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Abstract

Recently, Bitansky [Bit17] and Goyal et.al [GHKW17] gave generic constructions of selec-
tively secure verifiable random functions(VRFs) from non-interactive witness indistinguishable
proofs (NIWI) and injective one way functions. In this short note, we give an alternate construc-
tion of selectively secure VRFs based on the same assumptions as an application of the recently
introduced notion of verifiable functional encryption [BGJS16]. Our construction and proof is
much simpler than the ones in [Bit17, GHKW17], given previous work (most notably given the
constructions of verifiable functional encryption in [BGJS16]).
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1 Introduction

Verifiable random functions, introduced by Micali, Rabin and Vadhan[MRV99] are pseudorandom
functions where it is possible to verify that a given output y corresponds to the correct evaluation
of the function on any input x. Recently, Bitansky [Bit17] and Goyal et.al [GHKW17] gave generic
constructions of selectively secure verifiable random functions(VRFs) from non-interactive witness
indistinguishable proofs (NIWI) and injective one way functions. In this short note, we give an
alternate construction of selectively secure VRFs based on the same assumptions as an application
of the recently introduced notion of verifiable functional encryption [BGJS16]. Our construction
and proof is much simpler than the ones in [Bit17, GHKW17], given previous work (most notably
given the constructions of verifiable functional encryption in [BGJS16]).

Notation: Throughout the paper, let the security parameter be λ and let PPT denote a prob-
abilistic polynomial time algorithm. We defer the description of non-interactive commitments,
puncturable pseudorandom functions and non-interactive witness indistinguishable proofs (NIWI)
to Appendix A. We define the notion of secret key verifiable functional encryption in Appendix B.

2 Verifiable Random Functions

A verifiable random function[MRV99] VRF = (Gen,Eval,Prove,Verify) consists of the following
algorithms:

• Gen(λ). The setup algorithm takes as input a security parameter λ and outputs a secret key
SK and public verification key VK ∈ {0, 1}k(λ).

• Eval(SK, x). The evaluation algorithm takes as input the secret key SK and a message x and
outputs a string y ∈ {0, 1}m(λ).

• Prove(SK, x). The prove algorithm takes as input the secret key SK and a message x. It
produces a proof π that y is consistent with the verification key VK.

• Verify(VK, π, x, y). The verification algorithm takes as input the verification key VK, a message
x, a string y and a proof π. It outputs 1 if the proof verifies and 0 otherwise.

The scheme has the following properties:

Definition 1. (Completeness) Informally, it states that given any input x, if y is generated by
running the honest evaluation algorithm and π is generated by running the honest prove algorithm,
the verification algorithm would output 1 always.

Definition 2. (Uniqueness) Informally, it states that for any input x and any verification key VK,
there exists at most a single y for which there is an accepting proof π.

Definition 3. (Selective Indistinguishability) The selective security of a VRF scheme is captured
by the following game.

• Adversary A on input the security parameter outputs a challenge x∗.

• The challenger C computes (VK, SK)← Gen(1λ). V K is handed to the adversary.
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• Adversary can now adaptively make queries of the form xi 6= x∗. On each query, C computes
yi ← Eval(SK, x) and πi ← Prove(SK, x). Adversary is given (yi, πi).

• C samples a bit b ∈ {0, 1}. If b = 0, C sets y∗ = Eval(K,x∗) and otherwise sets it as a random
string in the co-domain of the PRF. y∗ is given to A.

• Adversary A then outputs a bit b′. It wins the game if b′ = b.

We say that VRF is selectively secure if for any polynomial time adversary A, the adversary wins
with a negligible probability in the game described above.

We refer the reader to [Bit17] for more formal definitions of the above properties.

3 Construction

Let VFE = (Setup,Enc,KeyGen,Dec,VerifyCT,VerifyK) be a secret-key verifiable functional encryp-
tion scheme secure against single ciphertext and unbounded key queries. Such a scheme can be
instantiated using NIWI and injective one-way functions by applying the verifiable FE transforma-
tion in [BGJS16] to the FE construction of [GVW12, SS10]. Let PRF = (Gen,Eval,Punc) be a
puncturable PRF. Now we describe our construction for VRF.

Gen(1λ) : On input the security parameter, first run PRF.Gen(1λ) → K. Also run Setup(1λ) →
(PP0,MSK). Compute Enc(PP0,MSK,K) → PP1 Output VK = (PP0,PP1) and SK =
(K,MSK,PP0,PP1)

Eval(SK, x) : On input x and SK = (K,MSK,PP0,PP1), output PRF.Eval(K,x)→ y.

Prove(SK, x) : On input SK = (K,MSK,PP0,PP1) and x, compute and output KeyGen(PP0,MSK, Ux)→
π. Here Ux represents the function PRF.Eval(·, x).

Verify(VK, π, x, y) : On input VK = (PP0,PP1), π, x and y checks that Dec(PP0, π,PP1) = y. It
outputs 1 if the check passes, otherwise it outputs 0.

We observe the following two properties of the above scheme:

Completeness. Completeness follows from the correctness of the puncturable PRF and the cor-
rectness of the verifiable FE scheme.

Uniqueness. Uniqueness follows from the verifiability of the verifiable FE scheme.

We describe the security proof in the next section.

4 Security Proof

Theorem 1. Assuming PRF is a secure puncturable PRF and VFE is a secure secret-key verifiable
functional encryption scheme against single ciphertext and unbounded key queries, the construction
of VRF in the above section is a selectively secure verifiable random function.
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Proof. We now list the hybrids where the first hybrid corresponds to the real security game when
b = 0 and the last hybrid corresponds to the game when b = 1. We show that these hybrids are
computationally close.

Hyb0:

• A on input the security parameter outputs a challenge x∗.

• Challenger samples a VFE key (PP0,MSK) and a PRF key K and outputs V K = (PP0,PP1 =
VFE.Enc(PP0,MSK,K)). It sends V K to the adversary.

• Each query xi 6= x∗ is handled as in the algorithm. Namely, compute yi ← PRF.Eval(K,xi)
and compute πi ← VFE.KeyGen(PP0,MSK, Uxi).

• Adversary is now given y∗ = PRF.Eval(K,x∗) and then it outputs b′. It wins the game if
b′ = 0.

Hyb1: This hybrid is the same as the previous one except that key K is punctured at x∗ and then
the punctured key Kx∗ is used to compute V K and the other responses. The challenge is given out
as y∗ = PRF.Eval(K,x∗).

Hyb2: This hybrid is the same as the previous one except that y∗ is sampled uniformly from
the co-domain of the PRF.

Hyb3: This hybrid is the same as the previous one except that the original key K is used to
compute V K and other responses.

We now provide short indistinguishability arguments:

1. Hyb0 is indistinguishable from Hyb1 due to the selective security of the VFE and correctness
property of PRF.

2. Hyb1 is indistinguishable from Hyb2 due to the security of the puncturable PRF.

3. Hyb2 is indistinguishable from Hyb3 due to the selective security of the VFE and correctness
property of PRF.

Remark on Adaptive Security: We note that the construction described above can also be
made to achieve adaptive security by following the overall approach given in [Bit17, GHKW17].
Specifically, adaptive security can be achieved by using a (single-key) adaptive constrained PRF
for admissible hash function constraints instead of a puncturable PRF.
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A Preliminaries

A.1 Commitment Schemes

A commitment scheme Com is a PPT algorithm that takes as input a string x and randomness r
and outputs c ← Com(x, r). A perfectly binding and computationally hiding commitment scheme
must satisfy the following properties:
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• Perfectly Binding: Two different strings cannot have the same commitment.
More formally, ∀x1 6= x2, r1, r2, Com(x1; r1) 6= Com(x2; r2).

• Computational Hiding: For all strings x0 and x1 (of the same length), for all non-uniform
PPT adversaries A, we have that:
|Pr[A(Com(x0) = 1]− Pr[A(Com(x1) = 1]| ≤ negl(λ)

In our constructions, we will use a standard non interactive perfectly binding and computation-
ally hiding commitment scheme. Such a commitment scheme can be based on injective one way
functions[Blu81].

A.2 NIWI Proofs

We will be extensively using non-interactive witness indistinguishable proofs NIWI as provided by
[GOS06].

Definition 4. A pair of PPT algorithms (P,V) is a NIWI for an NP relation RL if it satisfies:

1. Completeness: for every (x,w) ∈ RL, Pr[V(x, π) = 1 : π ← P(x,w)] = 1.

2. (Perfect) Soundness: Proof system is said to be perfectly sound if there for every x /∈ L and
π ∈ {0, 1}∗
Pr[V(x, π) = 1] = 0.

3. Witness indistinguishability: for any sequence I = {(x,w1, w2) : w1, w2 ∈ RL(x)}
{π1 : π1 ← P(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← P(x,w2)}(x,w1,w2)∈I

[GOS06] provides a construction of perfectly sound non-interactive witness indistinguishable
proofs based on the decisional linear (DLIN) assumption. [BOV07] also provides perfectly sound
proofs (although less efficient) under a complexity theoretic assumption, namely that Hitting Set
Generators against co-non deterministic circuits exist. [BP15] construct NIWI from one-way per-
mutations and indistinguishability obfuscation.

A.3 Puncturable Psuedorandom Functions

A PRF F : Kk∈N × X → Yk∈N is a puncturable pseudorandom function [BW13, SW14] if there is
an additional key space Kp and three polynomial time algorithms (F.setup, F.eval, F.puncture) as
follows:

• F.setup(1k) a randomized algorithm that takes the security parameter k as input and outputs
a description of the key space K, the punctured key space Kp and the PRF F .

• F.puncture(K,x) is a randomized algorithm that takes as input a PRF key K ∈ K and x ∈ X
, and outputs a key K{x} ∈ Kp.

• F.Eval(K,x′) is a deterministic algorithm that takes as input a punctured key K{x} ∈ Kp
and x′ ∈ X . Let K ∈ K, x ∈ X and K{x} ← F.puncture(K,x).

The primitive satisfies the following properties:
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1. Functionality is preserved under puncturing: For every x∗ ∈ X ,

Pr[F.eval(K{x∗}, x) = F (K,x)] = 1

here probability is taken over randomness in sampling K and puncturing it.

2. Psuedo-randomness at punctured point: For any poly size distinguisher D, there exists
a negligible function µ(·), such that for all k ∈ N and x∗ ∈ X ,

| Pr[D(x∗,K{x∗}, F (K,x∗)) = 1]− Pr[D(x∗,K{x∗}, u) = 1] |≤ µ(k)

where K ← F.Setup(1k), K{x∗} ← F.puncture(K,x∗) and u
$←− Yk

B Verifiable Secret Key Functional Encryption

In this section, we define verifiable secret key functional encryption. Let X = {Xλ}λ∈N and
Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set. Let F = {Fλ}λ∈N denote an
ensemble where each Fλ is a finite collection of functions, and each function f ∈ Fλ takes as input
a string x ∈ Xλ and outputs f(x) ∈ Yλ. Similar to a secret key functional encryption scheme, a ver-
ifiable secret key functional encryption scheme VFE = (Setup,Enc,KeyGen,Dec,VerifyCT,VerifyK)
consists of the following polynomial time algorithms:

• Setup(1λ). The setup algorithm takes as input the security parameter λ and outputs the
public parameters PP and the master secret key MSK.

• Enc(PP,MSK, x) → CT. The encryption algorithm takes as input a message x ∈ Xλ, the
public parameters PP and the master secret key MSK. It outputs a ciphertext CT.

• KeyGen(PP,MSK, f)→ SKf . The key generation algorithm takes as input a function f ∈ Fλ,
the public parameters PP and the master secret key MSK. It outputs a function secret key
SKf .

• Dec(PP, f,SKf ,CT)→ y or ⊥. The decryption algorithm takes as input the public parameters
PP, a function f , a function secret key SKf and a ciphertext CT. It either outputs a string
y ∈ Y or ⊥. Informally speaking, PP is given to the decryption algorithm for verification
purpose.

• VerifyCT(PP,CT) → 1/0. Takes as input the public parameters PP and a ciphertext CT. It
outputs 0 or 1. Intuitively, it outputs 1 if CT was correctly generated using the master secret
key MSK for some message x.

• VerifyK(PP, f,SK) → 1/0. Takes as input the public parameters PP, a function f and a
function secret key SK. It outputs either 0 or 1. Intuitively, it outputs 1 if SK was correctly
generated as a function secret key for function f .

The scheme has the following properties:
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Definition 5. (Correctness) A verifiable secret key functional encryption scheme VFE for F is
correct if for all f ∈ Fλ and all x ∈ Xλ

Pr

 (PP,MSK)← Setup(1λ)
SKf ← KeyGen(PP,MSK, f)

Dec(PP, f,SKf ,Enc(PP,MSK, x)) = f(x)

 = 1

Definition 6. (Verifiability) A verifiable secret key functional encryption scheme VFE for F is
verifiable if, for all PP ∈ {0, 1}∗, for all CT ∈ {0, 1}∗, there exists x ∈ X such that for all f ∈ Fand
SK ∈ {0, 1}∗, there exists f ∈ F such that: if

VerifyCT(PP,CT) = 1 and VerifyK(PP, f,SK) = 1

then
Pr

[
Dec(PP, f,SK,CT) = f(x)

]
= 1

.

Remark:

B.1 Indistinguishability based Security

The indistinguishability based security notion for message hiding in a verifiable secret key func-
tional encryption is similar to the security notion for message hiding of a secret key functional
encryption scheme. For completeness, we define it below. We also consider a {full/selective} CCA
secure variant where the adversary, in addition to the security game described below, has access to
a decryption oracle which takes a ciphertext and a function as input and decrypts the ciphertext
with an honestly generated key for that function and returns the output. The adversary is allowed
to query this decryption oracle for all ciphertexts of his choice except the challenge ciphertext itself.
We define the security notion for message hiding in a verifiable secret key functional encryption
scheme using the following game (Full− IND) message hiding between a challenger and an adversary.
Setup Phase: The challenger runs the setup algorithm and generates (PP,MSK)← VFE.Setup(1λ).
The challenger then hands over the public parameters PP to the adversary. The adversary has ac-
cess to two oracles which it can query in any interleaved fashion.
Function Secret Key Oracle: The adversary makes function secret key queries by submitting
functions f ∈ Fλ. The challenger responds by giving the adversary the corresponding function
secret key SKf ← vFE.KeyGen(PP,MSK, f).
Encryption Oracle: The adversary queries with a message m ∈ Xλ and gets back a ciphertext
CT← vFE.Enc(PP,MSK,m).
Challenge Phase: The adversary chooses two messages (m0,m1) of the same size (each in Xλ)
such that for all queried functions f to the function secret key oracle, it holds that f(m0) = f(m1).
The challenger selects a random bit b ∈ {0, 1} and sends a ciphertext CT← VFE.Enc(PP,MSK,mb)
to the adversary.
Function Secret Key Oracle: The adversary may submit additional function queries f ∈Fλ as
long as they do not violate the constraint described above. That is, for all queries f , it must hold
that f(m0) = f(m1).
Encryption Oracle: The adversary may submit additional message queries.
Guess: The adversary submits a guess b

′
and wins if b

′
= b. The adversary’s advantage in this
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game is defined to be 2 ∗ |Pr[b = b
′
]− 1/2|.

We also define the selective security game, which we call (sel− IND) where the adversary outputs
the challenge message pair even before seeing the public parameters.

Definition 7. A secret key verifiable functional encryption scheme VFE is { selective, fully }
secure message hiding if all polynomial time adversaries have at most a negligible advantage in the
{Sel− IND,Full− IND} message hiding security game.

One can also consider (q1, q2) secure secret-key VFE where the adversary is allowed upto q1 and
q2 queries to the oracles respectively. Our results are general and directly extend to these restricted
security models also.
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