,_1 € Uyps, where || = £,, a message
msg € M ,ps, together with a signature o s = (VKgig, 0sic) € Sags- It executes the following:
1. Tt first computes h = Hux(z).

2. Next, it computes VKgg = Vaps(h, £z).
3. If [VKgig = VKgic] A [SIG.Verify(VKgq, msg, osic) = 1], it outputs 1. Otherwise, it outputs
0.

Security

Theorem 6.1 (Security of the ABS Scheme of Section . Assuming ZO is a secure
indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom function as
per Definition SSB is a somewhere statistically binding hash function according to Defini-
tion ACC is a secure positional accumulator as defined in Definition ITR is a secure
cryptographic iterator as per Definition[2.5, SPS is a secure splittable signature scheme according
to Definition[2.6, PRG is a secure injective pseudorandom generator, and SIG is existentially un-
forgeable against chosen message attack, the ABS scheme of Section[6.3 satisfies all the criteria
of a secure ABS defined in Definition [6.1]

The proof of Theorem [6.1] is provided in Appendix

34 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

7 Conclusion

In this paper, besides fixing the flaw in the security argument of the 10-based CPRF construction
of [DKW16] for inputs of unbounded polynomial length, we have presented the first constructions
of CVPRF and DCPRF supporting unbounded length inputs. In view of the countless applications
of CPRF’s and their various extensions in resolving exciting fundamental problems of modern
cryptography, it is desirable to improve the efficiency as well as strengthen the security of these
primitives based on well-studied cryptographic tools and complexity assumptions. Although, our
results have proved existence of CPRF, CVPRF, and DCPRF for unconstrained length inputs,
the constructions are quite expensive given the research progress in the field of 10 so far. There-
fore, an inportant research direction is to seek for cost-effective constructions of CPRF and its
enhancements which can handle inputs of arbitrary polynomial length, without employing such
heavy duty tools like 10 or multilinear maps. A more fundamental challenge is to investigate
adaptively secure constructions of these primitives supporting apriori unbounded length inputs
without using the technique of complexity leveraging.

References

[AF16] Hamza Abusalah and Georg Fuchsbauer. Constrained prfs for unbounded inputs with short keys.
Cryptology ePrint Archive, Report 2016/279, 2016. http://eprint.iacr.org/.

[AFP14] Hamza Abusalah, Georg Fuchsbauer, and Krzysztof Pietrzak. Constrained prfs for unbounded
inputs. Cryptology ePrint Archive, Report 2014/840, 2014. http://eprint.iacr.org/.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional
encryption. In Advances in Cryptology—CRYPTO 2015, pages 308-326. Springer, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation from

functional encryption for simple functions. Cryptology ePrint Archive, Report 2015/730, 2015.
http://eprint.iacr.org/.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, pages 326-349. ACM, 2012.

[BFP'15] Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and Sophie Stevens.
Key-homomorphic constrained pseudorandom functions. In Theory of Cryptography, pages 31-60.
Springer, 2015.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In Public-Key Cryptography—PKC 2014, pages 501-519. Springer, 2014.
[BGJS15] Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai. Multi-input functional

encryption for unbounded arity functions. In Advances in Cryptology—ASIACRYPT 2015, pages
27-51. Springer, 2015.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from standard
lattice assumptions. In Theory of Cryptography, pages 1-30. Springer, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Advances in Cryptology-ASIACRYPT 2013, pages 280-300. Springer, 2013.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more

from indistinguishability obfuscation. In Advances in Cryptology-CRYPTO 2014, pages 480-499.
Springer, 2014.

[CRV14] Nishanth Chandran, Srinivasan Raghuraman, and Dhinakaran Vinayagamurthy. Constrained pseu-
dorandom functions: Verifiable and delegatable. 2014. http://eprint.iacr.org/.

[DKW16] Apoorvaa Deshpande, Venkata Koppula, and Brent Waters. Constrained pseudorandom functions
for unconstrained inputs. Cryptology ePrint Archive, Report 2016/301, 2016. http://eprint.
iacr.org/.

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao. Adaptive se-
curity of constrained prfs. In Advances in Cryptology—ASIACRYPT 2014, pages 82—-101. Springer,

2014.

[Fucl4] Georg Fuchsbauer. Constrained verifiable random functions. In Security and Cryptography for
Networks, pages 95-114. Springer, 2014.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual

ACM on Symposium on Theory of Computing, pages 169-178. ACM, 2009.

[GGH™'13] Shelly Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Anant Sahai, and Brent Waters. Can-
didate indistinguishability obfuscation and functional encryption for all circuits. In Foundations
of Computer Science (FOCS), 2018 IEEE 54th Annual Symposium on, pages 40-49. IEEE, 2013.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[GGMS6]
[GIKS15]

[GLSW15]

[GW11]

[HKKW14]

[HKW15]

[HSW14]

[HW15)

[IPS15)

[KLW15

[KPTZ13]

[MPR11]
[MRV99]

[OPWW15]

[0T14]

[PST14]

[SAH16]

[SW14]

[TLL14]

[Wat15]

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 35

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal
of the ACM (JACM), 33(4):792-807, 1986.

Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption for ran-
domized functionalities. In Theory of Cryptography, pages 325-351. Springer, 2015.

Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguishability obfusca-
tion from the multilinear subgroup elimination assumption. In Foundations of Computer Science
(FOCS), 2015 IEEE 56th Annual Symposium on, pages 151-170. IEEE, 2015.

Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Proceedings of the 43rd annual ACM symposium on Theory of computing, pages
99-108. ACM, 2011.

Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adaptively secure con-
strained pseudorandom functions. 2014. http://eprint.iacr.org/|

Susan Hohenberger, Venkata Koppula, and Brent Waters. Adaptively secure puncturable pseudo-
random functions in the standard model. In Advances in Cryptology—ASIACRYPT 2015, pages
79-102. Springer, 2015.

Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In Advances in Cryptology—-EUROCRYPT 2014, pages
201-220. Springer, 2014.

Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation
with long output. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, pages 163-172. ACM, 2015.

Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfuscation and its
applications. In Theory of Cryptography, pages 668—697. Springer, 2015.

Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for
turing machines with unbounded memory. In Proceedings of the 47th Annual ACM on Symposium
on Theory of Computing, pages 419-428. ACM, 2015.

Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Proceedings of the 2018 ACM SIGSAC conference
on Computer & communications security, pages 669—684. ACM, 2013.

Hemanta K Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In Topics
in Cryptology—CT-RSA 2011, pages 376-392. Springer, 2011.

Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Foundations of
Computer Science, 1999. 40th Annual Symposium on, pages 120-130. IEEE, 1999.

Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations of
somewhere statistically binding hashing and positional accumulators. In Advances in Cryptology—
ASIACRYPT 2015, pages 121-145. Springer, 2015.

Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures for non-
monotone predicates in the standard model. Cloud Computing, IEEE Transactions on, 2(4):409—
421, 2014.

Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from semantically-
secure multilinear encodings. In Advances in Cryptology—CRYPTO 201/, pages 500-517. Springer,
2014.

Yusuke Sakai, Nuttapong Attrapadung, and Goichiro Hanaoka. Attribute-based signatures for
circuits from bilinear map. In Public-Key Cryptography—PKC 2016, pages 283-300. Springer, 2016.
Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages
475-484. ACM, 2014.

Fei Tang, Hongda Li, and Bei Liang. Attribute-based signatures for circuits from multilinear maps.
In Information Security, pages 54—71. Springer, 2014.

Brent Waters. A punctured programming approach to adaptively secure functional encryption. In
Advances in Cryptology—-CRYPTO 2015, pages 678-697. Springer, 2015.

http://eprint.iacr.org/

36 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Appendix A: Proof of Theorem 3.1

Theorem [3.1] (Security of the CPRF Construction of Section . Assuming TO is a
secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom func-
tion as per Definition SSB is a somewhere statistically binding hash function according to
Definition [2.3, ACC is a secure positional accumulator according to Definition[2.4), ITR is a se-
cure cryptographic iterator as per Definition [2.5, SPS is a secure splittable signature scheme as
defined in Definition|2.6, and PRG is a secure injective pseudorandom generator,the CPRF con-
struction of Section[3.]) satisfies correctness under constraining and selective pseudorandomness
as defined in Definition [3.1]

Proof. Note that the correctness under constraining property of the CPRF construction of Sec-
tion follows immediately from its construction and the correctness of all the underlying
cryptographic building blocks. In order to prove selective pseudorandommness, we will first in-
troduce a sequence of hybrid experiments and next show based on the security properties of
various primitives that the advantage of any PPT adversary A in any two neighboring hybrid
experiments is negligibly different. Finally, we will argue that the advantage of any PPT adver-
sary A in the final hybrid experiment is negligible. Observe that since we are working in the
selective model, the challenger B knows the challenge input * = x{...25._; € Xcprr and the
SSB hash value h* = Hyux (2*) prior to receiving any constrained key query from A. Lets assume
that the total number of constrained key query made by A is §. Note that we do not consider
any evaluation query in view of Remark The hybrid experiments are described below:

Sequence of Hybrid Experiments

Hyb,: This experiment corresponds to the real selective pseudorandomness experiment described
in Definition [3.1] of Section [3.I] More precisely, this experiment proceeds as follows:

e A submits the challenge input z* = af...2}._; € Xopge with |2¥] = £* to B.

e 3 generates a master CPRF key SKcprr = (K, HK) il CPRF.Setup(1*) as described in Sec-
tion Next it selects a random bit b < {0,1}. If b = 0, it computes y* = CPRF(SKcpgp, *) =
F(K, (h* = Hux(x*),£*)). On the other hand, if b = 1, it chooses y* E Vo, B provides y*
to A.

e For, n = 1,...,4, in response to the n'" constrained key query of A corresponding to TM
MO = (QM, Sip, Srare, 07, a8", 4\, ai) € My with M@ (z*) = 0, B creates

SKCPRF{M(n)} =

U U U n (0
HK, PP&C)C, w(()), STOREg), PPI(TF){,U(()),

ZO(Init-SPS. Prog[q(()") , w(()n), v[()"), KSEIQE]),
ZO(Accumulate.Prog[ngsppix = 27, HK, PP/(\T(];)C, PPI(’?F)U KéggE]),
ZO(Change-SPS. Prog[KS(g;A, KS(QQE]),

TO(Constrained-Key.Prog pp:[M ™, T = 2}, PP%)C, PPI(;’F){, K, K%"), e ,Kgf'), KM)]

Sps,A

& CPRF.Constrain(SKcpgr, M(")),

as described in Section and provides SKcprp{M (’7)} to A. Here we assign the index
n to all those components of SKcpre{M (”)} which are generated during the execution of
CPRF.Constrain(SK¢pgr, M(")).

e A eventually outputs a guess bit ¥’ € {0,1}.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 37

Hyby, (v = 1,...,4§): This experiment is identical to Hyb, except that for n € [g], in reply
to the n™ constrained key query of A corresponding to TM M € M, with M (z*) = 0, B
returns the constrained key

SKCPRF{M(TI)} =

n n n Ui n
HK, PP&C)C,wé), STOREE)), PPI(T;){, vé),

ZO(Init—SPS.Prog[q(()n), w(()n), v(()n), KéQgE]),

TO(Accumulate.Prog[nsss sk = 2, HK, PP, PRI, Kég;E]),

TO(Change-SPS.Prog[K!) 4, K7) 1),

TO(Constrained-Key.Progl. .. [M ™, T = 2*, PP,@C, PPI(}%, K, Kfn), . ,Kg”), ngg;A, h*, €*])

to A, if n < v, while the constrained key

SKcprr {M(n) } =

n
HK, PP, w(()”), STOREE)"), ppM) v(()"),

IO(Init—SPS.Prog[q(()n),w((f'), vén), KS(;QE]),

TO(Accumulate.Prog[ngspprx = 27, HK, PP,({QC, PPI(%ZL, Kég;E]),
TO(Change-SPS.Prog[K[) 4, K7]),

TO(Constrained-Key.Prog e [M ™, T = 2*, pp{ls, PRI, K, K\, ... K\, K])

to A, if n > v, where the program Constrained-Key.Prog/ ... is a modification of the program
Constrained-Key.Prog o (Fig. and is depicted in Fig. Observe that Hyb , coincides
with Hyb.

Hyb,: This experiment corresponds to Hyb ;, i.e., in this experiment, for allp =1,...,¢, in re-
sponse to the n® constrained key query of A corresponding to TM M e M, with M (z*) =0,
B returns the constrained key

SKCPRF{M(n) } =

K, PP, w[()"), STORE(()"), ppl) v(()”),

IO(Init—SPS.Prog[q(()n), wén),v(()n), KéggE]),

ZO(Accumulate.Prog[ngssp-px = 2\ HK, PP,(Q;)C, PPI(Q%, KS(g;E]),
IO(Change—SPS.Prog[Kég;A, KéggE]),

TO(Constrained-Key.Progl...[M ™, T = 2’\,PP,(:QC,PPI(¥E){,K, Kp), . ,Kﬁ\n), S(ggvA,h*,Z*D

to A, while the rest of the experiment proceeds as in Hyb.

Hyb,: This experiment proceeds as follows:
o After receiving the challenge input z* = (... 2}._; € Xeprr from A, B performs the follow-
ing:
1. It first chooses a PPRF key K & F.Setup(1*) and generates HK & SSB.Gen(1*, ngsp-prx =
2} i* = 0) as in Hyb;.
2. Next it computes h* = Hyx(z*) and creates the punctured PPRF key K{(h*,¢*)} &
F.Puncture(K, (h*, £¥)).
3. Then, it selects a random bit b & {0,1}. If b = 0, it computes y* = F(K, (h*, ().

Otherwise, it chooses y* ul YrrrE-

38 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = (Q, Xixr, Xrare, 8, @0, Gac, Gres), Time bound T' = 2>‘7 Public parameters for positional
accumulator PP,cc, Public parameters for iterator PPy, PPRF keys K, K1, ..., K, Kss, 4, SSB
hash value of challenge input h*, Length of challenge input £*

Inputs: Time t, String SEEDy, Header position POS, Symbol SYMy, TM state ST\, Accumulator value
wiy, Accumulator proof i, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Line, Signature osps iy

Output: CPRF evaluation F(K, (h,%xr)), or Header Position (POSour, Symbol SYMour, TM state STour,
Accumulator value woyr, Iterator value vour, Signature ospsour, String SEEDoyr), or L

1. Identify an integer T such that 27 <t < 27,
If [PRG(SEEDW) # PRG(F (K-, (h,lwe)))] A [t > 1], output L.

2. If ACC.Verify—Read(PPAcm Win, SYMn, POSy, 7TAcc) = 0, output L.

3.(a) Compute reps,a = F(Ksws,a, (b, fixe, t — 1)), (SKsps, 4, VKsps, 4, VKses s,) = SPS.Setup(1%; rovs,a).
(b) Set muy = (’Un\u STy, Win, POSiy). If SPS-Verify(VKSPSxA7 M, USPS‘IN) = 0, output L.

4.(a) Compute (STour, SYMour,) = 0(STix, SYMi) and POSour = POS + f3.
(b) If STOIZT == QRE.Iy Output J‘

Else if [STour = qac] A [(h, bww) # (B*,€7)], output F(K, (h, lwr)).
Else if STour = gac, output L.

5.(a) Compute wour = ACC.Update(PPacc, Win, SYMour, POSiy, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Ui, (STin, Win, POSI))-

6(3‘) ComPUte TéPS,A =]:(KSPS,Av (h'v glNP: t))7 (SK;PS,A7 VK;PS,A? VK;PS—REJ,A) = SPS-SetUP(:lA; TéPS,A)'
(b) Set moyr = (UOI'T7 STour, Wour, POSOUT)- ComDUte Osps,ouT — SPS.Sign(SK;PS,A, mOI‘T)~

’
7. Ift+1=2", set SEEDour = F (K7, (h, lxr)).
Else, set SEEDoyr = €
8. OutpUt (POSOUT, SYMourt, STour, Woutr, Vour, Tsps,0UT, SEEDOUT)~

Fig. A.1. Constrained-Key.Prog...

4. It provides y* to A.
e For all n = 1,...,4, to answer the '™ constrained key query of A corresponding to TM

M®™ e M, withM (”)(x*) = 0, B generates all the components as in Hyb,, however, it sends
back the constrained key

SKCPI{F{M(W)} =

HK PP(AZ)C,w(()") STOREg]) PPI(%){,U(()U),

ZO(Init-SPS.Prog|q, (n) w(()) vén) KM D,

(Sps,E
ZO(Accumulate.Prog[nssspix = 2, HK pp ppM) K(:,’g)
TO(Change-SPS.Prog[K ") A,Ks(jz;E]),
ZO(Constrained-Key.Progl,,e [M™, T = 2*, pp{W,, ppUl. K{(h*,)}, K\, .. K/(\”),
SPs,A?)

to A.
e At the end A outputs a guess bit b’ € {0,1} as usual.

Analysis

Let Advfg)()\),AdvEf‘)’V)()\)(y =1,...,9), Advi)()\), and Advg)()\) represent respectively the ad-
vantage of the adversary A, i.e., the absolute difference between 1/2 and A’s probability of cor-
rectly guessing the random bit selected by the challenger B, in Hyby, Hyb, , (v = 1,...,q), Hyb,
and Hyb,. From the description of the hybrid experiments it follows that AdvCPRF sl ROVIE

AV (0) = AdVPO(A) and Adv (A) = Adv? (A). Therefore, we have

q
AdvEESETR () < ST AV TV () — AV O] 4 AV (0) — AV ()] AdVP (V). (A1)
v=1

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 39

Lemmas will show that the RHS of Eq. (A.1)) is negligible and hence Theorem
follows. O

A.1 Lemmas for the Proof of Theorem [3.1

Lemma A.1. Assuming ZO is a secure indistinguishability obfuscator for P/poly and F satis-
fies the correctness under puncturing property defined in Definition[2.3, for any PPT adversary

A, for any security parameter A,]Advfi)()\) - Advf)()\)] < negl(\) for some negligible function
negl.

Proof. The only difference between Hyb; and Hyb, is the following: For n = 1,...,§, in response
to the n'" constrained key query of A corresponding to TM M ¢ M, with M ™ (z*) = 0,

in Hyb;, B includes I(’)(Pén)) within the constrained key SKeppe{M M} returned to A, while in
Hyb,, B includes I(’)(Pl(")) instead, where

— é") = Constrained-Key.Progl .. [M), T = 2, PP/(:?C)C, PPI(%;, K, KY’), .. ,Kin), ngg;A, h*, 0*],
— P = Constrained-Key.Proglpu,[M ", T = 2*, PP\, RN, K{(h*, 09)}, K7, .. K", K,

e, 0.

Here, K{(h*,(*)} & F.Puncture(K, (h*,¢*)) and program Constrained-Key.Prog/,..... is depicted
in Fig.

Now observe that the program Constrained-Key.Prog/,,., computes F(K, (h, {iyp)) if and only
if (h,lnp) # (h*,0%). As a consequence, by the correctness under puncturing property of the
PPRF F, the functionality of the program Constrained-Key.Prog/..... does not change if the punc-
tured PPRF key K{(h*,¢*)} is hardwired into it in place of the full PPRF key K.

Therefore, by the security of ZO, Lemma follows. Ofcourse, for achieving the result we
would have to consider a sequence of ¢ hybrid experiments where in each hybrid experiment
we change the hardwiring of the program Constrained-Key.Prog/.,. included in the n'" queried
constrained key, for n =1,...,4. O

Lemma A.2. Assuming F is a secure puncturable pseudorandom function as per Definition
for any PPT adversary A, for any security parameter X, Advff)()\) < negl(\) for some negligible

function negl.

Proof. Suppose there exists a PPT adversary A for which Advf)(/\) is non-negligible. We con-

struct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F using A
as a sub-routine. The description of B follows:

e B initializes A on input 1* and receives a challenge input z* = G- Tpe_q € Xopre With

|z*| = £* from A.

e Upon receiving x*, B proceeds as follows:

1. B generates HK & SSB.Gen(1*, ngspprx = 2*,i* = 0) and computes h* = Hyx(x*). B will
implicitly view the key K* as the key K.

2. B sends (h*, ¢*) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back a punctured PPRF key K*{(h*,¢*)} and a value r* € Yppgr, where
either r* = F(K™*, (h*,£*)) or r* E Vornr.

3. B returns the challenge CPRF value y* = r* to A.

e For n=1,...,4, in response to the n'® constrained query of A corresponding to TM M e

M, with M@ (z*) = 0, B proceeds as follows:

1. B first selects PPRF keys Kfn), e ,Kgn),K(") KM B & F.Setup(1*).

sps,A» “*sps,
2. Next, it creates (PP,(\Z)C, wé"), STORE(()")) & ACC.Setup(1*, nacenk = 2) and (]PPI(Q;){7 v((]n)) l

ITRSetUp(].)\, Nytr — 2A).

40 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

3. B gives A the constrained key

SKCPRF{M(n) } =

K, PP, w(({’), STORE(()"), ppl) v[()"),

IO(Init—SPS.Prog[q(()n),w(()n),v(()n), Ks(ggE]),

ZO(Accumulate.Prog[ngssp-pLx = 2 HK, PP/@C, PPI(;]%, KS(g;E]),

IO(Change—SPS.Prog[KS(g;A, KéggE}),

TO(Constrained-Key.Prog. .. [M ™M, T = 2*, PPE\@C, PPI(%){7 K*{(h*, %)}, KY?), e Kin),
K(U) h*, E*D

sps,A»

e At the end of interaction, A outputs a guess bit ' € {0,1}. B outputs b = ¥/ as its guess bit
in its PPRF selective pseudorandomness experiment.

Note that the simulation of Hyby by B is perfect. Also, if A wins in this simulated Hyb,,
then B wins in the PPRF selective pseudorandomness experiment against F. This completes the
proof of Lemma [A.2] O

Lemma A.3. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition SSB is a somewhere statisti-
cally binding hash function according to Definition [2.3, ACC is a secure positional accumu-
lator as defined in Definition ITR is a secure cryptographic iterator according to Def-
inition SPS is a secure splitable signature as per Definition [2.6, and PRG is a secure
injective pseudorandom generator, for any PPT adversary A, for any security parameter X,
|Adv&?’y71)()\) - Advgl)’y)()\)\ < negl(X) for some negligible function negl.

Proof. The proof of our Lemma extends the ideas involved in the security proof for the
message-hiding encoding of [KLW15|. Lemma 1 in the security proof of the CPRF construction
of [IDKW16]| also employs a similar technique. However, as mentioned earlier, making the use
of the somewhere statistically binding hash function and suitably modifying the construction
of [DKW16| we are able to remove the flaw in the argument of [DKW16|. We will first pro-
vide a complete description of the sequence of hybrid experiments involved in the proof of our
Lemma and then provide the analysis of those hybrid experiments providing the details for
only those segments which are distinct from [DKW16].

Let t**) denotes the running time of the TM M®) € My, queried by the adversary A, on
input the challenge string z* and 27 be the smallest power of two greater than t**). The
sequence of intermediate hybrid experiments between Hyb, ,_; and Hyb, , are described below:

Sequence of Intermediate Hybrids between Hyb,,,_; and Hyb, ,

Hybg ,,_1,0: This experiment coincides with Hybg ,,_;.

Hybg ,,_1,1: This experiment if analogous to Hybg ,,_; (except that to answer the v constrained
key query of A corresponding to TM M) € M, with M®) (z*) = 0, B proceeds as follows:

1. It first picks PPRF keys K\, . K" k¥ K KY & FSetup(1?).

sps,A» “*sps, B’ “*sps,E
v) () (v) @)

2. Next, it generates (PPdc, Wy ,STORE((JV)) & ACC.Setup(1*, nace-px = 2*) and (PPira, v
ITRSetUp(].)\, nITR == ZA).

)&

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 41

3. It provides A with the constrained key

SKCPRF{M(V) } =

14 14 14 v 14
HK, PPE\C)C,w(()), STORE(()), PPI(TI){,U(()),

ZO(Init-SPS.Prog[gd”, w(” , v{”, k) L)),

Sps,E

ZO(Accumulate.Prog[nssp-piic = 2*, HK, PPz(Alé)C’ PPI(TVF)“ KS(IPQE])’
ZO(Change-SPS. Prog[K{;. 4. K112). |

(
(
(
I(’)(Constrained—Key.Prog,‘élp)RF [M(”), T =27,), PPSQC, PPI(}/E){, K, Kf/), . ,Kgy), KS(ZPf;A,
KW h*, 0%])

Sps,B?

where the program Constrained—Key.Progglp)RF, which is formed by modifying the program
Constrained-Key.Prog/.. (Fig.[A.1]), is depicted in Fig.

Constants: TM M = (Q, Xixe, Xrare, 9, q0, ¢acs Gres), Time bound T' = 2, Running time on challenge input t*,
Public parameters for positional accumulator PP,cc, Public parameters for iterator PPis, PPRF
keys K, Ki,...,Kx, Ksps, o, Ksps,5, SSB hash value of challenge input h*, Length of challenge
input £*

Inputs: Time t, String SEED:y, Header position POSy, Symbol SYMy, TM state ST, Accumulator value
wiy, Accumulator proof mace, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Uivp, Signature osps v

Output: CPRF evaluation F(K, (h,fwe)), or Header Position (POSour, Symbol SYMour, TM state STour,
Accumulator value woyr, Iterator value vour, Signature ospsour, String SEEDoyr), or L

1. Identify an integer 7 such that 27 < ¢ < 27", If [PRG(SEEDw) # PRG(F (K, (h,)] A [t > 1], output
1.
If ACC.Verify-Read(PPcc, Wiv, SYMiy, POSiy, Tace) = 0, output L.

2.

3.(a) Compute reps.a = F(Ksps, 4, (R, fixe,t — 1)), (SKsps, 4, VKsps, A, VKsps.nns,4) = SPS.Setup(1*; s, 4).
(b) Compute rsps,B = F (Kses,B, (I, bive, t — 1)), (SKsps, B, VKses, B, VKsps-rus,B) = SPS.Setup(lk; Tsps,B).
(¢) Set m = (v, STiv, Win, POSy) and o =~
(d) If SPS.Verify(VKsps, 4, M, Osps.v) = 1, set o = A’

(e) Hla="] A [t>t) V (h#h") V (b # £%)], output L.
Else if [a =-'] A [SPS.Verify(VKsps, B, Tun, Ospsn) = 1], set o =B’
(f) If « =*-’, output L.

4.(a) Compute (STour, SYMour, 3) = 0(STw, SYMi) and POSour = POSiy + 3.
(b) If STour = qrus, output L.
Else if [STour = gac] A [=‘B’], output L.
Else if STour = gac, output F (K, (h, line)).
Compute wour = ACC.Update(PPcc, Win, SYMour, POSiv, AUX). If wour = L, output L.
Compute vour = ITR.Iterate(PPirg, vix, (STin, Wi, POS)).-
Compute Ts/‘r's,A =]:(KSPS»Av (h’ Lixe, t))v (SKgPS,x‘hVKgPS,A7VKgPS—IU«1J,A) = SPS.Setup(lA; Ts/;Ps,A)-
Compute rs/‘ps B = F (Ksps,B, (h, bixe, 1)), (SK;ps B VKgps B> VK;PS—RF}J B) = SPS.Setup(l/\; r;ps B)-
Set mour = (UOIT'1'7 STour, Wour, POSOU'I‘)-
Compute ospsovr = SPS.Sign(SKips. o, Mour)-
7. Ift+1=2", set SEEDour = F (K, (h, b))
Else, set SEEDour = €.
8. Output (POSOU'[‘7 SYMourt, STout, Wour, Vout, Tsps,0UT SEEDOUT).

o

o
T
NANIRININS

C

Fig. A.2. Constrained—Key.Prog(ci)RF

Hybg ,,_; 2: In this experiment, in response to the v*" constrained key query of A corresponding
to TM M) e M, with M®)(2*) = 0, B performs the following steps:
1. Tt first chooses PPRF keys K\, ... K" k) Kk Kk® K & FSetup(1?).

Sps,A? “*sps,B’ ~*sps,E1 “tSps,F

42 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

2. Next, it generates (PP&%)C, wéy), STORE(()V)) & ACC.Setup(1*, npcepx = 2*) and (PP%’%, (())) il
ITR.Setup(1*, nyry = 2%).

3. It provides A with the constrained key

SKCPRF{M(V)} =

HK,PP(AZQC,U)(()) STORE((]V) ppi). (()),

IO Init—SPS.Prog[qé) () v((]),ngz),

ZO(Accumulate.Prog!!)[nSSB sk = 2, HK PP&C)C,PPI(TF){,KS(;EE, s(Png h*, 0*]),

(
(

ZO(Change-SPS.Prog(!)[K(v) K K(P'fng, S(Pg w5 0)),
(

sps,A» “*sps, By **s
IO Constrained—Key.Progép)RF[M(”), T =22, *), PP&C)C, PPI(T%, K, Kfy), . ,Kgy), Ké;’;A,
K " 0))

where the programs Accumulate.Prog(l) and Change—SPS.Prog(l) are modifications of the pro-
grams Accumulate.Prog and Change-SPS.Prog (Figs. and and are depicted in Figs.
and [A-4] respectively.

The rest of the experiment proceeds in the same way as in Hyb, ,,_ ;.

Hybg, 1,3 In this experiment, to answer the ™ constrained key query of A correspond-

Constants: Maximum number of blocks for SSB hash nssgp-pix = 2& SSB hash key HK, Public parameters
for positional accumulator PP,cc, Public parameters for iterator PPir, PPRF keys Kgps £, Keps,F,
SSB hash value of challenge input h*, Length of challenge input ¢£*

Inputs: Index i, Symbol SYM,y, TM state ST, Accumulator value wi, Auxiliary value AUX, Iterator value
Vi, Signature ogps v, SSB hash value h, SSB opening value msss

Output: (Accumulator value wour, Iterator value vour, Signature osps-our), or L
1. Compute rsps, 5 = F (Ksps, £, (R, 1)), (SKsps, £, VKsps, By VKsps-res, E) = SPS.Setup(l)‘; Tsps,E)-
Compute rsps,r = F (Ksps, 7, (1, 7)), (SKses, 7, VKsps, 7y VKsps-res,) = SPS.Setup(lA; Tsps,F)-
Set mi = (UIN7 ST, Wi, 0) and o =*-".
If SPS.Verify(VKsps, £, My, Osps,iv) = 1, set o =E".
If [=] A [(i ££°) vV (h#h")], output L.
Else if [=-'] A [SPS.Verify(VKsps, 7, Mux, Osps,n) = 1], set o =*F".
(f) If « =*-’, output L.

If SSB.Verify(HK, h, %, SYMy, ssz) = 0, output L.

(a) Compute wour = ACC.Update(PPycc, Win, SYMix, 2, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPux, Vi, (ST, Wiy, 0)).
(a
(b

a
b
c
d

NSNS AN N

[§]

2.
3.
4.(a) Compute rS/‘PS,E = F(Ksrs, g, (hyi + 1)), (SK;PS,E7VKgPS,E?VK;PS—REJ,E) = SPS.Setup(lA; T;PS,E)‘
) Set mour = (Vour, ST, Wour, 0). Compute osps ovr = SPS.Sign(SKips g, Mour)-

5. OutpUt (wOUTy Vourt, USPSAOUT)'

Fig. A.3. Accumulate.Prog")

ing to TM M®) € M, with M) (z*) = 0, B generates all the PPRF keys as well as the public

parameters for the positional accumulator and iterator just as in Hybg ,,_; o, however, it returns

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 43

Constants: PPRF keys Kgps 4, Ksps, B, Ksps, £, Ksps, 7, SSB hash value of challenge input h*, Length of chal-
lenge input £*

Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length i, Signature
Tsps,IN

Output: Signature osps,our, Or L

1-(3) Compute Tsps,E = (KSFS E, (h K]NP))7 (SKSPS,E,VKSPS,E,VKSPS-REJ,E) = SPS.Setup(lA; Tsps,E)-
(b) ComPUte Tsps,F = (Ksps F, (h eI\IP))7 (SKSPS,F, VKsps, F, VKSPS—REJ,F) = SPS-SetUp(l)\; TSPS,F)-
(c) Set m = (v,sT,w,0) and a="-"
(d) If SPS.Verify(VKsps, £, M, Ospsn) = 1, set a =*F".
(e) If [="-"] A [(be #£*) V (h#h")], output L.
Else if [=-'] A [SPS.Verify(VKsps, 7, m, 0sps.v) = 1], set a = F".
(f) If @ =", output L.
2.(a) Compute rsps, a4 = F(Ksps, a, (B, bixe, 0)), (SKsps, 4, VKsps, Ay VKsps-res, 4) = SPS.Setup(lA; Tsps,A)-
(b) ComPUte Tsps,B —]:(KSPS,B7 (h7 élNP, 0))7 (SKSPS,B7 VKsps, B, VKSPs»REJ,B) = SPS-SetUP(]-)\; TDSPS,B)~
(c) If [(h, bww) = (W, €°)] A [a ="F’], output osps,our = SPS.Sign(SKeps, 5, m).

Else, output oses,our = SPS.Sign(SKsps, 4, m).

Fig. A.4. Change-SPS.Prog"

the constrained key

SKCPRF{M } =
HK PP&C)C,w(()”) STORE(()”) PPI(;){,U((]V),
ZO(Init-SPS. Prog[q(() v) w((] V) v(()y) KS(Pg)
ZO(Accumulate. Prog?)[nSSB sk = 20, HK, PPX&, PPI(TVF){,KS(Pg B KS(Pg w5 0]),
TO(Change-SPS.Prog? K. s(pgAva(:g,Bva(ngvKé;g 7), ’
ZO(Constrained-Key.Proghis [M ™), T = 2X, 1) pp\, PRy, K, K, ... K\" KW 4.,
SHANONG)

grams Accumulate.Prog(l) and Change—SPS.Prog(l) (Figs. |A.3] and) and are depicted in
Figs. and respectively. The remaining part of the experiment is similar to Hyb, ,,_ o.

where the programs Accumulate.Prog(Q) and Change—SPS.P2) are modifications of the pro-

Hyby, 13, (¢ = 0,...,£* — 1): In this hybrid experiment, to answer the v constrained
key query of A corresponding to TM M®) e M, with M®)(z*) = 0, B proceeds as follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hybg ,,_; 3.

2. Next, it sets m((fg = (v(()y), qéy), w((]y), 0). For j =1,...,4, it iteratively computes the following:
- AUX§-) — ACC. Prep- erte(PP,(\()C, STORE§V)1,]' —1)
- wj(-”) = ACC.Update(PPg’QC,w](.’i)l,m;‘f_l, -1 AUX(”))
- STOREEV) = ACC.Write—Store(PPglé)c,STOREg-V_) i 1)

— o\ = ITR.Iterate(PP{fs, v\, (@), 0!}, 0))

) ((V) w) @) 0).

It SetS mL70 = \U, ,qo ,U)L

44 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: Maximum number of blocks for SSB hash nssg-pix = 2/\7 SSB hash key HK, Public parameters
for positional accumulator PP,cc, Public parameters for iterator PPirr, PPRF keys Kgps £, Keps,F,
SSB hash value of challenge input h*, Length of challenge input £*

Inputs: Index i, Symbol SYMy, TM state ST, Accumulator value wi, Auxiliary value AUX, Iterator value
VN, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature osps-our), or L

1.(a) Compute rsps, g = F(Ksps, £, (h,1)), (SKses, B, VKsps, B, VKsps-res, E) = SPS.Setup(l)‘; Tsps,E)-
(b) Compute rops,r = F(Ksps, 7, (R, 1)), (SKsps, 7y VKsps, 7y VKsps-rus, F) = SPS.Setup(lA; Tsps,F).-
(¢) Set mw = (v, ST, wi, 0) and a =*-’
(d) If SPS.Verify(VKsps, £, Min, Osps,n) = 1, set o =E".
() Ifla=~"1 AN [e>¢)V (i=0) VvV (h#h")], output L.
Else if [a =-'] A [SPS.Verify(VKsps, 7, Mux, Osps,in) = 1], set o =¢F".
(f) If « ="-’, output L.
2. If SSB. Verlfy(HK h,i,SYM, Tssg) = 0, output L.
3.(a) Compute woyr = ACC.Update(PPace, Win, SYMix, %, AUX). If woyr = L, output L.
(b) Compute vour = ITR.Iterate(PPux, Vi, (ST, Wiy, 0)).
4. (a) Compute T;PS,E =]:(KSPS,E7 (h7 t+ 1))7 (SK;PS,E7 VKgPS,E? VK;PS-REJ,E) = SPS.Setup(lA; r:;PS,E)‘
(b) Compute réps‘F =]:(KSPSJ“V (h7 i+ 1))7 (SK;PS F VK;PS F> VK;PS—RE.I F) = SPS.Setup(lA; T:;Ps F)'
(C) Set mour = (UOL'T7 ST, onT,O).

If 4 < £*, compute oses.our = SPS.Sign(SKeps.a s Mour)-
Else, compute osps.ovr = SPS.Sign(SKips g, Mour)-
5. Output (onT, Vour, JSPS.OUT)~

Fig. A.5. Accumulate.Prog(Q)

Constants: PPRF keys Ksps 4, Ksps,B, Ksps, £, Ksps, 7, SSB hash value of challenge input ~A*, Length of chal-
lenge input £*
Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length /fi, Signature
Osps,IN

Output: Signature osps our, Or L

1-(3) Compute Tsps,E = (Ksm E, (h KINP))7 (SKSPS,E7 VKSPS,E,VKSPS—REJ,E) = SPS-SetUP(lk; 'f'SPs,E)-
(b) ComPUte Tsps, F = (Ksps F, (h éINP))y (SKSPS,F7VKSPS,F7 VKSPS—REJ,F) = SPS-SetUP(]-)\; TSPS,F)-
(c) Set m = (v,sT,w,0) and a="*-
(d) If SPS.Verify(VKsps, £, M, osps,m) =1, set a =‘E".
(e) If [a=-"1 A [(bue >€") V (h#h")], output L.
Else if [=-"] A [SPS.Verify(VKsps,r, M, Ospsnv) = 1], set o ="F".
(f) If « =*-’, output L.
2.(a) Compute rsps,a4 = F(Ksps, a, (R, bixe, 0)), (SKses, A, VKsps, Ay VKsps-res, A) = SPS.Setup(l/\; Tsps,A)-
(b) ComPUte Tsps,B —]:(KSPS,B, (h, Live, 0))7 (SKsps,B, VKsps, B, VKsps-m-:J,B) = SPS-SetUP(]-A; 7'|)sps,B)~
(c) If [(h, bw) = (R™,€7)] A [a =‘F’], output osps,ovr = SPS.Sign(SKses, B, m).

Else, output ogps,our = SPS.Sign(SKsps,a,m).

Fig. A.6. Change-SPS.Prog®

3. Tt gives A the constrained key

SKCPRF{M } =

v v v v
HK, PPgC)c,w[()), STOREg) PPI(TI)h (()),

70O Init—SPS.Prog[qéy),w(()),vé),K(”) D,

(Sps,E

ZO(Accumulate.Prog® [ngsp_px = 2%, HK, PP,(:QC, PPI(T”%, Ks(;g B KS(IQF, mff’o), h*, 0*]),
(
(

20(Change 5P Prog™ (K 1. K&y K 5 KEL, 10 1)

IO Constrained—Key.Progép)RF[W), T = 2* (), PPE\C)C7 PPI(TE){, K, Kf/), . ,Kgy), KS(ZPf;A,
KW s)

SPS B>

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 45

where the programs Accumulate.Prog®®*) and Change-SPS.Prog(®*) are alterations of the pro-

grams Accumulate.Prog®) and Change-SPS.Prog(® (Figs. and | and are described in
Figs. [A.7) and [A | respectively.

The remaining part of the experiment is analogous to Hyb ,_; 3.

Hybg, 1,3, (¢ =0,...,£* —1): This experiment is identical to Hyb,,_; 3 except that in re-

Constants: Maximum number of blocks for SSB hash ngsppix = 2>‘, SSB hash key HK, Public parameters
for positional accumulator PP,¢c, Public parameters for iterator PPir, PPRF keys Kps £, Ksps, F,
Message m,,0, SSB hash value of challenge input h*, Length of challenge input ¢£*

Inputs: Index ¢, Symbol SYm,y, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value voyr, Signature ogps-our), or L

ComPUte Tsps,F =]:(KSPS,F, (h, Z)), SKSPS,F,VKSPS,F7VKSP5—REJ,F) = SPS-SetUP(1A§ TSPS,F)~
Set mi = (v, ST, Wiy, 0) and a =*-
If SPS.Verify(VKsps, £, Mux, Osps,x) = 1, set a =*E.
Ifla="] A[(t>€) v (0<i<:) V (h# h")], output L.
Else if [=-] A [SPS.Verify(VKsps, 7, Mux, Ospsin) = 1], set o =*F".
(f) If @ =", output L.
If SSB.Verify(HK, h, %, SYM, 7ssz) = 0, output L.
a) Compute wour = ACC.Update(PPace, Win, SYMiy, %, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPi, vix, (ST, wix, 0)).
4.(&) Compute TéPS,E =]:(KSPS,EV (hv i+ 1))’ (SK;PS,E? VK;PS,E? VK;PS»REJ,E) = SPS.Setup(lA; TéPS,E)'
(b) Compute Téps,F =]:(KSPSva (h’ i+ 1))7 (SK;PS,Fv VK;PS,F? VK;PS-REJ,F) = SPS.Setup(lA; TéPS,F)'
(C) Set mour = ('UOL‘T7 ST,wOUT7O)‘
If [(h,i) = (R*,1)] A [m = m. o], compute gspsovr = SPS.Sign(SKlps 5, Mour)-
Else if [(h,4) = (R*,1)] A [mu # m. o], compute oses.our = SPS.Sign(SKgps p; Mour)-
Else if i < £*, compute osps.our = SPS.Sign (SKgps.a s Mour)-
Else, compute osps.ovr = SPS.Sign(SKéps g, Mour)-
5. OutpUt (’wom, Vourt, USPSLOUT)'

Compute reps, g = }—(KSPS,E7 (h, Z)), (SKSPS,E7 VKsps, E, VKSPS—REJ,E) = SPS-SetUP(]-)\; Tsps,E)~

20 T o

NSNS AN NN

[§]

2.
3.(

Fig. A.7. Accumulate.Prog(S")

sponse to the " constrained key query of A corresponding to TM M®) e M, with M®)(z*) = 0,
B executes the following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hybg ,,_; 3.

2. Next, it sets m[(fg = (U(()V), Q(()V), wéy), 0). For j =1,...,0+ 1, it iteratively computes the fol-

lowing:

- AUX§”) = ACC.Prep-Write(pp(%., STOREgy_)I, j—1)

— w") = ACC.Update(PP{ce, wi”y, 27y, j — 1, aux\"))
- STOREE-V) — ACC.Write-Store(pp'), STOREg-l:)l,j —1,25)
(v) ()

v](.") = ITR.Iterate(PPrg, Vi (q(()y), w](-'i)l, 0))

It sets mfi)Lo = (Ufi)l, Q(()V)7 wL(j-)lv 0).

46 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: PPRF keys Kgps 4, Ksps, B, Ksps, 2, Ksps, 7, SSB hash value of challenge input hA*, Length of chal-
lenge input £*
Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length f, Signature
Tsps,IN

Output: Signature osps,our, Or L

1-(3«) Compute Tsps,E = (KSFS E, (h K]NP))7 (SKSPS,E,VKSPS,E,VKSPS-REJ,E) = SPS.Setup(lA; Tsps,E)-
(b) ComPUte Tsps,F = (Ksps F, (h eI\IP))7 (SKSPS,F, VKsps, F, VKSPS—REJ,F) = SPS-SetUp(l)\; TSPS,F)-
(¢) Set m = (v,sT,w,0) and a="*-
(d) If SPS.Verify(VKsps, £, M, asps‘m) =1, set « =‘F".
(e) If [a="~"] A [(bir >€*) V (0 <tliwe <) V (h#h")], output L.
Else if [=-'] A [SPS.Verify(VKsps, 7, m, Ospsv) = 1], set a = F".
(f) If @ =", output L.
2.(a) Compute rsps,. a4 = F(Ksps, a, (B, bixe, 0)), (SKsps, 4, VKsps, Ay VKsps-res, 4) = SPS.Setup(lA; Tsps,A)-
(b) ComPUte Tsps,B — -F(KSPS,B7 (h7 ZINP, 0))7 (SKSPS,B, VKsps, B, VKSPs»REJ,B) = SPS-SetUP(]-)\; TDSPS,B)~
(c) If [(h, bw) = (B, €°)] A [a =*F’], output osps,our = SPS.Sign(SKees, 5, m).

Else, output oges,our = SPS.Sign(SKsps,a,m).

Fig. A.8. Change-SPS. Prog(m)

3. It gives A the constrained key

SKCPRF{M } =

HK,PPE\C)C,w(()) STORE(()V) PPI('f%, (()),

O Init—SPS.Prog[q((]), (())77)(())7Ks(1p2 el)
(v) (v) K(V)

(
ZO(Accumulate. Prog(?”L/)[nSSB BLK = 2)‘ HK, PPicc, PP, Kgpg s KS(ZP%F,mEi)LO, h*, 0*]),
TO(Change-SPS.Prog®I (K 4 K)o K)o K)o h® 7)), ’
IO(Constramed—Key.Progép)mw[M(”), T =22 t*), PP&C)C, ppi) K, Kf”), . ,K/(\”), Ké;f;A,
Ko b, 6))

where the program Accumulate.Prog(&Ll) is an alteration of the program Accumulate.Prog(3’L)

(Fig. [A.7) and is shown in Fig.

Hybg,, _1,4: This experiment is identical to Hybg,_q 3 -_1) with the exception that now in
response to the " constrained key query of A corresponding to TM M*) € My with M®) (z*) =
0, B does not generate the PPRF key Kfpz r and gives A the constrained key

SKCPRF{M } =

HK PP%)C,w(()”) STORE(()”) PPI(;?{,’U(()U),

ZO(Init-SPS. Prog[qé V) w(() V) U(()V) Ks(pg £l

(

ZO(Accumulate.Prog[ngsp prx = 22 HK PP&”C)C, PPI(TI){, Ks(sg)
(
(

ZO(Change-SPS.ProgV[K Q KS(:;B,KS(:;E, é’:)o,h*),

SPS A
70 Constrained—Key.Progép)RF[M(”),T =2\ (V) PP&C)C,PPI(TVI){,K, Kf/), ... ,Kiy),KS(gg,A,
K g b, 0))

where the program Accumulate.Prog is shown in Fig. while the program Change-SPS.Prog(®,
which is a modification of the program Change—SPS.Prog(g’L) (Fig. , is depicted in Fig.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 47

Constants: Maximum number of blocks for SSB hash nssg-pix = 2A7 SSB hash key HK, Public parameters
for positional accumulator PP,cc, Public parameters for iterator PPirg, PPRF keys Kips, £, Kops, Fs
Message m,+1,0, SSB hash value of challenge input h*, Length of challenge input £*

Inputs: Index i, Symbol SYMy, TM state ST, Accumulator value wi, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature osps-our), or L

ComPUte Tsps,E =]:(KSPS,E7 (h7 2)), (SKSPS,E7 VKsps, E, VKSPS—REJ,E) = SPS-SetUP(l)\; TSPS,E)~
ComPUte Tsps, F —]:(KSPS,F7 (h, Z)), (SKSPS,F> VKsps, Fy VKSPS-REJ,F) = SPSSetUP(]-)\; TSPS,F)~
Set my = (v, ST, Wiy, 0) and a =*-’
If SPS.Verify(VKses, 2, My, Osps,v) = 1, set o =E.
Fla=-1 A [E>€0) Vv (0<i<:) V (h#h")], output L.
Else if [a =-'] A [SPS.Verify(VKsps, 7, Mux, Osps,in) = 1], set o =¢F".
(f) If « ='-’, output L.
If SSB. Verlfy(HK h, i, SYM, Tssg) = 0, output L.
a) Compute woyr = ACC.Update(PPaco, Win, SYMix, %, AUX). If woyr = L, output L.
b) Compute vour = ITR.Iterate(PPix, Uix, (ST, Wi, 0)).
a) Compute r:;r’s,E =]:(KSPS,E7 (h7 1+ 1))a (SK;PS,E7 VKgPS,E? VK;PS-REJ,E) = SPS.Setup(lA; r:;PS,E)‘
b) Compute réps,F =]:(KSPS,F7 (h7 i+ 1))7 (SK;PS,F7 VK;PS,F? VK;PS—RE.I,F) = SPS.Setup(lA; T:;Ps,F)'
C) Set mour = (UOL'T7 ST, onT,O).
If [(h,3) = (h*,0)] A [Movr = Mug1,0], compute ospsoor = SPS.Sign(SKgps g, Mour)-
Else if [(h,7) = (h",1)] A [mour # Muy1,0], compute ospsovr = SPS.Sign(SKéPS’F,mOUT).
Else if ¢ < £*, compute gspsovr = SPS.Sign(SKeps o Mout)-
Else, compute ospsovr = SPS.Sign(SKgps gMour)-
5. Output (wouw Vour, Usps,OUT)-

=PRI
NIRANIINSN

@

2.
3.

4.

Fig. A.9. Accumulate.Prog(®*)

Constants: PPRF keys Kips, 4, Kses, B, Ksps, 2, Message me= o, SSB hash value of challenge input h*, Length
of challenge input £*

Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length i, Signature

Tsps,IN

Output: Signature osps our, Or L

1.(a) Compute 7sps, 5 = F(Ksps, &, (I, bine), (SKsps, E5 VKsps, B, VKsps-ras, E) = SPS.Setup(lA; Tsps,)
(b) Set m = (v,sT,w,0).
(¢) If SPS.Verify(VKses,E, M, Ospsn) = 0, output L.

2.(a) Compute rsps,a = F(Ksps, a, (R, lixe, 0)), (SKsps, A, VKsps, A, VKsps-ris, A) = SPS.Setup(l)‘; Tsps, A)-
(b) Compute Tsps,B = -F(KSPS,B7 (h, Lixe, O)), (SKSPS,By VKsps, B, VKSPS-REJ,B) = SPS-SetUP(l)\; TSPS,B)~
(c) If [(h,bwe) = (K, €°)] A [m # myex o], output osesovr = SPS.Sign(SKses, 5, m).

Else, output ogps.our = SPS.Sign(SKses, 4, m).

Fig. A.10. Change-SPS.Prog(¥

Hyby, 14, (v = 1,... ,t*(*) — 1): This experiment is analogous to Hyby,_1 4 except that

in response to the v constrained key query of A corresponding to TM M®) e M, with
MW (z*) = 0, B proceeds as follows:

1.

It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hybg ,_; 4.

. Next, it sets méyg = (v (v), q(()y)) ,0). For] =1,...,0% it iteratively computes the following:
- AUX§-) — ACC. Prep- Wrute(PPgC)C, STOREJ 1,j — 1)
w§”) = ACC.Update(Pch)c,w](.”)l, i, -1 AUX§V))

STOREg-”) ACC.Write- Store(PPgC)C,STOREgy)l, -1z})

— vj(-'/) = ITR.Iterate(PPI(T%,v](-'i)l, (q(()),w](-li)l,()))

48

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

. Then, B sets ST 1) 0 = q(()y), POS) o = 0, and fort=1,...,7, computes the following:

v V) v
- (SYMM(I,)’t_l, Wz(;c)c,tq) = ACC.Prep—Read(PPgCC, STOREé*ZLt_l, PosM@)’t_l)

— aux{¥), = ACC.Prep-Write(PP\4:, STORES., |, POS M) 1)

WRITE
- (STM(V)’t, SYMM()), 6) - 5 (STM(U)’t_l, SYMM(U>,t—1)

WRITE
— wéi’lt = ACC.Update(PP(A”C)C,wéi’iLt 1,SYM5\/[(V) t),POSM(U) . I,AUXEQH)

() _ (V) @) (v)
- Ué*-l—t == I-I—R.Iterate(PPITR7 Uf*-’-t—l’ (STM(V),t—17w€*+t—17POSM(V),t—1))

v . 14 v WRITE
- STOREE*)H — ACC.Write-Store(PP{, STOREg*LFl, POS /() 41 SYMEmw,t))

— POSpw) 4 = POSpw) 1 +

[N (v)
B sets my. = (ve*ﬂ, ST A1) ry> W s POSM@)W).

. B provides A with the constrained key

SKCPR,F{M(V) } =

v v v
HK,PP(AC)C,U)(() V) STOREé)7PPI(TI){7 é),

I(’)(Init—SPS.Prog[q((]), (()),v((])7K§£,E])7

I(’)(Accumulate.Prog[nSSB_BLK = 2/\ , HK, PPE&VC)C7 PPI(TVP)U Ks(Pz E])

TO(Change-SPS.ProglK(r) ,, KW) 1), ’
(

ZO(Constrained-Key. ProgépR%[M(”), T =27,), PPE\ZQC, PPI(}/E){, K, K§V), e K/(\V), KS(ZP;;A,
K gomi) he, 07])

Sps,B?

where program Change-SPS.Prog is described in Fig. and program Constrained-Key.Pro SQPJ;Z%,
i A nf

a modification of program Constrained—Key.Progélp)RF (Fig.]A.2), is described in Fig. |

Hybg 1,4~ (¥ =0;,... ,t*(*) — 1): This experiment is identical to Hybg ,, 1 4 except that in

response to the v*" constrained key query of A corresponding to TM M) € M, with M®) (z*) =
0, B proceeds as follows:

1.

It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hybg ,_; 4.

. Next, it sets m(()g = (v (V), q(()y) (V), 0). For j = 1,..., 0%, it iteratively computes the following:

— AUX§ ") — ACC.Prep- erte(Pch)c, STORE(V) j—1)

j—1
wﬁ”) = ACC. Update(PPgC)C, J(-”)l,:n;f Li—1 Angy))
- STOREg- ¥) — ACC.Write- Store(PPgC)c,STOREgy)l,j Lai)

— o) = ITRuterate(pp{f, v, (g8, w!”);, 0))

. Then, B sets ST) 0 = q(()'/), POS () o = 0, and fort =1,...,7, computes the following:

v v v
- (SYMM(V)’t_l,ﬂ'/(%C)C’tfl) = ACC.Prep—Read(PPE\C)C, STOREé*l_t_l, POS /() 4—1)
— aux{¥), = ACC.Prep-Write(PP\4:, STORES, , |, POS M) 1)

WRITE
- (STM(v),tvSYMM(»)),ﬁ)_5 (ST s 415 SYMps() 4—1)

v v WRITE v

- wé*) ¢ = ACC.Update(Pch)Uwé*l_t 1,SYM5\/[(V) t),POSM(V) 1,AUX2*) ‘)
v v

— vé*lt =ITR. |terate(PPI(TF)¢,vé*3_t 1,(STM(V)t 1,w§*lt 1, POS) 4 1)

— STOREE*) = ACC.Write- Store(Png)(,STOREg:l_t 1, POS () 4 I,SYMS\\;;(RVI)T;))

— POSy;() 4 = POS) 41 + 8

Verifiable and Delegatable CPRF’s for Unconstrained Inputs

49

o

o

Constants: TM M = (Q, Zixe, Zrare, 9, q0, ¢acs Gres), Time bound T' = 2A7 Running time on challenge input ¢*,
Public parameters for positional accumulator PP,¢c, Public parameters for iterator PPz, PPRF
keys K, K1, ..., Kx, Kss,a, Ksps, B, Message me= ~, SSB hash value of challenge input h*, Length
of challenge input £*

Inputs: Time t, String SEED\y, Header position POS, Symbol SYMy, TM state ST\, Accumulator value
wiy, Accumulator proof s, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Linp, Signature osps iy

Output: CPRF evaluation F(K, (h,fne)), or Header Position (POSour, Symbol SYMour, TM state STour,
Accumulator value wour, Iterator value vour, Signature ospsour, String SEEDoyr), or L

1. Identify an integer T such that 27 <t < 2711,

If [PRG(SEEDyw) # PRG(F (K-, (h,lie)))] A [t > 1], output L.

If ACC.Verify-Read(PPacc, Win, SYMuy, POSin, Tacc) = 0, output L.

) ComPUte Tsps,A =]:(KSPS,A7 (h, EINP, t— 1)), (SKSPS,A7 VKsps, A, VKSPS—REJ,A) = SPS~SEtUP(1>\§ TSPS,A)«

(a
(b) Compute rsps,p =]:(KSPS,B, (h, lip,t — 1)), (SKSPS,37 VKsps, B VKSPS-RHJ,B) = SPS-SEtUP(l)\§ 7"sps,B)~
(¢) Set mw = (v, STin, Wi, POS) and « =*-
(d) If SPS.Verify(VKsps, 4, Mix, Osps,v) = 1, set o = A’
(e) fla="] A[t>t)V(ELY) V (h#£Rh*) V (b # £7)], output L.
Else if [=*-"] A [SPS.Verify(VKsps, B, Mun, Osps,n) = 1], set o =B’
(f) If « ='~’, output L.

.(a) Compute (STour, SYMoyr, 3) = (ST, SYMi) and POSoyr = POSix + 3.
(b) If STour = Qres, Output 1.
Else if [STour = qac] A [="B’], output L.
Else if [STOUT = qAC} A\ [(X :‘A7] A [(h, K]NP) = (h*,é*)] A [t S 7]7 OUtput L.
Else if SToyr = Qac, output]:(Kv (h7 KINP))'

(a) Compute wour = ACC.Update(PPcc, Wix, SYMour, POSiy, AUX). If wour = L, output L.

(b) Compute vour = ITR.Iterate(PPirg, Vix, (STin, Win, POS))-

(a) ComPUte TéPS,A =]:(KSPS’A7 (h’ EINPv t))v (SK;PS,A? VK;PS,A? VK;PS-REJ,A) = SPS.Setup(l)‘; r;PS,A)'
(b) ComPUte Tgps,B = I(KSP&Bv (hv élNP? t))’ (SK;PS,B7 VK;PS,B? VK;PS—REJ,B) = SPS.Setup(lA; TéPS,B)'
(C) Set Mour = (UOL‘T7 STour, Wour, POSOUT)~

If [(hy bw, t) = (B*,0°,9)] A [mour = mex 4], compute gsps our = SPS.Sign(SKips. 45 Mour)-
Else if [(h, bixe, t) = (B, 0*,7)] A [mour # mex 4], compute oses.ovr = SPS.Sign(SKps g, Mour)-
Else, compute ggps our = SPS.Sign(SKips.a, Mour)-

7. Ift+1=2", set SEEDous = F(Kr, (h, bixp)).

Else, set SEEDoyr = €.

8. OutpUt (POSOUT, SYMourt, STour, Woutr, Vour, Tsps,0UT, SEEDOUT)~

Fig. A.11. Constrained-Key. Proggp’g%

(v)
0%y

:((v)

(v)
B sets m x4y STALW) > W oy POSM@)W).

4. B provides A with the constrained key

SKCPRF{M(V) } =

v v v v v
HK, PPE\C)C7 w(()), STORE(()), PPI(T;){, ’U(()),

ZO(Init-SPS.Prog[q\”), w(”, v, k) L)),

SPS,E

ZO(Accumulate.Prog[ngssp-pLx = 2)‘, HK, PPI(\VC)C7 PPI(TVF)U Ks(ggE])’
IO Change—SPS.Prog[Kégs),AaKé;s),E])7

(
(
(
IO(Constrained—Key.Prog((?,!;{;) [M(”),T = 2* *(v) PP,(;QC, PPI(TVI){, K, Kf'/), ... ,Kiy), KW

Sps,A?

K gm0, C])

where program Constrained—Key.Proggp’@ is an alteration of program Constrained-Key.Progp

(Fig.|A.11)) and is described in Fig. [A.12

(2,7)

F

50 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = (Q, Zixe, Zrare, 9, q0, ¢acs Gres), Time bound T' = 2A7 Running time on challenge input ¢*,
Public parameters for positional accumulator PP,¢c, Public parameters for iterator PPz, PPRF
keys K, K1, ..., Kx, Kss,a, Ksps, B, Message me= ~, SSB hash value of challenge input h*, Length
of challenge input £*

Inputs: Time t, String SEEDy, Header position POSy, Symbol SYMy, TM state ST\, Accumulator value
wiy, Accumulator proof s, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Linp, Signature osps iy

Output: CPRF evaluation F(K, (h,fne)), or Header Position (POSour, Symbol SYMour, TM state STour,
Accumulator value wour, Iterator value vour, Signature ospsour, String SEEDoyr), or L

1. Identify an integer T such that 27 <t < 2711,
If [PRG(SEEDw) # PRG(F (K-, (h,lixe)))] A [t > 1], output L.

2. If ACC.Verify-Read(PP,cc, Winy, SYMiy, POSi, Tacc) = 0, output L.

3.(a) Compute rsps, a4 = F(Ksps, a, (R, bixe, t — 1)), (SKsps, A, VKsps, A, VKsps-rug, 4) = SPS.Setup(lA; Tsps,A)-
(b) Compute rsps, B = .F(Ksp&B, (h, bixp, t — 1)), (SKsps,B,VKsps,B,VKsps-mu,B) = SPS-SEtUP(l)\§ TSPS,B)~
(c¢) Set m = (v, STy, Wiy, POSy) and a =~
(d) If SPS.Verify(VKsps, 4, Mix, Osps,v) = 1, set o = A’

(e) ja=~"] A [t>t) V <y+1) V (h#h") V (be # £7)], output L.
Else if [=*-"] A [SPS.Verify(VKsps, B, Mun, Osps,n) = 1], set o =B’
(f) If « ='~’, output L.

4.(a) Compute (STour, SYMour, 3) = 0(STiv, SYMi) and POSoyr = POSix + 3.
(b) If STour = Qres, Output 1.
Else if [STour = qac] A [="B’], output L.
Else if [STour = qac] A [a =*A"7 A [(h, foe) = (h*,€°)] A [t <y + 1], output L.
Else if STour = @ac, output]:(Kv (h7 KINP))'

5.(a) Compute wour = ACC.Update(PPacc, Win, SYMour, POSiy, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Vi, (STix, Win, POSx))-

6(a) ComPUte TéPS,A =]:(KSPS’A7 (h’ ZINP? t))v (SK;PS,A? VK;PS,A? VK;PS-REJ,A) = SPS.Setup(l)‘; r;PS,A)'
(b) ComPUte Tgps,B = I(KSP&Bv (hv élNP? t))’ (SK;PS,B7 VK;PS,B? VK;PS—REJ,B) = SPS.Setup(lA; TéPS,B)'
(C) Set Mour = (UOL‘T7 STour, Wour, POSOUT)~

If [(hy bw, t) = (B*, 05,y + 1)] A [mu = mex 4], compute ospes.our = SPS.Sign(SKeps. 4, Mour)-
Else if [(h, bixe, t) = (B, 0, v+ 1)] A [mun # me 4], compute osesour = SPS.Sign(SKéps. g, Mour)-
Else, compute ggps our = SPS.Sign(SKips.a, Mour)-
7. Ift+1=2", set SEEDous = F(Kr, (h, bixp)).
Else, set SEEDoyr = €.
8. OutPUt (POSOUT, SYMourt, STour, Woutr, Vour, Tsps,0UT, SEEDOUT)~

Fig. A.12. Constrained—Key.Proggfg;)

Hybg ,,_1 5: This experiment is similar to Hyb07,j71,47(t*(,,)71), with the exception that in respond-
ing to the v*" constrained key query of A corresponding to TM M®) € M, with M®)(z*) =0,
B gives A the constrained key

SKCPRF{M(V)} =

14 v 14 14 14
HK, PP,&C)C, w(() >, STORE(()), PPI(T;){,U((]),

ZO(Init-SPS.Prog[ql”, w”, o8, K1) L)),

Sps,E

ZO(Accumulate.Prog[nssp px = 2*, HK, PPS\lé)cv PPI(%II)M KS(IQE])v
O Change_SPS.Prog[K§§3,A7ngrﬁ,E]), |

(

(

(

IO(Constrained—Key.Progg)RF[M(”),T =27 (), PPE\VC)C, PPI(TV;){, K, K%V), ... ,Kil’), g&A,
KW B, 07])

Sps,B»

where program Constrained—Key.Progg)})RF is a modification of program Constrained—Key.Proggp’@

(Fig.|A.12)) and is described in Fig.|A.13

Hybg ,,_1 6: This experiment corresponds to Hyb ,,.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 51

Constants: TM M = (Q, Xie, Xrars, 0, 90, gac, gres), Time bound T' = 2 Running time on challenge input t*,
Public parameters for positional accumulator PP,cq, Public parameters for iterator PPir, PPRF keys
K, Ki,...,Kx, Ks, a, Kses, B, SSB hash value of challenge input h*, Length of challenge input £*

Inputs: Time ¢, String SEED., Header position POS,y, Symbol SYM,y, TM state ST, Accumulator value wy,
Accumulator proof mycc, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length £,
Signature ogps iy

Output: CPRF evaluation F (K, (h, fir)), or Header Position (POSour, Symbol SYMour, TM state STour, Accu-
mulator value wour, Iterator value vour, Signature ospsour, String SEEDoyr), or L

1. Identify an integer 7 such that 27 < ¢ < 27!, If [PRG(SEEDw) # PRG(F (K-, (h, &we)))] A [t > 1], output L.
2. If ACC.Verify-Read(PP,cc, Win, SYMiy, POSiy, Tace) = 0, output L.

3.(a) Compute rsps,a = F(Ksps,a, (M, bixe, t — 1)), (SKsps, A, VKsps, A, VKsps-res, A) = SPS.Setup(l’\; Tsps,A)-
(b) Set muyy = (UIN, STin, Win, POSIN)' If SPS-Verify(VKSPS»A7 M, USPS’IN) = 0, output L.

4.(3) Compute (STOUT7 SYMour, B) = 6(STIN7 SYMIN) and POSour = POSw + .
(b) If STour = QrEs, OU»tput L.

Else if [STour = qac] A [(R,be) = (R, €7)] A [t < t*], output L.
Else if STour = gac, output F(K, (h, le))-

5.(a) Compute woyr = ACC.Update(PPacc, Win, SYMour, POSin, AUX). If woyr = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Vin, (STin, Win, POSK))-

6-(3) Compute Ts/;ps,A =]:(KSPS,Av (h7 Lixe, t))a (SK;PS,Av VK;PS,Av VK;PS—REJ,A) = SPS.Setup(lA; T;ps,A)'
(b) Compute T;}PS,B = F(Kss,B, (h, bixe,), (SK;PS,B7 VK;ps,Bv VK;PS—REJ,B) = SPS.Setup(lA; T;PS,B)‘
(¢) Set mouvr = (Vour, STour, Wour, POSour)-

If (h, be, t) = (R*, €%, t"), compute gsps,ovr = SPS.Sign(SKips g, Mour)-
Else, compute ogps.our = SPS.Sign(SKips. 4, Mour)-
7. Ift+1=2", set SEEDour = F (K, (h, b))
Else, set SEEDour = €.
8. OUtPUt (POSOUT7 SYMour, STour, WouTt, Vout, Tsps,0uT SEEDOL‘T)~

Fig. A.13. Constrained-Key. Prog((;?})RF

Analysis

Let Adv(0” 79 (), Adv @71 (1), Adv@ 712 (1), AdviP TEI 00, AdVD T () (=0, -

’ dv wv—1,

1), AV B30 (0= 0,00 = 1), AV), AV T () (v = 1,) <),
Advfg’yfl’ll’vl)()\) (y=0,...,t*) — 1), Advfg’ufl’g))()\), and Advfg’yflﬁ)()\) represent respectively
the advantage of the adversary A, i.e., the absolute difference between 1/2 and A’s probability
of correctly guessing the random bit selected by the challenger B, in the hybrid experiment Hyb,
with T as indicated in the superscript of the advantage notation. By the description of the hy-
brid experiments it follows that Advgl)’y_l)()\) = Advfg’y_l’o)()\) and Adv&?’y)(}\) = Advfg’y_l’ﬁ)()\).
Thus we have,

AV D () — AV (V)] <

AV O () — AV TED 0]+ [AdVE TP () — AV () 1+

AV 12 () — AV I 0] 4 AV TP () — Adv@ O () |+

th AdvE 3 (1) — AdvEP T () e*f Adv B3 () — Adv@P D ()

=0 =0

AV 00— Adv P 0]+ AV T () = AT)+

t*%_l AV EHOTI () = Adv P ()] + t*%—l AV A () — AdvP AT ()
=1 =1

Ady @7 BAE =1 3y ady @19 ()] 4 [Adv@ 1 (1) — Adv@T IO ().
(A.2)

52 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Lemmas will prove that the RHS of Eq. (A.2)) is negligible and hence Lemma
follows. o

A.2 Lemmas for the proof of Lemma

Lemma A.4. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition[2.9, and SPS is a splitable signature
scheme satisfying VKgsps-res indistinguishability’ as defined in Definition for any PPT ad-
versary A, for any security parameter A,]Advfg’yfl’o)()\) - Advfg’yfl’l)()\ﬂ < negl(\) for some
negligible function negl.

Proof. To establish Lemma we introduce t**) + 1 intermediate hybrid experiments be-
tween Hyby ,_; o and Hybg,_; 1, namely, Hyby ,_; (., for v € 0,#*(*)] such that Hybg ,_1 0 4+
coincides with Hyby ,,_; o and Hyb, ,_; o o coincides with hybg ,_1 ;.

Sequence of Intermediate Hybrids Between Hyb, ,_, o and Hyby ,_; 1

Hybg 1,04 (vy=0,... ,t*(")): In this experiment in response to the v constrained key query
of A corresponding to TM M®) € My with M®)(z*) = 0, B proceeds as follows:

1. It first picks PPRF keys K{”,...,K\" K \ k%) o k() & FSetup(1?).

2. Next, it generates (PP,(\%)C, w(()y), STORE((JV)) & ACC.Setup(1*, npcepx = 2*) and (PPI(TVI){, v(()y)
ITRSetUp(].)\, TLITR — 2)\).

3. It provides A with the constrained key
SKCPRF{M(V)} =

v v v v v
HK, PP(AC)C, U)(()), STORE((]), PPI(T;){, 'l)(()),

I(’)(Init—SPS.Prog[qéy),w(()y),v((]y)7 KS(QE]),

TO(Accumulate.Prog[nssp.prx = 27, HK, pplY), PP KW D,
(
(

)&

IO Change—SPS.Prog[KéFV,gyA,KS(PV,;E]), ’
TO(Constrained-Key.Proglpmd [M), T = 2X, 1@ pp{0, pp{f), K, K1, ... K K 4,
K(V) h*, E*D

sps, B>

where the program Constrained—Key.Progg’;{%, depicted in Fig. is a modification of the
program Constrained—Key.Prog(clp)RF, shown in Fig.

The rest of the experiment is identical to Hybg ,,_; o.

Analysis

Let us denote by Advfg’y_l’om()\) the advantage of A, i.e., the absolute difference between 1/2
and A’s probability of correctly guessing the random bit selected by the challenger B, in the

hybrid experiment Hyby,_q ., for v € [0, ()], Clearly, Advfg’y_l’o)()\) = Advfg’y_l’o’t*(u))()\)

and Advfg’y_l’l)()\) = Advg‘)’”_l’o’o)(}\). Hence, we have
(V)
AV PO 0) — AV TV < ST AT (0 — AV TR () (A.3)
v=1

Claim below justifies that the RHS of Eq. (A.3) is negligible and consequently Lemma

follows.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 53

Constants: TM M = (Q, Zixe, Zrare, 9, q0, ¢acs Gres), Time bound T' = QA7 Running time on challenge input ¢*,
Public parameters for positional accumulator PP,¢c, Public parameters for iterator PPz, PPRF
keys K, Ki,...,Kx, Kss,a, Kss,, SSB hash value of challenge input h*, Length of challenge
input £*

Inputs: Time t, String SEEDy, Header position POS\, Symbol SYMy, TM state ST\, Accumulator value
wiy, Accumulator proof s, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Linp, Signature osps iy

Output: CPRF evaluation F(K, (h,fne)), or Header Position (POSour, Symbol SYMour, TM state STour,
Accumulator value wour, Iterator value vour, Signature osps,our, String SEEDour), or L

1. Identify an integer T such that 27 <t < 2711,
If [PRG(SEEDw) # PRG(F (K-, (h,lixe)))] A [t > 1], output L.

2. If ACC.Verify-Read(PP,cc, Winy, SYMiy, POSi, Tacc) = 0, output L.

3.(a) Compute rsps, a4 = F(Ksps, a, (R, bixe, t — 1)), (SKsps, A, VKsps, A, VKsps-rug, 4) = SPS.Setup(lA; Tsps,A)-
(b) Compute rsps,p =]:(KSPS,B, (h, lip,t — 1)), (SKSPS,37 VKsps, B VKSPS—RHJ,B) = SPS-SEtUP(l)\§ 7"sps,B)~
(¢) Set mw = (v, STin, Wi, POS) and « =*-.

(d) If SPS.Verify(VKsps, 4, Mix, Osps,v) = 1, set o = A’

(e) fla=""] A[Et>t)V(ELY) V (h#£Rh") V (b # £7)], output L.
Else if [=*-"] A [SPS.Verify(VKsps, B, Mun, Osps,n) = 1], set o =B’

(f) If « ='~’, output L.

4.(a) Compute (STour, SYMour, 3) = 0(STiv, SYMi) and POSoyr = POSix + 3.
(b) If STour = grus, output L.
Else if [STour = qac] A [=‘B’], output L.
Else if STour = ¢ac, output F(K, (h, lixp)).
Compute wour = ACC.Update(PPacc, Winy, SYMour, POSi, AUX). If wour = L, output L.
Compute vour = ITR.Iterate(PPirr, Vi, (STix, Win, POS)).
Compute T;‘PS,A =]:(KSP&Av (h7 Lixe, t))7 (SK;PS,A7 VK;PS,A7 VK;PS—REJ,A) = SPS-SetuP(:lA; Ts/‘PS,A)'
Compute TéPS,B = -F(KSP&B’ (hv Lixe, t))7 (SK;PS,B7 VK;PS,B7 VKéPs—REJ,B) = SPS.Setup(lA; TéPS,B)'
Set mour = (UOUT7 STour, Wour, POSOUT)~
Compute osps,ovr = SPS.Sign(SKéps s Mour)-
7. Ift+1=2", set SEEDour = F (K7, (h, by).
Else, set SEEDour = €.
8. Output (POSour, SYMour, STour; Wour, Vout; Tsps,out, SEEDour).

o

o
» T ®
NINININI NS

C

Fig. A.14. Constrained—Key.Progé%fZg

Claim A.1. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition[2.9, and SPS is a splitable signature

scheme satisfying VKgps.rey indistinguishability’ as defined in Definition for any PPT ad-
(0,v—1,0,7) (0,v—1,0,y—1)

versary A, for any security parameter X, |Adv, (A) — Adv, (A)| < negl(A) for
some negligible function negl.
Proof. The proof of Claim is similar to that of Claim B.1 of [DKW16]. O

Lemma A.5. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition[2.9, and SPS is a splitable signature
scheme satisfying VKgps.rey indistinguishability’ as defined in Definition for any PPT ad-
versary A, for any security parameter X,]Advfg’u_l’l)()\) - Advfg’"_l’z)()\)\ < negl(A) for some
negligible function negl.

Proof. To prove Lemma [A5] we consider the following sequence of intermediate hybrid experi-
ments between Hybg ,_;; and Hybg,_; o:

54 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Sequence of Intermediate Hybrids between Hyby, _;; and Hyb, ,_ ;-

Hybg ,,_1,1,0: This experiment coincides with Hybg,,_; ;.

Hybg ,_1,1,1: In this experiment, to answer the v constrained key query of A corresponding
to TM M®) € M, with M®)(2*) = 0, B selects an additional PPRF key K% 7 & 7 Setup(1?)
along with all the other PPRF keys as well as the public parameters for positional accumulator
and iterator as generated in Hyb, ,,_; ; o, providing A with the constrained key

SKCPRF{M } =

HK PP&C)C,wéV) STORE(()V) PP, (()V)a

ZO(Init-SPS. Prog[q(() V) w(() V) v(()y) KS(Pg g

IO(Accumulate.Prog(’)[nSSB BLK = 2 ,HK,PP%)C,PPI(;%,KSSQE, S(Pg 7 P],
TO(Change-SPS.Prog* V(K] 1 K)o K& 1o, KG) o 17, 07)),
(

sps,A»
7O ccnstrained-Key.ProggP)RF[M(V),T — 9 () ppg'g>c,pp§g;,f(, TSI ¢ LY Y
K3 5 b, 7))

where the programs Accumulate.Prog(O’l) and Change—SPS.Pro(O’l) are the alterations of the
programs Accumulate.Prog(!) and Change-SPS.Prog(") (Figs. and) and are depicted in
Figs. [A.T5] and [A.T6] respectively. The rest of the experiment proceeds in the same way as in

HybO,zxfl,l,O'

Hybg ,,_1,1,2: In this experiment, in response to the v constrained key query of A corre-

Constants: Maximum number of blocks for SSB hash ngsppix = 2)‘, SSB hash key HK, Public parameters
for positional accumulator PP, Public parameters for iterator PPir, PPRF keys Kses r, Ksps, F,
SSB hash value of challenge input h*, Length of challenge input £*

Inputs: Index 4, Symbol Sym,y, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature ogps.our), or L

1.(a) Compute 7sps, 5 = F(Kses, £, (I, 1)), (SKsps, 55 VKsps, £, VKsps-ris, E) = SPS.Setup(l*; Tsps,E)-
(b) Compute rsps,r = F(Kses, 7, (h, 1)), (SKses, 7y VKsps, 7'y VKsps-rus, F) = SPS.Setup(l)‘; Tsps,F)-
(¢) If (h,i) = (h*,£"), set VK = VKsps-rus, F-

(d) Set miy = (UIN7 ST, Wi, O) and o =*-".
(e) If SPS.Verify(VKses, B, Mux, Ospsin) = 1, set a =°E’.
() Ifla=-"] A [(i#L£") V (h#h")], output L.
Else if [a—‘ ’] A [SPS Verify(VK, mm,o'spsm) = } output L.
Else if [=-"] A [SPS.Verify(VK, mu, osesx) = 1], set a ='F".
(g) If @ =*-", output L.

2. If SSB. Verlfy(HK h, %, SYM, Tsss) = 0, output L.
3.(a) Compute wour = ACC.Update(PPace, Win, SYMix, %, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPur, Ui, (ST, Wiy, 0)).

4‘(3) Compute 7":éps‘.,E =]:(KSPS,Ev (h,’t + 1))7 (SKéPs,E7 VK;PS,E, VK;PS—REJ,E) = SPS-SetuP(l)\§ réPS,E)'
(b) Set mour = (Vour, ST, Wour, 0). Compute osps our = SPS.Sign(SKips, 5, Mour)-

5. OUtpUt ('LUOUT, Vour, USPS,OUT)-

Fig. A.15. Accumulate. Prog(ovl)

sponding to TM M®) € M, with M*)(z*) = 0, B proceeds as follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator just as in Hybg,_; ;1.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 55

Constants: PPRF keys Kgps a4, Ksps, B, Ksps, 2, Ksps,r, SSB hash value of challenge input h*, Length of chal-
lenge input £*
Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length f, Signature
Tsps,IN

Output: Signature osps,our, Or L

Compute Tsps,E = F(KSPS,E7 (h, K]NP))7 (SKSPS,E, VKsps, E, VKSPS-REJ,E) = SPS.Setup(lA; Tsps,E)-
ComPUte Tsps,F =]:(KSPS,F, (h, ‘eL\IP))7 (SKSPS,F, VKsps, F, VKSPS—REJ,F) = SPS-SetUP(l)\§ TSPS,F)-
If (h,lwe) = (h*,£%), set VK = VKgps-rus, F -

Set m = (v, ST, w,0) and a="*-"

If SPS.Verify(VKsps, 2, M, Osps,n) = 1, set o ='E".

If [=] A [loe ZL7) V (h# h")], output L.

Else if [=-'] A [SPS.Verify(VK, m, osps,n) = 0], output L.

Else if [=‘-"] A [SPS.Verify(VK, m, ospsn) = 1], set o ='F".

) If @ =, output L.

) Compute 7sps, 4 = F(Ksps, A, (, line, 0)), (SKsps, 4, VKsps, A, VKsps-res, A) = SPS-SetUp(l)\§ Tsps,A)-
)

)

o~~~

- O A0 T o
N NN AN NN

T 0Q

(
Compute rsps,p =]:(KSPS,B7 (h, linp,s O)), (SKSPS,B, VKsps, B, VKSPS—REJ,B) = SPS-SetUp(l)\; TDSPS,B)~
If [(h, be) = (R*,€%)] A [a ='F’], output osps,our = SPS.Sign(SKsps, 5, mM).
Else, output Ogpsour = SPS-Sign(SKSPS,Avm)'

[\V]

Fig. A16 Change-SPS_ Prog(ovl)

2. Next, it forms the punctured PPRF key Ks(:g’F{(h*,ﬁ*)} &]-".Puncture(Ks(:g s (R, 07)) as well

v, 0* £)% v, 0* v,0* v,0*
as computes 11 = FKG) p, (0", 09)) and (SKE i, VKL i VK iy i) = SPS Setup(1:r{l).
3. It hands A the constrained key
SKCPRF{M } =
HK,Pch)c,w(()) STOREéV) pp). (()),
IO(Init—SPS.Prog[qé), (()),v(()),Ks(gg)
TO(Accumulate. Prog®? [nys g = 2%, 1k, PP, PR, KU 1o, KU L {(h*, 0)},

VKéPS R)EJ JH» h* E*]))
I(’)(Change-SPS Prog(o) [Ks(Pz A KérQ,B? Ks(Pz E> K(;/s F (h* 6*)} VKsPs R)E] H> h* 5*])
IO(Constrained—Key.Progép)RF[W), T =22) PPE\C)C7 PPI(TP){, K, K§), e ,Kﬁ”), KS(:;A,

Kl g, 0))

where the programs Accumulate. Prog(0 2) and Change-SPS. Prog;(0 2) are the modifications of
the programs Accumulate. Prog(0 1) and Change-SPS. Prog(O 1) (Figs. |A.15[and |A.16)) and are

described in Figs. [A17 and [A-18| respectively.

The remaining part of the experiment is analogous to Hybg ,_1 ; ;.

Hybg ,_1,1,3: This experiment is identical to Hybg,_; ;o except that while creating the pth
constrained key queried by A corresponding to TM M®) e M, with M®)(z*) = 0, B selects

régfh){ < YVpprr, i-€., in other words, B generates (SKglP’ﬁI}, VKiZﬁ}}, VKégﬁR?E(I,H) & SPS.Setu p(17),

56 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: Maximum number of blocks for SSB hash nsss-pix = 2A, SSB hash key HK, Public parameters for
positional accumulator PP,cc, Public parameters for iterator PPz, PPRF key Kgps,r, Punctured
PPRF key Kgps,r{(h",£*)}, Verification key VKz, SSB hash value of challenge input h*, Length
of challenge input £*

Inputs: Index ¢, Symbol Sym,y, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature ogps-our), or L

1.(a) Compute 7sps, 5 = F(Kses, £, (I, 1)), (SKsps, 55 VKsps, 2, VKsps-ris, B) = SPS.Setup(lA; Tsps,E)-
(b) Compute rsps r = F(Ksps,r{(h*,£)}, (h, 1)), (SKsps, 7, VKsps, ', VKspsrrs, F) = SPS.Setup(1*; repg).
(¢) Set mw = (v, ST, Wi, 0) and a =*-’
(d) If SPS.Verify(VKsps, 5, Mun, Ospsin) = 1, set a =‘E.
(e) If [a=~"] A [(i#£) V (h# h")], output L.
Else if [a="-"] A [SPS.Verify(VK g, mu, oses,v) = 0], output L.
Else if [=-'] A [SPS.Verify(VKn, mu, ospsn) = 1], set o =*F".
(f) If @ =", output L.
2. If SSB.Verify(HK, h, i, SYM, 7ssz) = 0, output L.
3.(a) Compute wour = ACC.Update(PPacc, Win, SYMiy, %, AUX). If wour = L, output L.

(a
(b) Compute vour = ITR.Iterate(PPix, vin, (ST, wix, 0)).

4. (a) ComPUte Tgps,E =]:(KSPS,Ev (hv i+ 1))’ (SKgPs,Ev VK;PS,E7 VK;PS—REJ,E) = SPS.Setup(lA; TéPS,E)'
(b) Set mour = (vour, ST, Wour, 0). Compute Tsps ovr = SPS.Sign(SKéPS’E, Mour)-

5. Output (wOUT7 Vour, USPS,OUT)~

Fig. A.17. Accumulate.Prog(®:?)

Constants: PPRF keys Kgps, 4, Ksps, B, Ksps, 2, Punctured PPRF key Kgps p{(h",£*)}, Verification key VKg,
SSB hash value of challenge input h*, Length of challenge input £*

Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length ¢\, Signature

Osps,IN

Output: Signature osps,ouvr, Or L

ComPUte Tsps,E = (Ksps E, (h EINP)) (SKbps E, VKsps, E, VKSPS—REJ,E) = SPS-SetUp(]-)\; TSPS,E)~
ComPUte Tsps, F — (Ksps F{(h* Z*)} (h K[NP) (SKSPS,F7VKSPS,F,VKSPS-REJ,F) = SPS-SetUp(1A§ TSPS,F)~
Set m = (v, ST, w,0) and a="*-"

If SPS.Verify(VKses, 2, M, Osps,n) = 1, set o ='E".

If [=] A [(bwe £ £7) V (h# h")], output L.

Else if [=*-"] A [SPS.Verify(VKu, m, oses,n) = 0], output L.

Else if [=*-"] A [SPS.Verify(VKm, m, ospsn) = 1], set o =F".

If a =", output L.

Compute Tsps, A = f(KSPS,Ay (h7 Lixp, 0)), (SKSPS,A7 VKsps, A, VKSPS-REJ,A) = SPS-SetUP(]-A; 7”sr’s‘.,A)-
ComPUte Tsps,B = I(KSPS,By (h, ZINPy 0)), (SKSPS,B, VKsps, B, VKSPS—REJ,B) = SPS~SetUP(1>\; TDSPS,B)~
If [(h, lie) = (R*,£%)] A [='F”], output osps,our = SPS.Sign(SKsps, 5, ™).

Else, output ogps,our = SPS.Sign(SKsps, 4, m).

Qo T
NIRANIININ

@

A~ S
T T
NN N7

o

Fig. A18 Change-SPS, Prog(ozz)

and gives A the constrained key

SKcprr {M(V) } =

v v v v v
HK, PP/(%C)C; U}(()), STOREé), PPI(TE)h ’U((J),

IO(Init—SPS.Prog[q(()V), wéy), v(()y), KS(;QE]),
IO(AccumuIate.Prog(O’Q) [Nssp-pLx = 2, HK, Ppgyc)c, PPI(TVF)L: Ks(;/g;,Ea Ks(;s)',F (h*,€)},
vl e),

SPS-REJ,H ’
v v v v %)% v,0* %)%
ZO(Change-SPS.Prog "I [K) \ K)o K& oK) (0%, 09} VR b 07]),
IO(Constrained-Key.ProggL)RF[MW),T _ 9\ p) ppggc,ppgg,x, K, KV KY

sps ,B

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 57

Hybg ,,_1,1,4: In this experiment, to answer the v constrained key query of A corresponding
to TM M®) € M, with M®)(z*) = 0, B creates all the components as in Hyby 11,3, however,
it provides A with the constrained key

SKCPRF{M(V)} =

v W) @) L) (@)
HK, PPacc, Wy ~, STORE(', PPrg, Uy

IO(Init—SPS.Prog[qéy),w(()y),v(()y), KSEQE]),

IO(Accumulate.Prog(O’Q) [nssp-prk = 27, HK, PP/(;QC, PPI(%){, Ks(g;E, KS(QF (h*,)},
VKSQSZ,;)I’ h*,),

TO(Change-SPS.Prog "V [K() \ KG) 1 KG) 1o KGD o (0,00}, VG, b, 04]),

TO(Constrained-Key.Proge [M®), T = 2*) pp), ppl¥) K, K. ,Kil’), ér'f;A,
K he)

sps,B»

The rest of the experiment is the same as Hyb, ,,_; ; 3.

Hybg ,,_1,1,5: In this experiment, in response to the v*! constrained key query of A corresponding
to TM M) € My with M) (2*) = 0, B forms all the components as in Hybg 1 14 except that
it computes rf) = .F(K(V) (h*, %)), (SK(V’E*) v 28 v) = SPS.Setup(1%; T(V’E*)),

sps,H — sps,F" sps,H> sps,H» SPS-REJ,H sps,H

and hands A the constrained key

SKcprr {M(V) } =

v v v v v
HK, PP&C)C, U}(()), STOREé), PPI(T;){, U((J),

IO(Init-SPS.Prog[q(()V),wéy),véy),KS&V,;E]),
TO(Accumulate.Prog 2 [ngss nx = 23, HK, PPY, PP, KS(;gE, KS(;’gF (R*, 0%)},
v, " EIES
VKGS b)),

ZO(Change-SPS.Prog I [K () | k%) o k&) | K&) {(h*,09)), vl) he 7)),

sps,As “*sps, By **s S sps,H>
ZO(Constrained-Key.Progtis [M ™), T = 2X,t*®), pp{, pRifh, K, K, ... K\ KW) 4.,
K& g0 7))

The rest of the experiment is analogous to Hybg ,_1 1 4-
Hybg ,,_1,1,6: This experiment corresponds to Hybg ,_; o.

Analysis

Let Advg\]’y*l’l’ﬁ)()\) represents the advantage of A, i.e., the absolute difference between 1/2
and A’s probability of correctly guessing the random bit selected by the challenger B, in
Hybo.,_1.1.9, for 9 € [0,6]. By definition, Adv({"” "V (A) = Adv{* (1) and Adv* 12 () =
Advfg’y_l’l’ﬁ)()\). Then, we have

6
AV = AV 0] < ST IAVE TR) — AdvE TR). (A.4)
v=1

Claims below will demonstrate that the RHS of Eq. (A.4) is negligible and thus
Lemma [A.5] follows.

Claim A.2. Assuming ZO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter X,]Advfg’y_l’l’o)()\) — Advgl)”_l’l’l)()\)\ < negl(\) for
some negligible function negl.

58 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Proof. The difference between Hyby,_; ;¢ and Hybg,_;,; is the following: In Hybg ,_; 0, B
includes the programs ZO(P,) and ZO(P}) within the v*® constrained key returned to A, while
in Hybg 111, B includes the programs ZO(P;) and ZO(Py) instead, where

— Py = Accumulate.Prog[nssp sk = 27, HK PP(AIQC, PPI(;){, Ks(ggE] (Fig. ,

— Pj = Change-SPS.Prog|K S(PQA,KS(PSE 5l (Fig. 7
— P, = Accumulate.Prog(®)[nSSB sk = 2%, HK, PPaow, PPria, SPsEﬂKs(PgFﬂ h*, ¢*] (Fig. |A.15),
— P} = Change-SPS.Prog(®Y[K kY kW kW KW b 7] (Fig. |A.16)).

sps,A» “*sps, B’ T *sps,E» SPSF’

v) pp®) K@)

Now, observe that the programs Py and Pj; clearly have identical outputs for inputs cor-
responding to (h,i) # (h*,¢*). Also, by the correctness [Property of splitable signature
scheme SPS, both the programs output L in case SPS.Verify(VKsps i, M, 0spsv) = 0 for inputs
corresponding to (h*,¢*). Thus the programs Py and P; are functionally equivalent. A similar
argument justifies the functional equivalence of the programs Pj and P;.

Thus, by the security of ZO, Claim follows. Ofcourse, we need to consider a sequence
of hybrid experiments to arrive at the result where in each hybrid experiment we change the
programs one at a time. O

Claim A.3. Assuming ZO is a secure indistinguishability obfuscator for P/poly and F satisfy
the correctness under puncturing property defined in Definition [2.3, for any PPT adversary A,
for any security parameter X, |Adv 4 Ow= 1’1’1)()\) Adv (O v 1’1’2)(A)| < negl(A) for some negligible
function negl.

Proof. The difference between Hyb, ,_; 1, and Hybg,_; ;o is the following: In Hybg,_1 1, B
includes the programs ZO(Py) and ZO(P}) within the v constrained key returned to A, while
in Hybg ,,_1 1 2, B includes the programs ZO(P;) and ZO(Py) instead, where

— Py = Accumulate. Prog(o’l)[nSSB sk = 2, HK PP,(%%)C,PPI(ZI/I){,K(V) KW p ,0*] (Fig. |A.15)),

SPS, B SPS £
~ P} = Change-SPS.Prog ™V [K) , K B,Kg;gE,Kgng,h* ¢*] (Fig. |A.16),

- P = Accumulate.Prog(’)[nSSB_BLK = 2A7HK,PP/(sc)c,PPI(Tr)uKS(EQE,KS(Q,F (h*,0*)}, VKsps R)EJH,
h*, 0*] (Fig. [A.17),

— P{ = Change- SPS Prog(0 2) [Ks(pgA,Ks(pz B,KS(IQE,
(Fig. |A.18).

Now, by the correctness under puncturing property of the PPRF F, both the programs

Py and P; have identical outputs on inputs corresponding to (h,i) # (h*,¢*). For in-
()
SPS-REJ,H’

v k)) = SPS.Setup(1*; r('/’e*))

sps,H» SPS-REJ,H Ssps,H

N (VAN A Y R S AV

SPS-REJ,H »

puts corresponding to (h*,£*), P, uses the hardwired verification key VK where in

(%) (%)
SPS-REJ, sps,H»
and réps h), F(K épg s (R*,€7)). Observe that these values are exactly the same as those used by
the program P, for 1nputs corresponding to (h*, £*). Thus, both programs have identical outputs
for inputs corresponding to (h*, £*) as well. Hence, the two programs are functionally equivalent.
A similar argument will justify that the programs P} and P| are functionally equivalent.
Therefore, by the security of ZO, Claim [A-3] follows, considering a sequence of hybrid exper-

iments where in each hybrid experiment we change the programs one at a time. O

Hybg,,—1,1,2, VK g is computed as (SK

Claim A.4. Assuming F is a secure puncturable pseudorandom function as per Definition[2.3,
for any PPT adversary A, for any security parameter \,]Adv(0 =L, 2)(/\) — Advff\)’y_l’l’?’)()\)\ <
negl(A) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv52’y_1’1’2)()\) Adv (0 v 1’1’3)()\)\
is non-negligible. We construct a PPT adversary B that breaks the selective pseudorandomness
of the PPRF F using A as a sub-routine. The description of B follows:

Verifiable and Delegatable CPRF’s for Unconstrained Inputs

59

e J3 initializes A on input 1* and receives a challenge input z* = xf...25._; € Xeprp With

|z*| = £* from mathcal A.
e Upon receiving x*, B proceeds as follows:

1. B generates HK ﬁ SSB.Gen(l)‘, Nsspopix = 27, 1% = 0) and computes h* = Hyx(z*).

2. Then, B selects a PPRF key K & F.Setup(1?*).

3. After that, B selects a random bit b & {0,1}. If b = 0, B computes y* = F(

On the other hand, if b = 1, then it chooses y* ﬁ YVeprr-
4. B returns the challenge CPRF value y* to A.

K, (h*, 0%)).

e For 7 € [g], in response to the n'" constrained key query of A corresponding to TM M () e My
with M) (z*) = 0, if # v, then B proceeds exactly as in Hybg 11 2, while if n = v, then

B proceeds as follows:
1. B first selects PPRF keys K\, ... ,Kg”),K(”) K

sps,A’ “*sps, B’ “*sps

|TRS€tUp(1)‘, nITR — 2)\).

KY)E & F.Setup(1?).

2. Next, it creates (PP&%)C, w(()l'), STORE(()U)) < ACC.Setup(1*, nace-pk = 2*) and (PPI([%, (V))

3. Then, B sends (h*,¢*) as the challenge input to its PPRF selective pseudorandomness
challenger C and receives back a punctured PPRF key K*{(h*,¢*)} and a value 7* € Vopgr,

where either r* = F(K*, (h*,¢*)) or r* & Vepre. B will implicitly view the key K* as the

key KY

SPS,F'*
4. B generates (SK&(}I;’SE,*I-}’VKiZée,E?VKégf—;)EJ,H) = SPS.Setup(1*; 7).
5. B gives A the constrained key

SKc¢ PRF{M } =

HK, PP&C)C,wé),STORE(()V),PPI(}/%7 (()V),

zoamt_sps.Prog[qé Vw0l KL D),
(v) (v)
VKgPs R)E] H> h* 6*])

TO(Change-SPS.Prog®? (k¥ , k) . k)

sps,A» “*sps, B “*sps,E»
I(’)(Constramed Key. Proggp)RF (M), T =22 @) ppl) pp) K, KW,

sps,A» sps B>

K*{(h*,é*)},VKQV’?*)

SPS-REJ,H ’

IO(AccumuIate Prog(o 2 [nSSB—BLK = 2>\ HK, PPacc, PPITR7 Kér’jg,Ev K*{(h*7 E*)}a

h*,),

i) K)(\V)7

e At the end of interaction, A outputs a guess bit ' € {0,1}. B outputs b = ¥/ as its guess bit

in its PPRF selective pseudorandomness experiment.

Note that if r* = F(K*, (h*,£*)), then B perfectly simulates Hybg ,_; 1 5. On the other hand,

if 7+ & YVeprr, then B perfectly simulates Hybg ,,_; ; 3. This completes the proof of Claim |A.4

O

Claim A.5. Assuming SPS is a splitable signature scheme satisfying “VKgpgpgs indistin-
guishability’ as per Definition [2.6, for any PPT adversary A, for any security parameter X,

|Adv52’y_1’1’3)()\) Adv (OV 1’1’4)(A)| < negl(\) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which \Adv (O 1’1’3)()\) Adv (0 v 1’1’4)()\)\ is
non-negligible. Below we construct a PPT adversary B that breaks the VKgpg_pi; mdistinguisha—

bility of SPS using A as a sub-routine.

e 3 receives a verification key VK of the splitable signature scheme SPS from its VKgpg_pis
indistinguishability challenger C, where VK is either a proper verification key VKgpg or a
reject verification key VKgpgrgs- Then, B initializes A on input 1% and receives a challenge

input z* = x... 2. _; € Xepre With |2*| = £* from A.
e Upon receiving z*, B proceeds as follows:

60 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

1. B generates HK ﬁ SSB.Gen(l)‘, Nsspopix = 27, 1" = 0) and computes h* = Hyx(z*).
2. Then, B selects a PPRF key K & F.Setup(1*).
3. After that, B selects a random bit b & {0,1}. If b = 0, B computes y* = F(K, (h*,(*)).

On the other hand, if b = 1, then it chooses y* il Yorre-
4. B returns the challenge CPRF value y* to A.

e For) € [g], in response to the n'" constrained key query of A corresponding to TM M () e My,
with M) (z*) = 0, if # v, then B proceeds exactly as in Hybg 11 3, while if n = v, then
B proceeds as follows:

1. B first selects PPRF keys Kf/), .. K)(\V)7Ks(sg,A7Ks(sg,B7Ks(sg,EvKs(ng & F.Setup(1?).

2. Next, it creates (PP&C)C,wé), STORE(V)) & ACC.Setup(1*, nycepix = 2*) and (PPI(}/I){, (V)) 5
ITR.Setup(1*, nyrr = 27).
. B creates the punctured PPRF key K $ps, F{(h*)} &F Puncture(Kgps 7, (R*,£¥)).

4 B gives A the constrained key

SKCPRF{M(V)} —

HK PP&C)C,wé), STOREE)),PPI(T;){, [()”),

ZO(Init-SPS.Proglg”, w”, v, K 1),
ZO(Accumulate.Prog® [nggs gk = 2 ,HK,PP%)C,PPI(}’I){,KS(QE, S(;;F{(h*,ﬁ*)},
VK, h*, 0*]),
(0,2) @) 2 (v) (V) * % x)k
IO(Change SPS. Prog [KSPS A’KSPS,B7KSPS,E’ SPS, F{(h ¢)}7VK7h 76])7
ZO(Constrained- Key.Progép)RF[M(”),T =2\ () PP&C)C,PPI(TVI){,K, K%V), e ,K/(\V),
K(V) K(V) h*,ﬁ*])

Sps,A? “*sps,B?

e At the end of interaction, A outputs a guess bit & € {0,1}. B outputs ' = b’ as its guess bit
in its SPS VKgps.rpy indistinguishability experiment.

Notice that if VK = VKgpg_pgs, then B perfectly simulates Hyb07,/_17173. On the other hand, if
VK = VKgps, then B perfectly simulates Hyb ,_; ; 4. This completes the proof of Claim O

Claim A.6. Assuming F is a secure puncturable pseudorandom function as per Definition[2.3,
for any PPT adversary A, for any security parameter \,]Adv(0 =L, 4)(/\) — Advg\)’y_l’l"r))()\)\ <
negl(A) for some negligible function negl.

Proof. The proof of Claim is similar to that of Claim [A.4] with some appropriate changes
which can be readily identified. O

Claim A.7. Assuming ZO is a secure indistinguishability obfuscator for P/poly and Fsatisfies
the correctness under puncturing property defined in Definition [2.3, for any PPT adversary A,
for any security parameter X, |Adv, (O 1’1’5)(>\) Adv (0 v 1’1’6)(A)| < negl(\) for some negligible
function negl.

Proof. The proof of Claim [A.7]is analogous to that of Claim [A-3] with some appropriate changes
that are easy to determine. O
O

Lemma A.6. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition[2.9, and SPS is a splitable signature
scheme satisfying VKgps-rgy tndistinguishability’ defined in Deﬁmtzon. for any PPT adversary
A, for any security parameter \, \/—\dv Ow=1, 2)()\) - Adv&?’yil’g)()\ﬂ < negl(A) for some negligible
function negl.

Proof. To prove Lemma we consider the following sequence of ¢* intermediate hybrid ex-
periments between Hybg ,,_; o and Hyb ,_; 3:

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 61

Sequence of Intermediate Hybrids between Hyby, ;5 and Hyb, ,_ ;3

Hyby, 12, (¢ = 0,...,£* — 1): In this experiment in response to the V™ constrained key
query of A corresponding to TM M®) € My with M®)(z*) = 0, B proceeds as follows:
1. Tt first chooses PPRF keys K" KW kY kW kW kY F.S

: Y8 Aqp thee By Sps,A> “*sps,B» T sps,) “1sps, F <_ etup()

2. Next, it generates (PP%)C, w(()y), STOREg/)) & ACC.Setup(1*, npcepx = 2*) and (PPI(TV%,U(())) &
I-I_Rsetl4|p(].>\7 TLITR == 2)\).
3. It provides A with the constrained key

SKCPRF{M } =
HK, PP,(W)C,UJ((J) STORE(()V) PPI(T%,U(()”) ,
ZO(Init-SPS. Prog[q(() V) w[() V) v(()y) K(Pz)

(S
(
(
(

TO Accumulate.Prog(')[nSgB sk = 27, HK, PP,%)C, PPI(TP){, Ks(;g B g,g N h*, %)),
TO(Change-SPS.Prog (K \ K)o k&) L KY) Lone), ’

O Constrained—Key Progép)RF[W) T =2 ¢*v)PPgC)C, PPI(TV%, K, K(V) ...,Kﬁy),

sps,A» sps B>

where the programs Accumulate.Prog(l’L) and Change—SPS.Prog(l’L) are the modifications of
the programs Accumulate.Prog(Q) and Change—SPS.Prog(Q) (Figs. and i and are de-

picted in Figs. and respectively.

The rest of the experiment is similar to Hyb, ,,_; 9. Observe that Hybg,_; 5 «_; coincides with
hybg ,_1 2 and Hybg ,,_; 5 ¢ corresponds to hybg,,_; 5.

Constants: Maximum number of blocks for SSB hash ngsppix = 2*, SSB hash key HK, Public parameters
for positional accumulator PP,c, Public parameters for iterator PPir, PPRF keys Kgps 5, Ksps, F,
SSB hash value of challenge input h*, Length of challenge input ¢*

Inputs: Index i, Symbol SYM,y, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value voyr, Signature ogps-our), or L

1.(a) Compute 7sps, g = F(Ksps. 2, (h,1)), (SKsps, &, VKsps, &, VKsps.ns,) = SPS.Setup(1%; 7sps).
(b) Compute rees,r = F(Ksps,F, (1, 1)), (SKses, 7, VKsps, 7, VKsps-res, F) = SPS.SetUp(l)‘; Tsps,F)-
(c) Set mu = (v, ST, wiy, 0) and a =~
(d) If SPS-Verify(VKSPs,E7 min, USPS,IN) =1, set « ='F".

(e) f ja=~"] AN [E>£") V (i<) V (h# h™)], output L.
Else if [=-'] A [SPS.Verify(VKsps, 7, Mux, Ospsin) = 1], set o =*F".
(f) If @ =", output L.

2. If SSB.Verify(HK, h, i, SYM, 7ssz) = 0, output L.

3.(a) Compute wour = ACC.Update(PPacc, Win, SYMiy, %, AUX). If wour = L, output L.

(b) Compute vour = ITR.Iterate(PPix, vix, (ST, wix, 0)).

4(8‘) Compute Tgps,E =]:(KSPS,Ev (hv i+ 1))’ (SK;PS,Ev VK;PS,E7 VK;PS—REJ,E) = SPS.Setup(lA; TéPS,E)'
(b) ComPUte T;PS,F = f(KSPsva (h7 i + 1))a (SK;PS,F7 VK;PS,Fv VKéPS—IlEJ,F) = SPS.Setup(lA; TéPS,F)'
(¢) Set mour = (vour, ST, Wour, 0). If ¢ < £*, compute osps our = SPS.Sign (SKéps o, Mour)-

Else, compute ospsour = SPS.Sign(SKgps. 7, Mour)-

5. Output (’U)OUT, Vourt, USPS,OUT)'

Fig. A.19. Accumulate.Prog(l’L)

62 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: PPRF keys Kgps 4, Ksps, B, Ksps, 2, Ksps, 7, SSB hash value of challenge input hA*, Length of chal-
lenge input £*
Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length f, Signature
Tsps,IN
Output: Signature osps,our, Or L
1-(3«) Compute Tsps,E = (K‘:Fs E, (h K]NP))7 (SKSPS,E,VKSPS,E,VKSPS-REJ,E) = SPS.Setup(lA; Tsps,E)-
(b) ComPUte Tsps,F = (Ksps F, (h eI\IP))7 (SKSPS,F, VKsps, F, VKSPS—REJ,F) = SPS-SetUP(lk; TSPS,F)-
(¢) Set m = (v,sT,w,0) and a=*-"
(d) If SPS.Verify(VKsps, £, m, Osps,in) = 1, set o =*F".
(e) If [a =~"] A [(bie > €") V (brxe <t) V (h # h™)], output L.
Else if [=-'] A [SPS.Verify(VKsps, 7, m, Ospsv) = 1], set a = F".
(f) If @ =", output L.
2.(a) Compute rsps,a = F(Ksps,a, (R, fixe, 0)), (SKsps, A, VKsps, A, VKspsrnr,4) = SPS.Setup(17; 7sps, 4).
(b) Compute 7sps g = F(Ksps, 5, (B, bixe, 0)), (SKsps, B, VKsps, B, VKspsres,B) = SPS.Setup(1?; 7ss,).
(¢) If [(h,bwr) = (R*,€%)] N [a =*F’], output ospsouvr = SPS.Sign(SKsps, B, m).
Else, output ogps,our = SPS.Sign(SKsps,a,m).
Fig. A.20. Change-SPS.Prog(1*)
Analysis
1,2, . .
Let us denote by Advfg v L)()\) the advantage of A, i.e., the absolute difference between 1/2

and A’s probability of correctly guessing the random bit selected by the challenger B, in the
hybrid experiment Hybg,_; 5, for ¢ € [0,¢* — 1]. Clearly, Advfg’y_l’g)()\) = Adv (0 Vo128 _1)()\)
and Adv()* 19 () = Adv (0” L29)()). Hence we have,

£*—1
AV 00 — AT) < ST AV TEEI () — AdViPY A). (A.5)
=1

Claim below justifies that the RHS of Eq. (A.5]) is negligible and consequently Lemma
follows.

Claim A.8. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition[2.9, and SPS is a splitable signature
scheme satisfying VKgps.rey indistinguishability’ as deﬁned in Definition [2.6, for any PPT ad-
versary A, for any security parameter X, |Adv, Ow=1,2)()\) Adv (OV L2e=1) ()\)\ < negl(A) for
some negligible function negl.

Proof. The proof of Claim is similar to that of Lemma with some appropriate modifi-
cations which are easy to find out. O
O

Lemma A.7. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition[2.3, and SPS is a splittable signature
scheme satisfying VKsps-one indistinguishability’ as defined in Definition [2-6], for any PPT ad-
versary A, for any security parameter X,]Adv(0 b 3)()\) Adv (0 v=130) ()\)\ < negl(\) for some
negligible function negl.

Proof. In order to prove Lemma [A.7 we consider the following sequence of intermediate hybrid
experiments between Hyb, ,_; 3 and Hyb,,_; 5.

Sequence of Intermediate Hybrids between Hyb,, _; 3 and Hyby, ;.30

Hybg ,,_; 3-1: This experiment coincides with Hyb, ,_; 3.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 63

Hybg 1 3-11: In this experiment, to answer the v constrained key query of A correspond-
ing to TM M®) € My, with M®)(z*) = 0, B proceeds as follows:

1. It first generates all the PPRF keys together with the public parameters for the positional
accumulator and the iterator just as in hybg,,_; 5.

2. Next, it forms the punctured PPRF key K(;/S sl(h",0)} & r Puncture(K(v)

SPS,E?

as computes r0) —]-"(K(v) (h*,0)) and (SK k70, vk™0), g0 = SPS. Setup(1*; 7

sps,G T sps,E» sps,G? sps,G? SPS-REJ

(h*,0)) as well

(v,0)
’ SPS G

).

3. Then, it sets mg:g (v v), q(()y) () ,0) and computes Uizs)G = SPS. Slgn(SK,gPS)C;,mé’yg).

4. B gives A the constrained key

SKCPRF{M } =

HK Ppgc)c,wé) STOREé);PPI(TVI)h (()),

ZO(Init-SPS.Prog (gl wi o, KU p{(h*,0)}, 02, 1),
W o) g

. 0
I(’)(Accumulate.Prog(’)[nSSB_BLK = 2} HK, PP o, PP, SPSE{(h 0)}, Kbpr, g:&)@

h*, %)), ’

. @ (¥) @) * V) s g
ZO(Change-SPS.Prog'”[Kpg 43 Kops gy Kgps p1(R", 0)}, Kool o R, £7]),
IO(Constrained-Key-Progélp)m M), T =2) pp), ppl) K K, KW K

sps B>

of the programs Init-SPS.Prog and Accumulate.Prog(Flgs and (A D and are depicted

in Figs. and

where the programs Init-SPS. Prog(l) and Accumulate. Prog espectively are the alterations
Sxiine:

The remaining part of the experiment is similar to Hybg ,_q 5.

hybg ,,_1 31110 This experiment is analogous to Hyby ,_; 511 with the only exception that while

Constants: Initial TM state go, Accumulator value wo, Iterator value vg, Punctured PPRF key Keps, g {(h",0)},
Signature o, SSB hash value of challenge input h*

Input: SSB hash value h

Output: Signature ogps our

1. If h = h™, output og.
Else, compute rsps, 5 = F (Ksps,e{(h",0)}, (h,0)), (SKses,E, VKsps,E, VKsps-rus, E) = SPS.Setup(lA; Tsps,E).
2. Output osps.our = SPS.Sign(SKses, &, (v0, g0, wo, 0)).

Fig. A.21. Init—SPS.Prog(l)

constructing the v*™ constrained key queried by A corresponding to TM M®) ¢ M, with

M®) (z*) =0, B selects ré;s?)G & YVerre- More formally, to answer the v** constrained key query
of A, B creates all the components as in Hyb ,_; 31 except that it generates (SKS{,’SO)@ VKéPS)(;,

v)ﬁSPS.Setup(l)‘),sets mg:g (v (V),qéy) (()V), 0), computes o0 — sps. Slgn(SK(0)

SPS-REJ,G sps,G T sps,G?

64 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: Maximum number of blocks for SSB hash nssg-pix = 2/\7 SSB hash key HK, Public parameters
for positional accumulator PP,cc, Public parameters for iterator PPz, Punctured PPRF key
Kes,2{(h*,0)}, PPRF key Kqs,r, Verification key VK¢, SSB hash value of challenge input h*,
Length of challenge input £*

Inputs: Index i, Symbol Sym,y, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature ogps-our), or L
1‘(3') If (h7i) i (h*70)7 compute Tsps,E = -F(KSPS,E{(h*7O)}7 (h7 l)): (SKSPS,E,VKSPS,E7VKSPS-I(EJ,E) =

SPS.Setup(l)‘; Tsps,E)
Else, set VKsps,r = VKG.

(b) Compute rgps, p = f(KSPS,F7 (h7i))7 (SKSPS,F7VKSPS,F7VKSPS—KEJ,F) = SPS-SetUP(]-)\; TSPS,F)~
(c¢) Set mw = (v, ST, Wiy, 0) and a =~
(d) If SPS.Verify(VKsps, 2, Min, Osps,n) = 1, set o =*E".
(e) f[a=~"] AN [E>£") V (i=0) V (h#h")], output L.
Else if [=*-"] A [SPS.Verify(VKsps,F, M, osps,iv) = 1], set o =F".
(f) If « ='~’, output L.
2. If SSB.Verify(HK, h, i, SYMy, Tssg) = 0, output L.
3.(a) Compute wouyr = ACC.Update(PPace, Win, SYMix, 4, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPir, Vi, (ST, Wiy, 0)).

)
() Compute TéPS,E = F(KS*’S,E{(h*v 0)}7 (h,Z + 1))7 (SK;;PS,E»VK;‘.PS,E7VK:2PHEJ,E) = SPS-SetUp(:lA; 7"ér’s,E)~
(b) Compute réPS,F = F(KSP57F7 (hv i+ 1))7 (SKéPs,Fv VKgPS,F? VK;PS—REJ,F) = SPS-Setup(l)\§ T;PS,F)'
) Set mouvr = (Vour, ST, Wour, 0). If 4 < £*, compute osps.our = SPS.Sign(SKeps, o, Mout)-

Else, compute ospsovr = SPS.Sign(SKgps g, Mour)-

5. OUtPU.t (wouh Vour, Usps,ouv)~

Fig. A.22. Accumulate.Prog(>!)

(()8) and provides A with the constrained key

SKCPRF{M }—
HK, PP/, w(()), STORE(()”), ppi) v(()”),
ZO(Init-SPS.Prog Mgy, wi” o, KL p{(h*, 0)}, ol %, 1),
I(Q(Accumulate.Prog(Q’l)[nSSB_BLK = 2’\,HK,PPE\%)C,PPI(T%,K(§SE (h*,0)}, Kspst gZ’S(T)G,
h,),
TO(Change-SPS Prog M [K (1) 1, K1) o, K p{(h,0)}, K o, b, 07]),
TO(Constrained-Key.Progiie [M ™), T = 22, t*®), pp{ pRif), K, K, ... K\ KW .,
K$ b, 04)

Hybg ,,_1,3-rv: This experiment is the same as hybg,,_; 5 1 with the exception that in response
to the v™ constrained key query of A corresponding to TM M®) ¢ M, with M®) (z*) =0, B
proceeds sa follows:

1. It first generates the full and punctured PPRF keys together with the public parameters for
the positional accumulator and the iterator just as in Hybg ,_q 3 1.

2. Next, it creates (SKéZ’Sé,VKgPS)(;, VKé';’,S[]_)RELG) & SPS.Setup(1%), sets m((]'jg = (v, W) é”) ((]V),O),
v,0 v,0 v,0 v,0 v,0
and forms (G() VKgPS—)ONE,G’ SKéPS—?ABO,G’ VKéPS—?‘%BO,G) SPS. Spl't(SKgps)G’ (() 8)

)
SPS—ONE,méV()) .G

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 65
3. B hands A the constrained key

SKCPRF{M } =

HK prw)(,w((]), STORE(()) ppi) v(()l’),

* v,0 *
TO(nit-SPS Prog Vgl wi!” o, K A (h*,0)}, o lthgg,G 1)),
TO(Accumulate.Prog Y [ngg s = 2, HK, PP, PPUR, K0 p{(h*,0)}, K&

(.0) sps, "
v,0 * %
VKSPS—ONE,G’h ’E])

ZO(Change-SPS.Prog® [K%) kW) o KW) {(h*,0)}, K 1o 0%, £7]),
IC’)(Constrained Key. ProggQRF[M(V), T =2\ W) e) K KW K,

SPS,A? SPS B>

Hybg ,,_1,3-v: In this experiment, in reply to the vt constrained key query of A corresponding
to TM M®) e M, with M®)(z*) = 0, B generates all the components just as in Hybg 1 31v
and gives A the constrained key

SKepre{ M)} =
HK, PP/, w(()), STOREéV), PP vé”),
70(nit-SPS Prog (g, wi, v, K G (0,00}, 00 i M)
TO(Accumulate. Prog®? [ngsp s = 2%, HE, PP{k, PPYA, K (;E{(h* 0)}, ngw
VK ronis 6 M00: 1)), :

TO(Change-SPS.Prog® K} \ kW) o K&) L {(h*,0)}, K o, 1%, £7)),
ZO(Constrained- Key.Prog(Cp)RF[M(”),T =2 (), PP&C)C, PP%Z,K, K%V), ... ,Kﬁu),
K(V) K(V) h*, f*])

sps,A? “*sps,B?

where the program Accumulate.Prog(Q’Z), described in Fig. is an alteration of the program
Accumulate.Prog(>!) (Fig. . The rest of the experiment is similar to Hybg ,_q 3 1y-
Hybg ,, 1 3-v1: In this experiment, in response to the V™ constrained key query of A corre-

sponding to TM M) € M, with M®*)(z*) = 0, B proceeds as follows:

1. It first generates all the full and punctured PPRF keys as well as the public parameters for
the positional accumulator and its iterator as in Hybg ,_; 5y

(+:,0) (+:0) VK(0)) i SPS.Setup(lA), sets m(()g (v(()y), q(()y), w(()y), 0),

sps,G? sps,G? SPS-REJ,G

and computes O‘épsé = SPS. Slgn(SKggSO,)@ mg,g)

3. Tt provides A with the constrained key

2. Next, it forms (SK VK

SK¢ PRF{M } =

HK PP&C)C,w((]),STORES),PPI(T;){,U(()V),

I(’)(Imt-SPS.Prog()[é)wé),vé),Ksng{ h*,0)}, 00 1)),

sps G»
IC’)(Accumulate.Prog(Q’)[nSSB sk = 2, HK PPE\C)C,PPI(TE){,KS(QE (h*,O)},Ks(gg,F,
v,0 v *)%
VKo o, b),
IO(Change—SPS.Prog(Q)[KS(PgA,Ks(ggB,Ks(g;E{(h* 0)}, KspsF,h*,E*]),
IO(Constrained Key. Prog(cp)m\[M(”), T =20 @ ppl). PPI(TIZ, KKY. .. Kﬁ”),

SPs,A? sps B>

66 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: Maximum number of blocks for SSB hash ngsppix = 2A, SSB hash key HK, Public parame-
ters for positional accumulator PP,cc, Public parameters for iterator PPy, Punctured PPRF
key Kes,2{(h*,0)}, PPRF key Ksps r, Verification key VKg, Message mo,0, SSB hash value of
challenge input h*, Length of challenge input £*

Inputs: Index i, Symbol Sym,y, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature ogps-our), or L
1‘(3) If (h7i) #* (h*70)7 compute Trspsp =]:(KSPS,E{(h*7O)}7 (h7i))7 (SKSPS,E7VKSPS,E7VKSPS-KEJ,E) =

SPS.Setup(l)‘; Tsps,E)-
Else, set VKsps,r = VKG.

(b) Compute rgps, p = f(KSPS,F7 (h7i))7 (SKSPS,F7VKSPS,F7VKSPS—KEJ,F) = SPS-SetUP(]-)\; TSPS,F)~
(c¢) Set my = (v, ST, Wiy, 0) and « =~
(d) If SPS.Verify(VKsps, 2, Min, Osps,n) = 1, set o =*E".
(e) f[a=~"] AN [E>£") V (i=0) V (h# h")], output L.
Else if [=*-"] A [SPS.Verify(VKsps,F, M, osps,v) = 1], set o =F".
(f) If « =*-’, output L.
2. If SSB.Verify(HK, h, i, SYMy, Tssg) = 0, output L.
3.(a) Compute wour = ACC.Update(PPace, Win, SYMix, 4, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPur, Vi, (ST, Wiy, 0)).

)
(a) Compute TéPS,E = F(KS*’S,E{(h*v 0)}7 (h,Z + 1))7 (SK;}PS,E7 VK;‘.PS,E7 VKgPszEJ,E) = SPS-SetUp(:lA; 7"ér’s,E)~
(b) Compute réPS,F = F(KSP57F7 (hv i+ 1))7 (SKéPs,Fv VKgPS,F? VK;PS—REJ,F) = SPS-Setup(l)\§ T;PS,F)'
) Set moyr = (UOI'T7 ST,wOUT7O)~

If [(h,7) = (R*,0)] A [mu = mo,], compute gsps.ovr = SPS.Sign(SKips. 1z, Mour)-

Else if [(h,3) = (h*,0)] A [mu # mo,0], compute osesour = SPS.Sign(SKéps.p; Mour)-

Else if i < £*, compute osps.our = SPS.Sign(SKgps. o s Mour)-

Else, compute ospsovr = SPS.Sign(SKgps pMour)-
5. OUtPU.t (wom‘, Vour, USPS,OU'I‘)~

Fig. A.23. Accumulate.Prog(>?)

The remaining portion of the experiment is identical to hybg,_q 3y

hybg ,,_1,3-vir: In this experiment, while constructing the v constrained key queried by A cor-

responding to TM M®) e M, with M®) (z*) = 0, B generates everything just as in Hyb, ,_; 3 v

except that it computes rég’s(?)G:F(Kég;E,(h*,O)), forms (SKé?sg)G’VKEPs)GvVKggﬁ)REJ,G) =

SPS.Setup(1*; r0)), and provides A with the constrained key

sps,G

SKCPRF{M } =
HK,PP&C)C,wé) STOREE)V) PPI(T;){,U[(]V),
ZO(Init-SPS.Prog g, wi”, v, KG) o{(h*,0)}, 05y, b)),
ZO(Accumulate.Prog®? [ngsppx = 2%, HK, pp(). PPI(T}){, K(:S {(h*,0)}, KSPS o
VKG Mg, B, £,

TO(Change-SPS.Prog) K 1 K1) 5 K& o{(h*,0)}, K§) o, b, £4]),

Sps,A?
TO(Constrained- Key.ProgéP)RF[M(”),T =2 () PPgC)C,Png}S{,K K(”) ...,Kﬁ”),
K(V) (V) h* [*])
PS A’ sps,B?

S

The rest of the experiment is analogous to Hybg ,_1 3 v

Hybg ,,_1 3-virr: This experiment corresponds to Hybg ,_ 3 .

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 67

Analysis

Let Adv(f(\)’u_l’?"ﬂ)()\) represents the advantage of the adversary A, i.e., the absolute difference
between 1/2 and A’s probability of correctly guessing the random bit selected by the chal-

lenger B, in Hyb,,_; 34, for ¥ € {I,..., VIII}. Clearly, Advfg’y_l’3)()\) Adv (OV 131)()\) and
Adv (O . 1’3’0)()\) = Advfg"/_l’?’_vm)()\). Therefore, we have

VIII
9=I1

Claims below will justify that the RHS of Eq. ({A.6)) is negligible and hence Lemma
follows.

Claim A.9. Assuming ZO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Deﬁmtwn. for any PPT adversary A,

for any security parameter X\, |Adv,’ A)| < negl(X) for some negligible

function negl.

Proof. The difference between Hyb,,_; 51 and hybg ,_ 3 is the following: In Hyb, ,_; 51, B
includes the programs ZO(Py) and ZO(P}) within the v*" constrained key returned to A, while
in Hyb, ,_; 511, B includes the programs ZO(Py) and ZO(p}) instead, where

- Py= Init—SPS.Prog[q(()V),w(()y)»v(()y)a ngggE] (Fig. ’

(v) (v)

- P = AccumU|ate-Pr0g(2) [Nssp-px = 2%, HK, PPA(c, PPirg, Ks(Pz E> Ks(;z ps 1, 07] (Fig. |A.5),

— P = Init—SPS.Prog(l)[q(()”),w[()”),v(()”),KSP&E{(h*, 0)}, 0% h*] (Fig. |A.21),

» Tgpg G

— P} = Accumulate.Prog®b [nggs pic = 2%, HK,PP,(\VC)C,PPI(TF){,KS(Q’E (h*,0)}, K(”) kO

SPS, F7 SPS G»
¢*] (Fig. [A-22).

Now observe that the programs Py and P; are functionally equivalent since by the correctness
under puncturing property of the PPRF F, the PPRF output remains the same at all non-
punctured points and at the point of puncturing, i.e., (h*,0), the correct signature is hardwired
in the program P;. Similarly, Pj and Pj are also functionally equivalent by the correctness under
puncturing property of F and the fact that at the point of puncturing i.e., (h*,0) the correct
verification key is hardwired into the program P;.

Therefore, by the security of ZO, Claim [AZ9] follows. O

Claim A.10. Assuming F is a secure puncturable pseudorandom function as per Definition[2.3,
for any PPT adversary A, for any security parameter X, \Advff‘)’y_l’&m (\) —Adv (O v=13- HD(A <
negl(A) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which \Advfg’u_l’?’_n)()\) Adv (O b IH)(A)\
is non-negligible. We construct a PPT adversary B that breaks the selective pseudorandomness
of the PPRF F using A as a sub-routine. The description of B follows:

e B initializes A on input 1* and receives a challenge input z* = Ty Tpe_q € Xopre With
|z*| = ¢* from A.
e Upon receiving z*, B proceeds as follows:
1. B first generates HK ul SSB.Gen(1*, ngsp-prk = 2*,4* = 0) and computes h* = Hy ().
2. Then, B selects a PPRF key K & F.Setup(1?).
3. After that, B selects a random bit b & {0,1}. If b = 0, B computes y* = F(K, (h*,(*)).

On the other hand, if b = 1, then it chooses y* ﬁ YVorre-
4. B returns the challenge CPRF value y* to A.

68 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

e For 7 € [§], in response to the ' constrained key query of A corresponding to TM M (")

€ M,

with M (2*) = 0, if # v, then B proceeds exactly as in Hybg ,,_1 311, while if n = v, then

B proceeds as follows:
1. B first selects PPRF keys Kfy), ces

2.

)

SPS,

K(V)

Sps,B?

, K)(\V), K(”)

sps,A?

P Er Setup(1%).

Next, it creates (PP&VC)C, w((]y), STOREE)”)) < ACC.Setup(1*, nace-prx = 2*) and (PP§T%,
ITRSetup(].)\,nITR - 2A).

lenger C and receives back a punctured PPRF key K*{(h

(V))

Then, B sends (h*,0) as the challenge input to its PPRF selective pseudorandomness chal-
,0)} and a value r € Yppgy,

where either r* = F(K*, (h*,0)) or r* & Yreprre. B implicitly views the key K* as the key

K3 b
4. B generates (SKg';’SO,)@VKS;,’S?)@VKéps)RE] ¢) =SPS. Setup(1*; r*).
5. Then, B sets mg’,g = (véy), qé),w(()), 0) and computes USPS)G = SPS.Sign(sk ips)c;, m(()'jg)
6. B gives A the constrained key
SKCPRF{M } =
HK, PP, wé”), STOREE)”), ppi) v[()”),
IO(Imt—SPS.Prog()[q(()),w(()),v(()),K*{(h*,()) égSO)G,h*])
IO(AccumuIate Prog®Y [ngsspix = 2, HK, PP‘(%)C, PPI(TI){, K*{(h*,0)}, KSPS s
(V 0) h* E*D
Ksps G
(’)(Change SPS.Prog P [K() 4 K&) 1 K*{(h*,0)}, K 1o, 1%, £4]),
TO(Constrained- Key.ProgéP)RF[M(”),T =2) ¢*) PP&C)C,PPgT}){,K, K, ,Kﬁ”),
K KG g . 0)

e At the end of interaction, A outputs a guess bit ' € {0,1}. B outputs b = ¥/ as its guess bit

in its PPRF selective pseudorandomness experiment.

Note that if r* = F(K*, (h*,0)), then B perfectly simulates Hybg ,_; 3 11. On the other

hand,

if 7+ & Yeerr, the B perfectly simulates Hybg ,,_; 5117 This completes the proof of Claim [A.10
O
Claim A.11. Assuming SPS is a splitable signature scheme satisfying “VKsps-ong indistin-

guishability as per Definition [2.6, for any PPT adversary A, for any security parameter X,

‘Advfg,u—l,S-IID(/\) B Advfi),u—l,S-IV)(A)

| < negl(\) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which]Advfg"/_l’?"m)()\) Adv (0 b Iv)()\)\
is non-negligible. Below we construct a PPT adversary B that breaks the VKSPS ong indistin-

guishability of SPS using A as a sub-routine.

e B initializes A on input 1* and receives a challenge input z* = xg -
|z*| = £* from A.

e Upon receiving x*, B proceeds as follows:
1. B first generates HK ul SSB.Gen(1*, ngsp-prx = 27,4
2. Then, B selects a PPRF key K & F.Setup(1?).
3. After that, B selects a random bit b & {0,1}. If b = 0, B computes y* = F(

On the other hand, if b = 1, then it chooses y* & YVrrrr-
4. B returns the challenge CPRF value y* to A.

= 0) and computes h*

.xz*il S XCPRF with

*)‘

K, (h*, 0%)).

e For 7 € [§], in response to the n'" constrained key query of A corresponding to TM M () ¢ M,
with M (z*) = 0, if # v, then B proceeds exactly as in Hybg ,_1 3111, while if n = v, then

B proceeds as follows:

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 69

1. B first selects PPRF keys K{"”,..., KV K& kW) o kW) k) & FSetup(1?).
(v) W) ()) &

2. Next, it creates (PPacc, wo ,STORE(V)) bl ACC.Setup(1*, nxcepx = 21) and (PP, N
ITR.SetUp(].)\,nITR — 2)
3. Then, B creates the punctured PPRF key Ké:gE{(h* 0)} & F Puncture(K, KY (h*,0)).

SPs, B
4. After that, B sends m(()ljg = (véy),qéy),w[()l/),O) as the challenge message to its SPS
VKgps-on indistinguishability challenger C and receives back a signature-verification key
pair (o) VK), where VK is either a normal verification key VKgpg or a one verifi-

v)

cation key VKSpS_ONE for the message mg -
5. B gives A the constrained key

SPS-ONE,m

SKCPRF{M } =

K, PP, w(()”), STORE(()) ppi) v(()),

ZO(Init-SPS.ProgM g (()),w(()),v(()) K SP,;E<{(11’“,0)},USPg oNE, m(V)7h*])7

IO(ACC“mmate-PrOg(z’l)[nSSB—BLK = 2%, HK, PPE\%)Ca PPI(TVf)m K(;s E{(h* 0)}, Ks(;s Bl
VK, h*, 0*]),

TO(Change-SPS Prog [K ;) 1, K{i) o, K4 p (0, 0)}, K2 o I, €7)),

ZO(Constrained- Key.Prog(cp)RF[M(”),T =2\ (), PP&C)C, PPI(TE{, K, K%V), ... ,K/(\V),
K" KW b)

sps,A’ ~*sps,B?

e At the end of interaction, A outputs a guess bit & € {0,1}. B outputs ' = b’ as its guess bit
in its SPS VKgps.ong indistinguishability experiment.

Notice that if VK = VKgps, then B perfectly simulates Hybg,_; 511 On the other hand, if
VK = VKgps-ong, then B perfectly simulates Hyb , 1 3 1. This completes the proof of Claim

Claim A.12. Assuming ZO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter X, |Adv(O v IV)()\) - Advfg’y_l’?’_v)()\)\ < negl(\) for
some negligible function negl.

Proof. The difference between Hyb ,_; 51y and hyb, ,_; 5.y is the following: In Hybg ,_q 31y, B
includes the program ZO(Py) within the v*" constrained key returned to A, while in Hybg ,—13.v,
B includes the program ZO(P;) instead, where

- P = AccumU|ate-Pr0g(271)[nSSB-BLK = 2/\, HK, PP/(xlé)Ca PPI(;:I){) Ks(;/g,E{(h* 0)}, Ksps mV él;s(z)oNE,G’
w7 (Fig. 29,
- P = Accumulate.Prog(Q’Q) [Nssp-pLx = 2)\7 HK, sz(xuc)m PPI(TVI){7 Ks(rlg,E{(h* 0)}, Ksps Y gzs(i)ONE,G’

ms, h*, 0] (Fig. [A.23).

Observe that the only inputs for which the programs Py and P; can possibly differ are those

corresponding to (h,i) = (h*,0). However, the verification key hardwired in both the programs
(1,0)
SPS-ONE,

is VK

—

iii)

¢ which only accepts signature for m = m(()ljg by the correctness [Properties

and . This ensures that for inputs corresponding to (h*,0), if my = m(()g both the programs

output an ‘E’ type signature, else, both output L. Thus, Py and P; are functionally equivalent.
Therefore, by the security of ZO, Claim follows. O

Claim A.13. Assuming SPS is a splitable signature scheme satisfying “VKgps.ong indistin-
guishability’ as per Definition for any PPT adversary A, for any security parameter \,
|/—\dv52’y_1’3_v)()\) Adv (OV 13-V (AN)| < negl(\) for some negligible function negl.

70 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Proof. The proof of Claim is similar to that of Claim with some readily identifiable
modifications. O

Claim A.14. Assuming F is a secure puncturable pseudorandom function as per Definition[2.5,
for any PPT adversary A, for any security parameter A, |Adv (00-1,3- VD()\) Adv (0 v=13- VH)(A <

negl(A) for some negligible function negl.

Proof. The proof of Claim [A:14] is analogous to that of Claim [A7I0] with some appropriate
changes that are easy to find out. O

Claim A.15. Assuming ZO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition [2.3, for any PPT adversary
A, for any security parameter \, |Adv(0V 1,3- Vm()\) — Adv Eg” 1,3- VHD(A)| < negl(\) for some

negligible function negl.

Proof. The proof of Claim [A.15]is analogous to that of Claim [A.9] a
O

Lemma A.8. Assuming ZO is a secure indistinguishability obfuscator for P/poly, SSB is a
somewhere statistically binding hash function according to Definition[2.3, ACC is a positional ac-
cumulator satisfying ‘indistinguishability of write setup’ and ‘write enforcing’ properties defined
in Definition as well as ITR is a secure cryptographic iterator according to Deﬁm’tion
for any PPT adversary A, for any security parameter A, |Adv(0 vobs L)()\) Adv (0 v=13¢ ()\)\ <
negl(\) for some negligible function negl.

Proof. To prove Lemma[A§] we introduce the following sequence of intermediate hybrid exper-
iments between Hybg,,_; 3, and Hybg ,_; 5

Sequence of Intermediate Hybrids between Hyb,,_; 3, and Hyby , ;3

Hybg ,_1.3,,0: This experiment coincides with Hybg,_; 5 ,.

Hybg ,,_1,3,,1: In this experiment the challenger B generates the SSB hash key HK & SSB.Gen(1*,
Nssppk = 2°,7° = 1). The rest of the experiment proceeds in an analogous fashion to Hybg ,—1.3.,.0-

Hybg ,_1.3,,2: In this experiment, to answer the v constrained key query of A corresponding
to TM M) e M, with M®) (z*) = 0, B proceeds as follows:

1. It first generates all the PPRF keys and the public parameters for the iterator just as in
hybO,V—Lg,L,l'
2. After that, it generates (PP,&C)C,wéV)

((25,0), .-, (27,0))).

3. Next, it sets m(()yg = (v(y), q(()y) w(y), 0). For j =1,...,4, it iteratively computes the following:

STORE(()V) & ACC.Setup—Enforce—Write(lA, Nacopix = 27,

- AUX§ v) — ACC. Prep- Wnte(PPgC)c, STOREE)1,j -1)

wj(-”) = ACC.Update(PPgC)C, J(”)l, i, -1 AUXEV))
- STOREg-) ACC.Write- Store(PPgC)c,STOREgy)l,j Lai)
ol = ITR.Iterate(pp{fy, 0", (g8, w”);, 0))

Wj—1>
) _ (vf”) @) @) 0).

It sets m, g Qo w7,

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 71

4. B gives A the constrained key

SK(‘PRF{M } =

HK PPE\C)C,w(()),STORE((]U);PPI(’IIQ{) (()),

IO(Imt—SPS.Prog[qé),w(()),v((])7K&€I1:2E])7

ZO(Accumulate. Prog®) [Nssp-prx = 27, HK, PPE\IQC, PPI(}/I){, Ks(l':g B Kéﬁg’F,m%), h*, %)),
(
(

TO(Change-SPS.Prog®V (K 4 KW o KW o KD o he, 7)),
IO Constralned Key.Progép)RF[M()T = 2A,t*(”),PPgC)Q,PPI(Tf){,K, Kfy),. K/(\),Kb(PgA,
SpPs,B»)

The rest of the experiment is similar to hyby,_; 5,1

hybg ,_1.3,,3: In this experiment, in response to the vt constrained key query of A corre-
sponding to TM M®) € M, with M) (z*) = 0, B proceeds as follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hyby ,_; 3, 5.
2. Next, it sets m(()ljg = (U(()V), q(()), w(()), 0). For 5 =1,...,t+ 1, it iteratively computes the fol-
lowing:
- AUX§) — ACC. Prep- erte(PPgC)C, STOREEV)l,j -1)
w{"”) = ACC.Update(PPice, w'”), 2%, j — 1, aux{")

(
J
— STOREg) — ACC.Write- Store(PPgC)C,STOREg”)l, j—1a%)

9] 1
- ’U](-) ITR Iterate(PPI(TP){a (V)la (Q(())7w(li)1’0))
) _ (),) (3)

It sets m, 14 w5 0) and m, Y g =
3. Tt gives .A the constrained key

SKCPRF{M(V)} =

HK PP&C)C,w(()),STORE(())7PPI(TI){a (()V),

IC’)(Imt—SPS.Prog[qé),w((]),v(()),Ks(sg’E]),
(v) V))

30,1 _ v
IC’)(AccumuIate.Prog(‘)[nSSB—BLK = 2%, HK, PPA(o, PPrig, sPS,E? Ks(Pg,F’

2001) |
ZO(Change-SPS. Prog(3) [KS(PQA,KS(PQ B,Ks(ll:g B S(Pg R),
O(Constralned Key. Prog(cp)RF[M(”),T = 2, t*(), PP&C)C, PPI(TI){, K, K%V), e Kﬁl’),

sps A sps B>

(v L(Jyr)h qéy)a L(i)l’ 0).

™)
mL,O ’

where the program Accumulate. Prog(?’"’l) is a modification of the program Accumulate. Prog(?”b)

(Fig. [A.7)) and is described in Fig. m

The rest of the experiment if analogous to Hybg,,_; 5, o.

1900y

Hybg ,_1.3,,4: This experiment is identical to Hyby ,_; 3, 5 with the only exception that while

(W) W) (V)) il

constructing the v constrained key queried by A, B generates PPicc, Wy ~, STORE

ACC.SetUp(].)\,nACC_BLK - 2>\)

Hyby ,_1,3,,5: This experiment is identical to Hybg, ;3,4 with the only exception that B

generates HK & SSB.Gen(1*, ngspopix = 27,3 = 0).

Hybg 13,6 In this experiment, in response to the v constrained key query of A corre-
sponding to TM M®) € M, with M®)(z*) = 0, B proceeds as follows:

72 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: Maximum number of blocks for SSB hash nssg-pix = 2A7 SSB hash key HK, Public parameters
for positional accumulator PP,cc, Public parameters for iterator PPirg, PPRF keys Kips, £, Kops, Fs
Messages m,,0, M.+1,0, SSB hash value of challenge input ~A*, Length of challenge input £*

Inputs: Index i, Symbol SYMy, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature osps-our), or L

1.(a) Compute rsps, g = F(Ksps, £, (R,1)), (SKsps, B, VKsps, By VKsps-res, E) = SPS.Setup(l)‘; Tsps,E)-
(b) Compute rops,r = F(Keps, 7, (R, 1)), (SKsps, 'y VKsps, 'y VKsps-rus, F) = SPS.Setup(lA; Tsps,F).-
(¢) Set mw = (v, ST, wi, 0) and a =*-".
(d) If SPS.Verify(VKsps, £, Min, Osps,n) = 1, set o =E".
(e) Ifla=-"1 AN [i>€) VvV (0<i<:i) V (h#h")], output L.
Else if [a =-'] A [SPS.Verify(VKsps, 7, Mix, Osps,in) = 1], set o =¢F".
(f) If « =*-’, output L.
2. If SSB. Verlfy(HK h, i, SYM, Tssg) = 0, output L.
3.(a) Compute woyr = ACC.Update(PPace, Win, SYMix, %, AUX). If woyr = L, output L.
(b) Compute vour = ITR.Iterate(PPux, Ui, (ST, Wiy, 0)).
4. (a) Compute r:;Ps,E =]:(KSPS,E7 (h7 1+ 1))7 (SK;PS,E7 VKgPS,E? VK;PS-REJ,E) = SPS.Setup(lA; r:;PS,E)‘
(b) Compute réps,F =]:(KSPS,F7 (h7 i+ 1))7 (SK;PS,F7 VK;PS,F? VK;PS—RE.I,F) = SPS.Setup(lA; T:;Ps,F)'
(C) Set moyr = (UoL‘T, ST, Wour, 0) If [(]’L, Z) = (h*7 L)} A [(mm = mb,o) N (mOIJT = mH—l,O)], compute Tgsps ovr =

SPS.Sign(SK;PS,E, mOUT)~
Else if [(h, i) = (A", ¢)] A [(mux # mu0) V (Mour 7 Mut1,0)], compute gsps our = SPS.Sign(SKips 7, Mour)-
Else if ¢ < £*, compute s our = SPS.Sign(SKgps o Mour)-
ElSe, compute Osps our = SPS~Sign(SK;Ps,Ea mOUT)'
5. Output (Wour, Vour, Tsps,our)-

Fig. A.24. Accumulate. Prog(&“l)

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator as in Hybg ,_1 3, 5.
2. For j=1,...,t+ 1, it iteratively computes the following;:
- AUX(”) ACC Prep- Wrute(PPgC)c, STOREgy)I,j —1)
]() = ACC. Update(PPg&,]()1,a:;f Li—1 AUX<V))

- STOREE- ¥) — ACC.Write- Store(Pch)C,STOREg)1, o 1)

3. Then, it generates (PPI(TI){,'U(()V)) & TR, Setup-Enforce(1*, nyrr = 2%, ((qq (V) (()V),O), e (q(()y),
w”,0))).

4. Next, for j =1,...,t+1, it iteratively computes v() — ITR. Iterate(PPI(TP)l,](V)l, (q((]),](-1:)1,0)).

5. It sets m%) = (UL(),q(()) wl”),O) and mf+)170 = (vL(Jr)l,qé),wfi)l,()).

6. It gives A the constrained key

SKCPRF{M } =

14 14 v
HK, PP&C)C,w(()), STORE(()), PPI(TI){, v(()),

ZO(Init-SPS.Prog[g”, w”, o{", K) 1),

IC’)(Accumulate.Prog(g’b’l) [Pssp-pL = 27 HK, PP&"C)C, PPI(}’;){7 Ks(gng, KS(ZPQF, m%),
E—Vo—)l 0 h*,f*])7
ZO(Change-SPS.Prog! ™" [K, s(gg A Ks(gs)‘,Bv Ké;s)p s(pg),

I(’)(Constrained Key.ProggP)RF[M@),T — 9) pp) pp) K. K KW,
Ps,A?])

S SPS B>

The rest of the experiment if analogous to Hybg ,_; 3, 5.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 73

Hybg ,,_1 3, 7: In this experiment, to answer the V™" constrained key query of A corresponding
to TM M®) e My, with M®)(z*) = 0, B generates everything as in Hybg 13,6, however, it
hands A the constrained key

SKcprr {M(V) } =

v v v v v
HK, PP&C)C, U}(()), STOREé), PPI(T;){, U((J),

ZO(Init-SPS. Prog[qéy), wéy), véy), KS(QE]),

(

IO(AccumuIate.Prog(3’L/) [Nssp-pLk = 2, HK, sz(xyc)m PPI(TVf)m Ks(;/g,E’ Kggg,Fv mg:-)l,Oa h*, 7)),
(
(

TO(Change-SPS.Prog @I [K) K)o k&) L KY) Lone 0],
O Constrained—Key.Progélp)RF[M(”),T =27 (), PP,%)C, PPI(TV;){, K, K%V), e ,Kil’), g&A,
KG2 b)

where the program Accumulate.Prog(‘g’L,) is depicted in Fig. The rest of the experiment is
similar to Hybg ,,_; 3, 6

Hybg 13,8 This experiment is analogous to hybg ,_; 5, 7 with the only exception that while

constructing the v*" constrained key queried by A, B generates (PPI(%/I){,U(()V)) & ITR.Setup(1*,

nirr = 27). Notice that this experiment coincides with Hybg 1.3,/

Analysis

Let Advfg’y_l’?”b’ﬁ)()\) represents the advantage of the adversary A, i.e., the absolute difference
between 1/2 and A’s probability of correctly guessing the random bit selected by the challenger
B, in Hybg ,_; 3, 4, for ¥ € [0,8]. From the description of the hybrid experiments it follows that

Advf’l’_l’g’b)()\) = Advff‘)’y_l’&“o)(/\) and Advfg’y_l’g’bl)()\) = Advg‘)’y_l’?”“s)()\). Hence, we have

8
AV (0 = AV TR ()] < ST AV TR) — AT (] (A7)
9=1

Claims below will show that the RHS of Eq. (A.7) is negligible and thus Lemma

follows.

Claim A.16. Assuming SSB satisfies the ‘index hiding’ property defined in Definition for
any PPT adversary A, for any security parameter X, \Advfg’yfl’g’b’o)()\) - Adv&(l)"/*l’g’b’1 N <
negl(\) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv52’y_1’3’L’0)()\) - Advfg’y_l’s’“l)()\)\
is non-negligible. We construct a PPT adversary B that breaks the the index hiding property of
SSB using A as a sub-routine. The description of B follows:

e B initializes A on input 1* and receives a challenge input z* = Ty Tpe_q € Xoprr With
|z*| = £* from A.
e Upon receiving =*, B proceeds as follows:
1. B submits ngsppx = 2* and the pair of indices (i§ = 0,47 = ¢) to its SSB index hiding
challenger C and receives back a hash key HK, where either HK i SSB.Gen(l)‘, NSSB-BLK =
92X i = 0) or HK <= SSB.Gen(1*, ngsppix = 2*, it = 1).
2. Next, B computes h* = Hyg(z*).
3. Then, B selects a PPRF key K < F.Setup(1*).
4. After that, B selects a random bit b & {0,1}. If b = 0, B computes y* = F(K, (h*,¢*)).
On the other hand, if b = 1, then it chooses y* ﬁ YVeprr-

74 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

5. B returns the challenge CPRF value y* to A.

e For 7 € [g], in response to the n'" constrained key query of A corresponding to TM M () e My
with M (2*) = 0, B proceeds exactly as in Hyby 15,0

e At the end of interaction, A outputs a guess bit & € {0,1}. B outputs ' = b’ as its guess bit
in its SSB index hiding experiment.

Note that if HK <- SSB.Gen(1*, ngsp-prx = 2%, i = 0), then B perfectly simulates Hybg , 1 3, -

On the other hand, if HK & SSB.Gen(1*, ngspoprx = 2/\,2"{ = 1), then B perfectly simulates
Hybg, 1 3,.1- This completes the proof of Claim O

Claim A.17. Assuming ACC is a positional accumulator satisfying the ‘“indistinguishability of
write setup’ property defined in Definition [2.]], for any PPT adversary A, for any security
parameter X, |Adv0 s 3’L’l)()\) Adv (O peisih,g (N)] < negl(X\) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv Ow=1, 3’L’1)()\) Adv (0 v=1, S’L’z)()\)\
is non-negligible. We construct a PPT adversary B that breaks the indistingulshablhty of write
setup property of the positional accumulator ACC using A as a sub-routine. The description of
B follows:

e J3 initializes A on input 1* and receives a challenge input z* = xf...25._; € Xeprp With
|z*| = ¢* from A.

e Upon receiving z*, B proceeds as follows:

1. B first generates HK & SSB.Gen(1*, ngsp-pix = 27,4 = 1) and computes h* = Hy(z*).
2. Then, B selects a PPRF key K & F.Setup(1?).

3. After that, B selects a random bit b & {0,1}. If b = 0, B computes y* = F(K, (h*,(*)).
On the other hand, if b = 1, then it chooses y* ﬁ YVeprr-
4. B returns the challenge CPRF value y* to A.

e For 5 € [§], in response to the '™ constrained key query of A corresponding to TM M) € M
with M®)(z*) = 0, if n # v, then B proceeds exactly as in Hybg 13,1, while if = v/, then
B proceeds as follows:

1. B first selects PPRF keys K1), k) k) k) g® g & Fs A
: Y8 Bq Ty BN Sps,A’ “*sps,B “sps,E? “sps, I A etuP(l)
2. Next, B sends nacepx = 2* and the sequence of symbol-index pairs ((z§,0),.. ., (z},¢)) to
its ACC write setup indistinguishability challenger C and receives back (PP ¢, wo, STORE(),

where either (PPoc, wo, STORE() il ACC.Setup(1*, npcepx = 21) or (PP acc, wo, STORE) l
ACC .Setup-Enfoce-Write(1*, nyccpix = 2%, (x4, 0), ..., (xF,1))).
3. Next, it generates (PPI(QIP){,U((JV)) 5 ITR.Setup(1*, nyry = 2%).

4. Then, it sets m(y) (U[()V), q(()y), wp,0). For j = 1,...,, it iteratively computes the following:

- AUXSV) = ACC.Prep-Write(PPcc, STORE;_1,j — 1)

— w; = ACC.Update(PP,cc, wj—1, ri_y,5—1 AUX(”))
— STORE; = ACC.Write-Store(PP,ccSTORE;_1, j N 1)
-](V) — ITR.Iterate(PPI(TI){, j()1, (q(()),wj 1,0))

) — (o,q® w0, 0).

It sets m, Qo Wy,

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 75

5. Tt gives A the constrained key

SKCPRF{M } =
HK, PP scc, W0, STOREg, PP v(()”),
IO(Init—SPS.Prog[qéy), wo,v(()y), Ks(ggE]),
IO(Accumulate.Prog(3’L) [nssp-sLx = 27, HK, PPcc, PPI(TVI){, Ks(Pg B Ks(l;z N %), h*, ¥]),
ZO(Change-SPS.Prog®I [k | K)o K)o K& one, 7)),
ZO(Constrained- Key.Progélp)RF[M(”),T =2\ () PPACC,PPI(TVF){,K, Kfy),...,Kil’),
(V) K(V) h*, e*])

sps A’ rsps, B

e At the end of interaction, A outputs a guess bit ¥’ € {0,1}. B outputs W =V as its guess bit
in its ACC write setup indistinguishability experiment.

Note that if (PPAcc, wo, STORE) & ACC.Setup(1*, nacepk = 27), then B perfectly simulates

Hybg 1 3,.1- On the other hand, if (PP xcc, wo, STORE) & acc. Setup-Enforce-Write(1*, nacopix =

2%, ((x§,0), ..., (z},1))), then B perfectly simulates Hyb,, ;3,o. This completes the proof of
Claim [A.T7] 0

Claim A.18. Assuming ZO is a secure indistinguishability obfuscator for P/poly, SSB possesses
the ‘somewhere statistically binding’ property defined in Definition[2.3, and ACC is a positional
accumulator having the ‘write enforcing’ property defined in Definition for any PPT adver-
sary A, for any security parameter X, |Adv, Ow—=13y, 2)()\) - Advfg’y_l’3’b’3 (N)] < negl(\) for some

negligible function negl.

Proof. The difference between Hyb, ,_; 5,9 and Hybg ,_; 3, 3 is the following: In Hybg ,_; 5, o,
B includes the program ZO(P,) within the v*" constrained key provided to A, whereas, in
Hybg 13,3, B includes the program ZO(P) instead, where

— Py = Accumulate.Prog®*) [ngsp-px = 27, HK, PPI(;E;)C, PPI(;,F){, KS(Pg o Ks(;g Fm %), h*, 0*] (Fig.|A.7),

— Py = Accumulate Prog®: [i = 2% 1k, pp{, pp), KU o KW L m®) m®), b]
(Fig. |A.24).

We will argue that the programs Py and P; are functionally equivalent, so that, by the se-

curity of ZO Claim [A.T§ follows. The inputs on which the outputs of the two programs can

possibly differ are those corresponding to (h,i) = (h*, (). For inputs corresponding to (h*,¢),

the program P; performs the additional check ‘mgoyr = mfi)w’ to determine the type of the
outputted signature. We show that this check is redundant by demonstrating that for inputs
(v)

corresponding to (h*,), if mi = m, g, then either both the programs output L or it must

hold that mgyr = mfi)w and, therefore, both the programs output signatures of the same
type. Notice that myy = m%) means Uy = ’UL(V),ST = qéy), and wy = wb(). Thus, vour =
ITR.Iterate(PPI(T”I){,vIN,(ST,wIN,O)) = ITR.Iterate(PPI(TVI){,vL(V),(q(()y),wf”),O)) = vfi)l. Now, recall

that in both experiments HK & SSB.Gen (1%, ngsp-prx = 27,4 = ¢). Therefore, by the somewhere
statistically binding property of SSB it follows that SSB.Verify(HK, h* = Hyux(x*), t, SYMy, Trsgp) =

1 if and only if sSyMy = z}. Thus, for inputs corresponding to (h*,¢), both programs will

output L in case SYM;y # ;. Further, in both the experiments, (Pch)c,w(()) STORE(()V)) i

ACC.Setup-Enforce-Write(1*, nce sk = 27, ((25,0), . . ., (zF,1))). Therefore, by the write enforc-

ing property of ACC it follows that if wyy = w'”) and SYMyy = 27, then wour = ACC.Update(pp{%,

Win, SYMpy, ¢, AUX) results in woyr = wL(:)l or woyr = L. In case woyr = L, then clearly both
the programs output L. On the other hand, wour = wfi)l implies moyr = (Vour, ST, Wour, 0) =

(vf:)l, q(()y), wb(j_)l, 0) = mgi)LO and the two programs have identical outputs in this case as well. O

76 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Claim A.19. Assuming ACC is a positional accumulator satisfying the ‘“indistinguishability of
write setup’ property defined in Definition for any PPT adversary A, for any security

parameter X,]Advfg’l’_l’g’b’?’)()\) - Advfg’y_l’?”b’4 (N)| < negl(\) for some negligible function negl.

Proof. The proof of Claim is similar to that of Claim with some appropriate modifi-
cations which can be readily figured out. a

Claim A.20. Assuming SSB satisfies the ‘index hiding’ property defined in Definition @ for
any PPT adversary A, for any security parameter X, \Advfg’yfl’g’b’él)()\) - Adv&(‘)’yfl’g’b’5 M) <
negl(\) for some negligible function negl.

Proof. The proof of Claim is analogous to that of Claim with certain approximate
changes which are easy to determine. a

Claim A.21. Assuming |ITR satisfies the ‘indistinguishability of enforcing setup’ property
defined in Definition for any PPT adversary A, for any security parameter A,
|Adv52’y_1’3’b’5)()\) — Advj’l’_l’3’“6)()\)| < negl(\) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv52"/_1’3’b’5)()\) - Advgl)’l’_l’g’b’ﬁ)()\)\

is non-negligible. Below, we construct a PPT adversary B that breaks the indistinguishability of
enforcing setup property of the iterator ITR using A as a sub-routine.

e J3 initializes A on input 1* and receives a challenge input z* = xf...25_; € Xeprp With
|z*| = ¢* from A.
e Upon receiving z*, B proceeds as follows:
1. B first generates HK <§ SSB.Gen(lA, Nespprx = 27, 1" = 0) and computes h* = Hyx(x*).
2. Then, B selects a PPRF key K & F.Setup(1?*).
3. After that, B selects a random bit b & {0,1}. If b = 0, B computes y* = F(K, (h*,¢*)).
On the other hand, if b = 1, then it chooses y* ﬁ YVorrr-
4. B returns the challenge CPRF value y* to A.
e For 7 € [g], in response to the n'" constrained key query of A corresponding to TM M () e My,

with M) (2*) = 0, if 7 # v, then B proceeds exactly as in Hyby , 13,5, while if n = v, then
B proceeds as follows:

1. B first selects PPRF keys Kfy), e ,K/(\V),K(V) K . KY KSVQ’F & F.Setup(1?).

sps,A» “*sps, By “rsps,E? T sp
2. Next, it generates (PP%)C,w(()V), STORE((]V)) & ACC.Setup(1*, nacenx = 27).
3. For j =1,...,t+4 1, it iteratively computes the following:

- AUX§.”) = ACC.Prep—Write(PP(A’QC, STOREg-V_)l,j -1)
- w](-y) = ACC.Update(PP&VC)C, wj(.'i)l, Ti_y,7 — 1,AUX§-V))
- STOREE»V) = ACC.Write-Store(Pp{%,, STOREyi)l, j—1,25)
4. Then, B sends nirg = 2* along with the sequence of messages ((q(()y), w(()y), 0),..., (q(()y), wL(V), 0))
to its ITR enforcing setup indistinguishability challenger C and receives back (PPirg, o),
where either (PPyrg, v9) bl ITR.Setup(1*, nyrr = 2*) or (PPyg, o) ul ITR.Setup-Enforce(1*,
Nirg = 2, ((Q(()V)a w(()y)a 0),.- ((()V)v wb(y)v 0))).
5. For j =1,...,.+ 1, B iteratively computes v; = ITR.Iterate(PPirr, vj_1, (q(()u),wj(y_)l,O)). It
sets m%) = (v, q(()y), wfy), 0) and mfi)LO = (V41, q(()y), wL(:_)l, 0).

Verifiable and Delegatable CPRF’s for Unconstrained Inputs

6. It gives A the constrained key

SKCPRF{M(V)} =

v W) v)
HK, PPACC’ wO 3 STOREO 5 PPITR7 'U[),

ZO(Init-SPS.Proglg”, wl”, vo, K1) 1)),
(v)

mfi)ma h*, 7)),

ZO(Accumulate. Prog(g’b’l) [Nssp-prx = 27, HK, PPacc, PPrrg, KW

sps, B

KO)

sps,F 117,00

TO(Change-SPS.Prog @I (K \ K)o k&) L KY) Lone e,
IC’)(Constrained—Key.Progg,lp)RF[M(”), T = 2> t*), PP&VC)C, PPirr, K, K%V), e ,K/(\V),
K Ko g 0,)

7

e At the end of interaction, A outputs a guess bit ' € {0,1}. B outputs b’ = ¥/ as its guess bit
in its ITR enforcing setup indistinguishability experiment.

Note that if (PPirg, v0) & ITR.Setup(1*, nyrr = 2%), then B perfectly simulates Hybo 13,5

On the other hand, if (PPyrg, v9) & ITR.Setup-Enforce(1*, nyrr = 2*, ((q(()y), w(()y), 0),...,(((]V),wL(V),

0))), then B perfectly simulates Hyb,,_; 3, . This completes the proof of Claim 0

Claim A.22. Assuming ZO is a secure indistinguishability obfuscator for P/poly and ITR has
the ‘enforcing’ property defined in Definition for any PPT adversary A, for any security
parameter \,]Advfg’y_l’s’L’G)()\) - Advfg’u_l’g’b’n()\)] < negl(\) for some negligible function negl.

Proof. The difference between Hybg,_; 3, and Hyby ,_; 3, 7 is the following: In Hyby ,_; 3, ¢,
B includes the program ZO(PF)) within the v constrained key provided to A, whereas, in
Hybg 13,7, B includes the program ZO(P) instead, where

— Py = Accumulate.Prog®*) [ngep pric = 2, HK, PPYoe, PP, K& 1y KD ooml'),m{") o, b, 7]
(Fig. [5.2),
- P = Accummate-ng(g’L,)[nSSB-BLK = 2/\7 HK, PPS&I:})Ca PPI(TVI){a Ks(ll:g,E> Ké;g,F’ mgi)l,m h*, £*]

(Fig.|A.9).

We will argue that the programs Py and P, are functionally identical, so that, by the security
of ZO Claim[A.22]follows. The only inputs on which the outputs of the two programs can possibly
differ are those corresponding to (h,i) = (h*,¢). For inputs corresponding to (h*,¢), the program
Py checks whether ‘myy = m% >and ‘meoyr = mfi)m’ to determine the type of the outputted sig-

™)

nature, while the program P; only checks whether ‘moyr = m, o Thus, the two programs will

be functionally equivalent if we can show that for inputs corresponding to (h*,t), moyr = mfi)l,o

implies my = m%). Recall that in both experiment (PPI(TV%, v(()l')

2%, (g5, w”,0),..., (@, w,0))). Now, mour = my
)

& ITR.Setup-Enforce(1*, nyr =

implies voyr = vb(i)l.
the enforcing property of ITR it follows that vy = v, (V),wL(V),O), which
v (@)

and (ST,'LUIN,O) = (0
in turn implies that my = (v, ST, Wiy, 0) = (v 7, g ,wL(V), 0) = m%). O

Therefore, by

Claim A.23. Assuming |ITR satisfies the ‘indistinguishability of enforcing setup’ property
defined in Definition for any PPT adversary A, for any security parameter M,
\Advfg’y_l’?”b’?)()\) — Advfg’y_l’S’L’S)(/\)] < negl(\) for some negligible function negl.

Proof. The proof of Claim [A:23] is analogous to that of Claim [A.2]] with some appropriate
modifications which are easy to determine. O
O

78 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Lemma A.9. Assuming ZO is a a secure indistinguishability obfuscator for P/poly, F is a
secure puncturable pseudorandom function as per Definition and SPS s a splittable signa-
ture scheme satisfying VKgps-ong indistinguishability’, VKgps apo tndistinguishability’, as well as
‘splitting indistinguishability’ as defined in Definition[2.6, for any PPT adversary A, for any se-
curity parameter X,]Advfﬁ’yil’&u)()\) —Adv&?’ufl’g’bﬂ)()\ﬂ < negl(A) for some negligible function
negl.

Proof. In order to establish Lemma we consider the following sequence of intermediate
hybrid experiments between Hybg ,_; 5, and Hybg ,_1 3,.4:

Sequence of Intermediate Hybrids between Hyb,,_; 3, and Hyby ,_ 13,11

Hybg ,,_1.3,,0: This experiment coincides with Hybg ,_; 3 /.

Hybg ,,_1.3,/,1: This experiment is identical to Hyby, 3, except that in response to the
v constrained key query of A corresponding to TM M®) € M, with M) (z*) = 0, B executes
the following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hybg ,_ 3,/ ¢.

2. Then, it forms the punctured PPRF keys KS(ZPf;E{(h*, t+1)} & F.Puncture(KS(:gyE, (h*,t+1))

and Ks(ry,gp{(h*, L1 E .F.Puncture(Kggg’F, (h*, 1+ 1)).
3. Next, it computes plotl) o]-"(K(V) (h*,0+1))) -]-"(K(V)

(h*,1+ 1)), and forms

sps,G sps,E» s "sps,H sps,F"
itD) e (it 1) o () A (D) Wt D) o D) o ()
(SKSPS,G ’VKSPS,G ’VKSPS—REJ,G) —SPS.Setup(l ’ TSPS,G)7(SKSPS,H 7VKSPS,H 7VKSPS-R.EJ,H) -
A (vl
SPS.Setupl™; reps g)-

4. After that, it sets mgg =((()V),q(()y),wéu),()). For j =1,...,t+ 1, it iteratively computes the
following:

— AUX§-”) = ACC.Prep—Write(PP,(\VC)C, STORE§’/_)1, j—1)

- wgy) = ACC.Update(PPglg)c,wj(.li)l,xjfl,j —1, Auxgy))
— STORE§V) = ACC.Write—Store(PPglé)C, STORE(-V_)l, j—1,25_)

J J-1
— v](.y) = ITR.Iterate(PPI(}/E){,v](-i)l, (qéy),w(y) 0))

J=1
It sets mfi)m = (UL(:L)p CI(()V)> wf-l‘y/-)17 0).

5. Tt gives A the constrained key

SKCPRF{M(V)} =

14 14 14 14 v
HK, PP&C)C, w(()), STORE(()), PPI(T])‘, v(()),

TO(Init-SPS.Prog[g”, wi”, vl K) L {(h*, 0 + 1)}),

S

TO(Accumulate.Prog®*' D ngg, 5y = 2%, 1K, PRI, PPYA, K L (R, 0+ 1)},

() (vet1) o (vet1) (v +1) (vetl) (v)
KSPS,F{(h*’ L+ 1)}’ SKSPS,G ’ SKSPS,H ’VKSPS,G) VKSPS,H ’mL+1,0’ h*v Z*])’

TO(Change-SPS.Prog® VK] K\ o KU {(h* 0+ 1)}, K& p{(h*, 0+ 1)},

(ve+1) (vot+1) 7% px
VKSPS,G 7VKSPS7H s h* L])7

IO(Constrained—Key.Prog(CL)RF[M(”),T =2* (), PP/(J'C)c7 PPI(%’F){, K, K%V), e K;\V),
K(V) K(V) h*, [*])

sps,A’ “*sps,B?

where the programs Accumulate.Prog(?’"/’l) and Change-SPS.Prog®+1)

respectively are the al-
terations of the programs Accumulate.Prog(?”L/) and Change-SPS.Prog®) (Figs. and i

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 79

and are shown in Figs. and

Constants: Maximum number of blocks for SSB hash nsegpix = 2/\7 SSB hash key HK, Public parameters
for positional accumulator PP,cc, Public parameters for iterator PPirr, Punctured PPRF keys
Keps,e{(h",0+ 1)}, Kes,p{(h", ¢ + 1)}, Signing keys SKq, SKm, Verification keys VK¢, VK, Mes-
sage m,+1,0, SSB hash value of challenge input h*, Length of challenge input £*

Inputs: Index ¢, Symbol Sym,y, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature ogps.our), or L

1.(a) If (h,d) # (h",e+1), compute rssp = F (Kes,p{(h",t+ 1)}, (h,4)), (SKsrs,E, VKsps,, VKsps-rrs, E) =
SPS.Setup(l)‘; Tsps,E)-
Else, set VKsps,r = VKG.
(b) If (h,i) # (h*,e+1), compute 7rees,r = F(Kses,r{(h", ¢+ 1)}, (h,19)), (SKses, 7, VKss,F, VKspsrs,) =
SPS.Setup(l)‘; Tsps,F)-
Else, set VKsps,F = VKg.

(¢) Set mwx = (v, ST, w, 0) and a =*-".

(d) If SPS.Verify(VKsps, £, Min, Osps,n) = 1, set aw =*E.

(e) Ifla=~"1 A [(i>€) VvV (0<i<:i) V (h#h")], output L.
Else if [=-'] A [SPS.Verify(VKsps, 7, Mix, Ospsin) = 1], set o =¢F".

(f) If « =*-’, output L.

2. If SSB.Verify(HK, h, i, SYM, 7ssz) = 0, output L.
3.(a) Compute wour = ACC.Update(PPace, Win, SYMi, 4, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPux, Vi, (ST, Wiy, 0)).
4(&) If (h7 Z) 5& (h*7 L)v ComPUte Téps E — ‘F(KSPSVE{(h*’ L+ 1)}7 (h7 i + 1))7 (SKgPs E> VK./SPS E> VK;PS-RHJ E) =
SPS.Setup(1*; 7w).
Else, set SK.ps g = SKG.
(b) If (hv Z) 7é (h*v L)7 compute r;PS F =]:(KSPS,F{(h’*? L+ 1)}7 (hvi + 1))7 (SK;PS,F7 VK;PS,F? VK;PS»REJ F) =
SPS.Setup(1*; 7l r)-
Else, set SKi,s p = SKpu .
(C) Set moyr = ('U()I;'n ST, Wour, O)
If [(h,3) = (h*,0)] A [Movr = Mug1,0], compute ospsovr = SPS.Sign(SKgps g, Mour)-
Else if [(h,7) = (h",1)] A [mour # Mut1,0], compute ospsovr = SPS.Sign(SKéPS’EmOUT).
Else if ¢ < £*, compute gspsovr = SPS.Sign(SKeps o Mout)-
Else, compute ospsovr = SPS.Sign(SKgps. g, Mour)-
5. OU.tPUt (woun Vour, USPS,OUT)-

Fig. A.25. Accumulate.Prog(®*+)

Hybg 1.3,/ .2: This experiment is analogous to Hybg,_; 3, with the only exception that

while constructing the v*" constrained key queried by A, B selects ré;’sigl), ré?’é}l) & Veprr, i.€.,

(Vr’fgl) (V7L+1)) i
SPS,

(v,e+1)
sps,G

(vye+1) (ve+1) (vye+1)

in other words, B generates (SK ,VKSPS_REJ’G), (SKSP&H s VEeps 11+ VKaps iy i

SPS.Setup(1%).

, VK

Hybg 1.3,/ 3: This experiment is identical to Hybg, ;3,9 except that in response to the
v constrained key query of A corresponding to TM M®) € M, with M®)(z*) = 0, B executes
the following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hybg ,_1 3/ 5.

2. Then, it creates the punctured PPRF keys KS(g;E{(h*, t+1)} & F.Puncture(KS(gng, (h*,1+1))
and K&) o {(h*,0+1)} & F.Puncture(K) 1, (h*, 0+ 1)).

SPS,F

80

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: PPRF keys K, 4, Kss, 5, Punctured PPRF keys Kos, g {(h",t + 1)}, Kes, p{(h", ¢ + 1)}, Verifi-

1-(3) If (h, EINP) # (h*, L+ 1), compute rsps, B = F(KSPS,E{(h*, L+ 1)}, (h, EINP)), (SKSPS,E7 VKsps, E, VKSPS—RE.],E) =

(e) f[a=~"] A [(bw >€%) V (0< lixp <t) V (h# h¥)], output L.
Else if [=*-"] A [SPS.Verify(VKsps,r, m, osps,n) = 1], set o = F".
(f) If « ='~’, output L.
(a) ComPUte Tsps,A = -F(KSPS,A7 (h7 L, 0))7 (SKSPS¢A7 VKsps, A, VKSPS-I{HJ,A) = SPS-SetUP(l)\§ TSPS,A)~
(b) Compute Tsps,B =]:(KSPS,B7 (h, Uip,s O)), (SKSPS,By VKsps, B, VKSPS—REJ,B) = SPS-SetUP(l)\; TSPS,B)~
(¢) If [(h,bwe) = (R*,€")] N [ao =‘F"], output ospsovr = SPS.Sign(SKses, B, M).

cation keys VK¢g, VK, SSB hash value of challenge input h*, Length of challenge input £*

Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length i, Signature
Tsps,IN

Output: Signature osps,our, Or L

SPS.Setup(1*; 7ss.).
Else, set VKsps,r = VK@
(b) If (hqéINP) 7é (h*, L+ 1)7 Compute Tsps, F = -F(KSPS,F{(h*7 L+ 1)}7 (hv ZU\T’))? (SKSPS,F7 VKsrs,F, VKSPS'RE'T’F) =
SPS.Setup(1*; 7ss.r).
Else, set VKgps,F = VKH.
(c) Set m = (v,ST,w,0) and a="-"
(d) If SPS.Verify(VKses, 2, ™, Osps,n) = 1, set o = E".

Else, output ogps.ovr = SPS.Sign(SKsps, 4, m).

Fig. A.26. Change-SPS. Prog(?”“l)

. 1 L1 1 1 1 1 $
. After that, it generates (55 victi D vicith)) (sl i D)y &
SPS.Setup(1%).
. Then, it computes mEi)LO = (vfi)l,q(()y),wfi)l, 0) just as in Hybg ,_ 5,/ .
: Next, it forms (O-S;SL—ONE,m(i)l OvG’ VKSZSL-ONE,G’ SKSII;SL—ABO,G’VKSZSL—ABO,G) — SPS.Spht(SKSI;;G 7mLZ—1,O
(vye+1) (ve+1) (vyt+1) (v,e+1) $. (vye+1) (v)
and (O-SPS'ONE’m(:l o H’ VKgps-one, B> SKsps-apo, 1 VKSPS—ABO,H) = SPS'Spl't(SKSPs,H 7mb+1,0)'
. It gives A the constrained key
SKCPRF{M(V)} =
HK, PP, w(()”), STOREéV), pp). v(()”),
ZO(Init-SPS.Proglgy”, w”, v, K p{(h*, 0+ 1)}),
IO(AccumuIate.Prog(?’"/’z) [MssppLk = 2\ HK, PP/(;QC, PPI(%ZL, Ks(g;E{(h*, t+ 1)},
v v,+1 v,+1 v+1 v,+1 v *
KS(P;F{(h*, L+ 1)}, Uépsb—oN)E m<i)1 . ek SKéPsL—ABZ),Hv VKgPSL,G)7 VKéPSL,H)) mf—i-)l,l)v h*, ¢])7
TO(Change-SPS.Prog(3+1) [Kgg,A, Kégg,B, Kgg’E{(h*, t+ 1)}, KS(s;F{(h*, t+ 1)},
VKéll:,SLgl) ? VKgII:SHl;Il)’ h*7 E*D)
I(’)(Constrained—Key.Progélp)RF [M(”), T = 2%, t*(”), PPSQC, PPI(}?{, K, K§V), . ,Ki”), Ks(:g A
K2 g 0)
where the program Accumulate. Prog(?’"/’z) is an alteration of the program Accumulate.Prog(?”Ll’l)

(Fig. [A.25) and is shown in Fig.

Hybg 1,3,/ .4: In this experiment, in response to the v constrained key query of A corre-

sponding to TM M®) e M, with M*)(z*) = 0, B generates everything as in hybg ,—1.3./.3;

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 81

Constants: Maximum number of blocks for SSB hash nssg-pix = 2A7 SSB hash key HK, Public parameters
for positional accumulator PP,cc, Public parameters for iterator PPir, Punctured PPRF keys
Kes, e {(h*,14+1)}, Keps,7{(h™, t+1)}, Signature o, Signing key Sk, Verification keys VK¢, VKw,
Message m,+1,0, SSB hash value of challenge input h*, Length of challenge input £*

Inputs: Index ¢, Symbol Sym,y, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature ogps-our), or L

1.(a) If (h,i) # (h",t + 1), compute rees, 5 = F(Kses,p{(h",¢ + 1)}, (h,1)), (SKses,E, VKses, B, VKsps-rni, E) =

SPS.Setup(l)‘; Tsps,E)-
Else, set VKsps,r = VKG.

(b) If (h,i) # (h*,t 4 1), compute rsps,r = F(Ksps,r{(h", ¢ 4+ 1)}, (h,9)), (SKsps, 7, VKsps, F, VKsps ey, F) =
SPS.Setup(l)‘; Tsps,F)-
Else, set VKgsps,F = VKH.

(c) Set mi = (vw,ST, wn, 0) and a =*-"

(d) If SPS.Verify(VKses, &, Mix, Tsps.n) = 1, set o =*E".

(e) fla=~"] A [E>£") V (0<i<) V (h# h")], output L.
Else if [=-'] A [SPS.Verify(VKsps, 7, Mux, Ospsn) = 1], set o =¢F".
(f) If « =*-’, output L.

2. If SSB.Verify(HK, h, i, SYM, 7ssz) = 0, output L.
3.(a) Compute wour = ACC.Update(PPco, Win, SYMiy, %, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPix, Vi, (ST, Wiy, 0)).
4(8‘) If (h, 7’) # gh*ub)v ComPUte T;PS,E =]:(KSPSyE{(h*v L+ 1)}7 (h’i + 1))7 (SKgPS,E’VK;PS,E7VKgPS—I{HJ,E) =
SPS.Setup(17; 7éps 1)-
(b) If (hvl) 75 ()\h*vL)v ComPUte Ts/;Ps,F = -F(KSP&F{(h*’L + 1)}7 (h,’L + 1))7 (SKQPS,FvVK;PS,F7VKéPs—RE.1,F) =
SPS.Setup(17; 74 f)-
Else, set SKgps, » = SKH.
(¢) Set mour = (Vour, ST, Wour, 0). If [(h, i) = (R*,¢)] A [Mour = Mut1,0], set Tses,our = OG-
Else if [(h,4) = (h*,1)] A [mour # mMut1,0], compute ospsovr = SPS.Sign(SKeps g, Mour)-
Else if ¢ < £*, compute ospsovr = SPS.Sign(SKeps o Mour)-
Else, compute ospsovr = SPS.Sign(SKgps. g, Mour)-
5. Output (wouu Vour, Usps,ouv)~

Fig. A.27. Accumulate.Prog®*'+?)

however, it hands A the constrained key

SKCPR,F{M(V) } =

v v v v v
HK, PP,(\C)C, w(()), STORE(()), PPI(T;){, 'l)(()),

IO(Init—SPS.Prog[qéy),w(()y),véy), Kg(ng{(h*, t+1)})),
I(’)(Accumulate.Prog(3’bl’2) [Nssp-pLx = 2%, HK, sz(xyc)m PPI(TVI)ty Kégg,E{(h*7 t+ 1)},
(vye+1) (v+1) (ve+1) (v) B* g*])

(V) * (V7L+1)
KSPS,F (R, e+ 1)}, USPS_ONEmE:)l e SKgps-apo,H+ VEsps-one,Gr Visps,H 0 M041,0

TO(Change-SPS.Prog®+ VK] | K)o KW o {(h* 0+ 1)}, K& pL(h*, 0+ 1)},
v,i+1 v+1 *)%
éPS—ON)E,G7VKéPS,H)7 h 75])7
IO(Constrained—Key.Progélp)RF [M(”), T =22, t*), PPE\%)C, PPI(flf}){, K, KY/), cee ,Kﬁ”), KS(ZP;;A?

K(l’) h*, f*])

Sps,B?

VK

The rest of the experiment is analogous to Hybg,,_; 3,/ 3.

Hybg 1.3, 5: In this experiment, in response to the v constrained key query of A correspond-
ing to TM M) € My, with M) (2*) = 0, B forms all the components just as in Hybo 1.3, 45

82 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

however, it gives A the constrained key

SKCPRF{M(V)} =

v W)) o) (@)
HK, PPace, Wy ~, STORE(', PPrg, Uy

ZO(Init-SPS.Proglgy”, w”, ol K oA (h*, 0+ 1)}),
TO(Accumulate.Prog " [ngg i = 2%, 1K, PP, PP, K& p{(h*, 0+ 1)},

(V) * (V7L+1) (V7L+1) (V7L+1) (V7L+1) (V)
KSPS,F{(h Lt 1)}’ USPS_ONE m®) SKSPS—ABO,H’ VKSPS—ONEG? VKSPS—ABO,H’ mL+1,0’

t+1,0°
h*, 0*]),
TO(Change-SPS Prog ™" VK () 1, KG) g, K4l p{(W, 0+ D)} KL pd (0 0+ 1)},
v+l v+l % %
VKéPS—ON)E,G”w?h 7£])7
TO(Constrained-Key Prog bse M), T — 2%, °0), el peifh, K K. {7 K2,
sps,B»)])

The rest of the experiment is analogous to Hybg ,_; 3,/ 4.

Hybg 1.3,/ 6 In this experiment, to answer the V™ constrained key query of A corresponding
to TM M®) € M, with M) (z*) = 0, B creates all the components as in Hybg 1.3, 5, however,
it returns the constrained key

SKcprr {M(V) } =

v 14 14 14 v
HK, PP(AC)C,w((J), STOREE)), PPI(T;){, vé),

ZO(Init-SPS.Proglgy”, w” v, K A (h*, 0+ 1)}),
TO(Accumulate.Prog®*" [nges s = 2%, 1K, PPk, PPIA, K& o {(h*, 0+ 1)},

(V) * (V7L+1) (V7L+1) (V7['+1) (Vv"+l) (V) * *
KSPS,F (h Lt 1)}’ USPS—ONE m® o’ SKSPS—ABO,H7 VKSPS—ONE,G7 VKSPS—ABO,H’ mL+1,0? h 76])7
41,00

7O(Change-SPS.Prog® D[k k) L k) {00+ 1)), KY) (07,0 + 1)),

(V7L+1) (V1L+1) * *
VKSPS—ONE,G7VKSPS—ABO,H’h L]):

ZO(Constrained-Key.Progiie [M "), T = 2X,t*®), pp{ pRifh, K, K1, ... K\ KW) .
K$) 5 ¥, 07)

to A, where program Accumulate.Prog(3’L/’3) is a modification of program Accumulate.Prog(3’L/’2)
(Fig. |A.27) and is depicted in Fig. The remaining part of the experiment is identical to
hybO v—1,3,./,5"

Hybg ,,_1 3,/ 7: In this experiment, to answer the V™ constrained key query of A corresponding
to TM M) € My, with M) (2*) = 0, B generates all the components exactly as in Hybg 136

(vye+1) (v,e+1) (v,t+1) (v,e+1) $
(CONN = VKSPS—ONE,H’ SPS-ABO,H > SPS—ABO,H)
+1,0”

except that it does not generate (o SK

SPS-ONE,m

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 83

Constants: Maximum number of blocks for SSB hash nssg-pix = 2A7 SSB hash key HK, Public parameters
for positional accumulator PP,cc, Public parameters for iterator PPir, Punctured PPRF keys
Kes, e {(h*,14+1)}, Keps,p{(h™, t+1)}, Signature o, Signing key Sk, Verification keys VK¢, VK#,
Message m,+1,0, SSB hash value of challenge input h*, Length of challenge input £*

Inputs: Index i, Symbol Sym,y, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature ogps-our), or L

1.(a) If (h,i) # (h",¢ + 1), compute s, = F(Kses,e{(h", ¢ + 1)}, (h,7)), (SKses, B, VKsps, B, VKsps-nes, B) =
SPS.Setup(l)‘; Tsps,E)-
Else, set VKsps,r = VKG.
(b) If (h,i) # (h",¢+ 1), compute rsps,p = F(Keps,r{(h", ¢ + 1)}, (h,1)), (SKsps, F, VKsps, ', VKsps-res, F) =
SPS.Setup(l)‘; Tsps,F)-
Else, set VKgsps,F = VKH.

(C) Set muy = (UIN7 ST, Wi, O) and o =~

(d) If SPS.Verify(VKsps, £, M, Osps,n) = 1, set o =E.

(e) fla=~"] AN [E>£") V (0<i<) V (h# h")], output L.
Else if [=-'] A [SPS.Verify(VKsps, 7, Mux, Ospsn) = 1], set o =¢F".

(f) If « =*-’, output L.

2. If SSB.Verify(HK, h, i, SYM, 7ssz) = 0, output L.
3.(a) Compute wour = ACC.Update(PPco, Win, SYMiy, 4, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPux, Vi, (ST, wix, 0)).
4(8‘) If (h, 7’) # (h*7L)7 ComPUte T;PS,E =]:(KSPSyE{(h*v L+ 1)}7 (h’i + 1))7 (SKgPS,E’VK;PS,E7VKgPS—I{HJ,E) =
SPS.Setup(1; s i)
(b) If (hvl) 7é (h*vL)v compute Ts/;Ps,F = -F(KSP&F{(h*’L + 1)}7 (h,’L + 1))7 (SKQPS,FvVK;PS,F7VKéPs—RE.1,F) =
SPS.Setup(1; s p).-
Else, set SKgps, » = SKH.
(¢) Set mour = (Vour, ST, Wour, 0). If [(h, i) = (R*,¢)] A [Mour = Mut1,0], Set Tsps,our = OG-
Else if [(h,4) = (h*,1)] A [mour # mut1,0], compute ospsovr = SPS.Sign(SKps g, Mour)-
Else if [(h,i) = (h*,t + 1)] A [mw = m.11,0], compute ospsour = SPS.Sign(SKeps 1, Mour)-
Else if [(h,7) = (h*,t + 1)] A [mu # m.11,0], compute gspsour = SPS.Sign(SKips. s Mour)-
Else if ¢ < £*, compute gspsovr = SPS.Sign(SKeps o Mour)-
Else, compute ospsovr = SPS.Sign(SKgps. g, Mour)-
5. OUtPUt (wOUT7 Vour, USP&,OUT)-

Fig. A.28. Accumulate.Prog(®*'3)

SPS.Split(SKéZ’SﬁII),mfi)w) and provides A with the constrained key

SKCPRF{M(V)} =

14 14 14 14 14
HK,PP&C)C, w(()), STOREé), PPI(T;){, v(()),

ZO(Init-SPS.Proglgy”, w”, o, K oA (h*, 0+ 1)}),
IO(Accumulate.Prog(g’u’?’) [Nssp-pLk = 2)\a HK, PP/(XI:J)Ca PPI('II{I)U Ké§g7E{(h*a L+ 1)},

stl:g,F{(h*’“F1)}@(1““)) aSK(U’LH) vl ﬂmf-ﬂ,o’

sPs-ONE,m, ") .G °7sPs-ABO,G SPS-ONE,G’ SPS-ABO,G”
h*, 07)), ’
IO(Change—SPS.Prog(3’“1)[Ks(s;A, KS(IZ;B, KS(IQ’E{(h*, L+ 1)}, KS(EQ,F{(h*, L+ 1)}
’ Jrl) +1 * *
VKglF/’SL—ON)E,G7VKgZI:SL—AB)O,G7h g])7

IO(Constrained—Key.Prog(CL)RF[M(”),T =27 (), PP/(:QC, PPI(}’I){, K, Kf'}), .. ,Kg\y), Kgg,A,

Sps,B?

The rest of the experiment is the same as Hyby ,,_; 5,/ 6-

Hybg 1.3, s: In this experiment, in response to the v constrained key query of A correspond-
ing to TM M®) e M, with M®) () = 0, B generates all the components as in hyb,,,_ 3,/ 7,

84 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

however, it returns the constrained key

SKCPRF{M } =

HK, PP&C)C,wé),STOREé) PPI(T%, (”),

ZO(Init-SPS.Proglgy”, w”, vl K ol (h*, 0+ 1)}),
ZO(AccumuIate.Prog(s"%) [Nssp-pLk = 2)\7 HK PP/(leJ)Ca PPT(IIJI)V Ksps E{(o+ 1)},
v * v+1 v+1 v * %
K& A0 o+ 1)y skl e vl ED, Eﬁlo,h),
TO(Change-SPS.Prog™) [K) 1 Kip) p K pf (0,0 + D)}, KL p{ (B, 0+ 1)},
vt R*, 0*]),

sps,G
ZO(Constrained-Key.Proglie [M ™), T = 2X,t*®), pp{ pRifh, K, K1, ... K\ KW 4.,
KL g0 07))

to A, where the programs Accumulate.Prog(?”L,A) and Change-SPS.Prog(®*?) respectively are

the modifications of the programs Accumulate.Prog(?’"/’g) and Change—SPS.Prog(?”L’l) (Figs.
and |[A.26) and are shown in Figs. [A.29) and |[A.30] The rest of the experiment if identical to

Hybo,u—1,3,u,7-

Hybg ,,_1.3,/,9: This experiments analogous to hyb ,_; 3 /g with the only exception that while

Constants: Maximum number of blocks for SSB hash nsspmx = 2°, SSB hash key HK, Public parameters
for positional accumulator PP,ce, Public parameters for iterator PPir, Punctured PPRF keys
Kos, g{(h",0 + 1)}, Kes,r{(h*,0 + 1)}, Signing key sK¢, Verification key VK¢, Message m,.+1,0,
SSB hash value of challenge input h*, Length of challenge input £*

Inputs: Index ¢, Symbol Sym,y, TM state ST, Accumulator value wy, Auxiliary value AUX, Iterator value
v, Signature ospsiv, SSB hash value h, SSB opening value 7

Output: (Accumulator value wour, Iterator value vour, Signature ogps.our), or L

L(a) If (h,3) # (h",¢ + 1), compute reps,r = F(Kses, e {(h",¢ + 1)}, (h, 1)), (SKses, 2, VKsps, £, VKsps-rni, E) =

SPS.Setup(lA; Tsps,E)-
Else, set VKsps,r = VKG.

(b) If (hﬂ») 7é (h*7L + 1), compute Tsps, F = -F(KSPS,F{(h*7L + 1)}7 (h’7 7’))’ (SK5P57F7VKSPS’F7VKSPS'RHJ’F) =
SPS.Setup(lA; Tsps,F)-

(C) Set mi = (’UIN, ST, W, O) and a =’

(d) If SPS.Verify(VKspgyEH min, O'SPS,IN) = 1: set a ='F".

(

e) If[a=-"1 AN [E>¢)V (0<i<:+1) V (h# h")], output L.
Else 1f [a =1 A [SPS.Verify(VKsps, 7, Tux, Osps,iv) = 1], set o =*F".
(f) If « =*-’, output L.

2. If SSB.Verify(HK, h, 1, SYM, Tssg) = 0, output L.
3.(a) Compute wour = ACC.Update(PPacc, Win, SYMiy, %, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPi, vix, (ST, wix, 0)).
4(&) If (h7 7’) 7é (h*vb)v ComPUte rgps,E =]:(KSPS,E{(h*M + 1)}7 (hzi + 1))7 (SK;PS,E7VK;PS,E?VK;PS-REJ,E) =
SPS.Setup(1*; Teps.)-
(b) If (h77') 7é (h*7")7 compute T;PS,F = -F(KSPsyF{(h*7L + 1)}a (h72 + 1))> (SK;‘.PS,F7VK2,§PS,F7VK;PS-REJ,F) =
SPS.Setup(1; s r).-
(¢) Set mour = (Vour, ST, Wour, 0). If (h,i) = (h*, (), compute ospsovr = SPS.Sign(SK¢a, mour)-
Else if [(h,i) = (h*, ¢+ 1)] A [muw = m.41,0], compute osps ovr = SPS.Sign(SK;PsyE, Mour).
Else if [(h,4) = (h", ¢+ 1)] A [mu # muy1,0], compute osps ovr = SPS.Sign(SKéps, 75 Mour)-
Else if ¢ < £*, compute gspsovr = SPS.Sign(SKeps o Mout)-
Else, compute ospsovr = SPS.Sign(SKgps. g, Mour)-
5. OU-tPUt (wouw Vour, Usps,OUT)-

Fig. A.29. Accumulate.Prog®*'+4)

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 85

Constants: PPRF keys Kgps, 4, Ksps, 5, Punctured PPRF keys Kgps, e {(h*,t + 1)}, Kss,p{(h*, ¢ + 1)}, Verifi-
cation key VK¢, SSB hash value of challenge input h*, Length of challenge input £~
Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length i, Signature
Tsps,IN

Output: Signature osps,our, Or L

1.(3) If (h7£1NP) 7'é (h*, L+ 1)7 COHlpute Tsps,E = I(KSPS,E{(h*7 L+ 1)}7 (hv glNP))v (SKSP57E7 VKsrs,E, VKSPS"REJ’E) =
SPS.Setup(1*; 7ss.).
Else, set VKsps,r = VK@
(b) If (h, KINP) 7& (h*, L+ 1)’ compute Tsps,F =]:(KSPS,F{(h*7 L+ 1)}, (h, KINP))7 (SKSPS,F,VKsps,F,VKsps-REJ,F) =
SPS.Setup(1*; 7sps,r).

(¢) Set m = (v,sT,w,0) and a="*-"
(d) If SPS.Verify(VKsps, £, m, osps,n) = 1, set o ='E".
(&) I [a =] A [(bar >) V (0< o <1+1) V (b #h*)], output L.
Else if [=-'] A [SPS.Verify(VKsps, 7, m, 0sps,v) = 1], set a = F".
(f) If « =*-’, output L.
2.(a) Compute rsps, a4 = F(Ksps, a, (R, bixe, 0)), (SKsps, A, VKsps, Ay VKsps-res, A) = SPS.Setup(l/\; Tsps,A)-
(b) Compute Tsps,B —]:(Ksps,B7 (h7 Livp, O))7 (SKSPS,B, VKsps, B, VKspsqu,B) = SPS.Setup(l’\; 7‘|)spg’B).
(¢) If [(h,bwe) = (R*,€")] N [a =*F’], output osesovr = SPS.Sign(SKses, B, m).

Else, output oges,our = SPS.Sign(SKsps,a,m).

Fig. A.30. Change-SPS.Prog®?)

constructing the v constrained key queried by A corresponding to TM M®) ¢ M, with
MW (z*) = 0, B generates (SK(V’LH) v yg (et) = SPS.Setup(1*; pltl) - f(K(V)

sps,G sps,G SPS-REJ,G sps,G sps,E»
(h*,t+1))).
Hybg ,_1.3,/,10: This experiment corresponds to hybgy ,_;3,1-
Analysis
Let Advsg’y_l’g’bl’ﬁ)()\) represents the advantage of the adversary A, i.e., the absolute difference

between 1/2 and A’s probability of correctly guessing the random bit selected by the challenger
B, in Hybg,_; 3,9, for 9 € [0,10]. From the description of the hybrid experiments it follows
that Adv(13 () = AV T30 () and AV D () = AdvT A0 () Hence,
we have

10
’AdVEL(‘J,Vfl,B,L)()\) . Adv&(l),ufl,S,Hrl) ()\)‘ < Z |AdVEL(l),V71,S,L ,ﬁfl)(A) . AdVEL(t],Vfl,B,L ,0) ()\)| (A8)
v=1

Claims below will show that the RHS of Eq. (A.8) is negligible and thus Lemma

follows.

Claim A.24. Assuming ZO is a secure indistinguishability obfuscator for P/poly and F satisfies

the correctness under puncturing property defined in Definition for any PPT adversary
A, for any security parameter \,]Advfg’y_l’?”L ’0)()\) - Advfg’”_l’S’L ’1)(/\)] < negl(A) for some

negligible function negl.

Proof. The only difference between Hyby ,,_; 5,/ o and Hyby ,,_; 5,1 is the following:

In Hybg 1 3,0, B includes the programs ZO(Fy) and ZO(F;) within the V™ constrained key
provided to A, while in hyby, _;3,, it includes the programs ZO(P;) and ZO(P;) instead,
where

— Py = Accumulate.Prog®*) [ngg i = 2%, 1K, PP, PPU, K0 1 K& 10 my o, 1, 07]

(Fig.[A.9),

86 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

P} = Change-SPSProg® L)[K(VKW kY KY) g €*] (Fig. A.8),

sps,A» “*sps, B’ “*sps,E? SPSF’

— Pi = Accumulate.Prog®* D [nggs piic = 2)\7HK7PP1(%Z})(‘7PPI(¥F){? SPS,E{(h*er D}, K(psp{(L+

+1 11 A1 L1 v el
)}, skld) skl vkl ED v m o, e, e (Flg A.25),

L 14 * * v+1
— P| = Change-SPS.Prog®+D K ") A,KS(P;B,KSP&E{(h L+ 1)), KspsF{(h L+ 1)), VKSPS—E),
v h*, *] (Fig. |A.26).

sps,H

Observe that by the correctness under puncturing property of the PPRF F, the programs
Py and P; are functionally identical for all inputs corresponding to (h,i) # (h*,¢) and (h,i) #
(h*,v+ 1). For inputs corresponding to (h*,¢),the program Pj; uses the hardwired signing keys
which are exactly same as those computed by the program Fy. The same is true for the hardwired
verification keys used by P; for inputs corresponding to (h*,¢ + 1). Thus, the programs Py and
P, are functionally equivalent. A similar argument shows that the same is correct for programs
Py and Pj. Therefore, by the security of ZO Claim follows. Ofcourse, we need to consider
a sequence of intermediate hybrid experiments to switch the programs one at a time. O

Claim A.25. Assuming F is a secure puncturable pseudorandom functz'on as per Deﬁmtzon@
for any PPT adversary A, for any security parameter A, |Adv Or—13. 1)()\) Adv (0 v=1342) ()| <
negl(\) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which \Adv(0 v=18+¢1) (\)—Adv (O v=13:2) (M|
is non-negligible. We construct a PPT adversary B that breaks the selective pseudorandomness
of the PPRF F using A as a sub-routine. The description of B is given below. We note that in the
following we work in a model of selective pseudorandomness for PPRF involving two independent
punctured keys and two challenge values for a challenge input, one under each key. However,
this model is clearly equivalent to the original single punctured key and single challenge value
model described in Definition through a hybrid argument.

e B initializes A on input 1* and receives a challenge input z* = ... Ty € Xeprp With
|z*| = ¢* from A.
e Upon receiving z*, B proceeds as follows:
1. B first generates HK & SSB.Gen(l)‘, Nsspopix = 27, 1% = 0) and computes h* = Hyx(x*).
2. Then, B selects a PPRF key K & F.Setup(1*).
3. After that, B selects a random bit b & {0,1}. If b = 0, then B computes y* = F (K, (h*, £*)).

On the other hand, if b = 1, then it chooses y* ﬁ YVeprr-
4. B returns the challenge CPRF value y* to A.

e For 7 € [g], in response to the n'" constrained key query of A corresponding to TM M () e M,
with M (z*) = 0, if 7 # v, then B proceeds exactly as in Hybg ,_1 3,1, while if n = v, then
B proceeds as follows:

1. B first selects PPRF keys Kfy), ces ,K)(\V),K(V) KW

sps,A> “sps, B & F.Setup(1 A)

2. Next, it creates (PP&VC)C, w((]y), STORES’)) < ACC.Setup(1*, nace-prx = 2*) and (PPI(T%, (V)) —
ITR.Setup(1*, nyry = 2%).

3. Bsends (h*,1+1) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back two punctured PPRF keys K;{(h*,. + 1)}, K5{(h*,c + 1)} and two

values rl,r2 € Ypprr, Where either rj = F(K7, (h*,¢ + 1)),r5 = F(K3,(h*,t+ 1)) o
T, TS & Veprr. B implicitly views the keys Ki and K3 as the keys K)E and Kq(ggF

SPS
respectively.
v+1 v,i+1 v+1 X v+1 v+1
4. B generates (SKgps,G)’VKéps,G),VKgPS_RElG) = SPS.Setup(1; r%) and (SKéps,H)vVKéps,H)a

v) = SPS Setup(12; 7%).

SPS-REJ,H
5. Next, it sets mg:g = (véy),q(()l’),w((;’),()). For j = 1,...,t+ 1, it iteratively computes the

following:

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 87

- AUXE.V) = ACC.Prep—Write(PPgC)C, STOREJ 1,] -1)

w](V) = ACC. Update(Pch)c, J()17 JZ; 1> 17AUX§V))

- STORES. ¥) — ACC.Write- Store(PPgC)c,STOREEV)pJ 1,25)

9] 1
— o) = ITR.Iterate(ppifh, v\, (a5, i)}, 0))

It sets mE:)LO = (UL(+)1, Q(())7 L(:)lv 0).

6. It gives A the constrained key

SKCPRF{M } =
HK PP&C)C, w(()), STORE(()), PPI(TI){, ’U(()),
I(’)(Imt—SPS.Prog[q(()),w((]),vo S KH{(R 0+ 1)}),
TO(Accumulate.Prog®*' D ngey s = 24, HK, PP, PP, K {(h* L+ 1)},
K3 {0+ Dok g skt VG e v mith o, b, 00),
ZO(Change-SPS.Prog®*V[K) | K)o Ki{(h*, 0+ 1)}, K3{(h*,c + 1)},
vk vl e),
TO(Constrained-Key. Prog e [M), T = 22 @) pp pp) K, KM, .. KW,
K as K g b, £4])

e At the end of interaction, A outputs a guess bit & € {0,1}. B outputs ' = b/’ as its guess bit
in its PPRF selective pseudorandomness experiment.

Note that if ri = F(K7, (h*, ¢+ 1)),r5 = F(K3,(h*,t + 1)), then B perfectly simulates

Hyby, 13, 1- On the other hand, if 7,73 & Yeprr, the B perfectly simulates Hybg ,_; 5,/ .
This completes the proof of Claim 0

Claim A.26. Assuming ZO is a secure indistinguishability obfuscator for P/poly, for any PPT

adversary A, for any security parameter A, |Adv Op—-1,3,/ 2)(/\) Adv (0 v-13¢ 3)(A)| < negl(A) for
some negligible function negl.

Proof. The only difference between Hyby ,,_; 5 /5 and Hyby ,_; 3/ 5 is the following:
In Hybg ,,_1 3, 2, B includes the program ZO(F) within the v constrained key provided to A,
while in hybg ,_; 5/ 3, it includes the program ZO(Py) instead, where

— Py = Accumulate.Prog®" D nggs p = 2*, HK, PPULL, PPI(;/F){,KS(Q,E (h*,1+1)}, K(Ps Fat(aas

v,+1 v,+1 v,e+1 v+1 v .
1)}’ SKéPSL,G’)7 SKgPsL,H)’ VKgPSL,G)7VK£P§LH)7 £+)1 0> h* E*} (Flg A.25

— P, = Accumulate.Prog®" 2 [ngep i = 2%, HK PP&'/C)C,PPI(}’%, Kps, E{(h* t+1)} K, Ps F{(s Lt
1)}, o@D (vut1) ot) y@HtD O e 4] (Fig. [A.27).

SK VK VK m
P (v) » PYSPS-ABO,H sps,G sps,H »"""1+1,00
st—ONE,mL_,rLO,G

)

Now, the only inputs on which the outputs of the two programs can possibly differ are those
corresponding to (h,i) = (h*,¢). However, observe that for inputs corresponding to (h*,¢), if
Mour = mLi)LO, then both programs clearly output the same signature, where Py computes the
signature explicitly and P; has the signature hardwired into it. On the other hand, by the cor-

rectness [Property |(ii)] of the splittable signature SPS defined in Deﬁnitionit follows that the
v)

programs Py and P, output same signatures even when moyr # m, (for inputs corresponding
o (h*,1). Hence, the two programs are functionally equivalent. Therefore, Claim m 6| follows
by the security of ZO. O

Claim A.27. Assuming SPS is a splittable signature scheme satisfying VKgps.ong (ndistin-
guishability’ as per Definition for any PPT adversary A, for any security parameter X,
|Adv£2’y_1’3’L ’3)()\) - Advfg’y_l’?”L ’4)()\)| < negl(\) for some negligible function negl.

88 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Proof. Suppose there exists a PPT adversary A for which \Adv Or—13.:3) (\)—Adv (0 v=1344) @]
is non-negligible. Below we construct a PPT adversary B that breaks the VKgps_ ong mdlstinguisha—

bility of SPS using A as a sub-routine.

e B initializes A on input 1* and receives a challenge input z* = Ty Tpe_q € Xoprr With

|z*| = £* from A.
e Upon receiving x*, B proceeds as follows:
1. B first generates HK l SSB.Gen(1*, ngsp-prx = 2%,4* = 0) and computes h* = Hyy (z*

2. Then, B selects a PPRF key K & F.Setup(1*).

3. After that, B selects a random bit b & {0,1}. If b = 0, B computes y* = F(K, (h*,{*)).

On the other hand, if b = 1, then it chooses y* & YVeprr-
4. B returns the challenge CPRF value y* to A.

e For 7 € [g], in response to the n'" constrained key query of A corresponding to TM M () e My
with M (2*) = 0, if # v, then B proceeds exactly as in Hybg 13, 3, while if n = v, then

B proceeds as follows:
1. B first selects PPRF keys K\"), ..., K§”>, KW g gw

sps,A’ “*sps,B? “*sps,E?

K(sz + F.Setup(1).

2. Next, it creates (PP%)C, w((]y), STORE(()V)) < ACC.Setup(1*, nace-prk = 2*) and (PPI(T%, (V)) —

ITR.Setup(1*, nyry = 2%).

3. Then, B creates the punctured PPRF keys Ks(gg iR 0+1)} & F Puncture(Ks(pg s (R 0+

1)) and KSPS A e+1)} & F Puncture(KS(Pg m (R0 +1)).

4. Next, it sets méyg = (v (V),q[()y),w(()),0). For j = 1,...,¢t+ 1, it iteratively computes the

following:
- AUX§-V) = ACC.Prep—Write(Pch)o STORE] 179 -1
wj(.”) = ACC. Update(PP(Ac)c,]()1,1‘; g —1 AUXEU))

- STOREE» v) — ACC.Write- Store(Pch)c,STOREg)1,3 i q)

- vj(y) ITR.Iterate(PPI(T%,]()1, (q(()), j(u)l,O))

It sets m£+)1 0= (fi)l,qé”), E:l?o)'

5. After that, B sends mf +)170 as the challenge message to its SPS VKgpg ong indistinguishability

challenger C and receives back a signature-verification key pair (o

()
SPS-ONE,m, '} 4

, VK), where

VK is either a normal verification key VKgpg or a one verification key VKgpg.ong for the

(v

message m, +)1 0

t+1,0”

6. B generates (SKS;’SLJ;), VKS;’SLE),VKS;’SLIQ i) & SPS.Setup(1*) and forms (& (v+1))
))) SPS-ONE,m,
(vye+1) (vye+1) (vye+1) $. (vye+1) (v)
VKSPS—ONE,H’ SKSPS—ABO,H’ VKSPS—ABO,H) A SPS'Spllt(SKSPS,H ’ mL+1,0)-

7. B gives A the constrained key

SK(‘PRF{M(V)} =

HK PP,(%)C,UJ(()V) , STORE(()),PPfT%,v((]),

IO(Inlt-SPS.Prog[qéy),wéy),v(()),Kg(ggE (h*, e+ 1)})),

ZO(Accumulate.Prog®*) [ngsp i = 2*, HK pp, PPI(}’%,K;”,;E (h*, 04+ 1)},

() * (v, L+1) (vet1) (v) * g%
Ky SPS, F{(h L+ 1)}, O ps-oNE mf:)l o SKSPS—ABO,H’ VK, VKgps, i s M 41,05 h*, £7]),

ZO(Change-SPS. Prog(?”L’l)[Ks(Pg A,Ké;';B,Ké;';E{(h*, L+ 1)1, Ké;’gF (h*, e+ 1)},

VK, VKéZSLE), h*, %)),
ZO(Constrained-Key.Prog b [M®), T = 22, +*®) ppl). pp) K, KW, ... ,Kf\”),

K(V) K(V)

sps,A’ “*sps,B?

h*, 0*])

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 89

e At the end of interaction, A outputs a guess bit ' € {0,1}. B outputs b = ¥/ as its guess bit
in its SPS VKgps.ong indistinguishability experiment.

Notice that if VK = VKgpg, then B perfectly simulates Hybg ,_; 3, 3. On the other hand, if
VK = VKsps.ong, then B perfectly simulates Hybg , _; 3, 4. This completes the proof of Claim

Claim A.28. Assuming SPS is a splittable signature scheme satisfying “VKgps.apo indistin-
guishability’ as per Definition for any PPT adversary A, for any security parameter X,

|Adv52’y_1’3’u’4)()\) - Advfg’y_l’3’bl’5)()\)| < negl(\) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which \Adv Or—1,34"4) (A) —Adv (0 v=1,3,4",5) (M|
is non-negligible. Below we construct a PPT adversary B that breaks the VKgps ao 1nd1stinguisha—
bility of SPS using A as a sub-routine.

e B initializes A on input 1* and receives a challenge input z* = oo Tpe_q € Xoprr With
|z*| = £* from A.
e Upon receiving z*, B proceeds as follows:

1.
2.
3.

4.

B first generates HK l SSB.Gen(1*, ngsp-pix = 2*,4* = 0) and computes h* = Hyy ().
Then, B selects a PPRF key K < F.Setup(1").
After that, B selects a random bit b & {0,1}. If b = 0, B computes y* = F(K, (h*,(*)).

On the other hand, if b = 1, then it chooses y* ﬁ YVeprr-
B returns the challenge CPRF value y* to A.

e For 7 € [§], in response to the n*® constrained key query of A corresponding to TM M () e My,
with M (z*) = 0, if # v, then B proceeds exactly as in Hybg 13, 4, while if n = v, then
B proceeds as follows:

1.
2.

B first selects PPRF keys Kfl'), .. ,K)(\”)’K(”) K» @))

sps,A» “*sps,B’ “*sps,E? “*sps,

P & F Setup(1*).

Next, it creates (PP&ZQC, w(()y), STORE(()V)) < ACC.Setup(1*, nace-prx = 2*) and (PPI(TP)I; (V))
ITR.Setup(1*, nyrr = 27).

Then, B creates the punctured PPRF keys K (h*,0+1)} & F Puncture(K(v) (h*, 1+

Sps,E sps, B>

1)) and K)o {(h*,¢ +1)} & F.Puncture(K) 1, (h*, 0 + 1)).

SPS, F»
Next, it sets m&g = (v (()),q(()),w(()),0). For j = 1,...,t+ 1, it iteratively computes the
following:

- AUX§”) = ACC.Prep—Write(PP(AC)C, STORE§)1,3 -1)

w](y) = ACC.Update(Pch)c; j()1a ;k 1J— 1’AUX§V))

- STORE(V) = ACC.Write- Store(Pch)C,STOREgli)l J—lxj_ 1)
o) = ITR Iterate(Pp{h, o), (¢, wi”, 0))

It sets m(+)1 o= L(+)1, (.I(())7wL(-li/-)17 0).

. After that, B sends mfi)l’o as the challenge message to its SPS VKgpg_apo indistinguishability

challenger C and receives back an all-but-one signing key-verification key pair (SKgps-apo, VK),
where VK is either a normal verification key VKgps or an all-but-one verification key

VKsps-aBo-
(v,e+1) (ve+1) (ve+1) $ A (ve+1)
B generates (SKgpi v s VKgps s VEgpsney) < SPS.Setup(1?) and forms (o sws-oxm() .G
(vye+1) (v,1+1) (vye+1) $. (vye+1) (v)
VKSPS—ONE,G’ SKSPS—ABO,G’ VKSPS—ABO,G) = SPS'Spl't(SKSPS,G ’ mL+1,0)'

90 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

7. B gives A the constrained key

SKCPRF{M(V) b=

v 14 14 v 14
HK, PPgC)C,wé), STORE&), PPfo){,vé),

ZO(Init-SPS.Proglgy”, w”, v, K A (h*, 0+ 1)}),
IO(AccumUIate-PrOg(&L/’z) [Nssp-pLx = 2/\7 HK, PP/(AVC)m PPI(;/%, Ks(:g,E{(h*7 v+ 1)},

(v) * (vye+1) (vye+1) (v) * pk
Kgps p (0", 0+ 1)}, s onmm®), , o SKs5-A00: VES o, 0 VKL T 0 h*, 0%]),

TO(Change-SPS.Prog®V[k) | k) o KW {(he 0+ 1)}, K& p{(h* 0+ 1)),
v,+1 £ %
VKéPS—ON)IE,G’VK7h ,K])7

TO(Constrained-Key. Prog b [M), T = 22) pp(pp) K, KM, .. K,
K(V) K(V) h*, E*])

sps,A» “*sps,B»

e At the end of interaction, A outputs a guess bit ' € {0,1}. B outputs b = ¥/ as its guess bit
in its SPS VKgps.apo indistinguishability experiment.

Notice that if VK = VKgpg, then B perfectly simulates Hyby,_; 3, 4. On the other hand, if
VK = VKgps-ano, then B perfectly simulates Hyby ,_; 3,7 5. This completes the proof of Claim[A.28|
a

Claim A.29. Assuming ZO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter \, |Adv52’y_1’3’L ’5)(/\) - Advfg’y_l’s’b ’6)()\)\ < negl(X) for

some negligible function negl.

Proof. The only difference between Hyby,_; 3,/ 5 and Hyb, ,_; 5 ¢ is the following:
In Hybg ,_; 3, 5, B includes the program ZO(F) within the v constrained key returned to A,
while in hybg ,_; 5 /¢, it includes the program ZO(Py) instead, where

- P = Accumulate.Prog(?”L/’Q) [Nssp-prx = 22, HK, Ppg\%)c; PPI(”IFIF){? Ks(rlfz,E{(h*v t+1)}, ng PR+

(V7L+1) (V7L+1) (V7L+1) (V7"+1) (V) * * 3
D}, 9 s onp.m® o’ SKgps-apo,H7 YEsps-ong,G? VEsps-apo, 11 M+1,00 h*,] (Fig. |A.27),
SPS My 400

- Pl = Accumulate.Prog(g’L,’g) [nSSB—BLK = 2)\a HK, PPEXIZZ)Ca PPI(’I;F)lv Ks(lp;;E{(h*, L+ 1)}’ Ké;s F{(h*a L+

(V7L+1) (V7L+1) (V1L+1) (V’L+1) (l/) * *k s
1)}’ USPS_ONE m® &’ SKSPS—ABO,H’ VKSPS—ONE,G’ VKSPS—ABO,H’ mL—H,O’ h ’E] (Flg' A.28).
"M 41,00

We will argue that the programs Py and P; are functionally equivalent, so that, by the
security of ZO Claim [A:29 holds. First of all observe that the constants hardwired in both the
programs are identically generated. Clearly, the inputs on which the outputs of the programs Py
and P can possibly differ are those corresponding to (h,i) = (h*,t+1). For inputs corresponding
to (h*,t+ 1), let us consider the following two cases:

(1) (mn = mfi)1,0)5 In this case, using the correctness [Propertiesm (iii)|and |(vi)| of the splitable
signature SPS described in Definition [2.6] it follows that for both programs either oz =*-” or
a ='F’. Now, if a =‘-’, then both programs output L. On the other hand, if « =‘F’, then Py
outputs the signature osps our = SPS.Sign(SKpg o, Mour) = SPS.Sign(SK{yg g, Mour), which is
the same signature that P; is programmed to output in this case. Thus, both programs have
identical outputs in this case.

(IT) (m # mfi)1,0)5 In this case, we use the correctness [Propert of SPS described in Defini-
tion[2.6]to conclude that a #E” and correctness [Properties|(i)Jand [(iv)] of SPS confirms that
either a =*-" or a =‘F"’. Now, if a="-", then both programs output L as earlier. Otherwise,
if @« =‘F’, then Py outputs osps our = SPS.Sign(SKéPS,a,mOUT) = SPS.Sign(SKéFS’F,mOUT),
which P; is programmed to output in this case. Therefore, both programs are functionally
equivalent in this case as well.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 91

O

Claim A.30. Assuming SPS is a splitable signature scheme satisfying ‘splitting indistin-
guishability’ as per Definition for any PPT adversary A, for any security parameter X,
\Adv&?’”fl’g’b ’6)()\) - Advfg’yfl’g’b ’7)()\)| < negl(A) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which \Advff\)"/_l’g’u’(i) (A) —Adv (0 v=1347) (M|
is non-negligible. Below we construct a PPT adversary B that breaks the splitting 1nd1stinguisha—
bility of SPS using A as a sub-routine.

e 1 initializes A on input 1* and receives a challenge input z* = ... Ty € Xeprp With
|z*| = ¢* from A.
e Upon receiving z*, B proceeds as follows:

1.
2.
3.

4.

B first generates HK i SSB.Gen(1*, ngsp-prx = 2*,4* = 0) and computes h* = Hy ().
Then, B selects a PPRF key K & F.Setup(1*).
After that, B selects a random bit b & {0,1}. If b = 0, B computes y* = F(K, (h*,(*)).

On the other hand, if b = 1, then it chooses y* & YVorrr-
B returns the challenge CPRF value y* to A.

e For 7 € [g], in response to the n'" constrained key query of A corresponding to TM M () e M,
with M (z*) = 0, if n # v, then B proceeds exactly as in Hybg 13, 6, while if n = v, then
B proceeds as follows:

1.
2.

B first selects PPRF keys K\, . .. ,ng,Kggg K8 k) LK) & FSetup(1Y).
Next, it creates (PP&’{;)C, w(()”), STORE(()V)) < ACC.Setup(1*, nace-prx = 2*) and (PPI(T%, (")) &
ITR.Setup(1*, nyre = 2*).

Then, B generates the punctured PPRF keys K. PS E{(,o+1)} &]-'.Puncture(Ks(Pg = (A7
t+ 1)) and K (h*, e+ 1)} & F Puncture(Kq(Pq)F, (h* e+ 1)).

SPS,F'
Next, it sets m(()ljg = (v((]),q(()l’) (V),O). For j = 1,...,t+ 1, it iteratively computes the
following:
- AUX§~ v) — ACC. Prep- erte(Pch)() STORE] 1,3 -1)
w"”) = ACC.Update(PPico, w'”), 2%, j — 1, aux\")
- STOREg») — ACC.Write- Store(Pch)C,STOREg)1,3 Lai)
~ W) = ITR.Iterate(PPI(TI){,]()1, (q(())) 0))

i Yi-v
It sets mfi)m = (UL(+)1, Q(())7 wfi)p 0).

After that, B sends mfi)l o as the challenge message to its SPS splitting indistinguishability

challenger C and receives back a tuple (o* o) > VK&psong> SKips-apo» VKips-apo), Where
SPS-ONE,m 41,0
— either (o* VK ;s SK§ VK =
(SPS—ONE,mEi)l,()’ SPS-ONE? SPS-ABO? SPS—ABO)

(Usps ONE m(”) , VKsps-ongs SKsps-aBo; VKsps-ABo)

* ES
— or o , VK pg. SK* " VK _ =
(SPS-ONE mf+)1 . SPS-ONE? ®XsPs-ABO> SPS ABO)
/ /
(v >1 » VKsps-onE SKgps agos VKSPS—ABO)
+

3 . (v)
SPS‘ONE’m,(,:-)Lo’ VKsps-ongs SKsps-ap0, VKsps-apo) <— SPS.Split(SKsps, mL+1,o>a
(v)

/ / / / 3 . ’
o VK SK VK < SPS.Split(SK.pe, m
(SPS-ONE, m(u) ’ SPS-ONE’ PT*SPS-ABO? SPS—ABO) P (SPS» L+1,o);

(o
SPS-ONE,m

such that (o

SKgps and SKipg belng tWO independently generated signing keys for SPS.

92 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

6. B gives A the constrained key

SKCPRF{M(V) } —

174 14 14 14
HK PPgC)C,w(()), STORES),PPI(T;){,’U(()),

oan.t_sps.Prog[qg),wgv),vg LEE) Lo 1)),

3 v 3) [nSSB—BLK = 2/\5 HK7 PP‘(AVC)Ca PPI(;“II)M Ks(gg,E‘{(h*a L+ 1)}7

I(’)(Accumulate Prog(®
* * * * (V) * %
sps F{(h t+ 1)} SPS ONE m<+)1 o » SKsps-apos VEgps- ONE,’ VKsps-aBo> mH—l,Oa h 7£ D,

ZO(Change-SPS.Prog® D [K () KE) KU) oA 0+ 1)} KSL p{(h* 0+ 1)),
VK;PS-ONE’ VK:PS-ABO’ h g*])
I(’)(Constrained Key. Prog((jlp)RF (M), T =22 @) ppl) pp) K, KW ,K/(\”),

Sps,A? SPS B>

e At the end of interaction, A outputs a guess bit & € {0,1}. B outputs ' = b’ as its guess bit
in its SPS splitting indistinguishability experiment.
Notice that if (U*Ps ONE mii)l s VKps-onms SKsps-asor VKips-apo) =

VK{pg_ano), then B perfectly simulates Hybg ,,_; 3,/ 6. On the other hand, if (o* o) > VKSpg-ongs
SPS-ONE mL+1,O
*

SK;PS ABO? VKSPS ABO) - (OSPS ONE, m()1 o VKSPS ONE» SKSPS ABO» VKSPS—ABO)’ then B perfectly Simulates
Hybg 13,/ 7- This completes the proof of Claim [A.30] 0

/
g VKgps- SK
(SPS-ONE m(:)1 Oa SPS-ONE)» SPS-ABO?

Claim A.31. Assuming ZO is a secure indistinguishability obfuscator for P/poly, for any PPT

adversary A, for any security parameter A, |Adv(0 w18 7)(>\) Adv (0 v=134 8)(A)| < negl(A) for
some negligible function negl.

Proof. The only difference between Hyby ,,_; 5,7 and Hyby ,,_; 3 /¢ is the following:

In Hybg, 1 3,7, B includes the programs ZO(Py) and ZO(Fy) within the V™ constrained key
returned to A, while in hybg, 13,5, it includes the programs ZO(P;) and ZO(P;) instead,
where

!
— Py = Accumulate.Prog(?”L 3) [Pssp-pLx = 22 HK PP,(;VC)Q, PPI(}’F){,KSPS sl(h*0+1)} K gg L (R* 0+
(v,e+1) (v,e+1) (ve+1) (ve+1) (v)
D}, T s oxem® & SKeps-an0,G» VEsps-ong,Gr VEsps-ano,qr 41,00 h*, 7] (Fig. |A.28),
£1,0°

Ly v v * v (ve=1
= Change-SPS.Prog D[] 4. KL K p (0, e D)}, KELp{ (0 0+ 1)} VGGG,

vk he 4] (Fig. |A.26),

SPS-ABO,G?
— Py = Accumulate.Prog®* M [ngsp i = 2%, HK PP&C)C,PPI%Z,Kgs;E{(A+ K PsF{ ot
D}, Sngngl)vVKégg,gl)»mfi)l,mh*’g*] (Fig. [A.29),
~ P| = Change-SPS.Prog®* 2 [K() | K o KW {04+ 1)) KW oAk o+ 1)), v g,

h*, 0*] (Fig. [A.30).

We will argue that the programs Py and Py, as well as , the programs P and P] are function-
ally equivalent, so that, by the security of ZO Claim [A-3]] follows. First consider the programs
Py and Pj. Clearly the only inputs on which the outputs of the two programs can possibly differ
are those corresponding to (h,i) = (h*,¢) and (h,4) = (h*,t+1). Now, for inputs corresponding

to (h*,t), the outputs of the two programs are identical due to the correctness [Property |(ii)] of

the splitable signature SPS described in Definition [2 and the fact that the hardwired 51gnature
(vye+1) (v+1)
o

(v SPS-ABO,
SPS-ONE,m, 1} o5

and the all-but-one signing key sk ¢ used by the program Py for inputs

corresponding to (h*,¢) are obtained by running SPS.Sth(SKgZ’SLEl), mEi)LO), while the hardwired

(vye+1)

signing key used by P in this case is SKgps, ¢z

. Similarly, for inputs corresponding to (h*,t+ 1),

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 93

the outputs of the two programs are also identical because of the correctness [Properties
[(iii)} [(iv)| and [(vi)] of SPS and the fact that the hardwired one and all-but-one verification
keys used by the program P, for inputs corresponding to (h*,¢+ 1) are generated by running

SPS.SpIit(SKéZ’SLEI),mffm), while the hardwired verification key used by the program P in this

. 1 - . . . 1
case is VKEZ;E), which is the matching verification key of SKS;;J&), Hence, the two programs

are functionally equivalent. The same type of argument holds for the programs Pj and P|. O

Claim A.32. Assuming F is a secure puncturable pseudorandom function as per Definition
for any PPT adversary A, for any security parameter A, |Adv§€’y71’3’L 8) ()\)—Advfg’yfl’g’b 9) M) <
negl(\) for some negligible function negl.

Proof. The proof of Claim [A:32] is analogous to that of Claim [A.25] with some appropriate
modifications that are readily identifiable. O

Claim A.33. Assuming ZO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition for any PPT adversary
A, for any security parameter \,]Advi?’y_l’?”b ’9)()\) — Advfft)’y_l’?”b ’10)()\)\ < negl(A) for some

negligible function negl.

Proof. The proof of Claim is similar to that of Claim with some appropriate modifi-
cations which are easy to find out. O
O

Lemma A.10. Assuming ZO is a a secure indistinguishability obfuscator for P/poly, F is a
secure puncturable pseudorandom function as per Definition and SPS is a secure splitable
signature scheme satisfying VKgps.ong indistinguishability’, VKgps.apo indistinguishability’, as
well as ‘splitting indistinguishability’ as defined in Definition[2.6, for any PPT adversary A, for
any security parameter X,]Advfg’y_l’?”(g*_l),)()\) - Advff\)’y_l’4)()\)\ < negl(X) for some negligible
function negl.

Proof. The proof of Lemma proceeds along the same line as that of Lemma with
certain appropriate changes which can be readily determined. O

Lemma A.11. Assuming ZO is a a secure indistinguishability obfuscator for P/poly, F is a
secure puncturable pseudorandom function as per Definition[2.9, ACC is a secure positional ac-
cumulator possessing the ‘indistinguishability of read setup’ as well as ‘read enforcing’ properties
defined in Definition[2.]], and SPS is a secure splitable signature scheme satisfying VKsps-ong -
distinguishability’, ‘VKgps apo tndistinguishability’, as well as ‘splitting indistinguishability’ as de-
fined in Deﬁm’tz’on for any PPT adversary A, for any security parameter X,]Advfg’u_l’4) (N)—
Advfg’yfl’4’0/)()\)| < negl(A) for some negligible function negl.

Proof. In order to establish Lemma we consider the following sequence of intermediate
hybrid experiments between Hyb ,_; 4 and Hybg ,,_; 4 o

Sequence of Intermediate Hybrids between Hyb,,,_; 4 and Hyby ,_; 4.0/

Hybg ,,_1,4.1: This experiment coincides with Hybg ,,_4 4.

Hybg ,_1 4.1 This experiment is identical to Hyb,, 4 41 except that in response to the vth
constrained key query of A corresponding to TM M®) € M, with M®) (x*) = 0, B executes the
following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hybg ,_1 4.

94

. After that it computes), = F(KEY . (h*,0%,0)), r0 = F(k)

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

. Then, it creates the punctured PPRF keys é;&A{(h*,E* 0)} S F Puncture(K, S(PQA, (h*,£*,0))

and K&) p{(n*,¢,0)} & F.Puncture(K) 5, (h*,£7,0)).

Sps,B»

(h*,0*,0)), and

sps,C SPs,A? st,D sps,B?
(1,0) (1,0) (1,0 _ A .(1,0) (v,0) (1,0) (1,0) _
forms (SKSPS C’VKSPS C’VKSPS—REJ,C) - SPS.Setup(l) TSPS,C)’ (SKSPS,D’VKSPS,D7VKSPS REJ D) —
SPS.Setup(1Y; riu0)).

. Next, it sets m(()g = (v, v), q(()y)) ,0). For j = 1,... 0% it iteratively computes the following:

- AUX§ ¥) — ACC.Prep- Wnte(PPgC)C, storet,, j — 1)

J—D
w](.”) = ACC. Update(PP(A()(, J(”)l, xsg,5—1 AUX§V))
- STORE§ ¥) — ACC.Write- Store(PP,(\C)C,STOREg)1, i 1)

- v](l/) = ITR.Iterate(PPI(TE){,v](_)l, (q(()),wj(y_)l,O))

. It gives A the constramed key

SKCPRF{M } =

HK,PP&C)C,wé V) STORE(()),PPI(TI){,U(()V),

IO(Init—SPS.Prog[qé), ((]),vé) kY D,

Sps,E

TO(Accumulate.Prog[nssppx = 27, HK, PP&'/C)C, PPI(}’IZ{,KS(PQ s
K (:0)

TO(Change-SPS.Prog ™V [K{) ({(h*,0%,0)}, KWL p{(h*, 6,00}, KD 1 sk,
v,0 v E /LS
SKgPs,)[)7m§*,)07h L])’

IO(Constrained—Key.Progélp’g’Fl)[M(l’),T:2)‘,t*(”) PP%)C,PPI(TV;){,K KS/),...,K&V),
v *)k v *)k v,0 *)%
K a{ (0, 0,0)} KL p {00 6,00}, VRS0 VG Op B, 1))

sps,C? sps,D>

where the programs Change-SPS.Prog® 1) and Constrained- Key. Prog(@pRF) respectively are the

modifications of the programs Change—SPS.Prog(4) and Constralned—Key.Progép)RF (Figs.

and [A.2)) and are depicted in Figs. and

Constants: Punctured PPRF keys Keps a{(h",£",0)}, Ksws,5{(h",£*,0)}, PPRF key Kes r, Signing keys

SKc, SKp, Message my= o, SSB hash value of challenge input h*, Length of challenge input £*

Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length i, Signature
Osps,IN

Output: Signature osps our, or L

a) Compute reps 5 = F(Kses, i, (b, lixe), (SKses, 2, VKses, 2, VKspsren, 17) = SPS.Setup(1%; reps).
b) Set m = (v, ST, w,0).
) If SPS.Verify(VKses, £, M, Osps,v) = 0, output L.
) If (h,bue) # (R",£7), compute Tss.a = F(Kses,a{(h",£",0)}, (h, bixe, 0)), (SKses, A, VKsps, A, VEsps-rus,a) =
SPS.Setup(l)‘; Tsps, A)-
Else, set SKgps, 4 = SKc.
(b) If (h, e“\[p) 75 (h*, f*), compute Tsps,B = f(KSPS,B{(h*7 K*, O)}, (h7 Zmp, 0))7 (SKSPS,B7 VKsps, B VKSPS—REJ,B) =
SPS.Setup(l)‘; Tsps,B).
Else, set SKgps,B = SKp.
(€) If [(h,bie) = (R, €7)] A [m # mex o], output osps,our = SPS.Sign(SKsps, 5, m).
Else, output oges,ovr = SPS.Sign(SKsps, 4, m).

Fig. A.31. Change-SPS.Prog(*!

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 95

Constants: TM M = (Q, Xie, Xrars, 0, ¢0, ¢ac, gres), LTime bound T = 2/\7 Running time on challenge input
t*, Public parameters for positional accumulator PPscc, Public parameters for iterator PP,
PPRF keys K, K1, ..., Kx, Punctured PPRF keys Kgps, a{(h",£*,0)}, Kses,5{(h*,£",0)}, Verifica-
tion keys VK¢, VKp, SSB hash value of challenge input hA*, Length of challenge input £*

Inputs: Time t, String SEED\, Header position POS, Symbol SYMy, TM state ST\, Accumulator value
wiy, Accumulator proof s, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Linp, Signature osps iy

Output: CPRF evaluation F(K, (h,fne)), or Header Position (POSour, Symbol SYMoyr, TM state STour,
Accumulator value wour, Iterator value vour, Signature ospsour, String SEEDour), or L

1. Identify an integer T such that 27 <t < 2711,
If [PRG(SEEDw) # PRG(F (K-, (h,lie)))] A [t > 1], output L.
2. If ACC.Verify-Read(PP,cc, Winy, SYMiy, POSi, Tacc) = 0, output L.
3.(a) If (h,lww,t) # (h",£°,1), compute res,a = F(Keps, a{(h",£",0)}, (h, b, t — 1)), (SKsps, A, VKsps, A,
VKSPS-RHJ,A) = SPS-SetUP(1A§ TSPS,A)-
Else, set VKgps,a = VKC.
(b) If (h,lww,t) # (h*,£°,1), compute res,B = F(Ksws,5{(h*,£*,0)}, (h, lixe, t — 1)), (SKsps, B, VKsrs, B,
VKsps.nes, B) = SPS.Setup(1?; reps.B).
Else, set VKsps,B = VKD.

(c) Set mu = (v, STiv, Wi, POS) and a =*-.
(d) If SPS-Verify(VKsps,A7m1N7 Usps,m) =1, set « =‘A’
(e) la="1 A [t>t") V (hR#h") V (b # £%)], output L.
Else if [=-] A [SPS.Verify(VKsps, B, Mux, Ospsiv) = 1], set a =B’
(f) If @ =", output L.
4.(a) Compute (STour, SYMour, 3) = 0(STw, SYMw) and POSouyr = POSiy + 3.
(b) If STour = qrus, output L.

Else if [STour = qac] A [='B’], output L.
Else if STour = gac, output F(K, (h, lwe)).

5.(a) Compute wour = ACC.Update(PPaco, Wix, SYMour, POSiv, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Vi, (STin, Win, POSx))-

6(3‘) ComPUte Téps,A =]:(KSPS,A{(h*aZ*’ O)}v (h, eINPv t))a (SK;PS,A7 VK;PS,A? VK;PS»REJ,A) = SPS.Setup(lA; rgps,A)'
(b) Compute Tgps,B = I(KSP&B{(}L*’ E*’ 0)}’ (hvlePv t))v (SK;PS,By VKéPS,B? VK;PS—REJ,B) = SPS.Setup(lA; r;PS,B)’
(C) Set movr = (UOL'Ty STour, Wour, POSOUT)~

Compute Osps,our — SPS-Sign(SK;Ps,av mOUT)'
’
7. Ift+1=2", set SEEDour = F(K,/, (h, lur)).
Else, set SEEDoyr = €.
8. OutPUt (POSOUT, SYMourt, STour, Woutr, Vour, Tsps,0UT, SEEDOUT)~

Fig. A.32. Constrained—Key.Proggig’Fl)

Hybg ,,_1 4-rir: This experiment is analogous to Hyb ,_; 411 with the only exception that while

constructing the v constrained key queried by A, B selects rég’so)c, rég’soi) ﬁ YVoprr, i-€., in other
70 70 70 ,O ,0 70 $
words, B generates (SKS;S’)C, VK;’,S,)C, VKS;S_)RELC), (SKél;&)D, VKgl'jsjj, VKéZS_L\EJvD) < SPS.Setup(1%).

Hybg ,_1 4.rv: This experiment is similar to Hyb, ,_; 411 except that in response to the b
constrained key query of A corresponding to TM M®) e M, with M ®) (x*) = 0, B executes the
following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hybg ,_1 4 1.

2. Then, it creates the punctured PPRF keys Kéf,g’A{(h*, *,0)} & f.Puncture(Kéll:g’A, (h*,0*,0))
and KS(IZ;B{(h*,E*,O)} & F.Puncture(K(y) (h*,0*,0)).

sps,B?
(1,0) (1,0) (1,0 (1,0 (1,0 (»,0) $ A
sps,C" sps,C SPS-REJ,C' sps,D> VKSPS,D’ VKSPS—RELD) = SPS.Setup(l)

4. After that, it computes mg:)o = (véf), q[()y),wgf), 0) just as in Hybg ,_1 4 q11-

3. Next, it forms (SK VK VK), (SK

96 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

(v,0) (v,0)

. (1,0) (v,0)
5. Next, it generates (o sre-oxmm) O VKSPS_ONEC,SKSPS_ABO’C,VKSPS_ABQC) & sps, Spllt(SKgPs)C,
£*,0°
(v) (v,0) (v,0) (v,0) (v,0) (v,0) ()
me*,o) and (USPS_ONE m® p’ VKSPS ONE,D> SKSPS—ABO,D’ VKSPS—ABO,D) <_ SPS. Spl't(SKsps D> mé*,O)‘
ek 00
6. It gives A the constrained key
SKopre{ M)} =
HK PPgC)C,w(()V) STORES) PPI(TI){,'U(()),

O(Imt—SPS.Prog[q(() L) ol KW),

TO(Accumulate.Prog[nggspx = 27, HK, pp), PP Ké’;gE])
TO(Change-SPS.Prog ™2 [KY) {(h*, £+,0)}, K p{(h*, 0,00}, K& ¥

SPS-ONE mE’QO,C)

SK(V’O) m(’/) h* g*])

SPS-ABO, D "'Ye* 00
O(Constramed Key.Prog b0 [M®), T = 22, t*(v) pp), PP K, Kf”),...,K/(\”),
* Pk v *)% v,0 *)k
SPs,A{(h 7,0) 1 K, pr (h*,£%,0)}, vl w0 he e).

SPS c» sps,D?

(4,2)

where the program Change-SPS.Prog is an alteration of the program Change—SPS.Prog(4’1)

(Fig.|A.31) and is shown in Fig. [A.33

Constants: Punctured PPRF keys Kgps a{(h",£",0)}, Keos,5{(h",€*,0)}, PPRF key K g, Signature oc,
Signing key Skp, Message my= 0, SSB hash value of challenge input h*, Length of challenge
input £~

Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length i, Signature
Tsps,IN

Output: Signature osps our, Or L

1. () Compute Tsps,E = F(KSPS,E7 (h, KINP), (SKSPS,E7 VKSPS,E,VKSPS-REJ,E) = SPS-SetUP(lk; TSPS,E)-
(b) Set m = (v,sT,w,0).
(c) If SPS.Verify(VKsps, 5, M, Osps,v) = 0, output L.
2. (a) It (h7 KINP) 7é (h*7£*), compute 7gps, 4 = -F(KSPS,A{(h*,E*ao)}y (hqéINPyO))y (SKSPS,A7VKSPS,A7VKSPS-REJ,A) =

SPS.Setup(l/\; Tsps,A)-
(b) If (h7£mp) 75 (h*,(*), CompU-te Tsps,B = f(sts,B{(h*7€*7 0)}7 (h, eINP7 O))7 (SKSPS,ByVKSPS,By\/KSPS—IlEJ,B) =
SPS.Setup(l)‘; Tsps,B)
Else, set SKgps, B = SKp.
(c) If [(hy bw) = (R, €°)] A [m % mu= o], output oeps our = SPS.Sign(SKges, 5, m).
Else if [(h, bone = (B*,€%)] A [m = myg« o], output oeesour = oC.
Else, output oses,our = SPS.Sign(SKsps,a,m).

Fig. A.33. Change-SPS.Prog*?

Hybg ,,_1 4.v: In this experiment, in response to the v constrained key query of A correspond-
ing to TM M) € My with M®)(z*) = 0, B generates all the components as in hybo.,—141v>

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 97

however, it hands A the constrained key

SKCPRF{M(V) } =

HK PP&C)C,wé),STORE((JV),PPI(TV;){, (()),

TO(Init-SPS Proglg” Vg v K D),

TO(Accumulate.Prog[ngsp.prx = 27, HK, PP&C)C, PPI(;){, KS(FQ 5,

v * % v % Pk v,0
TO(Change-SPS.Prog) [KG) 4 {(h*. £, 0)}, KGL p{(h*, 0, 00}, K{L o™) o]
B0) e g o

SKSP; ABOD’ O?h ¢])
I(’)(Constralned Key Proggngl)[M(”),T 22, t*(v) PP%)C,PPI(}%,K, K§V),...,K/(\V),

*)k v * Pk v,0 *)k
SPS,A{(h 76))}7 SPg,B{(h 76 } VKbe)ONEC’VKgPS,)D7h 7€])

The rest of the experiment is analogous to Hybg ,_1 41v-

Hybg ,_1,4-v1: In this experiment, in response to the v constrained key query of A corre-
sponding to TM M®) ¢ M, with M) (z*) = 0, B creates all the components as in hyb, ,_; 4 v,
however, it hands A the constrained key

SKCPRF{M } =

HK Pch)c,w(()),STOREé),PPI(}'}){, (()),

O(Imt—SPS.Prog[qé),w(()),v(())7Ks(gg,E])7
TO(Accumulate.Prog[nssp.pix = 27, HK, PP&%)C, PPI(%){, Ks(ggE])
TO(Change-SPS.Prog ™I (K ({(h*,£%,0)}, K\ p{(h*,%,0)}, K 1, o)

SPS—ONE,mEZ?O,C’)
(»,0) (V) 1% px
SKSPs ABO D?mé* 07h ¢])

O(Constramed Key. Progélngl)[M(V) T =2, t*() e, PP K, Kf”),...,K/(\”),
*x)% v * % v,0 * %
K (05,0, 0)1, K8 {0, 04,0)1, vk o vk o o,)

The rest of the experiment is similar to Hybg,,_; 4.v-

Hybg ,,_1 4-vir: In this experiment, to answer the v constrained key query of A corresponding
to TM M®) € M, with M®)(z*) = 0, B generates all the components just as in Hybo ,—1 4v1>
but it provides A with the constrained key

SK(‘PRF{M } =

HK PP(AC)C,U)(()),STORESJ), PPI(’IIQ{) (()),
I(’)(Imt—SPS.Prog[q((]),w(()),vé),KSSIIQE])?

TO(Accumulate.Prog[ngspprx = 27, HK, PP,(\VC)C, PPI(TVI){, K&SIIQE]),

TO(Change-SPS.Prog) [K{) {(h*, 0,00}, K)o {(n*, 05,0}, K& 1o é;ofmnww o
(.0) W) i g o
SKsp’s ABO, D> Mg O’h ¢])
O(Constralned Key. Prog((jlpgf) [MW) T = 2* t+() PP%)C,PPI(}%,K, Kfy), . ,Kgy),

* * v * * v,0 v * *
KL (0 05,00}, K& o1 (h*, 0,0}, VKSPSéNEc,VKéps-LBO,D,mé*?o,h,fb

where program Constrained-Key. Prog(chFz) is a modification of program Constrained-Key. ProggagFl)

F1g. and is shown in F1g. - The rest of the experiment is analogous to Hybg ,_1 4 v1-

Hybg 1 4-vir: In This experiment is the same as Hybg ,,_; 4 vy with the only exception that

98 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = (Q, Xie, Xrars, 0, ¢0, ¢ac, gres), LTime bound T = 2/\7 Running time on challenge input
t*, Public parameters for positional accumulator PP,cc, Public parameters for iterator PPrg,
PPRF keys K, K1, ..., K, Punctured PPRF keys Kgps, a{(h*,£€*,0)}, Kses,5{(h*,£",0)}, Verifica-
tion keys VK¢, VKp, Message myg= o, SSB hash value of challenge input h*, Length of challenge
input £*
Inputs: Time ¢, String SEED,, Header position POSy, Symbol Sym,y, TM state STy, Accumulator value
win, Accumulator proof myee, Auxiliary value AUX, Iterator value v, SSB hash value h, Length
Uivp, Signature osps v

Output: CPRF evaluation F (K, (h,fnr)), or Header Position (POSeur, Symbol SYMour, TM state STour,
Accumulator value wour, Iterator value vour, Signature osps our, String SEEDour), or L

1. Identify an integer 7 such that 27 <t < 2711,
If [PRG(SEEDw) # PRG(F (K-, (h,lie)))] A [t > 1], output L.
2. If ACC.Verify-Read(PP,cc, Win, SYMiy, POSin, Tacc) = 0, output L.
3.(a) If (h,lwr,t) # (h",£€",1), compute 7eps,a = F(Ksps,a{(h",£",0)}, (h,lwr,t — 1)), (SKsps, A, VKsps, 4,
VKspsnnr,4) = SPS.Setup(1%; 7sps a).
Else, set VKsps, 4 = VKc.
(b) If (h,lwe,t) # (R*,€%,1), compute rosp = F(Kses,{(h",£*,0)}, (h, b, t — 1)), (SKsps,B, VKsps, B,
VKsps-res,B) = SPS.Setup(lA; Tsps,B).
Else, set VKsps,B = VKp.

(C) Set miy = (UIN7 ST, Win, POSIN) and o =~
(d) If SPS.Verify(VKsps, 4, M, Osps.v) = 1, set oo = A’
(e) fla=~"1 AN [t>t) Vv (h#h") V (b # £7)], output L.
Else if [a =-'] A [SPS.Verify(VKsps, B, Mux, Ospsan) = 1], set o =B’

—
-

) If « ='-’, output L.

4.(a) Compute (STour, SYMour, 3) = 0(STw, SYMiy) and POSour = POSiy + 3.
(b) If STour = grus, output L.

Else if [STour = gac] A [=‘B’], output L.

Else if STour = ¢ac, output F(K, (h, le)).

.(a ompute woyr = .Update(PPacc, Win, SYMout, POSiv, AUX). 1T wour = L, outpu .

5 C t ACC.Upd If 1 tput L
(b) Compute vour = ITR.Iterate(PPirr, Ui, (STin, Win, POSI))-

6.(&) Compute rsl‘r*s,A =]:(KSPSVA{(h*?g*’ 0)}7 (h7 ZIl\!l’7t))a (SK;.PS,A>VK;PS,A»VK;PS-REJ,A) = SPS.Setup(lA;r;mA).
(b) Compute TS,‘PS,B =]:(KSPSyB{(h*: €*7 0)}7 (hvelNPv t))7 (SK:;PS,Bv VKéPS,B? VK;PS-REJ,B) = SPS'SetUp(lA; T;‘.PS,B)‘
(C) Set mour = (UOL'T7 STour, Wour, POSOUT)-

If [(h, bie, t) = (R*,£*,1)] A [mux = mye= o], compute geps.our = SPS.Sign(SKéps. 4, Mour)-
Else if [(h, bww,t) = (B, 0*,1)] A [mu # me= o], compute gsps our = SPS.Sign(SKeps. 5, Mour).
Else, compute ogps.ovr = SPS.Sign(SKipg. o, Mour)-
7. Ift+1=2", set SEEDour = F (K, (h, bsp)).
Else, set SEEDoyr = €.
8. Output (POSOUT, SYMourt, STout, Wout, Voutrs Tsps,0uTs SEEDOUT)~

Fig. A.34. Constrained-Key. Progélgg’f)

while creating the v*™® constrained key queried by A, B generates (PP&VC)C, w((]y), STORE(()V)

ACC.Setup-Enforce-Read(1*, nycopix = 2%, ((2,0), ..., (zh_;, 05 — 1)),i* = 0).

)&

Hybg ,_1 4.1x: In this experiment, to answer the v constrained key query of A corresponding
to TM M) € M, with M®)(2*) = 0, B generates all the components just as in hybg ,—1 4-vrirs

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 99

however, it gives A the constrained key

SKCPRF{M(V) } =

HK Pch)p,wé),STORE((JV),PPI(TVI){, (()),

TO(Init-SPS Proglg” Ll ol KEL),
TO(Accumulate.Prog[nggs sk = 27, HK, sz(xc)m PPI(TVF)h KS(IQ £l
TO(Change-SPS Prog“ D[\ \{(h*,¢*,0)}, KL p{(h*, 07,00}, KL o™

SPS-ONE mz*>ovc’)
(v,0) (V) % px
SKSPb ABOD’ O?h ¢])
(1,0,3)

I(’)(Constralned Key Progeprri [M(”),T = 2N t*(v) PP%)C,PPI(}/E){,K, Kf/),...,K/\ ,
* pk v *)% v,0 *)%
KL (005,00}, K& pL(he, 07, 0)}, VKU, oo VRED, Lo oo, b, 67])

Sps,B SPS ONE,C" SPS-ABO, D>

where program Constrained-Key. Prog(CpRFS) is a modification of program Constrained-Key. Prog(cngQ)

(Fig.|A.35)) and is shown in Fig. |A.35 - The rest of the experiment is analogous to Hybg ,,_1 4 vrir-

hybg ,,_1 4-x: This experiment is identical to Hyby,_; ,1x with the only exception that while

constructing the v constrained key queried by A, B forms (PP&C)C,w[()),STORE())

ACC.Setup(1*, nacepuc = 2%).

Hybg ,_1 4-x1: In this experiment, in response to the v constrained key query of A corre-
sponding to TM M®) € My, with M®)(2*) = 0, B creates all the components as in Hybg 1 4.x

M (0) (Vvo) V70) (l/,O) $
except that it does not generate (o' s VEgps oxe.D SKsps apo. D VKSPS_ABQD) &

SPS-ONE, méZ)O,D

SPS. Slet(SK(0 méf?o) and hands A the constrained key

sps,D»

SKCPRF{M } =

14 14 14
HK Ppgc)c,wé), STOREé), PPI(TI){,U(()),

IO(Inlt—SPS.Prog[qé),w(()),Ué)aKs(gg,E]),
ZO(Accumulate.Prog[ngss px = 2%, HK, PP, PPI("ZF/F)U Ks(pg £l
TO(Change-SPS.Prog I (K) {(h*,6%,0)}, K o {(h* . 07,0)}, K o)

9
SPS-ONE mfzﬁo,c

Z/,O v * %
SKgPS)ABo C? é*)(]? h ﬁ])

ZO(Constrained-Key. Progglngg) [M®), T =27, t*(V) PP,(;;)C,PPI(TV%,K Kf”),...,Kg"),

v * Pk v * Pk v,0 v *x Pk
s(PzA (h €)} PS)B (h ﬁ)} VKSPb ZJNEC’VKgPS—)ABO,C”mE*)O’h 7€])

The rest of the experiment is analogous to Hybg ,_; 4.x-

hybg ,_1.4-x11: In this experiment, to answer the v constrained key query of A corresponding
to TM M®) € My, with M®)(2*) = 0, B creates all the components as in Hybg ,_1 4.x1, but it

100 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = (Q, Xie, Xrars, 0, ¢0, ¢ac, gres), LTime bound T = 2/\7 Running time on challenge input
t*, Public parameters for positional accumulator PP,cc, Public parameters for iterator PPirg,
PPRF keys K, K1, ..., K, Punctured PPRF keys Kgps, a{(h*,£€*,0)}, Kses,5{(h*,£",0)}, Verifica-
tion keys VK¢, VKp, Message myg= o, SSB hash value of challenge input h*, Length of challenge
input £*
Inputs: Time ¢, String SEED,, Header position POSy, Symbol Sym,y, TM state STy, Accumulator value
win, Accumulator proof myce, Auxiliary value AUX, Iterator value v, SSB hash value h, Length
Uivp, Signature osps v

Output: CPRF evaluation F (K, (h,fnr)), or Header Position (POSeyr, Symbol SYMoyr, TM state STour,
Accumulator value wour, Iterator value vour, Signature osps our, String SEEDour), or L

1. Identify an integer 7 such that 27 <t < 271,
If [PRG(SEEDw) # PRG(F (K-, (h,le)))] A [t > 1], output L.
2. If ACC.Verify-Read(PP,cc, Win, SYMiy, POSin, Tacc) = 0, output L.
3.(a) If (h,lwr,t) # (h",€%,1), compute 7eps,a = F(Ksps,a{(h",£",0)}, (h,lwr,t — 1)), (SKsps, A, VKsps, 4,
VKspsnnr,4) = SPS.Setup(1%; 7sps a).
Else, set VKgps, 4 = VKc.
(b) If (h,lwe,t) # (R*,€%,1), compute rosp = F(Kses,{(h",£*,0)}, (h, lw,t — 1)), (SKsps,B, VKsps, B,
VKsps-res,B) = SPS.Setup(lA; Tsps,B).
Else, set VKgps,B = VKp.

(C) Set miy = (UIN7 ST, Win, POSIN) and o =~
(d) If SPS.Verify(VKsps, 4, M, Osps,v) = 1, set oo = A’
(e) Ifla=~"1 AN [t>t) Vv (h#h") V (b # £7)], output L.
Else if [a =-'] A [SPS.Verify(VKsps, B, Mux, Ospsan) = 1], set o =B’
(f) If « =*-’, output L.
4.(a) Compute (STour, SYMour, 3) = 0(STw, SYMiy) and POSour = POSiy + 3.
(b) If STour = grus, Output L.
Else if [STour = gac] A [=‘B’], output L.
Else if [STour = qac] A [="A"] A [(h,lie) = (R*,£)] A [t < 1], output L.

Else if STour = gac, output F (K, (h, lip)).
Compute wour = ACC.Update(PPacc, Winy, SYMour, POSi, AUX). If wour = L, output L.
Compute vour = ITR.Iterate(PPirg, Vi, (STix, Win, POS)).
Compute T;‘PS,A = F(Kses,a{(h",£7,0)}, (h, bixe, 1)), (SK;PS,A? VK:}PS,A? VK;PS—REJ,A) = SPS-SetuP(l/\; T:}PS,A)'
Compute T;PS,B = -F(KSP&B{(h*v e, O)}7 (h7 L, t))v (SK;PS,B7 VK.’SPS,B? VK;P&REJ,B) = SPS-SetUp(lk; T;PS,B)'
Set mour = (’UOL‘T, STour, Wour, POSOUT)~
If [(h, e, t) = (R*, €7, 1)] A [muxy = mex o], compute osps.our = SPS.Sign(SKips, 4, Mour)-
Else if [(h, i, t) = (R*,£*,1)] A [muy # m= o], compute oses ovr = SPS.Sign(SKéps g, Mour)-
Else, compute osps.our = SPS.Sign(SKgps o Mout)-
7. Ift+1=2", set SEEDour = F (K1, (h, lus)).
Else, set SEEDoyr = €.
8. Output (POSOUT, SYMour, STour, Wout, Vout, Tsps,0uTs SEEDOUT)~

o

o
> T
AN

o

Fig. A.35. Constrained-Key. Progélpgp?’)

provides A with the constrained key

SKCPRF{M }_
HK PP,&C)C,w((]V) STORE(()V) PPI(;/I){,U((]V),
ZO(Init-SPS. Prog[qé V) w((] V) v(()'/) Kb(pg),
TO(Accumulate.Prog[nssp.prx = 27, HK PP/(QC, PPI(TF){, Kb(l'fg 5,
TO(Change-SPS.Prog 3 (K , {(h*, ¢*,0)}, K{V) 1, sk g;fg,h* o)), :
IO(Constrained—Key.Prog(clpgf)[M("), =24 t*(”),PPgC)C,PPI(TU%,K K(V) ...,Kiy),

K& (05, 0,00}, K& G (0, 0%,0)}, VKDL, mi g b, 7))

SPS C”

where the programs Change-SPS.Prog(*?) and Constrained-Key. ProggJP D are the alterations of

the programs Change-SPS.Prog(*? and Constrained-Key. Prog((jpRF (Figs. |A 33| and |A 35') and

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 101

are shown in Figs. and respectively. The rest of the experiment is analogous to
Hybg,, —14.x1-

Hybg ,,_1,4-x111: This experiment is analogous to Hyby ,,_; 4 xy1 except that while creating the

Constants: Punctured PPRF key Kqs a{(h",£",0)}, PPRF key K &, Signing key skc, SSB hash value of
challenge input h*, Length of challenge input £*

Inputs: TM state ST, Accumulator value w, Iterator value v, SSB hash value h, Length i, Signature
Jsps,IN

Output: Signature osps our, or L

Compute Tsps,E = F(KSPS,E7 (h, EINP), (SKSPS,E7 VKsps, E, VKSPS—R}-IJ,E) = SPS-SetUp(l/\; Tsps,E)~

1.(a)
(b) Set m = (v,sT,w,0).
(c) If SPS.Verify(VKses, £, M, Osps,n) = 0, output L.
2'(3«) If (h7 eINP) # (h*, f*)’ compute rgps, 4 =]:(KSPS,A{(h*v e, 0)}7 (h'7 L, O)): (SKSPSH‘U VKsps, 4, VKSPS'“‘”’A) =

SPS.Setup(lA; Tsps, A)-
(b) If (h, bwe) = (h", L"), output oses,our = SPS.Sign(sKg, m).
Else, output ogps.our = SPS.Sign(SKsps, 4, m).

Fig. A.36. Change-SPS. Prog(4’3)

(v,0)
sps,C"

(v,0)
sps,C?

v*™® constrained key queried by A, B and forms (SK

rit = FIKGL 4, (0*,07,0))).

sps,C T sps,A»

vk®) — SPS Setup(1*;

VK SPS-REJ,C'

Hybg 1 4-x1v: This experiment corresponds to Hybg 1 4 (-

Analysis

Let Advfg’y_l’4'19)()\) represents the advantage of the adversary A, i.e., the absolute difference
between 1/2 and A’s probability of correctly guessing the random bit selected by the challenger
B, in Hyby ,,_1 4.9, for 9 € {I,...,XIV}. From the description of the hybrid experiments it follows

that Advfg’y_lA)()\) = Advffl)’y_l’4'l)()\) and Adv527'/_1’4’0/)()\) = Advgl)’y_m'xw)()\). Hence, we
have
, XTIV
AV = AV T) < ST AV TR) AT 0] (AL9)
H=T1

Claims below will show that the RHS of Eq. (A.9) is negligible and thus Lemma

follows.

Claim A.34. Assuming ZO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition [2.3, for any PPT adversary A,

for any security parameter X, |Adv52’u71’4_1)()\) - Advfg’yfl’zl_ﬂ)()\ﬂ < negl(A) for some negligible
function negl.

Proof. The proof of Claim [A.34] uses a similar kind of logic as that employed in the proof of
Claim [A.24] We omit the details here.]

Claim A.35. Assuming F is a secure puncturable pseudorandom function as per Definition
for any PPT adversary A, for any security parameter X, \Advfg’y_l’4'ln (N —Advfg’y_l’4_lln()\)\ <
negl(A) for some negligible function negl.

102 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = (Q, Zixe, Zrare, 9, q0, ¢acs Gres), Time bound T' = QA7 Running time on challenge input ¢*,
Public parameters for positional accumulator PP,¢c, Public parameters for iterator PPz, PPRF
keys K, K1, ..., Kx, Punctured PPRF keys Keps, a{(h*,£*,0)}, Kss,5{(h", £*,0)}, Verification key
VK¢, Message my=,0, SSB hash value of challenge input A", Length of challenge input £

Inputs: Time t, String SEED\, Header position POS, Symbol SYMy, TM state ST\, Accumulator value
wiy, Accumulator proof s, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Linp, Signature osps iy

Output: CPRF evaluation F(K, (h,fne)), or Header Position (POSour, Symbol SYMoyr, TM state STour,
Accumulator value wour, Iterator value vour, Signature osps.our, String SEEDour), or L

1. Identify an integer T such that 27 <t < 2711,
If [PRG(SEEDw) # PRG(F (K-, (h,lie)))] A [t > 1], output L.
2. If ACC.Verify-Read(PP,cc, Winy, SYMiy, POSi, Tacc) = 0, output L.
3.(a) If (h,lur,t) # (h",£°,1), compute Teps,a = F(Ksps,a{(h*,£",0)}, (h,lir,t — 1)), (SKsps, A, VKsps, A,
VKSPS-RHJ,A) = SPS-SetUP(1A§ TSPS,A)-
Else, set VKgps,a = VK¢
(b) If (h,bwe,t) # (h*,£%,1), compute rosp = F(Kses,8{(h",£",0)}, (h,lw,t — 1)), (SKsps, B, VKsps, B,
VKspsnes, B) = SPS.Setup(1*; reps.B).
(¢) Set mw = (v, STin, Wi, POS) and « =*-.
(d) If SPS.Verify(VKsps, 4, Mix, Osps,v) = 1, set o = A’

(e) o=~ AN [t>t") V(L1 V (h#h") V (bue #L£7)], output L.
Else if [=-"] A [SPS.Verify(VKsps, B, Mun, Osps,n) = 1], set o =B’
(f) If « ='~’, output L.

4.(a) Compute (STour, SYMour, 3) = 8(STw, SYMyy) and POSeyr = POSx + .
(b) If STour = Qres, output L.
Else if [STour = gqac] A [a ='B’], output L.
Else if [STOUT = QAC,} AN [a :LA7] AN [(h, K]Np) = (h*7€*)] A [t S 1]7 Output 1.
Else if STour = Qac, Output]:(Kv (h7 KINP))'

5.(a) Compute wour = ACC.Update(PPaco, Wix, SYMour, POSiv, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Vi, (STin, Win, POSx))-

6(3‘) ComPUte TéPS,A =]:(KSPS,A{(h*aZ*’ O)}v (h, eINPv t))a (SK;PS,A7 VK;PS,A? VK/SPS»REJ,A) = SPS.Setup(lA; rgPS,A)'
(b) Compute Tgps,B =]:(KSPS’B{(h*a E*’ 0)}’ (hvlePv t))v (SK;PS,By VKéPS,B? VK;PS—KEJ,B) = SPS.Setup(lA; r;PS,B)’
(C) Set mour = (UOL‘T7 STour, Wour, POSOUT)~

If [(h, be, t) = (R",£°,1)] A [mux = my= 0], compute ogsps.ovr = SPS-Sign(SK;ps,A,mOI:T)
Else if [(h, fixe, t) = (R, £%,1)] A [muy # mex o], compute oses.ovr = SPS.Sign(SKips, 5, Mour)-
Else, compute osps.our = SPS.Sign(SKgps o, Mour)-
7. Ift+1=2", set SEEDour = F (K7, (h, by).
Else, set SEEDour = €.
8. Output (POSOU'I‘7 SYMourt, STour, Wout, Vour, Tsps,0uTs SEEDOUT)~

Fig. A.37. Constrained-Key. Progélgg’;l)

Proof. The proof of Claim resembles that of Claim with some suitable changes. The
details are omitted. O

Claim A.36. Assuming ZO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter X, |Adv52’l/71’4_ﬂl) (A — Advfg’yfl’zl_lv) (AN)| < negl(\) for
some negligible function negl.

Proof. Claim[A-36]can be proven using an analogous logic as that used in the proof of Claim [A-26]
We omit the details here. O

Claim A.37. Assuming SPS is a splittable signature scheme satisfying VKgps.ong @ndistin-
guishability’ as per Definition for any PPT adversary A, for any security parameter A,

\Adv&?’”fl’&w) (N — Advfg’yfl’zl_ (AN)| < negl(\) for some negligible function negl.

Proof. The proof of Claim [A-37]is similar to that of Claim [A.27]and, therefore, we do not provide
the details here. O

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 103

Claim A.38. Assuming SPS is a splittable signature scheme satisfying “VKgps.apo indistin-
guishability’ as per Definition [2.6, for any PPT adversary A, for any security parameter X,
\Advﬁ)’y_l’4'v)()\) Adv (OV 14- VD(A)| < negl(X) for some negligible function negl.

Proof. The proof of Claim [A-38] proceeds along a similar path to that of Claim [A:28] We omit
the details here. O

Claim A.39. Assuming ZO is a secure indistinguishability obfuscator for P/poly, for any PPT

adversary A, for any security parameter A, \Adv(0 v LA-V) (A) —Adv (0 v VH)(A)| < negl(X) for
some negligible function negl.

Proof. The proof of Claim employs the same type of logic as that applied in Claim
and hence we do not provide the details in this case as well. O

Claim A.40. Assuming ACC is a positional accumulator satisfying the ‘“indistinguishability of
read setup’ property defined in Definition for any PPT adversary A, for any security pa-

|AdV£2,V—1,4—V]D()\) o AdVEL(t),V—lA—VIH) ()\)

rameter A, | < negl(\) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which \Advj) LA VID (A)—Adv (O v=14-VIID (N)]

is non-negligible. We construct a PPT adversary B that breaks the indistlngmshability of read
setup property of the positional accumulator ACC using A as a sub-routine. The description of
B follows:

e B initializes A on input 1* and receives a challenge input z* = ... Ty € Xeprp With
|z*| = ¢* from A.
e Upon receiving z*, B proceeds as follows:
1. B first generates HK & SSB.Gen(1*, ngsp-pix = 2*,4* = 0) and computes h* = Hy ().
2. Then, B selects a PPRF key K & F.Setup(1?).
3. After that, B selects a random bit b & {0,1}. If b = 0, then B computes y* = F (K, (h*, £¥)).

On the other hand, if b = 1, then it chooses y* & Yeprr-
4. B returns the challenge CPRF value y* to A.

e For n € [§], in response to the n'h constrained key query of A corresponding to TM M () e M,
with M) (%) = 0, if n # v, then B proceeds exactly as in Hyb ,,_; 4 vy, while if = v, then
B proceeds as follows:

1. B selects PPRF keys Ki”,...,K\" K{) , K)o K)o & FSetup(1%).

SPs,A? “*SPs, B’ ~ *SPS

2. Then, it forms the punctured PPRF keys Ks(:gA{(h* *,0)} S F Puncture(K, K (h*,£*,0))

sps,A»

and K)o {(h*, 05,00} & F.Puncture(K) 5, (h*, £%,0)).
3. Next, Bsends nacepx = 2%, the sequence of symbol-index pairs ((z§,0), . . ., (xfe_q, 0" —1)),

and the index i* = 0 to its ACC read setup indistinguishability challenger C and receives
back (PPcc, wo, STOREg), where either (PPjcc, wp, STORE) & ACC.Setup(1*, nycopix =

2M) or (PP acc, Wo, STORE) & ACC.Setup-Enforce-Read(1*, naccnx = 2%, ((25,0), . . -, (xhe_q,
x—1)),7* =0).

4. Next, it generates (PPI(}/})‘,U‘SV)) & ITR.Setup(1*, nyry = 2%).

5. Then, it sets mg’jg = (v(()y), qéy),wo, 0). For j =1,...,¢%, it iteratively computes the follow-
ing:

- AUX§~V) = ACC.Prep-Write(PPcc, STORE; 1, j — 1)

~ w; = ACC.Update(PPyco, wj—1,25_q,j — 1 Aux§”>)

— STORE; = ACC.Write-Store(PPacc, STORE; 1,7 — 1,27 _4)

_ Uj(y) = ITR.Iterate(PPI(T%, j()15 (C_I(()),’[Uj 170))

104 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

It SetS mgl:’)o = (Uér)a Q(()V)a we* Y O)

6. After that, it generates (SKggg)C,VKéI':’S?)C,VKgﬁﬁ)REJ’C), (SKéZ’S}),VKgigg,VKgﬁ’s(z)REJ, D) &
(,0) (1,0 (1,0) (1,0 $
SPS.Setup(1*) and forms (O-S;S—ONE,mEZ),O,C’VKS?S_ONE’C7 SKgpsapo.00 VEspaano.cr) <
SPS.Spht(SKSl;S’C, mel*/,o)’ (USII:S-ONE,WEZ?O,D7 VKS;S—ONE,D’ SKSZS—ABO,D’ VKS;:S-ABO,D) A
SPS.Split(sk), m{)y).
7. It gives A the constrained key
SKCPRF{M(V)} =
HK, PPacc, Wo, STOREQ, PPI(’I[{I)M U(()V)a
IO(Init—SPS.Prog[qéy),wo,v(()y),KS(Z;E]),
ZO(Accumulate.Prog[ngsp prx = 22 HK, PPaco, PPI(}’P)I, Ks(ggE]),
TO(Change-SPS Prog) [KG) {(h*, £*,0)}, KD p{(h*, £%,0)}, K$) 1,
(70) (70) () * *
O-S:S—ONE,mzZ),()’C7 SKSZS‘ABOaD’ mfl*/,O’ h*, £7),
IO(Constrained—Key.Prog(clggf) [M("), T =2, t*) PP, PPI(TVY){7 K, K%V), ... ,K/(\V),
* * * * 70 70 * *
K@ af (0 0,00}, KGL {0, 04,00} VG 0 VRS ko, s e s 1, €])

e At the end of interaction, A outputs a guess bit ' € {0,1}. B outputs b = ¥/ as its guess bit
in its ACC read setup indistinguishability experiment.

Note that if (PP, wo, STORE) i ACC.Setup(1*, nacenx = 27), then B perfectly simulates

Hybyg ,—1 4.vir- On the other hand, if (PP scc, wo, STORE) & ACC.Setup-Enforce-Read (1%, nco-prx =
22, ((§,0), ..., (z}_;,£*—1)),i* = 0), then B perfectly simulates Hybg ,,_1 4 vir- This completes
the proof of Claim O

Claim A.41. Assuming ZO is a secure indistinguishability obfuscator for P/poly and ACC is
a positional accumulator satisfying the ‘read enforcing’ property defined in Definition for
any PPT adversary A, for any security parameter \, |Adv52’l/71’4_wm()\) — Advfg’yfl’zl'[M) <
negl(\) for some negligible function negl.

Proof. The only difference between Hybg ,,_; 4yyr and Hybg ,_; 41x is the following:
In Hybg ,,_; 4 virr, B includes the program ZO(F) within the v*® constrained key provided to
A, while in Hyb, ,,_; 4 1x it includes the program ZO(P) instead, where

— Py = Constrained-Key.Progosoi) M), T = 22, @) ppl), pp) K, KW, ... ,K/(\”),

v %k v % % v,0 v,0 v * 0% .
K& (e, 00y, K& p{(h, 01,0, vie2 o v o oy m b, 7] (Fig. [A.34),

— P, = Constrained-Key.Progiti) [M®), T = 2%, 0 ppl) ppl) K, KM K,
v * % v * * IJ,O V,O v * * .
K {0 05,00}, K52 gl (0, 05,00}, VRS b 0 VIS o, s 400 1, €] (Fig. [A.35).

We will argue that the programs Py and P; are functionally equivalent, so that, by the
security of ZO Claim follows. Clearly, the only inputs for which the outputs of the two pro-
grams might differ are those corresponding to (h, lixp,t) = (h*,£*,1). For inputs corresponding
to (h*,£*,1), Py is programmed to output L in case STour = qac but a =*A’, whereas, Py has no
such condition in its programming. Now, observe that for inputs corresponding to (h*, £*, 1), both
(»,0)

PS-) =

the programs will assign the value ‘A’ to « if and only if SPS.Verify(VKg y oxe.cr Min, Osps,in

gl;’s%NEo él;’s(?)c,mél:)o). Hence, by the correct-

1, where VK is generated by running SPS.Split(sSk 7
ness [Properties @ and of the splittable signature scheme SPS, described in Def-

inition it is immediate that for inputs corresponding to (h*,¢*,1), both programs will

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 105

set @« =‘A’ only if my = mgf?o. Now, my = m((gl:?o means STy = q(()y),wm = wéf), and
POSy = 0. Further, recall that in both the hybrid experiments Hybg ,_; 4y and Hybg ,_1 41x,
(PPglé)C,wéy),STORE(()V)) & ACC.Setup-Enforce-Read (1}, nacepix = 2%, ((2§,0), ..., (v, 0* —

1)),7* = 0). Therefore, by the read enforcing property of ACC it follows that if wy = wéf)

and POS;y = 0, then ACC.Verify-Read(PPg’Qc, Win, SYMx, POSiy, Tace) = 1 implies SYMyy =).
Hence, for both the programs, for inputs corresponding to (h*,¢*,1), « =‘A’ implies STy = qéy)
and SYMyy = z{j, which in turn implies SToyr # gac. Hence, the two programs have identical
outputs for inputs corresponding to (h*,¢*,1) as well. Thus, the two programs are functionally

equivalent. O

Claim A.42. Assuming ACC is a positional accumulator satisfying the ‘“indistinguishability of
read setup’ property defined in Definition for any PPT adversary A, for any security pa-
(

rameter A,]Advfg’ufl’zl_lx)()\) - Advfg’yfl’zl_ A)| < negl(X) for some negligible function negl.

Proof. The proof of Claim [A.42]is similar to that of Claim [A.40| with some appropriate modifi-
cations that are easy to figure out. O

Claim A.43. Assuming SPS is a splittable signature scheme satisfying ‘splitting indistin-
guishability’ as per Definition for any PPT adversary A, for any security parameter X,
|Advf£’y_1’4_X)()\) - Advfg’y_l’4_X (AN)| < negl(\) for some negligible function negl.

Proof. The proof of Claim[A 43| proceeds along a similar path as that of the proof of Claim [A-30]
We omit the details here. O

Claim A.44. Assuming ZO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter X, \Advff‘)’y_l’4'XI) (N —Advfg’y_l’él_xm (M) < negl(A) for
some negligible function negl.

Proof. The proof of Claim [A744] employs a similar type of logic as that utilized in the proof of
Claim [AZ31] We omit the details in this case as well. O

Claim A.45. Assuming F is a secure puncturable pseudorandom function as per Defini-
tion for any PPT adversary A, for any security parameter X,]Advfg’y_l’4_XI[)(/\) —
Advg’y_1’4'X]]D()\)] < negl(X\) for some negligible function negl.

Proof. The proof of Claim [A.45]takes an analogous path as that taken by the proof of Claim [A.25]
The details are omitted. O

Claim A.46. Assuming ZO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition for any PPT adversary
A, for any security parameter \,]Advf’y_lA'XHD()\) — Advffl)’y_l’4_XIV) (M) < negl(A) for some

negligible function negl.

Proof. The proof of Claim [A746] applies the same kind of logic as that employed in the proof of
Claim The details are again omitted. 0
O

Lemma A.12. Assuming ZO is a secure indistinguishability obfuscator for P/poly, ACC is
a secure positional accumulator according to Definition and ITR is a secure crypto-
graphic iterator as per Definition [2.8, for any PPT adversary A, for any security parameter

A, |Adv52’y_1’4’(7_1),)()\) - Advf’y_1’4’7)(/\)] < negl(\) for some negligible function negl.

106 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Proof. The proof of Lemma follows an analogous path to that of Lemma B.4 of [DKW16|
with certain appropriate modifications that are easy to identify. Observe that now the ‘indis-
tinguishability of read setup’ and ‘indistinguishability of write setup’ properties of ACC can
be safely employed for the transition of hybrids as separate ACC public parameters have been
associated with distinct constrained keys. We omit the details to avoid repetition. O

Lemma A.13. Assuming ZO is a a secure indistinguishability obfuscator for P/poly, F is a
secure puncturable pseudorandom function as per Definition[2.3, ACC is a positional accumulator
possessing the ‘indistinguishability of read setup’ as well as ‘read enforcing’ properties defined in
Definition[2.4), and SPS is a splitable signature scheme satisfying VKsps-one indistinguishability’,
“VKgps-ago indistinguishability’, as well as ‘splitting indistinguishability’ properties as defined in

Definition for any PPT adversary A, for any security parameter A, |Adv52’y_1’4’7)(/\) —

Adv&?’y_l’ll’7)()\)\ < negl(X) for some negligible function negl.

Proof. The proof of Lemma is similar to that of Lemma B.3 of [DKW16] with some
appropriate readily identifiable changes. Note that now the ‘indistinguishability of read setup’
property of ACC can be safely utilized for the transition as separate ACC public parameters
have been associated with different constrained keys. Here again we omit the details to avoid
repetition. O

Lemma A.14. Assuming ZO is a secure indistinguishability obfuscator for P/poly and ACC is
a positional accumulator having ‘“indistinguishability of read setup’ and ‘read enforcing’ prop-
erties defined in Definition for any PPT adversary A, for any security parameter X,

\Advfg’y_l’4’(t*(y)_l)/)()\) — Advfg’u_l’s)()\ﬂ < negl(\) for some negligible function negl.

Proof. The proof of Lemma is similar to that of Lemma B.5 of [DKW16] with some
appropriate changes that are easy to determine. Here also the ‘indistinguishability of read setup’
property of ACC can be safely used due to the assignment of distinct ACC public parameters
with different constrained keys. The details are omitted again to avoid repetition. O

Lemma A.15. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a
secure puncturable pseudorandom function as per Definition SPS is a splitable signa-
ture scheme possessing the VKgps.rry tndistinguishability’ property, and PRG is a secure in-
jective pseudorandom generator, for any PPT adversary A, for any security parameter A,
\Advf’”_l’%)(}\) — Advfg’y_l’g’(j)()\)\ < negl(\) for some negligible function negl.

Proof. The proof of Lemma is similar to that of Lemma B.6 of [DKW16]. 0

Appendix B: Proof of Theorem 4.1

Theorem [4.7] (Security of the CVPRF Construction of Section . Assuming TO is
a secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom
function as per Definition[2.3, SSB is a somewhere statistically binding hash function according
to Definition [2.3, ACC is a secure positional accumulator as defined in Definition[2.], ITR is a
secure cryptographic iterator as per Definition SPS is a secure splittable signature scheme
according to Definition PRG is a secure injective pseudorandom generator, and PKE is a

perfectly correct CPA secure public key encryption scheme, the CVPRF construction described in
Section[{.9 satisfies all the properties of a secure CVPRF defined in Definition[{.1] of Section[{.1}

Proof.
» Provability: The provability of the CVPRF construction of Section [4.2] follows directly from
its construction.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 107

» Uniqueness: The uniqueness property follows from the perfect correctness property of the
PKE scheme. More precisely, assume that there exists a CVPRF public verification key VKcyprr =
(HK, Voverr), input = € Xoypre, and two value-proof pairs (yo, Toverro = (PKpkg,0,70)),
(3/177TCVPRF,1 = (PKPKE,larl)) € Yoverr X Ilcypre such that

[vo # y1] N [CVPRF.Verify(VKcverr, &, Yo, Teverr,0) = 1] A
[CVPRF Verify(VKcverr, 2, Y1, Toverr,1) = 1],
ie,[yo # yi] N [(PKpkro = PKpkp) A (PKE.Encrypt(PKpkg,0, Y0; 70) = CTpke)] A
[(PKPKE,I = f/)RPKE) A (PKE-Encrypt(PKPKE,lyyl;rl) = ﬁPKE)]
where (ERPKE ﬁPKE) = VCVPRF(HHK(x)v ‘x|)7

i.e., [yo # 1] A [PKE.Encrypt(PKpk, yo; 7o) = PKE.Encrypt(PKpke, y1;71)],

which contradicts the perfect correctness property of PKE.

» Constraint Hiding: The constraint hiding property is also obvious. For any input x € Xeypgr,

the proof moyprr € Hoyprr generated by CVPRF.Prove(SKoypre,) iS Tovere = (PKpke, T'pre,2)s

$
where (PKpgg, SKpkp) = PKE-SetUP(lk; TPKE,l) and TPKE,1||TPKE,2 = F(Kexe, (Hux(2), [2])), HK <

SSB.Gen(1*, ngspprx = 2%, = 0) being generated during the setup. Observe that this value
of Teyprr is exactly the same as outputted by CVPRF.Prove-Constrained(SKcyprr{M }, z) for any
TM M € M, with M(x) = 1.

» Selective Pseudorandomness: We will prove selective pseudorandomness of the CVPRF
construction of Section [4.2] through a sequence of hybrid experiments by arguing depending on
the security of various primitives that the advantage of any PPT adversary A in consecutive
hybrid experiments differ only negligibly as well as that in the final hybrid experiment is negli-
gible. Just like the proof of Theorem [3.1], here also working in the selective model ensures that
the challenger B knows the challenge input z* = z...2}._; € Xoypre and the SSB hash value
h* = Hux(x*) prior to receiving any constrained key query from the adversary 4. We assume
that the total number of constrained key queries made by the adversary A is §. In view of
Remark we do not consider any proof query. The description of hybrid experiments follows:

Sequence of Hybrid Experiments

Hyb: This experiment corresponds to the real selective pseudorandomness experiment described
in Definition [£.1] More precisely, this experiment proceeds as follows:

e A submits a challenge input z* = zf... 2}._; € Xoverr with |2*| = £* to B.

e B generates (SKcyprr = (K, Kpke, HK), VKoypre = (HK, ZO(Verify.Progoypre [K, Kpke])) ﬁ

CVPRF .Setup(1*) as described in the Section 4.2l Next, B selects a random bit b & {0,1}.
If b = 0, B computes y* = CVPRF(SK¢yprr, 2°) = F(K, (h* = Hux(x*),£*)). Otherwise, B

chooses y* il Yevere- B provides A with (VKoypre, ¥*)-

108 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

e For n = 1,...,4, in response to the 7" constrained key query of A corresponding to TM
M@ = Q)| X\, Dpupss, 6, q(()n)7 q,(ﬂ;), qé@ﬁ € My, with M (z*) = 0, B creates

SKCVPRF{M(n) } =

U U U n (0
HK, Pch)c,wé), STORE(()), PPfT%,vé),

IO(Init—SPS.Prog[q(()n) , w(()n), U(()n), KS(QQE])
TO(Accumulate.Prog[nssppix = 27, HK, PP/(:(]j)Ca PPI(’?P)U KSEIQE])
IO(Change—SPS.Prog[KS(g;A, KéQgE])

(

TO(Constrained-Key.Prog .ppp [M ™, T = 27, PPSZ;)C, PPI(%){, K, Kpxg, Kfn), ... ,Kﬁn),
(m))

Sps,A

& CVPREF.Constrain(SKcyprr, M(")),

as described in Section and returns SKoyprp{ M (")} to A. Here, we assign the index 7 to all
the components which are generated during the execution of CVPRF.Constrain(SKcyprr, M (’7)).

e Eventually, A outputs a guess bit ¥’ € {0,1}.

Hyby, (v =1,...,q): This experiment is similar to Hyb, except that for € [¢], in reply to
the 7™ constrained key query of A corresponding to TM M® e M, with M®(z*) = 0, B
returns the constrained key

SKCVPRF{M(U)} =

HK, PPS\@C, w(()”), STOREE)”), PPI(%){ , fu(()"),

IO(Init—SPS.Prog[q(()n), w[()"), vén), KEQZE])

TO(Accumulate.Prog[ngsp.prx = 27, HK, pp{™, PRl Kq(ng])

I(’)(Change—SPS.Prog[Kég;A, Ks(giE]) ’

ZO(Constrained-Key. Proglyp [M ™, T = 2*, PP\, PP, K, Kpnci, K{", ..., KV, K,
h*, %))

if n <v, where the program Constrained-Key.Prog/., .., is a modification of the program
Constrained-Key.Prog . prr (Fig. and is described in Fig. while it returns the constrained
key

SKCVPRF{M(U)} =
K, P\, w((]"), STORE((]W), ppi"). v((]"),
7O Init—SPS.Prog[q(()n),w(()n), U[gn),Kgg;E])
Accumulate.Prog[ngsp-pix = 2%, HK, PP v, PPiih, sv.52)) ,

(

TO(() (m) ()
(Change-SPS.Prog[K{7) 4, K7 1)
(

N

o SPS,A?
TO(Constrained-Key.Prog,pne [M™, T = 2X, PP\, PPYR, K, Ko, K17, .. K\ KD)

if n > v. Observe that Hyb o coincides with Hyb.
Hyb, : This experiment coincides with Hyb, ;. More formally, in this experiment forn =1,...,4,

in reply to the n'" constrained key query of A corresponding to TM M) e M, with A" (z*) =
0, B generates all the components of the constrained key as in Hyb,, however, it returns the

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 109

Constants: TM M = (Q, Xixr, Xrare, 8, @0, Gac, Gres), Time bound T' = 2>‘7 Public parameters for positional
accumulator PP,cc, Public parameters for iterator PPir, PPRF keys K, Kk, K1, ..., Kx, Ksps, 4,
SSB hash value of challenge input h*, Length of challenge input ¢£*

Inputs: Time t, String SEEDy, Header position POS, Symbol SYMy, TM state ST\, Accumulator value
wiy, Accumulator proof i, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Line, Signature osps iy

Output: (CVPRF evaluation F(K, (h,fnr)), CVPRF proof meverr = (PKpks, Tris,2)) or Header Position
(POSour, Symbol SYMoyr, TM state STour, Accumulator value wour, Iterator value vour, Signature
Osps,out, String SEEDOUT)’ or L

1. Identify an integer T such that 27 <t < 2711,
If [PRG(SEEDw) # PRG(F (K-, (h,lixe)))] A [t > 1], output L.

2. If ACC.Verify-Read(PP,cc, Winy, SYMiy, POSin, Tacc) = 0, output L.
3.(a) Compute Tsps 4 = F(Ksps,a, (R, bixp,t — 1)), (SKsps, 4, VKsps, A, VKspsrs,a) = SSB.Setup(1%; 7eps. 4).
(b) Set mux = (vix, STin, Win, POSy). If SPS.Verify(VKgps, 4, Tun, 0sps,in) = 0, output L.
4.(a) Compute (STour, SYMour, 3) = 0(STw, SYMw) and POSoyr = POSi + 3.
(b) If STour = qrus, output L.
Else if [STour = qac] A [(h, bwe) # (R*,£*)], perform the following:
(I) Compute TPKE,IHTPKE,Q =]:(KPI(Ey (h, EINP)), (PKPKEy SKPKE) = PKE-SetUP(1A§ TPKE,I)-
(H) OUtPUt (]:(k, (h, eINP))y TCVPRF = (PKPKE7TPKE,2))-
Else if STour = gac, output L.
5.(a) Compute wour = ACC.Update(PPacc, Win, SYMour, POSiy, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Ui, (STin, Win, POSI))-
6(3) ComPUte 7"s/‘Ps,A =]:(KSPS,Av (h'v glNF’: t))a (SK;PS,A7 VK;PS,A? VK;PS—REJ,A) = SPS-SetuP(:lA; TéPS,A)'
(b) Set movr = (Vour, STour, Wour, POSour). Compute ospsovr = SPS.Sign(SKgps. 4, Mour).

’
7. Ift+1=2", set SEEDour = F (K7, (h, lixp)).
Else, set SEEDoyr = €
8. OutPUt (POSOUT, SYMourt, STour, Woutr, Vour, Tsps,0UT, SEEDOUT)~

Fig. B.1. Constrained-Key.Progl ppur

constrained key as

SKcvprr {M(ﬁ) } =

n n n n n
HK, PPgC)C, w(()), STORE(()), PPI(T%v(())7

70 Init-SPS.Prog[q(()n),w(()n),vém,K(n) D

(sps,E
TO(Accumulate.Prog[nssppix = 27, HK, PPie, PRI, Ks(ggE])
ZO(Change—SPS.Prog[Ks(gg,Aa KS(IQE])
ZO(Constrained-Key.Prog{., pnp [M(”)7 T =27, PPSZ;)C, PPI("?F){v K, Kpk, Kfn)v e ,Kin), s(gg,Aﬂ

h*, %))
The rest of the experiment is analogous to Hyb,.

Hyb,: This experiment is analogous to Hyb; other than the following exceptions:

(I) Upon receiving the challenge input z*, B proceeds as follows:
1. It first selects K, Kpxr vl F.Setup(1*) and generates HK & SSB.Gen(1*, ngsp-pix = 2*, 1% =
0) just as in Hyb,.
2. It then computes h* = Hux(z*) and creates the punctured PPRF key Kpxp{(h*,¢*)} &
F.Puncture(Kpkg, (h*, £%)).
3. Next, it computes ?;KE,lH?;KE,Q = F(Kpxs, (h*,£7)), forms (ﬁ;KE’ S/R:’KE) = PKE-SetuP(lA?

?;KE,I) and computes CTp,, = PKE.Encrypt(PKp, F (K, (h*, £%)); Thke2)-
4. It sets the public verification key VKcypre to be given to A as VKeypry =

—~

(1K, ZO(Verify.Progl pre [K; Kpxe{ (h*, £*)}, PRy, CToge, h*5 £%])), where the program

110 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Verify.Prog{.,pnr is an alteration of the program Verify.Prog ., ppe (Fig. and is depicted

in Fig.

Constants: PPRF key K, Punctured PPRF key Ky {(h*,£*)}, PKE public key PKpys, PKE ciphertext CTpgg,
SSB hash value of challenge input h*, Length of challenge input ¢*
Inputs: SSB hash value h, Length £ixp
Output: (PKE public key PKrxe, Encryption of CVPRF value apm)

(a) If (h,lwe) = (R, £"), output (ﬁ:m,(/ﬁ:m).

Else, compute Price, 1 ||Prcs,2 = KPKE{(h*,Z*}, (h, bixp)), (PRpks, SKpks) = PKE.Setup(lA; Prxce,1)-
(b) Compute CTpg = PKE.Encrypt(PKps, F (K, (b, lixe)); Prxs.2)-
(¢) Output (PKPKE,CTPKE)

Fig. B.2. Verify.Progl pur

(I) For n = 1,...,q, in response to the n'® constrained key query of A corresponding to TM
M e M, with M ™ (z*) = 0, B generates all the components as in Hyb,, however, provides
A with the constrained key

SKCVPRF{M(T]) } =

K, PP, wé”), STORE(" ppln) v(()"),

70 Init—SPS.Prog[q(() ") w(()n),U(()n)7Ks(g; gl

(
TO(Accumulate.Prog[ngsp.prx = 27, HK PP(A@C, PPI(;IF){,Ks(Pg 5))
ZO(Change-SPS.Prog[K1) 4, K7])
TO(Constrained-Key.Progly, o [M ™, T = 2%, PP, PP K, Ko { (h*, €)},
K", K RS 0))

Hybs: This experiment is identical to Hyb, except that B selects 7y 1|75k 2 & Vppne. More
formally, B computes the punctured PPRF key Kpxp{(h*,¢*)} as before, however, it generates
(PR SKpir) & PKE.Setup(1}) and computes CTj,, & PKE.Encrypt(PKpyp, F (K, (h*,£%))). B
gives VKeyprr = (HK, ZO(Verify.Progl pre [K; Kpxe{ (h*, £¥)}, PRy, CToks, h*, £%])) to A as ear-
lier.

Hyb,: This experiment is the same as Hybs with the only exception that CTp,, now encrypts
a uniformly random value in Ypprp rather than F(K, (h*,¢*)). More precisely, B generates

(PKpyps §I\<;KE) & PKE.Setup(1*) as in Hybs, however, it now chooses §* & Ypprr and computes

CTo & PKE. Encrypt(/\;KE, 9*). B provides A with VKeypre = (HK, ZO(Verify.Progl, prr [K,

/*

Krxe{(R*, %)}, Py, CTp, ¥, £%])) as before.

Hyby: This experiment is analogous to Hyb, except the following exceptions:

(I) Upon receiving the challenge input x* € Xoypre, B proceeds as follows:
1. it first picks PPRF keys K, Kpkg & F.Setup(1*) and generates HK & SSB.Gen(1*, ngsp-prx =
22 % = 0).
2. Next, it computes h* = Hyk(2*) and it creates the punctured PPRF keys K{(h*, (*)} &
F.Puncture(K, (h*, %)), Kpu{(h*,0)} <& F.Puncture(Kpge, (h*, *)).

3. After that, it generates (PKpyy, SKpkp) & PKE.Setup(1%), selects §* & Yrprr, and computes

CTpye & PKE.Encrypt(PKpyp, §%).

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 111

4. It sets the public verification key VKeyprr to be sent to A as VKeyprr =

o~

(HK7 IO(Verify-Prog/CVPRF [K{(h’*v f*)}7 KPKE{(h*7 €*>}7 I;R;;KE7 CT;KE7 h‘*7 E*]))

(IT) For n = 1,...,4, in response to the n' constrained key query of A corresponding to TM
M®™ e M, with M (z*) = 0, B generates all the components as in Hyb,, however, it
provides A with the constrained key

SKCVPRF{M(n)} =

K, P\, w(()), STORE(({’), ppi" v(()"),

I(’)(Imt—SPS.Prog[q(()),wé"),vé"),Ks(gg gl

TO(Accumulate.Prog[nssp.pix = 27, HK PP&%)C,PPI(T%,KS(;?;E])
IO(Change—SPS.Prog[Ks(g;A,Kég;E])

TO(Constrained-Key.Proglpre [M ™, T = 22 PPSZ;)C,PPITR,K{(h* Y, Koge{(h*, 0%)},
K{"),...,K@, () g 04])

sps JA?

Analysis

Let Adv(Y (0), AV () (v = 1,...,4), AVl (\), AV (A), AdviP (1), AdvP (1), and AdvE) (3)
represent respectively the advantage of the adversary A, i.e., the absolute difference between
1/2 and A’s probability of correctly guessing the random bit selected by the challenger B, in
Hybg, Hyby , (v =1,...,4), Hyby, Hyby, Hybs, Hyb,, and Hyb; respectively. Then, by the descrip-
tion of the hybrid experiments it follows that Adv§ ™" (\) = Advgl))()\) = Advfg’o)()\) and
Advi(A) = Adv@? (). Hence, we have

q .
AdvTSETR () < ST AV Y () — AP (V)] + Z AV () — AV T ()] + AV (V).

(B.1)
Lemmas B.6| will show that the RHS of Eq. (B.1) is negligible and thus the selective pseu-
dorandomness of the CVPRF construction of Section [.2] follows. O

B.1 Lemmas for the Proof of Theorem

Lemma B.1. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition SSB is a somewhere statisti-
cally binding hash function according to Definition [2.3, ACC is a secure positional accumula-
tor as defined in Definition ITR is a secure cryptographic iterator as per Definition
SPS is a secure splittable signature scheme according to Definition [2.6, and PRG is a secure
injective pseudorandom generator, for any PPT adversary A, for any security parameter X,
|Adv52’l/71)()\) Adv® V)(A)| < negl(X), for some negligible function negl.

Proof. The proof of Lemma [B] is similar to that of Lemma [A73] and, therefore, is omitted to
avoid repetition. O

Lemma B.2. Assuming ZO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition [2.3, for any PPT adversary A,
for any security parameter A, \Advﬁ)()\) —AdVEZ)(/\)] < negl(X), for some negligible function negl.

Proof. The two differences between Hyb; and Hyb, are the following:

(I) In Hyb,, the challenger B includes the program ZO(V}) within VKcypre, whereas, in Hyby, B
includes the program ZO(V}), where

112 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

— Vo = Verify.Progoypre [K, Kpxs) (Fig. [1.1)),
— Vi = Verify.Progl. pre [K, Kpxe{(h*, £*)}, PRpyg, CTogg, B*, €] (Fig. B.2)).

(I) For n = 1,...,q, in response to the n'™ constrained key query of A corresponding to TM
M® € M with M (2*) = 0, B includes IO(Pl(n)) within SKeypre{M ™} in hyb, in place
of ZO(P{™) in Hyb,, where
— P = Constrained-Key.Progl e [M "), T = 2%, PP, PPV, K, Ko, K7, ..., K" K .

h*, ¢*] (Fig. [B.1)),
— Pl(n) — Constrained-Key.Progl. pre[M ™, T = 2A,PP1§Z)C,PPI(;7%7K, KPKE{(h*,E*)},Kfn),...,
K, K 4 0,0 (Fig. [B.1).

SPS,A?

Now, observe that on input (h,lnp) # (R*,€*), both the programs Vj and Vi operates
in the same manner only that the latter one uses the punctured PPRF key Kpyp{(h*,¢*)} for
computing the string pgp 1 ||7rxe,2 instead of the full PPRF key Kpkyy used by the former program.
Therefore, by the correctness under puncturing property of PPRF F, it follows that for all inputs
(h, bixp) # (B*,), both the programs have identical output. Moreover, on input (h*,¢*), V3
outputs the hardwired values (PKpyy, CTrg;) Which are computed in Hyb,y as (PKpyp, SKigg) =
PKE-SetUp(1A§ f;KE,l)v ﬁ:KE = PKE.Encrypt(fR;KE,]:(K, (h*, €)); f;KE,Q)’ where f;KE,le;KE,Q =
F(Kpge, (h*, £%)). Notice that these values are exactly the same as those outputted by Vj on input
(h*,£*). Thus the two programs are functionally equivalent.

Further, note that the program Constrained-Key.Progl., .. computes F(Kpg, (b, finp)) if and
only if (h, lip) # (h*,£*). Thus, again by the correctness under puncturing property of PPRF
F, the programs Pén) and Pl(") are functionally equivalent as well for all n € [§].

Thus by the security of ZO Lemma follows. Observe that to prove this lemma we would
actually have to proceed through a sequence of intermediate hybrid experiments where in each
hybrid experiment we switch the programs one at a time. O

Lemma B.3. Assuming F is a secure puncturable pseudorandom function as per Definition[2.3,
for any PPT adversary A, for any security parameter A, \Advf)()\) - Advf)()\)\ < negl(A) for
some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Advf) (\) —Ade’) (M\)| is non-negligible.
We construct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F
using A as a sub-routine. The description of B follows:

e B initializes A on input 1* and receives a challenge input z* = G- Tpe_q € Xovpre With

|z*| = £* from A.

e Upon receiving z*, B proceeds as follows:

1. B generates HK ﬁ SSB.Gen(l)‘, Nespprx = 27, 1" = 0) and computes h* = Hyx(x*).

2. B sends (h*,¢*) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back a punctured PPRF key K*{(h*,¢*)} and a value r* = r{||r5 € Voprr,
where either r* = F(K*, (h*,£*)) or r* & Vopre. B implicitly views the key K* as the key
KPKE'

3. B then chooses K < F.Setup(1%).

4. Next, it computes (PKpyy, SKpyp) = PKE.Setup(1Y; 77), CThy, = PKE.Encrypt(PKpy, F (K,
(h*, £7)); 73). DU

5. B sets VKoyprr = (HK, ZO(Verify.Progl pne [, K*{(R*, £*)}, PRy CToxss ¥, £5]))-

6. B then selects a random bit b < {0,1}.If b = 0, B computes y* = F(K, (h*,£*)). Otherwise,
B chooses y* ﬁ YVeprr-

7. B provides (VKcyprr, ¥*) to A.

Verifiable

e For n = 1,...,4, in response to the nt®

and Delegatable CPRF’s for Unconstrained Inputs 113

constrained key query of A corresponding to TM

M e M, with M (z*) = 0, B proceeds as follows:

K

1. B first selects PPRF keys K, ... K

(n) ()

2. After that, it generates (PPuc, wg" , STO

oy & ITR Setup(1), g = 22).
3. B gives A the constrained key

SKCVPRF{M } =

HK, PP&C)C, w(()), STORE,", PPy,

IO Init—SPS.Prog[q[()n),w(()),v(()),
7O

Accumulate.Prog[ngssp sk =
ZO(Change-SPS.Prog[K"

sps,A»

(1) Hp(n)

(
(
(
(

RN

KD

TO(Constrained-Key.Progl ps [M ™, T
h*, %))

b(pzA, 5 Er Setup(1%).

(n)) «— ACCSetUp(l ,TLACC_BLK = 2)\) and (PP

)

? SPS,

(n)

RE ITR»

v(()"),

KM D)

sps,E ™))
A n
27, HK, PPcc, PPITR7

)

K(”i)

SPS,E

)

=22 pp(, PP K, K*{(h*, 0%)},

e At the end of interaction, A outputs a guess bit &' € {0,1}. B outputs b’ = ¥/ as its guess bit
in its PPRF selective pseudorandomness experiment.

Notice that if r* = F(K*, (h*,£*)), then
& Yreprr, then B perfectly simulates hybs.

B perfectly simulates Hyb,. On the other hand, if
This completes the proof of Lemma O

Lemma B.4. Assuming PKE is CPA secure, for any PPT adversary A, for any security pa-

rameter A, |Adv(3) (\) —

AdvA (AN)] < negl(\) for some negligible function negl.

Proof. Suppose there exists a PPT adversary 4 for which |Adv§i’) (N —Advff\l) (A\)| in non-negligible.

Below we construct a PPT adversary B that

e B receives a PKE public key PK;,, from it

A on input 1* and receives a challenge input z* = Ty .-

A.

e After receiving x*, B proceeds as follows:

1. B first generates HK <§ SSB. Gen(l nSSB L
B then selects PPRF keys K, Kpkg % F. Setup(1>‘) and creates the punctured PPRF key

2.
Kpe{(h*,0*)} <— F.Puncture(Kpkg, (B*

Next, B chooses §* € Vppre- It sends (MSGy = F(

breaks the CPA security of PKE.

s PKE CPA security challenger C. B then initializes
xz*il S XCVPRF Wlth |l‘*| — g* fI‘OIn

,i* = 0) and computes h* = Hyg(z*).

)
K, (h*,£%)),MSGy; = §*) as the pair of

challenge messages to C and receives back a ciphertext Ty, from C.

*
PKPKE7

PKE’ h* e*]))

Otherwise, B chooses y* & Yopre-
6. B provides A with (VKcypre, ¥).
e For n = 1,...,4, in response to the n'"
MM e My with M® (z*) = 0, B proceed
1. B first chooses PPRF keys K\ .

2. After that, it generates (m
o™y & 1TR Setup(1), g = 22).

(n)

After that, B selects a random bit b & {0,1}. If b = 0, B computes y*

1:(;”7)7 K

B then sets the public verification key VKoypre = (HK, ZO(Verify.Progl. pre [K, Kpxe{(h*,)},

= F(K, (h*,0%)).

constrained key query of A corresponding to TM
s as follows:

$
S(PQA,KS(ZQ’E & F.Setup(1?).

(77)) — ACC.SetUp(l)\,nACC—BLK = 2)\) and (o

PPITR ’

114 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

3. B gives A the constrained key

SKCVPRF{M(n) } =

HK, PP, wé”), STORE() ppln) fué"),

TO(Init-SPS.Prog|g)” wgm,vgm,xgpg o)

TO(Accumulate.Prog[nssp.prx = 27, HK pp. PRI Kfpg 5)

ZO(Change-SPS.Prog[K{) 4, K\ 1)

TO(Constrained-Key.Progl o [M™, T = 2%, P, PP, K, Ko { (R*,)},
K{"])7.."K>(\77)’ () h* g*])

sps A

e A eventually outputs a guess bit b € {0,1}. B outputs ¥ = b’ in its PKE CPA security
experiment.

Observe that if CTp, & PKE. Encrypt(PKPKE,f(K (h*,£*))), then B perfectly simulates

Hybs. On the other hand, if cTy,, & PKE. Encrypt(PK},p, 7*), then B perfectly simulates Hyb,.
This completes the proof Lemma [B.4] O

Lemma B.5. AssumingZO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition [2.3, for any PPT adversary A,
for any security parameter \, \/—\dv(4)()\) — AdvE4 (AN)| < negl(\) for some negligible function negl.

Proof. Hyb, and Hybj differs with respect to the following:

(I) In Hyb, the challenger B includes the program ZO(V;) within the public verification key
VKoyprr, While in Hybg, it includes the program ZO(V)) within VKcypre, where
- W= Verify'ProgéVPRF (K, Kpxe{(R", %)}, ﬁR;KEv ﬁ;KE’ h* E*]
- V= VerifY-ProgéjvaF [K{(h*,)}, Kexu{ (h", €7)}, ﬁR;KEa Tpgps 15 7],
the program Verify.Progl, .. being depicted in Fig.

(IT) For n = 1,...,4, in response to the n' constrained key query of A corresponding to TM
M® e M,, B provides IO(PI(W)) within SKeypre{M (77)} in the experiment Hybs instead of
including IO(P(gn)) as in the experiment Hyb,, where
— Pén) = Constrained- Key.Prog’CVPRF[M(”),T = 2’\,PP1(IZ;)C,PPI(¥E){,K, KPKE{(h*,E*)},K{n),...,

() g * g
! ngs VA h f]
— 1(77) Constramed Key.Proglppe[M™, T = 22 PP/(ZZ)Q,PPITR,K{(h* Y, Koge{(h*, 0%)},
() M) p x g
K", K K a0 B, 0],
the program Constrained-Key.Prog/., .., being depicted in Fig.

Now, notice that the programs Verify.Progl .. and Constrained-Key.Prog{, pnz compute
F(K, (h,lp)) if and only if (h,lwp) # (h*,€*). Hence, by the correctness under puncturing
property of PPRF F, it follows that the functionalities of the programs Verify.Progl, s and
Constrained-Key.Prog/., .. do not change if the punctured key K{(h*,¢*)} is hardwired in place
of the full PPRF key K. Therefore, by the security of 10 Lemma [B.5 follows. Ofcourse, here
again we would need to go through a sequence of intermediate hybrid experiments where in each
hybrid experiment would change the hardwiring of one program at a time.

O

Lemma B.6. Assuming F is a secure puncturable pseudorandom function as per Definition[2.3,

for any PPT adversary A, for any security parameter X, Advff))(/\) < negl(A) for some negligible

function negl.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 115

Proof. Suppose there exists a PPT adversary A for which Advfi))()\) is non-negligible. We con-

struct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F using .4
as a sub-routine. The description of B follows:

e B initializes A on input 1* and receives a challenge input z* = x§...2}._; € Xoypre With
|z*| = £* from A.
e Upon receiving x*, B proceeds as follows:

1. B first generates HK & SSB.Gen(1*, ngsp-prx = 2%,4* = 0) and computes h* = Hyx ().
2. B sends (h*,¢*) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back a punctured PPRF key K*{(h*,¢*)} and a value r* € Ypprp, where

either r* = F(K*, (h*,(*)) or r* & Veprr- B implicitly views the key K* as the key K.

3. B then chooses PPRF key Kpkyg <§ .7-".Setup(1>‘) and creates the punctured PPRF key
Koe{ (h*, 09} & F Puncture(Ko, (1%, £°).

4. Next, B generates (ﬁR;KE,ST(PKE) PKE.Setup(1%), selects some §* & Yrprr, and forms
CTpys & PKE.Encrypt(PKpyp, 7).

5. Bsets VKeyprr = (HK, ZO(Verify.Progl pue [K*{(h*, 0*)}, Kpke{ (h*, 0*)}, PRy, CTokg, B, £%])).

6. B sets the challenge CVPRF value for A to be y* = r*.

7. B provides (VKcyprr, ¥*) to A.

e For n = 1,...,4, in response to the 7™ constrained key query of A corresponding to TM
M e M, with M (z*) = 0, B proceeds as follows:

1. B first selects PPRF keys K(”) Kgn),KS(ggA,KS(g;E & F.Setup(1*).
(m) () (n)

2. After that, it generates (PPakc, Wy ,STORE(n)) & ACC.Setup(1*, npcepx = 2*) and (PPyz,

v((]")) < ITR.Setup(1Y, nypy = 27).
3. B gives A the constrained key

SKcvprr {M(n) } =

HK Ppg@c,wé),STORE() PPI(%){,U(()H),

I(’)(Inlt—SPS.Prog[q(gn),w(()n),v(()),ngg gl

TO(Accumulate.Prog[ngsp.prx = 27, HK, pp(. PP KS(;QE])

TO(Change-SPS.Prog[K{[) 4, K\)

TO(Constrained-Key.Progl o [M ™, T = 2%, pp W, PRI K*{(h*, 0%},
KPKE{(h*,E*)},K{n),...,K/(\n), () h* 6*])

SPS JA?

e At the end of interaction, A outputs a guess bit & € {0,1}. B outputs ' = b’ as its guess bit
in its PPRF selective pseudorandomness experiment.

Note that the simulation of Hybs by B is perfect. Also, if A wins in this simulated Hybs,
then B wins in the PPRF selective pseudorandomness experiment against F. O

Appendix C: Proof of Theorem (5.1

Theorem [5.1] (Security of the DCPRF Construction of Section . Assuming ZO is
a secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom
function as per Definition[2.3, SSB is a somewhere statistically binding hash function according
to Definition [2.3, ACC is a secure positional accumulator as defined in Definition [2.4, TR
is a secure cryptographic iterator as per Definition [2.5, SPS is a secure splittable signature
scheme according to Definition [2.6, PRG is a secure m]ectwe pseudorandom generator, and
PKE is CPA secure, the DCPRF construction of Section[5.9 satisfies the correctness and selective
pseudorandomness properties defined in Definition |5. 1],

116 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Proof.

» Correctness under Constraining/Delegation: The correctness of the DCPRF construc-
tion of Section follows readily from its construction and the correctness of the underlying
cryptographic building blocks.

» Selective Pseudorandomness: Here also we devise a sequence of hybrid experiments in
order to argue selective pseudorandomness of the DCPRF construction of Section As earlier,
we are working in the selective model and hence the challenger B knows the challenge input
¥ =xf...Tp_y € Xpeprr With |2¥| = £* and the SSB hash value h* = Hyx (2*) before receiving
any key query from the adversary A. Let deonst and §pir. be respectively the total number of con-
strained and delegated key queries of the adversary A. In view of Remark [5.1] here we consider
no evaluation query and delegated key queries for only those pairs of TM’s (M) M (9)) € M%\
such that [M®@ (z*) = 1] A [M®(2*) = 0]. The sequence of hybrid experiments follows:

Sequence of Hybrid Experiments

Hyb,: This experiment corresponds to the real selective pseudorandomness experiment described
in Definition for the DCPRF construction of Section More formally, this experiment
proceeds as follows:

e A submits a challenge input «* = zfj...2)._; € Xpeprr With |27 = £* to B.

e BB generates SKpcprr = (K, HK) bl DCPRF.Setup(1*), as described in Section and selects
a random bit b < {0,1}. If b = 0, B computes y* = DCPRF(SKpgprr, ") = F(K, (h* =
Hux (z*),0*)). Otherwise, B chooses y* & yDchF. B returns y* to A.

e For n = 1,...,4consr, in response to the n'"' constrained key query of A corresponding
to TM M = <Q("),EINP,ETAPE,6(”),Q(),qgc),ql({E?]) e M, with M (z*) = 0, B gener-
ates SKpepre {M M} = (K'™ 1k, pp{, wi” sTore(", ppil) o0 p pm pln p))&
DCPRF.Constrain(SKpcprr, M(”)) as described in Section Here,

- P{n) = IO(Init—SPS.Prog[q(()),w(()n),v(()),KS(QQE]),

— 772(77) = ZO(Accumulate.Prog[ngsp prx = 27 HK, PPS\@C, PPI(%){, Kb(ng]),

~ P{" = ZO(Change-SPS.Prog[K7) , KI)]),
— P e = TO(Constrained-Key.Prog,, .o [M ™, T = 22, pp,, PP K, K/ K. ,K&"),
K(ﬁ)])
sps,Al/*
We assign the index 7 to all the components that are formed during the execution of
DCPRF.Constrain(SKpcprr, M(”)).

e For0 =1,...,{pg, in reply to the delegated key query of A corresponding to the TM pair
(M(O) = <Q(9)> EINP, ETAPEa 5(9)7 qée) 7,(\]1(%96)7 ql(%E)J> (0) = <Q(6)a EINP7 ZTAPEa 6(9) 49)’ Qﬁ@, QJ}(I{?EJ)J»
€ M3 with [M@(2z*) = 1] A [M@(2*) = 0], B creates SKpcprr{ M@ A M®Y =
(KO ux, pp 0, P9 wl? & sTorel” még),PPSf%,PPfT%,vée),~(9),731(9), PO pl?)
559),733(,0), 3(,), é@PRF, [()C)pRF) < DCPRF.Delegate(SKpcpre{ M 9)},M(9)), as elaborated in
Section where either SKDCPRF{M(G)} = SKDCPRF{M(Q/)}, which has been generated while
answering the #'*" delegated key query of A for some 6’ < 6, or SKpcpre{M @} is freshly
generated in case it is not previously created. Here,

- 731(9) IO(Init—SPS.Prog[qéQ),w(()e),v(()e),K(e))]

sps,El1/»

ch

- 731 %) :I(’)(Init-SPS.Prog[@ée),ﬁé)76(()9)7%5(2;]5])’

_ 7)2) _ ZO(Accumulate.Prog[ngssp pLx = 2* HK PP,(fc)c, PPI("?I)U Ks(gi £l
- 7320) — TO(Accumulate.Prog[ngsspix = 2%, HK, PP\, PP} fféﬁé £l);
. 733 o) — IO(Change—SPS.Prog[Ks(gg A Ks(gg 5l);

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 117

-~ Py = TO(Change-SPS.Prog[K\e) 1, K\ 1),

- P]g%)pRF = ZO(Constrained-Key.Prog, cppp [M @, T = PP,@C, PPI(%){, K,K'®, Kfe), . ,K&e),
)

— PO = ZO(Constrained-Key.Progy cprp [M @, T = 2> PP&@C,I’D‘IJ)I(T%,K’() %’(9),I~(£9),...,

KRG 4D

We assign the index 6 to all the components that are generated while replying to the " del-

egated key query. Ofcourse, if SKpcprp{ M (9)} used for answering the query is SKpoprp{ M (9,)}

for some 0" < 6, then all the delegated key components that are related to SKpcpre{ M (9)} are

the same as those included in SKpcpre{M (9/)}.

e A eventually outputs a guess bit &' € {0, 1}.

Hyby, (v =1,...,{dconsr): This experiment is analogous to Hyb, with the exception that for
1 € [Geonst], in response to the n'™ constrained key query of A corresponding to TM M ™ € M,

with M(")(*) = 0, B returns the constrained key SKDCPRF{M(”)} = (K’ nk PP,@C,w(()n),

STORE(()) ppil) v(()),P§”)7P§’7), Pé"), é@pm), where

- 77577) = I(’)(Init—SPS.Prog[q(()),wén),vén),Kggg s
— P\ = TO(Accumulate. Prog[nsss.pix = 2*, HK, PP, PPI(;I}){,Kég;E]),
- ’P(n) IO(Change—SPS.Prog[KS(ggvA,Ks(ggyE]),
P[()Z)PRF = TO(Constrained-Key.Prog) .p..[M, T = 2* PP,(JZ)C,PPI(Q%,K, K’(”),Kfn), . ,K&"),
KM %)

SPS A

to A, if n <wv, while B gives the constrained key SKpcpre{M (”)} = (K’() HK PP,@C,w(()n),

STORE." PPI(7T7;){,U[()W),7D(") P, P, Pile), where

ZO(Init-SPS. Prog[q(()),w(()n),v(()n)7Ks(gg,E])
ZO(Accumulate.Prog[ngssp-px = 2 ,HK,PP/(;%)C,PPI(Q;)“KS(;?;E]%
(- TO(Change-SPS.ProglK{!) 4, K} 1)),
n

— Pie = TO(Constrained-Key.Progy cprs [M™, T = 2%, pp{W, pe{0), K, K0 K . K™,
)

to A, if n>v. The program Constrained-Key.Prog] ... is an alteration of the program

Constrained-Key.Prog, .prr (Fig. and is depicted in Fig. Observe that Hyb coincides

Hyby.

Hyb,: This experiment coincides with Hybg ; .

Hyb, , (w = 1,...,4ps.): This experiment is similar to Hyb; except that for 0 € [Gpr], in
reply to the 4" delegated key query of A corresponding to TM pair (M ©) M (6)) € M3 with
MO (z*) = 1] A [M®(z*) = 0], B returns the delegated key SKDCPRF{M A MOY =
(KO uk, pp s, 500, wl? @, storel”, storel, pp), 55 o 5 PO PO PO PO

P:JEO) , 53(,9)) P]SC)PRF7 Ig%)PRF)) Where

(Init—SPS.Prog[q(()a) , w(()G)v (()0)7 Ks(gg,E])v
- 51 IO(Inlt SPS. Prog[[]é),%9)758),K(ﬁé Bl
- = ZO(Accumulate. Prog[ngs ni = 2*, K, PP, pp{0y, K1) &)
— 732 = ZO(Accumulate.Prog[ngssp sk = = 2) HK PP(AQC)C, PPI(T%, Kfffg E}),

118 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = (Q, Xixr, Xrare, 8, @0, Gac, Gres), Time bound T' = 2>‘7 Public parameters for positional
accumulator PPy, Public parameters for iterator PPur, PPRF keys K, K’ K1,..., Kx, Keps, 4,
SSB hash value of challenge input h*, Length of the challenge input £*

Inputs: Time t, String SEEDy, Header position POS, Symbol SYMy, TM state ST\, Accumulator value
wiy, Accumulator proof i, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Line, Signature osps iy

Output: Encryption of DCPRF value CTpkg, or Header Position (POSeyr, Symbol SYMoyr, TM state STour,
Accumulator value woyr, Iterator value vour, Signature ospsour, String SEEDoyr), or L

1. Identify an integer T such that 27 <t < 27,
If [PRG(SEEDW) # PRG(F (K-, (h,lwe)))] A [t > 1], output L.

2. If ACC.Verify—Read(PPAcm Win, SYMn, POSy, 7TAcc) = 0, output L.

3.(a) Compute reps,a = F(Ksws,a, (b, fixe, t — 1)), (SKsps, 4, VKsps, 4, VKses s,) = SPS.Setup(1%; rovs,a).
(b) Set muy = (’Un\u STy, Win, POSiy). If SPS-Verify(VKSPSxA7 M, USPS‘IN) = 0, output L.

4.(a) Compute (STour, SYMour,) = 0(STix, SYMi) and POSour = POS + f3.
(b) If STOIZT == QRE.Iy Output J‘

Else if [STour = gac] A [(h, buw) # (B*, £7)], perform the following steps:

0 F(K', (h, bixp)), (PKpxs, SKpie) = PKE.Setup(1*; 7pxe,1)-
(IT1) Output CTexe = PKE.Encrypt(PKexe, F (K, (h, bie)); Texs,2)-

Else if STour = qac, output L.

5.(a) Compute woyr = ACC.Update(PPace, Win, SYMour, POSiv, AUX). If wour = L, output L.
(b) Compute vour = ITR.Iterate(PPirr, Ui, (STin, Win, POSIx))-

6‘(8‘) Compute rS/‘PS,A =]:(KSPS,Av (ha EINPa t))7 (SKér’s,Aa VKéPS,A7 VK;PS—RF}J,A) = SPS.Setup(lX; Ts/;Ps,A)‘
(b) Set mour = (UOIT'1'7 STour, Wour, POSOU'I’)-

Compute osps,ovr = SPS.Sign(SKeps, 4, Mour)-
’
7. Ift+1=2", set SEEDour = F (K7, (h, lip)).
Else, set SEEDoyr = €.
8. OutPUt (POSOUT, SYMourt, STour, Woutr, Vour, Tsps,0UT, SEEDOUT)~

Fig. C.1. Constrained-Key.Prog} o.r

— P — 70O(Change-SPS.Prog[K?) , KO 1),

sps,A» “*sps, B

- 53(,) = = ZO(Change-SPS.Prog|K. K9 K9 1)

sps,A’ “rsps, B
- (- TO(Constrained-Key.Prog, .ppp [M D, T = 2* pp@ pp) K KO K(O),...,K/(\G),
K(9)])
_ sps,Al/» . . .
— P]:()ec)pRF :IO(Constrained-Key.Prog]'DCPRF[M(Q),T =27 ﬁ)g@c,PPI(g;,K’w) K'0) K(e), .. .,Kie),
9 * *
S(PgA’h ¢])

to A, if # < w, while B gives the delegated key SKpcprr{M @ A M(e)} = (f{’ %) uk PPE@C, PPE@C,

w70 sroms® 570mE, rl), 550 D 50 PO, FO, P B0 0 5O p0). B0
where

- 771 9 = = ZO(Init-SPS.Prog|q, (6) (6) (6) Kéﬁé,ED?

- 7319) ZO(Init-SPS. Prog[@é) 49),17(()) .’f(/s(gg £l),

— P = TO(Accumulate.Prog[nsspsux = 2*, HK PP&@C,PPg%,KS(gg’E})

- 732 %) = = TO(Accumulate.Prog[ngspprx = 27, HK, sz(xc)cv PPI(T;7 .’f(/gggE}),

— P = ZO(Change-SPS.Prog[K{%) 4, K1) 1),

— 73?59) ZO(Change-SPS.Prog| S(QA,/I\(JS(QE]),

— P)e = TO(Constrained-Key.Prog,cpme[M @, T = 22, pp, pp) K, k'O K K,

K(G)])
. sps,Al/» . N _
— Pé@m :IO(Constrained—Key.ProgDCPRF[M(e),T 2A ﬁ’g&,PPI(Q{,K’(G) K’(H) fe), .. .,K&G)

)

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 119
to A, if § > w. Observe that Hyb; ; coincides with Hyb,.
Hyb,: This experiment coincides with Hyb, 5 .

Hybg: This experiment is identical to Hyb, except that for 6 = ,...,thL, in response to
the 6" delegated key query of A corresponding to TM pair (M@, M(9) € 2 with [M)(z*) =

1] A [M® (2%) = 0], B returns the delegated key SKpeprp{ M@ A MO} = (K’(e) HK, PP, PP&OC)C,
o), 7, stonel?), storsl), o0y, 550, o2, PO, 5O, 0 P PO, B0, P, Pl
to A, where

— P\ = 2O(Init-SPS.Proglay , wi” v, k) 1),
— 51 = ZO(Init-SPS. Prog[c}é),ﬂ)f)e),ﬁ((]),IN(g(g%),

(

(
— 'PQ = TO(Accumulate.Prog[nssp sk = 2, HK PPE\QC)C7 PPI(T})»\7 stgg E})
(
(

— 52 = ZO(Accumulate.Prog[ngssp sk = = 2) HK PP,@C, PPI(Q{, ES(QED,
— P = ZO(Change-SPS.Prog[K!) . k%) .]),
- 7>§) = TO(Change-SPS.Prog[K%) 1, K!) 1)),
- Pé@pRF = ZO(Constrained-Key.Prog! ... [M MO T =2 PP,@C, PPI(%);{, K, K’(G){(h*,)},
KO KO KO i@ ne e,
0

> “rsps,A»
— PP = @(Constrfavined Key.Prog) cope [M @, T = 2* PPE@C, PPI(%){, K'Of(h*, %)}, K'®)
KD KO K b))

» frsps, A

such that K'O{(h*, %)} & F.Puncture(K'®, (h*, %)), 73 i), = F(K'O), (h*, 7)), (PR3

SKPQE)) = PKE.Setup(1%;)) CTE&GE) = PKE.Encrypt(PKP%),]:(K, (h*, 0%)); rx)), and the

PKE,1/» PKE,2

program Constrained-Key.Prog/ ... is a modification of the program Constrained-Key.Prog) pp.p
(Fig. and is shown in Fig. As in the previous hybrid experiments, here also once the
components pertaining to some parent TM M@ e M), is generated while answering the 6"
delegated key query (M ©®) M (9)) those are reused in all the subsequent delegated key queries
with the same parent TM M (@),

Hyb; , (w =1,...,qpp.): This experiment is the same as Hybs (,—1) with thionly exception
that while constructing the w'" delegated key corresponding to TM pair (M @) M (w)) € M%\ with
(M@ (z*) =1] A [M@W(z) = 0], if M) has not yet appeared in any previous delegated key

query of A, then B selects TPKE 1 HT;}((LE)Q & YVrprr, 1-€., B creates (PKP%), SKP&E)) & PKE.Setup(1*)

and forms CTP(“) 8 pKE. Encrypt(PK;%), F(K, (h*,£%))); while if M“) has already appeared in
previous delegated key query of A, then B utilizes the already generated values corresponding
to M“) like in the earlier hybrid experiments.

Hybs ,, (w = 1,...,qpp.): This experiment is analogous to Hybs, with the only excep-
tion that while constructing the w delegated key queried by A corresponding to TM pair
(M@ M®@)) e M3 with [M®) (%) = 1] A A [M®)(z*) = 0], if M©) has not yet appeared in any

previous delegated key query of A, then B forms CTP&E) — PKE.Encrypt(PKPE(E),y (w)), where

ok

g« & YVerre, Whereas, if M) has already appeared in some earlier delegated key query of A,

then B uses the already created values corresponding to M) just as in the previous hybrid
experiments. Observe that Hybs o coincides with Hybs.

Hyb,: This experiment is similar to Hybs 5~ other than the following exceptions:

120 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = (Q, Xixr, Xrare, 8, @0, Gac, Gres), Time bound T' = 2>‘7 Public parameters for positional
accumulator PP,cc, Public parameters for iterator PPix, PPRF key K, Puncture PPRF key
K'{(h*,£*)}, PPRF keys Ki, ..., Kx, Kss 4, PKE ciphertext CTp;, SSB hash value of challenge
input A", Length of the challenge input £*

Inputs: Time t, String SEED\, Header position POS, Symbol SYMy, TM state ST\, Accumulator value
wiy, Accumulator proof s, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Linp, Signature osps iy

Output: Encryption of DCPRF value CTpis, or Header Position (POSour, Symbol SYMoyr, TM state STour,
Accumulator value wour, Iterator value vour, Signature ospsour, String SEEDoyr), or L

1. Identify an integer T such that 27 <t < 2711,
If [PRG(SEEDw) # PRG(F (K-, (h,lixe)))] A [t > 1], output L.
If ACC.Verify-Read(PPacc, Win, SYMuy, POSin, Tacc) = 0, output L.
) ComPUte Tsps,A =]:(KSPS,A7 (h, EINP, t— 1)), (SKSPS,A7 VKsps, A, VKSPS—REJ,A) = SPS~SEtUP(1>\§ TSPS,A)«
) Set mu = (v, STin, Win, POS). If SPS.Verify(VKsps, 4, mun, sps,v) = 0, output L.
) Compute (STour, SYMour, 3) = 6(STuw, SYMy) and POSour = POSy + 3.
) If STour = Gres, output L.
Else if [(STour = qac] A [(h, b)) = (R",£7)], output CTpyy.
Else if STour = gac, perform the following steps:
(I) Compute rexe1 [|[Texn,2 = F (K, (h, b)), (PKpxs, SKpis = PKE.Setup(1?; rexe1)-
(IT1) Output CTexe = PKE.Encrypt(PKexe, F (K, (h, bixe)); Texs,2)-
Compute wour = ACC.Update(PPacc, Winy, SYMour, POSi, AUX). If wour = L, output L.
Compute vour = ITR.Iterate(PPirg, vin, (STin, Wi, POS))-
Compute 7"s/‘Ps,A =]:(KSP&Av (h7 Lixe, t))7 (SK;PS,A7 VK;PS,A? VK;PS—REJ,A) = SPS-SetuP(:lA; Ts/‘PS,A)'
Set mour = (UOI'T7 STour, Wour, POSOUT)-
Compute osps,.ovr = SPS.Sign(SKepg, 4, Mour)-
7. Ift+1=2", set SEEDour = F (K7, (h, bsp)).
Else, set SEEDoyr = €.
8. Output (POSOUT, SYMourt, STout, Wout, Vours Tsps,0uTs SEEDOUT)~

2.
3.(a
(b
4.(a
(b

5.

(a)
(b)
6.(a)
(b)

Fig. C.2. Constrained-Key.Prog? ...x

(I) For = 1,...,{coxsr, in response to the ™™ constrained key query of A corresponding
to TM M™ e M, with M(”)(*) = 0, B returns the constrained key SKDCPRF{M } =

(K'™ nK Ppg@c,wé") STORE() PPI(T;){,U(()W) pln pl, P("))) to A, where
— 731() = ZO(Init-SPS.Prog|q, () (77) (n) K(Pg)

S
— 2(") :I(Q(Accumulate.Prog[nSSB_BLK =2 ,HK,PP&@C,PPI(QI){,K(") D,

Sps,E
— P{"V = TO(Change-SPS.Prog[K" , K™ 1),

sps,A» “*sps,E
- Plgc)pRF — ZO(Constrained-Key.Progl .onp [M ™, T = 22 PP&@C,PP“R,K{(h*)}, K",
KM K KD he).

SPs,A?

(IT) For 0 = 1 .., dpm1, in response to the " delegated key query of A corresponding to TM
pair (M@ M 9)) € M3 with [M©)(z*) = 1] A [M® (2*) = 0], B returns the delegated key
SKpopre{M® A MO} = (K’(9),HK,PP(A@C,PPg@C,wéG) ~() STORE() S/T_(TRE(G) ,pp), 5p9)

L R (0 A, where

- 771 = (Init—SPS.Prog[qég),w(()g),v(()e),Ks(giE]),

- 731 :IO(Init—SPS.Prog[@ée),Eéa)ﬁég),E(gg =D,

— 732 = TO(Accumulate.Prog[nsspprx = 27, HK PP&GC)C,PPI(gE{,Kéz;E]),
— 732 = TO(Accumulate.Prog[ngsppix = 27, HK, PPI(m)C, PPI(TY){7 f(/s(ng]),
— P = TO(Change-SPS.Prog[K.%) 1. KL 1),

- 733 = ZO(Change-SPS.Prog[K. S(QA,K(Q g

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 121

— PY)e = TO(Constrained-Key.Prog! s [M@, T = 2* pp{%),, PPITR,M
KO{n, o)L K, K K, CT:&F?, h,),

— P e = TO(Constrained-Key.Prog) o [M @, T = 2*, 55 559 KO f (1>, ¢+)}, K'©)
K9 KD KO hrer).

SPs,A?

Here, K {(h*, (%)} & F.Puncture(K, (h*,(*)).

Analysis

Let Adv(Y(0), AdvP” (0) (v = 1., Geonsr), AdVP (), Advi™ (A) (w =1, dors), AdVE) (V)
Advf)()\) Adv® w)()\) (w= 1,...,(}DEL),Adv§”w/)()\) (w=1,...,4or.), and Advff)()\) represent
respectively the advantage of the adversary A, i.e., the absolute difference between 1/2 and
A’s probability of correctly guessing the random bit selected by the challenger B, in the hy-
brid experiment Hyb, with 7" as indicated in the superscript of the advantage notation. From

the description of the hybrid experiments it follows that Advi ™ """ (\) = Advgl))()\) =
AdVGO (1), Advi (A) = Adv(PEo (4) = Adv O (1), AdVE) (V) = Advlp P (1), and AV (A) =
Adv E4)()\). Therefore, we have

AdviCPRF,SEL—PR ()\)

qconsT QoL

< ST ANVTTTIO) - AV ()] + Z AVG Y () = AV ()] +
v=1 =
@) 3) % Ay 1)) (34) (C.1)
[Adv 3" (A) = Adv (A)] + Z [Adv (A) = Adv (M) +
w=1
q\DEL ’ ot
S AVE () — AV ()] 4 [AdVE P (A) — AdVE ()] + AdviP (V).
w=1
Lemmas will show that the RHS of Eq. (C.1)) is negligible and hence Theorem
follows. O

C.1 Lemmas for the Proof of Theorem

Lemma C.1. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition SSB is a somewhere statisti-
cally binding hash function according to Definition ACC is a secure positional accumu-
lator as defined in Definition ITR is a secure cryptographic iterator according to Defini-
tion [2.5], SPS is a secure splittable signature scheme as per Definition[2.6, and PRG is a secure
injective pseudorandom generator, for any PPT adversary A, for any security parameter X,
|Adv&?’y71)()\) Adv® V)(A)| < negl(X) for some negligible function negl.

Proof. The proof of Lemma [C.I] proceeds in exactly the same path as that of Lemma [A73] We
omit the details to avoid repetition. O

Lemma C.2. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition SSB is a somewhere statisti-
cally binding hash function according to Definition ACC is a secure positional accumu-
lator as defined in Definition ITR is a secure cryptographic iterator according to Def-
inition SPS is a secure splittable signature scheme as per Definition [2.6, and PRG is
a secure pseudorandom generator, for any PPT adversary A, for any security parameter X,

\/—\dvﬁ’w_l)()\) Adv(} w)(A)| < negl(A) for some negligible function negl.

122 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Proof. The proof of Lemma again takes an identical path as that taken by the proof of
Lemma The details are omitted to avoid repetition. O

Lemma C.3. AssumingZO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property described in Definition [2.9, for any PPT adversary

A, for any security parameter \,]Adv(Q)()\) Adv(g)(A)| < negl(X\) for some negligible function
negl.

Proof. The difference between Hyb, and Hybs is the following: For 6 € [gpg.], within the 6
delegated key returned to A, B includes the programs IO(Pée)) and IO(]SSG)) in Hyb,, whereas,
in Hybs, B includes the programs I(’)(Pl(e)) and I(’)(]Sl(e)) instead, where

— Pée) = Constrained—Key.ProgDCPRF[M(Q),T = 2 ppl0, ppl), K, K'0) K(). K)(\),KS(PAA]
_ (Fig.pd), N -
- () = Constrained- Key Progl cprp M@, T = 22 PP/(\'?C,PPI(Q,K’(Q) KO, f),...,K/(\e),KS(z;A,
p,) (Fig. [C1),
— P!? = Constrained- Key Prog/cons[M©@, T = 22, pp{0,, PP, K, K’(e){(h*,f*)},Kfe),...,Kie),
K 4 cTid hr 7] (Fig. [C.2),
-]31(9) = Eonstralned Key.Progh oo [M), T = 22 ﬁf’&ec)c,PPI(g;,K’ 9){(h*,€*)},l~(’(9),f£9),...,
KO K | ne, e (Fig.|C.1).

SPS A

We will argue that the programs Pée) and Pl(a), as well as, the programs ?ég) and]31(9) are
functionally equivalent, so that, by the security of ZO, Lemma follows. First, note that
PO(Q) and Pl(e) are functionally identical since by the correctness under puncturing property
of the PPRF F, the two programs clearly have identical outputs on inputs corresponding to
(h, bixp) # (R*, £*), while for inputs corresponding to (h*, £*), the hardwired ciphertext outputted
by Pl(e) is exactly the one computed by Pée) in this case. The programs 130(9) and]31(9) are also
functionally equivalent as both programs output L for inputs corresponding to (h*,¢*) and by
the correctness under puncturing property of the PPRF F the programs clearly have the same
outputs for inputs corresponding to (h,fnp) # (h*,€*). Ofcourse, to reach the conclusion, we
would have to move through a sequence of hybrid experiments where in each hybrid experiment
we change the programs one at a time. O

Lemma C.4. Assuming F is a secure puncturable pseudomndom function as per Definition[2.9,
for any PPT adversary A, for any security parameter A, |Adv (w-1y)()\) —Advf’w)()\ﬂ < negl(\)
for some negligible function negl.

Proof. We will only focus on the case where the parent TM M©) € M, of the w'" delegated key
query (M (@), M (“)) € Mi made by A is not one that has appeared in some previous delegated
key query of A. ThlS 1s because in the other case by the description of the hybrid experiments
it follows that [Adv(y 7 (x) — AdvE*) (3)] = 0.

Suppose there is a PPT adversary A for which |Adv (3, (w—1)’)()\) Adv(S’w) (M\)| is non-negligible.
We construct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F
using A as a sub-routine. The description of B follows:

e B initializes A on input 1* and receives a challenge input z* = o Tpe_y € Xpepre With
|z*| = ¢* from A.

e Upon receiving z*, B proceeds as follows:
1. B first generates HK l SSB.Gen (1%, ngsp-pix = 2*,4* = 0) and computes h* = Hyy ().
2. Next, B selects a PPRF key K & F.Setup(1?t).

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 123

3. Then B chooses a random bit b < {0,1}. If b = 0, then B computes y* = F(K, (h*, £*)).

Otherwise, it picks y* ﬁ Yoprr-
4. B returns the challenge DCPRF value y* to A.
e For 1 € [Geonst], in reply to the n'" constrained key query of A corresponding to TM M) e
M, with M (z*) = 0, B proceeds exactly as in Hybs (,—1y-
e For 0 € [Gpg], in response to the 0" delegated key query of A corresponding to TM pair
(MO MO ¢ M3 with [M©)(z*) = 1] A [~(9)(*) = 0], if § # w, then B proceeds exactly
as in Hybg (1), Whlle if § = w, then B proceeds as follows:

1. B first selects the PPRF keys K{*,..., K\ K\ | k&)
K(PS)E < F.Setup(1*).
2. After that, it generates (PP&C)(,,wé w) STORE(M)) (ﬁi“;)c,wé”),s/f&ié“)) & ACC Setup(1*

M ACC-BLK — 2)\) and (PP%;Q,U&W)), (PPI(TF)U/U((])) «— |TR.Setup(1)‘,7’LITR - 2>\)

3. Next, B sends (h*,¢*) as the challenge input to its PPRF selective pseudorandomness
challenger C and receives back a punctured PPRF key K*{(h*,¢*)} and a value r* =
ri||rs € Veprr, where either r* = F(K*, (h*,(*)) or r* E Vornr. B implicitly views the key
K* as the key K'®).

4. Then, B forms (PKEE), ki) = PKE.Setup(1*; r}) and forms cTi%) = PKE.Encrypt(PKA,
F(K, (B, €7)); 135).

5. B gives A the delegated key SKpeprr{ M) A M @7} = (@) HK PP(AC)C,PP%)C,w(()),E(()w),

STORE(”),S/T_(TRE() PP, PPl o) 5l pl) pl) P(w) P(w) P(w) Py PS e, Pocbar),

/() fg{w)’. K(w) KW

sps,A?

where
- le) IO(Init—SPS.Prog[q(()w),wéw),véw), KS(I“,JS)E]),
- P = TO(nit-SPS.Proglgy”, @y, 55 K& 1),
- 732(”) TO(Accumulate.Prog[nssppix = 2, HK PPE\%)C, PPI(;J}%, KS(PS? g
- 52“’) ZO(Accumulate.Prog[nssspix = 2, HK PPE\“C’)C, PPI(;JEZ, Képg)
~ P = ZO(Change-SPS.Prog| K, S(PS?AKS(PS)E])
~ P§*) = 7O(Change-SPS.Prog[K) A,KS?QE]),

- PISFLRF = ZO(Constrained-Key.Prog! ...[M“), T = 2’\,PP,(§‘(’;)C,PPI($’§,,K, K*{(h*,0")},
K@ K® K ot w),

Sps,A»
P e = I(Q((g:onstril?e)d K?y)ProgDCPRF[M(‘”),T 2 pp@ PP K {(h*,)}, K@),
KoK\ K gd 4, B 00]). A
e At the end of interaction, A outputs a guess bit o' € {0,1}. B outputs b’ = b’ as its guess bit

in its PPRF selective pseudorandomness experiment.

Note that if 7* = F(K*, (h*,£*)), then B perfectly simulates Hybg ,,_;),. On the other hand, if

& YVeprr, then B perfectly simulates Hybg . This completes the proof of Lemma (C.4 O

Lemma C.5. Assuming PKE is CPA secure, for any PPT adversary A, for any security pa-
rameter A,]Adv(3 w)()\) — Advfj’w (A)] < negl(\) for some negligible function negl.

Proof. We will focus on the case where the parent TM M®) € M, of the w' delegated key
query (M (@), M (w)) € M?\ made by A is not one that has appeared in some previous delegated
key query of A. This is because in the other case by the description of the hybrid experiments
it readily follows that [Adv*)(x) — AdvZ“(\)| = 0.

Suppose there exists a PPT adversary A for which |Adv§”w) ()\)—Advfff’w/) (M\)| is non-negligible.
We construct a PPT adversary B that breaks the CPA security of PKE using A as a sub-routine.
The description of B follows:

124 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

e B receives a PKE public key PK},, from its PKE CPA security challenger C. Then, B initializes
A on input 1* and receives a challenge input * = x§ ... Tpe_y € Xpopre With |2*] = £* from
A.

e Upon receiving z*, B proceeds as follows:

1. B first generates HK ul SSB.Gen(1*, ngsp-pix = 2*,4* = 0) and computes h* = Hy ().

2. Next, B selects a PPRF key K & F.Setup(1?).

3. Then B chooses a random bit b <& {0,1}. If b = 0, then B computes y* = F(K, (h*,(*)).
Otherwise, it picks y* & YVrepre-

4. B returns the challenge DCPRF value y* to A.

e For 1) € [Geonst], in reply to the n' constrained key query of A corresponding to TM M) e
M, with M (z*) = 0, B proceeds exactly as in Hybs .

e For 0 € [Gpg], in Tesponse to the oth delegated key query of A corresponding to TM pair
(MO MOy e M3 with [MO () =1] A [MO(2*) = 0], if § # w, then B proceeds exactly
as in Hybg ,, while if § = w, then B proceeds as follows:

1. B first selects PPRF keys K/), K1), K, K\ Kl
K(PzE < F.Setup(1?).

2. After that, it generates (PP&C)C,w((] “) STORE(w)) (1?13(;;)0,@5 “) STORE(()W)) < ACC.Setup(1*
Nacesx = 2%) and (PP, of), (PP, 7)) & ITR Setup(1%, s = 24).

3. Then, B creates the punctured PPRF key K'“){(h*, ¢*)} & F.Puncture(K"®), (h*,).

4. Next, B sends the two messages MSGy = F (K, (h*,0*)) € Veprr and MSG; = g« &
Yeprr to C and receives back a PKE ciphertext CT},, from C, where either CT},, &
PKE.Encrypt(PK} g, F (K, (R*,£¥))) or CThyg & PKE.Encrypt(PK}, ., T w)).

5. B gives A the delegated key SKpeppr{ M) A M@} = (K’ nk, PP&“C})C, PP%)C, w(()w), 117[()“),
STORE, m(“) pple) PPI(;Q,véw),17((]”),le),le),PQ(w),PQ(w),Pé),P3W)7) s o),
where

- le =70 Init—SPS.Prog[q(()w) () v(()w),Ks(;gE]),
- 5{0 = ZO(Init-SPS. Prog[“{w) (()w) 7@ KS(;”S)E])
@) HpWw)

(
(
= TO(Accumulate.Prog[nsspprx = 27, HK, PPace, PPirg, Kg(m) 2D
(
(

N N

sps,A?

) _

- 772w) ZO(Accumulate.Prog[ngsp prx = 2’\,HK,PP&C)(J,PPI(TQ,E&;E]),
) _
) _

- Pgw = ZO(Change-SPS.Prog| S(:S)A,KS(:S)’E]),

- 733‘“ = ZO(Change-SPS.Prog[K S(;JS)A,KS(:S)E]),

- P]gC%RF = ZO(Constrained-Key.Progl! e [M &), T PP/(:S)(”PPI(?%,K, K'"@{(h*, %)},
K KK T),

Pihr = ZO(Constrained-Key.Progl) o [M @), T = 2* PPI(\u(J?)C713T)I(TR7K, W {(h*, 0*)}, K'@
K@, KR b).

e At the end of interaction, A outputs a guess bit &' € {0,1}. B outputs b =V as its guess bit
in its PKE CPA security experiment.

Note that if cT}, & PKE.Encrypt(PKjyy, F (K, (h*,£%))), then B perfectly simulates Hybs ,,. On

the other hand, if Ty & PKE.Encrypt(PK}yp, 7)), then B perfectly simulates Hybs /. This
completes the proof of Lemma O

Lemma C.6. AssumingZO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property described in Definition[2.9, for any PPT adversary A,
for any security parameter X, \Adv(3 qDEL)()\) - Advfjt)()\)] < negl(\) for some negligible function
negl.

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 125
Proof. The difference between Hybs »» ~and Hyb, are the following:

(I) For n € [geonsr], in Hybs 5 , B includes the program I(’)(Pén)) within the n'® constrained
key provided to A, while in Hyb,, B includes the program I(’)(Pl(n)) instead, where
— P{" = Constrained-Key.Prog) s [M™, T = 2%, pp{1 ppil), K, K'0 K g K

sps,A?
h*, 0],
- Pl(n) = Constrained-Key.Prog) ppp [M ™, T = 2’\,PP,§@C,PPI(}Q{,K{(h*,ﬁ*)},K’(”),K{n),...,
K K 00),

the program Constrained-Key.Prog] ..., being shown in Fig. |C.1

(IT) For 6 € [Gpp.], within the 6" delegated key returned to A, B includes the program ZO(P[;(Q))
in Hybs o, whereas, in Hyb,, B includes the program ZO(P{(G)) instead, where
- PS(G) — Constrained-Key.Prog! ... [M@ T = 2A,PPg@C,PPI(gI){,K, K’(G){(h*,ﬁ*)},K?),...,
KD KD 4 it b e,
— Pll(e) = Constrained-Key.Prog” onp [M @, T = 2)‘,PP&@C,PPI(%);{,K{(h*,ﬁ*)},K’(g){(h*,ﬁ*)},
Kfe)a e 7K)(\9)7 Ks(§;A7 CTltg(QE)a h*a E*])
the program Constrained-Key.Prog! .. being shown in Fig. |C.2

We will argue that the programs Pén) and Pl(n), as well as, the programs Pé(g) and Pll(e) are
functionally equivalent, so that, by the security of ZO, Lemma follows. The programs PO(”)
and Pl(") are functionally equivalent as both programs output L for inputs corresponding to
(h*,£*) and by the correctness under puncturing property of the PPRF F the programs clearly
have the same outputs for inputs corresponding to (h, fip) # (h*,£*). The programs Pé(e) and
Pll(e) are also functionally identical as for inputs corresponding to (h*,¢*), both the programs
output the same hardwired ciphertext and for inputs corresponding to (h, lnp) # (h*, £*), their
outputs are the same again by the correctness under puncturing property of the PPRF F.
Ofcourse, to arrive at the result we would have to consider a sequence of intermediate hybrid
experiments where in each hybrid experiment we switch the programs one at a time. O

Lemma C.7. Assuming F is a secure puncturable pseudorandom function as per Definition[2.3,
for any PPT adversary A, for any security parameter A, Adv%)()\) < negl(\) for some negligible
function negl.

Proof. Suppose there exists a PPT adversary A for which Advff)(/\) is non-negligible. We con-
struct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F using A

as a sub-routine. The description of B follows:

e B initializes A on input 1* and receives a challenge input z* = . Tpe_y € Xpepre With

|z*| = £* from A.

e Upon receiving z*, B proceeds as follows:

1. B first generates HK <§ SSB.Gen(lA, Nespprx = 27, 1° = 0) and computes h* = Hyx(x*).

2. After that, B sends (h*, £*) as the challenge input to its PPRF selective pseudorandomness
challenger C and receives back a punctured PPRF key K*{(h*,¢*)} and a value * € Vopgr,
where either r* = F(K*, (h*,(*)) or r* & Vepre. B implicitly views the key K* as the key
K.

3. B returns the challenge DCPRF value y* = r* to A.

e For n = 1,...,{oonsr, in reply to the n'® constrained key query of A corresponding to TM

M® € M with M) (z*) = 0, B proceeds as follows:

1. B selects PPRF keys K’(”),Kfn), . .,Kin),K(n) K™

sps,A» “*sps,E

& F.Setup(1?).

126 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

2. Next, it creates (PPI@C, wén), STOREgn)) & ACC.Setup(1*, naceo-pix = 27) and (PPI(QE){, vén))
ITR.Setup(1*, nyry = 2%).
3. Bgives A the constrained key SKDCPRF{M } = (K’ ", HK, PP&C)C, w[()), STORE(()), PPI(?])‘, v[()n),
731(77)7732(77)7732())7]Z()C)PRF)7 were
7;(77) I(’)(Init—SPS.Prog[q((Jn),wé),v(()),Kq(gz E})

- 77(’7) = TO(Accumulate.Prog[nssp.prx = 27, HK, PP&C)C, PPI(%){, KS(QE]),

73(77) IO(Change—SPS.Prog[KS(ggA,KS(ZQVE]),
é@PRF = ZO(Constrained-Key. ProgDCPR’F[M(”), T =2*, PP,@C, PPI(%;, K*{(h*, %)}, K’
K", KK b)),

e For = 1,...,{pr, in response to the G delegated key query of A corresponding to TM

pair (M((’),M()) € M3 with [M©)(z*) = 1] A [M®)(2*) = 0], B proceeds as follows:

1. B first selects PPRF keys K'(¢ >,K§9), KO KRS KD KO KD KD KD
K(ng < F.Setup(1*).

2. After that, it generates (PPE\C)C,w(()),STORE(Q)) (Pch)c,w(()e),STORE(())) & ACC.Setup(1*
Nace-px = 2°) and (PPI(%)Q, v(()e)) (PPI(TE{,’U(())) ITR.Setup(1*, nyrr = 2%).

3. Next, B forms the punctured PPRF key K"@{(h*,¢*)} & F.Puncture(K'®, (h*, ¢*)).

4. After that, B creates (PKPQ,SKF&E)) 5 PKE.Setup(1*), selects *(?) bl YVprrr, and forms

CTPI(@) < PKE. Encrypt(PKpE(E), A*(e))

5. B gives A the delegated key SKDCPRF{M © A M ‘9)} = (E’(), HK, PP&@C,ﬁ’g?C,wée),@ée),
©®) storE? pp@ pp© @) 50) @) 73() plO) pO) p&) pO) p@) (0))

STORE(", STORE(", PPrrr, PPy, Vg "0y *5 1 7 2 "3 Fo s F3 7, F3 ", Fpcprry FDCPRF),
where . .
- 771(= ZO(Init-SPS. Prog[qé),w((]), () Ks(pg),

=70 |n|t—SPS.PrOg[(_AIé),w(()e)ﬁ(()e)aKs(g; el)
0) 6) 7o)

) =10(
17 =10/
) = ZO(Accumulate.Prog[ngsp sk = 22 HK, PPydc, PPirn, SP&E]),
) (
) (

= ZO(Accumulate.Prog[ngsp sk = 2)‘ HK PP&GC)C, PPI(Q{, KSQE]),

= ZO(Change-SPS.Prog[K. k% K9)]

sps,A» “*sps,El/»
- 73(9) TO(Change-SPS.Prog[K{%) 4, K} 1]),

- Pé@PRF = ZO(Constrained- Key ProgDCPRF[M((’), = 2A PPS@F7 PPI(%, K*{(h*,¢*)},

KO,), K9, k9 K CTpfg,h*),

sps,A?
— P = ZO(Constrained-Key.Prog!, .one [M @), T = 22, PPE\QC)C, PPI(@{, KO (h*, %)},
KO K", KD KD b).

Ofcourse, once B generates the components pertaining to some parent TM M ®) ¢ M while
answering to the " delegated key query of A, it reuses those components in all subsequent
delegated key queries of A with the same parent TM M),

e At the end of interaction, .4 outputs a guess bit ¥’ € {0,1}. B outputs W =V as its guess bit
in its PPRF selective pseudorandomness experiment.

Observe that the simulation of Hyb, by B is perfect. Furter, if A wins in this simulated Hyb,,
then B wins in the selective pseudorandom experiment against the PPRF F. This completes the

proof of Lemma O

Appendix D: Proof of Theorem [6.1

Theorem [6.1] (Security of the ABS Scheme of Section [6.2). Assuming ZO is a secure
indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom function as

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 127

per Definition SSB is a somewhere statistically binding hash function according to Defini-
tion ACC is a secure positional accumulator as defined in Definition ITR is a secure
cryptographic iterator as per Definition[2.5], SPS is a secure splittable signature scheme according
to Definition[2.6, PRG is a secure injective pseudorandom generator, and SIG is existentially un-
forgeable against chosen message attack, the ABS scheme of Section[6.9 satisfies all the criteria
of a secure ABS defined in Definition |6.1].

Proof.
» Signer Privacy: Note that for any message msg € M s, (PPags = (HK,ZO(Verify.Prog, ,s[K])),

MSKps = (K, HK)) & ABS.Setup(1}), and @ € Uypg with || = £, a signature on msg under z is
of the form oyps = (VKsi, 0sic), where (SKge, VKsie) = SIG.Setup(1*; F(K, (Hux (), £2))), 051 =
SIG.Sign(SKgia, msg). Here, HK & SSB.Gen(1*, ngsppix = 2*,i* = 0) and K & F.Setup(1*).
Thus, the distribution of the signature o,ps is clearly the same regardless of the signing key
SKaps (M) that is used to compute it.

» Existential Unforgeability: We will prove the existential unforgeability of the ABS con-
struction of Section [6.2|against selective attribute adaptive chosen message attack by means of a
sequence of hybrid experiments. We will demonstrate based on the security of various primitives
that the advantage of any PPT adversary A in consecutive hybrid experiments differs only negli-
gibly as well as that in the final hybrid experiment is negligible. We note that due to the selective
attribute setting, the challenger B knows the challenge attribute string 2* = af ... 27 _; € Ujps
and the SSB hash value h* = Hux(z*) before receiving any signing key or signature query from
the adversary A. Suppose, the total number of signing key query and signature query made by
the adversary A be §kgy and sy respectively. As noted in Remark without loss of gener-
ality we will assume that A only queries signatures on messages under the challenge attribute
string x*. The description of the hybrid experiments follows:

Sequence of Hybrid Experiments

Hyb: This experiment corresponds to the real selective attribute adaptive chosen message un-
forgeability experiment described in Definition [6.1] of Section More precisely, this experiment
proceeds as follows:

e A submits a challenge attribute string «* = ... 2}._; € Uaps with |2*| = £* to B.

o B generates (PPyys = (HK, ZO(Verify.Prog, | K])), MSKxps = (HK, K)) < ABS.Setup(1*), as
described in Section @ and provides PP,pg to A.

e For n=1,...,4xsy, in response to the n'® signing key query corresponding to signing policy
™ M0 = <Q(’7), Yines Draps, 601 q(()n), q/(ﬁ;), ql(a%)ﬁ € M, with M (z*) = 0, B creates

SKABS(M(")) —

7 U U n (7
HK, PPgC)C,w(()), STORE(()), PPI(TI){, v(()),

IO(Init—SPS.Prog[qén), w(()”), v(()n), stggE})

TO(Accumulate.Prog[ngsp.pix = 27, HK, PP&@C, PPI(QI){, KéggE])
IO(Change—SPS.Prog[Ks(gng, KéggE])

TO(Constrained-Key.Prog, ,.[M ™, T = 2’\,PPE\@C,PPI(¥%,K, Kfn), ... ,K(n),K("))

sps,A

& ABS.KeyGen(MSK s, M(”)),

as described in Section and returns SKps (M(")) to A.
e For 0 = 1,...,dscn, in reply to the 0" signature query on message msg® under attribute

string z*, B identifies some TM M* € M), such that M*(z*) = 1, generates SKaps(M™) &

128 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

ABS.KeyGen(MSK,gs, M*), and computes J,g%)s = (VK;G,U&G(%) & ABS.Sign(SKaps(M™), z*,
msg?)) as described in Section B gives back a,(ﬁg)s to A.
e Finally, A outputs a forged signature o}, on some message msg* under attribute string x*.

Hyby, (v = 1,...,dkey): This experiment is similar to Hyb, except that for n € [fkgy], in
reply to the n*® signing key query of A corresponding to signing policy TM M® e M, with
M (z*) = 0, B returns the signing key

SKaps (M(n)) —

Ui U n n n
HK, PPgC)C, wé), STORE(()), PPI(T%, U(()),

TO(Init-SPS.Proglgl”, wi”, o{" K1))

TO(Accumulate.Prog[ngsppix = 27, HK, PPE\@C, PPI(QI)Q, KS(;QE]) ,
IO(Change—SPS.Prog[Ks(gg’A, KS(IQE])

TO(Constrained-Key.Prog/, . [M ", T = 2, PP,&@C, PPI(}Q{, K, Kfn), A K&n), Ks(g;A, h*, %))

if n<v, where the program Constrained-Key.Prog) ., is an alteration of the program
Constrained-Key.Prog, .« (Fig. and is described in Fig. while it returns the signing
key

SKABS(M(”)) —

n n n Ui n
HK, PP&C)C,wé), STORE[()), PPI(T%, v[()),

IO(Init—SPS.Prog[q(()n), w(()n)7 U(()n), Ks(ggE])
TO(Accumulate.Prog[ngsp.pix = 27, HK, pp{". ppil) K;?;E]) ;
ZO(Change-SPS.Prog[K\1) ,, K7 ,])

TO(Constrained-Key.Prog, . [M ™, T = 22, ppile, ppi, K, K{" ... K\, K 1)

if n > v. Observe that Hyb o coincides with Hyb.

Hyb,: This experiment coincides with Hyb, ; . More formally, in this experiment for n =
1,...,G4key, in reply to the n'* signing key query of A corresponding to signing policy TM
M e M, with M®™ (z*) = 0, B generates all the components of the signing key as in Hyby,
however, it returns the signing key

SKABS(M(")) —

n n n Ui n
HK, PP(AC)C, w(()), STOREE)),PPI(T;){,U(()),

IO(Init—SPS.Prog[qém, w[()n) , v(()n), KéggE])

TO(Accumulate.Prog[ngsppix = 2°, HK, pp{", ppil) stgg,E])

TO(Change-SPS.Prog[K{) 4, K7])

TO(Constrained-Key.Prog/, . [M ™, T = 2}, PP,(\Z)C, PPI(%){, K, Kfn), c K/(\n), Kég;A, h*, €*])

The rest of the experiment is analogous to Hyby.

Hyb,: This experiment is identical to Hyb; other than the following exceptions:

I) Upon receiving the challenge attribute string x*, B proceeds as follows:
g g g

1. Tt selects a PPRF key K & f.Setup(l)‘) and generates HK vl SSB.Gen(l’\,nSSB_BLK =
2)i* = 0) just as in Hyby,

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 129

Constants: TM M = (Q, Xixr, Xrare, 8, @0, Gac, Gres), Time bound T' = 2>‘7 Public parameters for positional
accumulator PP,cc, Public parameters for iterator PPy, PPRF keys K, K1, ..., K, Kss, 4, SSB
hash value of challenge input h*, Length of challenge input £*

Inputs: Time t, String SEEDy, Header position POS, Symbol SYMy, TM state ST\, Accumulator value
wiy, Accumulator proof i, Auxiliary value AUX, Iterator value vy, SSB hash value h, Length
Line, Signature osps iy

Output: (SIG signing key SKg, SIG verification key VKgc), or Header Position (POSour, Symbol SYMoyr,
TM state STour, Accumulator value wour, Iterator value vour, Signature ospsour, String SEEDgyr),
or L

1. Identify an integer T such that 27 <t < 2711,
If [PRG(SEEDw) # PRG(F (K-, (h,lixe)))] A [t > 1], output L.
If ACC.Verify-Read(PPacc, Win, SYMuy, POSin, Tacc) = 0, output L.
) ComPUte Tsps,A =]:(KSPS,A7 (h, EINP, t— 1)), (SKSPS,A7 VKsps, A, VKSPS—REJ,A) = SSBSetUP(l)\; TSPS,A)«
) Set mu = (v, STin, Win, POS). If SPS.Verify(VKsps, 4, mun, sps,n) = 0, output L.
) Compute (STour, SYMour, 3) = §(STuw, SYMy) and POSour = POSwy + 3.
) If STour = Gres, output L.

Else if [STour = qac] A [(h, bwe) # (R*,£*)], perform the following:

(I) Compute rge = F(K, (h, bwe)), (SKsic, VKsic) = SIG.Setup(lA; Tig)-

(IT) Output (SKsia, VKsic).

Else if STour = gac, output L.
) Compute wour = ACC.Update(PPacc, Win, SYMour, POSiy, AUX). If wour = L, output L.
) Compute vour = ITR.Iterate(PPirg, Uix, (STin, Wi, POSI))-
) Compute 7"s/‘Ps,A =]:(KSP&Av (h'7 Lixe, t))7 (SK;PS,A7 VK;PS,A? VK;PS—REJ,A) = SPS-SetuP(:lA; Ts/‘PS,A)'
) Set moyr = (UOI'T7 STour, Wour, POSOUT)- ComDUte Osps,our — SPS.Sign(SK;PS,A, mOI'T)~
7. Ift+1=2", set SEEDous = F(Kry (hy lixp)).-

Else, set SEEDoyr = €

8. OutPUt (POSOUT, SYMourt, STour, Woutr, Vour, Tsps,0UT, SEEDOUT)~

Fig. D.1. Constrained-Key.Prog/,

2. It then computes h* = Hux(z*) and creates the punctured PPRF key K{(h*,¢*)} &
F.Puncture(K, (h*, £*)),

3. Tt computes 7%, = F(K, (h*,£*)), forms (SK%, VKge) = SIG.Setup(1*;7,,),

4. It sets the public parameters PP ygs to be given to A as PPgs = (HK, ZO(Verify.Prog) .o [K {(h*,

)}, VK, h*, £*])), where the program Verify.Prog),s is an alteration of the program
Verify.Prog, s (Fig. and is depicted in Fig.

Constants: Punctured PPRF key K{(h*,¢*)}, SIG verification key VKae, SSB hash value
of challenge input h*, Length of challenge input £*
Inputs: SSB hash value h, Length #p
Output: SIG verification key VR

(a) If (h,fne) = (R*,£7), output VKy.
Else compute 7uq = F(K{(h*,)}, (h, fwr)), (SKsie, VKsia) = SIG.Setup(1*; 7uc).
(b) Output VKge.

Fig. D.2. Verify.Prog/ .

130 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

(IT) For n = 1,..., 4y, in response to the n'™® signing key query of A corresponding to signing
policy TM M® ¢ M, with M (z*) = 0, B provides A with the signing key

SKABS(M(")) —

HK PP&C)C,wé), STORE[()), PPI(7T7}){, vé"),

O Inlt—SPS.Prog[q(()),w(()n),v(()n),KS(g;E])

(
ZO(Accumulate.Prog[ngssp px = 2)‘, HK, PP&@C, PPI(?T){, KS(IQE])
ZO(Change-SPS.Prog| S(PgA’KS(ITD]g,E])
IO(Constramed Key.ProgABS[M(”), T =2, PP/(XQC, PPI(QI){, K{(h*,0*)}, KY'), Cee Ky’),
SPs A

Hybs: This experiment is similar to Hyb, with the only exception that B selects 75 & YVopre-
More formally, this experiment has the following deviations from hyb,:

(I) In this experiment B creates the punctured PPRF key K{(h* ¢*)} as in Hyb,, how-
ever, it generates (SKg,VKyg) iSIG.Setup(l)‘). It includes the obfuscated program

ZO(Verify.Prog), o [K{(h*,€*)}, VKiq,h*,£*]) within the public parameters PP,zs to be
provided to A as earlier.

(II) Also, for # = 1,...,{scx, to answer the §* signature query of A on message msgl®) ¢

M s under attribute string z*, B computes o—é?c) & SIG.Sign(SKY,, msg®) and returns

6
agB)s = (VKSIG, USIG) to A.

Analysis

Let Advfg)()\), Advfg’y)()\) (v=1,...,dkey), Advi)(k), Advf)()\), and Advfi’)(/\) represent respec-
tively the advantage of the adversary A, i.e., A’s probability of successfully outputting a valid
forgery, in Hyby, Hyby,, (v = 1,...,dxey), Hyby, Hyby, and Hyb; respectively. Then, by the de-
scription of the hybrid experiments it follows that Adv’™"" (X)) = Advg‘))()\) = Advfg’o)()\)
and Adv!})()\) = Adv Eg’q”y)()\). Hence, we have

qAKEY
AV () < ST AV Y () — AdVE (4 |+Z|Adv D) = AT)]+ AV (V).
(D.1)
Lemmas will show that the RHS of Eq. (D.1) is negligible and thus the existential
unforgeability of the ABS construction of Section follows. O

D.1 Lemmas for the Proof of Theorem

Lemma D.1. Assuming ZO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition [2.3, SSB is a somewhere statisti-
cally binding hash function according to Definition ACC is a secure positional accumula-
tor as defined in Definition ITR is a secure cryptographic iterator as per Definition
SPS is a secure splittable signature scheme according to Definition [2.6, and PRG is a secure
injective pseudorandom generator, for any PPT adversary A, for any security parameter X,

\Advfg’y_l)(/\)AdvEg’V)(/\)] < negl(\) for some negligible function negl.

Proof. The proof of Lemma [B] is similar to that of Lemma [A73] and, therefore, is omitted to
avoid repetition. O

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 131

Lemma D.2. Assuming ZO is a secure indistinguishability obfuscator for P/poly and F satis-
fies the correctness under puncturing property defined in Definition [2.3, for any PPT adversary
A, for any security parameter A, |Adv£i)()\) — Advf)()\)] < negl(\) for some negligible function

negl.
Proof. The two differences between Hyb; and Hyb, are the following:

(I) In Hyb,, B includes ZO(Vy) within the public parameters PP,gs provided to A, whereas, in
Hyb,, B includes the program ZO(V;) within PP,gg, where
— (Vo) = Verify.Prog, s [K] (Fig. 7
— (V1) = Verify.Prog),[K {(h*, £*)}, VR s, h*, £*] (Fig. [D.2).

(II) Forn =1,...,{xey, the signing key SK,ps(M) returned by B to A corresponding to signing
policy TM M € M, with M (z*) = 0, includes the program IO(PO(")) in the experiment
Hyb,, while SK,ps(M ™) includes the program IO(Pl(n)) in Hyb,y, where
— Pén) = Constrained-Key.Prog’, . [M), T = 2*, PP(AZ)C, PP%&,K, K{n), e K/(\n), KM h*, 0%,

sps,A?
— P = Constrained-Key.Prog/,, [M ™, T = 2%, pp{l, pp{T), K{(h*,)}, K", ..., K\, K\ 4,
h*, %],
the program Constrained—Key.Prog;BS being described in Fig. [D.1

Now, observe that on input (h, fixp) # (h*,£*), both the programs Vj and V; operates in the
same manner only that the latter one uses the punctured PPRF key K{(h*,¢*)} for computing
the string 74 instead of the full PPRF key K used by the former program. Therefore, by the
correctness under puncturing property of PPRF F, it follows that for all inputs (h,fnp) #
(h*,£*), both the programs have identical output. Moreover, on input (h*,£*), V; outputs the
hardwired SIG verification key VK, which is computed as (SKj, VKae) = SIG.Setup(1Y; 7%,
where 7%, = F(K, (h*,¢*)). Notice that these values are exactly the same as those outputted Vp
on input (h*,¢*). Thus, the two programs are functionally equivalent.

Further, note that the program Constrained-Key.Prog’, ., computes F (K, (h, fixp)) if and only

if (h, linp) # (h*, €%). Thus, again by the correctness under puncturing property of PPRF F, the
(n)

programs FPy" and Pl(n) are functionally equivalent as well for all n € [Gxgy].

Thus the security of ZO, Lemma [D.2] follows. Observe that to prove this lemma we would
actually have to proceed through a sequence of intermediate hybrid experiments where in each
hybrid experiment we switch the programs one at a time. O

Lemma D.3. Assuming F is a secure puncturable pseudorandom function as per Definition[2.3,
for any PPT adversary A, for any security parameter X, \Advg)()\) - Advfi')()\)\ < negl(\) for
some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which \Advg) (N) —Advf) (M\)| is non-negligible.
Below we construct a PPT adversary B that breaks the selective pseudorandomness of the PPRF
F using A as a sub-routine.

e B initializes A on input 1* and receives a challenge attribute string z* = TG - Tpe_q € Unps
with |z*| = ¢* from A.
o After receiving x*, B proceeds as follows:
1. B first generates HK ul SSB.Gen(1*, ngsp-pik = 2*,4* = 0) and computes h* = Hy ().
2. B sends (h*,¢*) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back a punctured PPRF key K*{(h*,¢*)} along with a challenge value

r* € YVpprr, where either r* = F(K*, (h*,£*)} or r* & Veprr. B implicitly views the key
K* as the key K.
3. Then B creates (SK&, VKee) = SIG.Setup(1?; r*).

132 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

4. Next, B sets public parameters PP,ps = (HK, ZO(Verify.Prog) . [K*{(h*, £*)}, VK5, h*, £*]))

and gives it to A.
e Forn=1,...,{xsy, to answer the n*" signing key query of A corresponding to signing policy

TM M® € My, with M (2*) = 0, B executes the following steps:

1. At first, B chooses PPRF keys K{n), e ,Kg\n), Kégg,Av Ks(gg,E & F.Setup(1}).

2. Next, B creates (PPI(:QC, wé"), STORE(({])) & ACC Setu p(1M, nacenk = 2*) and (PPI(%?{, vén)) bl
ITR.Setup(1*, nyrr = 27).

3. B returns A the signing key

SKABS(M(")) —

n n n Ui n
HK, PP[(m)C,w((J), STOREE)), PPI(T;){, v[()),

ZO(Init-SPS.Proglgy”, wi”, vy, K 1)

TO(Accumulate.Prog[ngsp ik = 27, HK, pp{". PRl KS(;’gE])

ZO(Change-SPS.Prog[K\1) ,, K7])

TO(Constrained-Key.Prog',, [M™, T = 2%, pp\l, pp{Iy, K*{(h*, %)}, K, .. ,K/(\"),
K(W) h*, E*D

sps,A»

gth signature query of A on message msg(e) € Maps

under attribute string z*, B computes Jéf}g & SIG.Sign(SKy,, msg(e)) and provides A with

0) _ (9)

OABs = (\//R;c;; USIG)-

e Finally, A output a signature o, on some message msg* under attribute string z*. B outputs
Y = 1 as its guess bit in its PPRF selective pseudorandomness experiment if A wins, i.e.,
if ABS.Verify(PP s, 2", msg*, 0% ,s) = 1 and msg* # msg®) for any 6 € [Gsion]. Otherwise, B
outputs ' = 0 in its PPRF selective pseudorandomness experiment.

e For § =1,...,{dscn, in response to the

Notice that if r* = F(K*, (h*,£*)), then B perfectly simulates hyb,. On the other hand, if
& YVreprr, then B perfectly simulates Hybs. This completes the proof of Lemma O

Lemma D.4. Assuming SIG is existentially unforgeable against CMA, for any PPT adversary

A, for any security parameter X, Advfj’)()\) < negl(X\) for some negligible function negl.

Proof. Suppose that there exists a PPT adversary A for which Advfi’)(/\) is non-negligible. We
construct a PPT adversary B that breaks the existential unforgeability of SIG using A as a
sub-routin. The description B is as follows:

e BB receives a SIG verification key VK{,, from its SIG existential unforgeability challenger C.
Then, B runs A on input 1* and receives a challenge attribute string =* = xf; . . . Tpe_1 € Unps
with |z*| = ¢* from A.

e After receiving x*, B proceeds as follows:

1. B first generates HK & SSB.Gen(1*, ngsp-pix = 2*,4* = 0) and computes h* = Hy ().

2. Next, it selects a PPRF key K & F.Setup(1*) and creates the punctured PPRF key
K{(h*,0*)} & F.Puncture(K, (h*, £*)).

3. Next, B sets public parameters PP,ps = (HK, ZO(Verify.Prog) ,o[K{(h*, €*)}, VKE,, h*, £*]))
and gives it to A.

e Forn=1,...,{xsy, to answer the n*" signing key query of A corresponding to signing policy
TM M® e My, with M (z*) = 0, B executes the following steps:

1. At first, B chooses PPRF keys K\ .. K™ K@ K" & FSetup(1}).

Sps,A? “*sps,E
2. Next, B creates (PPS\@C, wé"), STORE((]n)) & ACC.Setup(1*, nacenk = 2) and (PPI(%){7 vén)) &
|TRS€tUp(1>\,n1TR == 2A).

Verifiable and Delegatable CPRF’s for Unconstrained Inputs 133

3. B returns A the signing key

SKABS(M(W)) —

n
HK, PP&@C, w((]"), STORE((J), PPI(7T7;){, v(()"),

IC’)(Init-SPS.Prog[q(()n) , w(()n), U(()n), Ks(ng])

TO(Accumulate.Prog[ngspprx = 27, HK, PP&@C, pr;@){, Ks(ng])
(
(

O Change—SPS.Prog[KS(g;A, KéggE])
TO(Constrained-Key. Progly s [M ™, T = 2, pp{W,, pp{, K{ (1, 04)}, K\, ... K",
Ks(ggyAa h*a é*])
e For 0 =1,...,{sin, in response to the 8™ signature query of A on message msg® € Mz

under attribute string z*, B forwards the message msg(®) to C and receives back a signature
aélac) on msg®) from C. B provides, a,(ﬁg)s = (VK;fIG,Ué?();) to A.

e At the end of interaction, A outputs a signature o, = (VKyq, 0l) On some message msg*
under attribute string z*. B outputs (msg*, o%,,) as a forgery in its existential unforgeability

experiment against SIG.

Observe that the simulation of the experiment Hybs; by B is perfect. Now, if 4 wins in the
above simulated experiment, then the following must hold simultaneously:

(I) ABS.Verify(PP,gs, z*, msg*, o5ps) = 1.
(I1) msg* # msg® for any 6 € [Gsian].

Note that ABS.Verify(PP ypg, 7%, msg*, 0% ,) = 1 implies [VKy,, = VK] A [SIG. Verify(VKy,,, msg*,
0t.) = 1], i.e., SIG.Verify(VKZ,., msg*, 0f,,) = 1. Further, notice that msg®, for 6 € [sian], are
the only messages that B queried a signature on to C. Thus, (msg*, 0,) is indeed a valid forgery
in the existential unforgeability experiment against SIG. O

	Verifiable and Delegatable CPRF's for Unconstrained Inputs
	Introduction
	Preliminaries
	Turing Machines
	Indistinguishability Obfuscation
	Puncturable Pseudorandom Function
	IO-Compatible Cryptographic Primitives
	Somewhere Statistically Binding Hash Function
	Positional Accumulator
	Iterator
	Splittable Signature

	Our Constrained Pseudorandom Function for Turing Machines
	Notion
	The CPRF Construction of Deshpande et al.
	Overview of Our Techniques to Fix the Flaw of deshpandeconstrained
	Formal Description of Our CPRF Construction

	Our Constrained Verifiable Pseudorandom Function for Turing Machines
	Notion
	Construction

	Our Delegatable Constrained Pseudorandom Function for Turing Machines
	Notion
	Construction

	Application: Attribute-Based Signature for Turing Machines
	Notion
	Construction

	Conclusion
	Proof of th1
	Lemmas for the Proof of th1
	Lemmas for the proof of lemma11

	Proof of th2
	Lemmas for the Proof of th2

	Proof of th3
	Lemmas for the Proof of th3

	Proof of th4
	Lemmas for the Proof of th4

