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Abstract. We introduce a new technique for doing the key recovery part
of an integral or higher order differential attack. This technique speeds
up the key recovery phase significantly and can be applied to any block
cipher with S-boxes. We show several properties of this technique, then
apply it to PRINCE and report on the improvements in complexity from
earlier integral and higher order differential attacks on this cipher. Our
attacks on 4 and 6 rounds were the fastest and the winner of PRINCE
Challenge’s last round in the category of chosen plaintext attack.
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1 Introduction

PRINCE is a lightweight block cipher that was introduced in [1]. The cipher has
received a fair share of attention from cryptanalysts in the last years, with many
different attacks on round-reduced versions [3,4,5,6,7,8,9,10,11,12,13,14,15]. The
Prince Challenge website tracks the best attacks and promises cash prizes for
attacks that will have a serious impact in real-world applications [2].

In this paper we will revisit two earlier works [12,13] on PRINCE and improve
the complexities of the attacks described there. Both papers are concerned with
integral attacks, with [12] also giving details of a bit-pattern integral attack on 4
rounds and a higher order differential attack on 7 rounds of PRINCE. We re-use
the integral distinguishers described in [4,13].

The improvement we can do lies in the key recovery part. We introduce a
new technique to do key recovery, using a binary array. For PRINCE, the size
of this array is only 16 bits. Using this technique we can skip the partial trial
decryptions to check for balancedness in an integral or higher order differential
attack. This technique can be applied to speed up this type of attacks on any
block cipher with S-boxes. In addition to using this technique for key recovery
we also apply the accelerated key search technique described in [14,15] when
partial keys need to be guessed.

The improvements and comparisons to previous attacks are summarized in
Table 1. All time complexities are given in terms of number of r-round PRINCE
encryptions based on counting the number of S-box look-ups needed. The data
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complexities are given as the number of chosen plaintext/ciphertext pairs needed.
The results from [12,13] have been transformed into this format, and in some
cases slightly corrected, to get a correct comparison.

Table 1. Summary of cryptanalytic results on PRINCE

Rounds Time Data Memory Technique Ref.

4

264 16 CP 16 Integral [4]
243.4 32 KP 226.7 Diff./Logic [11]
5 sec. 210 CP � 227 MitM [11]
223.9 48 CP 48 Integral [12]
29.7 160 CP 160 Integral [12]
27.4 64 CP negl. Integral Sec. 5.1

5

264 80 CP 16 Integral [4]
224.6 96 CP 96 Integral [12]
221.4 32 CP 32 Integral Sec. 5.2
213 213 CP 32 Integral Sec. 5.2

6

2101.1 64 KP 234 MitM [11]
296.8 2 KP negl. Acc. Exh. [15]

286 + 286M.A.* 2 KP 224.6 Acc. Exh. [15]
264 216 CP 216 Integral [4]

233.7 216 CP 231.9 MitM [11]
232.3 214.6 CP 214.6 Integral [13]
228.9 214.9 CP � 227 Diff./Logic [11]
236.3 218.6 CP 218.6 Integral [12]
224.6 213 CP 213 Integral Sec. 5.3

7
252.1 234.6 CP 234.6 H.-O. Diff. [12]
244.3 233 CP 233 H.-O. Diff. Sec. 5.4

8

2124 2 KP 220 SitM [6]
2122.7 2 KP negl. Acc. Exh. [14]
2109.3 2 KP 265 MitM [14]
266.3 216 CP 249.9 MitM [11]

265.7** 216 CP 268.9 MitM [11]
260 253 CP 230 MitM [7]

250.7** 216 CP 284.9 MitM [11]

9
264 257 CP 257.3 MitM [7]

251.2 246.9 CP 252.2 Multiple Diff. [8]

10

2124 2 KP negl. Acc. Exh. [14]
2122.2 2 KP 253.3 MitM [14]
268** 257 CP 241 MitM [11]
260.6 257.9 CP 261.5 Multiple Diff. [8]

* Memory Access to a table with 225 indexes. ** Online Time
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Fig. 1. PRINCE FX construction

2 PRINCE Block Cipher

PRINCE is an FX-constructed lightweight block cipher with block size of 64
bits [1]. Two keys are used in PRINCE, both of length 64 bits, one for whitening
(K0) and the other as a round key (K1) for the core of the structure (see Fig.
1). The round key is used in every round without any key schedule, and the
whitening key before the ciphertext (K ′0) is derived by applying a simple linear
mapping to K0.

The PRINCEcore is an AES-like block cipher that employs an involutive 12-
round structure. PRINCEcore starts with two xors withK1 and a round constant,
followed by 5 forward rounds, a middle layer, 5 backward rounds and at the end,
two more xors with a round constant and K1. Fig. 2 shows the schematic view
of PRINCEcore.

The state is defined as a 4 × 4 matrix similar to AES, but in PRINCE,
instead of bytes the cells contain nibbles. Each round of PRINCEcore consists
of 5 operations: S-box, mix column, shift row, round constant addition and key
addition. These are described as follows:

– S-box (SB): Every nibble in the state is replaced using a 4-bit S-box.
– Mix Column (MC): The state is multiplied with an involutive 64 × 64

binary matrix. More precisely, this large matrix can be expressed as sixteen
4×4 matrices where each of these mixes four bits in one column of the state.

– Shift Row (SR): Row i of the state is cyclically rotated by i positions to
the left (same as shift row operation in AES).

– Round Constant Addition (RC): A bit-wise xoring with a round constant
RCi , i = 0, ..., 11.
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– Key Addition (AK): A bit-wise xoring with the key K1.

The two middle rounds contain only three layers, SB, MC and SB−1 which
makes it an involutive transformation. This transformation can also be separated
into four smaller transformations, one for each column in the state.

In the backward rounds, the operations come in the reverse order of the
forward rounds, and SB and SR are replaced with SB−1 and SR−1. The round
constants are also different, but related to the round constants in the forward
rounds. The difference RCi⊕RC11−i, i = 0, ..., 11 is always equal to the constant
value α = 0xc0ac29b7c97c50dd.

3 Integral and Higher-Order Differential Distinguishers
for PRINCE

In this section we will briefly introduce integral and higher-order differential
attacks. For each of the attacks we will revisit two integral and one higher-order
differential distinguisher for PRINCE that are used in previous attacks [4,12,13].

3.1 Integral Distinguishers

The integral or square attack was originally designed as a dedicated attack in
[16] against the Square block cipher. This cryptanalytic attack is particularly
applicable to block ciphers that use S-boxes. Integral cryptanalysis uses sets
of chosen plaintexts, where typically most parts of the plaintexts are set to
a constant (constant parts) and some parts vary through all possible values
(active parts). Then, the cryptanalyst studies how the xor-sum in the given
parts changes through the operations of the cipher. After a few rounds, the
cipher states still sum up to zero over one set (balanced state). This property
will distinguish a given cipher from a random permutation and can be used for
key recovery.

3.5-round integral distinguisher for PRINCE The 3.5-round integral dis-
tinguisher for PRINCE first used in [4] covers one forward round, two middle
rounds and one backward round except its SB−1 operation. In this distinguisher
we use 24 plaintexts which only differ in one nibble and the other 15 nibbles are
constant. When one S-box takes all its 24 possible inputs and the inputs for
all other S-boxes are constant, the states after the above 3.5 rounds (state right
before the last SB−1 operation) will be balanced, i.e. the xor-sum of these states
will be equal to zero.

4.5 round integral distinguisher for PRINCE The 4.5-round integral dis-
tinguisher for PRINCE introduced by Posteuca and Negara in [13] contains two
forward rounds, two middle rounds and one backward round except its SB−1

operation. In this distinguisher we use 212 plaintexts which only differ in three
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nibbles in the same column and the other 13 nibbles are constant. When three
S-boxes in a column take all their 212 possible inputs and the input for all other
S-boxes are constant, the state after 4.5 rounds will be balanced.

For explanations for why these sets are balanced after 3.5 and 4.5 rounds we
refer to [4,12,13].

3.2 Higher-Order Differential Distinguisher

The higher-order differential attack is a generalization of differential cryptanal-
ysis. While in a differential attack the difference between only two plaintexts is
used, higher-order differential attack studies the propagation of a set of differ-
ences between a larger set of plaintexts. Lai, in 1994, laid the groundwork by
showing that differentials are a special case of the more general case of higher
order derivatives [17] and Knudsen, in the same year, was able to show how
the concept of higher order derivatives can be used to mount attacks on block
ciphers [18].

Higher-order differential attacks are applicable to ciphers where the bits of
the cipher state at some point can be represented as Boolean polynomials of a
low algebraic degree. In PRINCE the only non-linear operation is the SB, so
the algebraic degree of the output of one round is three. Using this property
of PRINCE, in [12] one 5.5-round higher-order differential for PRINCE is pre-
sented. This distinguisher calculates the i-th derivative at some selected state
and uses a set of 2i plaintexts, where i plaintext bits vary over all possible values,
while the rest of the state is set to an arbitrary constant.

5.5-round higher-order differential distinguisher for PRINCE The ex-
pression of state variables after 3 SB layers have algebraic degree at most 33.
Therefore, any 28-th or higher order derivative of the state must be zero. The
distinguisher uses two more rounds with no cost in algebraic degree to arrive at
a 5.5-round distinguisher.

The distinguisher uses 232 chosen plaintexts, where two columns take all
possible input values. As the S-box is bijective, the first SB operation preserves
the property that the two selected columns take all 232 possible values. In the
next step MC works on columns independently, thus still there are 32 state bits
taking all possible combinations. The SR operation will move constant value
nibbles into columns with all-valued nibbles, so the MC operation in the second
round destroys the property.

Therefore, the distinguisher gets the first two SB layers for free and then
it covers another three SB and SB−1 operations. So, it gives a balanced state
after 5.5 rounds (the state right before SB−1 in the sixth round).

4 New Technique for Key Recovery

Assume that the S-boxes used in the target block cipher is n bits. Let A be a
2n-bit binary array, A = [a0, a1, . . . , a2n−1]. For any such array, we define KA to
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be the following set of n-bit values:

KA = {k ∈ GF (2)n|
2n−1⊕
i=0

ai · S(k ⊕ i) = 0} (1)

For example, for the PRINCE S-box where n = 4, if A = [1, 1, 1, 0, 1, 0, . . . , 0],
the only solutions for

S(k)⊕ S(k ⊕ 1)⊕ S(k ⊕ 2)⊕ S(k ⊕ 4) = 0

is KA = {c}.
The computation cost for finding the corresponding KA for an array of A

is wA × 2n S-box evaluations, where wA denotes the Hamming weight of array
A. This is because for each n-bit value of key we have to compute one S-box
look-up for each set bit in A.

Assume that we want to attack an R-round cipher using an (R− 0.5)-round
distinguisher which says that for a set of 2d chosen plaintexts, the xor-sum of the
cipher states after (R−0.5) rounds is equal to zero. After these (R−0.5)-rounds
there is an S-box layer before reaching the ciphertext.

The usual key recovery method would be to guess the 2n possible values for
each of the last round key words in the output of an S-box, and then partially
decrypt through the SB operation for every ciphertext. If the xor-sum of these
2d nibbles are equal to zero we accept the guessed value of subkey as a candidate
and if not we reject it. The time complexity for finding key candidates for one
n-bit word of the last round key using one set of 2d ciphertexts is equal to 2n×2d

S-box evaluations.

In the following we introduce our technique which is faster than the straight-
forward method. In our technique we will build an A array for each word in the
state from the 2d ciphertexts. Then for each array, we will find key candidates
for the corresponding word of last round key.

At the start of the attack, for each word of state we allocate a 2n-bit array A
initialized to all zeroes. Then we look at the corresponding word in each of the 2d

ciphertexts. When the value of this word is equal to x, we will flip the x-th bit in
the corresponding A. After doing this for all the 2d ciphertexts, we can just find
the corresponding set KA for the created array. The values in KA are the key
candidates for this word of last round key. So for a set of 2d ciphertexts, instead
of 2d+n S-box evaluations, our key recovery method will need about nSB×2n S-
box evaluations to find the candidates for each word of the last round key, where
nSB denotes the average number of S-box evaluations for the created arrays.

Compared with the usual key recovery method, using A arrays is faster, which
helps to reduce the complexity of integral or higher-order differential attacks.

Specially when size of data sets are big (d is large), the speed-up factor 2d

nSB
of

our technique gets bigger.
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4.1 Some Features of A Arrays

Here we introduce some facts about possible (A,KA) values which help us to
evaluate the average number of S-box operations needed nSB and also make it
smaller.

Lemma 1. In an actual attack, the weight of A is always even.

Proof: The set of ciphertexts is of size 2d, and hence even. We flip exactly one
bit in A for each ciphertext, so starting from the all-zero array the weight will
always be even after processing an even number of ciphertexts.

Lemma 2. If A = [0, . . . , 0] or A = [1, . . . , 1], then KA = GF (2n).

Proof: In the first case, all terms in the xor-sum in (1) are 0 regardless of k, so
the statement is trivially true. The second case follows from the fact SB is a
bijective operation.

Lemma 3. Let Ā be the complement of A, that is, Ā = [1, 1, ..., 1] ⊕ A. Then
KĀ = KA.

Proof: Since SB is bijective, we know that
⊕2n−1

i=0 S(k ⊕ i) = 0 for any fixed k.
If the subset of terms selected by A sum to 0 (so k ∈ KA), the complementary
subset of terms must also sum to 0, hence k ∈ KĀ.

Lemma 4. If the weight of A is 2 or 2n − 2, then KA = ∅.

Proof: SB is bijective, so S(x)⊕ S(y) 6= 0 for x 6= y and the case of weight 2 is
proven. The case for weight 2n − 2 follows from Lemma 3.

Using the properties introduced in the above lemmas, it is sufficient to find
the key candidates only for arrays where the weight wA is even and 4 ≤ wA ≤
2n−1. This technique is possible to apply to any integral or higher-order differ-
ential attacks on block ciphers that use S-boxes, but in the following we will just
focus on the PRINCE block cipher.

4.2 Using the A Arrays

Having an (R − 0.5)-round distinguisher we can do the key-recovery phase on
both R-round and R+ 1-round PRINCE using the technique introduced above.
For attacking R rounds we allocate one array to each of the nibbles in a state.
Each array will suggest some candidates for one nibble of K1 ⊕ K ′0, including
the right value. So the corresponding KA to these arrays can never be empty.
In these attacks we will not save the ciphertexts in the memory, so the memory
complexity will just be saving the arrays, which is negligible.

For attacking R + 1-round PRINCE, instead of a half-round (one SB−1

operation), there is one and a half rounds (one SB−1 operation and one complete
round) between the ciphertext and the end of the distinguisher. For key recovery
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Fig. 3. Attack on R-round PRINCE using (R− 0.5)-round distinguisher

we then guess one column of K ′0 ⊕K1 and partially decrypt the corresponding
column in all of the 2d ciphertexts for one round. Then we build A-arrays for
the partially decrypted nibbles and find candidates for 4 corresponding nibbles
of K1. Since we do not know whether the guessed value of K ′0 ⊕K1 is the right
one or not, the arrays related to these 4 nibbles of K1 could have a empty set
of KA. In this case, when an array suggests an empty KA it means the guessed
value for K ′0 ⊕K1 was wrong. We call this a false array.

Both of the R- and R + 1-round PRINCE attacks are illustrated in Fig. 3
and Fig. 4, respectively.

4.3 Average Number of S-box evaluations for an Array

For computing the cost of finding key candidates we need to know the average
number of S-box evaluations for an array. By using the lemmas, this number will
be equal to

nSB = 4× (P4 + P12) + 6× (P6 + P10) + 8× P8 (2)

where Pw is the probability that the weight of array A is w.
In fact, the value for Pw depends on the number of texts used to produce

the array A. For example, when d = 4 then P16 < P0 even though there is only
one array of weight 0 and one of weight 16. We can evaluate Pw, by using a
recursive formula that we explain in the following. Let Ai be the array for one
nibble, after processing i ciphertexts in one set. Assume we have processed i− 1
nibble values and found that the weight of Ai−1 is w. By processing one more
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Fig. 4. Attack on R + 1-round PRINCE using (R− 0.5)-round distinguisher
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nibble in the set, we have the relations below for the weight w′ of the array Ai:
Pr(w′ = 1) = 1 w = 0

Pr(w′ = 15) = 1 w = 16

Pr(w′ = w − 1) = w
16 w 6= 0,16

Pr(w′ = w + 1) = 1− w
16 w 6= 0,16

(3)

Let fi = [fi(0), fi(1), . . . , fi(16)] be the probability distribution for the weight
of the array Ai. In an actual attack, the array A is initialized to all-zeroes, so
f0 = [1, 0, . . . , 0]. Given fi−1, the probability distribution fi is given as

fi(0) = 1
16 · fi−1(1)

fi(j) = (1− j−1
16 ) · fi−1(j − 1) + j+1

16 · fi−1(j + 1) 0 < j < 16

fi(16) = 1
16 · fi−1(15)

(4)

The values of Pw to be used in (2) are the values in f2d when using a set of
2d chosen plaintexts, and these values can be computed by using (4) recursively.
When d is equal to 4, nSB will be 6.37419 and it converges quickly to 6.51904
for larger d’s.

4.4 Average Number of Key Candidates for an Array

By running through the all 16-bit arrays with weight of 4, 6 and 8, we can
count the number of arrays giving KA’s of the same size. These numbers are
summarized in Table 2. For each possible weight w we find the average size of
KA, denoted n̄w, both with and without false arrays.

In a set of 2d ciphertexts produced according to the distinguisher, the average
number for |KA| is equal to

¯|K| =
15∑

w=0

Pw · n̄w (5)

Table 2. Average number for suggested key candidates

number of arrays with |KA| = average value for |KA|, n̄w

w 0 1 2 3 4 16 with F.A. without F.A.

0 0 0 0 0 0 1 16 16

2 120 0 0 0 0 0 0 –

4 392 816 432 160 20 0 1.2308 1.5686

6 3120 3040 1488 288 72 0 0.8951 1.4664

8 4502 4320 2976 640 432 0 1.0816 1.6635

10 3120 3040 1488 288 72 0 0.8951 1.4664

12 392 816 432 160 20 0 1.2308 1.5686

14 120 0 0 0 0 0 0 –

16 0 0 0 0 0 1 16 16
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The values of Pw to be used in (5) are the values in f2d when using a set
of 2d chosen plaintexts. We can now compute the exact value of the expected
number of suggested keys from one set of plaintexts in an attack, given by (5).
In our attacks with false arrays ¯|K| is always 1. In attacks without false arrays
n̄K is about 1.5360 using 24 ciphertexts, and ¯|K| converges quickly to 1.5453 for
larger sets.

5 Cryptanalysis of Round-Reduced PRINCE

In this section we will use the distinguishers from Section 3 and the key recovery
method introduced in Section 4 to cryptanalyze round-reduced PRINCE.

5.1 Attack on 4-round PRINCE

For 4-round PRINCE, we will use the 3.5-round integral distinguisher. One set
consists of 16 chosen plaintexts that gets encrypted through 4-round PRINCE.
One bit-array A is initialized to all zero for each of the 16 nibbles in a state.
For the value x in a nibble, we flip the bit ax in the corresponding A for each
ciphertext as they are produced. Finally we use the arrays to find the key candi-
dates, and repeat with one more set to get unique values. The exact procedure
for recovering a unique value for K ′0 ⊕ K1 using s sets of data is summarized
in Algorithm 1. In the algorithm we use Cj,t

i to denote i-th nibble in the j-th
ciphertext of the t-th set. Ki denotes candidate subkeys for the i-th nibble.

After finding K ′0 ⊕ K1, we follow the attack in [12] and use a 2.5-round
distinguisher starting from the second round of the 3.5-round distinguisher to

Algorithm 1 Key recovery attack without false arrays

for i = 0 : 15 do
Ki = F4

2;
end for
for t = 1 : s do

for i = 0 : 15 do
Ai = [0, . . . , 0];

end for
for j = 0 : 2d − 1 do

for i = 0 : 15 do
Put x = Cj,t

i and flip the bit ai
x;

end for
end for
for i = 0 : 15 do

Find ki, the key candidates for Ai;
Ki = Ki ∩ ki;

end for
end for
Return K = [K0, . . . ,K15];
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find the exact value of K1. The internal states will be balanced after 2.5 rounds,
just before the S-box layer in the third round. We use the recovered K ′0 ⊕ K1

to decrypt the 4-round ciphertexts one round, and follow Algorithm 1 on the
cipher states after three rounds to recover K1. When both K ′0 ⊕K1 and K1 are
known it is trivial to find the user-selected key.

Complexity: This attack is without false arrays and each set of data has 24

pairs. Each array will suggest on the average m = 1.5360 keys. After the first
set of data is processed we expect m16 = 29.91 key candidates remaining for
the whole K ′0 ⊕ K1. Using another set of data we will only have an expected
(29.91)2 × 2−64 = 2−44.19 key candidates remaining for the value of K ′0 ⊕ K1.
With very high probability, only the correct value for K ′0 ⊕K1 will remain. So
we need only two sets of data for finding K ′0⊕K1 and similarly another two sets
of data for finding K1.

The data complexity of the attack is 24 × (2 + 2) = 26 chosen plaintexts and
its memory complexity is just saving 16 ×m nibbles for storing the initial key
candidates and 16 arrays of 16-bits each which is negligible.

The time complexity of this attack will be producing the chosen data (26

4-round encryptions), 16 times finding the key candidates for each nibble of
K ′0 ⊕ K1 for each set (on average 2 × 16 × 24 × 6.37419 SB operations), one
round partial decryption of second data sets (25 one round encryptions) and 16
times finding the key candidates for each nibble of K1 for each set. In total this
is equal to about 27.44 4-round PRINCE encryptions.

5.2 Attack on 5-round PRINCE

For cryptanalyzing 5-round PRINCE, we can use either the 3.5-round or 4.5-
round integral distinguishers. Using the 3.5-round distinguisher will lead to lower
data complexity, but a higher time complexity than using the 4.5-round distin-
guisher. We present both attacks below.

Attack with 4.5-round distinguisher: The attack has a similar procedure to the
4-round one, except that in each set there are 212 ciphertexts instead of 24. First
we find a unique value for K ′0⊕K1 using Algorithm 1. Then we can decrypt one
round and use the 3.5-round distinguisher to find the value of K1. For the 3.5-
round distinguisher it is not necessary to ask for more data, we can use subsets
of size 24 that exist in the sets of 212 pairs we already have. Using the recovered
value for K ′0 ⊕K1 we will partially decrypt only two subsets of 24 ciphertexts
for one round to reach the internal state after 4 rounds and use them to find the
exact value of K1 with Algorithm 1.

Complexity: This attack is without false arrays and each set of data has 212 pairs.
So each array will suggest m = 1.5453 keys. After the first set of data is processed
we can expect to have m16 = 210.05 key candidates for the whole K ′0 ⊕ K1.
Using another set of data we expect to have only (210.05)2 × 2−64 = 2−43.91 key
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candidates for the value of K ′0⊕K1. So we need only two sets of data for finding
K ′0 ⊕K1, and reuse subsets within these to find K1.

The data complexity of the attack is 2× 212 = 213 chosen plaintexts and its
memory complexity is saving two set of 24 data for recovering K1. The time for
producing the chosen data sets is dominating the time complexity in the attack.
Hence the time complexity is approximately 213 5-round PRINCE encryptions.

Attack with 3.5-round distinguisher: In this attack, we will guess one column of
K ′0⊕K1 and partially decrypt the ciphertexts for one round. The values for four
nibbles at the end of the fourth round can be computed for each guessed column.
We build A-arrays from these values. Then we will find the corresponding can-
didates for 4 nibbles of K1. When the guess for a column of K ′0 ⊕K1 is wrong,
we may end up with an A array such that KA is the empty set, that is, we have
a false array. In this case we can reject the guessed value for K ′0 ⊕K1 as wrong
and go to next value. The exact procedure for recovering a unique value for the
c-th column of K ′0 ⊕K1 and its corresponding 4 nibbles in K1 is summarized in
Algorithm 2.

Complexity: In this attack we may get false arrays and each set of data has 24

pairs. Then each array will suggest one key on the average. So after processing

Algorithm 2 Key recovery attack with false arrays

for K ∈ F16
2 do

for i = 0 : 3 do
Ki

1 = F4
2;

end for
for t = 1 : s do

for i = 0 : 3 do
Ai = [0, . . . , 0];

end for
for j = 0 : 2d − 1 do

Using K partially decrypt Cj,t
4c:4c+3 to reach [x0, x1, x2, x3];

for i = 0 : 3 do
Flip the bit ai

xi ;
end for

end for
for i = 0 : 3 do

Find ki, the key candidates for Ai;
Ki

1 = Ki
1 ∩ ki;

if Ki
1 is empty then

Reject the current value of K and go to next value;
end if

end for
end for
Return K and [K0

1 ,K
1
1 ,K

2
1 ,K

3
1 ];

end for
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the first set of data we will have one candidate for 4 nibbles of K1 related to
the guessed value for 4 nibbles of K ′0 ⊕ K1. Using another set of data, there
will remain only 216 × 2−16 = 1 key candidate for 4 nibbles of K ′0 ⊕ K1 and
the related 4 nibbles in K1. For finding the other subkeys related to the other
columns we will use these sets of data again, so we need only these two sets.

The data complexity of the attack is 24 × 2 = 25 chosen plaintexts. The
memory complexity is saving the 25 ciphertexts.

The time complexity is in the worst case (when we never exit early due to
empty Ki

1)
4× 216 × 2× (24 × 4 + 4× 24 × 6.519) = 227.91

SB operations which is about 221.59 5-round PRINCE encryptions. Using the
accelerating techniques from [14] (which stores S-box evaluations that are not
affected by new guesses of K1⊕K ′0), the time complexity can be further reduced
to 227.76 SB operations or 221.44 5-round PRINCE encryptions.

5.3 Attack on 6-round PRINCE

For attacking 6-round PRINCE, we will use the 4.5-round integral distinguisher
with partial key guessing following Algorithm 2. With two sets of 212 chosen
plaintext/ciphertext pairs, we will guess one column of K ′0⊕K1, partially decrypt
the ciphertexts for one round and buildA-arrays, and then find the corresponding
values for 4 nibbles of K1.

This attack will need only two sets of data, so the data complexity of the
attack is 212×2 = 213 chosen plaintexts. The memory complexity is again saving
the ciphertexts. The time complexity will be

4× 216 × 2× (212 × 4 + 4× 24 × 6.519) = 233.04

SB operations, and by using the accelerating techniques from [14] when guessing
the 4 nibbles of K ′0 ⊕ K1, the time complexity can be reduced to 231.22 SB
operations or approximately 224.64 6-round PRINCE encryptions.

5.4 Attack to 7-round PRINCE

For the attack on 7-round PRINCE, we use the 5.5-round higher-order differen-
tial distinguisher and Algorithm 2 with two sets of 232 pairs of data. Each set
of data will be balanced right before the S-box layer in the sixth round, so the
key recovery procedure in Algorithm 2 can be applied.

Again this attack will need only two sets of data, so its data complexity is
233 chosen plaintext/ciphertext pairs. Saving the ciphertexts is the substantial
memory complexity. The time complexity will be

4× 216 × 2× (232 × 4 + 4× 24 × 6.519) = 253

SB operations which by applying the accelerating technique the time complexity
can be reduced to 251.09 SB operations or 244.29 7-round PRINCE encryptions.
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6 Conclusion

In this paper we have introduced a technique of using arrays for the key recovery
part of an integral or higher order differential attack. In particular, integral and
higher order differential attacks on block ciphers with S-boxes will benefit from
this technique.

We have applied the faster key recovery to the same integral or higher order
differential distinguishers used in earlier attacks on PRINCE. The improvements
in complexity, as measured by the number of S-box evaluations, gains a signif-
icant factor from the earlier attacks. Our attacks on 4 and 6 rounds were the
fastest and the winner of PRINCE Challenge’s last round in the category of
chosen plaintext attack.
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