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Abstract. Constrained pseudorandom functions (CPRF) are a fundamental extension of the no-
tion of traditional pseudorandom functions (PRF). A CPRF enables a master PRF key holder to
issue constrained keys corresponding to specific constraint predicates over the input domain. A
constrained key can be used to evaluate the PRF only on those inputs which are accepted by the
associated constraint predicate. However, the PRF outputs on the rest of the inputs still remain
computationally indistinguishable from uniformly random values. A constrained verifiable pseudo-
random function (CVPRF) enhances a CPRF with a non-interactive public verification mechanism
for checking the correctness of PRF evaluations. A delegatable constrained pseudorandom function
(DCPRF) is another extension which augments a CPRF to empower constrained key holders to del-
egate further constrained keys that allow PRF evaluations on inputs accepted by more restricted
constraint predicates compared to ones embedded in their own constrained keys. Until recently,
all the proposed constructions of CPRF’s and their extensions(i) either could handle only bounded
length inputs, (ii) or were based on risky knowledge-type assumptions. In EUROCRYPT 2016,
Deshpande et al. have presented a CPRF construction supporting inputs of unconstrained polyno-
mial length based on indistinguishability obfuscation and injective pseudorandom generators, which
they have claimed to be selectively secure. In this paper, we first identify a flaw in their security
argument and resolve this by carefully modifying their construction and suitably redesigning the
security proof. Our alteration does not involve any additional heavy duty cryptographic tools. Next,
employing only standard public key encryption (PKE), we extend our CPRF construction, presenting
the first ever CVPRF and DCPRF constructions that can handle inputs of unbounded polynomial
length. Finally, we apply our ideas to demonstrate the first known attribute-based signature (ABS)
scheme for general signing policies supporting signing attributes of arbitrary polynomial length.

Keywords: constrained pseudorandom functions, verifiable constrained pseudorandom function,
key delegation, indistinguishability obfuscation

1 Introduction

Constrained Pseudorandom Functions: Constrained pseudorandom functions (CPRF),
concurrently introduced by Boneh and Waters [BW13], Boyle et al. [BGI14], as well as Kiayias
et al. [KPTZ13], are promising extension of the notion of standard pseudorandom functions
(PRF) [GGM86] – a fundamental primitive in modern cryptography. A standard PRF is a deter-
ministic keyed function with the following property: Given a key, the function can be computed
in polynomial time at all points of its input domain. But, without the key it is computationally
hard to distinguish the PRF output at any arbitrary input from a uniformly random value, even
after seeing the PRF evaluations on a polynomial number of inputs. A CPRF is an augmentation
of a PRF with an additional constrain algorithm which enables a party holding a PRF key, also
referred to as a master PRF key, to derive constrained keys that allow the evaluation of the PRF
over certain subsets of the input domain. However, PRF evaluations on the rest of the inputs
still remain computationally indistinguishable from random.

Since their inception, CPRF’s have found countless interesting applications in various branches
of cryptography ranging from broadcast encryption [BW13] and attribute-based encryption
[DKW16] to policy-based key distribution [BW13] and multi-party (identity-based) non-interactive
key exchange [BZ14] ( [BW13]). Even the simplest class of CPRF’s, known as puncturable pseu-
dorandom functions (PPRF) [SW14], have turned out to be a powerful tool in conjunction
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with indistinguishability obfuscation [GGH+13, GLSW15]. In fact, the combination of these
two primitives have led to solutions of longstanding open problems including deniable encryp-
tion [SW14], full domain hash [HSW14], adaptively secure functional encryption for general func-
tionalities [Wat15], and functional encryption for randomized functionalities [GJKS15] through
the classic punctured programming technique introduced in [SW14].

Over the last few years there has been a significant progress in the field of CPRF’s. In terms of
expressiveness of the constraint predicates, starting with the most basic type of constraints such
as prefix constraints [BW13, BGI14, KPTZ13] (which also encompass puncturing constraints)
and bit fixing constraints [BW13,FKPR14], CPRF’s have been constructed for highly rich con-
straint families such as circuit constraints [BW13,BV15,BFP+15,HKKW14] employing diverse
cryptographic tools and based on various complexity assumptions. In terms of security, most
of the existing CPRF constructions are only selectively secure. The stronger and more realis-
tic notion of adaptive security seems to be rather challenging to achieve without complexity
leveraging. In fact, the best known results so far on adaptive security of CPRF’s require super-
polynomial security loss [FKPR14], or work for very restricted form of constraints [HKW15], or
attain the security in non-collusion mode [BV15], or accomplish security in the random oracle
model [HKKW14].

Constrained Verifiable Pseudorandom Functions: An interesting enhancement of the
usual CPRF’s is verifiability. A verifiable constrained pseudorandom function (CVPRF), indepen-
dently introduced by [Fuc14, CRV14], is the unification of the notions of a verifiable random
function (VRF) [MRV99] and a standard CPRF. In a CVPRF system, just like a traditional VRF,
a public verification key is set along with the master PRF key. Besides enabling the evaluation
of the PRF, the master PRF key can be utilized to generate a non-interactive proof of the cor-
rectness of evaluation. This proof can be verified by any party using only the public verification
key. On the other hand, as in the case of a CPRF, here also the master PRF key holder can
give out constrained keys for specific constraint predicates. A constrained key corresponding to
some constraint predicate p allows the evaluation of the PRF together with the generation of a
non-interactive proof of correct evaluation for only those inputs x for which p(x) = 1. In essence,
CVPRF’s resolve the issue of trust on a CPRF evaluator for the correctness of the received PRF
output. In [Fuc14,CRV14], the authors have shown that the CPRF constructions of [BW13] for
the bit fixing and circuit constraints can be augmented with the verifiability feature without
incurring any significant additional cost.

Delegatable Constrained Pseudorandom Functions: Key delegation is another vital en-
richment of standard CPRF’s. This feature empowers the holder of a constrained key, corre-
sponding to some constraint predicate p belonging to certain constraint family P over the input
domain of the PRF, with the ability to distribute further restricted keys corresponding to the
joint predicates p ∧ ep, for constraints ep ∈ P. Such a delegated key can be utilized to evaluate
the PRF on only those inputs x for which [p(x) = 1] ∧ [ep(x) = 1], whereas, the PRF outputs on
the rest of the inputs are computationally indistinguishable from random values. The concept of
key delegation in the context of CPRF’s has been recently introduced by [CRV14], who have also
shown how to extend the bit fixing and circuit-based CPRF constructions of [BW13] to support
key delegation.

CPRF’s for Unconstrained Inputs: Until recently, the research on CPRF’s has been confined
to inputs of apriori bounded length. In fact, all the CPRF constructions mentioned above could
handle only bounded length inputs. Abusalah et al. [AFP14] have taken a first step forward
towards overcoming the barrier of bounded input length. They have also demonstrated highly
motivating applications of CPRF’s supporting apriori unbounded or unconstrained length in-
puts such as broadcast encryption with an unbounded number of recipients and multi-party
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identity-based non-interactive key exchange with no pre-determined bound on the number of
parties. They presented a selectively secure CPRF for unconstrained length inputs by viewing the
constraint predicates as Turing machines (TM) that can handle inputs of arbitrary polynomial
length. In a more recent work, Abusalah and Fuchsbauer [AF16] have made progress towards
efficiency improvements by constructing TM-based CPRF’s with much shorter constrained keys
compared to the CPRF construction of [AFP14].

However, both the aforementioned CPRF constructions rely on the existence of public-
coin differing-input obfuscators [IPS15] and succinct non-interactive arguments of knowledge
[BCCT12,GW11], which are believed to be risky assumptions due to their inherent extractabil-
ity nature. Deshpande et al. [DKW16] have very recently built a selectively secure CPRF for
TM constraints, supporting inputs of unbounded polynomial length, based on the existence of
indistinguishability obfuscators (IO) for circuits and injective pseudorandom generators. Cur-
rently, there is no known impossibility or implausability result on IO and, moreover, in the
last few years, there has been a significant progress towards constructing IO based on standard
complexity assumptions [GLSW15,AJ15,AJS15]. Unfortunately however, as we find out in this
paper, the security argument of [DKW16] has a flaw. In view of this fact, the ambitious goal
of constructing CPRF’s for unconstrained inputs from IO for circuits still remains unaddressed.
Furthermore, all known constructions of CVPRF’s and CPRF’s endored with key delegation can
only support inputs of apriori bounded length.

Our Contributions

Our work in this paper is manifold:

• We first resolve the flaw in the security argument of the CPRF construction of [DKW16]
by carefully modifying the construction and suitably redesigning the security proof. While
modifying the CPRF construction of [DKW16], we only additionally use a somewhere statis-
tically binding (SSB) hash function [HW15,OPWW15] beyond the cryptographic tools used
by [DKW16]. In effect, our modified CPRF construction stands out as the first IO-based selec-
tively secure CPRF system for TM constraints that can handle inputs of arbitrary polynomial
length.

• Our second and more significant contribution is to enhance our CPRF construction with
verifiability and key delegation features, thereby, developing the first IO-based selectively
secure CVPRF and delegatable CPRF (DCPRF) constructions supporting inputs of unbounded
polynomial length. Towards achieveing those two augmentations of our CPRF, we only assume
the existence of a perfectly correct and chosen plaintext attack (CPA) secure public key
encryption scheme, which is evidently a minimal assumption.

• Finally, applying an analogous idea as the one used in our CVPRF construction, we build
the first (key-policy) attribute-based signature (ABS) scheme for general signing policies
supporting signing attributes of arbitrary polynomial length. In a (key-policy) ABS scheme
[MPR11,OT14, TLL14,SAH16], a setup authority holds a master signing key and publishes
system public parameters. Using its master signing key, the authority can distribute restricted
signing keys corresponding to specific signing policies. Such a constrained signing key enables
a signer to sign messages with respect to only those signing attributes which are accepted by
the signing policy embedded within the signing key. The signatures are verifiable by anyone
using solely the public parameters. By verifying a signature on some message with respect to
some signing attributes, a verifier gets convinced that the signature is indeed generated by a
signer possessing a signing key corresponding to some signing policy that accepts the signing
attributes. However, the verifier cannot trace the exact signer or signing policy used to gener-
ate the signature. Our ABS only uses an existentially unforgeable digital signature scheme in
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addition to the cryptographic building blocks employed in our CPRF construction. We note
that using a similar technique as that of our DCPRF construction, our ABS scheme can be
further enriched to support delegation of signing keys. We would also like to mention that
using the technique of universal TM, our key-policy ABS construction can be transformed
into a ciphertext-policy variant.

2 Preliminaries

Here we give the necessary background on various cryptographic primitives we will be using
throughout this paper. Let λ ∈ N denotes the security parameter. For n ∈ N and a, b ∈ N ∪ {0}
(with a < b), we let [n] = {1, . . . , n} and [a, b] = {a, . . . , b}. For any set S, υ $←− S represents
the uniform random variable on S. For a randomized algorithm R, we denote by ψ = R(υ; ρ)
the random variable defined by the output of R on input υ and randomness ρ, while ψ $←− R(υ)
has the same meaning with the randomness suppressed. Also, if R is a deterministic algorithm
ψ = R(υ) denotes the output of R on input υ. We will use the alternative notation R(υ) → ψ
as well to represent the output of the algorithm R, whether randomized or deterministic, on
input υ. For any string s ∈ {0, 1}∗, |s| represents the length of the string s. For any two strings
s, s′ ∈ {0, 1}∗, s‖s′ represents the concatenation of s and s′. A function negl is negligible if for
every integer c, there exists an integer k such that for all λ > k, |negl(λ)| < 1/λc.

2.1 Turing Machines

A Turing machine (TM) M is a 7-tuple M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 with the following
semantics:

– Q: The finite set of possible states of M .
– Σinp: The finite set of input symbols.
– Σtape: The finite set of tape symbols such that Σinp ⊂ Σtape and there exists a special blank

symbol ‘ ’ ∈ Σtape\Σinp.
– δ : Q×Σtape → Q×Σtape × {+1,−1}: The transition function of M .
– q0 ∈ Q: The designated start state.
– qac ∈ Q: The designated accept state.
– qrej( 6= qac) ∈ Q: The distinguished reject state.

For any t ∈ [T = 2λ], we define the following variables for M , while running on some input
(without the explicit mention of the input in the notations):

– posM,t: An integer which denotes the position of the header of M after the tth step. Initially,
posM,0 = 0.

– symM,t ∈ Σtape: The symbol stored on the tape at the posM,t
th location.

– sym(write)
M,t ∈ Σtape: The symbol to be written at the posM,t−1

th location during the tth step.
– stM,t ∈ Q: The state of M after the tth step. Initially, stM,0 = q0.

At each time step, theTM M reads the tape at the header position and based on the current
state, computes what needs to be written on the tape at the current header location, the next
state, and whether the header must move left or right. More formally, let (q, ζ, β ∈ {+1,−1}) =
δ(stM,t−1, symM,t−1). Then, stM,t = q, sym(write)

M,t = ζ, and posM,t = posM,t−1 + β. M accepts
at time t if stM,t = qac. In this paper we consider Σinp = {0, 1} and Σtape = {0, 1, }. Given
any TM M and string x ∈ {0, 1}∗, we define M(x) = 1, if M accepts x within T steps, and 0,
otherwise.
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2.2 Indistinguishability Obfuscation

The following formalization of indistinguishability obfuscation (IO) is due to Garg et al. [GGH+13].

Definition 2.1 (Indistinguishability Obfuscation: IO). An indistinguishability obfuscator
(IO) IO for a circuit class {Cλ}λ is a probabilistic polynomial-time (PPT) uniform algorithm
satisfying the following conditions:

� Correctness: IO(1λ, C) preserves the functionality of the input circuit C, i.e., for any
C ∈ Cλ, if we compute C ′ = IO(1λ, C), then C ′(υ) = C(υ) for all inputs υ.

� Indistinguishability: For any security parameter λ and any two circuits C0, C1 ∈ Cλ with
the same functionality, the circuits IO(1λ, C0) and IO(1λ, C1) are computationally indistin-
guishable. More precisely, for all (not necessarily uniform) PPT adversaries D = (D1,D2),
there exists a negligible function negl such that, if

Pr
�
(C0, C1, ξ)

$←− D1(1λ) : ∀ υ,C0(υ) = C1(υ)
�
≥ 1− negl(λ),

then
��Pr
�
D2(ξ, IO(1λ, C0)) = 1

�
− Pr

�
D2(ξ, IO(1λ, C1)) = 1

��� ≤ negl(λ).

We remark that the two distinct algorithms D1 and D2, which pass state ξ, can be viewed
equivalently as a single stateful algorithm D. In this paper we employ the latter approach,
although here we present the definition as it appears in [GGH+13]. When clear from the context,
we will drop 1λ as an input to IO and λ as a subscript of C.

The circuit class we are interested in are polynomial-size circuits, i.e., when Cλ is the collec-
tion of all circuits of size at most λ. This circuit class is denoted by P/poly. The first candidate
construction of IO for P/poly was presented by Garg et al. [GGH+13] in a generic model of
encoded matrices. Later, Pass et al. [PST14] and Gentry et al. [GLSW15] have shown that IO
for P/poly can be developed based on a single instance-independent assumption.

2.3 Puncturable Pseudorandom Function

Puncturable pseudorandom functions, first defined by Sahai and Waters [SW14], are a special
class of constrained pseudorandom functions, which we will formally define in Section 3.1. Here
we present the definition of puncturable pseudorandom functions following [SW14].

Definition 2.2 (Puncturable Pseudorandom Function: PPRF). A puncturable pseudo-
random function (PPRF) F : Kpprf×Xpprf → Ypprf consists of an additional punctured key space
Kpprf-punc other than the usual key spaceKpprf and PPT algorithms (F .Setup,F .Eval,F .Puncture,
F .Eval-Punctured) described below. Here, Xpprf = {0, 1}`pprf-inp and Ypprf = {0, 1}`pprf-out , where
`pprf-inp and `pprf-out are polynomials in the security parameter λ,

F .Setup(1λ)→ K : The setup authority takes as input the security parameter 1λ and uniformly
samples a PPRF key K ∈ Kpprf.

F .Eval(K,x) → r : The setup authority takes as input a PPRF key K ∈ Kpprf along with an
input x ∈ Xpprf. It outputs the PPRF value r ∈ Ypprf on x. For simplicity, we will represent
by F(K,x) the output of this algorithm.

F .Puncture(K,x) → K{x} : Taking as input a PPRF key K ∈ Kpprf along with an element
x ∈ Xpprf, the setup authority outputs a punctured key K{x} ∈ Kpprf-punc.



6 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

F .Eval-Puncured(K{x}, x′) → r or ⊥ : An evaluator takes as input a punctured key K{x} ∈
Kpprf-punc along with an input x′ ∈ Xpprf. It outputs either a value r ∈ Ypprf or a distin-
guished symbol ⊥ indicating failure. For simplicity, we will represent by F(K{x}, x′) the
output of this algorithm.

The algorithms F .Setup and F .Puncture are randomized, whereas, the algorithms F .Eval and
F .Eval-Punctured are deterministic. The algorithms satisfy the following properties:

� Correctness under Puncturing: Consider any security parameter λ, K ∈ Kpprf, x ∈ Xpprf,
and K{x} $←− F .Puncture(K,x). Then it must hold that

F(K{x}, x′) =
¨
F(K,x′), if x′ 6= x
⊥, otherwise

� Selective Pseudorandomness at Punctured Points: This property of a PPRF is defined
through the following experiment between an adversary B and a challenger C:

• B submits a challenge input x∗ ∈ Xpprf to C.
• C chooses uniformly at random a PPRF key K∗

$←− Kpprf and a random bit b̂ $←− {0, 1}. It
computes the punctured key K∗{x∗} $←− F .Puncture(K∗, x∗). If b̂ = 0, it sets r∗ = F(K∗, x∗).
Otherwise, it selects r∗ $←− Ypprf. It sends back (K∗{x∗}, r∗) to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The PPRF F is selectively pseudorandom at punctured points if for any PPT adversary B, for
any security parameter λ,

AdvF ,sel-pr
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

Boneh and Waters [BW13], Boyle et al. [BGI14], as well as Kiayias et al. [KPTZ13] have concur-
rently shown that the tree-based PRF constructed by Goldreich et al. [GGM86] can be modified
in a straightforward fashion to build a PPRF from one-way functions.

2.4 IO-Compatible Cryptographic Primitives

In this section, we present certain IO-friendly cryptographic tools which we will be using in the
sequel.

2.4.1 Somewhere Statistically Binding Hash Function

We provide the definition of somewhere statistically binding hash function as defined by Hubacek
et al. [HW15].

Definition 2.3 (Somewhere Statistically Binding Hash Function: SSB Hash). A some-
where statistically binding (SSB) hash consists of the PPT algorithms (SSB.Gen,H,SSB.Open,
SSB.Verify) along with a block alphabet Σssb-blk = {0, 1}`ssb-blk , output size `ssb-hash, and open-
ing space Πssb = {0, 1}`ssb-open , where `ssb-blk, `ssb-hash, `ssb-open are some polynomials in the
security parameter λ. The algorithms have the following syntax:

SSB.Gen(1λ, nssb-blk, i
∗)→ hk : The setup authority takes as input the security parameter 1λ,

an integer nssb-blk ≤ 2λ representing the maximum number of blocks that can be hashed,
and an index i∗ ∈ [0, nssb-blk − 1] and publishes a public hashing key hk.
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Hhk : x ∈ Σnssb-blk
ssb-blk → h ∈ {0, 1}`ssb-hash : This is a deterministic function that has the hash key

hk hardwired. A user runs this function on input x = x0‖ . . . ‖xnssb-blk−1 ∈ Σnssb-blk
ssb-blk to obtain

as output h = Hhk(x) ∈ {0, 1}`ssb-hash .

SSB.Open(hk, x, i)→ πssb : Taking as input the hash key hk, input x ∈ Σnssb-blk
ssb-blk, and an index

i ∈ [0, nssb-blk − 1], a user creates an opening πssb ∈ Πssb.

SSB.Verify(hk, h, i, u, πssb)→ β̂ ∈ {0, 1} : On input a hash key hk, a hash value h ∈ {0, 1}`ssb-hash ,
an index i ∈ [0, nssb-blk − 1], a value u ∈ Σssb-blk, and an opening πssb ∈ Πssb, a verifier
outputs a bit β̂ ∈ {0, 1}.

The algorithms SSB.Gen and SSB.Open are randomized, while the algorithm SSB.Verify is de-
terministic. An SSB hash satisfies the following properties:

� Correctness: For any security parameter λ, integer nssb-blk ≤ 2λ, i, i∗ ∈ [0, nssb-blk −
1], hk $←− SSB.Gen(1λ, nssb-blk, i

∗), x ∈ Σnssb-blk
ssb-blk, and πssb

$←− SSB.Open(hk, x, i), we have
SSB.Verify(hk,Hhk(x), i, xi, πssb) = 1.

� Index Hiding: The index hiding property of an SSB hash is defined through the follow-
ing experiment between an adversary B and a challenger C:

• B chooses an integer nssb-blk ≤ 2λ together with a pair of indices i∗0, i∗1 ∈ [0, nssb-blk− 1], and
submits them to C.
• C selects a random bit b̂ $←− {0, 1} and computes hk $←− SSB.Gen(1λ, nssb-blk, i

∗
b̂
), and returns

hk to B.
• B eventually outputs a guess bit b̂′ ∈ {0, 1}.

The SSB hash is said to be index hiding if for any PPT adversary B, for any security parameter
λ,

Advssb,ih
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� Somewhere Statistically Binding: An SSB hash key hk is said to be statistically binding
for an index i∗ ∈ [0, nssb-blk − 1] if there do not exist any h ∈ {0, 1}`ssb-hash , u 6= u′ ∈ Σssb-blk,
and πssb, π

′
ssb ∈ Πssb such that SSB.Verify(hk, h, i∗, u, πssb) = 1 = SSB.Verify(hk, h, i∗, u′, π′ssb).

The SSB hash is defined to be somewhere statistically binding if for any security parameter
λ, integer nssb-blk ≤ 2λ, index i∗ ∈ [0, nssb-blk − 1], the hash key hk $←− SSB.Gen(1λ, nssb-blk, i

∗)
is statistically binding for i∗. Note that this is an information theoretic property.

The first construction of an SSB hash is presented by Hubacek et al. [HW15]. Their con-
struction is based on fully homomorphic encryption (FHE) [Gen09]. Recently, Okamoto et
al. [OPWW15] provides alternative constructions of SSB hash based on various standard number
theoretic assumptions.

In this paper, we will consider `ssb-blk = 1 and nssb-blk = 2λ.

2.4.2 Positional Accumulator

We will now present the notion of a positional accumulator as defined by Koppula et al. [KLW15].

Definition 2.4 (Positional Accumulator). A positional accumulator is comprised of the
PPT algorithms (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-Enforce-Write, ACC.Prep-Read,
ACC.Prep-Write, ACC.Verify-Read, ACC.Write-Store, ACC.Update) along with a block alphabet
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Σacc-blk = {0, 1}`acc-blk , accumulator size `acc-accumulate, proof space Πacc = {0, 1}`acc-proof

where `acc-blk, `acc-accumulate, `acc-proof are some polynomials in the security parameter λ. The
algorithms have the following syntax:

ACC.Setup(1λ, nacc-blk) → (ppacc, w0, store0) : The setup authority takes as input the secu-
rity parameter 1λ and an integer nacc-blk ≤ 2λ representing the maximum number of blocks
that can be accumulated. It outputs the public parameters ppacc, an initial accumulator
value w0, and an initial storage value store0.

ACC.Setup-Enforce-Read(1λ, nacc-blk, ((x1, i1), . . . , (xκ, iκ)), i∗) → (ppacc, w0, store0) : On in-
put the security parameter 1λ, an integer nacc-blk ≤ 2λ representing the maximum number
of blocks that can be accumulated, a sequence of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈
(Σacc-blk× [0, nacc-blk−1])κ, and an additional index i∗ ∈ [0, nacc-blk−1], the setup author-
ity publishes the public parameters ppacc, an initial accumulator value w0, together with an
initial storage value store0.

ACC.Setup-Enforce-Write(1λ, nacc-blk, ((x1, i1), . . . , xκ, iκ))) → (ppacc, w0, store0) : On input
the security parameter 1λ, an integer nacc-blk ≤ 2λ denoting the maximum number of blocks
that can be accumulated, and a sequence of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈
(Σacc-blk × [0, nacc-blk − 1])κ, the setup authority publishes the public parameters ppacc,
an initial accumulator value w0, as well as, an initial storage value store0.

ACC.Prep-Read(ppacc, storein, iin) → (xout, πacc) : A storage-maintaining party takes as in-
put the public parameter ppacc, a storage value storein, and an index iin ∈ [0, nacc-blk− 1].
It outputs a symbol xout ∈ Σacc-blk∪{ε} (ε being the empty string) and a proof πacc ∈ Πacc.

ACC.Prep-Write(ppacc, storein, iin) → aux : Taking as input the public parameter ppacc, a
storage value storein, together with an index iin ∈ [0, nacc-blk − 1], a storage-maintaining
party outputs an auxiliary value aux.

ACC.Verify-Read(ppacc, win, xin, iin, πacc)→ β̂ ∈ {0, 1} : A verifier takes as input the public pa-
rameter ppacc, an accumulator value win ∈ {0, 1}`acc-accumulate , a symbol xin ∈ Σacc-blk ∪ {ε},
an index iin ∈ [0, nacc-blk − 1], and a proof πacc ∈ Πacc. It outputs outputs a bit β̂ ∈ {0, 1}.

ACC.Write-Store(ppacc, storein, iin, xin)→ storeout : On input the public parameters ppacc,
a storage value storein, an index iin ∈ [0, nacc-blk − 1], and a symbol xin ∈ Σacc-blk, a
storage-maintaining party computes a new storage value storeout.

ACC.Update(ppacc, win, xin, iin,aux) → wout or ⊥ : An accumulator-updating party takes as
input the public parameters ppacc, an accumulator value win ∈ {0, 1}`acc-accumulate , a symbol
xin ∈ Σacc-blk, an index iin ∈ [0, nacc-blk − 1], and an auxiliary value aux. It outputs the
updated accumulator value wout ∈ {0, 1}`acc-accumulate or the designated reject string ⊥.

Following [KLW15,DKW16], we will consider the algorithms ACC.Setup, ACC.Setup-Enforce-Read,
and ACC.Setup-Enforce-Write as randomized while all other algorithms as deterministic in this
paper. The algorithms satisfy the following properties:

� Correctness: Consider any symbol-index pair sequence ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk ×
[0, nacc-blk − 1])κ. Fix any (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk). For j = 1, . . . , κ,
iteratively define the following:

– storej = ACC.Write-Store(ppacc, storej−1, ij , xj)
– auxj = ACC.Prep-Write(ppacc, storej−1, ij)
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– wj = ACC.Update(ppacc, wj−1, xj , ij ,auxj)

The following correctness properties are required to be satisfied:

i) For any security parameter λ, nacc-blk ≤ 2λ, index i∗ ∈ [0, nacc-blk− 1], sequence of symbol-
index pairs ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk× [0, nacc-blk−1])κ, and (ppacc, w0, store0) $←−
ACC.Setup(1λ, nacc-blk), if storeκ is computed as above, then ACC.Prep-Read(ppacc, storeκ,
i∗) returns (xj , πacc) where j is the largest value in [κ] such that ij = i∗.

ii) For any security parameter λ, nacc-blk ≤ 2λ, sequence of symbol-index pairs ((x1, i1), . . . , (xκ,
iκ)) ∈ (Σacc-blk × [0, nacc-blk − 1])κ, i∗ ∈ [0, nacc-blk − 1], and (ppacc, w0, store0) $←−
ACC.Setup(1λ, nacc-blk), if storeκ and wκ are computed as described above and (xout, πacc) =
ACC.Prep-Read(ppacc, storeκ, i∗), then ACC.Verify-Read(ppacc, wκ, xout, i

∗, πacc) = 1.

� Indistinguishability of Read Setup: This property of a positional accumulator is defined
through the following experiment between an adversary B and a challenger C:

• B chooses a bound nacc-blk ≤ 2λ of the number of blocks, κ symbol-index pairs ((x1, i1), . . . ,
(xκ, iκ)) ∈ (Σacc-blk× [0, nacc-blk− 1])κ, and an index i∗ ∈ [0, nacc-blk− 1]. It submits all of
those to C.
• C selects a random bit b̂ $←− {0, 1}. If b̂ = 0, C generates (ppacc, w0, store0) $←− ACC.Setup(1λ,
nacc-blk). Otherwise, C generates (ppacc, w0, store0) $←− ACC.Setup-Enforce-Read(1λ, nacc-blk,
((x1, i1), . . . , (xκ, iκ)), i∗). It returns (ppacc, w0, store0) to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The positional accumulator is said to satisfy indistinguishability of read setup if for any PPT
adversary B, for any security parameter λ, we have

Advacc,ind-read
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� Indistinguishability of Write Setup: This property of a positional accumulator is de-
fined through the following experiment between an adversary B and a challenger C:

• B chooses a bound nacc-blk ≤ 2λ of the number of blocks and κ symbol-index pairs ((x1, i1), . . . ,
(xκ, iκ)) ∈ (Σacc-blk × [0, nacc-blk − 1])κ. It submits all of those to C.
• C selects a random bit b̂ $←− {0, 1}. If b̂ = 0, C generates (ppacc, w0, store0) $←− ACC.Setup(1λ,
nacc-blk). Otherwise, C generates (ppacc, w0, store0) $←− ACC.Setup-Enforce-Write(1λ, nacc-blk,
((x1, i1), . . . , (xκ, iκ))). It returns (ppacc, w0, store0) to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

A positional accumulator is said to satisfy indistinguishability of write setup if for any PPT
adversary B, for any security parameter λ, we have

Advacc,ind-write
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� Read Enforcing: Consider any security parameter λ, nacc-blk ≤ 2λ, ((x1, i1), . . . , (xκ, iκ)) ∈
(Σacc-blk × [0, nacc-blk − 1])κ, and i∗ ∈ [0, nacc-blk − 1].

Let (ppacc, w0, store0) $←− ACC.Setup-Enforce-Read(1λ, nacc-blk, ((x1, i1), . . . , (xκ, iκ)), i∗).
For j = 1, . . . , κ, iteratively define the following:

– storej = ACC.Write-Store(ppacc, storej−1, ij , xj)
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– auxj = ACC.Prep-Write(ppacc, storej−1, ij)
– wj = ACC.Update(ppacc, wj−1, xj , ij ,auxj)

The positional accumulator is said to be read enforcing if ACC.Verify-Read(ppacc, wκ, xin, i
∗, πacc)

= 1 implies either [i∗ /∈ {i1, . . . , iκ}] ∧ [xin = ε] or xin = xj for the largest j ∈ [κ] such that
ij = i∗. Note that this is an information theoretic property.

� Write Enforcing: Consider any security parameter λ, nacc-blk ≤ 2λ, and ((x1, i1), . . . , (xκ,
iκ)) ∈ (Σacc-blk × [0, nacc-blk − 1])κ. Let (ppacc, w0, store0) $←− ACC.Setup-Enforce-Write(1λ,
nacc-blk, ((x1, i1), . . . , (xκ, iκ))). For j = 1, . . . , κ, iteratively define the following:

– storej = ACC.Write-Store(ppacc, storej−1, ij , xj)
– auxj = ACC.Prep-Write(ppacc, storej−1, ij)
– wj = ACC.Update(ppacc, wj−1, xj , ij ,auxj)

The positional accumulator is defined to be write enforcing if ACC.Update(ppacc, wκ−1, xκ, iκ,
aux) = wout 6= ⊥, for any aux, implies wout = wκ. Observe that this is an information theoretic
property as well.

The first construction of a positional accumulator is presented by Koppula et al. [KLW15]
based on IO and one-way function. Recently, Okamoto et al. [OPWW15] provided an alternative
construction of positional accumulator from standard number theoretic assumptions.

2.4.3 Iterator

Here we describe the concept of a cryptographic iterator again following Koppula et al. [KLW15].
In the same paper, a construction of the primitive from IO and one-way function is demonstrated.

Definition 2.5 (Iterator). A cryptographic iterator consists of the PPT algorithms (ITR.Setup,
ITR.Set-Enforce, ITR.Iterate) along with a message space Mitr = {0, 1}`itr-msg and iterator state
size `itr-st, where `itr-msg, `itr-st are some polynomials in the security parameter λ. The algo-
rithms have the following syntax:

ITR.Setup(1λ, nitr) → (ppitr, v0) : The setup authority takes as input the security parameter
1λ along with an integer bound nitr ≤ 2λ on the number of iterations. It outputs the public
parameters ppitr and an initial state v0 ∈ {0, 1}`itr-st .

ITR.Setup-Enforce(1λ, nitr, (µ1, . . . , µκ))→ (ppitr, v0) : Taking as input the security parameter
1λ, an integer bound nitr ≤ 2λ, together with a sequence of κ messages (µ1, . . . , µκ) ∈Mκ

itr,
where κ ≤ nitr, the setup authority publishes the public parameters ppitr and an initial
state v0 ∈ {0, 1}`itr-st .

ITR.Iterate(ppitr, vin ∈ {0, 1}`itr-st , µ) → vout : On input the public parameters ppitr, a state
vin, and a message µ ∈Mitr, an iterator outputs an updated state vout ∈ {0, 1}`itr-st . For any
integer κ ≤ nitr, we will write ITR.Iterateκ(ppitr, v0, (µ1, . . . , µκ)) to denote ITR.Iterate(ppitr,
vκ−1, µκ), where vj is defined iteratively as vj = ITR.Iterate(ppitr, vj−1, µj) for all j =
1, . . . , κ− 1.

The algorithm ITR.Iterate is deterministic, while the other two algorithms are randomized. The
algorithms satisfy the following properties:

� Indistinguishability of Enforcing Setup: This property of a cryptographic iterator is
defined through the following experiment between an adversary B and a challenger C:
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• B chooses an integer bound nitr ≤ 2λ, along with a sequence of κ messages (µ1, . . . , µκ) ∈
Mκ

itr, and submits them to C.
• C selects a random bit b̂ $←− {0, 1}. If b̂ = 0, C generates (ppitr, v0) $←− ITR.Setup(1λ, nitr). Else,
C generates (ppitr, v0) $←− ITR.Setup-Enforce(1λ, nitr, (µ1, . . . , µκ)). It sends back (ppitr, v0)
to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The cryptographic iterator is said to satisfy indistinguishability of enforcing setup if for any
PPT adversary B, for any security parameter λ,

Advitr,ind-enf
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� Enforcing: Consider any security parameter λ, nitr ≤ 2λ, κ ≤ nitr, and (µ1, . . . , µκ) ∈Mκ
itr.

Let (ppitr, v0) $←− ITR.Set-Enforce(1λ, nitr, (µ1, . . . , µκ)) and vj = ITR.Iteratej(ppitr, v0, (µ1, . . . ,
µj)) for all j ∈ [κ]. The cryptographic iterator is said to be enforcing if vk = ITR.Iterate(ppitr, v

′,
µ′) implies (v′, µ′) = (vκ−1, µκ). Note that this is an information theoretic property.

2.4.4 Splittable Signature

The following background on splittable signatures is taken verbatim from Koppula et al. [KLW15]
as well.
Definition 2.6 (Splittable Signature: SPS). A splittable signature scheme (SPS) for mes-
sage spaceMsps = {0, 1}`sps-msg and signature space Ssps = {0, 1}`sps-sig , where `sps-msg, `sps-sig are
some polynomials in the security parameter λ, consists of PPT algorithms (SPS.Setup, SPS.Sign,
SPS.Verify, SPS.Split, SPS.Sign-ABO) which are described below:
SPS.Setup(1λ)→ (sksps,vksps,vksps-rej) : The setup authority takes as input the security pa-

rameter 1λ and generates a signing key sksps, a verification key vksps, together with a reject
verification key vksps-rej.

SPS.Sign(sksps,m)→ σsps : A signer given a signing key sksps along with a message m ∈Msps,
produces a signature σsps ∈ Ssps.

SPS.Verify(vksps,m, σsps) → β̂ ∈ {0, 1} : A verifier takes as input a verification key vksps, a
message m ∈Msps, and a signature σsps ∈ Ssps. It outputs a bit β̂ ∈ {0, 1}.

SPS.Split(sksps,m
∗) → (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) : On input a signing

key sksps along with a message m∗ ∈ Msps, the setup authority generates a signature
σsps-one,m∗ = SPS.Sign(sksps,m

∗), a one-message verification key vksps-one, and all-but-one
signing-verification key pair (sksps-abo,vksps-abo).

SPS.Sign-ABO(sksps-abo,m) → σsps or ⊥ : An all-but-one signer given an all-but-one signing
key sksps-abo and a message m ∈ Msps, outputs a signature σsps ∈ Ssps or a distinguished
string ⊥ to indicate failure. For simplicity of notation, we will often use SPS.Sign(sksps-abo,m)
to represent the output of this algorithm.

We note that among the algorithms described above, SPS.Setup and SPS.Split are randomized
while all the others are deterministic. The algorithms satisfy the following properties:

� Correctness: For any security parameter λ, message m∗ ∈Msps, (sksps,vksps,vksps-rej)
$←−

SPS.Setup(1λ), and (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) $←− SPS.Split(sksps,m
∗) the fol-

lowing correctness conditions hold:
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i) ∀m ∈Msps, SPS.Verify(vksps,m,SPS.Sign(sksps,m)) = 1.
ii) ∀m 6= m∗ ∈Msps, SPS.Sign(sksps,m) = SPS.Sign-ABO(sksps-abo,m).
iii) ∀σsps ∈ Ssps, SPS.Verify(vksps-one,m

∗, σsps) = SPS.Verify(vksps,m
∗, σsps).

iv) ∀m 6= m∗ ∈Msps, σsps ∈ Ssps,SPS.Verify(vksps-abo,m, σsps) = SPS.Verify(vksps,m, σsps).
v) ∀m 6= m∗ ∈Msps, σsps ∈ Ssps,SPS.Verify(vksps-one,m, σsps) = 0.
vi) ∀σsps ∈ Ssps, SPS.Verify(vksps-abo,m

∗, σsps) = 0.
vii) ∀m ∈Msps, σsps ∈ Ssps, SPS.Verify(vksps-rej,m, σsps) = 0.

� vkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvksps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rej Indistinguishability: This property of a splittable signature scheme is defined
through the following experiment between an adversary B and a challenger C:

• C generates (sksps,vksps,vksps-rej)
$←− SPS.Setup(1λ). Next it chooses a random bit b̂ $←−

{0, 1}. If b̂ = 0, it sends vksps to B. Otherwise, it sends vksps-rej to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The splittable signature scheme is said to be vksps-rej indistinguishable if for any PPT adversary
B, for any security parameter λ,

Advsps,ind-rej
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� vkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvksps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-one Indistinguishability: This feature of a splittable signature scheme is defined
through the following experiment between an adversary B and a challenger C:

• B submits a message m∗ ∈Msps to C.
• C generates (sksps,vksps,vksps-rej)

$←− SPS.Setup(1λ). Next it computes (σsps-one,m∗ ,vksps-one,

sksps-abo,vksps-abo) $←− SPS.Split(sksps,m
∗). Then it chooses a random bit b̂ $←− {0, 1}. If

b̂ = 0, it returns (σsps-one,m∗ ,vksps-one) to B. Else, it returns (σsps-one,m∗ ,vksps) to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The splittable signature scheme is said to be vksps-one indistinguishable if for any PPT adversary
B, for any security parameter λ,

Advsps,ind-one
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� vkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvksps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abo Indistinguishability: This feature of a splittable signature scheme is defined
through the following experiment between an adversary B and a challenger C:

• B submits a message m∗ ∈Msps to C.
• C generates (sksps,vksps,vksps-rej)

$←− SPS.Setup(1λ). Next it computes (σsps-one,m∗ ,vksps-one,

sksps-abo,vksps-abo) $←− SPS.Split(sksps,m
∗). Then it chooses a random bit b̂ $←− {0, 1}. If

b̂ = 0, it returns (sksps-abo,vksps-abo) to B. Else, it returns (sksps-abo,vksps) to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The splittable signature scheme is said to be vksps-abo indistinguishable if for any PPT adversary
B, for any security parameter λ,

Advsps,ind-abo
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� Splitting Indistinguishability: This feature of a splittable signature scheme is defined
through the following experiment between an adversary B and a challenger C:
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• B submits a message m∗ ∈Msps to C.
• C forms (sksps,vksps,vksps-rej)

$←− SPS.Setup(1λ), (sk′sps,vk′sps,vk′sps-rej)
$←− SPS.Setup(1λ).

Next it computes (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) $←− SPS.Split(sksps,m
∗) as well

as (σ′sps-one,m∗ ,vk′sps-one, sk′sps-abo,vk′sps-abo) $←− SPS.Split(sk′sps,m
∗). Then it chooses a ran-

dom bit b̂ $←− {0, 1}. If b̂ = 0, it returns (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) to B. Else,
it returns (σsps-one,m∗ ,vksps-one, sk′sps-abo,vk′sps-abo) to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The splittable signature scheme is said to be splitting indistinguishable if for any PPT adversary
B, for any security parameter λ,

Advsps,ind-spl
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

Koppula et al. [KLW15] have constructed a splittable signature scheme using IO and one-way
function.

3 Our Constrained Pseudorandom Function for Turing Machines

3.1 Notion

We start by formally defining the notion of constrained pseudorandom functions (CPRF’s) follow-
ing Deshpande et al. [DKW16]. Informally, a CPRF extends the idea of standard pseudorandom
functions (PRF), enabling the master PRF key holder to generate ‘constrained keys’ that allow
PRF evaluation on certain inputs, while the PRF evaluation on remaining inputs ‘looks’ ran-
dom to any computationally bounded party holding only a constrained key. As in [DKW16],
in order to allow unbounded polynomial length inputs, we associate the constrained keys to
polynomial-time TM’s.

Definition 3.1 (Constrained Pseudorandom Function for Turing Machines: CPRF).
Let Mλ be a family of TM’s with (worst case) running time bounded by T = 2λ. A constrained
pseudorandom function (CPRF) with key space Kcprf, input domain Xcprf ⊂ {0, 1}∗, and output
space Ycprf ⊂ {0, 1}∗ for the TM family Mλ consists of an additional key space Kcprf-const and
PPT algorithms (CPRF.Setup, CPRF.Eval, CPRF.Constrain, CPRF.Eval-Constrained) described as
follows:

CPRF.Setup(1λ)→ skcprf : The setup authority takes as input the security parameter 1λ and
generates the master CPRF key skcprf ∈ Kcprf.

CPRF.Eval(skcprf, x) → y : On input the master CPRF key skcprf along with an input
x ∈ Xcprf, the setup authority computes the value of the CPRF y ∈ Ycprf. For simplic-
ity of notation, we will use CPRF(skcprf, x) to indicate the output of this algorithm.

CPRF.Constrain(skcprf,M) → skcprf{M} : Taking as input the master CPRF key skcprf and
a TM M ∈ Mλ, the setup authority provides a constrained key skcprf{M} ∈ Kcprf-const to
a legitimate user.

CPRF.Eval-Constrained(skcprf{M}, x) → y or ⊥ : A user takes as input a constrained key
skcprf{M} ∈ Kcprf-const, corresponding to a legitimate TM M ∈ Mλ, along with an input
x ∈ Xcprf. It outputs either a value y ∈ Ycprf or ⊥ indicating failure.
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The algorithms CPRF.Setup and CPRF.Constrain are randomized, whereas, the other two are
deterministic. The algorithms satisfy the following properties:

� Correctness under Constraining: Consider any security parameter λ, skcprf ∈ Kcprf,
M ∈Mλ, and skcprf{M}

$←− CPRF.Constrain(skcprf,M). The following must hold:

CPRF.Eval-Constrained(skcprf{M}, x) =
¨

CPRF(skcprf, x), if M(x) = 1
⊥, otherwise

� Selective Pseudorandomness: This property of a CPRF is defined through the following
experiment between an adversary A and a challenger B:

• A submits a challenge input x∗ ∈ Xcprf to B.
• B generates a master CPRF key skcprf

$←− CPRF.Setup(1λ). Next it selects a random bit
b

$←− {0, 1}. If b = 0, it computes y∗ = CPRF(skcprf, x
∗). Otherwise, it chooses a random

y∗
$←− Ycprf. It returns y∗ to A.

• A may adaptively make a polynomial number of queries of the following kinds to B:
– Evaluation query: A queries the CPRF value at some input x ∈ Xcprf such that x 6= x∗.
B provides the CPRF value CPRF(skcprf, x) to A.

– Key query: A queries a constrained key corresponding to TM M ∈Mλ subject to the con-
straint that M(x∗) = 0. B gives the constrained key skcprf{M}

$←− CPRF.Constrain(skcprf,
M) to A.

• A eventually outputs a guess bit b′ ∈ {0, 1}.

The CPRF is said to be selectively pseudorandom if for any PPT adversary A, for any security
parameter λ,

Advcprf,sel-pr
A (λ) = |Pr[b = b′]− 1/2| ≤ negl(λ)

for some negligible function negl.

Remark 3.1. As pointed out in [HKKW14, CRV14], note that in the above selective pseudo-
randomness experiment, without loss of generality we may assume that the adversary A only
makes constrained key queries and no evaluation query. This is because any evaluation query at
input x ∈ Xcprf can be replaced by constrained key query for a TM Mx ∈Mλ that accepts only
x. Since, the restriction on the evaluation queries is that x 6= x∗, Mx(x∗) = 0, and thus Mx is a
valid constrained key query. We will use this simplification in our proof.

3.2 The CPRF Construction of Deshpande et al.

In EUROCRYPT 2016, Deshpande et al. [DKW16] have presented a CPRF construction support-
ing inputs of unconstrained polynomial length based on indistinguishability obfuscation and in-
jective pseudorandom generators, which they have claimed to be selectively secure.Unfortunately,
their security argument has a flaw. In this section, we give an informal description of their CPRF
construction and point out the flaw in their security argument.

Overview of the CPRF Construction of [DKW16]: The principle ideas behind the CPRF
construction of [DKW16] are as follows: To produce the CPRF output their construction uses a
PPRF F and a positional accumulator. A master CPRF key consists of a key K for the PPRF
F and a set of public parameters ppacc of the positional accumulator. The CPRF evaluation
on some input x = x0 . . . x`x−1 ∈ Xcprf ⊂ {0, 1}∗ is simply F(K,winp), where winp is the
accumulation of the bits of x using ppacc.
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A constrained key of the CPRF, corresponding to some TM M , comprises of ppacc along with
two programs P1 and Pcprf, which are obfuscated using IO. The first program P1, also known
as the initial signing program, takes as input an accumulator value and outputs a signature on
it together with the initial state and header position of the TM M . The second program Pcprf,
also called the next step program, takes as input a state and header position of M along with
an input symbol and an accumulator value. It essentially computes the next step function of M
on the input state-symbol pair, and eventually outputs the proper PRF value, if M reaches the
accepting state. The program Pcprf also performs certain authenticity checks before computing
the next step function of M in order to prevent illegal inputs. For this purpose, Pcprf additionally
takes as input a signature on the input state, header position, and accumulator value, together
with a proof for the positional accumulator. The program Pcprf verifies the signature as well as
checks the accumulator proof to get convinced that the input symbol is indeed the one placed at
the input header position of the underlying storage of the input accumulator value. If all these
verifications pass, then Pcprf determines the next state and header position of M , as well as,
the new symbol that needs to be written to the input header position. The program Pcprf then
updates the accumulator value by placing the new symbol at the input header position as well
as signs the updated accumulator value along with the computed next state and header position
of M . The signature scheme used by the two programs is a splittable signature. In order to
deal with the positional accumulator related verifications and updations, the program Pcprf has
ppacc hardwired.

Evaluating the CPRF on some input x using a constrained key, corresponding to some TM M ,
consists of two steps. In the first step, the evaluator computes the accumulation winp of the bits
of x using ppacc, which are also included in the constrained key, and then obtains a signature on
winp together with the initial state and header position of M by running the program P1. The
second step is to repeatedly run the program Pcprf, each time on input the current accumulator
value, current state and header position of M , along with the signature on them. Additionally, in
each iteration the evaluator also feeds winp to Pcprf. The iteration is continued until the program
Pcprf either outputs the PRF evaluation or the designated null string ⊥ indicating failure.

The Flaw: In order to prove selective pseudorandomness of the above CPRF construction, the
authors of [DKW16] extends the techniques introduced in [KLW15] in the context of proving
security of message-hiding encoding scheme for TM’s. More precisely, the authors of [DKW16]
proceed as follows: During the course of the proof, the authors aim to modify the constrained keys
given to the adversary A in the selective pseudorandomness experiment, discussed in Section 3.1,
to embed the punctured PPRF key K{w∗inp} punctured at w∗inp instead of the full PPRF key K,
which is part of the master CPRF key sampled by the challenger B. Here, w∗inp is the accumulation
of the bits of the challenge input x∗, submitted by the adversary A, using ppacc, included within
the master CPRF key generated by the challenger B. In order to make this substitution, it is to be
ensured that the obfuscated next step programs included in the constrained keys never outputs
the PRF evaluation for inputs corresponding to w∗inp even if reaching the accepting state. The
proof transforms the constrained keys one at a time through multiple hybrid steps. Suppose that
the total number of constrained keys queried by A be q̂. Consider the transformation of the νth

constrained key (1 ≤ ν ≤ q̂) corresponding to the TM M (ν) that runs on the challenge input x∗
for t∗(ν) steps and reaches the rejecting state. In the course of transformation, the obfuscated next
step program P(ν)

cprf of the νth constrained key is first altered to one that never outputs the PRF
evaluation for inputs corresponding to w∗inp within the first t∗(ν) steps. Towards accomplishing
this transition, the challenger B at various stages needs to generate ppacc in read/write enforcing
mode where the enforcing property should be tailored to the steps of execution of the specific
TM M (ν) on x∗. For instance, at some point of transformation of the νth constrained key, ppacc
needs to be set in the read enforcing mode by B on input (i) the entire sequence of symbol-
position pairs arising from iteratively running M (ν) on x∗ upto the tth step and (ii) the enforcing
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index corresponding to the header position of M (ν) at the tth step while running on x∗, where
1 < t ≤ t∗(ν). Evidently, B can determine those symbol-position pairs only after receiving the TM
M (ν) from A. However, B would also require ppacc while creating the constrained keys queried
by A before making the νth constrained key query and even possibly for preparing the challenge
value for A. Thus, it is immediate that B must generate ppacc prior to receiving the νth query
from A. This is impossible as setting ppacc in read enforcing mode requires the knowledge of the
TM M (ν), which is not available before the νth constrained key query of A. A similar conflict
also arises when B attempts to setup ppacc in the write enforcing mode tailored to M (ν). This
serious flaw renders the security argument of [DKW16] invalid.

3.3 Overview of Our Techniques to Fix the Flaw of [DKW16]

Observe that a set of public parameters of the positional accumulator must be included within
each constrained key. This is mandatory due to the required updatability feature of positional
accumulator, which is indispensable to keep track of the current situation while running the
obfuscated next step program Pcprf iteratively in the course of evaluating the CPRF on some
input. The root cause of the problem in the security argument of [DKW16] is the use of a single
set of public parameters ppacc of the positional accumulator throughout the system. Therefore,
as a first step, we attempt to assign a fresh set of public parameters of the positional accumulator
to each constrained key. However, for compressing the PRF input to a fixed length, on which F
can be applied producing the PRF output, we need a system-wide compressing tool. We employ
SSB hash for this purpose. The idea is that while evaluating the CPRF on some input x using
a constrained key, corresponding to some TM M , the evaluator first computes the hash value
h by hashing x using the system wide SSB hash key, which is part of the master key. The
evaluator also computes the accumulator value winp by accumulating the bits of x using the
public parameters of positional accumulator included in the constrained key. Then, using the
obfuscated initial signing program P1, included in the constrained key, the evaluator will obtain
a signature on winp along with the initial state and header position of M . Finally, the evaluator
will repeatedly run the obfuscated next step program Pcprf, included in the constrained key,
each time giving as input all the quantities as in the evaluation algorithm of [DKW16], except
that it now feeds the SSB hash value h in place of winp in each iteration. This is because, in case
Pcprf reaches the accepting state, it would require h to apply F for producing the PRF output.

However, this approach is not completely sound yet. Observe that, a possibly malicious
evaluator can compute the SSB hash value h on the input x, on which it wishes to evaluate the
CPRF although M does not accepts it, and initiates the evaluation by accumulating the bits of
only a substring of x or some entirely different input, which is accepted by M . To prevent such
malicious behavior, we include another IO-obfuscated program P2 within the constrained key,
known as the accumulating program, whose purpose is to restrict the evaluator from accumulating
the bits of a different input rather than the hashed one. The program P2 takes as input an SSB
hash value h, an index i, a symbol, an accumulator value, a signature on the input accumulator
value (along with the initial state and header position of M), and an opening value for SSB. The
program P2 verifies the signature and also checks whether the input symbol is indeed present at
the index i of the string that has been hashed to form h, using the input opening value. If all
of these verifications pass, then P2 updates the input accumulator value by writing the input
symbol at the ith position of the accumulator storage. We also modify the obfuscated initial
signing program P1, included in the constrained key, to take as input a hash value and output
a signature on the accumulator value corresponding to the empty accumulator storage, along
with the initial state and header position of M .

Moreover, for forbidding the evaluator from performing the evaluation by accumulating an
M -accepted substring of the hashed input, we define our PRF output as the evaluation of F on
the pair (hash value, length) of the input in stead of just the hash value of the input. Note that,
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without loss of generality, we can set the upper bound of the length of PRF inputs to be 2λ,
where λ is the underlying security parameter in view of the fact that by suitably choosing λ we
can accommodate inputs of any polynomial length. This setting of upper bound on the input
length is implicitly considered in [DKW16] and also explicitly used in [BGJS15] while dealing
with multi-input functional encryption for unbounded arity functions. Now, as the input length
is bounded by 2λ, the input length can be expressed as a bit strings of length λ. Thus, the
PRF input length can be safely fed along with the SSB hash value of PRF input to F , which
can handle only inputs of apriori bounded length. Hence, the obfuscated next step programs
Pcprf included in our constrained keys must also take as input the length of the PRF input for
producing the PRF value if reaching to the accepting state.

Therefore, to evaluate the CPRF on some input using a constrained key, corresponding to
some TM M , an evaluator first hash the PRF input. The evaluator also obtains a signature on
the empty accumulator value included in the constrained key, by running the obfuscated initial
signing program P1 on input the computed hash value. Next, it repeatedly runs the obfuscated
accumulating program P2 to accumulate the bits of the PRF input. Finally, it runs the obfuscated
next step program Pcprf iteratively on the current accumulator value along with other legitimate
inputs until it obtains either the PRF output or ⊥.

Regarding the proof of security, notice that the problem with enforcing the public parameters
of the positional accumulator while transforming the queried constrained keys will not appear in
our case as we have assigned a separate set of public parameters of positional accumulator to each
constrained key. However, our actual security proof involves many subtleties that are difficult to
describe with this high level description and is provided in full details in the sequel. We would
only like to mention here that to cope up with certain issues in the proof we further include
another IO-obfuscated program P3 in the constrained keys, known as the signature changing
program, that changes the signature on the accumulation of the bits of the PRF input before
starting the iterative computation with the obfuscated next step program Pcprf.

We follow the same novel technique introduced in [DKW16] for handling the tail hybrids in
the final stage of transformation of the constrained keys. Note that as in [DKW16], we are also
considering TM’s which run for at most T = 2λ steps on any input. Unlike [KLW15], the authors
of [DKW16] have devised a beautiful approach to obtain an end to end polynomial reduction to
the security of IO for the tail hybrids by means of an injective pseudorandom generator (PRG).
We directly adopt that technique to deal with the tail hybrids in our security proof. A high level
overview of the approach is sketched below. Let us call the time step 2τ as the τ th landmark and
the interval [2τ , 2τ+1− 1] as the τ th interval. Like [DKW16], our obfuscated next step programs
Pcprf included within the constrained keys take an additional PRG seed as input at each time
step, and perform some additional checks on the input PRG seed. At time steps just before a
landmark, the programs output a new pseudorandomly generated PRG seed, which is then used
in the next interval. Using standard IO techniques, it can be shown that for inputs corresponding
to (h∗, `∗), if the program Pcprf outputs ⊥, for all time steps upto the one just before a landmark,
then we can alter the program indistinguishably so that it outputs ⊥ at all time steps in the next
interval. Here h∗ and `∗ are respectively the SSB hash value and length of the challenge input x∗
submitted by the adversary A in the selective pseudorandomness experiment. Employing this
technique, we can move across an exponential number of time steps at a single switch of the
next step program Pcprf.

3.4 Formal Description of Our CPRF Construction

Now we will formally present our CPRF construction where the constrained keys are associ-
ated with TM’s. Let λ be the underlying security parameter. Consider the family Mλ of TM’s,
the members of which have (worst-case) running time bounded by T = 2λ, input alphabet
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Σinp = {0, 1}, and tape alphabet Σtape = {0, 1, }. Our CPRF construction utilizes the following
cryptographic building blocks:

i) IO: An indistinguishability obfuscator for general polynomial-size circuits.
ii) SSB = (SSB.Gen,H, SSB.Open,SSB.Verify): A somewhere statistically binding hash function

with Σssb-blk = {0, 1}.
iii) ACC = (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-Enforce-Write, ACC.Prep-Read,

ACC.Prep-Write, ACC.Verify-Read, ACC.Write-Store, ACC.Update): A positional accumulator
with Σacc-blk = {0, 1, }.

iv) ITR = (ITR.Setup, ITR.Setup-Enforce, ITR.Iterate): A cryptographic iterator with an appro-
priate message space Mitr.

v) SPS = (SPS.Setup, SPS.Sign, SPS.Verify, SPS.Split, SPS.Sign-ABO): A splittable signature
scheme with an appropriate message space Msps.

vi) PRG : {0, 1}λ → {0, 1}2λ: A length-doubling pseudorandom generator.
vii) F = (F .Setup,F .Puncture,F .Eval): A puncturable pseudorandom function whose domain

and range are chosen appropriately. For simplicity, we assume that F has inputs and outputs
of bounded length instead of fixed length inputs and outputs. This assumption can be easily
removed by using different PPRF’s for different input and output lengths.

Our CPRF construction is described below:

CPRF.Setup(1λ)→ skcprf = (K,hk): The setup authority takes as input the security parameter
1λ and proceeds as follows:
1. It first chooses a PPRF key K $←− F .Setup(1λ).
2. Next it generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).
3. It sets the master CPRF key as skcprf = (K,hk).

CPRF.Eval(skcprf, x) → y = F(K, (h, `x)): Taking as input the master CPRF key skcprf =
(K,hk) along with an input x = x0 . . . x`x−1 ∈ Xcprf, where |x| = `x, the setup authority
executes the following steps:
1. It computes h = Hhk(x).
2. It outputs the CPRF value on input x to be y = F(K, (h, `x)).

CPRF.Constrain(skcprf,M)→ skcprf{M} = (hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pcprf):
On input the master CPRF key skcprf = (K,hk) and a TM M = 〈Q,Σinp, Σtape, δ, q0, qac,
qrej〉 ∈Mλ, the setup authority performs the following steps:
1. At first, it selects PPRF keys K1, . . . ,Kλ,Ksps,A,Ksps,E

$←− F .Setup(1λ).
2. Next, it generates (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (ppitr, v0) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, it constructs the following obfuscated programs:

– P1 = IO(Init-SPS.Prog[q0, w0, v0,Ksps,E ]),
– P2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,ppitr,Ksps,E ]),
– P3 = IO(Change-SPS.Prog[Ksps,A,Ksps,E ]),
– Pcprf = IO(Constrained-Key.Progcprf[M,T = 2λ,ppacc,ppitr,K,K1, . . . ,Kλ,Ksps,A]),

where programs Init-SPS.Prog,Accumulate.Prog,Change-SPS.Prog, and Constrained-Key.Progcprf
are depicted respectively in Figs. 3.1, 3.2, 3.3 and 3.4.

4. It Provides the constrained key skcprf{M} = (hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,
Pcprf) ∈ Kcprf-const to a legitimate user.

CPRF.Eval-Constrained(skcprf{M}, x)→ y = F(K, (h, `x)) or ⊥: A user takes as input its con-
strained key skcprf{M} = (hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pcprf) ∈ Kcprf-const
corresponding to some legitimate TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 and an input
x = x0 . . . x`x−1 ∈ Xcprf with |x| = `x. It proceeds as follows:
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Constants: Initial TM state q0, Accumulator value w0, Iterator value v0, PPRF key Ksps,E

Input: SSB hash value h
Output: Signature σsps,out

1. Compute rsps,E = F(Ksps,E , (h, 0)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
2. Output σsps,out = SPS.Sign(sksps,E , (v0, q0, w0, 0)).

Fig. 3.1. Init-SPS.Prog

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for
positional accumulator ppacc, Public parameters for iterator ppitr, PPRF key Ksps,E

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Set min = (vin, st, win, 0). If SPS.Verify(vksps,E ,min, σsps,in) = 0, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Set mout = (vout, st, wout, 0). Compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. 3.2. Accumulate.Prog

Constants: PPRF keys Ksps,A,Ksps,E

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp,
Signature σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Set m = (v, st, w, 0). If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.

2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Output σsps,out = SPS.Sign(sksps,A,m).

Fig. 3.3. Change-SPS.Prog

1. It first computes h = Hhk(x).
2. Next, it computes σ̆sps,0 = P1(h).
3. Then for j = 1, . . . , `x, it iteratively performs the following:

(a) It computes πssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes auxj = ACC.Prep-Write(ppacc, storej−1, j − 1).
(c) It computes out = P2(j − 1, xj−1, q0, wj−1,auxj , vj−1, σ̆sps,j−1, h, πssb,j−1).
(d) If out = ⊥, it outputs out. Else, it parses out as out = (wj , vj , σ̆sps,j).
(e) It computes storej = ACC.Write-Store(ppacc, storej−1, j − 1, xj−1).

4. It computes σsps,0 = P3(q0, w`x , v`x , h, `x, σ̆sps,`x).
5. It sets posM,0 = 0 and seed0 = ε.
6. Suppose, M runs for tx steps on input x. For t = 1, . . . , tx, it iteratively performs the

following steps:
(a) It computes (symM,t−1, πacc,t−1) = ACC.Prep-Read(ppacc, store`x+t−1,posM,t−1).
(b) It computes aux`x+t = ACC.Prep-Write(ppacc, store`x+t−1,posM,t−1).
(c) It computes out = Pcprf(t, seedt−1,posM,t−1, symM,t−1, stM,t−1, w`x+t−1, πacc,t−1,

aux`x+t, v`x+t−1, h, `x, σsps,t−1).



20 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K1, . . . ,Kλ,Ksps,A

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, length
`inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if stout = qac, output F(K, (h, `inp)).

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Set mout = (vout, stout, wout, posout).

Compute σsps,out = SPS.Sign(sk′sps,A,mout).
7. If t+ 1 = 2τ

′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. 3.4. Constrained-Key.Progcprf

(d) If t = tx, it outputs out. Otherwise, it parses out as out = (posM,t, sym(write)
M,t , stM,t,

w`x+t, v`x+t, σsps,t, seedt).
(e) It computes store`x+t = ACC.Write-Store(ppacc, store`x+t−1,posM,t−1, sym(write)

M,t ).

Security

Theorem 3.1 (Security of the CPRF Construction of Section 3.4). Assuming IO is a
secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom func-
tion as per Definition 2.2, SSB is a somewhere statistically binding hash function according to
Definition 2.3, ACC is a secure positional accumulator according to Definition 2.4, ITR is a se-
cure cryptographic iterator as per Definition 2.5, SPS is a secure splittable signature scheme as
defined in Definition 2.6, and PRG is a secure injective pseudorandom generator,the CPRF con-
struction of Section 3.4 satisfies correctness under constraining and selective pseudorandomness
as defined in Definition 3.1.

The proof of Theorem 3.1 is provided in Appendix A.

4 Our Constrained Verifiable Pseudorandom Function for Tur-
ing Machines

4.1 Notion

We extend the notion of constrained pseudorandom functions for Turing machines to constrained
verifiable pseudorandom function (CVPRF) for Turing machines in the same spirit as it has been
extended in case of circuits by Fuchsbauer et al. [Fuc14] and Chandran et al. [CRV14]. As noted
earlier, we involve TM’s as opposed to circuits in order to accommodate unbounded inputs.
Roughly, in case of a (CVPRF), in addition to generating a master evaluation key, the setup



Verifiable and Delegatable CPRF’s for Unconstrained Inputs 21

authority also publishes a public verification key. Given, a constrained key associated with a TM
and an input accepted by that TM, a user computes the PRF value along with a proof of the
fact that the computed PRF value is correct, which can be verified with respect to the public
verification key. The formal definition follows:

Definition 4.1 (Constrained Verifiable Pseudorandom Function for Turing Machines:
CVPRF). Let Mλ be a family of TM’s with (worst-case) running time bounded by T = 2λ. A
constrained verifiable pseudorandom function (CVPRF) for Mλ with key space Kcvprf, input
domain Xcvprf ⊂ {0, 1}∗, and output space Ycvprf ⊂ {0, 1}∗ consists of a constrained key space
Kcvprf-const, a proof space Πcvprf, along with the PPT algorithms (CVPRF.Setup, CVPRF.Eval,
CVPRF.Prove, CVPRF.Constrain, CVPRF.Prove-Constrained, CVPRF.Verify) which are described
below:

CVPRF.Setup(1λ) → (skcvprf,vkcvprf) : The setup authority takes as input the security pa-
rameter 1λ and generates a master CVPRF key skcvprf along with a public verification key
vkcvprf.

CVPRF.Eval(skcvprf, x) → y : Taking as input the master CVPRF key skcvprf and an input
x ∈ Xcvprf, the trusted authority outputs the value of the function y ∈ Ycvprf. For simplicity
of notation, we will denote by CVPRF(skcvprf, x) the output of this algorithm.

CVPRF.Prove(skcvprf, x) → πcvprf : Taking as input the master CVPRF key skcvprf and an
input x ∈ Xcvprf, the trusted authority outputs a proof πcvprf ∈ Πcvprf.

CVPRF.Constrain(skcvprf,M)→ skcvprf{M} : On input the master CVPRF key skcvprf and a
TM M ∈Mλ, the setup authority provides a constrained key skcvprf{M} to a legitimate user.

CVPRF.Prove-Constrained(skcvprf{M}, x) → (y, πcvprf) or ⊥ : A user takes as input its con-
strained key skcvprf{M} corresponding to a legitimate TM M ∈Mλ and an input x ∈ Xcvprf.
It outputs either a value-proof pair (y, πcvprf) ∈ Ycvprf×Πcvprf or (⊥,⊥) indicating failure.

CVPRF.Verify(vkcvprf, x, y, πcvprf) → β̂ ∈ {0, 1} : A verifier takes as input the public ver-
ification key vkcvprf, an input x ∈ Xcvprf, a value y ∈ Ycvprf, together with a proof
πcvprf ∈ Πcvprf. It outputs a bit ˆbeta ∈ {0, 1}.

The algorithms CVPRF.Setup, CVPRF.Prove, CVPRF.Constrain and CVPRF.Prove-Constrained are
randomized, while the other two algorithms are deterministic. The algorithms satisfy the follow-
ing properties:

� Provability: For any security parameter λ, (skcvprf,vkcvprf) $←− CVPRF.Setup(1λ),
M ∈ Mλ, skcvprf{M}

$←− CVPRF.Constrain(skcvprf,M), x ∈ Xcvprf, and (y, πcvprf) $←−
CVPRF.Prove-Constrained(skcvprf{M}, x), the following holds:

• If M(x) = 1, then y = CVPRF(skcvprf, x) and CVPRF.Verify(vkcvprf, x, y, πcvprf) = 1.
• If M(x) = 0, then (y, πcvprf) = (⊥,⊥).

� Uniqueness: For any security parameter λ, vkcvprf, x ∈ Xcvprf, y0, y1 ∈ Ycvprf, and
πcvprf,0, πcvprf,1 ∈ Πcvprf, one of the following holds:

• y0 = y1.
• [CVPRF.Verify(vkcvprf, x, y0, πcvprf,0) = 0]

W
[CVPRF.Verify(vkcvprf, x, y1, πcvprf,1) = 0].

� Constraint Hiding: For any security parameter λ, (skcvprf,vkcvprf) $←− CVPRF.Setup(1λ),
M ∈ Mλ, skcvprf{M}

$←− CVPRF.Constrain(skcvprf,M), and x ∈ Xcvprf, the second output
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πcvprf of CVPRF.Prove-Constrained(skcvprf{M}, x) and the output of CVPRF.Prove(skcvprf, x)
are distributed identically.

� Selective Pseudorandomness: This property of a CVPRF is defined through the following
experiment between an adversary A and a challenger B:

• A submits a challenge input x∗ ∈ Xcvprf to B.
• B generates (skcvprf,vkcvprf) $←− CVPRF.Setup(1λ). Next it selects a random bit b $←− {0, 1}.

If b = 0, it computes y∗ = CVPRF(skcvprf, x
∗). Otherwise, it chooses a random y∗

$←− Ycvprf.
It returns (vkcvprf, y

∗) to A.
• A may adaptively make a polynomial number of queries of the following kinds to B:

– Proof query: A queries the CVPRF value along with a proof at some input x ∈ Xcvprf
such that x 6= x∗. B provides (CVPRF(skcvprf, x),CVPRF.Prove(skcvprf, x)) to A.

– Key query: A queries a constrained key corresponding to TM M ∈Mλ subject to the con-
straint thatM(x∗) = 0. B gives the constrained key skcvprf{M}

$←− CVPRF.Constrain(skcvprf,
M) to A.

• A eventually outputs a guess bit b′ ∈ {0, 1}.

The CVPRF is said to be selectively pseudorandom if for any PPT adversary A, for any security
parameter λ,

Advcvprf,sel-pr
A (λ) = |Pr[b = b′]− 1/2| ≤ negl(λ)

for some negligible function negl.

Remark 4.1. Note that following the arguments given in Remark 3.1, we may assume without
loss of generality, that the adversary A in the above selective pseudorandomness experiment
only makes constrained key queries and no evaluation query.

4.2 Construction

Here we will provide our CVPRF for TM’s. This construction is obtained by extending our CPRF
construction described in Section 3.4. Let λ be the underlying security parameter. Let Mλ be a
class of TM’s, the members of which have (worst-case) running time bounded by T = 2λ, input
alphabet Σinp = {0, 1}, and tape alphabet Σtape = {0, 1, }. Our CVPRF construction for TM
family Mλ will employ all the building blocks utilized in our CPRF construction. Additionally,
we will use a perfectly correct and chosen plaintext attack (CPA) secure public key encryption
scheme PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) with an appropriate message space. The
formal description of our CVPRF construction follows:

CVPRF.Setup(1λ) → (skcvprf = (K,Kpke,hk),vkcvprf = (hk,Vcvprf)): The setup authority
takes as input the security parameter 1λ and proceeds as follows:
1. It first chooses PPRF keys K,Kpke

$←− F .Setup(1λ).
2. Next it generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).
3. Then, it creates the obfuscated program Vcvprf = IO(Verify.Progcvprf[K,Kpke]), where

the program Verify.Progcvprf is described in Fig. 4.1.
4. It sets the master CVPRF key as skcvprf = (K,Kpke,hk) and publishes the public verifi-

cation key vkcvprf = (hk,Vcvprf).

CVPRF.Eval(skcvprf, x)→ y = F(K, (h, `x)): Taking as input the master CVPRF key skcvprf =
(K,Kpke,hk) along with an input x = x0 . . . x`x−1 ∈ Xcvprf, where |x| = `x, the setup
authority executes the following steps:
1. It computes h = Hhk(x).
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Constants: PPRF keys K,Kpke
Inputs: SSB hash value h, Length `inp

Output: (PKE public key cpkpke, Encryption of CVPRF value cctpke)

1. Compute r̂pke,1‖r̂pke,2 = F(Kpke, (h, `inp)), (cpkpke, Òskpke) = PKE.Setup(1λ; r̂pke,1).
2. Compute cctpke = PKE.Encrypt(cpkpke,F(K, (h, `inp)); r̂pke,2).
3. Output (cpkpke,cctpke).

Fig. 4.1. Verify.Progcvprf

2. It outputs the CVPRF value on input x to be y = F(K, (h, `x)).

CVPRF.Prove(skcvprf, x) → πcvprf = (pkpke, rpke,2): The setup authority takes as input the
master CVPRF key skcvprf = (K,Kpke,hk) along with an input x = x0 . . . x`x−1 ∈ Xcvprf,
where |x| = `x. It proceeds as follows:
1. At first, it computes h = Hhk(x).
2. Then, it computes rpke,1‖rpke,2 = F(Kpke, (h, `x)), (pkpke, skpke) = PKE.Setup(1λ; rpke,1).
3. It outputs πcvprf = (pkpke, rpke,2).

CVPRF.Constrain(skcvprf,M) → skcvprf{M} = (hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,
Pcvprf): On input the master CVPRF key skcvprf = (K,Kpke,hk) and a TM M = 〈Q,Σinp,
Σtape, δ, q0, qac, qrej〉 ∈Mλ, the setup authority performs the following steps:
1. At first, it selects PPRF keys K1, . . . ,Kλ,Ksps,A,Ksps,E

$←− F .Setup(1λ).
2. Next, it generates (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (ppitr, v0) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, it constructs the obfuscated programs

– P1 = IO(Init-SPS.Prog[q0, w0, v0,Ksps,E ]),
– P2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,ppitr,Ksps,E ]),
– P3 = IO(Change-SPS.Prog[Ksps,A,Ksps,E ]),
– Pcvprf = IO(Constrained-Key.Progcvprf[M,T = 2λ,ppacc,ppitr,K,Kpke,K1, . . . ,Kλ,

Ksps,A]),
where the programs Init-SPS.Prog,Accumulate.Prog, and Change-SPS.Prog are as depicted
respectively in Figs. 3.1, 3.2 and 3.3 in Section 3.4 while program Constrained-Key.Progcvprf
is described in Fig. 4.2.

4. It provides the constrained key skcvprf{M} = (hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,
Pcvprf) to a legitimate user.

CVPRF.Prove-Constrained(skcvprf{M}, x)→ (y = F(K, (h, `x)), πcvprf = (pkpke, rpke,2)) or ⊥:
A user takes as input its constrained key skcvprf{M} = (hk,ppacc, w0, store0,ppitr, v0,P1,
P2,P3,Pcvprf) corresponding to some legitimate TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 and
an input x = x0 . . . x`x−1 ∈ Xcvprf with |x| = `x. It proceeds as follows:
1. It first computes h = Hhk(x).
2. Next, it computes σ̆sps,0 = P1(h).
3. Then for j = 1, . . . , `x, it iteratively performs the following:

(a) It computes πssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes auxj = ACC.Prep-Write(ppacc, storej−1, j − 1).
(c) It computes out = P2(j − 1, xj−1, q0, wj−1,auxj , vj−1, σ̆sps,j−1, h, πssb,j−1).
(d) If out = ⊥, it outputs out. Else, it parses out as out = (wj , vj , σ̆sps,j).
(e) It computes storej = ACC.Write-Store(ppacc, storej−1, j − 1, xj−1).

4. It computes σsps,0 = P3(q0, w`x , v`x , h, `x, σ̆sps,`x).
5. It sets posM,0 = 0 and seed0 = ε.
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,Kpke,K1, . . . ,Kλ,Ksps,A

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: (CVPRF evaluation F(K, (h, `inp)), CVPRF proof πcvprf = (pkpke, rpke,2)) or Header Position
(posout, Symbol symout, TM state stout, Accumulator value wout, Iterator value vout, Signature
σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SSB.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if stout = qac, perform the following:
(I) Compute rpke,1‖rpke,2 = F(Kpke, (h, `inp)), (pkpke, skpke) = PKE.Setup(1λ; rpke,1).

(II) Output (F(k, (h, `inp)), πcvprf = (pkpke, rpke,2)).
5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Set mout = (vout, stout, wout, posout). Compute σsps,out = SPS.Sign(sk′sps,A,mout).
7. If t+ 1 = 2τ

′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. 4.2. Constrained-Key.Progcvprf

6. Suppose, M runs for tx steps on input x. For t = 1, . . . , tx, it iteratively performs the
following steps:
(a) It computes (symM,t−1, πacc,t−1) = ACC.Prep-Read(ppacc, store`x+t−1,posM,t−1).
(b) It computes aux`x+t = ACC.Prep-Write(ppacc, store`x+t−1,posM,t−1).
(c) It computes out = Pcvprf(t, seedt−1,posM,t−1, symM,t−1, stM,t−1, w`x+t−1, πacc,t−1,

aux`x+t, v`x+t−1, h, `x, σsps,t−1).
(d) If t = tx, it outputs out. Otherwise, it parses out as out = (posM,t, sym(write)

M,t , stM,t,
w`x+t, v`x+t, σsps,t, seedt).

(e) It computes store`x+t = ACC.Write-Store(ppacc, store`x+t−1,posM,t−1, sym(write)
M,t ).

CVPRF.Verify(vkcvprf, x, y, πcvprf) → β̂ ∈ {0, 1}: A verifier takes as input the public verifica-
tion key vkcvprf = (hk,Vcvprf), an input x = x0 . . . x`x−1 ∈ Xcvprf, where |x| = `x, a value
y ∈ Ycvprf, and a proof πcvprf = (pkpke, r) ∈ Πcvprf. It executes the following:
1. It first computes h = Hhk(x).
2. Next, it computes (Ópkpke,Óctpke) = Vcvprf(h, `x).
3. If [pkpke = Ópkpke] ∧ [PKE.Encrypt(pkpke, y; r) = Óctpke], it outputs 1. Otherwise, it

outputs 0.

Security

Theorem 4.1 (Security of the CVPRF Construction of Section 4.2). Assuming IO is
a secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom
function as per Definition 2.2, SSB is a somewhere statistically binding hash function according
to Definition 2.3, ACC is a secure positional accumulator as defined in Definition 2.4, ITR is a
secure cryptographic iterator as per Definition 2.5, SPS is a secure splitable signature scheme
according to Definition 2.6, PRG is a secure injective pseudorandom generator, and PKE is a
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perfectly correct CPA secure public key encryption scheme, the CVPRF construction described in
Section 4.2 satisfies all the properties of a secure CVPRF defined in Definition 4.1 of Section 4.1.

The proof of Theorem 4.1 is given in Appendix B.

5 Our Delegatable Constrained Pseudorandom Function for Tur-
ing Machines

5.1 Notion

We now proceed to define the notion of key delegation in the context of CPRF’s for TM’s along the
same line as it has been introduced by Chandran et al. [CRV14]. Roughly, delegatable constrained
pseudorandom functions (DCPRF) are the extension of standard CPRF’s in which a user holding
a constrained key corresponding to some TM can issue constrained keys with the restriction that
the issued constrained keys does not enable the evaluation of the PRF value on any additional
input beyond those learnable using its own constrained key. Here again the use of TM’s in place
of circuits, as in [CRV14], allows us to support inputs of appriory unbounded length. The formal
definition of DCPRF is described below. We note that although here we consider only one level
of delegation, our definition can naturally be extended to support multiple delegation levels.

Definition 5.1 (Delegatable Constrained Pseudorandom Function for Turing Ma-
chines: DCPRF). Let Mλ be a family of TM’s with (worst-case) running time bounded by T =
2λ. A delegatable constrained pseudorandom function (DCPRF) with key space Kdcprf, input do-
main Xdcprf ⊂ {0, 1}∗, and output space Ydcprf ⊂ {0, 1}∗ for the TM family Mλ consists of an ad-
ditional key spaceKdcprf-const and PPT algorithms (DCPRF.Setup, DCPRF.Eval, DCPRF.Constrain,
DCPRF.Delegate, DCPRF.Eval-Constrained) described as follows:

DCPRF.Setup(1λ) → skdcprf : The setup authority takes as input the security parameter 1λ
and generates the master DCPRF key skdcprf ∈ Kdcprf.

DCPRF.Eval(skdcprf, x) → y : On input the master DCPRF key skdcprf along with an input
x ∈ Xdcprf, the setup authority computes the value of the DCPRF y ∈ Ydcprf. For simplicity
of notation, we will use DCPRF(skdcprf, x) to indicate the output of this algorithm.

DCPRF.Constrain(skdcprf,M) → skdcprf{M} : On input the master DCPRF key skdcprf ∈
Kdcprf and a TM M ∈ Mλ, the setup authority provides a constrained key skdcprf{M} ∈
Kdcprf-const to a legitimate user.

DCPRF.Delegate(skdcprf{M}, fM) → skdcprf{M ∧ fM} : Taking as input a constrained key
skdcprf{M} ∈ Kdcprf-const corresponding to a legitimate TM M ∈ Mλ along with another
TM fM ∈ Mλ, a user gives a delegated constrained key skdcprf{M ∧ fM} ∈ Kdcprf-const to
a legitimate delegate.

DCPRF.Eval-Constrained(skdcprf{M}/skdcprf{M ∧ fM}, x)→ y or ⊥ : A user takes as input a
constrained key skdcprf{M} ∈ Kdcprf-const obtained from the setup authority, corresponding
to TM M ∈Mλ, or a delegated constrained key skdcprf{M ∧ fM} ∈ Kdcprf-const delegated
by a constrained key holder holding the constrained key skdcprf{M} ∈ Kdcprf-const, cor-
responding to TM fM ∈ Mλ, along with an input x ∈ Xdcprf. It outputs either a value
y ∈ Ydcprf or ⊥ indicating failure.

The algorithms DCPRF.Eval and DCPRF.Eval-Constrained are deterministic, while, all the others
are randomized. The algorithms satisfy the following properties:
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� Correctness under Constraining/Delegation: Let us consider any security parameter λ,
x ∈ Xdcprf, skdcprf

$←− DCPRF.Setup(1λ),M, fM ∈Mλ, skdcprf{M}
$←− DCPRF.Constrain(skdcprf,

M) and skdcprf{M ∧ fM} $←− DCPRF.Delegate(skdcprf{M}, fM). The following must hold:

DCPRF.Eval-Constrained(skdcprf{M}/skdcprf{M ∧ fM}, x) =¨
DCPRF(skdcprf, x), if M(x) = 1/[M(x) = 1] ∧ [fM(x) = 1]
⊥, otherwise

� Selective Pseudorandomness: This property of a DCPRF is defined through the following
experiment between an adversary A and a challenger B:

• A submits a challenge input x∗ ∈ Xdcprf to B.
• B generates skdcprf

$←− DCPRF.Setup(1λ) and selects a random bit b $←− {0, 1}. If b = 0, B
computes y∗ = DCPRF(skdcprf, x

∗). Otherwise, B chooses y∗ $←− Ydcprf. B returns y∗ to A.
• A may adaptively make a polynomial number of queries of the following types:

– Constrained key query: A queries a constrained key corresponding to TM M ∈ Mλ

subject to the constraint that M(x∗) = 0. B hands the constrained key skdcprf{M}
$←−

DCPRF.Constrain(skdcprf,M) to A.

– Delegated key query: A queries a delegated key by sending a pair of TM’s
(M, fM) ∈ M2

λ subject to the constraint that [M(x∗) = 0] ∨ [fM(x∗) = 0]. B
first checks whether skdcprf{M} has already been generated while answering
any previous constrained key or delegated key query, and if so, then it creates
skdcprf{M ∧ fM} $←− DCPRF.Delegate(skdcprf{M}, fM). On the other hand, if
skdcprf{M} has not yet been generated, then B forms skdcprf{M ∧ fM} $←−
DCPRF.Delegate(DCPRF.Constrain(skdcprf,M), fM). B gives the delegated key
skdcprf{M ∧ fM} to A.

– Evaluation query: A queries the DCPRF value at some input x ∈ Xdcprf such that
x 6= x∗. B returns DCPRF(skdcprf, x) to A.

• At the end of interaction A outputs a guess bit b′ ∈ {0, 1}.

The DCPRF is said to be selectively pseudorandom if for any PPT adversary A, for any security
parameter λ,

Advdcprf,sel-pr
A (λ) = |Pr[b = b′]− 1/2| ≤ negl(λ)

for some negligible function negl.

Remark 5.1. Note that by a similar reasoning as in Remark 3.1, in the above experiment we
can, without loss of generality, replace an evaluation query for some input x 6= x∗ ∈ Xdcprf
with a constrained key query corresponding to a TM Mx ∈ Mλ such that Mx accepts only x.
Also, note that without loss of generality, we may assume that for any delegated key query of
A corresponding to TM pair (M, fM) ∈ M2

λ, it holds that [M(x∗) = 1] ∧ [fM(x∗) = 0] as any
delegated key query corresponding to TM pair (M, fM) ∈ M2

λ with M(x∗) = 0 can be replaced
with a valid constrained key query for TM M in view of the fact that once A posses a constrained
key skdcprf{M} it can generate the delegated key skdcprf{M ∧ fM} for any fM ∈ Mλ on its
own. We will use these simplifications in our proof.

5.2 Construction

In this section, we will present our DCPRF for TM’s. The construction presented here considers
only one level of delegation, however, it can readily be generalized to support multiple delegation
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levels. Let λ be the underlying security parameter. Consider the class Mλ of TM’s, the members
of which have (worst-case) running time bounded by T = 2λ, input alphabet Σinp = {0, 1},
and tape alphabet Σtape = {0, 1, }. Our DCPRF construction is an augmentation of our CPRF
construction with a delegation functionality and employs all the cryptographic building blocks
utilized by our CPRF construction. In addition, we use a perfectly correct and CPA secure pub-
lic key encryption scheme PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) with an appropriate
message space. The formal description of our DCPRF follows:

DCPRF.Setup(1λ) → skdcprf = (K,hk): The setup authority takes as input the security pa-
rameter 1λ and proceeds as follows:
1. It first chooses a PPRF key K $←− F .Setup(1λ).
2. Next it generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).
3. It sets the master DCPRF key as skdcprf = (K,hk).

DCPRF.Eval(skdcprf, x)→ y = F(K, (h, `x)): Taking as input the master DCPRF key skdcprf =
(K,hk) along with an input x = x0 . . . x`x−1 ∈ Xdcprf, where |x| = `x, the setup authority
executes the following steps:
1. It computes h = Hhk(x).
2. It outputs the DCPRF value on input x to be y = F(K, (h, `x)).

DCPRF.Constrain(skdcprf,M) → skdcprf{M} = (K ′,hk,ppacc, w0, store0,ppitr, v0,P1,P2,
P3,Pdcprf): On input the master DCPRF key skdcprf = (K,hk) and a TM M = 〈Q,Σinp,
Σtape, δ, q0, qac, qrej〉 ∈Mλ, the setup authority performs the following steps:
1. At first, it selects PPRF keys K ′,K1, . . . ,Kλ,Ksps,A,Ksps,E

$←− F .Setup(1λ).
2. Next, it generates (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (ppitr, v0) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, it constructs the obfuscated programs

– P1 = IO(Init-SPS.Prog[q0, w0, v0,Ksps,E ]),
– P2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,ppitr,Ksps,E ]),
– P3 = IO(Change-SPS.Prog[Ksps,A,Ksps,E ]),
– Pdcprf = IO(Constrained-Key.Progdcprf[M,T = 2λ,ppacc,ppitr,K,K

′,K1, . . . ,Kλ,
Ksps,A]),

where the programs Init-SPS.Prog,Accumulate.Prog, and Change-SPS.Prog are depicted re-
spectively in Figs. 3.1, 3.2 and 3.3 in Section 3.4, while the program Constrained-Key.Progdcprf
is described in Fig. 5.1.

4. It provides the constrained key skdcprf{M} = (K ′,hk,ppacc, w0, store0,ppitr, v0,P1,P2,
P3,Pdcprf) to a legitimate user.

DCPRF.Delegate(skdcprf{M}, fM)→ skdcprf{M ∧ fM} = (fK ′,hk,ppacc,fppacc, w0, Üw0, store0,ástore0,ppitr,fppitr, v0, ev0,P1, ÜP1,P2, ÜP2,P3, ÜP3,Pdcprf, ÜPdcprf): A user takes as input a con-
strained key skdcprf{M} = (K ′,hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pdcprf), corre-
sponding to a legitimate TM M ∈Mλ and another TM fM = 〈ÜQ,Σinp, Σtape, eδ, eq0, eqac, eqrej〉 ∈
Mλ. It proceeds as follows:
1. It first picks fresh PPRF keys fK ′,fK1, . . . ,fKλ,fKsps,A,fKsps,E

$←− F .Setup(1λ).
2. Next it generates (fppacc, Üw0,ástore0) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (fppitr, ev0) $←−

ITR.Setup(1λ, nitr = 2λ) afresh.
3. Then, it constructs the obfuscated programs

– ÜP1 = IO(Init-SPS.Prog[eq0, Üw0, ev0,fKsps,E ]),
– ÜP2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,fppacc,fppitr,fKsps,E ]),
– ÜP3 = IO(Change-SPS.Prog[fKsps,A,fKsps,E ]),
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K′,K1, . . . ,Kλ,Ksps,A

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: Encryption of DCPRF value ctpke, or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if stout = qac, perform the following steps:
(I) Compute rpke,1‖rpke,2 = F(K′, (h, `inp)), (pkpke, skpke) = PKE.Setup(1λ; rpke,1).

(II) Output ctpke = PKE.Encrypt(pkpke,F(K, (h, `inp)); rpke,2).
5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Set mout = (vout, stout, wout, posout).
Compute σsps,out = SPS.Sign(sk′sps,A,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. 5.1. Constrained-Key.Progdcprf

– ÜPdcprf = IO(Constrained-Key.Progdcprf[fM,T = 2λ,fppacc,fppitr,K
′,fK ′,fK1, . . . ,fKλ,fKsps,A]),

where the programs Init-SPS.Prog,Accumulate.Prog, and Change-SPS.Prog are depicted re-
spectively in Figs. 3.1, 3.2 and 3.3 in Section 3.4, while the program Constrained-Key.Progdcprf
is described in Fig. 5.1.

4. It gives the delegated key skdcprf{M ∧ fM} = (fK ′,hk,ppacc,fppacc, w0, Üw0, store0,ástore0,ppitr,fppitr, v0, ev0,P1, ÜP1,P2, ÜP2,P3, ÜP3,Pdcprf, ÜPdcprf) to a legitimate delegate.

DCPRF.Eval-Constrained(skdcprf{M}/skdcprf{M ∧ fM}, x)→ y = F(K, (h, `x)) or ⊥: A user
takes as input a constrained key skdcprf{M} = (K ′,hk,ppacc, w0, store0,ppitr, v0,P1,P2,
P3,Pdcprf) obtained from the setup authority, corresponding to some legitimate TM M =
〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈Mλ, or a delegated key skdcprf{M ∧ fM} = (fK ′,hk,ppacc,fppacc, w0, Üw0, store0,ástore0,ppitr,fppitr, v0, ev0,P1, ÜP1,P2, ÜP2,P3, ÜP3,Pdcprf, ÜPdcprf) obta-
ined from the holder of the constrained key skdcprf{M}, corresponding to TM fM = 〈ÜQ,Σinp,
Σtape, eδ, eq0, eqac, eqrej〉 ∈ Mλ, along with an input x = x0 . . . x`x−1 ∈ Xdcprf with |x| = `x. It
proceeds as follows:

(A) If M(x) = 0, it outputs ⊥. Otherwise, it performs the following steps:
1. It first computes h = Hhk(x).
2. Next, it computes σ̆sps,0 = P1(h).
3. Then for j = 1, . . . , `x, it iteratively performs the following:

(a) It computes πssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes auxj = ACC.Prep-Write(ppacc, storej−1, j − 1).
(c) It computes out = P2(j − 1, xj−1, q0, wj−1,auxj , vj−1, σ̆sps,j−1, h, πssb,j−1).
(d) If out = ⊥, it outputs out. Else, it parses out as out = (wj , vj , σ̆sps,j).
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(e) It computes storej = ACC.Write-Store(ppacc, storej−1, j − 1, xj−1).
4. It computes σsps,0 = P3(q0, w`x , v`x , h, `x, σ̆sps,`x).
5. It sets posM,0 = 0 and seed0 = ε.
6. Suppose, M accepts x in tx steps. For t = 1, . . . , tx, it iteratively performs the following

steps:
(a) It computes (symM,t−1, πacc,t−1) = ACC.Prep-Read(ppacc, store`x+t−1,posM,t−1).
(b) It computes aux`x+t = ACC.Prep-Write(ppacc, store`x+t−1,posM,t−1).
(c) It computes out = Pdcprf(t, seedt−1,posM,t−1, symM,t−1, stM,t−1, w`x+t−1, πacc,t−1,

aux`x+t, v`x+t−1, h, `x, σsps,t−1).
(d) If t = tx, it sets ctpke = out. Otherwise, it parses out as out = (posM,t, sym(write)

M,t ,
stM,t, w`x+t, v`x+t, σsps,t, seedt).

(e) It computes store`x+t = ACC.Write-Store(ppacc, store`x+t−1,posM,t−1, sym(write)
M,t ).

(B) If the user is using the constrained key skdcprf{M}, then it computes rpke,1‖rpke,2 =
F(K ′, (h, `x)), (pkpke, skpke) = PKE.Setup(1λ; rpke,1), and outputs PKE.Decrypt(skpke,

ctpke). On the other hand, if the user is using the delegated key skdcprf{M ∧ fM} andfM(x) = 0, then it outputs ⊥, while if fM(x) = 1, it further executes the following steps:
1. It computes ĕσsps,0 = ÜP1(h).
2. Then for j = 1, . . . , `x, it iteratively performs the following:

(a) It computes eπssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes Þauxj = ACC.Prep-Write(fppacc,ástorej−1, j − 1).
(c) It computes Þout = ÜP2(j − 1, xj−1, eq0, Üwj−1,Þauxj , evj−1, ĕσsps,j−1, h, eπssb,j−1).
(d) If Þout = ⊥, it outputs Þout. Else, it parses Þout as Þout = (Üwj , evj , ĕσsps,j).
(e) It computes ástorej = ACC.Write-Store(fppacc,ástorej−1, j − 1, xj−1).

3. It computes eσsps,0 = ÜP3(eq0, Üw`x , ev`x , h, `x, ĕσsps,`x).
4. It sets posÜM,0 = 0 and ßseed0 = ε.
5. Suppose, fM accepts x in etx steps. For t = 1, . . . , etx, it iteratively performs the following

steps:
(a) It computes (symÜM,t−1, eπacc,t−1) = ACC.Prep-Read(fppacc,ástore`x+t−1,posÜM,t−1).
(b) It computes Þaux`x+t = ACC.Prep-Write(fppacc,ástore`x+t−1,posÜM,t−1).
(c) It computes Þout = ÜPdcprf(t,ßseedt−1,posÜM,t−1, symÜM,t−1, stÜM,t−1, Üw`x+t−1, eπacc,t−1,Þaux`x+t, ev`x+t−1, h, `x, eσsps,t−1).
(d) If t = etx, it setsÝctpke = Þout. Otherwise, it parses Þout as Þout = (posÜM,t

, sym(write)ÜM,t
,

stÜM,t
, Üw`x+t, ev`x+t, eσsps,t,ßseedt).

(e) It computesástore`x+t = ACC.Write-Store(fppacc,ástore`x+t−1,posÜM,t−1, sym(write)ÜM,t
).

(C) Finally, it computes
– erpke,1‖erpke,2 = F(fK ′, (h, `x)),
– (Ýpkpke,fskpke) = PKE.Setup(1λ; erpke,1),
– rpke,1‖rpke,2 = PKE.Decrypt(fskpke,Ýctpke),
– (pkpke, skpke) = PKE.Setup(1λ; rpke,1),

and outputs PKE.Decrypt(skpke,ctpke).

Security

Theorem 5.1 (Security of the DCPRF Construction of Section 5.2). Assuming IO is
a secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom
function as per Definition 2.2, SSB is a somewhere statistically binding hash function according
to Definition 2.3, ACC is a secure positional accumulator as defined in Definition 2.4, ITR
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is a secure cryptographic iterator as per Definition 2.5, SPS is a secure splittable signature
scheme according to Definition 2.6, PRG is a secure injective pseudorandom generator, and
PKE is CPA secure, the DCPRF construction of Section 5.2 satisfies the correctness and selective
pseudorandomness properties defined in Definition 5.1.

The proof of Theorem 5.1 is given in Appendix C.

6 Application: Attribute-Based Signature for Turing Machines

6.1 Notion

Here we will formally define the notion of an attribute-based signature scheme where signing
policies are associated with TM’s. This definition is similar to that defined in [TLL14, SAH16]
for circuits. However, due to the use of TM’s as opposed to circuits, the scheme can handle
signing attribute strings of arbitrary polynomial length.

Definition 6.1 (Attribute-Based Signature for Turing Machines: ABS). Let Mλ be a
class of TM’s, the members of which have (worst-case) running time bounded by T = 2λ. An
attribute-based signature (ABS) scheme for signing policies associated with the TM’s in Mλ

comprises of an attribute universe Uabs ⊂ {0, 1}∗, a message space Mabs = {0, 1}`abs-msg , a
signature space Sabs = {0, 1}`abs-sig , where `abs-msg, `abs-sig are some polynomials in the security
parameter λ, and PPT algorithms (ABS.Setup, ABS.KeyGen, ABS.Sign, ABS.Verify) described
below:

ABS.Setup(1λ)→ (ppabs,mskabs) : The setup authority takes as input the security parameter
1λ. It publishes the public parameters ppabs while generates a master secret key mskabs for
itself.

ABS.KeyGen(mskabs,M) → skabs(M) : Taking as input the master secret key mskabs and a
signing policy TM M ∈Mλ of a signer, the setup authority provides the corresponding sign-
ing key skabs(M) to the legitimate signer.

ABS.Sign(skabs(M), x,msg) → σabs or ⊥ : On input the signing key skabs(M) correspond-
ing to the legitimate signing policy TM M ∈ Mλ, a signing attribute string x ∈ Uabs, and
a message msg ∈Mabs, a signer outputs either a signature σabs ∈ Sabs or ⊥ indicating failure.

ABS.Verify(ppabs, x,msg, σabs) → β̂ ∈ {0, 1} : A verifier takes as input the public parameters
ppabs, a signing attribute string x ∈ Uabs, a message msg ∈Mabs, and a purported signature
σabs ∈ Sabs. It outputs a bit β̂ ∈ {0, 1}.

We note that all the algorithms described above except ABS.Verify are randomized. The algo-
rithms satisfy the following properties:

� Correctness: For any security parameter λ, (ppabs,mskabs)
$←− ABS.Setup(1λ), M ∈ Mλ,

skabs(M) $←− ABS.KeyGen(mskabs,M), x ∈ Uabs, and msg ∈ Mabs, if M(x) = 1, then
ABS.Sign(skabs(M), x,msg) outputs σabs ∈ Sabs such that ABS.Verify(ppabs, x,msg, σabs) = 1.

� Signer Privacy: An ABS scheme is said to provide signer privacy if for any security param-
eter λ, message msg ∈ Mabs, (ppabs,mskabs)

$←− ABS.Setup(1λ), signing policies M,M ′ ∈ Mλ,
signing keys skabs(M) $←− ABS.KeyGen(mskabs,M), skabs(M ′)

$←− ABS.KeyGen(mskabs,M
′),

x ∈ Uabs such that M(x) = 1 = M ′(x), the distributions of the signatures outputted by
ABS.Sign(skabs(M), x,msg) and ABS.Sign(skabs(M ′), x,msg) are identical.
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� Existential Unforgeability against Selective Attribute Adaptive Chosen Message
Attack: This property of an ABS scheme is defined through the following experiment between
an adversary A and a challenger B:

• A submits a challenge attribute string x∗ ∈ Uabs to B.
• B generates (ppabs,mskabs)

$←− ABS.Setup(1λ) and provides A with ppabs.
• A may adaptively make a polynomial number of queries of the following types:

– Signing key query: When A queries a signing key corresponding to a signing policy
TM M ∈ Mλ subject to the restriction that M(x∗) = 0, B gives back skabs(M) $←−
ABS.KeyGen(mskabs,M) to A.

– Signature query: When A queries a signature on a message msg ∈ Mabs under an
attribute string x ∈ Uabs, B samples a signing policy TM M ∈ Mλ such that M(x) = 1,
creates a signing key skabs(M) $←− ABS.KeyGen(mskabs,M), and generates a signature
σabs

$←− ABS.Sign(skabs(M), x,msg), which B returns to A.
• At the end of interaction A outputs a message-signature pair (msg∗, σ∗abs). A wins if the

following hold simultaneously:
i) ABS.Verify(ppabs, x

∗,msg∗, σ∗abs) = 1.
ii) A has not made any signature query on msg∗ under x∗.

The ABS scheme is said to be existentially unforgeable against selective attribute adaptive chosen
message attack if for any PPT adversary A, for any security parameter λ,

Advabs,uf-cma
A (λ) = Pr[A wins] ≤ negl(λ)

for some negligible function negl.

Remark 6.1. Note that in the existential unforgeability experiment above without loss of gen-
erality, we can consider signature queries on messages only under the challenge attribute string
x∗. This is because any signature query under some attribute string x 6= x∗ can be replaced by a
signing key query for a signing policy TM Mx ∈Mλ that accepts only the string x. Since x 6= x∗,
Mx(x∗) = 0, and thus Mx forms a valid signing key query. We will use this simplification in our
proof.

6.2 Construction

In this section we will present our ABS scheme for TM’s. Let λ be the underlying security
parameter. Let Mλ denote a family of TM’s, the members of which have (worst case) running
time bounded by T = 2λ, input alphabet Σinp = {0, 1}, and tape alphabet Σtape = {0, 1, }.
Our ABS scheme closely resembles our CPRF construction described in Section 3.4 and utilizes
the same underlying cryptographic tools. Additionally, here we use a digital signature scheme
SIG = (SIG.Setup, SIG.Sign,SIG.Verify) which is existentially unforgeable against chosen message
attack (CMA). The formal description of our ABS construction follows:

ABS.Setup(1λ) → (ppabs = (hk,Vabs),mskabs = (K,hk)): The setup authority takes as input
the security parameter 1λ and proceeds as follows:
1. It first chooses a PPRF key K $←− F .Setup(1λ).
2. Next it generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).
3. Then, it creates the obfuscated program Vabs = IO(Verify.Progabs[K]), where the program

Verify.Progabs is described in Fig. 6.1.
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Constants: PPRF key K
Inputs: SSB hash value h, Length `inp

Output: SIG verification key cvksig

1. Compute r̂sig = F(K, (h, `inp)), (Òsksig,cvksig) = SIG.Setup(1λ; r̂sig).
2. Output cvksig.

Fig. 6.1. Verify.Progabs

4. It keeps the master secret key mskabs = (K,hk) and publishes the public parameters
ppabs = (hk,Vabs).

ABS.KeyGen(mskabs,M)→ skabs(M) = (hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pabs): On
input the master secret key mskabs = (K,hk) and a signing policy TMM = 〈Q,Σinp, Σtape, δ,
q0, qac, qrej〉 ∈Mλ, the setup authority performs the following steps:
1. At first, it selects PPRF keys K1, . . . ,Kλ,Ksps,A,Ksps,E

$←− F .Setup(1λ).
2. Next, it generates (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (ppitr, v0) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, it constructs the obfuscated programs

– P1 = IO(Init-SPS.Prog[q0, w0, v0,Ksps,E ]),
– P2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,ppitr,Ksps,E ]),
– P3 = IO(Change-SPS.Prog[Ksps,A,Ksps,E ]),
– Pabs = IO(Constrained-Key.Progabs[M,T = 2λ,ppacc,ppitr,K,K1, . . . ,Kλ,Ksps,A]),

where the programs Init-SPS.Prog,Accumulate.Prog, and Change-SPS.Prog are as depicted
respectively in Figs. 3.1, 3.2 and 3.3 in Section 3.4, while the program Constrained-Key.Progabs
is described in Fig. 6.2.

4. It provides the constrained key skabs(M) = (hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,
Pabs) to a legitimate signer.

ABS.Sign(skabs(M), x,msg) → σabs = (vksig, σsig) or ⊥: A signer takes as input its signing
key skabs(M) = (hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pabs), corresponding to its le-
gitimate signing policy TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈ Mλ, an attribute string
x = x0 . . . x`x−1 ∈ Uabs with |x| = `x, and a message msg ∈ Mabs. If M(x) = 0, it outputs
⊥. Otherwise, it proceeds as follows:
1. It first computes h = Hhk(x).
2. Next, it computes σ̆sps,0 = P1(h).
3. Then for j = 1, . . . , `x, it iteratively performs the following:

(a) It computes πssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes auxj = ACC.Prep-Write(ppacc, storej−1, j − 1).
(c) It computes out = P2(j − 1, xj−1, q0, wj−1,auxj , vj−1, σ̆sps,j−1, h, πssb,j−1).
(d) If out = ⊥, it outputs out. Else, it parses out as out = (wj , vj , σ̆sps,j).
(e) It computes storej = ACC.Write-Store(ppacc, storej−1, j − 1, xj−1).

4. It computes σsps,0 = P3(q0, w`x , v`x , h, `x, σ̆sps,`x).
5. It sets posM,0 = 0 and seed0 = ε.
6. Suppose, M accepts x in tx steps. For t = 1, . . . , tx, it iteratively performs the following

steps:
(a) It computes (symM,t−1, πacc,t−1) = ACC.Prep-Read(ppacc, store`x+t−1,posM,t−1).
(b) It computes aux`x+t = ACC.Prep-Write(ppacc, store`x+t−1,posM,t−1).
(c) It computes out = Pabs(t, seedt−1,posM,t−1, symM,t−1, stM,t−1, w`x+t−1, πacc,t−1,

aux`x+t, v`x+t−1, h, `x, σsps,t−1).
(d) If t = tx, it parses out as out = (sksig,vksig). Otherwise, it parses out as out =

(posM,t, sym(write)
M,t , stM,t, w`x+t, v`x+t, σsps,t, seedt).
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K1, . . . ,Kλ,Ksps,A

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: (SIG signing key sksig, SIG verification key vksig), or Header Position (posout, Symbol symout,
TM state stout, Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout),
or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SSB.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig,vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig,vksig).
5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Set mout = (vout, stout, wout, posout). Compute σsps,out = SPS.Sign(sk′sps,A,mout).
7. If t+ 1 = 2τ

′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. 6.2. Constrained-Key.Progabs

(e) It computes store`x+t = ACC.Write-Store(ppacc, store`x+t−1,posM,t−1, sym(write)
M,t ).

7. Finally, it computes σsig
$←− SIG.Sign(sksig,msg).

8. It outputs the signature σabs = (vksig, σsig) ∈ Sabs.

ABS.Verify(ppabs, x,msg, σabs) → β̂ ∈ {0, 1}: A verifier takes as input the public parameters
ppabs = (hk,Vabs), an attribute string x = x0 . . . x`x−1 ∈ Uabs, where |x| = `x, a message
msg ∈Mabs, together with a signature σabs = (vksig, σsig) ∈ Sabs. It executes the following:
1. It first computes h = Hhk(x).
2. Next, it computes Óvksig = Vabs(h, `x).
3. If [vksig = Óvksig] ∧ [SIG.Verify(vksig,msg, σsig) = 1], it outputs 1. Otherwise, it outputs

0.

Security

Theorem 6.1 (Security of the ABS Scheme of Section 6.2). Assuming IO is a secure
indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom function as
per Definition 2.2, SSB is a somewhere statistically binding hash function according to Defini-
tion 2.3, ACC is a secure positional accumulator as defined in Definition 2.4, ITR is a secure
cryptographic iterator as per Definition 2.5, SPS is a secure splittable signature scheme according
to Definition 2.6, PRG is a secure injective pseudorandom generator, and SIG is existentially un-
forgeable against chosen message attack, the ABS scheme of Section 6.2 satisfies all the criteria
of a secure ABS defined in Definition 6.1.

The proof of Theorem 6.1 is provided in Appendix D.
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7 Conclusion

In this paper, besides fixing the flaw in the security argument of the IO-based CPRF construction
of [DKW16] for inputs of unbounded polynomial length, we have presented the first constructions
of CVPRF and DCPRF supporting unbounded length inputs. In view of the countless applications
of CPRF’s and their various extensions in resolving exciting fundamental problems of modern
cryptography, it is desirable to improve the efficiency as well as strengthen the security of these
primitives based on well-studied cryptographic tools and complexity assumptions. Although, our
results have proved existence of CPRF, CVPRF, and DCPRF for unconstrained length inputs,
the constructions are quite expensive given the research progress in the field of IO so far. There-
fore, an inportant research direction is to seek for cost-effective constructions of CPRF and its
enhancements which can handle inputs of arbitrary polynomial length, without employing such
heavy duty tools like IO or multilinear maps. A more fundamental challenge is to investigate
adaptively secure constructions of these primitives supporting apriori unbounded length inputs
without using the technique of complexity leveraging.
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Appendix A: Proof of Theorem 3.1

Theorem 3.1 (Security of the CPRF Construction of Section 3.4). Assuming IO is a
secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom func-
tion as per Definition 2.2, SSB is a somewhere statistically binding hash function according to
Definition 2.3, ACC is a secure positional accumulator according to Definition 2.4, ITR is a se-
cure cryptographic iterator as per Definition 2.5, SPS is a secure splittable signature scheme as
defined in Definition 2.6, and PRG is a secure injective pseudorandom generator,the CPRF con-
struction of Section 3.4 satisfies correctness under constraining and selective pseudorandomness
as defined in Definition 3.1.

Proof. Note that the correctness under constraining property of the CPRF construction of Sec-
tion 3.4 follows immediately from its construction and the correctness of all the underlying
cryptographic building blocks. In order to prove selective pseudorandomness, we will first in-
troduce a sequence of hybrid experiments and next show based on the security properties of
various primitives that the advantage of any PPT adversary A in any two neighboring hybrid
experiments is negligibly different. Finally, we will argue that the advantage of any PPT adver-
sary A in the final hybrid experiment is negligible. Observe that since we are working in the
selective model, the challenger B knows the challenge input x∗ = x∗0 . . . x

∗
`∗−1 ∈ Xcprf and the

SSB hash value h∗ = Hhk(x∗) prior to receiving any constrained key query from A. Lets assume
that the total number of constrained key query made by A is q̂. Note that we do not consider
any evaluation query in view of Remark 3.1. The hybrid experiments are described below:

Sequence of Hybrid Experiments

Hyb0: This experiment corresponds to the real selective pseudorandomness experiment described
in Definition 3.1 of Section 3.1. More precisely, this experiment proceeds as follows:

• A submits the challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with |x∗| = `∗ to B.

• B generates a master CPRF key skcprf = (K,hk) $←− CPRF.Setup(1λ) as described in Sec-
tion 3.4. Next it selects a random bit b $←− {0, 1}. If b = 0, it computes y∗ = CPRF(skcprf, x

∗) =
F(K, (h∗ = Hhk(x∗), `∗)). On the other hand, if b = 1, it chooses y∗ $←− Ycprf. B provides y∗
to A.
• For, η = 1, . . . , q̂, in response to the ηth constrained key query of A corresponding to TM
M (η) = 〈Q(η), Σinp, Σtape, δ

(η), q
(η)
0 , q

(η)
ac , q

(η)
rej〉 ∈Mλ with M (η)(x∗) = 0, B creates

skcprf{M (η)} =0
BBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ]),

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ]),

IO(Constrained-Key.Progcprf[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A])

1
CCCCCCCA

$←− CPRF.Constrain(skcprf,M
(η)),

as described in Section 3.4, and provides skcprf{M (η)} to A. Here we assign the index
η to all those components of skcprf{M (η)} which are generated during the execution of
CPRF.Constrain(skcprf,M

(η)).
• A eventually outputs a guess bit b′ ∈ {0, 1}.
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Hyb0,ν (ν = 1, . . . , q̂): This experiment is identical to Hyb0 except that for η ∈ [q̂], in reply
to the ηth constrained key query of A corresponding to TM M (η) ∈ Mλ with M (η)(x∗) = 0, B
returns the constrained key
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BBBBBBBB@
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λ ,K
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to A, if η ≤ ν, while the constrained key

skcprf{M (η)} =0
BBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w
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0 , v
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0 ,K

(η)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
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(η)
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λ ,K

(η)
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1
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to A, if η > ν, where the program Constrained-Key.Prog′cprf is a modification of the program
Constrained-Key.Progcprf (Fig. 3.4) and is depicted in Fig. A.1. Observe that Hyb0,0 coincides
with Hyb0.

Hyb1: This experiment corresponds to Hyb0,q̂, i.e., in this experiment, for all η = 1, . . . , q̂, in re-
sponse to the ηth constrained key query ofA corresponding to TMM (η) ∈Mλ withM (η)(x∗) = 0,
B returns the constrained key

skcprf{M (η)} =0
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1 , . . . ,K

(η)
λ ,K
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to A, while the rest of the experiment proceeds as in Hyb0.

Hyb2: This experiment proceeds as follows:

• After receiving the challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf from A, B performs the follow-

ing:
1. It first chooses a PPRF key K $←− F .Setup(1λ) and generates hk $←− SSB.Gen(1λ, nssb-blk =

2λ, i∗ = 0) as in Hyb1.
2. Next it computes h∗ = Hhk(x∗) and creates the punctured PPRF key K{(h∗, `∗)} $←−
F .Puncture(K, (h∗, `∗)).

3. Then, it selects a random bit b $←− {0, 1}. If b = 0, it computes y∗ = F(K, (h∗, `∗)).
Otherwise, it chooses y∗ $←− Ypprf.
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K1, . . . ,Kλ,Ksps,A, SSB
hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if [stout = qac] ∧ [(h, `inp) 6= (h∗, `∗)], output F(K, (h, `inp)).
Else if stout = qac, output ⊥.

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Set mout = (vout, stout, wout, posout). Compute σsps,out = SPS.Sign(sk′sps,A,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.1. Constrained-Key.Prog′cprf

4. It provides y∗ to A.
• For all η = 1, . . . , q̂, to answer the ηth constrained key query of A corresponding to TM
M (η) ∈Mλ withM (η)(x∗) = 0, B generates all the components as in Hyb1, however, it sends
back the constrained key
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to A.
• At the end A outputs a guess bit b′ ∈ {0, 1} as usual.

Analysis

Let Adv(0)
A (λ),Adv(0,ν)

A (λ)(ν = 1, . . . , q̂), Adv(1)
A (λ), and Adv(2)

A (λ) represent respectively the ad-
vantage of the adversary A, i.e., the absolute difference between 1/2 and A’s probability of cor-
rectly guessing the random bit selected by the challenger B, in Hyb0,Hyb0,ν(ν = 1, . . . , q̂), Hyb1,
and Hyb2. From the description of the hybrid experiments it follows that Advcprf,sel-pr

A (λ) ≡
Adv(0)

A (λ) ≡ Adv(0,0)
A (λ) and Adv(1)

A (λ) ≡ Adv(0,q̂)
A (λ). Therefore, we have

Advcprf,sel-pr
A (λ) ≤

q̂X
ν=1
|Adv(0,ν−1)

A (λ)−Adv(0,ν)
A (λ)|+ |Adv(1)

A (λ)−Adv(2)
A (λ)|+ Adv(2)

A (λ). (A.1)
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Lemmas A.1–A.3 will show that the RHS of Eq. (A.1) is negligible and hence Theorem 3.1
follows. ut

A.1 Lemmas for the Proof of Theorem 3.1

Lemma A.1. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satis-
fies the correctness under puncturing property defined in Definition 2.2, for any PPT adversary
A, for any security parameter λ, |Adv(1)

A (λ) − Adv(2)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. The only difference between Hyb1 and Hyb2 is the following: For η = 1, . . . , q̂, in response
to the ηth constrained key query of A corresponding to TM M (η) ∈ Mλ with M (η)(x∗) = 0,
in Hyb1, B includes IO(P (η)

0 ) within the constrained key skcprf{M (η)} returned to A, while in
Hyb2, B includes IO(P (η)

1 ) instead, where

– P
(η)
0 = Constrained-Key.Prog′cprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K,K

(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗],
– P

(η)
1 = Constrained-Key.Prog′cprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K{(h∗, `∗)},K

(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A,

h∗, `∗].

Here, K{(h∗, `∗)} $←− F .Puncture(K, (h∗, `∗)) and program Constrained-Key.Prog′cprf is depicted
in Fig. A.1.

Now observe that the program Constrained-Key.Prog′cprf computes F(K, (h, `inp)) if and only
if (h, `inp) 6= (h∗, `∗). As a consequence, by the correctness under puncturing property of the
PPRF F , the functionality of the program Constrained-Key.Prog′cprf does not change if the punc-
tured PPRF key K{(h∗, `∗)} is hardwired into it in place of the full PPRF key K.

Therefore, by the security of IO, Lemma A.1 follows. Ofcourse, for achieving the result we
would have to consider a sequence of q̂ hybrid experiments where in each hybrid experiment
we change the hardwiring of the program Constrained-Key.Prog′cprf included in the ηth queried
constrained key, for η = 1, . . . , q̂. ut

Lemma A.2. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, Adv(2)

A (λ) ≤ negl(λ) for some negligible
function negl.

Proof. Suppose there exists a PPT adversary A for which Adv(2)
A (λ) is non-negligible. We con-

struct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F using A
as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗). B will
implicitly view the key K∗ as the key K.

2. B sends (h∗, `∗) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back a punctured PPRF key K∗{(h∗, `∗)} and a value r∗ ∈ Ypprf, where
either r∗ = F(K∗, (h∗, `∗)) or r∗ $←− Ypprf.

3. B returns the challenge CPRF value y∗ = r∗ to A.
• For η = 1, . . . , q̂, in response to the ηth constrained query of A corresponding to TM M (η) ∈
Mλ with M (η)(x∗) = 0, B proceeds as follows:
1. B first selects PPRF keys K(η)

1 , . . . ,K
(η)
λ ,K

(η)
sps,A,K

(η)
sps,E

$←− F .Setup(1λ).
2. Next, it creates (pp(η)

acc, w
(η)
0 , store(η)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(η)
itr, v

(η)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
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3. B gives A the constrained key
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• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its PPRF selective pseudorandomness experiment.

Note that the simulation of Hyb2 by B is perfect. Also, if A wins in this simulated Hyb2,
then B wins in the PPRF selective pseudorandomness experiment against F . This completes the
proof of Lemma A.2. ut

Lemma A.3. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, SSB is a somewhere statisti-
cally binding hash function according to Definition 2.3, ACC is a secure positional accumu-
lator as defined in Definition 2.4, ITR is a secure cryptographic iterator according to Def-
inition 2.5, SPS is a secure splitable signature as per Definition 2.6, and PRG is a secure
injective pseudorandom generator, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1)

A (λ)− Adv(0,ν)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of our Lemma A.3 extends the ideas involved in the security proof for the
message-hiding encoding of [KLW15]. Lemma 1 in the security proof of the CPRF construction
of [DKW16] also employs a similar technique. However, as mentioned earlier, making the use
of the somewhere statistically binding hash function and suitably modifying the construction
of [DKW16] we are able to remove the flaw in the argument of [DKW16]. We will first pro-
vide a complete description of the sequence of hybrid experiments involved in the proof of our
Lemma A.3 and then provide the analysis of those hybrid experiments providing the details for
only those segments which are distinct from [DKW16].

Let t∗(ν) denotes the running time of the TM M (ν) ∈ Mλ, queried by the adversary A, on
input the challenge string x∗ and 2τ∗(ν) be the smallest power of two greater than t∗(ν). The
sequence of intermediate hybrid experiments between Hyb0,ν−1 and Hyb0,ν are described below:

Sequence of Intermediate Hybrids between Hyb0,ν−1 and Hyb0,ν

Hyb0,ν−1,0: This experiment coincides with Hyb0,ν−1.

Hyb0,ν−1,1: This experiment if analogous to Hyb0,ν−1,0 except that to answer the νth constrained
key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first picks PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E

$←− F .Setup(1λ).

2. Next, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
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3. It provides A with the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
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itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog[K(ν)
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1 , . . . ,K
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,

where the program Constrained-Key.Prog(1)
cprf, which is formed by modifying the program

Constrained-Key.Prog′cprf (Fig. A.1), is depicted in Fig. A.2.

Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗,
Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF
keys K,K1, . . . ,Kλ,Ksps,A, Ksps,B , SSB hash value of challenge input h∗, Length of challenge
input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output
⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, t− 1)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if stout = qac, output F(K, (h, `inp)).

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Compute r′sps,B = F(Ksps,B , (h, `inp, t)), (sk′sps,B ,vk′sps,B ,vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

Compute σsps,out = SPS.Sign(sk′sps,α,mout).
7. If t+ 1 = 2τ

′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.2. Constrained-Key.Prog(1)
cprf

Hyb0,ν−1,2: In this experiment, in response to the νth constrained key query of A corresponding
to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B performs the following steps:

1. It first chooses PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E , K(ν)

sps,F
$←− F .Setup(1λ).
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1
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where the programs Accumulate.Prog(1) and Change-SPS.Prog(1) are modifications of the pro-
grams Accumulate.Prog and Change-SPS.Prog (Figs. 3.2 and 3.3) and are depicted in Figs. A.3
and A.4 respectively.

The rest of the experiment proceeds in the same way as in Hyb0,ν−1,1.

Hyb0,ν−1,3: In this experiment, to answer the νth constrained key query of A correspond-

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F ,
SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Set mout = (vout, st, wout, 0). Compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. A.3. Accumulate.Prog(1)

ing to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the PPRF keys as well as the public
parameters for the positional accumulator and iterator just as in Hyb0,ν−1,2, however, it returns
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Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Ksps,F , SSB hash value of challenge input h∗, Length of chal-
lenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, `inp)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.4. Change-SPS.Prog(1)
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where the programs Accumulate.Prog(2) and Change-SPS.Prog(2) are modifications of the pro-
grams Accumulate.Prog(1) and Change-SPS.Prog(1) (Figs. A.3 and A.4) and are depicted in
Figs. A.5 and A.6 respectively. The remaining part of the experiment is similar to Hyb0,ν−1,2.

Hyb0,ν−1,3,ι (ι = 0, . . . , `∗ − 1): In this hybrid experiment, to answer the νthconstrained
key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hyb0,ν−1,3.

2. Next, it sets m(ν)
0,0 = (v(ν)

0 , q
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0 , w
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F ,
SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (i = 0) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0).

If i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. A.5. Accumulate.Prog(2)

Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Ksps,F , SSB hash value of challenge input h∗, Length of chal-
lenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, `inp)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp > `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.6. Change-SPS.Prog(2)
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where the programs Accumulate.Prog(3,ι) and Change-SPS.Prog(3,ι) are alterations of the pro-
grams Accumulate.Prog(2) and Change-SPS.Prog(2) (Figs. A.5 and A.6) and are described in
Figs. A.7 and A.8 respectively.

The remaining part of the experiment is analogous to Hyb0,ν−1,3.

Hyb0,ν−1,3,ι′ (ι = 0, . . . , `∗ − 1): This experiment is identical to Hyb0,ν−1,3 except that in re-

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E ,Ksps,F ,
Message mι,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0).

If [(h, i) = (h∗, ι)] ∧ [min = mι,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι)] ∧ [min 6= mι,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. A.7. Accumulate.Prog(3,ι)

sponse to the νth constrained key query ofA corresponding to TMM (ν) ∈Mλ withM (ν)(x∗) = 0,
B executes the following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hyb0,ν−1,3.

2. Next, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι+ 1, it iteratively computes the fol-

lowing:
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– w
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∗
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j )
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(ν)
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j−1, 0))

It sets m(ν)
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Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Ksps,F , SSB hash value of challenge input h∗, Length of chal-
lenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, `inp)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp > `∗) ∨ (0 < `inp ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.8. Change-SPS.Prog(3,ι)

3. It gives A the constrained key
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1
CCCCCCCCCCA
,

where the program Accumulate.Prog(3,ι′) is an alteration of the program Accumulate.Prog(3,ι)

(Fig. A.7) and is shown in Fig. A.9.

Hyb0,ν−1,4: This experiment is identical to Hyb0,ν−1,3,(`∗−1)′ with the exception that now in
response to the νth constrained key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) =
0, B does not generate the PPRF key K(ν)

sps,F and gives A the constrained key
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1
CCCCCCCCCCCA
,

where the program Accumulate.Prog is shown in Fig. 3.2 while the program Change-SPS.Prog(4),
which is a modification of the program Change-SPS.Prog(3,ι) (Fig. A.8), is depicted in Fig. A.10.
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E ,Ksps,F ,
Message mι+1,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0).

If [(h, i) = (h∗, ι)] ∧ [mout = mι+1,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι)] ∧ [mout 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,Emout).

5. Output (wout, vout, σsps,out).

Fig. A.9. Accumulate.Prog(3,ι′)

Constants: PPRF keys Ksps,A,Ksps,B ,Ksps,E , Message m`∗,0, SSB hash value of challenge input h∗, Length
of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Set m = (v, st, w, 0).
(c) If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.

2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [m 6= m`∗,0], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.10. Change-SPS.Prog(4)

Hyb0,ν−1,4,γ (γ = 1, . . . , t∗(ν) − 1): This experiment is analogous to Hyb0,ν−1,4 except that
in response to the νth constrained key query of A corresponding to TM M (ν) ∈ Mλ with
M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hyb0,ν−1,4.

2. Next, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w
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3. Then, B sets stM(ν),0 = q
(ν)
0 ,posM(ν),0 = 0, and for t = 1, . . . , γ, computes the following:
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where program Change-SPS.Prog is described in Fig. 3.3 and program Constrained-Key.Prog(2,γ)
cprf,

a modification of program Constrained-Key.Prog(1)
cprf (Fig. A.2), is described in Fig. A.11.

Hyb0,ν−1,4,γ′ (γ = 0, . . . , t∗(ν) − 1): This experiment is identical to Hyb0,ν−1,4 except that in
response to the νth constrained key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) =
0, B proceeds as follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hyb0,ν−1,4.

2. Next, it sets m(ν)
0,0 = (v(ν)
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3. Then, B sets stM(ν),0 = q
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗,
Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF
keys K,K1, . . . ,Kλ,Ksps,A,Ksps,B , Message m`∗,γ , SSB hash value of challenge input h∗, Length
of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, t− 1)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (t ≤ γ) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if [stout = qac] ∧ [α =‘A’] ∧ [(h, `inp) = (h∗, `∗)] ∧ [t ≤ γ], output ⊥.
Else if stout = qac, output F(K, (h, `inp)).

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Compute r′sps,B = F(Ksps,B , (h, `inp, t)), (sk′sps,B ,vk′sps,B ,vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If [(h, `inp, t) = (h∗, `∗, γ)] ∧ [mout = m`∗,γ ], compute σsps,out = SPS.Sign(sk′sps,A,mout).
Else if [(h, `inp, t) = (h∗, `∗, γ)] ∧ [mout 6= m`∗,γ ], compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.11. Constrained-Key.Prog(2,γ)
cprf

B sets m(ν)
`∗,γ = (v(ν)
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,

where program Constrained-Key.Prog(2,γ′)
cprf is an alteration of program Constrained-Key.Prog(2,γ)

cprf
(Fig. A.11) and is described in Fig. A.12.
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗,
Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF
keys K,K1, . . . ,Kλ,Ksps,A,Ksps,B , Message m`∗,γ , SSB hash value of challenge input h∗, Length
of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, t− 1)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (t ≤ γ + 1) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if [stout = qac] ∧ [α =‘A’] ∧ [(h, `inp) = (h∗, `∗)] ∧ [t ≤ γ + 1], output ⊥.
Else if stout = qac, output F(K, (h, `inp)).

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Compute r′sps,B = F(Ksps,B , (h, `inp, t)), (sk′sps,B ,vk′sps,B ,vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If [(h, `inp, t) = (h∗, `∗, γ + 1)] ∧ [min = m`∗,γ ], compute σsps,out = SPS.Sign(sk′sps,A,mout).
Else if [(h, `inp, t) = (h∗, `∗, γ + 1)] ∧ [min 6= m`∗,γ ], compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.12. Constrained-Key.Prog(2,γ′)
cprf

Hyb0,ν−1,5: This experiment is similar to Hyb0,ν−1,4,(t∗(ν)−1)′ with the exception that in respond-
ing to the νth constrained key query of A corresponding to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0,
B gives A the constrained key
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IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)
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1 , . . . ,K
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K
(ν)
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∗, `∗])

1
CCCCCCCCCCCA
,

where program Constrained-Key.Prog(3)
cprf is a modification of program Constrained-Key.Prog(2,γ′)

cprf
(Fig. A.12) and is described in Fig. A.13.

Hyb0,ν−1,6: This experiment corresponds to Hyb0,ν .
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗,
Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys
K,K1, . . . ,Kλ,Ksps,A,Ksps,B , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win,
Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp,
Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout, Accu-
mulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if [stout = qac] ∧ [(h, `inp) = (h∗, `∗)] ∧ [t ≤ t∗], output ⊥.
Else if stout = qac, output F(K, (h, `inp)).

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Compute r′sps,B = F(Ksps,B , (h, `inp, t)), (sk′sps,B ,vk′sps,B ,vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If (h, `inp, t) = (h∗, `∗, t∗), compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,A,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.13. Constrained-Key.Prog(3)
cprf

Analysis

Let Adv(0,ν−1,0)
A (λ),Adv(0,ν−1,1)

A (λ),Adv(0,ν−1,2)
A (λ),Adv(0,ν−1,3)

A (λ),Adv(0,ν−1,3,ι)
A (λ) (ι = 0, . . . , `∗−

1),Adv(0,ν−1,3,ι′)
A (λ) (ι = 0, . . . , `∗ − 1),Adv(0,ν−1,4)

A (λ),Adv(0,ν−1,4,γ)
A (λ) (γ = 1, . . . , t∗(ν) − 1),

Adv(0,ν−1,4,γ′)
A (λ) (γ = 0, . . . , t∗(ν)− 1),Adv(0,ν−1,5)

A (λ), and Adv(0,ν−1,6)
A (λ) represent respectively

the advantage of the adversary A, i.e., the absolute difference between 1/2 and A’s probability
of correctly guessing the random bit selected by the challenger B, in the hybrid experiment HybΥ
with Υ as indicated in the superscript of the advantage notation. By the description of the hy-
brid experiments it follows that Adv(0,ν−1)

A (λ) ≡ Adv(0,ν−1,0)
A (λ) and Adv(0,ν)

A (λ) ≡ Adv(0,ν−1,6)
A (λ).

Thus we have,

|Adv(0,ν−1)
A (λ)− Adv(0,ν)

A (λ)| ≤

|Adv(0,ν−1,0)
A (λ)− Adv(0,ν−1,1)

A (λ)|+ |Adv(0,ν−1,1)
A (λ)− Adv(0,ν−1,2)

A (λ)|+

|Adv(0,ν−1,2)
A (λ)− Adv(0,ν−1,3)

A (λ)|+ |Adv(0,ν−1,3)
A (λ)− Adv(0,ν−1,3,0)

A (λ)|+
`∗−1X
ι=0
|Adv(0,ν−1,3,ι)

A (λ)− Adv(0,ν−1,3,ι′)
A (λ)|+

`∗−2X
ι=0
|Adv(0,ν−1,3,ι′)

A (λ)− Adv(0,ν−1,3,ι+1)
A (λ)|+

|Adv(0,ν−1,3,(`∗−1)′)
A (λ)− Adv(0,ν−1,4)

A (λ)|+ |Adv(0,ν−1,4)
A (λ)− Adv(0,ν−1,4,0′)

A (λ)|+
t∗(ν)−1X
γ=1

|Adv(0,ν−1,4,(γ−1)′)
A (λ)− Adv(0,ν−1,4,γ)

A (λ)|+
t∗(ν)−1X
γ=1

|Adv(0,ν−1,4,γ)
A (λ)− Adv(0,ν−1,4,γ′)

A (λ)|+

|Adv(0,ν−1,4,(t∗(ν)−1)′)
A (λ)− Adv(0,ν−1,5)

A (λ)|+ |Adv(0,ν−1,5)
A (λ)− Adv(0,ν−1,6)

A (λ)|.
(A.2)
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Lemmas A.4–A.15 will prove that the RHS of Eq. (A.2) is negligible and hence Lemma A.3
follows. ut

A.2 Lemmas for the proof of Lemma A.3

Lemma A.4. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, and SPS is a splitable signature
scheme satisfying ‘vksps-rej indistinguishability’ as defined in Definition 2.6, for any PPT ad-
versary A, for any security parameter λ, |Adv(0,ν−1,0)

A (λ) − Adv(0,ν−1,1)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. To establish Lemma A.4, we introduce t∗(ν) + 1 intermediate hybrid experiments be-
tween Hyb0,ν−1,0 and Hyb0,ν−1,1, namely, Hyb0,ν−1,0,γ , for γ ∈ [0, t∗(ν)] such that Hyb0,ν−1,0,t∗(ν)

coincides with Hyb0,ν−1,0 and Hyb0,ν−1,0,0 coincides with hyb0,ν−1,1.

Sequence of Intermediate Hybrids Between Hyb0,ν−1,0 and Hyb0,ν−1,1

Hyb0,ν−1,0,γ (γ = 0, . . . , t∗(ν)): In this experiment in response to the νth constrained key query
of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first picks PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E

$←− F .Setup(1λ).
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0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
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(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. It provides A with the constrained key
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1
CCCCCCCCCCCA
,

where the program Constrained-Key.Prog(0,γ)
cprf, depicted in Fig. A.14, is a modification of the

program Constrained-Key.Prog(1)
cprf, shown in Fig. A.2.

The rest of the experiment is identical to Hyb0,ν−1,0.

Analysis

Let us denote by Adv(0,ν−1,0,γ)
A (λ) the advantage of A, i.e., the absolute difference between 1/2

and A’s probability of correctly guessing the random bit selected by the challenger B, in the
hybrid experiment Hyb0,ν−1,0,γ , for γ ∈ [0, t∗(ν)]. Clearly, Adv(0,ν−1,0)

A (λ) ≡ Adv(0,ν−1,0,t∗(ν))
A (λ)

and Adv(0,ν−1,1)
A (λ) ≡ Adv(0,ν−1,0,0)

A (λ). Hence, we have

|Adv(0,ν−1,0)
A (λ)− Adv(0,ν−1,1)

A (λ)| ≤
t∗(ν)X
γ=1
|Adv(0,ν−1,0,γ)

A (λ)− Adv(0,ν−1,0,γ−1)
A (λ)|. (A.3)

Claim A.1 below justifies that the RHS of Eq. (A.3) is negligible and consequently Lemma A.4
follows.
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗,
Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF
keys K,K1, . . . ,Kλ,Ksps,A, Ksps,B , SSB hash value of challenge input h∗, Length of challenge
input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, t− 1)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (t ≤ γ) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if stout = qac, output F(K, (h, `inp)).

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Compute r′sps,B = F(Ksps,B , (h, `inp, t)), (sk′sps,B ,vk′sps,B ,vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

Compute σsps,out = SPS.Sign(sk′sps,α,mout).
7. If t+ 1 = 2τ

′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.14. Constrained-Key.Prog(0,γ)
cprf

Claim A.1. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, and SPS is a splitable signature
scheme satisfying ‘vksps-rej indistinguishability’ as defined in Definition 2.6, for any PPT ad-
versary A, for any security parameter λ, |Adv(0,ν−1,0,γ)

A (λ) − Adv(0,ν−1,0,γ−1)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. The proof of Claim A.1 is similar to that of Claim B.1 of [DKW16]. ut
ut

Lemma A.5. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, and SPS is a splitable signature
scheme satisfying ‘vksps-rej indistinguishability’ as defined in Definition 2.6, for any PPT ad-
versary A, for any security parameter λ, |Adv(0,ν−1,1)

A (λ) − Adv(0,ν−1,2)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. To prove Lemma A.5, we consider the following sequence of intermediate hybrid experi-
ments between Hyb0,ν−1,1 and Hyb0,ν−1,2:
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Sequence of Intermediate Hybrids between Hyb0,ν−1,1 and Hyb0,ν−1,2

Hyb0,ν−1,1,0: This experiment coincides with Hyb0,ν−1,1.

Hyb0,ν−1,1,1: In this experiment, to answer the νth constrained key query of A corresponding
to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B selects an additional PPRF key K(ν)

sps,F
$←− F .Setup(1λ)

along with all the other PPRF keys as well as the public parameters for positional accumulator
and iterator as generated in Hyb0,ν−1,1,0, providing A with the constrained key
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1
CCCCCCCCCCCA
,

where the programs Accumulate.Prog(0,1) and Change-SPS.Prog(0,1) are the alterations of the
programs Accumulate.Prog(1) and Change-SPS.Prog(1) (Figs. A.3 and A.4) and are depicted in
Figs. A.15 and A.16 respectively. The rest of the experiment proceeds in the same way as in
Hyb0,ν−1,1,0.

Hyb0,ν−1,1,2: In this experiment, in response to the νth constrained key query of A corre-

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F ,
SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) If (h, i) = (h∗, `∗), set vk = vksps-rej,F .
(d) Set min = (vin, st, win, 0) and α =‘-’.
(e) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(f) If [α =‘-’] ∧ [(i 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α=‘-’] ∧ [SPS.Verify(vk,min, σsps,in) = 0], output ⊥.
Else if [α =‘-’] ∧ [SPS.Verify(vk,min, σsps,in) = 1], set α =‘F ’.

(g) If α =‘-’, output ⊥.
2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Set mout = (vout, st, wout, 0). Compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. A.15. Accumulate.Prog(0,1)

sponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:
1. It first generates all the PPRF keys as well as the public parameters for the positional accu-

mulator and the iterator just as in Hyb0,ν−1,1,1.
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Constants: PPRF keys Ksps,A,Ksps,B ,Ksps,E ,Ksps,F , SSB hash value of challenge input h∗, Length of chal-
lenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, `inp)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) If (h, `inp) = (h∗, `∗), set vk = vksps-rej,F .
(d) Set m = (v, st, w, 0) and α=‘-’.
(e) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(f) If [α =‘-’] ∧ [`inp 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vk,m, σsps,in) = 0], output ⊥.
Else if [α =‘-’] ∧ [SPS.Verify(vk,m, σsps,in) = 1], set α =‘F ’.

(g) If α =‘-’, output ⊥.
2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.16. Change-SPS.Prog(0,1)

2. Next, it forms the punctured PPRF key K(ν)
sps,F {(h∗, `∗)}

$←− F .Puncture(K(ν)
sps,F , (h∗, `∗)) as well

as computes r(ν,`∗)
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sps,F , (h∗, `∗)) and (sk(ν,`∗)
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sps,H).
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IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),
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where the programs Accumulate.Prog(0,2) and Change-SPS.Prog(0,2) are the modifications of
the programs Accumulate.Prog(0,1) and Change-SPS.Prog(0,1) (Figs. A.15 and A.16) and are
described in Figs. A.17 and A.18 respectively.

The remaining part of the experiment is analogous to Hyb0,ν−1,1,1.

Hyb0,ν−1,1,3: This experiment is identical to Hyb0,ν−1,1,2 except that while creating the νth

constrained key queried by A corresponding to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B selects
r

(ν,`∗)
sps,H

$←− Ypprf, i.e., in other words, B generates (sk(ν,`∗)
sps,H ,vk(ν,`∗)

sps,H ,vk(ν,`∗)
sps-rej,H) $←− SPS.Setup(1λ),
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for
positional accumulator ppacc, Public parameters for iterator ppitr, PPRF key Ksps,E , Punctured
PPRF key Ksps,F {(h∗, `∗)}, Verification key vkH , SSB hash value of challenge input h∗, Length
of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F {(h∗, `∗)}, (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α=‘-’] ∧ [SPS.Verify(vkH ,min, σsps,in) = 0], output ⊥.
Else if [α =‘-’] ∧ [SPS.Verify(vkH ,min, σsps,in) = 1], set α =‘F ’.

(f) If α =‘-’, output ⊥.
2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Set mout = (vout, st, wout, 0). Compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. A.17. Accumulate.Prog(0,2)

Constants: PPRF keys Ksps,A,Ksps,B ,Ksps,E , Punctured PPRF key Ksps,F {(h∗, `∗)}, Verification key vkH ,
SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F {(h∗, `∗)}, (h, `inp)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vkH ,m, σsps,in) = 0], output ⊥.
Else if [α =‘-’] ∧ [SPS.Verify(vkH ,m, σsps,in) = 1], set α =‘F ’.

(f) If α =‘-’, output ⊥.
2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.18. Change-SPS.Prog(0,2)
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Hyb0,ν−1,1,4: In this experiment, to answer the νth constrained key query of A corresponding
to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B creates all the components as in Hyb0,ν−1,1,3, however,
it provides A with the constrained key
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The rest of the experiment is the same as Hyb0,ν−1,1,3.

Hyb0,ν−1,1,5: In this experiment, in response to the νth constrained key query ofA corresponding
to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B forms all the components as in Hyb0,ν−1,1,4 except that
it computes r(ν,`∗)

sps,H = F(K(ν)
sps,F , (h∗, `∗)), (sk(ν,`∗)

sps,H ,vk(ν,`∗)
sps,H ,vk(ν,`∗)

sps-rej,H) = SPS.Setup(1λ; r(ν,`∗)
sps,H),

and hands A the constrained key
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The rest of the experiment is analogous to Hyb0,ν−1,1,4.

Hyb0,ν−1,1,6: This experiment corresponds to Hyb0,ν−1,2.

Analysis

Let Adv(0,ν−1,1,ϑ)
A (λ) represents the advantage of A, i.e., the absolute difference between 1/2

and A’s probability of correctly guessing the random bit selected by the challenger B, in
Hyb0,ν−1,1,ϑ, for ϑ ∈ [0, 6]. By definition, Adv(0,ν−1,1)

A (λ) ≡ Adv(0,ν−1,1,0)
A (λ) and Adv(0,ν−1,2)

A (λ) ≡
Adv(0,ν−1,1,6)

A (λ). Then, we have

|Adv(0,ν−1,1)
A (λ)− Adv(0,ν−1,2)

A (λ)| ≤
6X

ϑ=1
|Adv(0,ν−1,1,ϑ−1)

A (λ)− Adv(0,ν−1,1,ϑ)
A (λ)|. (A.4)

Claims A.2–A.7 below will demonstrate that the RHS of Eq. (A.4) is negligible and thus
Lemma A.5 follows.

Claim A.2. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,1,0)

A (λ) − Adv(0,ν−1,1,1)
A (λ)| ≤ negl(λ) for

some negligible function negl.
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Proof. The difference between Hyb0,ν−1,1,0 and Hyb0,ν−1,1,1 is the following: In Hyb0,ν−1,1,0, B
includes the programs IO(P0) and IO(P ′0) within the νth constrained key returned to A, while
in Hyb0,ν−1,1,1, B includes the programs IO(P1) and IO(P ′1) instead, where

– P0 = Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ] (Fig. 3.2),

– P ′0 = Change-SPS.Prog[K(ν)
sps,A,K

(ν)
sps,E ] (Fig. 3.3),

– P1 = Accumulate.Prog(0,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗] (Fig. A.15),
– P ′1 = Change-SPS.Prog(0,1)[K(ν)

sps,A,K
(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗] (Fig. A.16).

Now, observe that the programs P0 and P1 clearly have identical outputs for inputs cor-
responding to (h, i) 6= (h∗, `∗). Also, by the correctness [Property (vii)] of splitable signature
scheme SPS, both the programs output ⊥ in case SPS.Verify(vksps,E ,min, σsps,in) = 0 for inputs
corresponding to (h∗, `∗). Thus the programs P0 and P1 are functionally equivalent. A similar
argument justifies the functional equivalence of the programs P ′0 and P ′1.

Thus, by the security of IO, Claim A.2 follows. Ofcourse, we need to consider a sequence
of hybrid experiments to arrive at the result where in each hybrid experiment we change the
programs one at a time. ut

Claim A.3. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfy
the correctness under puncturing property defined in Definition 2.2, for any PPT adversary A,
for any security parameter λ, |Adv(0,ν−1,1,1)

A (λ)− Adv(0,ν−1,1,2)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The difference between Hyb0,ν−1,1,1 and Hyb0,ν−1,1,2 is the following: In Hyb0,ν−1,1,1, B
includes the programs IO(P0) and IO(P ′0) within the νth constrained key returned to A, while
in Hyb0,ν−1,1,2, B includes the programs IO(P1) and IO(P ′1) instead, where

– P0 = Accumulate.Prog(0,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
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∗, `∗] (Fig. A.15),
– P ′0 = Change-SPS.Prog(0,1)[K(ν)

sps,A,K
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∗, `∗] (Fig. A.16),
– P1 = Accumulate.Prog(0,2)[nssb-blk = 2λ,hk,pp(ν)

acc,pp(ν)
itr,K

(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk(ν,`∗)

sps-rej,H ,
h∗, `∗] (Fig. A.17),

– P ′1 = Change-SPS.Prog(0,2)[K(ν)
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sps,E ,K
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(Fig. A.18).

Now, by the correctness under puncturing property of the PPRF F , both the programs
P0 and P1 have identical outputs on inputs corresponding to (h, i) 6= (h∗, `∗). For in-
puts corresponding to (h∗, `∗), P1 uses the hardwired verification key vk(ν,`∗)

sps-rej,H , where in
Hyb0,ν−1,1,2,vk(ν,`∗)

sps-rej,H is computed as (sk(ν,`∗)
sps,H ,vk(ν,`∗)

sps,H ,vk(ν,`∗)
sps-rej,H) = SPS.Setup(1λ; r(ν,`∗)

sps,H)
and r(ν,`∗)

sps,H = F(K(ν)
sps,F , (h∗, `∗)). Observe that these values are exactly the same as those used by

the program P0 for inputs corresponding to (h∗, `∗). Thus, both programs have identical outputs
for inputs corresponding to (h∗, `∗) as well. Hence, the two programs are functionally equivalent.
A similar argument will justify that the programs P ′0 and P ′1 are functionally equivalent.

Therefore, by the security of IO, Claim A.3 follows, considering a sequence of hybrid exper-
iments where in each hybrid experiment we change the programs one at a time. ut

Claim A.4. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,1,2)

A (λ)− Adv(0,ν−1,1,3)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,1,2)
A (λ) − Adv(0,ν−1,1,3)

A (λ)|
is non-negligible. We construct a PPT adversary B that breaks the selective pseudorandomness
of the PPRF F using A as a sub-routine. The description of B follows:
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• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from mathcalA.
• Upon receiving x∗, B proceeds as follows:

1. B generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
4. B returns the challenge CPRF value y∗ to A.
• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,1,2, while if η = ν, then
B proceeds as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
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0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B sends (h∗, `∗) as the challenge input to its PPRF selective pseudorandomness

challenger C and receives back a punctured PPRF key K∗{(h∗, `∗)} and a value r∗ ∈ Ypprf,
where either r∗ = F(K∗, (h∗, `∗)) or r∗ $←− Ypprf. B will implicitly view the key K∗ as the
key K(ν)

sps,F .
4. B generates (sk(ν,`∗)
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• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its PPRF selective pseudorandomness experiment.

Note that if r∗ = F(K∗, (h∗, `∗)), then B perfectly simulates Hyb0,ν−1,1,2. On the other hand,
if r∗ $←− Ypprf, then B perfectly simulates Hyb0,ν−1,1,3. This completes the proof of Claim A.4. ut

Claim A.5. Assuming SPS is a splitable signature scheme satisfying ‘vksps-rej indistin-
guishability’ as per Definition 2.6, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,1,3)

A (λ)− Adv(0,ν−1,1,4)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,1,3)
A (λ)−Adv(0,ν−1,1,4)

A (λ)| is
non-negligible. Below we construct a PPT adversary B that breaks the vksps-rej indistinguisha-
bility of SPS using A as a sub-routine.

• B receives a verification key vk of the splitable signature scheme SPS from its vksps-rej
indistinguishability challenger C, where vk is either a proper verification key vksps or a
reject verification key vksps-rej. Then, B initializes A on input 1λ and receives a challenge
input x∗ = x∗0 . . . x

∗
`∗−1 ∈ Xcprf with |x∗| = `∗ from A.

• Upon receiving x∗, B proceeds as follows:
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1. B generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
4. B returns the challenge CPRF value y∗ to A.
• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,1,3, while if η = ν, then
B proceeds as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
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3. B creates the punctured PPRF key K(ν)

sps,F {(h∗, `∗)}
$←− F .Puncture(Ksps,F , (h∗, `∗)).

4. B gives A the constrained key
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• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its SPS vksps-rej indistinguishability experiment.

Notice that if vk = vksps-rej, then B perfectly simulates Hyb0,ν−1,1,3. On the other hand, if
vk = vksps, then B perfectly simulates Hyb0,ν−1,1,4. This completes the proof of Claim A.5. ut

Claim A.6. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,1,4)

A (λ)− Adv(0,ν−1,1,5)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. The proof of Claim A.6 is similar to that of Claim A.4 with some appropriate changes
which can be readily identified. ut

Claim A.7. Assuming IO is a secure indistinguishability obfuscator for P/poly and Fsatisfies
the correctness under puncturing property defined in Definition 2.2, for any PPT adversary A,
for any security parameter λ, |Adv(0,ν−1,1,5)

A (λ)− Adv(0,ν−1,1,6)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The proof of Claim A.7 is analogous to that of Claim A.3 with some appropriate changes
that are easy to determine. ut

ut

Lemma A.6. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, and SPS is a splitable signature
scheme satisfying ‘vksps-rej indistinguishability’ defined in Definition 2.6, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,2)

A (λ)−Adv(0,ν−1,3)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. To prove Lemma A.6, we consider the following sequence of `∗ intermediate hybrid ex-
periments between Hyb0,ν−1,2 and Hyb0,ν−1,3:
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Sequence of Intermediate Hybrids between Hyb0,ν−1,2 and Hyb0,ν−1,3

Hyb0,ν−1,2,ι (ι = 0, . . . , `∗ − 1): In this experiment in response to the νth constrained key
query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first chooses PPRF keys K(ν)
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where the programs Accumulate.Prog(1,ι) and Change-SPS.Prog(1,ι) are the modifications of
the programs Accumulate.Prog(2) and Change-SPS.Prog(2) (Figs. A.5 and A.6) and are de-
picted in Figs. A.19 and A.20 respectively.

The rest of the experiment is similar to Hyb0,ν−1,2. Observe that Hyb0,ν−1,2,`∗−1 coincides with
hyb0,ν−1,2 and Hyb0,ν−1,2,0 corresponds to hyb0,ν−1,3.

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F ,
SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0). If i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).

Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. A.19. Accumulate.Prog(1,ι)



62 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Ksps,F , SSB hash value of challenge input h∗, Length of chal-
lenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, `inp)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp > `∗) ∨ (`inp ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.20. Change-SPS.Prog(1,ι)

Analysis

Let us denote by Adv(0,ν−1,2,ι)
A (λ) the advantage of A, i.e., the absolute difference between 1/2

and A’s probability of correctly guessing the random bit selected by the challenger B, in the
hybrid experiment Hyb0,ν−1,2,ι, for ι ∈ [0, `∗ − 1]. Clearly, Adv(0,ν−1,2)

A (λ) ≡ Adv(0,ν−1,2,`∗−1)
A (λ)

and Adv(0,ν−1,3)
A (λ) ≡ Adv(0,ν−1,2,0)

A (λ). Hence we have,

|Adv(0,ν−1,2)
A (λ)− Adv(0,ν−1,3)

A (λ)| ≤
`∗−1X
ι=1
|Adv(0,ν−1,2,ι)

A (λ)− Adv(0,ν−1,2,ι−1)
A (λ)|. (A.5)

Claim A.8 below justifies that the RHS of Eq. (A.5) is negligible and consequently Lemma A.6
follows.
Claim A.8. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, and SPS is a splitable signature
scheme satisfying ‘vksps-rej indistinguishability’ as defined in Definition 2.6, for any PPT ad-
versary A, for any security parameter λ, |Adv(0,ν−1,2,ι)

A (λ) − Adv(0,ν−1,2,ι−1)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. The proof of Claim A.8 is similar to that of Lemma A.5 with some appropriate modifi-
cations which are easy to find out. ut

ut

Lemma A.7. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, and SPS is a splittable signature
scheme satisfying ‘vksps-one indistinguishability’ as defined in Definition 2.6, for any PPT ad-
versary A, for any security parameter λ, |Adv(0,ν−1,3)

A (λ)− Adv(0,ν−1,3,0)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. In order to prove Lemma A.7, we consider the following sequence of intermediate hybrid
experiments between Hyb0,ν−1,3 and Hyb0,ν−1,3,0.

Sequence of Intermediate Hybrids between Hyb0,ν−1,3 and Hyb0,ν−1,3,0

Hyb0,ν−1,3-I: This experiment coincides with Hyb0,ν−1,3.
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Hyb0,ν−1,3-II: In this experiment, to answer the νth constrained key query of A correspond-
ing to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the PPRF keys together with the public parameters for the positional
accumulator and the iterator just as in hyb0,ν−1,3-I.

2. Next, it forms the punctured PPRF key K(ν)
sps,E{(h∗, 0)} $←− F .Puncture(K(ν)
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where the programs Init-SPS.Prog(1) and Accumulate.Prog(2,1) respectively are the alterations
of the programs Init-SPS.Prog and Accumulate.Prog(2) (Figs. 3.1 and A.5) and are depicted
in Figs. A.21 and A.22.

The remaining part of the experiment is similar to Hyb0,ν−1,3-I.

hyb0,ν−1,3-III: This experiment is analogous to Hyb0,ν−1,3-II with the only exception that while

Constants: Initial TM state q0, Accumulator value w0, Iterator value v0, Punctured PPRF keyKsps,E{(h∗, 0)},
Signature σG, SSB hash value of challenge input h∗

Input: SSB hash value h
Output: Signature σsps,out

1. If h = h∗, output σG.
Else, compute rsps,E = F(Ksps,E{(h∗, 0)}, (h, 0)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).

2. Output σsps,out = SPS.Sign(sksps,E , (v0, q0, w0, 0)).

Fig. A.21. Init-SPS.Prog(1)

constructing the νth constrained key queried by A corresponding to TM M (ν) ∈ Mλ with
M (ν)(x∗) = 0, B selects r(ν,0)

sps,G
$←− Ypprf. More formally, to answer the νth constrained key query

of A, B creates all the components as in Hyb0,ν−1,3-II except that it generates (sk(ν,0)
sps,G,vk(ν,0)

sps,G,

vk(ν,0)
sps-rej,G) $←− SPS.Setup(1λ), setsm(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0), computes σ(ν,0)

sps,G = SPS.Sign(sk(ν,0)
sps,G,
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, Punctured PPRF key
Ksps,E{(h∗, 0)}, PPRF key Ksps,F , Verification key vkG, SSB hash value of challenge input h∗,
Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) If (h, i) 6= (h∗, 0), compute rsps,E = F(Ksps,E{(h∗, 0)}, (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).
Else, set vksps,E = vkG.

(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (i = 0) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E{(h∗, 0)}, (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0). If i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).

Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. A.22. Accumulate.Prog(2,1)
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Hyb0,ν−1,3-IV: This experiment is the same as hyb0,ν−1,3-III with the exception that in response
to the νth constrained key query of A corresponding to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B
proceeds sa follows:

1. It first generates the full and punctured PPRF keys together with the public parameters for
the positional accumulator and the iterator just as in Hyb0,ν−1,3-III.

2. Next, it creates (sk(ν,0)
sps,G,vk(ν,0)

sps,G,vk(ν,0)
sps-rej,G) $←− SPS.Setup(1λ), setsm(ν)
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(ν)
0,0).
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3. B hands A the constrained key
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Hyb0,ν−1,3-V: In this experiment, in reply to the νth constrained key query of A corresponding
to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the components just as in Hyb0,ν−1,3-IV
and gives A the constrained key
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where the program Accumulate.Prog(2,2), described in Fig. A.23, is an alteration of the program
Accumulate.Prog(2,1) (Fig. A.22). The rest of the experiment is similar to Hyb0,ν−1,3-IV.

Hyb0,ν−1,3-VI: In this experiment, in response to the νth constrained key query of A corre-
sponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the full and punctured PPRF keys as well as the public parameters for
the positional accumulator and its iterator as in Hyb0,ν−1,3-V.

2. Next, it forms (sk(ν,0)
sps,G,vk(ν,0)

sps,G,vk(ν,0)
sps-rej,G) $←− SPS.Setup(1λ), sets m(ν)

0,0 = (v(ν)
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0 , 0),

and computes σ(ν,0)
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0,0).
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acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,

vk(ν,0)
sps,G,m

(ν)
0,0 , h

∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parame-
ters for positional accumulator ppacc, Public parameters for iterator ppitr, Punctured PPRF
key Ksps,E{(h∗, 0)}, PPRF key Ksps,F , Verification key vkG, Message m0,0, SSB hash value of
challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) If (h, i) 6= (h∗, 0), compute rsps,E = F(Ksps,E{(h∗, 0)}, (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).
Else, set vksps,E = vkG.

(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (i = 0) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E{(h∗, 0)}, (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0).

If [(h, i) = (h∗, 0)] ∧ [min = m0,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, 0)] ∧ [min 6= m0,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,Emout).

5. Output (wout, vout, σsps,out).

Fig. A.23. Accumulate.Prog(2,2)

The remaining portion of the experiment is identical to hyb0,ν−1,3-V.

hyb0,ν−1,3-VII: In this experiment, while constructing the νth constrained key queried by A cor-
responding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B generates everything just as in Hyb0,ν−1,3-VI

except that it computes r
(ν,0)
sps,G = F(K(ν)

sps,E , (h∗, 0)), forms (sk(ν,0)
sps,G,vk(ν,0)

sps,G,vk(ν,0)
sps-rej,G) =
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The rest of the experiment is analogous to Hyb0,ν−1,3-VI.

Hyb0,ν−1,3-VIII: This experiment corresponds to Hyb0,ν−1,3,0.
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Analysis

Let Adv(0,ν−1,3-ϑ)
A (λ) represents the advantage of the adversary A, i.e., the absolute difference

between 1/2 and A’s probability of correctly guessing the random bit selected by the chal-
lenger B, in Hyb0,ν−1,3-ϑ, for ϑ ∈ {I, . . . ,VIII}. Clearly, Adv(0,ν−1,3)

A (λ) ≡ Adv(0,ν−1,3-I)
A (λ) and

Adv(0,ν−1,3,0)
A (λ) ≡ Adv(0,ν−1,3-VIII)

A (λ). Therefore, we have

|Adv(0,ν−1,3)
A (λ)− Adv(0,ν−1,3,0)

A (λ)| ≤
VIIIX
ϑ=II
|Adv(0,ν−1,3-(ϑ−I))

A (λ)− Adv(0,ν−1,3-ϑ)
A (λ)|. (A.6)

Claims A.9–A.15 below will justify that the RHS of Eq. (A.6) is negligible and hence Lemma A.7
follows.

Claim A.9. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition 2.2, for any PPT adversary A,
for any security parameter λ, |Adv(0,ν−1,3-I)

A (λ)−Adv(0,ν−1,3-II)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The difference between Hyb0,ν−1,3-I and hyb0,ν−1,3-II is the following: In Hyb0,ν−1,3-I, B
includes the programs IO(P0) and IO(P ′0) within the νth constrained key returned to A, while
in Hyb0,ν−1,3-II, B includes the programs IO(P1) and IO(p′1) instead, where

– P0 = Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 , K

(ν)
sps,E ] (Fig. 3.1),

– P ′0 = Accumulate.Prog(2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗] (Fig. A.5),
– P1 = Init-SPS.Prog(1)[q(ν)

0 , w
(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, 0)}, σ(ν,0)

sps,G, h
∗] (Fig. A.21),

– P ′1 = Accumulate.Prog(2,1)[nssb-blk = 2λ, hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps,G, h

∗,
`∗] (Fig. A.22).

Now observe that the programs P0 and P1 are functionally equivalent since by the correctness
under puncturing property of the PPRF F , the PPRF output remains the same at all non-
punctured points and at the point of puncturing, i.e., (h∗, 0), the correct signature is hardwired
in the program P1. Similarly, P ′0 and P ′1 are also functionally equivalent by the correctness under
puncturing property of F and the fact that at the point of puncturing i.e., (h∗, 0) the correct
verification key is hardwired into the program P ′1.

Therefore, by the security of IO, Claim A.9 follows. ut

Claim A.10. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3-II)

A (λ)−Adv(0,ν−1,3-III)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3-II)
A (λ)−Adv(0,ν−1,3-III)

A (λ)|
is non-negligible. We construct a PPT adversary B that breaks the selective pseudorandomness
of the PPRF F using A as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
4. B returns the challenge CPRF value y∗ to A.
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• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3-II, while if η = ν, then
B proceeds as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,F

$←− F .Setup(1λ).
2. Next, it creates (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B sends (h∗, 0) as the challenge input to its PPRF selective pseudorandomness chal-

lenger C and receives back a punctured PPRF key K∗{(h∗, 0)} and a value r∗ ∈ Ypprf,
where either r∗ = F(K∗, (h∗, 0)) or r∗ $←− Ypprf. B implicitly views the key K∗ as the key
K

(ν)
sps,E .

4. B generates (sk(ν,0)
sps,G,vk(ν,0)

sps,G,vk(ν,0)
sps-rej,G) = SPS.Setup(1λ; r∗).

5. Then, B sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0) and computes σ(ν,0)

sps,G = SPS.Sign(sk(ν,0)
sps,G,m

(ν)
0,0).

6. B gives A the constrained key

skcprf{M (ν)} =0
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(ν)
0 , store(ν)

0 ,pp(ν)
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(ν)
0 ,

IO(Init-SPS.Prog(1)[q(ν)
0 , w
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(ν)
0 ,K∗{(h∗, 0)}, σ(ν,0)

sps,G, h
∗]),

IO(Accumulate.Prog(2,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
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sps,F ,

vk(ν,0)
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∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)

sps,A,K
(ν)
sps,B,K
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sps,F , h

∗, `∗]),
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• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its PPRF selective pseudorandomness experiment.

Note that if r∗ = F(K∗, (h∗, 0)), then B perfectly simulates Hyb0,ν−1,3-II. On the other hand,
if r∗ $←− Ypprf, the B perfectly simulates Hyb0,ν−1,3-III. This completes the proof of Claim A.10.

ut

Claim A.11. Assuming SPS is a splitable signature scheme satisfying ‘vksps-one’ indistin-
guishability as per Definition 2.6, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3-III)

A (λ)− Adv(0,ν−1,3-IV)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3-III)
A (λ)−Adv(0,ν−1,3-IV)

A (λ)|
is non-negligible. Below we construct a PPT adversary B that breaks the vksps-one indistin-
guishability of SPS using A as a sub-routine.

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
4. B returns the challenge CPRF value y∗ to A.
• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3-III, while if η = ν, then
B proceeds as follows:
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1. B first selects PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).
2. Next, it creates (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B creates the punctured PPRF key K(ν)

sps,E{(h∗, 0)} $←− F .Puncture(K(ν)
sps,E , (h∗, 0)).

4. After that, B sends m
(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0) as the challenge message to its SPS

vksps-one indistinguishability challenger C and receives back a signature-verification key
pair (σsps-one,m(ν)

0,0
,vk), where vk is either a normal verification key vksps or a one verifi-

cation key vksps-one for the message m(ν)
0,0 .

5. B gives A the constrained key
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0,0
, h∗]),

IO(Accumulate.Prog(2,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,
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IO(Change-SPS.Prog(2)[K(ν)
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(ν)
sps,B,K

(ν)
sps,E{(h∗, 0)},K(ν)
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∗, `∗]),
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1 , . . . ,K
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K
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∗, `∗])
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• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its SPS vksps-one indistinguishability experiment.

Notice that if vk = vksps, then B perfectly simulates Hyb0,ν−1,3-III. On the other hand, if
vk = vksps-one, then B perfectly simulates Hyb0,ν−1,3-IV. This completes the proof of Claim A.11.

ut

Claim A.12. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,3-IV)

A (λ)− Adv(0,ν−1,3-V)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. The difference between Hyb0,ν−1,3-IV and hyb0,ν−1,3-V is the following: In Hyb0,ν−1,3-IV, B
includes the program IO(P0) within the νth constrained key returned to A, while in Hyb0,ν−1,3-V,
B includes the program IO(P1) instead, where

– P0 = Accumulate.Prog(2,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps-one,G,

h∗, `∗] (Fig. A.22),
– P1 = Accumulate.Prog(2,2)[nssb-blk = 2λ,hk,pp(ν)

acc,pp(ν)
itr,K

(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps-one,G,

m
(ν)
0,0 , h

∗, `∗] (Fig. A.23).

Observe that the only inputs for which the programs P0 and P1 can possibly differ are those
corresponding to (h, i) = (h∗, 0). However, the verification key hardwired in both the programs
is vk(ν,0)

sps-one,G which only accepts signature for min = m
(ν)
0,0 by the correctness [Properties (i), (iii)

and (v)]. This ensures that for inputs corresponding to (h∗, 0), if min = m
(ν)
0,0 both the programs

output an ‘E’ type signature, else, both output ⊥. Thus, P0 and P1 are functionally equivalent.
Therefore, by the security of IO, Claim A.12 follows. ut

Claim A.13. Assuming SPS is a splitable signature scheme satisfying ‘vksps-one indistin-
guishability’ as per Definition 2.6, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3-V)

A (λ)− Adv(0,ν−1,3-VI)
A (λ)| ≤ negl(λ) for some negligible function negl.
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Proof. The proof of Claim A.13 is similar to that of Claim A.11 with some readily identifiable
modifications. ut

Claim A.14. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3-VI)

A (λ)−Adv(0,ν−1,3-VII)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. The proof of Claim A.14 is analogous to that of Claim A.10 with some appropriate
changes that are easy to find out. ut

Claim A.15. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition 2.2, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,3-VII)

A (λ) − Adv(0,ν−1,3-VIII)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. The proof of Claim A.15 is analogous to that of Claim A.9. ut
ut

Lemma A.8. Assuming IO is a secure indistinguishability obfuscator for P/poly, SSB is a
somewhere statistically binding hash function according to Definition 2.3, ACC is a positional ac-
cumulator satisfying ‘indistinguishability of write setup’ and ‘write enforcing’ properties defined
in Definition 2.4, as well as ITR is a secure cryptographic iterator according to Definition 2.5,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι)

A (λ)− Adv(0,ν−1,3,ι′)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. To prove Lemma A.8, we introduce the following sequence of intermediate hybrid exper-
iments between Hyb0,ν−1,3,ι and Hyb0,ν−1,3,ι′ :

Sequence of Intermediate Hybrids between Hyb0,ν−1,3,ι and Hyb0,ν−1,3,ι′

Hyb0,ν−1,3,ι,0: This experiment coincides with Hyb0,ν−1,3,ι.

Hyb0,ν−1,3,ι,1: In this experiment the challenger B generates the SSB hash key hk $←− SSB.Gen(1λ,
nssb-blk = 2λ, i∗ = ι). The rest of the experiment proceeds in an analogous fashion to Hyb0,ν−1,3,ι,0.

Hyb0,ν−1,3,ι,2: In this experiment, to answer the νth constrained key query of A corresponding
to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the PPRF keys and the public parameters for the iterator just as in
hyb0,ν−1,3,ι,1.

2. After that, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0
$←− ACC.Setup-Enforce-Write(1λ, nacc-blk = 2λ,

((x∗0, 0), . . . , (x∗ι , ι))).
3. Next, it sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι,0 = (v(ν)

ι , q
(ν)
0 , w

(ν)
ι , 0).
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4. B gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 , h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

cprf[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,

K
(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCA
.

The rest of the experiment is similar to hyb0,ν−1,3,ι,1.

hyb0,ν−1,3,ι,3: In this experiment, in response to the νth constrained key query of A corre-
sponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:
1. It first generates all the PPRF keys as well as the public parameters for the positional accu-

mulator and the iterator as in Hyb0,ν−1,3,ι,2.
2. Next, it sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι+ 1, it iteratively computes the fol-

lowing:
– aux(ν)

j = ACC.Prep-Write(pp(ν)
acc, store(ν)

j−1, j − 1)
– w

(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι,0 = (v(ν)

ι , q
(ν)
0 , w

(ν)
ι , 0) and m

(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

3. It gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 ,

m
(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

cprf[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A,K

(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCCCCA
,

where the program Accumulate.Prog(3,ι,1) is a modification of the program Accumulate.Prog(3,ι)

(Fig. A.7) and is described in Fig. A.24.
The rest of the experiment if analogous to Hyb0,ν−1,3,ι,2.

Hyb0,ν−1,3,ι,4: This experiment is identical to Hyb0,ν−1,3,ι,3 with the only exception that while
constructing the νth constrained key queried by A, B generates (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←−
ACC.Setup(1λ, nacc-blk = 2λ).

Hyb0,ν−1,3,ι,5: This experiment is identical to Hyb0,ν−1,3,ι,4 with the only exception that B
generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).

Hyb0,ν−1,3,ι,6: In this experiment, in response to the νth constrained key query of A corre-
sponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E ,Ksps,F ,
Messages mι,0, mι+1,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0). If [(h, i) = (h∗, ι)] ∧ [(min = mι,0) ∧ (mout = mι+1,0)], compute σsps,out =

SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι)] ∧ [(min 6= mι,0) ∨ (mout 6= mι+1,0)], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. A.24. Accumulate.Prog(3,ι,1)

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator as in Hyb0,ν−1,3,ι,5.

2. For j = 1, . . . , ι+ 1, it iteratively computes the following:
– aux(ν)

j = ACC.Prep-Write(pp(ν)
acc, store(ν)

j−1, j − 1)
– w

(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)

3. Then, it generates (pp(ν)
itr, v

(ν)
0 ) $←− ITR.Setup-Enforce(1λ, nitr = 2λ, ((q(ν)

0 , w
(ν)
0 , 0), . . . , (q(ν)

0 ,

w
(ν)
ι , 0))).

4. Next, for j = 1, . . . , ι+1, it iteratively computes v(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0)).

5. It sets m(ν)
ι,0 = (v(ν)

ι , q
(ν)
0 , w

(ν)
ι , 0) and m

(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

6. It gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 ,

m
(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

cprf[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A,K

(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCCCCA
.

The rest of the experiment if analogous to Hyb0,ν−1,3,ι,5.
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Hyb0,ν−1,3,ι,7: In this experiment, to answer the νth constrained key query of A corresponding
to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates everything as in Hyb0,ν−1,3,ι,6, however, it
hands A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι′)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

cprf[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,

K
(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCA
,

where the program Accumulate.Prog(3,ι′) is depicted in Fig. A.9. The rest of the experiment is
similar to Hyb0,ν−1,3,ι,6.

Hyb0,ν−1,3,ι,8: This experiment is analogous to hyb0,ν−1,3,ι,7 with the only exception that while
constructing the νth constrained key queried by A, B generates (pp(ν)

itr, v
(ν)
0 ) $←− ITR.Setup(1λ,

nitr = 2λ). Notice that this experiment coincides with Hyb0,ν−1,3,ι′ .

Analysis

Let Adv(0,ν−1,3,ι,ϑ)
A (λ) represents the advantage of the adversary A, i.e., the absolute difference

between 1/2 and A’s probability of correctly guessing the random bit selected by the challenger
B, in Hyb0,ν−1,3,ι,ϑ, for ϑ ∈ [0, 8]. From the description of the hybrid experiments it follows that
Adv(0,ν−1,3,ι)

A (λ) ≡ Adv(0,ν−1,3,ι,0)
A (λ) and Adv(0,ν−1,3,ι′)

A (λ) ≡ Adv(0,ν−1,3,ι,8)
A (λ). Hence, we have

|Adv(0,ν−1,3,ι)
A (λ)− Adv(0,ν−1,3,ι′)

A (λ)| ≤
8X

ϑ=1
|Adv(0,ν−1,3,ι,ϑ−1)

A (λ)− Adv(0,ν−1,3,ι,ϑ)
A (λ)|. (A.7)

Claims A.16–A.23 below will show that the RHS of Eq. (A.7) is negligible and thus Lemma A.8
follows.

Claim A.16. Assuming SSB satisfies the ‘index hiding’ property defined in Definition 2.3, for
any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι,0)

A (λ) − Adv(0,ν−1,3,ι,1)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι,0)
A (λ)−Adv(0,ν−1,3,ι,1)

A (λ)|
is non-negligible. We construct a PPT adversary B that breaks the the index hiding property of
SSB using A as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B submits nssb-blk = 2λ and the pair of indices (i∗0 = 0, i∗1 = ι) to its SSB index hiding
challenger C and receives back a hash key hk, where either hk $←− SSB.Gen(1λ, nssb-blk =
2λ, i∗0 = 0) or hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗1 = ι).

2. Next, B computes h∗ = Hhk(x∗).
3. Then, B selects a PPRF key K $←− F .Setup(1λ).
4. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
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5. B returns the challenge CPRF value y∗ to A.

• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, B proceeds exactly as in Hyb0,ν−1,3,ι,0.
• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit

in its SSB index hiding experiment.

Note that if hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗0 = 0), then B perfectly simulates Hyb0,ν−1,3,ι,0.
On the other hand, if hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗1 = ι), then B perfectly simulates
Hyb0,ν−1,3,ι,1. This completes the proof of Claim A.16. ut

Claim A.17. Assuming ACC is a positional accumulator satisfying the ‘indistinguishability of
write setup’ property defined in Definition 2.4, for any PPT adversary A, for any security
parameter λ, |Adv(0,ν−1,3,ι,1)

A (λ)− Adv(0,ν−1,3,ι,2)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι,1)
A (λ)−Adv(0,ν−1,3,ι,2)

A (λ)|
is non-negligible. We construct a PPT adversary B that breaks the indistinguishability of write
setup property of the positional accumulator ACC using A as a sub-routine. The description of
B follows:

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = ι) and computes h∗ = Hhk(x∗).

2. Then, B selects a PPRF key K $←− F .Setup(1λ).

3. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).
On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.

4. B returns the challenge CPRF value y∗ to A.

• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (ν)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι,1, while if η = ν, then
B proceeds as follows:

1. B first selects PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).
2. Next, B sends nacc-blk = 2λ and the sequence of symbol-index pairs ((x∗0, 0), . . . , (x∗ι , ι)) to

its ACC write setup indistinguishability challenger C and receives back (ppacc, w0, store0),
where either (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ) or (ppacc, w0, store0) $←−
ACC.Setup-Enfoce-Write(1λ, nacc-blk = 2λ, ((x∗0, 0), . . . , (x∗ι , ι))).

3. Next, it generates (pp(ν)
itr, v

(ν)
0 ) $←− ITR.Setup(1λ, nitr = 2λ).

4. Then, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w0, 0). For j = 1, . . . , ι, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(ppacc, storej−1, j − 1)

– wj = ACC.Update(ppacc, wj−1, x
∗
j−1, j − 1,aux(ν)

j )
– storej = ACC.Write-Store(ppaccstorej−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , wj−1, 0))

It sets m(ν)
ι,0 = (v(ν)

ι , q
(ν)
0 , wι, 0).
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5. It gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBB@

hk,ppacc, w0, store0,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w0, v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι)[nssb-blk = 2λ,hk,ppacc,pp(ν)
itr,K

(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 , h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

cprf[M (ν), T = 2λ, t∗(ν),ppacc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A,K

(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCA
.

• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its ACC write setup indistinguishability experiment.

Note that if (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ), then B perfectly simulates
Hyb0,ν−1,3,ι,1. On the other hand, if (ppacc, w0, store0) $←− ACC.Setup-Enforce-Write(1λ, nacc-blk =
2λ, ((x∗0, 0), . . . , (x∗ι , ι))), then B perfectly simulates Hyb0,ν−1,3,ι,2. This completes the proof of
Claim A.17. ut

Claim A.18. Assuming IO is a secure indistinguishability obfuscator for P/poly, SSB possesses
the ‘somewhere statistically binding’ property defined in Definition 2.3, and ACC is a positional
accumulator having the ‘write enforcing’ property defined in Definition 2.4, for any PPT adver-
sary A, for any security parameter λ, |Adv(0,ν−1,3,ι,2)

A (λ)−Adv(0,ν−1,3,ι,3)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. The difference between Hyb0,ν−1,3,ι,2 and Hyb0,ν−1,3,ι,3 is the following: In Hyb0,ν−1,3,ι,2,
B includes the program IO(P0) within the νth constrained key provided to A, whereas, in
Hyb0,ν−1,3,ι,3, B includes the program IO(P1) instead, where

– P0 = Accumulate.Prog(3,ι)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 , h

∗, `∗] (Fig. A.7),
– P1 = Accumulate.Prog(3,ι,1)[nssb-blk = 2λ,hk,pp(ν)

acc,pp(ν)
itr,K

(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 ,m

(ν)
ι+1,0, h

∗, `∗]
(Fig. A.24).

We will argue that the programs P0 and P1 are functionally equivalent, so that, by the se-
curity of IO Claim A.18 follows. The inputs on which the outputs of the two programs can
possibly differ are those corresponding to (h, i) = (h∗, ι). For inputs corresponding to (h∗, ι),
the program P1 performs the additional check ‘mout = m

(ν)
ι+1,0’ to determine the type of the

outputted signature. We show that this check is redundant by demonstrating that for inputs
corresponding to (h∗, ι), if min = m

(ν)
ι,0 , then either both the programs output ⊥ or it must

hold that mout = m
(ν)
ι+1,0 and, therefore, both the programs output signatures of the same

type. Notice that min = m
(ν)
ι,0 means vin = v

(ν)
ι , st = q

(ν)
0 , and win = w

(ν)
ι . Thus, vout =

ITR.Iterate(pp(ν)
itr, vin, (st, win, 0)) = ITR.Iterate(pp(ν)

itr, v
(ν)
ι , (q(ν)

0 , w
(ν)
ι , 0)) = v

(ν)
ι+1. Now, recall

that in both experiments hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = ι). Therefore, by the somewhere
statistically binding property of SSB it follows that SSB.Verify(hk, h∗ = Hhk(x∗), ι, symin, πssb) =
1 if and only if symin = x∗ι . Thus, for inputs corresponding to (h∗, ι), both programs will
output ⊥ in case symin 6= x∗ι . Further, in both the experiments, (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←−
ACC.Setup-Enforce-Write(1λ, nacc-blk = 2λ, ((x∗0, 0), . . . , (x∗ι , ι))). Therefore, by the write enforc-
ing property of ACC it follows that if win = w

(ν)
ι and symin = x∗ι , then wout = ACC.Update(pp(ν)

acc,

win, symin, ι,aux) results in wout = w
(ν)
ι+1 or wout = ⊥. In case wout = ⊥, then clearly both

the programs output ⊥. On the other hand, wout = w
(ν)
ι+1 implies mout = (vout, st, wout, 0) =

(v(ν)
ι+1, q

(ν)
0 , w

(ν)
ι+1, 0) = m

(ν)
ι+1,0 and the two programs have identical outputs in this case as well. ut
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Claim A.19. Assuming ACC is a positional accumulator satisfying the ‘indistinguishability of
write setup’ property defined in Definition 2.4, for any PPT adversary A, for any security
parameter λ, |Adv(0,ν−1,3,ι,3)

A (λ)− Adv(0,ν−1,3,ι,4)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim A.19 is similar to that of Claim A.17 with some appropriate modifi-
cations which can be readily figured out. ut

Claim A.20. Assuming SSB satisfies the ‘index hiding’ property defined in Definition 2.3, for
any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι,4)

A (λ) − Adv(0,ν−1,3,ι,5)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. The proof of Claim A.20 is analogous to that of Claim A.16 with certain approximate
changes which are easy to determine. ut

Claim A.21. Assuming ITR satisfies the ‘indistinguishability of enforcing setup’ property
defined in Definition 2.5, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3,ι,5)

A (λ)− Adv(0,ν−1,3,ι,6)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι,5)
A (λ)−Adv(0,ν−1,3,ι,6)

A (λ)|
is non-negligible. Below, we construct a PPT adversary B that breaks the indistinguishability of
enforcing setup property of the iterator ITR using A as a sub-routine.

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
4. B returns the challenge CPRF value y∗ to A.
• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι,5, while if η = ν, then
B proceeds as follows:

1. B first selects PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).

2. Next, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ).
3. For j = 1, . . . , ι+ 1, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)

4. Then, B sends nitr = 2λ along with the sequence of messages ((q(ν)
0 , w

(ν)
0 , 0), . . . , (q(ν)

0 , w
(ν)
ι , 0))

to its ITR enforcing setup indistinguishability challenger C and receives back (ppitr, v0),
where either (ppitr, v0) $←− ITR.Setup(1λ, nitr = 2λ) or (ppitr, v0) $←− ITR.Setup-Enforce(1λ,
nitr = 2λ, ((q(ν)

0 , w
(ν)
0 , 0), . . . , (q(ν)

0 , w
(ν)
ι , 0))).

5. For j = 1, . . . , ι+ 1, B iteratively computes vj = ITR.Iterate(ppitr, vj−1, (q(ν)
0 , w

(ν)
j−1, 0)). It

sets m(ν)
ι,0 = (vι, q(ν)

0 , w
(ν)
ι , 0) and m

(ν)
ι+1,0 = (vι+1, q

(ν)
0 , w

(ν)
ι+1, 0).
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6. It gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,ppitr, v0,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v0,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι,1)[nssb-blk = 2λ,hk,pp(ν)
acc,ppitr,K

(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 ,

m
(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

cprf[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,ppitr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A,K

(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCCCCA
.

• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its ITR enforcing setup indistinguishability experiment.

Note that if (ppitr, v0) $←− ITR.Setup(1λ, nitr = 2λ), then B perfectly simulates Hyb0,ν−1,3,ι,5.
On the other hand, if (ppitr, v0) $←− ITR.Setup-Enforce(1λ, nitr = 2λ, ((q(ν)

0 , w
(ν)
0 , 0), . . . , (q(ν)

0 , w
(ν)
ι ,

0))), then B perfectly simulates Hyb0,ν−1,3,ι,6. This completes the proof of Claim A.21. ut

Claim A.22. Assuming IO is a secure indistinguishability obfuscator for P/poly and ITR has
the ‘enforcing’ property defined in Definition 2.5, for any PPT adversary A, for any security
parameter λ, |Adv(0,ν−1,3,ι,6)

A (λ)− Adv(0,ν−1,3,ι,7)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The difference between Hyb0,ν−1,3,ι,6 and Hyb0,ν−1,3,ι,7 is the following: In Hyb0,ν−1,3,ι,6,
B includes the program IO(P0) within the νth constrained key provided to A, whereas, in
Hyb0,ν−1,3,ι,7, B includes the program IO(P1) instead, where

– P0 = Accumulate.Prog(3,ι,1)[nssb-blk = 2λ, hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 ,m

(ν)
ι+1,0, h

∗, `∗]
(Fig. A.24),

– P1 = Accumulate.Prog(3,ι′)[nssb-blk = 2λ, hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι+1,0, h

∗, `∗]
(Fig. A.9).

We will argue that the programs P0 and P1 are functionally identical, so that, by the security
of IO Claim A.22 follows. The only inputs on which the outputs of the two programs can possibly
differ are those corresponding to (h, i) = (h∗, ι). For inputs corresponding to (h∗, ι), the program
P0 checks whether ‘min = m

(ν)
ι,0 ’ and ‘mout = m

(ν)
ι+1,0’ to determine the type of the outputted sig-

nature, while the program P1 only checks whether ‘mout = m
(ν)
ι+1,0’. Thus, the two programs will

be functionally equivalent if we can show that for inputs corresponding to (h∗, ι), mout = m
(ν)
ι+1,0

implies min = m
(ν)
ι,0 . Recall that in both experiment (pp(ν)

itr, v
(ν)
0

$←− ITR.Setup-Enforce(1λ, nitr =
2λ, ((q(ν)

0 , w
(ν)
0 , 0), . . . , (q(ν)

0 , w
(ν)
ι , 0))). Now, mout = m

(ν)
ι+1,0 implies vout = v

(ν)
ι+1. Therefore, by

the enforcing property of ITR it follows that vin = v
(ν)
ι and (st, win, 0) = (q(ν)

0 , w
(ν)
ι , 0), which

in turn implies that min = (vin, st, win, 0) = (v(ν)
ι , q

(ν)
0 , w

(ν)
ι , 0) = m

(ν)
ι,0 . ut

Claim A.23. Assuming ITR satisfies the ‘indistinguishability of enforcing setup’ property
defined in Definition 2.5, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3,ι,7)

A (λ)− Adv(0,ν−1,3,ι,8)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim A.23 is analogous to that of Claim A.21 with some appropriate
modifications which are easy to determine. ut

ut
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Lemma A.9. Assuming IO is a a secure indistinguishability obfuscator for P/poly, F is a
secure puncturable pseudorandom function as per Definition 2.2, and SPS is a splittable signa-
ture scheme satisfying ‘vksps-one indistinguishability’, ‘vksps-abo indistinguishability’, as well as
‘splitting indistinguishability’ as defined in Definition 2.6, for any PPT adversary A, for any se-
curity parameter λ, |Adv(0,ν−1,3,ι′)

A (λ)−Adv(0,ν−1,3,ι+1)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. In order to establish Lemma A.9, we consider the following sequence of intermediate
hybrid experiments between Hyb0,ν−1,3,ι′ and Hyb0,ν−1,3,ι+1:

Sequence of Intermediate Hybrids between Hyb0,ν−1,3,ι′ and Hyb0,ν−1,3,ι+1

Hyb0,ν−1,3,ι′,0: This experiment coincides with Hyb0,ν−1,3,ι′ .

Hyb0,ν−1,3,ι′,1: This experiment is identical to Hyb0,ν−1,3,ι′,0 except that in response to the
νth constrained key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B executes
the following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hyb0,ν−1,3,ι′,0.

2. Then, it forms the punctured PPRF keys K(ν)
sps,E{(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,E , (h∗, ι+ 1))

and K
(ν)
sps,F {(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,F , (h∗, ι+ 1)).

3. Next, it computes r(ν,ι+1)
sps,G = F(K(ν)

sps,E , (h∗, ι+ 1)), r(ν,ι+1)
sps,H = F(K(ν)

sps,F , (h∗, ι+ 1)), and forms

(sk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps-rej,G) = SPS.Setup(1λ; r(ν,ι+1)

sps,G ), (sk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps-rej,H) =

SPS.Setup1λ; r(ν,ι+1)
sps,H ).

4. After that, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι+ 1, it iteratively computes the

following:
– aux(ν)

j = ACC.Prep-Write(pp(ν)
acc, store(ν)

j−1, j − 1)
– w

(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

5. It gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+ 1)},

K
(ν)
sps,F {(h∗, ι+ 1)}, sk(ν,ι+1)

sps,G , sk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,H ,m

(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι,1)[K(ν)

sps,A,K
(ν)
sps,B,K

(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},
vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,H , h∗, `∗]),

IO(Constrained-Key.Prog(1)
cprf[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A,K

(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCCCCCCCCA

,

where the programs Accumulate.Prog(3,ι′,1) and Change-SPS.Prog(3,ι,1) respectively are the al-
terations of the programs Accumulate.Prog(3,ι′) and Change-SPS.Prog(3,ι) (Figs. A.9 and A.8)
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and are shown in Figs. A.25 and A.26.

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, Punctured PPRF keys
Ksps,E{(h∗, ι+ 1)},Ksps,F {(h∗, ι+ 1)}, Signing keys skG, skH , Verification keys vkG,vkH , Mes-
sage mι+1,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) If (h, i) 6= (h∗, ι+ 1), compute rsps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).
Else, set vksps,E = vkG.

(b) If (h, i) 6= (h∗, ι+ 1), compute rsps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) =
SPS.Setup(1λ; rsps,F ).
Else, set vksps,F = vkH .

(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) If (h, i) 6= (h∗, ι), compute r′sps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, i+ 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) =

SPS.Setup(1λ; r′sps,E).
Else, set sk′sps,E = skG.

(b) If (h, i) 6= (h∗, ι), compute r′sps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, i+ 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) =
SPS.Setup(1λ; r′sps,F ).
Else, set sk′sps,F = skH .

(c) Set mout = (vout, st, wout, 0).
If [(h, i) = (h∗, ι)] ∧ [mout = mι+1,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι)] ∧ [mout 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. A.25. Accumulate.Prog(3,ι′,1)

Hyb0,ν−1,3,ι′,2: This experiment is analogous to Hyb0,ν−1,3,ι′,1 with the only exception that
while constructing the νth constrained key queried by A, B selects r(ν,ι+1)

sps,G , r
(ν,ι+1)
sps,H

$←− Ypprf, i.e.,

in other words, B generates (sk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps-rej,G), (sk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps-rej,H) $←−
SPS.Setup(1λ).

Hyb0,ν−1,3,ι′,3: This experiment is identical to Hyb0,ν−1,3,ι′,2 except that in response to the
νth constrained key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B executes
the following steps:
1. It first generates all the PPRF keys as well as the public parameters for the positional accu-

mulator and the iterator as in Hyb0,ν−1,3,ι′,2.
2. Then, it creates the punctured PPRF keys K(ν)

sps,E{(h∗, ι+1)} $←− F .Puncture(K(ν)
sps,E , (h∗, ι+1))

and K
(ν)
sps,F {(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,F , (h∗, ι+ 1)).
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Constants: PPRF keys Ksps,A, Ksps,B , Punctured PPRF keys Ksps,E{(h∗, ι+ 1)}, Ksps,F {(h∗, ι+ 1)}, Verifi-
cation keys vkG,vkH , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) If (h, `inp) 6= (h∗, ι+ 1), compute rsps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, `inp)), (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).
Else, set vksps,E = vkG.

(b) If (h, `inp) 6= (h∗, ι+ 1), compute rsps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, `inp)), (sksps,F ,vksps,F ,vksps-rej,F ) =
SPS.Setup(1λ; rsps,F ).
Else, set vksps,F = vkH .

(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp > `∗) ∨ (0 < `inp ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.26. Change-SPS.Prog(3,ι,1)

3. After that, it generates (sk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps-rej,G), (sk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps-rej,H) $←−
SPS.Setup(1λ).

4. Then, it computes m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0) just as in Hyb0,ν−1,3,ι′,2.

5. Next, it forms (σ(ν,ι+1)
sps-one,m(ν)

ι+1,0,G
,vk(ν,ι+1)

sps-one,G, sk(ν,ι+1)
sps-abo,G,vk(ν,ι+1)

sps-abo,G) $←− SPS.Split(sk(ν,ι+1)
sps,G ,m

(ν)
ι+1,0)

and (σ(ν,ι+1)
sps-one,m(ν)

ι+1,0,H
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,

where the program Accumulate.Prog(3,ι′,2) is an alteration of the program Accumulate.Prog(3,ι′,1)

(Fig. A.25) and is shown in Fig. A.27.

Hyb0,ν−1,3,ι′,4: In this experiment, in response to the νth constrained key query of A corre-
sponding to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates everything as in hyb0,ν−1,3,ι′,3,
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, Punctured PPRF keys
Ksps,E{(h∗, ι+1)},Ksps,F {(h∗, ι+1)}, Signature σG, Signing key skH , Verification keys vkG,vkH ,
Message mι+1,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) If (h, i) 6= (h∗, ι + 1), compute rsps,E = F(Ksps,E{(h∗, ι + 1)}, (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).
Else, set vksps,E = vkG.

(b) If (h, i) 6= (h∗, ι + 1), compute rsps,F = F(Ksps,F {(h∗, ι + 1)}, (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) =
SPS.Setup(1λ; rsps,F ).
Else, set vksps,F = vkH .

(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) If (h, i) 6= (h∗, ι), compute r′sps,E = F(Ksps,E{(h∗, ι + 1)}, (h, i + 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) =

SPS.Setup(1λ; r′sps,E).
(b) If (h, i) 6= (h∗, ι), compute r′sps,F = F(Ksps,F {(h∗, ι + 1)}, (h, i + 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) =

SPS.Setup(1λ; r′sps,F ).
Else, set sk′sps,F = skH .

(c) Set mout = (vout, st, wout, 0). If [(h, i) = (h∗, ι)] ∧ [mout = mι+1,0], set σsps,out = σG.
Else if [(h, i) = (h∗, ι)] ∧ [mout 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. A.27. Accumulate.Prog(3,ι′,2)
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.

The rest of the experiment is analogous to Hyb0,ν−1,3,ι′,3.

Hyb0,ν−1,3,ι′,5: In this experiment, in response to the νth constrained key query of A correspond-
ing to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B forms all the components just as in Hyb0,ν−1,3,ι′,4,



82 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

however, it gives A the constrained key
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The rest of the experiment is analogous to Hyb0,ν−1,3,ι′,4.

Hyb0,ν−1,3,ι′,6: In this experiment, to answer the νth constrained key query of A corresponding
to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B creates all the components as in Hyb0,ν−1,3,ι′,5, however,
it returns the constrained key
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to A, where program Accumulate.Prog(3,ι′,3) is a modification of program Accumulate.Prog(3,ι′,2)

(Fig. A.27) and is depicted in Fig. A.28. The remaining part of the experiment is identical to
hyb0,ν−1,3,ι′,5.

Hyb0,ν−1,3,ι′,7: In this experiment, to answer the νth constrained key query of A corresponding
to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B generates all the components exactly as in Hyb0,ν−1,3,ι′,6

except that it does not generate (σ(ν,ι+1)
sps-one,m(ν)

ι+1,0,H
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, Punctured PPRF keys
Ksps,E{(h∗, ι+1)},Ksps,F {(h∗, ι+1)}, Signature σG, Signing key skH , Verification keys vkG,vkH ,
Message mι+1,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) If (h, i) 6= (h∗, ι + 1), compute rsps,E = F(Ksps,E{(h∗, ι + 1)}, (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).
Else, set vksps,E = vkG.

(b) If (h, i) 6= (h∗, ι + 1), compute rsps,F = F(Ksps,F {(h∗, ι + 1)}, (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) =
SPS.Setup(1λ; rsps,F ).
Else, set vksps,F = vkH .

(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) If (h, i) 6= (h∗, ι), compute r′sps,E = F(Ksps,E{(h∗, ι + 1)}, (h, i + 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) =

SPS.Setup(1λ; r′sps,E).
(b) If (h, i) 6= (h∗, ι), compute r′sps,F = F(Ksps,F {(h∗, ι + 1)}, (h, i + 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) =

SPS.Setup(1λ; r′sps,F ).
Else, set sk′sps,F = skH .

(c) Set mout = (vout, st, wout, 0). If [(h, i) = (h∗, ι)] ∧ [mout = mι+1,0], set σsps,out = σG.
Else if [(h, i) = (h∗, ι)] ∧ [mout 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if [(h, i) = (h∗, ι+ 1)] ∧ [min = mι+1,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι+ 1)] ∧ [min 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. A.28. Accumulate.Prog(3,ι′,3)
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The rest of the experiment is the same as Hyb0,ν−1,3,ι′,6.

Hyb0,ν−1,3,ι′,8: In this experiment, in response to the νth constrained key query of A correspond-
ing to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the components as in hyb0,ν−1,3,ι′,7,
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however, it returns the constrained key
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to A, where the programs Accumulate.Prog(3,ι′,4) and Change-SPS.Prog(3,ι,2) respectively are
the modifications of the programs Accumulate.Prog(3,ι′,3) and Change-SPS.Prog(3,ι,1) (Figs. A.28
and A.26) and are shown in Figs. A.29 and A.30. The rest of the experiment if identical to
Hyb0,ν−1,3,ι′,7.

Hyb0,ν−1,3,ι′,9: This experiments analogous to hyb0,ν−1,3,ι′,8 with the only exception that while

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters
for positional accumulator ppacc, Public parameters for iterator ppitr, Punctured PPRF keys
Ksps,E{(h∗, ι + 1)},Ksps,F {(h∗, ι + 1)}, Signing key skG, Verification key vkG, Message mι+1,0,
SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value
vin, Signature σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥

1.(a) If (h, i) 6= (h∗, ι + 1), compute rsps,E = F(Ksps,E{(h∗, ι + 1)}, (h, i)), (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).
Else, set vksps,E = vkG.

(b) If (h, i) 6= (h∗, ι + 1), compute rsps,F = F(Ksps,F {(h∗, ι + 1)}, (h, i)), (sksps,F ,vksps,F ,vksps-rej,F ) =
SPS.Setup(1λ; rsps,F ).

(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι+ 1) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3.(a) Compute wout = ACC.Update(ppacc, win, symin, i,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4.(a) If (h, i) 6= (h∗, ι), compute r′sps,E = F(Ksps,E{(h∗, ι + 1)}, (h, i + 1)), (sk′sps,E ,vk′sps,E ,vk′sps-rej,E) =

SPS.Setup(1λ; r′sps,E).
(b) If (h, i) 6= (h∗, ι), compute r′sps,F = F(Ksps,F {(h∗, ι + 1)}, (h, i + 1)), (sk′sps,F ,vk′sps,F ,vk′sps-rej,F ) =

SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0). If (h, i) = (h∗, ι), compute σsps,out = SPS.Sign(skG,mout).

Else if [(h, i) = (h∗, ι+ 1)] ∧ [min = mι+1,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι+ 1)] ∧ [min 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. A.29. Accumulate.Prog(3,ι′,4)
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Constants: PPRF keys Ksps,A, Ksps,B , Punctured PPRF keys Ksps,E{(h∗, ι+ 1)}, Ksps,F {(h∗, ι+ 1)}, Verifi-
cation key vkG, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) If (h, `inp) 6= (h∗, ι+ 1), compute rsps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, `inp)), (sksps,E ,vksps,E ,vksps-rej,E) =
SPS.Setup(1λ; rsps,E).
Else, set vksps,E = vkG.

(b) If (h, `inp) 6= (h∗, ι+ 1), compute rsps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, `inp)), (sksps,F ,vksps,F ,vksps-rej,F ) =
SPS.Setup(1λ; rsps,F ).

(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp > `∗) ∨ (0 < `inp ≤ ι+ 1) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2.(a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.30. Change-SPS.Prog(3,ι,2)

constructing the νth constrained key queried by A corresponding to TM M (ν) ∈ Mλ with
M (ν)(x∗) = 0, B generates (sk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps-rej,G) = SPS.Setup(1λ; r(ν,ι+1)
sps,G = F(K(ν)

sps,E ,

(h∗, ι+ 1))).

Hyb0,ν−1,3,ι′,10: This experiment corresponds to hyb0,ν−1,3,ι+1.

Analysis

Let Adv(0,ν−1,3,ι′,ϑ)
A (λ) represents the advantage of the adversary A, i.e., the absolute difference

between 1/2 and A’s probability of correctly guessing the random bit selected by the challenger
B, in Hyb0,ν−1,3,ι′,ϑ, for ϑ ∈ [0, 10]. From the description of the hybrid experiments it follows
that Adv(0,ν−1,3,ι′)

A (λ) ≡ Adv(0,ν−1,3,ι′,0)
A (λ) and Adv(0,ν−1,3,ι+1)

A (λ) ≡ Adv(0,ν−1,3,ι′,10)
A (λ). Hence,

we have

|Adv(0,ν−1,3,ι′)
A (λ)− Adv(0,ν−1,3,ι+1)

A (λ)| ≤
10X
ϑ=1
|Adv(0,ν−1,3,ι′,ϑ−1)

A (λ)− Adv(0,ν−1,3,ι′,ϑ)
A (λ)|. (A.8)

Claims A.24–A.33 below will show that the RHS of Eq. (A.8) is negligible and thus Lemma A.9
follows.

Claim A.24. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition 2.2, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,3,ι′,0)

A (λ) − Adv(0,ν−1,3,ι′,1)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. The only difference between Hyb0,ν−1,3,ι′,0 and Hyb0,ν−1,3,ι′,1 is the following:
In Hyb0,ν−1,3,ι′,0, B includes the programs IO(P0) and IO(P ′0) within the νth constrained key
provided to A, while in hyb0,ν−1,3,ι′,1, it includes the programs IO(P1) and IO(P ′1) instead,
where

– P0 = Accumulate.Prog(3,ι′)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι+1,0, h

∗, `∗]
(Fig. A.9),
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– P ′0 = Change-SPSProg(3,ι)[K(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗] (Fig. A.8),
– P1 = Accumulate.Prog(3,ι′,1)[nssb-blk = 2λ,hk,pp(ν)

acc,pp(ν)
itr,K

(ν)
sps,E{(h∗, ι+1)},K(ν)

sps,F {(h∗, ι+
1)}, sk(ν,ι+1)

sps,G , sk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,H ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. A.25),
– P ′1 = Change-SPS.Prog(3,ι,1)[K(ν)

sps,A,K
(ν)
sps,B,K

(ν)
sps,E{(h∗, ι + 1)},K(ν)

sps,F {(h∗, ι + 1)},vk(ν,ι+1)
sps,G ,

vk(ν,ι+1)
sps,H , h∗, `∗] (Fig. A.26).

Observe that by the correctness under puncturing property of the PPRF F , the programs
P0 and P1 are functionally identical for all inputs corresponding to (h, i) 6= (h∗, ι) and (h, i) 6=
(h∗, ι + 1). For inputs corresponding to (h∗, ι),the program P1 uses the hardwired signing keys
which are exactly same as those computed by the program P0. The same is true for the hardwired
verification keys used by P1 for inputs corresponding to (h∗, ι+ 1). Thus, the programs P0 and
P1 are functionally equivalent. A similar argument shows that the same is correct for programs
P ′0 and P ′1. Therefore, by the security of IO Claim A.24 follows. Ofcourse, we need to consider
a sequence of intermediate hybrid experiments to switch the programs one at a time. ut

Claim A.25. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι′,1)

A (λ)−Adv(0,ν−1,3,ι′,2)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι′,1)
A (λ)−Adv(0,ν−1,3,ι′,2)

A (λ)|
is non-negligible. We construct a PPT adversary B that breaks the selective pseudorandomness
of the PPRF F using A as a sub-routine. The description of B is given below. We note that in the
following we work in a model of selective pseudorandomness for PPRF involving two independent
punctured keys and two challenge values for a challenge input, one under each key. However,
this model is clearly equivalent to the original single punctured key and single challenge value
model described in Definition 2.2 through a hybrid argument.

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B selects a random bit b $←− {0, 1}. If b = 0, then B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
4. B returns the challenge CPRF value y∗ to A.
• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι′,1, while if η = ν, then
B proceeds as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B

$←− F .Setup(1λ).
2. Next, it creates (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. B sends (h∗, ι+1) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back two punctured PPRF keys K∗1{(h∗, ι + 1)},K∗2{(h∗, ι + 1)} and two
values r∗1, r∗2 ∈ Ypprf, where either r∗1 = F(K∗1 , (h∗, ι + 1)), r∗2 = F(K∗2 , (h∗, ι + 1)) or
r∗1, r

∗
2

$←− Ypprf. B implicitly views the keys K∗1 and K∗2 as the keys K(ν)
sps,E and K

(ν)
sps,F

respectively.
4. B generates (sk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps-rej,G) = SPS.Setup(1λ; r∗1) and (sk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps,H ,

vk(ν,ι+1)
sps-rej,H) = SPS.Setup(1λ; r∗2).

5. Next, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι + 1, it iteratively computes the

following:
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– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

6. It gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K∗1{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
∗
1{(h∗, ι+ 1)},

K∗2{(h∗, ι+ 1)}, sk(ν,ι+1)
sps,G , sk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,H ,m
(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι,1)[K(ν)

sps,A,K
(ν)
sps,B,K

∗
1{(h∗, ι+ 1)},K∗2{(h∗, ι+ 1)},

vk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,H , h∗, `∗]),
IO(Constrained-Key.Prog(1)

cprf[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A,K

(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCCCCCCA
.

• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its PPRF selective pseudorandomness experiment.

Note that if r∗1 = F(K∗1 , (h∗, ι + 1)), r∗2 = F(K∗2 , (h∗, ι + 1)), then B perfectly simulates
Hyb0,ν−1,3,ι′,1. On the other hand, if r∗1, r∗2

$←− Ypprf, the B perfectly simulates Hyb0,ν−1,3,ι′,2.
This completes the proof of Claim A.25. ut

Claim A.26. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι′,2)

A (λ)−Adv(0,ν−1,3,ι′,3)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. The only difference between Hyb0,ν−1,3,ι′,2 and Hyb0,ν−1,3,ι′,3 is the following:
In Hyb0,ν−1,3,ι′,2, B includes the program IO(P0) within the νth constrained key provided to A,
while in hyb0,ν−1,3,ι′,3, it includes the program IO(P1) instead, where

– P0 = Accumulate.Prog(3,ι′,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+1)},K(ν)

sps,F {(h∗, ι+
1)}, sk(ν,ι+1)

sps,G , sk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,H ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. A.25),
– P1 = Accumulate.Prog(3,ι′,2)[nssb-blk = 2λ,hk,pp(ν)

acc,pp(ν)
itr,K

(ν)
sps,E{(h∗, ι+1)},K(ν)

sps,F {(h∗, ι+
1)}, σ(ν,ι+1)

sps-one,m(ν)
ι+1,0,G

, sk(ν,ι+1)
sps-abo,H ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,H ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. A.27).

Now, the only inputs on which the outputs of the two programs can possibly differ are those
corresponding to (h, i) = (h∗, ι). However, observe that for inputs corresponding to (h∗, ι), if
mout = m

(ν)
ι+1,0, then both programs clearly output the same signature, where P0 computes the

signature explicitly and P1 has the signature hardwired into it. On the other hand, by the cor-
rectness [Property (ii)] of the splittable signature SPS defined in Definition 2.6 it follows that the
programs P0 and P1 output same signatures even when mout 6= m

(ν)
ι+1,0 for inputs corresponding

to (h∗, ι). Hence, the two programs are functionally equivalent. Therefore, Claim A.26 follows
by the security of IO. ut

Claim A.27. Assuming SPS is a splittable signature scheme satisfying ‘vksps-one indistin-
guishability’ as per Definition 2.6, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3,ι′,3)

A (λ)− Adv(0,ν−1,3,ι′,4)
A (λ)| ≤ negl(λ) for some negligible function negl.
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Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι′,3)
A (λ)−Adv(0,ν−1,3,ι′,4)

A (λ)|
is non-negligible. Below we construct a PPT adversary B that breaks the vksps-one indistinguisha-
bility of SPS using A as a sub-routine.

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
4. B returns the challenge CPRF value y∗ to A.
• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι′,3, while if η = ν, then
B proceeds as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).

2. Next, it creates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B creates the punctured PPRF keys K(ν)

sps,E{(h∗, ι+1)} $←− F .Puncture(K(ν)
sps,E , (h∗, ι+

1)) and K
(ν)
sps,F {(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,F , (h∗, ι+ 1)).
4. Next, it sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι + 1, it iteratively computes the

following:
– aux(ν)

j = ACC.Prep-Write(pp(ν)
acc, store(ν)

j−1, j − 1)
– w

(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

5. After that, B sends m(ν)
ι+1,0 as the challenge message to its SPS vksps-one indistinguishability

challenger C and receives back a signature-verification key pair (σsps-one,m(ν)
ι+1,0

,vk), where
vk is either a normal verification key vksps or a one verification key vksps-one for the
message m(ν)

ι+1,0.
6. B generates (sk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps-rej,H) $←− SPS.Setup(1λ) and forms (σ(ν,ι+1)
sps-one,m(ν)

ι+1,0,H
,

vk(ν,ι+1)
sps-one,H , sk(ν,ι+1)

sps-abo,H ,vk(ν,ι+1)
sps-abo,H) $←− SPS.Split(sk(ν,ι+1)

sps,H ,m
(ν)
ι+1,0).

7. B gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+ 1)},

K
(ν)
sps,F {(h∗, ι+ 1)}, σsps-one,m(ν)

ι+1,0
, sk(ν,ι+1)

sps-abo,H ,vk,vk(ν,ι+1)
sps,H ,m

(ν)
ι+1,0, h

∗, `∗]),

IO(Change-SPS.Prog(3,ι,1)[K(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},
vk,vk(ν,ι+1)

sps,H , h∗, `∗]),
IO(Constrained-Key.Prog(1)

cprf[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A,K

(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCCCCCCCA

.
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• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its SPS vksps-one indistinguishability experiment.

Notice that if vk = vksps, then B perfectly simulates Hyb0,ν−1,3,ι′,3. On the other hand, if
vk = vksps-one, then B perfectly simulates Hyb0,ν−1,3,ι′,4. This completes the proof of Claim A.27.

ut

Claim A.28. Assuming SPS is a splittable signature scheme satisfying ‘vksps-abo indistin-
guishability’ as per Definition 2.6, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3,ι′,4)

A (λ)− Adv(0,ν−1,3,ι′,5)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι′,4)
A (λ)−Adv(0,ν−1,3,ι′,5)

A (λ)|
is non-negligible. Below we construct a PPT adversary B that breaks the vksps-abo indistinguisha-
bility of SPS using A as a sub-routine.

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
4. B returns the challenge CPRF value y∗ to A.
• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι′,4, while if η = ν, then
B proceeds as follows:

1. B first selects PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).

2. Next, it creates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B creates the punctured PPRF keys K(ν)

sps,E{(h∗, ι+1)} $←− F .Puncture(K(ν)
sps,E , (h∗, ι+

1)) and K
(ν)
sps,F {(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,F , (h∗, ι+ 1)).

4. Next, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι + 1, it iteratively computes the

following:
– aux(ν)

j = ACC.Prep-Write(pp(ν)
acc, store(ν)

j−1, j − 1)
– w

(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

5. After that, B sends m(ν)
ι+1,0 as the challenge message to its SPS vksps-abo indistinguishability

challenger C and receives back an all-but-one signing key-verification key pair (sksps-abo,vk),
where vk is either a normal verification key vksps or an all-but-one verification key
vksps-abo.

6. B generates (sk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps-rej,G) $←− SPS.Setup(1λ) and forms (σ(ν,ι+1)

sps-one,m(ν)
ι+1,0,G

,

vk(ν,ι+1)
sps-one,G, sk(ν,ι+1)

sps-abo,G,vk(ν,ι+1)
sps-abo,G) $←− SPS.Split(sk(ν,ι+1)

sps,G ,m
(ν)
ι+1,0).
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7. B gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+ 1)},

K
(ν)
sps,F {(h∗, ι+ 1)}, σ(ν,ι+1)

sps-one,m(ν)
ι+1,0,G

, sksps-abo,vk(ν,ι+1)
sps-one,G,vk,m(ν)

ι+1,0, h
∗, `∗]),

IO(Change-SPS.Prog(3,ι,1)[K(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},
vk(ν,ι+1)

sps-one,G,vk, h∗, `∗]),
IO(Constrained-Key.Prog(1)

cprf[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A,K

(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCCCCCCCA

.

• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its SPS vksps-abo indistinguishability experiment.

Notice that if vk = vksps, then B perfectly simulates Hyb0,ν−1,3,ι′,4. On the other hand, if
vk = vksps-abo, then B perfectly simulates Hyb0,ν−1,3,ι′,5. This completes the proof of Claim A.28.

ut

Claim A.29. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι′,5)

A (λ)−Adv(0,ν−1,3,ι′,6)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. The only difference between Hyb0,ν−1,3,ι′,5 and Hyb0,ν−1,3,ι′,6 is the following:
In Hyb0,ν−1,3,ι′,5, B includes the program IO(P0) within the νth constrained key returned to A,
while in hyb0,ν−1,3,ι′,6, it includes the program IO(P1) instead, where

– P0 = Accumulate.Prog(3,ι′,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+1)},K(ν)

sps,F {(h∗, ι+
1)}, σ(ν,ι+1)

sps-one,m(ν)
ι+1,0,G

, sk(ν,ι+1)
sps-abo,H ,vk(ν,ι+1)

sps-one,G,vk(ν,ι+1)
sps-abo,H ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. A.27),

– P1 = Accumulate.Prog(3,ι′,3)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+1)},K(ν)

sps,F {(h∗, ι+
1)}, σ(ν,ι+1)

sps-one,m(ν)
ι+1,0,G

, sk(ν,ι+1)
sps-abo,H ,vk(ν,ι+1)

sps-one,G,vk(ν,ι+1)
sps-abo,H ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. A.28).

We will argue that the programs P0 and P1 are functionally equivalent, so that, by the
security of IO Claim A.29 holds. First of all observe that the constants hardwired in both the
programs are identically generated. Clearly, the inputs on which the outputs of the programs P0
and P1 can possibly differ are those corresponding to (h, i) = (h∗, ι+1). For inputs corresponding
to (h∗, ι+ 1), let us consider the following two cases:

(I) (min = m
(ν)
ι+1,0): In this case, using the correctness [Properties (i), (iii) and (vi)] of the splitable

signature SPS described in Definition 2.6 it follows that for both programs either α =‘-’ or
α =‘E’. Now, if α =‘-’, then both programs output ⊥. On the other hand, if α =‘E’, then P0
outputs the signature σsps,out = SPS.Sign(sk′sps,α,mout) = SPS.Sign(sk′sps,E ,mout), which is
the same signature that P1 is programmed to output in this case. Thus, both programs have
identical outputs in this case.

(II) (min 6= m
(ν)
ι+1,0): In this case, we use the correctness [Property (v)] of SPS described in Defini-

tion 2.6 to conclude that α 6=‘E’ and correctness [Properties (i) and (iv)] of SPS confirms that
either α =‘-’ or α =‘F ’. Now, if α=‘-’, then both programs output ⊥ as earlier. Otherwise,
if α =‘F ’, then P0 outputs σsps,out = SPS.Sign(sk′sps,α,mout) = SPS.Sign(sk′sps,F ,mout),
which P1 is programmed to output in this case. Therefore, both programs are functionally
equivalent in this case as well.



Verifiable and Delegatable CPRF’s for Unconstrained Inputs 91

ut

Claim A.30. Assuming SPS is a splitable signature scheme satisfying ‘splitting indistin-
guishability’ as per Definition 2.6, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3,ι′,6)

A (λ)− Adv(0,ν−1,3,ι′,7)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι′,6)
A (λ)−Adv(0,ν−1,3,ι′,7)

A (λ)|
is non-negligible. Below we construct a PPT adversary B that breaks the splitting indistinguisha-
bility of SPS using A as a sub-routine.

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
4. B returns the challenge CPRF value y∗ to A.
• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι′,6, while if η = ν, then
B proceeds as follows:

1. B first selects PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).

2. Next, it creates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B generates the punctured PPRF keys K(ν)

sps,E{(h∗, ι+1)} $←− F .Puncture(K(ν)
sps,E , (h∗,

ι+ 1)) and K
(ν)
sps,F {(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,F , (h∗, ι+ 1)).
4. Next, it sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι + 1, it iteratively computes the

following:
– aux(ν)

j = ACC.Prep-Write(pp(ν)
acc, store(ν)

j−1, j − 1)
– w

(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

5. After that, B sends m(ν)
ι+1,0 as the challenge message to its SPS splitting indistinguishability

challenger C and receives back a tuple (σ∗
sps-one,m(ν)

ι+1,0
, vk∗sps-one, sk∗sps-abo,vk∗sps-abo), where

– either (σ∗
sps-one,m(ν)

ι+1,0
,vk∗sps-one, sk∗sps-abo,vk∗sps-abo) =

(σsps-one,m(ν)
ι+1,0

,vksps-one, sksps-abo,vksps-abo)
– or (σ∗

sps-one,m(ν)
ι+1,0

,vk∗sps-one, sk∗sps-abo,vk∗sps-abo) =

(σsps-one,m(ν)
ι+1,0

,vksps-one, sk′sps-abo,vk′sps-abo)

such that (σsps-one,m(ν)
ι+1,0

,vksps-one, sksps-abo,vksps-abo) $←− SPS.Split(sksps,m
(ν)
ι+1,0),

(σ′
sps-one,m(ν)

ι+1,0
,vk′sps-one, sk′sps-abo,vk′sps-abo) $←− SPS.Split(sk′sps,m

(ν)
ι+1,0),

sksps and sk′sps being two independently generated signing keys for SPS.
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6. B gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,3)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+ 1)},

K
(ν)
sps,F {(h∗, ι+ 1)}, σ∗

sps-one,m(ν)
ι+1,0

, sk∗sps-abo,vk∗sps-one,,vk∗sps-abo,m
(ν)
ι+1,0, h

∗, `∗]),

IO(Change-SPS.Prog(3,ι,1)[K(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},
vk∗sps-one,vk∗sps-abo, h

∗, `∗]),
IO(Constrained-Key.Prog(1)

cprf[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A,K

(ν)
sps,B, h

∗, `∗])

1
CCCCCCCCCCCCCCCCA

.

• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its SPS splitting indistinguishability experiment.

Notice that if (σ∗
sps-one,m(ν)

ι+1,0
,vk∗sps-one, sk∗sps-abo,vk∗sps-abo) = (σsps-one,m(ν)

ι+1,0
,vksps-one, sk′sps-abo,

vk′sps-abo), then B perfectly simulates Hyb0,ν−1,3,ι′,6. On the other hand, if (σ∗
sps-one,m(ν)

ι+1,0
,vk∗sps-one,

sk∗sps-abo,vk∗sps-abo) = (σsps-one,m(ν)
ι+1,0

,vksps-one, sksps-abo,vksps-abo), then B perfectly simulates
Hyb0,ν−1,3,ι′,7. This completes the proof of Claim A.30. ut

Claim A.31. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι′,7)

A (λ)−Adv(0,ν−1,3,ι′,8)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. The only difference between Hyb0,ν−1,3,ι′,7 and Hyb0,ν−1,3,ι′,8 is the following:
In Hyb0,ν−1,3,ι′,7, B includes the programs IO(P0) and IO(P ′0) within the νth constrained key
returned to A, while in hyb0,ν−1,3,ι′,8, it includes the programs IO(P1) and IO(P ′1) instead,
where

– P0 = Accumulate.Prog(3,ι′,3)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+1)},K(ν)

sps,F {(h∗, ι+
1)}, σ(ν,ι+1)

sps-one,m(ν)
ι+1,0,G

, sk(ν,ι+1)
sps-abo,G,vk(ν,ι+1)

sps-one,G,vk(ν,ι+1)
sps-abo,G,m

(ν)
ι+1,0, h

∗, `∗] (Fig. A.28),

– P ′0 = Change-SPS.Prog(3,ι,1)[K(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E{(h∗, ι+1)},K(ν)

sps,F {(h∗, ι+1)},vk(ν,ι=1)
sps-one,G,

vk(ν,ι+1)
sps-abo,G, h

∗, `∗] (Fig. A.26),
– P1 = Accumulate.Prog(3,ι′,4)[nssb-blk = 2λ,hk,pp(ν)

acc,pp(ν)
itr,K

(ν)
sps,E{(h∗, ι+1)},K(ν)

sps,F {(h∗, ι+
1)}, sk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,G ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. A.29),
– P ′1 = Change-SPS.Prog(3,ι,2)[K(ν)

sps,A,K
(ν)
sps,B,K

(ν)
sps,E{(h∗, ι + 1)},K(ν)

sps,F {(h∗, ι + 1)},vk(ν,ι=1)
sps,G ,

h∗, `∗] (Fig. A.30).

We will argue that the programs P0 and P1, as well as , the programs P ′0 and P ′1 are function-
ally equivalent, so that, by the security of IO Claim A.31 follows. First consider the programs
P0 and P1. Clearly the only inputs on which the outputs of the two programs can possibly differ
are those corresponding to (h, i) = (h∗, ι) and (h, i) = (h∗, ι+ 1). Now, for inputs corresponding
to (h∗, ι), the outputs of the two programs are identical due to the correctness [Property (ii)] of
the splitable signature SPS described in Definition 2.6 and the fact that the hardwired signature
σ

(ν,ι+1)
sps-one,m(ν)

ι+1,0,G
and the all-but-one signing key sk(ν,ι+1)

sps-abo,G used by the program P0 for inputs

corresponding to (h∗, ι) are obtained by running SPS.Split(sk(ν,ι+1)
sps,G ,m

(ν)
ι+1,0), while the hardwired

signing key used by P1 in this case is sk(ν,ι+1)
sps,G . Similarly, for inputs corresponding to (h∗, ι+ 1),
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the outputs of the two programs are also identical because of the correctness [Properties (i),
(iii), (v), (iv) and (vi)] of SPS and the fact that the hardwired one and all-but-one verification
keys used by the program P0 for inputs corresponding to (h∗, ι + 1) are generated by running
SPS.Split(sk(ν,ι+1)

sps,G ,m
(ν)
ι+1,0), while the hardwired verification key used by the program P1 in this

case is vk(ν,ι+1)
sps,G , which is the matching verification key of sk(ν,ι+1)

sps,G . Hence, the two programs
are functionally equivalent. The same type of argument holds for the programs P ′0 and P ′1. ut

Claim A.32. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι′,8)

A (λ)−Adv(0,ν−1,3,ι′,9)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. The proof of Claim A.32 is analogous to that of Claim A.25 with some appropriate
modifications that are readily identifiable. ut

Claim A.33. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition 2.2, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,3,ι′,9)

A (λ) − Adv(0,ν−1,3,ι′,10)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. The proof of Claim A.33 is similar to that of Claim A.24 with some appropriate modifi-
cations which are easy to find out. ut

ut

Lemma A.10. Assuming IO is a a secure indistinguishability obfuscator for P/poly, F is a
secure puncturable pseudorandom function as per Definition 2.2, and SPS is a secure splitable
signature scheme satisfying ‘vksps-one indistinguishability’, ‘vksps-abo indistinguishability’, as
well as ‘splitting indistinguishability’ as defined in Definition 2.6, for any PPT adversary A, for
any security parameter λ, |Adv(0,ν−1,3,(`∗−1)′)

A (λ)− Adv(0,ν−1,4)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The proof of Lemma A.10 proceeds along the same line as that of Lemma A.9 with
certain appropriate changes which can be readily determined. ut

Lemma A.11. Assuming IO is a a secure indistinguishability obfuscator for P/poly, F is a
secure puncturable pseudorandom function as per Definition 2.2, ACC is a secure positional ac-
cumulator possessing the ‘indistinguishability of read setup’ as well as ‘read enforcing’ properties
defined in Definition 2.4, and SPS is a secure splitable signature scheme satisfying ‘vksps-one in-
distinguishability’, ‘vksps-abo indistinguishability’, as well as ‘splitting indistinguishability’ as de-
fined in Definition 2.6, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4)

A (λ)−
Adv(0,ν−1,4,0′)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. In order to establish Lemma A.11, we consider the following sequence of intermediate
hybrid experiments between Hyb0,ν−1,4 and Hyb0,ν−1,4,0′ :

Sequence of Intermediate Hybrids between Hyb0,ν−1,4 and Hyb0,ν−1,4,0′

Hyb0,ν−1,4-I: This experiment coincides with Hyb0,ν−1,4.

Hyb0,ν−1,4-II: This experiment is identical to Hyb0,ν−1,4-I except that in response to the νth

constrained key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B executes the
following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hyb0,ν−1,4-I.
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2. Then, it creates the punctured PPRF keys K(ν)
sps,A{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,A, (h∗, `∗, 0))

and K
(ν)
sps,B{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,B, (h∗, `∗, 0)).

3. After that it computes r
(ν,0)
sps,C = F(K(ν)

sps,A, (h∗, `∗, 0)), r(ν,0)
sps,D = F(K(ν)

sps,B, (h∗, `∗, 0)), and

forms (sk(ν,0)
sps,C ,vk(ν,0)

sps,C ,vk(ν,0)
sps-rej,C) = SPS.Setup(1λ; r(ν,0)

sps,C), (sk(ν,0)
sps,D,vk(ν,0)

sps,D,vk(ν,0)
sps-rej,D) =

SPS.Setup(1λ; r(ν,0)
sps,D).

4. Next, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , `∗, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
`∗,0 = (v(ν)

`∗ , q
(ν)
0 , w

(ν)
`∗ , 0).

5. It gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,1)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E , sk(ν,0)

sps,C ,

sk(ν,0)
sps,D,m

(ν)
`∗,0, h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,1)

cprf [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps,C ,vk(ν,0)

sps,D, h
∗, `∗])

1
CCCCCCCCCCCCCCA
,

where the programs Change-SPS.Prog(4,1) and Constrained-Key.Prog(1,0,1)
cprf respectively are the

modifications of the programs Change-SPS.Prog(4) and Constrained-Key.Prog(1)
cprf (Figs. A.10

and A.2) and are depicted in Figs. A.31 and A.32.

Constants: Punctured PPRF keys Ksps,A{(h∗, `∗, 0)},Ksps,B{(h∗, `∗, 0)}, PPRF key Ksps,E , Signing keys
skC , skD, Message m`∗,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Set m = (v, st, w, 0).
(c) If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.

2.(a) If (h, `inp) 6= (h∗, `∗), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) =
SPS.Setup(1λ; rsps,A).
Else, set sksps,A = skC .

(b) If (h, `inp) 6= (h∗, `∗), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) =
SPS.Setup(1λ; rsps,B).
Else, set sksps,B = skD.

(c) If [(h, `inp) = (h∗, `∗)] ∧ [m 6= m`∗,0], output σsps,out = SPS.Sign(sksps,B ,m).
Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.31. Change-SPS.Prog(4,1)
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input
t∗, Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr,
PPRF keys K,K1, . . . ,Kλ, Punctured PPRF keys Ksps,A{(h∗, `∗, 0)},Ksps,B{(h∗, `∗, 0)}, Verifica-
tion keys vkC ,vkD, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t− 1)), (sksps,A,vksps,A,

vksps-rej,A) = SPS.Setup(1λ; rsps,A).
Else, set vksps,A = vkC .

(b) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t− 1)), (sksps,B ,vksps,B ,
vksps-rej,B) = SPS.Setup(1λ; rsps,B).
Else, set vksps,B = vkD.

(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if stout = qac, output F(K, (h, `inp)).

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Compute r′sps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,B ,vk′sps,B ,vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

Compute σsps,out = SPS.Sign(sk′sps,α,mout).
7. If t+ 1 = 2τ

′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.32. Constrained-Key.Prog(1,0,1)
cprf

Hyb0,ν−1,4-III: This experiment is analogous to Hyb0,ν−1,4-II with the only exception that while
constructing the νth constrained key queried by A, B selects r(ν,0)

sps,C , r
(ν,0)
sps,D

$←− Ypprf, i.e., in other

words, B generates (sk(ν,0)
sps,C ,vk(ν,0)

sps,C ,vk(ν,0)
sps-rej,C), (sk(ν,0)

sps,D,vk(ν,0)
sps,D,vk(ν,0)

sps-rej,D) $←− SPS.Setup(1λ).

Hyb0,ν−1,4-IV: This experiment is similar to Hyb0,ν−1,4-III except that in response to the νth

constrained key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B executes the
following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accu-
mulator and the iterator as in Hyb0,ν−1,4-III.

2. Then, it creates the punctured PPRF keysK(ν)
sps,A{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,A, (h∗, `∗, 0))

and K
(ν)
sps,B{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,B, (h∗, `∗, 0)).

3. Next, it forms (sk(ν,0)
sps,C ,vk(ν,0)

sps,C ,vk(ν,0)
sps-rej,C), (sk(ν,0)

sps,D,vk(ν,0)
sps,D,vk(ν,0)

sps-rej,D) $←− SPS.Setup(1λ).
4. After that, it computes m(ν)

`∗,0 = (v(ν)
`∗ , q

(ν)
0 , w

(ν)
`∗ , 0) just as in Hyb0,ν−1,4-III.
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5. Next, it generates (σ(ν,0)
sps-one,m(ν)

`∗,0,C
,vk(ν,0)

sps-one,C , sk(ν,0)
sps-abo,C ,vk(ν,0)

sps-abo,C) $←− SPS.Split(sk(ν,0)
sps,C ,

m
(ν)
`∗,0) and (σ(ν,0)

sps-one,m(ν)
`∗,0,D

,vk(ν,0)
sps-one,D, sk(ν,0)

sps-abo,D,vk(ν,0)
sps-abo,D) $←− SPS.Split(sk(ν,0)

sps,D,m
(ν)
`∗,0).

6. It gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,2)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E , σ

(ν,0)
sps-one,m(ν)

`∗,0,C
,

sk(ν,0)
sps-abo,D,m

(ν)
`∗,0, h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,1)

cprf [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps,C ,vk(ν,0)

sps,D, h
∗, `∗])

1
CCCCCCCCCCCCCCA
,

where the program Change-SPS.Prog(4,2) is an alteration of the program Change-SPS.Prog(4,1)

(Fig. A.31) and is shown in Fig. A.33.

Constants: Punctured PPRF keys Ksps,A{(h∗, `∗, 0)},Ksps,B{(h∗, `∗, 0)}, PPRF key Ksps,E , Signature σC ,
Signing key skD, Message m`∗,0, SSB hash value of challenge input h∗, Length of challenge
input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Set m = (v, st, w, 0).
(c) If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.

2.(a) If (h, `inp) 6= (h∗, `∗), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) =
SPS.Setup(1λ; rsps,A).

(b) If (h, `inp) 6= (h∗, `∗), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, 0)), (sksps,B ,vksps,B ,vksps-rej,B) =
SPS.Setup(1λ; rsps,B).
Else, set sksps,B = skD.

(c) If [(h, `inp) = (h∗, `∗)] ∧ [m 6= m`∗,0], output σsps,out = SPS.Sign(sksps,B ,m).
Else if [(h, `inp = (h∗, `∗)] ∧ [m = m`∗,0], output σsps,out = σC .
Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.33. Change-SPS.Prog(4,2)

Hyb0,ν−1,4-V: In this experiment, in response to the νth constrained key query of A correspond-
ing to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the components as in hyb0,ν−1,4-IV,
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however, it hands A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,2)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E , σ

(ν,0)
sps-one,m(ν)

`∗,0,C
,

sk(ν,0)
sps-abo,D,m

(ν)
`∗,0, h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,1)

cprf [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps-one,C ,vk(ν,0)

sps,D, h
∗, `∗])

1
CCCCCCCCCCCCCCA
,

The rest of the experiment is analogous to Hyb0,ν−1,4-IV.

Hyb0,ν−1,4-VI: In this experiment, in response to the νth constrained key query of A corre-
sponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B creates all the components as in hyb0,ν−1,4-V,
however, it hands A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,2)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E , σ

(ν,0)
sps-one,m(ν)

`∗,0,C
,

sk(ν,0)
sps-abo,D,m

(ν)
`∗,0, h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,1)

cprf [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps-one,C ,vk(ν,0)

sps-abo,D, h
∗, `∗])

1
CCCCCCCCCCCCCCA
,

The rest of the experiment is similar to Hyb0,ν−1,4-V.

Hyb0,ν−1,4-VII: In this experiment, to answer the νth constrained key query of A corresponding
to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the components just as in Hyb0,ν−1,4-VI,
but it provides A with the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,2)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E , σ

(ν,0)
sps-one,m(ν)

`∗,0,C
,

sk(ν,0)
sps-abo,D,m

(ν)
`∗,0, h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,2)

cprf [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps-one,C ,vk(ν,0)

sps-abo,D,m
(ν)
`∗,0, h

∗, `∗])

1
CCCCCCCCCCCCCCA
,

where program Constrained-Key.Prog(1,0,2)
cprf is a modification of program Constrained-Key.Prog(1,0,1)

cprf
(Fig. A.32) and is shown in Fig. A.34. The rest of the experiment is analogous to Hyb0,ν−1,4-VI.

Hyb0,ν−1,4-VIII: In This experiment is the same as Hyb0,ν−1,4-VII with the only exception that
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input
t∗, Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr,
PPRF keys K,K1, . . . ,Kλ, Punctured PPRF keys Ksps,A{(h∗, `∗, 0)},Ksps,B{(h∗, `∗, 0)}, Verifica-
tion keys vkC ,vkD, Message m`∗,0, SSB hash value of challenge input h∗, Length of challenge
input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,A,vksps,A,

vksps-rej,A) = SPS.Setup(1λ; rsps,A).
Else, set vksps,A = vkC .

(b) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,B ,vksps,B ,
vksps-rej,B) = SPS.Setup(1λ; rsps,B).
Else, set vksps,B = vkD.

(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if stout = qac, output F(K, (h, `inp)).

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Compute r′sps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,B ,vk′sps,B ,vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min = m`∗,0], compute σsps,out = SPS.Sign(sk′sps,A,mout).
Else if [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min 6= m`∗,0], compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.34. Constrained-Key.Prog(1,0,2)
cprf

while creating the νth constrained key queried by A, B generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←−
ACC.Setup-Enforce-Read(1λ, nacc-blk = 2λ, ((x∗0, 0), . . . , (x∗`∗−1, `

∗ − 1)), i∗ = 0).

Hyb0,ν−1,4-IX: In this experiment, to answer the νth constrained key query of A corresponding
to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the components just as in hyb0,ν−1,4-VIII,
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however, it gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,2)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E , σ

(ν,0)
sps-one,m(ν)

`∗,0,C
,

sk(ν,0)
sps-abo,D,m

(ν)
`∗,0, h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,3)

cprf [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps-one,C ,vk(ν,0)

sps-abo,D,m
(ν)
`∗,0, h

∗, `∗])

1
CCCCCCCCCCCCCCA
,

where program Constrained-Key.Prog(1,0,3)
cprf is a modification of program Constrained-Key.Prog(1,0,2)

cprf
(Fig. A.35) and is shown in Fig. A.35. The rest of the experiment is analogous to Hyb0,ν−1,4-VIII.

hyb0,ν−1,4-X: This experiment is identical to Hyb0,ν−1,4-IX with the only exception that while
constructing the νth constrained key queried by A, B forms (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←−
ACC.Setup(1λ, nacc-blk = 2λ).

Hyb0,ν−1,4-XI: In this experiment, in response to the νth constrained key query of A corre-
sponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B creates all the components as in Hyb0,ν−1,4-X

except that it does not generate (σ(ν,0)
sps-one, m(ν)

`∗,0,D
, vk(ν,0)

sps-one,D, skν,0)
sps-abo,D, vk(ν,0)

sps-abo,D) $←−

SPS.Split(sk(ν,0)
sps,D, m

(ν)
`∗,0) and hands A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,2)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E , σ

(ν,0)
sps-one,m(ν)

`∗,0,C
,

sk(ν,0)
sps-abo,C ,m

(ν)
`∗,0, h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,3)

cprf [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps-one,C ,vk(ν,0)

sps-abo,C ,m
(ν)
`∗,0, h

∗, `∗])

1
CCCCCCCCCCCCCCA
.

The rest of the experiment is analogous to Hyb0,ν−1,4-X.

hyb0,ν−1,4-XII: In this experiment, to answer the νth constrained key query of A corresponding
to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B creates all the components as in Hyb0,ν−1,4-XI, but it
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input
t∗, Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr,
PPRF keys K,K1, . . . ,Kλ, Punctured PPRF keys Ksps,A{(h∗, `∗, 0)},Ksps,B{(h∗, `∗, 0)}, Verifica-
tion keys vkC ,vkD, Message m`∗,0, SSB hash value of challenge input h∗, Length of challenge
input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,A,vksps,A,

vksps-rej,A) = SPS.Setup(1λ; rsps,A).
Else, set vksps,A = vkC .

(b) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,B ,vksps,B ,
vksps-rej,B) = SPS.Setup(1λ; rsps,B).
Else, set vksps,B = vkD.

(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if [stout = qac] ∧ [α =‘A’] ∧ [(h, `inp) = (h∗, `∗)] ∧ [t ≤ 1], output ⊥.
Else if stout = qac, output F(K, (h, `inp)).

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Compute r′sps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,B ,vk′sps,B ,vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min = m`∗,0], compute σsps,out = SPS.Sign(sk′sps,A,mout).
Else if [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min 6= m`∗,0], compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.35. Constrained-Key.Prog(1,0,3)
cprf

provides A with the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBB@

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,3)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,E , sk(ν,0)
sps,C , h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,4)

cprf [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps,C ,m

(ν)
`∗,0, h

∗, `∗])

1
CCCCCCCCCCCA
,

where the programs Change-SPS.Prog(4,3) and Constrained-Key.Prog(1,0,4)
cprf are the alterations of

the programs Change-SPS.Prog(4,2) and Constrained-Key.Prog(1,0,3)
cprf (Figs. A.33 and A.35) and
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are shown in Figs. A.36 and A.37 respectively. The rest of the experiment is analogous to
Hyb0,ν−1,4-XI.

Hyb0,ν−1,4-XIII: This experiment is analogous to Hyb0,ν−1,4-XII except that while creating the

Constants: Punctured PPRF key Ksps,A{(h∗, `∗, 0)}, PPRF key Ksps,E , Signing key skC , SSB hash value of
challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature
σsps,in

Output: Signature σsps,out, or ⊥

1.(a) Compute rsps,E = F(Ksps,E , (h, `inp), (sksps,E ,vksps,E ,vksps-rej,E) = SPS.Setup(1λ; rsps,E).
(b) Set m = (v, st, w, 0).
(c) If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.

2.(a) If (h, `inp) 6= (h∗, `∗), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, 0)), (sksps,A,vksps,A,vksps-rej,A) =
SPS.Setup(1λ; rsps,A).

(b) If (h, `inp) = (h∗, `∗), output σsps,out = SPS.Sign(skC ,m).
Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.36. Change-SPS.Prog(4,3)

νth constrained key queried by A, B and forms (sk(ν,0)
sps,C ,vk(ν,0)

sps,C ,vk(ν,0)
sps-rej,C) = SPS.Setup(1λ;

r
(ν,0)
sps,C = F(K(ν)

sps,A, (h∗, `∗, 0))).

Hyb0,ν−1,4-XIV: This experiment corresponds to Hyb0,ν−1,4,0′ .

Analysis

Let Adv(0,ν−1,4-ϑ)
A (λ) represents the advantage of the adversary A, i.e., the absolute difference

between 1/2 and A’s probability of correctly guessing the random bit selected by the challenger
B, in Hyb0,ν−1,4-ϑ, for ϑ ∈ {I, . . . ,XIV}. From the description of the hybrid experiments it follows
that Adv(0,ν−1,4)

A (λ) ≡ Adv(0,ν−1,4-I)
A (λ) and Adv(0,ν−1,4,0′)

A (λ) ≡ Adv(0,ν−1,4-XIV)
A (λ). Hence, we

have

|Adv(0,ν−1,4)
A (λ)− Adv(0,ν−1,4,0′)

A (λ)| ≤
XIVX
ϑ=II
|Adv(0,ν−1,4-(ϑ−I))

A (λ)− Adv(0,ν−1,4-ϑ)
A (λ)|. (A.9)

Claims A.34–A.46 below will show that the RHS of Eq. (A.9) is negligible and thus Lemma A.11
follows.

Claim A.34. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition 2.2, for any PPT adversary A,
for any security parameter λ, |Adv(0,ν−1,4-I)

A (λ)−Adv(0,ν−1,4-II)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The proof of Claim A.34 uses a similar kind of logic as that employed in the proof of
Claim A.24. We omit the details here. ut

Claim A.35. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4-II)

A (λ)−Adv(0,ν−1,4-III)
A (λ)| ≤

negl(λ) for some negligible function negl.
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗,
Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF
keys K,K1, . . . ,Kλ, Punctured PPRF keys Ksps,A{(h∗, `∗, 0)},Ksps,B{(h∗, `∗, 0)}, Verification key
vkC , Message m`∗,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,A,vksps,A,

vksps-rej,A) = SPS.Setup(1λ; rsps,A).
Else, set vksps,A = vkC .

(b) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,B ,vksps,B ,
vksps-rej,B) = SPS.Setup(1λ; rsps,B).

(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (t ≤ 1) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if [stout = qac] ∧ [α =‘A’] ∧ [(h, `inp) = (h∗, `∗)] ∧ [t ≤ 1], output ⊥.
Else if stout = qac, output F(K, (h, `inp)).

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Compute r′sps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,B ,vk′sps,B ,vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min = m`∗,0], compute σsps,out = SPS.Sign(sk′sps,A,mout).
Else if [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min 6= m`∗,0], compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.37. Constrained-Key.Prog(1,0,4)
cprf

Proof. The proof of Claim A.35 resembles that of Claim A.25 with some suitable changes. The
details are omitted. ut

Claim A.36. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,4-III)

A (λ)−Adv(0,ν−1,4-IV)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. Claim A.36 can be proven using an analogous logic as that used in the proof of Claim A.26.
We omit the details here. ut

Claim A.37. Assuming SPS is a splittable signature scheme satisfying ‘vksps-one indistin-
guishability’ as per Definition 2.6, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,4-IV)

A (λ)− Adv(0,ν−1,4-V)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim A.37 is similar to that of Claim A.27 and, therefore, we do not provide
the details here. ut
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Claim A.38. Assuming SPS is a splittable signature scheme satisfying ‘vksps-abo indistin-
guishability’ as per Definition 2.6, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,4-V)

A (λ)− Adv(0,ν−1,4-VI)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim A.38 proceeds along a similar path to that of Claim A.28. We omit
the details here. ut

Claim A.39. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,4-VI)

A (λ)−Adv(0,ν−1,4-VII)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. The proof of Claim A.39 employs the same type of logic as that applied in Claim A.29
and hence we do not provide the details in this case as well. ut

Claim A.40. Assuming ACC is a positional accumulator satisfying the ‘indistinguishability of
read setup’ property defined in Definition 2.4, for any PPT adversary A, for any security pa-
rameter λ, |Adv(0,ν−1,4-VII)

A (λ)− Adv(0,ν−1,4-VIII)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversaryA for which |Adv(0,ν−1,4-VII)
A (λ)−Adv(0,ν−1,4-VIII)

A (λ)|
is non-negligible. We construct a PPT adversary B that breaks the indistinguishability of read
setup property of the positional accumulator ACC using A as a sub-routine. The description of
B follows:

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B selects a random bit b $←− {0, 1}. If b = 0, then B computes y∗ = F(K, (h∗, `∗)).

On the other hand, if b = 1, then it chooses y∗ $←− Ypprf.
4. B returns the challenge CPRF value y∗ to A.
• For η ∈ [q̂], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,4-VII, while if η = ν, then
B proceeds as follows:
1. B selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B,K

(ν)
sps,E

$←− F .Setup(1λ).

2. Then, it forms the punctured PPRF keysK(ν)
sps,A{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,A, (h∗, `∗, 0))

and K
(ν)
sps,B{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,B, (h∗, `∗, 0)).
3. Next, B sends nacc-blk = 2λ, the sequence of symbol-index pairs ((x∗0, 0), . . . , (x∗`∗−1, `

∗−1)),
and the index i∗ = 0 to its ACC read setup indistinguishability challenger C and receives
back (ppacc, w0, store0), where either (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk =
2λ) or (ppacc, w0, store0) $←− ACC.Setup-Enforce-Read(1λ, nacc-blk = 2λ, ((x∗0, 0), . . . , (x∗`∗−1,
`∗ − 1)), i∗ = 0).

4. Next, it generates (pp(ν)
itr, v

(ν)
0 ) $←− ITR.Setup(1λ, nitr = 2λ).

5. Then, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w0, 0). For j = 1, . . . , `∗, it iteratively computes the follow-

ing:
– aux(ν)

j = ACC.Prep-Write(ppacc, storej−1, j − 1)
– wj = ACC.Update(ppacc, wj−1, x

∗
j−1, j − 1,aux(ν)

j )
– storej = ACC.Write-Store(ppacc, storej−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , wj−1, 0))
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It sets m(ν)
`∗,0 = (v(ν)

`∗ , q
(ν)
0 , w`∗ , 0).

6. After that, it generates (sk(ν,0)
sps,C ,vk(ν,0)

sps,C ,vk(ν,0)
sps-rej,C), (sk(ν,0)

sps,D,vk(ν,0)
sps,D,vk(ν,0)

sps-rej,D) $←−

SPS.Setup(1λ) and forms (σ(ν,0)
sps-one,m(ν)

`∗,0,C
,vk(ν,0)

sps-one,C , sk(ν,0)
sps-abo,C ,vk(ν,0)

sps-abo,C) $←−

SPS.Split(sk(ν,0)
sps,C ,m

(ν)
`∗,0), (σ(ν,0)

sps-one,m(ν)
`∗,0,D

,vk(ν,0)
sps-one,D, sk(ν,0)

sps-abo,D,vk(ν,0)
sps-abo,D) $←−

SPS.Split(sk(ν,0)
sps,D,m

(ν)
`∗,0).

7. It gives A the constrained key

skcprf{M (ν)} =0
BBBBBBBBBBBBBB@

hk,ppacc, w0, store0,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w0, v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,pp(ν)
itr,K

(ν)
sps,E ]),

IO(Change-SPS.Prog(4,2)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E ,

σ
(ν,0)
sps-one,m(ν)

`∗,0,C
, sk(ν,0)

sps-abo,D,m
(ν)
`∗,0, h

∗, `∗]),

IO(Constrained-Key.Prog(1,0,2)
cprf [M (ν), T = 2λ, t∗(ν),ppacc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps-one,C ,vk(ν,0)

sps-abo,D,m
(ν)
`∗,0, h

∗, `∗])

1
CCCCCCCCCCCCCCA
.

• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its ACC read setup indistinguishability experiment.

Note that if (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ), then B perfectly simulates
Hyb0,ν−1,4-VII. On the other hand, if (ppacc, w0, store0) $←− ACC.Setup-Enforce-Read(1λ, nacc-blk =
2λ, ((x∗0, 0), . . . , (x∗`∗−1, `

∗−1)), i∗ = 0), then B perfectly simulates Hyb0,ν−1,4-VIII. This completes
the proof of Claim A.40. ut

Claim A.41. Assuming IO is a secure indistinguishability obfuscator for P/poly and ACC is
a positional accumulator satisfying the ‘read enforcing’ property defined in Definition 2.4, for
any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4-VIII)

A (λ)−Adv(0,ν−1,4-IX)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. The only difference between Hyb0,ν−1,4-VIII and Hyb0,ν−1,4-IX is the following:
In Hyb0,ν−1,4-VIII, B includes the program IO(P0) within the νth constrained key provided to
A, while in Hyb0,ν−1,4-IX it includes the program IO(P1) instead, where

– P0 = Constrained-Key.Prog(1,0,2)
cprf [M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps-one,C ,vk(ν,0)

sps-abo,D,m
(ν)
`∗,0, h

∗, `∗] (Fig. A.34),
– P1 = Constrained-Key.Prog(1,0,3)

cprf [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps-one,C ,vk(ν,0)

sps-abo,D,m
(ν)
`∗,0, h

∗, `∗] (Fig. A.35).

We will argue that the programs P0 and P1 are functionally equivalent, so that, by the
security of IO Claim A.41 follows. Clearly, the only inputs for which the outputs of the two pro-
grams might differ are those corresponding to (h, `inp, t) = (h∗, `∗, 1). For inputs corresponding
to (h∗, `∗, 1), P1 is programmed to output ⊥ in case stout = qac but α =‘A’, whereas, P0 has no
such condition in its programming. Now, observe that for inputs corresponding to (h∗, `∗, 1), both
the programs will assign the value ‘A’ to α if and only if SPS.Verify(vk(ν,0)

sps-one,C ,min, σsps,in) =
1, where vk(ν,0)

sps-one,C is generated by running SPS.Split(sk(ν,0)
sps,C ,m

(ν)
`∗,0). Hence, by the correct-

ness [Properties (i), (iii) and (v)] of the splittable signature scheme SPS, described in Def-
inition 2.6, it is immediate that for inputs corresponding to (h∗, `∗, 1), both programs will
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set α =‘A’ only if min = m
(ν)
`∗,0. Now, min = m

(ν)
`∗,0 means stin = q

(ν)
0 , win = w

(ν)
`∗ , and

posin = 0. Further, recall that in both the hybrid experiments Hyb0,ν−1,4-VIII and Hyb0,ν−1,4-IX,
(pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup-Enforce-Read(1λ, nacc-blk = 2λ, ((x∗0, 0), . . . , (x∗`∗−1, `
∗ −

1)), i∗ = 0). Therefore, by the read enforcing property of ACC it follows that if win = w
(ν)
`∗

and posin = 0, then ACC.Verify-Read(pp(ν)
acc, win, symin,posin, πacc) = 1 implies symin = x∗0.

Hence, for both the programs, for inputs corresponding to (h∗, `∗, 1), α =‘A’ implies stin = q
(ν)
0

and symin = x∗0, which in turn implies stout 6= qac. Hence, the two programs have identical
outputs for inputs corresponding to (h∗, `∗, 1) as well. Thus, the two programs are functionally
equivalent. ut

Claim A.42. Assuming ACC is a positional accumulator satisfying the ‘indistinguishability of
read setup’ property defined in Definition 2.4, for any PPT adversary A, for any security pa-
rameter λ, |Adv(0,ν−1,4-IX)

A (λ)− Adv(0,ν−1,4-X)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim A.42 is similar to that of Claim A.40 with some appropriate modifi-
cations that are easy to figure out. ut

Claim A.43. Assuming SPS is a splittable signature scheme satisfying ‘splitting indistin-
guishability’ as per Definition 2.6, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,4-X)

A (λ)− Adv(0,ν−1,4-XI)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim A.43 proceeds along a similar path as that of the proof of Claim A.30.
We omit the details here. ut

Claim A.44. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,4-XI)

A (λ)−Adv(0,ν−1,4-XII)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. The proof of Claim A.44 employs a similar type of logic as that utilized in the proof of
Claim A.31. We omit the details in this case as well. ut

Claim A.45. Assuming F is a secure puncturable pseudorandom function as per Defini-
tion 2.2, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4-XII)

A (λ) −
Adv(0,ν−1,4-XIII)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim A.45 takes an analogous path as that taken by the proof of Claim A.25.
The details are omitted. ut

Claim A.46. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition 2.2, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,4-XIII)

A (λ) − Adv(0,ν−1,4-XIV)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. The proof of Claim A.46 applies the same kind of logic as that employed in the proof of
Claim A.24. The details are again omitted. ut

ut

Lemma A.12. Assuming IO is a secure indistinguishability obfuscator for P/poly, ACC is
a secure positional accumulator according to Definition 2.4, and ITR is a secure crypto-
graphic iterator as per Definition 2.5, for any PPT adversary A, for any security parameter
λ, |Adv(0,ν−1,4,(γ−1)′)

A (λ)− Adv(0,ν−1,4,γ)
A (λ)| ≤ negl(λ) for some negligible function negl.
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Proof. The proof of Lemma A.12 follows an analogous path to that of Lemma B.4 of [DKW16]
with certain appropriate modifications that are easy to identify. Observe that now the ‘indis-
tinguishability of read setup’ and ‘indistinguishability of write setup’ properties of ACC can
be safely employed for the transition of hybrids as separate ACC public parameters have been
associated with distinct constrained keys. We omit the details to avoid repetition. ut

Lemma A.13. Assuming IO is a a secure indistinguishability obfuscator for P/poly, F is a
secure puncturable pseudorandom function as per Definition 2.2, ACC is a positional accumulator
possessing the ‘indistinguishability of read setup’ as well as ‘read enforcing’ properties defined in
Definition 2.4, and SPS is a splitable signature scheme satisfying ‘vksps-one indistinguishability’,
‘vksps-abo indistinguishability’, as well as ‘splitting indistinguishability’ properties as defined in
Definition 2.6, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4,γ)

A (λ) −
Adv(0,ν−1,4,γ′)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Lemma A.13 is similar to that of Lemma B.3 of [DKW16] with some
appropriate readily identifiable changes. Note that now the ‘indistinguishability of read setup’
property of ACC can be safely utilized for the transition as separate ACC public parameters
have been associated with different constrained keys. Here again we omit the details to avoid
repetition. ut

Lemma A.14. Assuming IO is a secure indistinguishability obfuscator for P/poly and ACC is
a positional accumulator having ‘indistinguishability of read setup’ and ‘read enforcing’ prop-
erties defined in Definition 2.4, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,4,(t∗(ν)−1)′)

A (λ)− Adv(0,ν−1,5)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Lemma A.14 is similar to that of Lemma B.5 of [DKW16] with some
appropriate changes that are easy to determine. Here also the ‘indistinguishability of read setup’
property of ACC can be safely used due to the assignment of distinct ACC public parameters
with different constrained keys. The details are omitted again to avoid repetition. ut

Lemma A.15. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a
secure puncturable pseudorandom function as per Definition 2.2, SPS is a splitable signa-
ture scheme possessing the ‘vksps-rej indistinguishability’ property, and PRG is a secure in-
jective pseudorandom generator, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3,5)

A (λ)− Adv(0,ν−1,3,6)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Lemma A.15 is similar to that of Lemma B.6 of [DKW16]. ut

Appendix B: Proof of Theorem 4.1

Theorem 4.1 (Security of the CVPRF Construction of Section 4.2). Assuming IO is
a secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom
function as per Definition 2.2, SSB is a somewhere statistically binding hash function according
to Definition 2.3, ACC is a secure positional accumulator as defined in Definition 2.4, ITR is a
secure cryptographic iterator as per Definition 2.5, SPS is a secure splittable signature scheme
according to Definition 2.6, PRG is a secure injective pseudorandom generator, and PKE is a
perfectly correct CPA secure public key encryption scheme, the CVPRF construction described in
Section 4.2 satisfies all the properties of a secure CVPRF defined in Definition 4.1 of Section 4.1.

Proof.
� Provability: The provability of the CVPRF construction of Section 4.2 follows directly from
its construction.
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� Uniqueness: The uniqueness property follows from the perfect correctness property of the
PKE scheme. More precisely, assume that there exists a CVPRF public verification key vkcvprf =
(hk,Vcvprf), input x ∈ Xcvprf, and two value-proof pairs (y0, πcvprf,0 = (pkpke,0, r0)),
(y1, πcvprf,1 = (pkpke,1, r1)) ∈ Ycvprf ×Πcvprf such that

[y0 6= y1] ∧ [CVPRF.Verify(vkcvprf, x, y0, πcvprf,0) = 1] ∧
[CVPRF.Verify(vkcvprf, x, y1, πcvprf,1) = 1],

i.e., [y0 6= y1] ∧ [(pkpke,0 = Ópkpke) ∧ (PKE.Encrypt(pkpke,0, y0; r0) = Óctpke)] ∧
[(pkpke,1 = Ópkpke) ∧ (PKE.Encrypt(pkpke,1, y1; r1) = Óctpke)]
where (Ópkpke,Óctpke) = Vcvprf(Hhk(x), |x|),

i.e., [y0 6= y1] ∧ [PKE.Encrypt(Ópkpke, y0; r0) = PKE.Encrypt(Ópkpke, y1; r1)],

which contradicts the perfect correctness property of PKE.

� Constraint Hiding: The constraint hiding property is also obvious. For any input x ∈ Xcvprf,
the proof πcvprf ∈ Πcvprf generated by CVPRF.Prove(skcvprf, x) is πcvprf = (pkpke, rpke,2),
where (pkpke, skpke) = PKE.Setup(1λ; rpke,1) and rpke,1‖rpke,2 = F(Kpke, (Hhk(x), |x|)), hk $←−
SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) being generated during the setup. Observe that this value
of πcvprf is exactly the same as outputted by CVPRF.Prove-Constrained(skcvprf{M}, x) for any
TM M ∈Mλ with M(x) = 1.

� Selective Pseudorandomness: We will prove selective pseudorandomness of the CVPRF
construction of Section 4.2 through a sequence of hybrid experiments by arguing depending on
the security of various primitives that the advantage of any PPT adversary A in consecutive
hybrid experiments differ only negligibly as well as that in the final hybrid experiment is negli-
gible. Just like the proof of Theorem 3.1, here also working in the selective model ensures that
the challenger B knows the challenge input x∗ = x∗0 . . . x

∗
`∗−1 ∈ Xcvprf and the SSB hash value

h∗ = Hhk(x∗) prior to receiving any constrained key query from the adversary A. We assume
that the total number of constrained key queries made by the adversary A is q̂. In view of
Remark 4.1, we do not consider any proof query. The description of hybrid experiments follows:

Sequence of Hybrid Experiments

Hyb0: This experiment corresponds to the real selective pseudorandomness experiment described
in Definition 4.1. More precisely, this experiment proceeds as follows:

• A submits a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcvprf with |x∗| = `∗ to B.

• B generates (skcvprf = (K,Kpke,hk),vkcvprf = (hk, IO(Verify.Progcvprf[K,Kpke])) $←−
CVPRF.Setup(1λ) as described in the Section 4.2. Next, B selects a random bit b $←− {0, 1}.
If b = 0, B computes y∗ = CVPRF(skcvprf, x

∗) = F(K, (h∗ = Hhk(x∗), `∗)). Otherwise, B
chooses y∗ $←− Ycvprf. B provides A with (vkcvprf, y

∗).
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• For η = 1, . . . , q̂, in response to the ηth constrained key query of A corresponding to TM
M (η) = 〈Q(η), Σinp, Σtape, δ

(η), q
(η)
0 , q

(η)
ac , q

(η)
rej〉 ∈Mλ with M (η)(x∗) = 0, B creates

skcvprf{M (η)} =0
BBBBBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Progcvprf[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,Kpke,K
(η)
1 , . . . ,K

(η)
λ ,

K
(η)
sps,A])

1
CCCCCCCCCCA

$←− CVPRF.Constrain(skcvprf,M
(η)),

as described in Section 4.2, and returns skcvprf{M (η)} to A. Here, we assign the index η to all
the components which are generated during the execution of CVPRF.Constrain(skcvprf,M

(η)).
• Eventually, A outputs a guess bit b′ ∈ {0, 1}.

Hyb0,ν (ν = 1, . . . , q̂): This experiment is similar to Hyb0 except that for η ∈ [q̂], in reply to
the ηth constrained key query of A corresponding to TM M (η) ∈ Mλ with M (η)(x∗) = 0, B
returns the constrained key

skcvprf{M (η)} =0
BBBBBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′cvprf[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,Kpke,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A,

h∗, `∗])

1
CCCCCCCCCCA
,

if η ≤ ν, where the program Constrained-Key.Prog′cvprf is a modification of the program
Constrained-Key.Progcvprf (Fig. 4.2) and is described in Fig. B.1, while it returns the constrained
key

skcvprf{M (η)} =0
BBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Progcvprf[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,Kpke,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A])

1
CCCCCCCA
,

if η > ν. Observe that Hyb0,0 coincides with Hyb0.

Hyb1: This experiment coincides with Hyb0,q̂. More formally, in this experiment for η = 1, . . . , q̂,
in reply to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ with M (η)(x∗) =
0, B generates all the components of the constrained key as in Hyb0, however, it returns the
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,Kpke,K1, . . . ,Kλ,Ksps,A,
SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: (CVPRF evaluation F(K, (h, `inp)), CVPRF proof πcvprf = (pkpke, rpke,2)) or Header Position
(posout, Symbol symout, TM state stout, Accumulator value wout, Iterator value vout, Signature
σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SSB.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if [stout = qac] ∧ [(h, `inp) 6= (h∗, `∗)], perform the following:
(I) Compute rpke,1‖rpke,2 = F(Kpke, (h, `inp)), (pkpke, skpke) = PKE.Setup(1λ; rpke,1).

(II) Output (F(k, (h, `inp)), πcvprf = (pkpke, rpke,2)).
Else if stout = qac, output ⊥.

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Set mout = (vout, stout, wout, posout). Compute σsps,out = SPS.Sign(sk′sps,A,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. B.1. Constrained-Key.Prog′cvprf

constrained key as

skcvprf{M (η)} =0
BBBBBBBBBB@
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0 ,pp(η)
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.

The rest of the experiment is analogous to Hyb0.

Hyb2: This experiment is analogous to Hyb1 other than the following exceptions:

(I) Upon receiving the challenge input x∗, B proceeds as follows:
1. It first selects K,Kpke

$←− F .Setup(1λ) and generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ =
0) just as in Hyb1.

2. It then computes h∗ = Hhk(x∗) and creates the punctured PPRF key Kpke{(h∗, `∗)}
$←−

F .Puncture(Kpke, (h∗, `∗)).
3. Next, it computes br∗pke,1‖br∗pke,2 = F(Kpke, (h∗, `∗)), forms (Ópk∗pke,csk∗pke) = PKE.Setup(1λ;br∗pke,1) and computes Óct∗pke = PKE.Encrypt(Ópk∗pke,F(K, (h∗, `∗)); br∗pke,2).
4. It sets the public verification key vkcvprf to be given to A as vkcvprf =

(hk, IO(Verify.Prog′cvprf[K,Kpke{(h∗, `∗)},Ópk∗pke,Óct∗pke, h
∗, `∗])), where the program
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Verify.Prog′cvprf is an alteration of the program Verify.Progcvprf (Fig. 4.1) and is depicted
in Fig. B.2.

Constants: PPRF key K, Punctured PPRF key Kpke{(h∗, `∗)}, PKE public key cpk∗pke, PKE ciphertext cct∗pke,
SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: SSB hash value h, Length `inp
Output: (PKE public key cpkpke, Encryption of CVPRF value cctpke)

(a) If (h, `inp) = (h∗, `∗), output (cpk∗pke,cct∗pke).
Else, compute r̂pke,1‖r̂pke,2 = F(Kpke{(h∗, `∗}, (h, `inp)), (cpkpke, Òskpke) = PKE.Setup(1λ; r̂pke,1).

(b) Compute cctpke = PKE.Encrypt(cpkpke,F(K, (h, `inp)); r̂pke,2).
(c) Output (cpkpke,cctpke).

Fig. B.2. Verify.Prog′cvprf

(II) For η = 1, . . . , q̂, in response to the ηth constrained key query of A corresponding to TM
M (η) ∈Mλ with M (η)(x∗) = 0, B generates all the components as in Hyb1, however, provides
A with the constrained key
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1
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.

Hyb3: This experiment is identical to Hyb2 except that B selects r̂∗pke,1‖r̂∗pke,2
$←− Ypprf. More

formally, B computes the punctured PPRF key Kpke{(h∗, `∗)} as before, however, it generates
(Ópk∗pke,csk∗pke) $←− PKE.Setup(1λ) and computes Óct∗pke

$←− PKE.Encrypt(Ópk∗pke,F(K, (h∗, `∗))). B
gives vkcvprf = (hk, IO(Verify.Prog′cvprf[K,Kpke{(h∗, `∗)},Ópk∗pke,Óct∗pke, h

∗, `∗])) to A as ear-
lier.

Hyb4: This experiment is the same as Hyb3 with the only exception that Óct∗pke now encrypts
a uniformly random value in Ypprf rather than F(K, (h∗, `∗)). More precisely, B generates
(Ópk∗pke,csk∗pke) $←− PKE.Setup(1λ) as in Hyb3, however, it now chooses ŷ∗ $←− Ypprf and computesÓct∗pke

$←− PKE.Encrypt(Ópk∗pke, ŷ
∗). B provides A with vkcvprf = (hk, IO(Verify.Prog′cvprf[K,

Kpke{(h∗, `∗)},Ópk∗pke,Óct∗pke, h
∗, `∗])) as before.

Hyb5: This experiment is analogous to Hyb4 except the following exceptions:

(I) Upon receiving the challenge input x∗ ∈ Xcvprf, B proceeds as follows:
1. it first picks PPRF keysK,Kpke

$←− F .Setup(1λ) and generates hk $←− SSB.Gen(1λ, nssb-blk =
2λ, i∗ = 0).

2. Next, it computes h∗ = Hhk(x∗) and it creates the punctured PPRF keys K{(h∗, `∗)} $←−

F .Puncture(K, (h∗, `∗)), Kpke{(h∗, `∗)}
$←− F .Puncture(Kpke, (h∗, `∗)).

3. After that, it generates (Ópk∗pke,csk∗pke) $←− PKE.Setup(1λ), selects ŷ∗ $←− Ypprf, and computesÓct∗pke
$←− PKE.Encrypt(Ópk∗pke, ŷ

∗).
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4. It sets the public verification key vkcvprf to be sent to A as vkcvprf =
(hk, IO(Verify.Prog′cvprf[K{(h∗, `∗)},Kpke{(h∗, `∗)},Ópk∗pke,Óct∗pke, h

∗, `∗])).

(II) For η = 1, . . . , q̂, in response to the ηth constrained key query of A corresponding to TM
M (η) ∈ Mλ with M (η)(x∗) = 0, B generates all the components as in Hyb4, however, it
provides A with the constrained key

skcvprf{M (η)} =0
BBBBBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′cvprf[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K{(h∗, `∗)},Kpke{(h∗, `∗)},
K

(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗])

1
CCCCCCCCCCA
.

Analysis

Let Adv(0)
A (λ),Adv(0,ν)

A (λ) (ν = 1, . . . , q̂),Adv(1)
A (λ),Adv(2)

A (λ),Adv(3)
A (λ),Adv(4)

A (λ), and Adv(5)
A (λ)

represent respectively the advantage of the adversary A, i.e., the absolute difference between
1/2 and A’s probability of correctly guessing the random bit selected by the challenger B, in
Hyb0,Hyb0,ν (ν = 1, . . . , q̂),Hyb1,Hyb2,Hyb3,Hyb4, and Hyb5 respectively. Then, by the descrip-
tion of the hybrid experiments it follows that Advcvprf,sel-pr

A (λ) ≡ Adv(0)
A (λ) ≡ Adv(0,0)

A (λ) and
Adv(1)

A (λ) ≡ Adv(0,q̂)
A (λ). Hence, we have

Advcvprf,sel-pr
A (λ) ≤

q̂X
ν=1
|Adv(0,ν−1)

A (λ)− Adv(0,ν)
A (λ)|+

4X
j=1
|Adv(j)

A (λ)− Adv(j+1)
A (λ)|+ Adv(5)

A (λ).

(B.1)
Lemmas B.1–B.6 will show that the RHS of Eq. (B.1) is negligible and thus the selective pseu-
dorandomness of the CVPRF construction of Section 4.2 follows. ut

B.1 Lemmas for the Proof of Theorem 4.1

Lemma B.1. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, SSB is a somewhere statisti-
cally binding hash function according to Definition 2.3, ACC is a secure positional accumula-
tor as defined in Definition 2.4, ITR is a secure cryptographic iterator as per Definition 2.5,
SPS is a secure splittable signature scheme according to Definition 2.6, and PRG is a secure
injective pseudorandom generator, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1)

A (λ)− Adv(0,ν)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. The proof of Lemma B.1 is similar to that of Lemma A.3 and, therefore, is omitted to
avoid repetition. ut

Lemma B.2. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition 2.2, for any PPT adversary A,
for any security parameter λ, |Adv(1)

A (λ)−Adv(2)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. The two differences between Hyb1 and Hyb2 are the following:

(I) In Hyb1, the challenger B includes the program IO(V0) within vkcvprf, whereas, in Hyb2, B
includes the program IO(V1), where
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– V0 = Verify.Progcvprf[K,Kpke] (Fig. 4.1),
– V1 = Verify.Prog′cvprf[K,Kpke{(h∗, `∗)},Ópk∗pke,Óct∗pke, h

∗, `∗] (Fig. B.2).

(II) For η = 1, . . . , q̂, in response to the ηth constrained key query of A corresponding to TM
M (η) ∈ Mλ with M (η)(x∗) = 0, B includes IO(P (η)

1 ) within skcvprf{M (η)} in hyb2 in place
of IO(P (η)

0 ) in Hyb1, where
– P

(η)
0 = Constrained-Key.Prog′cvprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K,Kpke,K

(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A,

h∗, `∗] (Fig. B.1),
– P

(η)
1 = Constrained-Key.Prog′cvprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K,Kpke{(h∗, `∗)},K(η)

1 , . . . ,

K
(η)
λ ,K

(η)
sps,A, h

∗, `∗] (Fig. B.1).

Now, observe that on input (h, `inp) 6= (h∗, `∗), both the programs V0 and V1 operates
in the same manner only that the latter one uses the punctured PPRF key Kpke{(h∗, `∗)} for
computing the string r̂pke,1‖r̂pke,2 instead of the full PPRF key Kpke used by the former program.
Therefore, by the correctness under puncturing property of PPRF F , it follows that for all inputs
(h, `inp) 6= (h∗, `∗), both the programs have identical output. Moreover, on input (h∗, `∗), V1
outputs the hardwired values (Ópk∗pke,Óct∗pke) which are computed in Hyb2 as (Ópk∗pke,csk∗pke) =
PKE.Setup(1λ; r̂∗pke,1),Óct∗pke = PKE.Encrypt(Ópk∗pke,F(K, (h∗, `∗)); r̂∗pke,2), where r̂∗pke,1‖r̂∗pke,2 =
F(Kpke, (h∗, `∗)). Notice that these values are exactly the same as those outputted by V0 on input
(h∗, `∗). Thus the two programs are functionally equivalent.

Further, note that the program Constrained-Key.Prog′cvprf computes F(Kpke, (h, `inp)) if and
only if (h, `inp) 6= (h∗, `∗). Thus, again by the correctness under puncturing property of PPRF
F , the programs P (η)

0 and P
(η)
1 are functionally equivalent as well for all η ∈ [q̂].

Thus by the security of IO Lemma B.2 follows. Observe that to prove this lemma we would
actually have to proceed through a sequence of intermediate hybrid experiments where in each
hybrid experiment we switch the programs one at a time. ut

Lemma B.3. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, |Adv(2)

A (λ) − Adv(3)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. Suppose there exists a PPT adversaryA for which |Adv(2)
A (λ)−Adv(3)

A (λ)| is non-negligible.
We construct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F
using A as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcvprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. B sends (h∗, `∗) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back a punctured PPRF key K∗{(h∗, `∗)} and a value r∗ = r∗1‖r∗2 ∈ Ypprf,
where either r∗ = F(K∗, (h∗, `∗)) or r∗ $←− Ypprf. B implicitly views the key K∗ as the key
Kpke.

3. B then chooses K $←− F .Setup(1λ).
4. Next, it computes (Ópk∗pke,csk∗pke) = PKE.Setup(1λ; r∗1),Óct∗pke = PKE.Encrypt(Ópk∗pke,F(K,

(h∗, `∗)); r∗2).
5. B sets vkcvprf = (hk, IO(Verify.Prog′cvprf[K,K∗{(h∗, `∗)},Ópk∗pke,Óct∗pke, h

∗, `∗])).
6. B then selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)). Otherwise,
B chooses y∗ $←− Ypprf.

7. B provides (vkcvprf, y
∗) to A.
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• For η = 1, . . . , q̂, in response to the ηth constrained key query of A corresponding to TM
M (η) ∈Mλ with M (η)(x∗) = 0, B proceeds as follows:
1. B first selects PPRF keys K(η)

1 , . . . ,K
(η)
λ ,K

(η)
sps,A,K

(η)
sps,E

$←− F .Setup(1λ).

2. After that, it generates (pp(η)
acc, w

(η)
0 , store(η)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(η)
itr,

v
(η)
0 ) $←− ITR.Setup(1λ, nitr = 2λ).

3. B gives A the constrained key

skcvprf{M (η)} =0
BBBBBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′cvprf[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,K
∗{(h∗, `∗)},

K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗])

1
CCCCCCCCCCA
.

• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its PPRF selective pseudorandomness experiment.

Notice that if r∗ = F(K∗, (h∗, `∗)), then B perfectly simulates Hyb2. On the other hand, if
r∗

$←− Ypprf, then B perfectly simulates hyb3. This completes the proof of Lemma B.3. ut

Lemma B.4. Assuming PKE is CPA secure, for any PPT adversary A, for any security pa-
rameter λ, |Adv(3)

A (λ)− Adv(4)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversaryA for which |Adv(3)
A (λ)−Adv(4)

A (λ)| in non-negligible.
Below we construct a PPT adversary B that breaks the CPA security of PKE.

• B receives a PKE public key pk∗pke from its PKE CPA security challenger C. B then initializes
A on input 1λ and receives a challenge input x∗ = x∗0 . . . x

∗
`∗−1 ∈ Xcvprf with |x∗| = `∗ from

A.
• After receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. B then selects PPRF keys K,Kpke

$←− F .Setup(1λ) and creates the punctured PPRF key
Kpke{(h∗, `∗)}

$←− F .Puncture(Kpke, (h∗, `∗)).
3. Next, B chooses ŷ∗ ∈ Ypprf. It sends (MSG0 = F(K, (h∗, `∗)),MSG1 = ŷ∗) as the pair of

challenge messages to C and receives back a ciphertext ct∗pke from C.
4. B then sets the public verification key vkcvprf = (hk, IO(Verify.Prog′cvprf[K,Kpke{(h∗, `∗)},

pk∗pke,ct∗pke, h
∗, `∗])).

5. After that, B selects a random bit b $←− {0, 1}. If b = 0, B computes y∗ = F(K, (h∗, `∗)).
Otherwise, B chooses y∗ $←− Ypprf.

6. B provides A with (vkcvprf, y
∗).

• For η = 1, . . . , q̂, in response to the ηth constrained key query of A corresponding to TM
M (η) ∈Mλ with M (η)(x∗) = 0, B proceeds as follows:
1. B first chooses PPRF keys K(η)

1 , . . . ,K
(η)
λ ,K

(η)
sps,A,K

(η)
sps,E

$←− F .Setup(1λ).

2. After that, it generates (pp(η)
acc, w

(η)
0 , store(η)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(η)
itr,

v
(η)
0 ) $←− ITR.Setup(1λ, nitr = 2λ).
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3. B gives A the constrained key

skcvprf{M (η)} =0
BBBBBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′cvprf[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,Kpke{(h∗, `∗)},
K

(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗])

1
CCCCCCCCCCA
.

• A eventually outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ in its PKE CPA security
experiment.

Observe that if ct∗pke
$←− PKE.Encrypt(pk∗pke,F(K, (h∗, `∗))), then B perfectly simulates

Hyb3. On the other hand, if ct∗pke
$←− PKE.Encrypt(pk∗pke, ŷ

∗), then B perfectly simulates Hyb4.
This completes the proof Lemma B.4. ut

Lemma B.5. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property defined in Definition 2.2, for any PPT adversary A,
for any security parameter λ, |Adv(4)

A (λ)−Adv(5)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Hyb4 and Hyb5 differs with respect to the following:

(I) In Hyb4 the challenger B includes the program IO(V0) within the public verification key
vkcvprf, while in Hyb5, it includes the program IO(V1) within vkcvprf, where
– V0 = Verify.Prog′cvprf[K,Kpke{(h∗, `∗)},Ópk∗pke,Óct∗pke, h

∗, `∗],
– V1 = Verify.Prog′cvprf[K{(h∗, `∗)},Kpke{(h∗, `∗)},Ópk∗pke,Óct∗pke, h

∗, `∗],
the program Verify.Prog′cvprf being depicted in Fig. B.2.

(II) For η = 1, . . . , q̂, in response to the ηth constrained key query of A corresponding to TM
M (η) ∈ Mλ, B provides IO(P (η)

1 ) within skcvprf{M (η)} in the experiment Hyb5 instead of
including IO(P (η)

0 ) as in the experiment Hyb4, where
– P

(η)
0 = Constrained-Key.Prog′cvprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K,Kpke{(h∗, `∗)},K(η)

1 , . . . ,

K
(η)
λ ,K

(η)
sps,A, h

∗, `∗],
– P

(η)
1 = Constrained-Key.Prog′cvprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K{(h∗, `∗)},Kpke{(h∗, `∗)},

K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗],
the program Constrained-Key.Prog′cvprf being depicted in Fig. B.1.

Now, notice that the programs Verify.Prog′cvprf and Constrained-Key.Prog′cvprf compute
F(K, (h, `inp)) if and only if (h, `inp) 6= (h∗, `∗). Hence, by the correctness under puncturing
property of PPRF F , it follows that the functionalities of the programs Verify.Prog′cvprf and
Constrained-Key.Prog′cvprf do not change if the punctured key K{(h∗, `∗)} is hardwired in place
of the full PPRF key K. Therefore, by the security of IO Lemma B.5 follows. Ofcourse, here
again we would need to go through a sequence of intermediate hybrid experiments where in each
hybrid experiment would change the hardwiring of one program at a time.

ut

Lemma B.6. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, Adv((5)

A (λ) ≤ negl(λ) for some negligible
function negl.
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Proof. Suppose there exists a PPT adversary A for which Adv(5)
A (λ) is non-negligible. We con-

struct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F using A
as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcvprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. B sends (h∗, `∗) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back a punctured PPRF key K∗{(h∗, `∗)} and a value r∗ ∈ Ypprf, where
either r∗ = F(K∗, (h∗, `∗)) or r∗ $←− Ypprf. B implicitly views the key K∗ as the key K.

3. B then chooses PPRF key Kpke
$←− F .Setup(1λ) and creates the punctured PPRF key

Kpke{(h∗, `∗)}
$←− F .Puncture(Kpke, (h∗, `∗)).

4. Next, B generates (Ópk∗pke,csk∗pke) $←− PKE.Setup(1λ), selects some ŷ∗ $←− Ypprf, and formsÓct∗pke
$←− PKE.Encrypt(Ópk∗pke, ŷ

∗).
5. B sets vkcvprf = (hk, IO(Verify.Prog′cvprf[K∗{(h∗, `∗)},Kpke{(h∗, `∗)},Ópk∗pke,Óct∗pke, h

∗, `∗])).
6. B sets the challenge CVPRF value for A to be y∗ = r∗.
7. B provides (vkcvprf, y

∗) to A.
• For η = 1, . . . , q̂, in response to the ηth constrained key query of A corresponding to TM
M (η) ∈Mλ with M (η)(x∗) = 0, B proceeds as follows:
1. B first selects PPRF keys K(η)

1 , . . . ,K
(η)
λ ,K

(η)
sps,A,K

(η)
sps,E

$←− F .Setup(1λ).
2. After that, it generates (pp(η)

acc, w
(η)
0 , store(η)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(η)
itr,

v
(η)
0 ) $←− ITR.Setup(1λ, nitr = 2λ).

3. B gives A the constrained key

skcvprf{M (η)} =0
BBBBBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′cvprf[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K
∗{(h∗, `∗)},

Kpke{(h∗, `∗)},K(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗])

1
CCCCCCCCCCA
.

• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its PPRF selective pseudorandomness experiment.

Note that the simulation of Hyb5 by B is perfect. Also, if A wins in this simulated Hyb5,
then B wins in the PPRF selective pseudorandomness experiment against F . ut

Appendix C: Proof of Theorem 5.1

Theorem 5.1 (Security of the DCPRF Construction of Section 5.2). Assuming IO is
a secure indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom
function as per Definition 2.2, SSB is a somewhere statistically binding hash function according
to Definition 2.3, ACC is a secure positional accumulator as defined in Definition 2.4, ITR
is a secure cryptographic iterator as per Definition 2.5, SPS is a secure splittable signature
scheme according to Definition 2.6, PRG is a secure injective pseudorandom generator, and
PKE is CPA secure, the DCPRF construction of Section 5.2 satisfies the correctness and selective
pseudorandomness properties defined in Definition 5.1.
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Proof.
� Correctness under Constraining/Delegation: The correctness of the DCPRF construc-
tion of Section 5.2 follows readily from its construction and the correctness of the underlying
cryptographic building blocks.

� Selective Pseudorandomness: Here also we devise a sequence of hybrid experiments in
order to argue selective pseudorandomness of the DCPRF construction of Section 5.2. As earlier,
we are working in the selective model and hence the challenger B knows the challenge input
x∗ = x∗0 . . . x

∗
`∗−1 ∈ Xdcprf with |x∗| = `∗ and the SSB hash value h∗ = Hhk(x∗) before receiving

any key query from the adversary A. Let q̂const and q̂del be respectively the total number of con-
strained and delegated key queries of the adversary A. In view of Remark 5.1, here we consider
no evaluation query and delegated key queries for only those pairs of TM’s (M (θ), fM (θ)) ∈ M2

λ

such that [M (θ)(x∗) = 1] ∧ [fM (θ)(x∗) = 0]. The sequence of hybrid experiments follows:

Sequence of Hybrid Experiments

Hyb0: This experiment corresponds to the real selective pseudorandomness experiment described
in Definition 5.1 for the DCPRF construction of Section 5.2. More formally, this experiment
proceeds as follows:

• A submits a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xdcprf with |x∗| = `∗ to B.

• B generates skdcprf = (K,hk) $←− DCPRF.Setup(1λ), as described in Section 5.2, and selects
a random bit b $←− {0, 1}. If b = 0, B computes y∗ = DCPRF(skdcprf, x

∗) = F(K, (h∗ =
Hhk(x∗), `∗)). Otherwise, B chooses y∗ $←− Ydcprf. B returns y∗ to A.
• For η = 1, . . . , q̂const, in response to the ηth constrained key query of A corresponding

to TM M (η) = 〈Q(η), Σinp, Σtape, δ
(η), q

(η)
0 , q

(η)
ac , q

(η)
rej〉 ∈ Mλ with M (η)(x∗) = 0, B gener-

ates skdcprf{M (η)} = (K ′(η),hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,P(η)

1 ,P(η)
2 ,P(η)

3 ,P(η)
dcprf) $←−

DCPRF.Constrain(skdcprf,M
(η)) as described in Section 5.2. Here,

– P(η)
1 = IO(Init-SPS.Prog[q(η)

0 , w
(η)
0 , v

(η)
0 ,K

(η)
sps,E ]),

– P(η)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)

acc,pp(η)
itr,K

(η)
sps,E ]),

– P(η)
3 = IO(Change-SPS.Prog[K(η)

sps,A,K
(η)
sps,E ]),

– P(η)
dcprf = IO(Constrained-Key.Progdcprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K,K

′(η),K
(η)
1 , . . . ,K

(η)
λ ,

K
(η)
sps,A]).

We assign the index η to all the components that are formed during the execution of
DCPRF.Constrain(skdcprf,M

(η)).
• For θ = 1, . . . , q̂del, in reply to the θth delegated key query of A corresponding to the TM pair

(M (θ) = 〈Q(θ), Σinp, Σtape, δ
(θ), q

(θ)
0 , q

(θ)
ac , q

(θ)
rej〉, fM (θ) = 〈ÜQ(θ), Σinp, Σtape, eδ(θ), eq(θ)

0 , eq(θ)
ac , eq(θ)

rej〉)
∈ M2

λ with [M (θ)(x∗) = 1] ∧ [fM (θ)(x∗) = 0], B creates skdcprf{M (θ) ∧ fM (θ)} =
( fK ′(θ),hk,pp(θ)

acc,fpp(θ)
acc, w

(θ)
0 , Üw(θ)

0 , store(θ)
0 ,ástore(θ)

0 ,pp(θ)
itr,fpp(θ)

itr, v
(θ)
0 , ev(θ)

0 ,P(θ)
1 , ÜP(θ)

1 ,P(θ)
2 ,ÜP(θ)

2 ,P(θ)
3 , ÜP(θ)

3 ,P(θ)
dcprf, ÜP(θ)

dcprf) $←− DCPRF.Delegate(skdcprf{M (θ)}, fM (θ)), as elaborated in
Section 5.2, where either skdcprf{M (θ)} = skdcprf{M (θ′)}, which has been generated while
answering the θ′th delegated key query of A for some θ′ < θ, or skdcprf{M (θ)} is freshly
generated in case it is not previously created. Here,
– P(θ)

1 = IO(Init-SPS.Prog[q(θ)
0 , w

(θ)
0 , v

(θ)
0 ,K

(θ)
sps,E ]),

– ÜP(θ)
1 = IO(Init-SPS.Prog[eq(θ)

0 , Üw(θ)
0 , ev(θ)

0 ,fK(θ)
sps,E ]),

– P(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(θ)

acc,pp(θ)
itr,K

(θ)
sps,E ]),

– ÜP(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,fpp(θ)

acc,fpp(θ)
itr,
fK(θ)

sps,E ]),
– P(θ)

3 = IO(Change-SPS.Prog[K(θ)
sps,A,K

(θ)
sps,E ]),
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– ÜP(θ)
3 = IO(Change-SPS.Prog[fK(θ)

sps,A,
fK(θ)

sps,E ]),
– P(θ)

dcprf = IO(Constrained-Key.Progdcprf[M (θ), T = 2λ,pp(θ)
acc,pp(θ)

itr,K,K
′(θ),K

(θ)
1 , . . . ,K

(θ)
λ ,

K
(θ)
sps,A]),

– ÜP(θ)
dcprf = IO(Constrained-Key.Progdcprf[fM (θ), T = 2λ,fpp(θ)

acc,fpp(θ)
itr,K

′(θ),fK ′(θ),fK(θ)
1 , . . . ,fK(θ)

λ ,fK(θ)
sps,A]).

We assign the index θ to all the components that are generated while replying to the θth del-
egated key query. Ofcourse, if skdcprf{M (θ)} used for answering the query is skdcprf{M (θ′)}
for some θ′ < θ, then all the delegated key components that are related to skdcprf{M (θ)} are
the same as those included in skdcprf{M (θ′)}.
• A eventually outputs a guess bit b′ ∈ {0, 1}.

Hyb0,ν (ν = 1, . . . , q̂constconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconstconst): This experiment is analogous to Hyb0 with the exception that for
η ∈ [q̂const], in response to the ηth constrained key query of A corresponding to TM M (η) ∈Mλ

with M (η)(x∗) = 0, B returns the constrained key skdcprf{M (η)} = (K ′(η),hk,pp(η)
acc, w

(η)
0 ,

store(η)
0 ,pp(η)

itr, v
(η)
0 ,P(η)

1 ,P(η)
2 ,P(η)

3 ,P(η)
dcprf), where

– P(η)
1 = IO(Init-SPS.Prog[q(η)

0 , w
(η)
0 , v

(η)
0 ,K

(η)
sps,E ]),

– P(η)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)

acc,pp(η)
itr,K

(η)
sps,E ]),

– P(η)
3 = IO(Change-SPS.Prog[K(η)

sps,A,K
(η)
sps,E ]),

– P(η)
dcprf = IO(Constrained-Key.Prog′dcprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K,K

′(η),K
(η)
1 , . . . ,K

(η)
λ ,

K
(η)
sps,A, h

∗, `∗])

to A, if η ≤ ν, while B gives the constrained key skdcprf{M (η)} = (K ′(η),hk,pp(η)
acc, w

(η)
0 ,

store(η)
0 ,pp(η)

itr, v
(η)
0 ,P(η)

1 ,P(η)
2 ,P(η)

3 ,P(η)
dcprf), where

– P(η)
1 = IO(Init-SPS.Prog[q(η)

0 , w
(η)
0 , v

(η)
0 ,K

(η)
sps,E ]),

– P(η)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)

acc,pp(η)
itr,K

(η)
sps,E ]),

– P(η)
3 = IO(Change-SPS.Prog[K(η)

sps,A,K
(η)
sps,E ]),

– P(η)
dcprf = IO(Constrained-Key.Progdcprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K,K

′(η),K
(η)
1 , . . . ,K

(η)
λ ,

K
(η)
sps,A])

to A, if η > ν. The program Constrained-Key.Prog′dcprf is an alteration of the program
Constrained-Key.Progdcprf (Fig. 5.1) and is depicted in Fig. C.1. Observe that Hyb0,0 coincides
Hyb0.

Hyb1: This experiment coincides with Hyb0,q̂const .

Hyb1,ω (ω = 1, . . . , q̂deldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldel): This experiment is similar to Hyb1 except that for θ ∈ [q̂del], in
reply to the θth delegated key query of A corresponding to TM pair (M (θ), fM (θ)) ∈ M2

λ with
[M (θ)(x∗) = 1] ∧ [fM (θ)(x∗) = 0], B returns the delegated key skdcprf{M (θ) ∧ fM (θ)} =
(fK ′(θ),hk,pp(θ)

acc,fpp(θ)
acc, w

(θ)
0 , Üw(θ)

0 , store(θ)
0 ,ástore(θ)

0 ,pp(θ)
itr,fpp(θ)

itr, v
(θ)
0 , ev(θ)

0 ,P(θ)
1 , ÜP(θ)

1 ,P(θ)
2 , ÜP(θ)

2 ,

P(θ)
3 , ÜP(θ)

3 ,P(θ)
dcprf, ÜP(θ)

dcprf), where

– P(θ)
1 = IO(Init-SPS.Prog[q(θ)

0 , w
(θ)
0 , v

(θ)
0 ,K

(θ)
sps,E ]),

– ÜP(θ)
1 = IO(Init-SPS.Prog[eq(θ)

0 , Üw(θ)
0 , ev(θ)

0 ,fK(θ)
sps,E ]),

– P(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(θ)

acc,pp(θ)
itr,K

(θ)
sps,E ]),

– ÜP(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,fpp(θ)

acc,fpp(θ)
itr,
fK(θ)

sps,E ]),
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K′,K1, . . . ,Kλ,Ksps,A,
SSB hash value of challenge input h∗, Length of the challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: Encryption of DCPRF value ctpke, or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if [stout = qac] ∧ [(h, `inp) 6= (h∗, `∗)], perform the following steps:
(I) Compute rpke,1‖rpke,2 = F(K′, (h, `inp)), (pkpke, skpke) = PKE.Setup(1λ; rpke,1).

(II) Output ctpke = PKE.Encrypt(pkpke,F(K, (h, `inp)); rpke,2).
Else if stout = qac, output ⊥.

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Set mout = (vout, stout, wout, posout).

Compute σsps,out = SPS.Sign(sk′sps,A,mout).
7. If t+ 1 = 2τ

′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. C.1. Constrained-Key.Prog′dcprf

– P(θ)
3 = IO(Change-SPS.Prog[K(θ)

sps,A,K
(θ)
sps,E ]),

– ÜP(θ)
3 = IO(Change-SPS.Prog[fK(θ)

sps,A,
fK(θ)

sps,E ]),
– P(θ)

dcprf = IO(Constrained-Key.Progdcprf[M (θ), T = 2λ,pp(θ)
acc,pp(θ)

itr,K,K
′(θ),K

(θ)
1 , . . . ,K

(θ)
λ ,

K
(θ)
sps,A]),

– ÜP(θ)
dcprf = IO(Constrained-Key.Prog′dcprf[fM (θ), T = 2λ,fpp(θ)

acc,fpp(θ)
itr,K

′(θ),fK ′(θ),fK(θ)
1 , . . . ,fK(θ)

λ ,fK(θ)
sps,A, h

∗, `∗])

to A, if θ ≤ ω, while B gives the delegated key skdcprf{M (θ) ∧ fM (θ)} = (fK ′(θ),hk,pp(θ)
acc,fpp(θ)

acc,

w
(θ)
0 , Üw(θ)

0 , store(θ)
0 ,ástore(θ)

0 ,pp(θ)
itr,fpp(θ)

itr, v
(θ)
0 , ev(θ)

0 ,P(θ)
1 , ÜP(θ)

1 ,P(θ)
2 , ÜP(θ)

2 ,P(θ)
3 , ÜP(θ)

3 ,P(θ)
dcprf, ÜP(θ)

dcprf),
where

– P(θ)
1 = IO(Init-SPS.Prog[q(θ)

0 , w
(θ)
0 , v

(θ)
0 ,K

(θ)
sps,E ]),

– ÜP(θ)
1 = IO(Init-SPS.Prog[eq(θ)

0 , Üw(θ)
0 , ev(θ)

0 ,fK(θ)
sps,E ]),

– P(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(θ)

acc,pp(θ)
itr,K

(θ)
sps,E ]),

– ÜP(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,fpp(θ)

acc,fpp(θ)
itr,
fK(θ)

sps,E ]),
– P(θ)

3 = IO(Change-SPS.Prog[K(θ)
sps,A,K

(θ)
sps,E ]),

– ÜP(θ)
3 = IO(Change-SPS.Prog[fK(θ)

sps,A,
fK(θ)

sps,E ]),
– P(θ)

dcprf = IO(Constrained-Key.Progdcprf[M (θ), T = 2λ,pp(θ)
acc,pp(θ)

itr,K,K
′(θ),K

(θ)
1 , . . . ,K

(θ)
λ ,

K
(θ)
sps,A]),

– ÜP(θ)
dcprf = IO(Constrained-Key.Progdcprf[fM (θ), T = 2λ,fpp(θ)

acc,fpp(θ)
itr,K

′(θ),fK ′(θ),fK(θ)
1 , . . . ,fK(θ)

λ ,fK(θ)
sps,A])
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to A, if θ > ω. Observe that Hyb1,0 coincides with Hyb1.

Hyb2: This experiment coincides with Hyb1,q̂del .

Hyb3: This experiment is identical to Hyb2 except that for θ = 1, . . . , q̂del, in response to
the θth delegated key query of A corresponding to TM pair (M (θ), fM (θ)) ∈M2

λ with [M (θ)(x∗) =
1] ∧ [fM (θ)(x∗) = 0], B returns the delegated key skdcprf{M (θ) ∧ fM (θ)} = (fK ′(θ),hk,pp(θ)

acc,fpp(θ)
acc,

w
(θ)
0 , Üw(θ)

0 , store(θ)
0 ,ástore(θ)

0 ,pp(θ)
itr,fpp(θ)

itr, v
(θ)
0 , ev(θ)

0 ,P(θ)
1 , ÜP(θ)

1 ,P(θ)
2 , ÜP(θ)

2 ,P(θ)
3 , ÜP(θ)

3 ,P(θ)
dcprf, ÜP(θ)

dcprf)
to A, where

– P(θ)
1 = IO(Init-SPS.Prog[q(θ)

0 , w
(θ)
0 , v

(θ)
0 ,K

(θ)
sps,E ]),

– ÜP(θ)
1 = IO(Init-SPS.Prog[eq(θ)

0 , Üw(θ)
0 , ev(θ)

0 ,fK(θ)
sps,E ]),

– P(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(θ)

acc,pp(θ)
itr,K

(θ)
sps,E ]),

– ÜP(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,fpp(θ)

acc,fpp(θ)
itr,
fK(θ)

sps,E ]),
– P(θ)

3 = IO(Change-SPS.Prog[K(θ)
sps,A,K

(θ)
sps,E ]),

– ÜP(θ)
3 = IO(Change-SPS.Prog[fK(θ)

sps,A,
fK(θ)

sps,E ]),
– P(θ)

dcprf = IO(Constrained-Key.Prog′′dcprf[M (θ), T = 2λ,pp(θ)
acc,pp(θ)

itr,K,K
′(θ){(h∗, `∗)},

K
(θ)
1 , . . . ,K

(θ)
λ ,K

(θ)
sps,A,ct∗(θ)

pke , h
∗, `∗]),

– ÜP(θ)
dcprf = IO(Constrained-Key.Prog′dcprf[fM (θ), T = 2λ,fpp(θ)

acc,fpp(θ)
itr,K

′(θ){(h∗, `∗)},fK ′(θ),fK(θ)
1 , . . . ,fK(θ)

λ ,fK(θ)
sps,A, h

∗, `∗])

such that K ′(θ){(h∗, `∗)} $←− F .Puncture(K ′(θ), (h∗, `∗)), r∗(θ)
pke,1‖r

∗(θ)
pke,2 = F(K ′(θ), (h∗, `∗)), (pk∗(θ)

pke ,

sk∗(θ)
pke ) = PKE.Setup(1λ; r∗(θ)

pke,1),ct∗(θ)
pke = PKE.Encrypt(pk∗(θ)

pke ,F(K, (h∗, `∗)); r∗(θ)
pke,2), and the

program Constrained-Key.Prog′′dcprf is a modification of the program Constrained-Key.Prog′dcprf
(Fig. C.1) and is shown in Fig. C.2. As in the previous hybrid experiments, here also once the
components pertaining to some parent TM M (θ) ∈ Mλ is generated while answering the θth

delegated key query (M (θ), fM (θ)) those are reused in all the subsequent delegated key queries
with the same parent TM M (θ).

Hyb3,ω (ω = 1, . . . , q̂deldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldel): This experiment is the same as Hyb3,(ω−1)′ with the only exception
that while constructing the ωth delegated key corresponding to TM pair (M (ω), fM (ω)) ∈M2

λ with
[M (ω)(x∗) = 1] ∧ [fM (ω)(x∗) = 0], if M (ω) has not yet appeared in any previous delegated key
query of A, then B selects r∗(ω)

pke,1‖r
∗(ω)
pke,2

$←− Ypprf, i.e., B creates (pk∗(ω)
pke , sk∗(ω)

pke ) $←− PKE.Setup(1λ)

and forms ct∗(ω)
pke

$←− PKE.Encrypt(pk∗(ω)
pke ,F(K, (h∗, `∗))); while if M (ω) has already appeared in

previous delegated key query of A, then B utilizes the already generated values corresponding
to M (ω) like in the earlier hybrid experiments.

Hyb3,ω′ (ω = 1, . . . , q̂deldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldeldel): This experiment is analogous to Hyb3,ω with the only excep-
tion that while constructing the ωth delegated key queried by A corresponding to TM pair
(M (ω), fM (ω)) ∈M2

λ with [M (ω)(x∗) = 1] ∧ [fM (ω)(x∗) = 0], if M (ω) has not yet appeared in any
previous delegated key query of A, then B forms ct∗(ω)

pke
$←− PKE.Encrypt(pk∗(ω)

pke , ŷ
∗(ω)), where

ŷ∗(ω) $←− Ypprf, whereas, if M (ω) has already appeared in some earlier delegated key query of A,
then B uses the already created values corresponding to M (ω) just as in the previous hybrid
experiments. Observe that Hyb3,0′ coincides with Hyb3.

Hyb4: This experiment is similar to Hyb3,q̂del other than the following exceptions:
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF key K, Puncture PPRF key
K′{(h∗, `∗)}, PPRF keys K1, . . . ,Kλ,Ksps,A, PKE ciphertext ct∗pke, SSB hash value of challenge
input h∗, Length of the challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: Encryption of DCPRF value ctpke, or Header Position (posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if [(stout = qac] ∧ [(h, `inp) = (h∗, `∗)], output ct∗pke.
Else if stout = qac, perform the following steps:
(I) Compute rpke,1‖rpke,2 = F(K′, (h, `inp)), (pkpke, skpke = PKE.Setup(1λ; rpke,1).

(II) Output ctpke = PKE.Encrypt(pkpke,F(K, (h, `inp)); rpke,2).
5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Set mout = (vout, stout, wout, posout).
Compute σsps,out = SPS.Sign(sk′sps,A,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. C.2. Constrained-Key.Prog′′dcprf

(I) For η = 1, . . . , q̂const, in response to the ηth constrained key query of A corresponding
to TM M (η) ∈ Mλ with M (η)(x∗) = 0, B returns the constrained key skdcprf{M (η)} =
(K ′(η),hk,pp(η)

acc, w
(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,P(η)

1 ,P(η)
2 ,P(η)

3 ,P(η)
dcprf) to A, where

– P(η)
1 = IO(Init-SPS.Prog[q(η)

0 , w
(η)
0 , v

(η)
0 ,K

(η)
sps,E ]),

– P(η)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)

acc,pp(η)
itr,K

(η)
sps,E ]),

– P(η)
3 = IO(Change-SPS.Prog[K(η)

sps,A,K
(η)
sps,E ]),

– P(η)
dcprf = IO(Constrained-Key.Prog′dcprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K{(h∗, `∗)},K ′(η),

K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗]).

(II) For θ = 1, . . . , q̂del, in response to the θth delegated key query of A corresponding to TM
pair (M (θ), fM (θ)) ∈ M2

λ with [M (θ)(x∗) = 1] ∧ [fM (θ)(x∗) = 0], B returns the delegated key
skdcprf{M (θ) ∧ fM (θ)} = (fK ′(θ),hk,pp(θ)

acc,fpp(θ)
acc, w

(θ)
0 , Üw(θ)

0 , store(θ)
0 ,ástore(θ)

0 ,pp(θ)
itr,fpp(θ)

itr,

v
(θ)
0 , ev(θ)

0 ,P(θ)
1 , ÜP(θ)

1 ,P(θ)
2 , ÜP(θ)

2 ,P(θ)
3 , ÜP(θ)

3 ,P(θ)
dcprf, ÜP(θ)

dcprf) to A, where
– P(θ)

1 = IO(Init-SPS.Prog[q(θ)
0 , w

(θ)
0 , v

(θ)
0 ,K

(θ)
sps,E ]),

– ÜP(θ)
1 = IO(Init-SPS.Prog[eq(θ)

0 , Üw(θ)
0 , ev(θ)

0 ,fK(θ)
sps,E ]),

– P(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(θ)

acc,pp(θ)
itr,K

(θ)
sps,E ]),

– ÜP(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,fpp(θ)

acc,fpp(θ)
itr,
fK(θ)

sps,E ]),
– P(θ)

3 = IO(Change-SPS.Prog[K(θ)
sps,A,K

(θ)
sps,E ]),

– ÜP(θ)
3 = IO(Change-SPS.Prog[fK(θ)

sps,A,
fK(θ)

sps,E ]),
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– P(θ)
dcprf = IO(Constrained-Key.Prog′′dcprf[M (θ), T = 2λ,pp(θ)

acc,pp(θ)
itr,K{(h∗, `∗)},

K ′(θ){(h∗, `∗)},K(θ)
1 , . . . ,K

(θ)
λ ,K

(θ)
sps,A,ct∗(θ)

pke , h
∗, `∗]),

– ÜP(θ)
dcprf = IO(Constrained-Key.Prog′dcprf[fM (θ), T = 2λ,fpp(θ)

acc,fpp(θ)
itr,K

′(θ){(h∗, `∗)},fK ′(θ),fK(θ)
1 , . . . ,fK(θ)

λ ,fK(θ)
sps,A, h

∗, `∗]).

Here, K{(h∗, `∗)} $←− F .Puncture(K, (h∗, `∗)).

Analysis

Let Adv(0)
A (λ),Adv(0,ν)

A (λ) (ν = 1, . . . , q̂const),Adv(1)
A (λ),Adv(1,ω)

A (λ) (ω = 1, . . . , q̂del),Adv(2)
A (λ),

Adv(3)
A (λ),Adv(3,ω)

A (λ) (ω = 1, . . . , q̂del),Adv(3,ω′)
A (λ) (ω = 1, . . . , q̂del), and Adv(4)

A (λ) represent
respectively the advantage of the adversary A, i.e., the absolute difference between 1/2 and
A’s probability of correctly guessing the random bit selected by the challenger B, in the hy-
brid experiment HybΥ with Υ as indicated in the superscript of the advantage notation. From
the description of the hybrid experiments it follows that Advdcprf,sel-pr

A (λ) ≡ Adv(0)
A (λ) ≡

Adv(0,0)
A (λ),Adv(1)

A (λ) ≡ Adv(0,q̂const)
A (λ) ≡ Adv(1,0)

A (λ),Adv(2)
A (λ) ≡ Adv(1,q̂del)

A (λ), and Adv(3)
A (λ) ≡

Adv(3,0′)
A (λ). Therefore, we have

Advdcprf,sel-pr
A (λ)

≤
q̂constX
ν=1
|Adv(0,ν−1)

A (λ)− Adv(0,ν)
A (λ)|+

q̂delX
ω=1
|Adv(1,ω−1)

A (λ)− Adv(1,ω)
A (λ)| +

|Adv(2)
A (λ)− Adv(3)

A (λ)|+
q̂delX
ω=1
|Adv(3,(ω−1)′)

A (λ)− Adv(3,ω)
A (λ)| +

q̂delX
ω=1
|Adv(3,ω)

A (λ)− Adv(3,ω′)
A (λ)|+ |Adv(3,q̂′del)

A (λ)− Adv(4)
A (λ)|+ Adv(4)

A (λ).

(C.1)

Lemmas C.1–C.7 will show that the RHS of Eq. (C.1) is negligible and hence Theorem 5.1
follows. ut

C.1 Lemmas for the Proof of Theorem 5.1

Lemma C.1. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, SSB is a somewhere statisti-
cally binding hash function according to Definition 2.3, ACC is a secure positional accumu-
lator as defined in Definition 2.4, ITR is a secure cryptographic iterator according to Defini-
tion 2.5, SPS is a secure splittable signature scheme as per Definition 2.6, and PRG is a secure
injective pseudorandom generator, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1)

A (λ)− Adv(0,ν)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Lemma C.1 proceeds in exactly the same path as that of Lemma A.3. We
omit the details to avoid repetition. ut

Lemma C.2. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, SSB is a somewhere statisti-
cally binding hash function according to Definition 2.3, ACC is a secure positional accumu-
lator as defined in Definition 2.4, ITR is a secure cryptographic iterator according to Def-
inition 2.5, SPS is a secure splittable signature scheme as per Definition 2.6, and PRG is
a secure pseudorandom generator, for any PPT adversary A, for any security parameter λ,
|Adv(1,ω−1)

A (λ)− Adv(1,ω)
A (λ)| ≤ negl(λ) for some negligible function negl.
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Proof. The proof of Lemma C.2 again takes an identical path as that taken by the proof of
Lemma A.3. The details are omitted to avoid repetition. ut

Lemma C.3. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property described in Definition 2.2, for any PPT adversary
A, for any security parameter λ, |Adv(2)

A (λ) − Adv(3)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. The difference between Hyb2 and Hyb3 is the following: For θ ∈ [q̂del], within the θth

delegated key returned to A, B includes the programs IO(P (θ)
0 ) and IO(ÜP (θ)

0 ) in Hyb2, whereas,
in Hyb3, B includes the programs IO(P (θ)

1 ) and IO(ÜP (θ)
1 ) instead, where

– P
(θ)
0 = Constrained-Key.Progdcprf[M (θ), T = 2λ,pp(θ)

acc,pp(θ)
itr,K,K

′(θ),K
(θ)
1 , . . . ,K

(θ)
λ ,K

(θ)
sps,A]

(Fig. 5.1),
– ÜP (θ)

0 = Constrained-Key.Prog′dcprf[fM (θ), T = 2λ,fpp(θ)
acc,fpp(θ)

itr,K
′(θ),fK ′(θ),fK(θ)

1 , . . . ,fK(θ)
λ ,fK(θ)

sps,A,
h∗, `∗] (Fig. C.1),

– P
(θ)
1 = Constrained-Key.Prog′′dcprf[M (θ), T = 2λ,pp(θ)

acc,pp(θ)
itr,K,K

′(θ){(h∗, `∗)},K(θ)
1 , . . . ,K

(θ)
λ ,

K
(θ)
sps,A,ct∗(θ)

pke , h
∗, `∗] (Fig. C.2),

– ÜP (θ)
1 = Constrained-Key.Prog′dcprf[fM (θ), T = 2λ,fpp(θ)

acc,fpp(θ)
itr,K

′(θ){(h∗, `∗)},fK ′(θ),fK(θ)
1 , . . . ,fK(θ)

λ ,fK(θ)
sps,A, h

∗, `∗] (Fig. C.1).

We will argue that the programs P (θ)
0 and P

(θ)
1 , as well as, the programs ÜP (θ)

0 and ÜP (θ)
1 are

functionally equivalent, so that, by the security of IO, Lemma C.3 follows. First, note that
P

(θ)
0 and P

(θ)
1 are functionally identical since by the correctness under puncturing property

of the PPRF F , the two programs clearly have identical outputs on inputs corresponding to
(h, `inp) 6= (h∗, `∗), while for inputs corresponding to (h∗, `∗), the hardwired ciphertext outputted
by P (θ)

1 is exactly the one computed by P (θ)
0 in this case. The programs ÜP (θ)

0 and ÜP (θ)
1 are also

functionally equivalent as both programs output ⊥ for inputs corresponding to (h∗, `∗) and by
the correctness under puncturing property of the PPRF F the programs clearly have the same
outputs for inputs corresponding to (h, `inp) 6= (h∗, `∗). Ofcourse, to reach the conclusion, we
would have to move through a sequence of hybrid experiments where in each hybrid experiment
we change the programs one at a time. ut

Lemma C.4. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, |Adv(3,(ω−1)′)

A (λ)−Adv(3,ω)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. We will only focus on the case where the parent TM M (ω) ∈Mλ of the ωth delegated key
query (M (ω), fM (ω)) ∈ M2

λ made by A is not one that has appeared in some previous delegated
key query of A. This is because in the other case by the description of the hybrid experiments
it follows that |Adv(3,(ω−1)′)

A (λ)− Adv(3,ω)
A (λ)| = 0.

Suppose there is a PPT adversaryA for which |Adv(3,(ω−1)′)
A (λ)−Adv(3,ω)

A (λ)| is non-negligible.
We construct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F
using A as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xdcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Next, B selects a PPRF key K $←− F .Setup(1λ).
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3. Then B chooses a random bit b $←− {0, 1}. If b = 0, then B computes y∗ = F(K, (h∗, `∗)).
Otherwise, it picks y∗ $←− Ypprf.

4. B returns the challenge DCPRF value y∗ to A.
• For η ∈ [q̂const], in reply to the ηth constrained key query of A corresponding to TM M (η) ∈

Mλ with M (η)(x∗) = 0, B proceeds exactly as in Hyb3,(ω−1)′ .
• For θ ∈ [q̂del], in response to the θth delegated key query of A corresponding to TM pair

(M (θ), fM (θ)) ∈M2
λ with [M (θ)(x∗) = 1] ∧ [fM (θ)(x∗) = 0], if θ 6= ω, then B proceeds exactly

as in Hyb3,(ω−1)′ , while if θ = ω, then B proceeds as follows:
1. B first selects the PPRF keys K(ω)

1 , . . . ,K
(ω)
λ ,K

(ω)
sps,A,K

(ω)
sps,E ,

fK ′(ω),fK(ω)
1 , . . . ,fK(ω)

λ ,fK(ω)
sps,A,fK(ω)

sps,E
$←− F .Setup(1λ).

2. After that, it generates (pp(ω)
acc, w

(ω)
0 , store(ω)

0 ), (fpp(ω)
acc, Üw(ω)

0 ,ástore(ω)
0 ) $←− ACC.Setup(1λ,

nacc-blk = 2λ) and (pp(ω)
itr, v

(ω)
0 ), (fpp(ω)

itr, ev(ω)
0 ) $←− ITR.Setup(1λ, nitr = 2λ).

3. Next, B sends (h∗, `∗) as the challenge input to its PPRF selective pseudorandomness
challenger C and receives back a punctured PPRF key K∗{(h∗, `∗)} and a value r∗ =
r∗1‖r∗2 ∈ Ypprf, where either r∗ = F(K∗, (h∗, `∗)) or r∗ $←− Ypprf. B implicitly views the key
K∗ as the key K ′(ω).

4. Then, B forms (pk∗(ω)
pke , sk∗(ω)

pke ) = PKE.Setup(1λ; r∗1) and forms ct∗(ω)
pke = PKE.Encrypt(pk∗(ω)

pke ,
F(K, (h∗, `∗)); r∗2).

5. B gives A the delegated key skdcprf{M (ω) ∧ fM (ω)} = (fK ′(ω),hk,pp(ω)
acc,fpp(ω)

acc, w
(ω)
0 , Üw(ω)

0 ,

store(ω)
0 ,ástore(ω)

0 ,pp(ω)
itr,fpp(ω)

itr, v
(ω)
0 , ev(ω)

0 ,P(ω)
1 , ÜP(ω)

1 ,P(ω)
2 , ÜP(ω)

2 ,P(ω)
3 , ÜP(ω)

3 ,P(ω)
dcprf, ÜP(ω)

dcprf),
where
– P(ω)

1 = IO(Init-SPS.Prog[q(ω)
0 , w

(ω)
0 , v

(ω)
0 ,K

(ω)
sps,E ]),

– ÜP(ω)
1 = IO(Init-SPS.Prog[eq(ω)

0 , Üw(ω)
0 , ev(ω)

0 ,fK(ω)
sps,E ]),

– P(ω)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ω)

acc,pp(ω)
itr,K

(ω)
sps,E ]),

– ÜP(ω)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,fpp(ω)

acc,fpp(ω)
itr,
fK(ω)

sps,E ]),
– P(ω)

3 = IO(Change-SPS.Prog[K(ω)
sps,AK

(ω)
sps,E ]),

– ÜP(ω)
3 = IO(Change-SPS.Prog[fK(ω)

sps,A,
fK(ω)

sps,E ]),
– P(ω)

dcprf = IO(Constrained-Key.Prog′′dcprf[M (ω), T = 2λ,pp(ω)
acc,pp(ω)

itr,K,K
∗{(h∗, `∗)},

K
(ω)
1 , . . . ,K

(ω)
λ ,K

(ω)
sps,A,ct∗(ω)

pke , h
∗, `∗]),

– ÜP(ω)
dcprf = IO(Constrained-Key.Prog′dcprf[fM (ω), T = 2λ,fpp(ω)

acc,fpp(ω)
itr,K

∗{(h∗, `∗)},fK ′(ω),fK(ω)
1 , . . . ,fK(ω)

λ ,fK(ω)
sps,A, h

∗, `∗]).
• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit

in its PPRF selective pseudorandomness experiment.

Note that if r∗ = F(K∗, (h∗, `∗)), then B perfectly simulates Hyb3,(ω−1)′ . On the other hand, if
r∗

$←− Ypprf, then B perfectly simulates Hyb3,ω. This completes the proof of Lemma C.4. ut

Lemma C.5. Assuming PKE is CPA secure, for any PPT adversary A, for any security pa-
rameter λ, |Adv(3,ω)

A (λ)− Adv(3,ω′
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. We will focus on the case where the parent TM M (ω) ∈ Mλ of the ωth delegated key
query (M (ω), fM (ω)) ∈ M2

λ made by A is not one that has appeared in some previous delegated
key query of A. This is because in the other case by the description of the hybrid experiments
it readily follows that |Adv(3,ω)

A (λ)− Adv(3,ω′)
A (λ)| = 0.

Suppose there exists a PPT adversaryA for which |Adv(3,ω)
A (λ)−Adv(3,ω′)

A (λ)| is non-negligible.
We construct a PPT adversary B that breaks the CPA security of PKE using A as a sub-routine.
The description of B follows:
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• B receives a PKE public key pk∗pke from its PKE CPA security challenger C. Then, B initializes
A on input 1λ and receives a challenge input x∗ = x∗0 . . . x

∗
`∗−1 ∈ Xdcprf with |x∗| = `∗ from

A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Next, B selects a PPRF key K $←− F .Setup(1λ).
3. Then B chooses a random bit b $←− {0, 1}. If b = 0, then B computes y∗ = F(K, (h∗, `∗)).

Otherwise, it picks y∗ $←− Ypprf.
4. B returns the challenge DCPRF value y∗ to A.
• For η ∈ [q̂const], in reply to the ηth constrained key query of A corresponding to TM M (η) ∈

Mλ with M (η)(x∗) = 0, B proceeds exactly as in Hyb3,ω.
• For θ ∈ [q̂del], in response to the θth delegated key query of A corresponding to TM pair

(M (θ), fM (θ)) ∈M2
λ with [M (θ)(x∗) = 1] ∧ [fM (θ)(x∗) = 0], if θ 6= ω, then B proceeds exactly

as in Hyb3,ω, while if θ = ω, then B proceeds as follows:
1. B first selects PPRF keysK ′(ω),K

(ω)
1 , . . . ,K

(ω)
λ ,K

(ω)
sps,A,K

(ω)
sps,E ,

fK ′(ω),fK(ω)
1 , . . . ,fK(ω)

λ ,fK(ω)
sps,A,fK(ω)

sps,E
$←− F .Setup(1λ).

2. After that, it generates (pp(ω)
acc, w

(ω)
0 , store(ω)

0 ), (fpp(ω)
acc, Üw(ω)

0 ,ástore(ω)
0 ) $←− ACC.Setup(1λ,

nacc-blk = 2λ) and (pp(ω)
itr, v

(ω)
0 ), (fpp(ω)

itr, ev(ω)
0 ) $←− ITR.Setup(1λ, nitr = 2λ).

3. Then, B creates the punctured PPRF key K ′(ω){(h∗, `∗)} $←− F .Puncture(K ′(ω), (h∗, `∗)).
4. Next, B sends the two messages MSG0 = F(K, (h∗, `∗)) ∈ Ypprf and MSG1 = ŷ∗(ω) $←−
Ypprf to C and receives back a PKE ciphertext ct∗pke from C, where either ct∗pke

$←−
PKE.Encrypt(pk∗pke,F(K, (h∗, `∗))) or ct∗pke

$←− PKE.Encrypt(pk∗pke, ŷ
∗ω)).

5. B gives A the delegated key skdcprf{M (ω) ∧ fM (ω)} = (fK ′(ω),hk,pp(ω)
acc,fpp(ω)

acc, w
(ω)
0 , Üw(ω)

0 ,

store(ω)
0 ,ástore(ω)

0 ,pp(ω)
itr,fpp(ω)

itr, v
(ω)
0 , ev(ω)

0 ,P(ω)
1 , ÜP(ω)

1 ,P(ω)
2 , ÜP(ω)

2 ,P(ω)
3 , ÜP(ω)

3 ,P(ω)
dcprf, ÜP(ω)

dcprf),
where
– P(ω)

1 = IO(Init-SPS.Prog[q(ω)
0 , w

(ω)
0 , v

(ω)
0 ,K

(ω)
sps,E ]),

– ÜP(ω)
1 = IO(Init-SPS.Prog[eq(ω)

0 , Üw(ω)
0 , ev(ω)

0 ,fK(ω)
sps,E ]),

– P(ω)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ω)

acc,pp(ω)
itr,K

(ω)
sps,E ]),

– ÜP(ω)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,fpp(ω)

acc,fpp(ω)
itr,
fK(ω)

sps,E ]),
– P(ω)

3 = IO(Change-SPS.Prog[K(ω)
sps,A,K

(ω)
sps,E ]),

– ÜP(ω)
3 = IO(Change-SPS.Prog[fK(ω)

sps,A,
fK(ω)

sps,E ]),
– P(ω)

dcprf = IO(Constrained-Key.Prog′′dcprf[M (ω), T = 2λ,pp(ω)
acc,pp(ω)

itr,K,K
′(ω){(h∗, `∗)},

K
(ω)
1 , . . . ,K

(ω)
λ ,K

(ω)
sps,A,ct∗pke, h

∗, `∗]),
– ÜP(ω)

dcprf = IO(Constrained-Key.Prog′dcprf[fM (ω), T = 2λ,fpp(ω)
acc,fpp(ω)

itr,K
′(ω){(h∗, `∗)},fK ′(ω),fK(ω)

1 , . . . ,fK(ω)
λ ,fK(ω)

sps,A, h
∗, `∗]).

• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit
in its PKE CPA security experiment.

Note that if ct∗pke
$←− PKE.Encrypt(pk∗pke,F(K, (h∗, `∗))), then B perfectly simulates Hyb3,ω. On

the other hand, if ct∗pke
$←− PKE.Encrypt(pk∗pke, ŷ

∗(ω)), then B perfectly simulates Hyb3,ω′ . This
completes the proof of Lemma C.5. ut

Lemma C.6. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property described in Definition 2.2, for any PPT adversary A,
for any security parameter λ, |Adv(3,q̂′del)

A (λ) − Adv(4)
A (λ)| ≤ negl(λ) for some negligible function

negl.
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Proof. The difference between Hyb3,q̂′del
and Hyb4 are the following:

(I) For η ∈ [q̂const], in Hyb3,q̂′del
, B includes the program IO(P (η)

0 ) within the ηth constrained
key provided to A, while in Hyb4, B includes the program IO(P (η)

1 ) instead, where
– P

(η)
0 = Constrained-Key.Prog′dcprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K,K

′(η),K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A,

h∗, `∗],
– P

(η)
1 = Constrained-Key.Prog′dcprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K{(h∗, `∗)},K ′(η),K

(η)
1 , . . . ,

K
(η)
λ ,K

(η)
sps,A, h

∗, `∗],
the program Constrained-Key.Prog′dcprf being shown in Fig. C.1.

(II) For θ ∈ [q̂del], within the θth delegated key returned to A, B includes the program IO(P ′(θ)
0 )

in Hyb3,q̂′del
, whereas, in Hyb4, B includes the program IO(P ′(θ)

1 ) instead, where
– P

′(θ)
0 = Constrained-Key.Prog′′dcprf[M (θ), T = 2λ,pp(θ)

acc,pp(θ)
itr,K,K

′(θ){(h∗, `∗)},K(θ)
1 , . . . ,

K
(θ)
λ ,K

(θ)
sps,A,ct∗(θ)

pke , h
∗, `∗],

– P
′(θ)
1 = Constrained-Key.Prog′′dcprf[M (θ), T = 2λ,pp(θ)

acc,pp(θ)
itr,K{(h∗, `∗)},K ′(θ){(h∗, `∗)},

K
(θ)
1 , . . . ,K

(θ)
λ ,K

(θ)
sps,A,ct∗(θ)

pke , h
∗, `∗],

the program Constrained-Key.Prog′′dcprf being shown in Fig. C.2.

We will argue that the programs P (η)
0 and P

(η)
1 , as well as, the programs P ′(θ)

0 and P
′(θ)
1 are

functionally equivalent, so that, by the security of IO, Lemma C.6 follows. The programs P (η)
0

and P
(η)
1 are functionally equivalent as both programs output ⊥ for inputs corresponding to

(h∗, `∗) and by the correctness under puncturing property of the PPRF F the programs clearly
have the same outputs for inputs corresponding to (h, `inp) 6= (h∗, `∗). The programs P ′(θ)

0 and
P
′(θ)
1 are also functionally identical as for inputs corresponding to (h∗, `∗), both the programs

output the same hardwired ciphertext and for inputs corresponding to (h, `inp) 6= (h∗, `∗), their
outputs are the same again by the correctness under puncturing property of the PPRF F .
Ofcourse, to arrive at the result we would have to consider a sequence of intermediate hybrid
experiments where in each hybrid experiment we switch the programs one at a time. ut

Lemma C.7. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, Adv(4)

A (λ) ≤ negl(λ) for some negligible
function negl.

Proof. Suppose there exists a PPT adversary A for which Adv(4)
A (λ) is non-negligible. We con-

struct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F using A
as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xdcprf with

|x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. After that, B sends (h∗, `∗) as the challenge input to its PPRF selective pseudorandomness

challenger C and receives back a punctured PPRF key K∗{(h∗, `∗)} and a value r∗ ∈ Ypprf,
where either r∗ = F(K∗, (h∗, `∗)) or r∗ $←− Ypprf. B implicitly views the key K∗ as the key
K.

3. B returns the challenge DCPRF value y∗ = r∗ to A.
• For η = 1, . . . , q̂const, in reply to the ηth constrained key query of A corresponding to TM
M (η) ∈Mλ with M (η)(x∗) = 0, B proceeds as follows:
1. B selects PPRF keys K ′(η),K

(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A,K

(η)
sps,E

$←− F .Setup(1λ).
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2. Next, it creates (pp(η)
acc, w

(η)
0 , store(η)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(η)
itr, v

(η)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. B givesA the constrained key skdcprf{M (η)} = (K ′(η),hk,pp(η)

acc, w
(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

P(η)
1 ,P(η)

2 ,P(η)
3 ,P(η)

dcprf), were
– P(η)

1 = IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ]),

– P(η)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)

acc,pp(η)
itr,K

(η)
sps,E ]),

– P(η)
3 = IO(Change-SPS.Prog[K(η)

sps,A,K
(η)
sps,E ]),

– P(η)
dcprf = IO(Constrained-Key.Prog′dcprf[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K

∗{(h∗, `∗)},K ′(η),

K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗]).
• For θ = 1, . . . , q̂del, in response to the θth delegated key query of A corresponding to TM

pair (M (θ), fM (θ)) ∈M2
λ with [M (θ)(x∗) = 1] ∧ [fM (θ)(x∗) = 0], B proceeds as follows:

1. B first selects PPRF keys K ′(θ),K
(θ)
1 , . . . ,K

(θ)
λ ,K

(θ)
sps,A,K

(θ)
sps,E ,

fK ′(θ),fK(θ)
1 , . . . ,fK(θ)

λ ,fK(θ)
sps,A,fK(θ)

sps,E
$←− F .Setup(1λ).

2. After that, it generates (pp(θ)
acc, w

(θ)
0 , store(θ)

0 ), (fpp(θ)
acc, Üw(θ)

0 ,ástore(θ)
0 ) $←− ACC.Setup(1λ,

nacc-blk = 2λ) and (pp(θ)
itr, v

(θ)
0 ), (fpp(θ)

itr, ev(θ)
0 ) $←− ITR.Setup(1λ, nitr = 2λ).

3. Next, B forms the punctured PPRF key K ′(θ){(h∗, `∗)} $←− F .Puncture(K ′(θ), (h∗, `∗)).
4. After that, B creates (pk∗(θ)

pke , sk∗(θ)
pke ) $←− PKE.Setup(1λ), selects ŷ∗(θ) $←− Ypprf, and forms

ct∗(θ)
pke

$←− PKE.Encrypt(pk∗(θ)
pke , ŷ

∗(θ)).
5. B gives A the delegated key skdcprf{M (θ) ∧ fM (θ)} = (fK ′(θ),hk,pp(θ)

acc,fpp(θ)
acc, w

(θ)
0 , Üw(θ)

0 ,

store(θ)
0 , ástore(θ)

0 ,pp(θ)
itr,fpp(θ)

itr, v
(θ)
0 , ev(θ)

0 ,P(θ)
1 , ÜP(θ)

1 ,P(θ)
2 , ÜP(θ)

2 ,P(θ)
3 , ÜP(θ)

3 ,P(θ)
dcprf, ÜP(θ)

dcprf),
where
– P(θ)

1 = IO(Init-SPS.Prog[q(θ)
0 , w

(θ)
0 , v

(θ)
0 ,K

(θ)
sps,E ]),

– ÜP(θ)
1 = IO(Init-SPS.Prog[eq(θ)

0 , Üw(θ)
0 , ev(θ)

0 ,fK(θ)
sps,E ]),

– P(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(θ)

acc,pp(θ)
itr,K

(θ)
sps,E ]),

– ÜP(θ)
2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,fpp(θ)

acc,fpp(θ)
itr,
fK(θ)

sps,E ]),
– P(θ)

3 = IO(Change-SPS.Prog[K(θ)
sps,A,K

(θ)
sps,E ]),

– ÜP(θ)
3 = IO(Change-SPS.Prog[fK(θ)

sps,A,
fK(θ)

sps,E ]),
– P(θ)

dcprf = IO(Constrained-Key.Prog′′dcprf[M (θ), T = 2λ,pp(θ)
acc,pp(θ)

itr,K
∗{(h∗, `∗)},

K ′(θ){(h∗, `∗)},K(θ)
1 , . . . ,K

(θ)
λ ,K

(θ)
sps,A,ct∗(θ)

pke , h
∗, `∗]),

– ÜP(θ)
dcprf = IO(Constrained-Key.Prog′dcprf[fM (θ), T = 2λ,fpp(θ)

acc,fpp(θ)
itr,K

′(θ){(h∗, `∗)},fK ′(θ),fK(θ)
1 , . . . ,fK(θ)

λ ,fK(θ)
sps,A, h

∗, `∗]).
Ofcourse, once B generates the components pertaining to some parent TM M (θ) ∈Mλ while
answering to the θth delegated key query of A, it reuses those components in all subsequent
delegated key queries of A with the same parent TM M (θ).
• At the end of interaction, A outputs a guess bit b′ ∈ {0, 1}. B outputs b̂′ = b′ as its guess bit

in its PPRF selective pseudorandomness experiment.

Observe that the simulation of Hyb4 by B is perfect. Furter, if A wins in this simulated Hyb4,
then B wins in the selective pseudorandom experiment against the PPRF F . This completes the
proof of Lemma C.7. ut

Appendix D: Proof of Theorem 6.1

Theorem 6.1 (Security of the ABS Scheme of Section 6.2). Assuming IO is a secure
indistinguishability obfuscator for P/poly, F is a secure puncturable pseudorandom function as
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per Definition 2.2, SSB is a somewhere statistically binding hash function according to Defini-
tion 2.3, ACC is a secure positional accumulator as defined in Definition 2.4, ITR is a secure
cryptographic iterator as per Definition 2.5, SPS is a secure splittable signature scheme according
to Definition 2.6, PRG is a secure injective pseudorandom generator, and SIG is existentially un-
forgeable against chosen message attack, the ABS scheme of Section 6.2 satisfies all the criteria
of a secure ABS defined in Definition 6.1.

Proof.
� Signer Privacy: Note that for any message msg ∈Mabs, (ppabs = (hk, IO(Verify.Progabs[K])),
mskabs = (K,hk)) $←− ABS.Setup(1λ), and x ∈ Uabs with |x| = `x, a signature on msg under x is
of the form σabs = (vksig, σsig), where (sksig,vksig) = SIG.Setup(1λ; F(K, (Hhk(x), `x))), σsig =
SIG.Sign(sksig,msg). Here, hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and K

$←− F .Setup(1λ).
Thus, the distribution of the signature σabs is clearly the same regardless of the signing key
skabs(M) that is used to compute it.

� Existential Unforgeability: We will prove the existential unforgeability of the ABS con-
struction of Section 6.2 against selective attribute adaptive chosen message attack by means of a
sequence of hybrid experiments. We will demonstrate based on the security of various primitives
that the advantage of any PPT adversary A in consecutive hybrid experiments differs only negli-
gibly as well as that in the final hybrid experiment is negligible. We note that due to the selective
attribute setting, the challenger B knows the challenge attribute string x∗ = x∗0 . . . x

∗
`∗−1 ∈ Uabs

and the SSB hash value h∗ = Hhk(x∗) before receiving any signing key or signature query from
the adversary A. Suppose, the total number of signing key query and signature query made by
the adversary A be q̂key and q̂sign respectively. As noted in Remark 6.1, without loss of gener-
ality we will assume that A only queries signatures on messages under the challenge attribute
string x∗. The description of the hybrid experiments follows:

Sequence of Hybrid Experiments

Hyb0: This experiment corresponds to the real selective attribute adaptive chosen message un-
forgeability experiment described in Definition 6.1 of Section 6.1. More precisely, this experiment
proceeds as follows:

• A submits a challenge attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs with |x∗| = `∗ to B.

• B generates (ppabs = (hk, IO(Verify.Progabs[K])),mskabs = (hk,K)) $←− ABS.Setup(1λ), as
described in Section 6.2, and provides ppabs to A.
• For η = 1, . . . , q̂key, in response to the ηth signing key query corresponding to signing policy

TM M (η) = 〈Q(η), Σinp, Σtape, δ
(η), q

(η)
0 , q

(η)
ac , q

(η)
rej〉 ∈Mλ with M (η)(x∗) = 0, B creates

skabs(M (η)) =0
BBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Progabs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A])

1
CCCCCCCA

$←− ABS.KeyGen(mskabs,M
(η)),

as described in Section 6.2 and returns skabs(M (η)) to A.
• For θ = 1, . . . , q̂sign, in reply to the θth signature query on message msg(θ) under attribute

string x∗, B identifies some TM M∗ ∈ Mλ such that M∗(x∗) = 1, generates skabs(M∗)
$←−
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ABS.KeyGen(mskabs,M
∗), and computes σ(θ)

abs = (vk∗sig, σ
(θ)
sig) $←− ABS.Sign(skabs(M∗), x∗,

msg(θ)) as described in Section 6.2. B gives back σ(θ)
abs to A.

• Finally, A outputs a forged signature σ∗abs on some message msg∗ under attribute string x∗.

Hyb0,ν (ν = 1, . . . , q̂keykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykey): This experiment is similar to Hyb0 except that for η ∈ [q̂key], in
reply to the ηth signing key query of A corresponding to signing policy TM M (η) ∈ Mλ with
M (η)(x∗) = 0, B returns the signing key

skabs(M (η)) =0
BBBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗])

1
CCCCCCCCA
,

if η ≤ ν, where the program Constrained-Key.Prog′abs is an alteration of the program
Constrained-Key.Progabs (Fig. 6.2) and is described in Fig. D.1, while it returns the signing
key

skabs(M (η)) =0
BBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Progabs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A])

1
CCCCCCCA
,

if η > ν. Observe that Hyb0,0 coincides with Hyb0.

Hyb1: This experiment coincides with Hyb0,q̂key . More formally, in this experiment for η =
1, . . . , q̂key, in reply to the ηth signing key query of A corresponding to signing policy TM
M (η) ∈ Mλ with M (η)(x∗) = 0, B generates all the components of the signing key as in Hyb0,
however, it returns the signing key

skabs(M (η)) =0
BBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗])

1
CCCCCCCA
.

The rest of the experiment is analogous to Hyb0.

Hyb2: This experiment is identical to Hyb1 other than the following exceptions:

(I) Upon receiving the challenge attribute string x∗, B proceeds as follows:
1. It selects a PPRF key K

$←− F .Setup(1λ) and generates hk $←− SSB.Gen(1λ, nssb-blk =
2λ, i∗ = 0) just as in Hyb1,
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K1, . . . ,Kλ,Ksps,A, SSB
hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value
win, Accumulator proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length
`inp, Signature σsps,in

Output: (SIG signing key sksig, SIG verification key vksig), or Header Position (posout, Symbol symout,
TM state stout, Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout),
or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1.
If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.

2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3.(a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A,vksps,A,vksps-rej,A) = SSB.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4.(a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if [stout = qac] ∧ [(h, `inp) 6= (h∗, `∗)], perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig,vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig,vksig).
Else if stout = qac, output ⊥.

5.(a) Compute wout = ACC.Update(ppacc, win, symout, posin,aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6.(a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A,vk′sps,A,vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Set mout = (vout, stout, wout, posout). Compute σsps,out = SPS.Sign(sk′sps,A,mout).

7. If t+ 1 = 2τ
′
, set seedout = F(Kτ ′ , (h, `inp)).

Else, set seedout = ε
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. D.1. Constrained-Key.Prog′abs

2. It then computes h∗ = Hhk(x∗) and creates the punctured PPRF key K{(h∗, `∗)} $←−
F .Puncture(K, (h∗, `∗)),

3. It computes br∗sig = F(K, (h∗, `∗)), forms (csk∗sig,Óvk∗sig) = SIG.Setup(1λ; br∗sig),

4. It sets the public parameters ppabs to be given toA as ppabs = (hk, IO(Verify.Prog′abs[K{(h∗,
`∗)},Óvk∗sig, h

∗, `∗])), where the program Verify.Prog′abs is an alteration of the program
Verify.Progabs (Fig. 6.1) and is depicted in Fig. D.2.

Constants: Punctured PPRF key K{(h∗, `∗)}, SIG verification key cvk∗sig, SSB hash value
of challenge input h∗, Length of challenge input `∗

Inputs: SSB hash value h, Length `inp
Output: SIG verification key cvksig

(a) If (h, `inp) = (h∗, `∗), output cvk∗sig.
Else compute r̂sig = F(K{(h∗, `∗)}, (h, `inp)), (Òsksig,cvksig) = SIG.Setup(1λ; r̂sig).

(b) Output cvksig.

Fig. D.2. Verify.Prog′abs
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(II) For η = 1, . . . , q̂key, in response to the ηth signing key query of A corresponding to signing
policy TM M (η) ∈Mλ with M (η)(x∗) = 0, B provides A with the signing key

skabs(M (η)) =0
BBBBBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K{(h∗, `∗)},K
(η)
1 , . . . ,K

(η)
λ ,

K
(η)
sps,A, h

∗, `∗])

1
CCCCCCCCCCA
.

Hyb3: This experiment is similar to Hyb2 with the only exception that B selects r̂∗sig
$←− Ypprf.

More formally, this experiment has the following deviations from hyb2:

(I) In this experiment B creates the punctured PPRF key K{(h∗, `∗)} as in Hyb2, how-
ever, it generates (csk∗sig,Óvk∗sig) $←− SIG.Setup(1λ). It includes the obfuscated program
IO(Verify.Prog′abs[K{(h∗, `∗)}, Óvk∗sig, h

∗, `∗]) within the public parameters ppabs to be
provided to A as earlier.

(II) Also, for θ = 1, . . . , q̂sign, to answer the θth signature query of A on message msg(θ) ∈
Mabs under attribute string x∗, B computes σ

(θ)
sig

$←− SIG.Sign(csk∗sig,msg(θ)) and returns
σ

(θ)
abs = (Óvk∗sig, σ

(θ)
sig) to A.

Analysis

Let Adv(0)
A (λ),Adv(0,ν)

A (λ) (ν = 1, . . . , q̂key),Adv(1)
A (λ),Adv(2)

A (λ), and Adv(3)
A (λ) represent respec-

tively the advantage of the adversary A, i.e., A’s probability of successfully outputting a valid
forgery, in Hyb0,Hyb0,ν (ν = 1, . . . , q̂key),Hyb1, Hyb2, and Hyb3 respectively. Then, by the de-
scription of the hybrid experiments it follows that Advabs,uf-cma

A (λ) ≡ Adv(0)
A (λ) ≡ Adv(0,0)

A (λ)
and Adv(1)

A (λ) ≡ Adv(0,q̂key)
A (λ). Hence, we have

Advabs,uf-cma
A (λ) ≤

q̂keyX
ν=1
|Adv(0,ν−1)

A (λ)− Adv(0,ν)
A (λ)|+

2X
j=1
|Adv(j)

A (λ)− Adv(j+1)
A (λ)|+ Adv(3)

A (λ).

(D.1)
Lemmas D.1–D.4 will show that the RHS of Eq. (D.1) is negligible and thus the existential
unforgeability of the ABS construction of Section 6.2 follows. ut

D.1 Lemmas for the Proof of Theorem 6.1

Lemma D.1. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a se-
cure puncturable pseudorandom function as per Definition 2.2, SSB is a somewhere statisti-
cally binding hash function according to Definition 2.3, ACC is a secure positional accumula-
tor as defined in Definition 2.4, ITR is a secure cryptographic iterator as per Definition 2.5,
SPS is a secure splittable signature scheme according to Definition 2.6, and PRG is a secure
injective pseudorandom generator, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1)

A (λ)Adv(0,ν)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Lemma B.1 is similar to that of Lemma A.3 and, therefore, is omitted to
avoid repetition. ut
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Lemma D.2. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satis-
fies the correctness under puncturing property defined in Definition 2.2, for any PPT adversary
A, for any security parameter λ, |Adv(1)

A (λ) − Adv(2)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. The two differences between Hyb1 and Hyb2 are the following:

(I) In Hyb1, B includes IO(V0) within the public parameters ppabs provided to A, whereas, in
Hyb2, B includes the program IO(V1) within ppabs, where
– (V0) = Verify.Progabs[K] (Fig. 6.1),
– (V1) = Verify.Prog′abs[K{(h∗, `∗)},Óvk∗abs, h

∗, `∗] (Fig. D.2).

(II) For η = 1, . . . , q̂key, the signing key skabs(M (η)) returned by B to A corresponding to signing
policy TM M (η) ∈Mλ with M (η)(x∗) = 0, includes the program IO(P (η)

0 ) in the experiment
Hyb1, while skabs(M (η)) includes the program IO(P (η)

1 ) in Hyb2, where
– P

(η)
0 = Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K,K

(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗],
– P

(η)
1 = Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K{(h∗, `∗)},K

(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A,

h∗, `∗],
the program Constrained-Key.Prog′abs being described in Fig. D.1.

Now, observe that on input (h, `inp) 6= (h∗, `∗), both the programs V0 and V1 operates in the
same manner only that the latter one uses the punctured PPRF key K{(h∗, `∗)} for computing
the string r̂sig instead of the full PPRF key K used by the former program. Therefore, by the
correctness under puncturing property of PPRF F , it follows that for all inputs (h, `inp) 6=
(h∗, `∗), both the programs have identical output. Moreover, on input (h∗, `∗), V1 outputs the
hardwired SIG verification key Óvk∗sig which is computed as (csk∗sig,Óvk∗sig) = SIG.Setup(1λ; r̂∗sig),
where r̂∗sig = F(K, (h∗, `∗)). Notice that these values are exactly the same as those outputted V0
on input (h∗, `∗). Thus, the two programs are functionally equivalent.

Further, note that the program Constrained-Key.Prog′abs computes F(K, (h, `inp)) if and only
if (h, `inp) 6= (h∗, `∗). Thus, again by the correctness under puncturing property of PPRF F , the
programs P (η)

0 and P
(η)
1 are functionally equivalent as well for all η ∈ [q̂key].

Thus the security of IO, Lemma D.2 follows. Observe that to prove this lemma we would
actually have to proceed through a sequence of intermediate hybrid experiments where in each
hybrid experiment we switch the programs one at a time. ut

Lemma D.3. Assuming F is a secure puncturable pseudorandom function as per Definition 2.2,
for any PPT adversary A, for any security parameter λ, |Adv(2)

A (λ) − Adv(3)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. Suppose there exists a PPT adversaryA for which |Adv(2)
A (λ)−Adv(3)

A (λ)| is non-negligible.
Below we construct a PPT adversary B that breaks the selective pseudorandomness of the PPRF
F using A as a sub-routine.

• B initializes A on input 1λ and receives a challenge attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs

with |x∗| = `∗ from A.
• After receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. B sends (h∗, `∗) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back a punctured PPRF key K∗{(h∗, `∗)} along with a challenge value
r∗ ∈ Ypprf, where either r∗ = F(K∗, (h∗, `∗)} or r∗ $←− Ypprf. B implicitly views the key
K∗ as the key K.

3. Then B creates (csk∗sig,Óvk∗sig) = SIG.Setup(1λ; r∗).
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4. Next, B sets public parameters ppabs = (hk, IO(Verify.Prog′abs[K∗{(h∗, `∗)},Óvk∗sig, h
∗, `∗]))

and gives it to A.
• For η = 1, . . . , q̂key, to answer the ηth signing key query of A corresponding to signing policy

TM M (η) ∈Mλ with M (η)(x∗) = 0, B executes the following steps:
1. At first, B chooses PPRF keys K(η)

1 , . . . ,K
(η)
λ ,K

(η)
sps,A,K

(η)
sps,E

$←− F .Setup(1λ).
2. Next, B creates (pp(η)

acc, w
(η)
0 , store(η)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(η)
itr, v

(η)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. B returns A the signing key

skabs(M (η)) =0
BBBBBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K
∗{(h∗, `∗)},K(η)

1 , . . . ,K
(η)
λ ,

K
(η)
sps,A, h

∗, `∗])

1
CCCCCCCCCCA
.

• For θ = 1, . . . , q̂sign, in response to the θth signature query of A on message msg(θ) ∈ Mabs

under attribute string x∗, B computes σ(θ)
sig

$←− SIG.Sign(csk∗sig,msg(θ)) and provides A with
σ

(θ)
abs = (Óvk∗sig, σ

(θ)
sig).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs
b̂′ = 1 as its guess bit in its PPRF selective pseudorandomness experiment if A wins, i.e.,
if ABS.Verify(ppabs, x

∗,msg∗, σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B
outputs b̂′ = 0 in its PPRF selective pseudorandomness experiment.

Notice that if r∗ = F(K∗, (h∗, `∗)), then B perfectly simulates hyb2. On the other hand, if
r∗

$←− Ypprf, then B perfectly simulates Hyb3. This completes the proof of Lemma D.3. ut

Lemma D.4. Assuming SIG is existentially unforgeable against CMA, for any PPT adversary
A, for any security parameter λ, Adv(3)

A (λ) ≤ negl(λ) for some negligible function negl.

Proof. Suppose that there exists a PPT adversary A for which Adv(3)
A (λ) is non-negligible. We

construct a PPT adversary B that breaks the existential unforgeability of SIG using A as a
sub-routin. The description B is as follows:

• B receives a SIG verification key vk∗sig from its SIG existential unforgeability challenger C.
Then, B runs A on input 1λ and receives a challenge attribute string x∗ = x∗0 . . . x

∗
`∗−1 ∈ Uabs

with |x∗| = `∗ from A.
• After receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Next, it selects a PPRF key K

$←− F .Setup(1λ) and creates the punctured PPRF key
K{(h∗, `∗)} $←− F .Puncture(K, (h∗, `∗)).

3. Next, B sets public parameters ppabs = (hk, IO(Verify.Prog′abs[K{(h∗, `∗)},vk∗sig, h
∗, `∗]))

and gives it to A.
• For η = 1, . . . , q̂key, to answer the ηth signing key query of A corresponding to signing policy

TM M (η) ∈Mλ with M (η)(x∗) = 0, B executes the following steps:
1. At first, B chooses PPRF keys K(η)

1 , . . . ,K
(η)
λ ,K

(η)
sps,A,K

(η)
sps,E

$←− F .Setup(1λ).
2. Next, B creates (pp(η)

acc, w
(η)
0 , store(η)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(η)
itr, v

(η)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
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3. B returns A the signing key

skabs(M (η)) =0
BBBBBBBBBB@

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K{(h∗, `∗)},K
(η)
1 , . . . ,K

(η)
λ ,

K
(η)
sps,A, h

∗, `∗])

1
CCCCCCCCCCA
.

• For θ = 1, . . . , q̂sign, in response to the θth signature query of A on message msg(θ) ∈ Mabs
under attribute string x∗, B forwards the message msg(θ) to C and receives back a signature
σ

(θ)
sig on msg(θ) from C. B provides, σ(θ)

abs = (vk∗sig, σ
(θ)
sig) to A.

• At the end of interaction, A outputs a signature σ∗abs = (évk∗sig, σ
∗
sig) on some message msg∗

under attribute string x∗. B outputs (msg∗, σ∗sig) as a forgery in its existential unforgeability
experiment against SIG.

Observe that the simulation of the experiment Hyb3 by B is perfect. Now, if A wins in the
above simulated experiment, then the following must hold simultaneously:

(I) ABS.Verify(ppabs, x
∗,msg∗, σ∗abs) = 1.

(II) msg∗ 6= msg(θ) for any θ ∈ [q̂sign].

Note that ABS.Verify(ppabs, x
∗,msg∗, σ∗abs) = 1 implies [évk∗sig = vk∗sig] ∧ [SIG.Verify(évk∗sig,msg∗,

σ∗sig) = 1], i.e., SIG.Verify(vk∗sig,msg∗, σ∗sig) = 1. Further, notice that msg(θ), for θ ∈ [q̂sign], are
the only messages that B queried a signature on to C. Thus, (msg∗, σ∗sig) is indeed a valid forgery
in the existential unforgeability experiment against SIG. ut
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