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—— Abstract

We revisit the problem of estimating entropy of discrete distributions from independent samples,
studied recently by Acharya, Orlitsky, Suresh and Tyagi (SODA 2015), improving their upper
and lower bounds on the necessary sample size n. For estimating Renyi entropy of order «, up
to constant accuracy and error probability, we show the following

Upper bounds n = O(1) - 2(1_%)H°“ for integer o > 1, as the worst case over distributions

with Renyi entropy equal to H,,.

Lower bounds n = Q(1) - K'=% for any real o > 1, with the constant being an inverse

polynomial of the accuracy, as the worst case over all distributions on K elements.

Our upper bounds essentially replace the alphabet size by a factor exponential in the entropy,
which offers improvements especially in low or medium entropy regimes (interesting for example
in anomaly detection). As for the lower bounds, our proof explicitly shows how the complexity
depends on both alphabet and accuracy, partially solving the open problem posted in previous
works.

The argument for upper bounds derives a clean identity for the variance of falling-power sum
of a multinomial distribution. Our approach for lower bounds utilizes convex optimization to find
a distribution with possibly worse estimation performance, and may be of independent interest
as a tool to work with Le Cam’s two point method.
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1 Introduction

1.1 Reny Entropy

Renyi entropy | | arises in many applications as a generalization of Shannon En-
tropy | ]. Tt is also of interests on its right, with a number of applications including un-
supervised learning (like clustering) [ ; ], multiple source adaptation | 1,
image processing | ; ; |, password guessability [ ; ; I,
network anomaly detection [ |, quantifying neural activity [ ] or to analyze
information flows in financial data [ ]
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In particular Renyi entropy of order 2, known also as collision entropy, is used in quality

tests for random number generators | ; |, to estimate the number of random
bits that can be extracted from a physical source | ; ], characterizes security of
certain key derivation functions | ; ], helps testing graph expansion | ]
and closeness of distributions to uniformity | ; ] and bounds the number of

reads needed to reconstruct a DNA sequence | ]-

1.2 Estimation and Sample Complexity

Motivated by the discussed applications, algorithms that estimate Renyi entropy of an
unknown distribution from samples were proposed for discrete | ] and also for continuous
distributions [ |. For Shannon entropy, estimators with multiplicative errors were
studied in | ] and follow-up works; the existence of sublinear (in terms of the alphabet
size) additive estimators was proved in [ ], and the optimal additive estimator was
given in | ]. For the general case of Renyi entropy, the state of the art was established
in [ |, with upper and lower bounds on the sample complexity.

Interestingly, the estimation of Renyi entropy of integer orders a > 1 is sublinear in
the alphabet size. More precisely, to estimate the entropy of an integer order « > 1 of
a distribution over an alphabet of size K, with a constant accuracy and constant error
probability, one needs

n=0(K"%)

samples. On the other hand, the necessary sample size for non-integer o > 1 is
n=Q(K'W),

with the upper bound O(K/log K), for large K and the accuracy sufficiently small | ;
]

The estimator itself is a biased-reduced adaptation of the naive "plug-in" estimator. Note
that computing empirical frequencies as estimates to true probabilities and putting them
straight into the entropy formula (which we refer to as naive estimation) would yield a biased
estimator. To obtain better convergence properties, one needs to add some corrections to
the formula. In the case of Renyi entropy, one replaces powers of empirical frequencies in the
entropy formula by falling powers, obtaining better estimator with the complexity bounds
discussed above [ ]. See Algorithm 1 below for the pseudocode.

Algorithm 1: Estimation of Renyi Entropy

Input: entropy parameter a > 1 (integer),
alphabet A = {aq,...,ax},
samples z1,...,x, from an unknown distribution p on A
Output: number H approximating the a-entropy of p
I—{i:3j ai=ux;} /* compute the list of occurring symbols! */
fori eI do
‘ n;, — #{jx; =a;} /* compute empirical frequencies */
end

W N =

%]

M« S, 2% /* bias-corrected power sum estimation by falling powers? */

i nS

H+ L logM /* entropy from power sums */

-«

<]

7 return H
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1.3 QOur contribution
1.3.1 Results

We revisit the analysis of the minimal number of samples n (sample complexity) needed to
estimate Renyi entropy up to certain additive accuracy, obtaining improvements upon the
result in | ]. In the presentation below we consider the estimation up to constant
error probability, unless stated otherwise.

(a) better upper bounds for the sample complexity, with a simplified analysis:
n=0 (2(1_5)11“5’2) , for integer o > 1

valid for Algorithm 1, any accuracy 6 > 0, and all distributions with Renyi entropy of
order « equal to H,,
(b) lower bounds for non-integer o > 1, explicit w.r.t. both alphabet and accuracy:

n = Q(1) - max (é_éKl_é,(S_%K%) ,  for any non-integer o > 1

valid for any estimator, any accuracy ¢ < 1 and some distribution over K elements.
(c) refining the technique for proving lower bounds; we explain how to obtain optimal bounds
for the ideas used in [ ]; our construction for lower bounds is also simpler.

The first improvement essentially parameterizes the previous bound by the entropy
amount, and is of interest in medium/low entropy regimes. Note that when the entropy is at
most a half of the maximal amount (H, < 4 log K) then the complexity drops to n = O(K 7)
even for most demanding min-entropy. The improvements may be relevant for anomaly
detection algorithms based on evaluating entropy of data streams [ ]. The precise
statement, which addresses arbitrary accuracy and error probability, appears in Corollary 1.

The lower bounds given in [ ] and improved in the journal version [ ]
depend only on the alphabet, and are valid for large K and sufficiently small §. As opposed
to that, our lower bounds apply to all regimes of K and ¢ and explicitly show that large
alphabets and small accuracy both contribute to the complexity. Thus we make a progress®
towards understanding how the sample complexity depends on § and K, which is an open
problem except for integer « [ ]. In particular, our results show that the sample
complexity may be much bigger than Q (K1~°(})) for § being small depending on K, which
is not guaranteed by the previous results (e.g. Table 1 in | D.

The technique for lower bound in | ] essentially boils down to the construction of
two statistically close distributions that differ in entropy (the technique known as Le Cam’s
two-point method). The authors obtained implicitly a suboptimal pair with this property.
We instead construct explicitly a simpler pair with much better properties.

1.3.2 Techniques

The original proof of the upper bounds proceeds by estimating the variance of the falling-
power sum in Line 5 in Algorithm 1. This analysis is somewhat difficult because the empirical

Storing and updating empirical frequencies can be implemented with different data structures, we don’t
discuss the optimal solution as our primary interest is in the sample complexity.

2 Here 22 stands for the falling a-power of the number z.

3 Our result is worse in the dependency on K, but the added value is the dependency on §.
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Entropy | Accuracy | Sample Complexity

5<1 |Q(1)- min ((5*%1(%75*&1{1%)
l<a<?2

1

d>1 Q(1) - min ((2_5K)%,2*(1*é)5[(1—3>

§<1 | Q)6 =K"=
1— L
s>1 [0 (2—(1—%)%{) -

Table 1 Our lower bounds for estimation of Renyi entropy of order a. By K we denote the
alphabet size, § is the additive error of estimation, (1) is an absolute constant.

2< «

frequencies n; in Line 3 are not independent. A workaround proposed in [ | uses
Poisson sampling to randomize the number n in a convenient way (which doesn’t hurt the
convergence much), so that frequencies are independent and the variance of power sums can
directly computed.

We get rid of Poisson sampling, by showing that the falling-power sum obeys a nice and
clean algebraic identity, that can be further used to compute the variance (see Lemma 1).
We believe that our technique may be of benefit to related problems, e.g. when estimating
moments for streaming algorithms.

The argument for lower bounds in | ] starts by modifying the estimator so that it
is a function of empirical frequencies (called profiles in | ). Then, by certain facts on
zeros of polynomials and exponential sums, one exhibits two probability distributions with
certain relations between power sums. As a conclusion, again under Poisson sampling, one
obtains two distributions such that their profiles differ much in entropy, yet are close in total
variation. This yields a contradiction unless n is big enough.

Our approach deviates from these techniques. We share the same core idea, that estimation
should be continuous in total variation, yet use it to conclude a clear bound without referring
to profiles: if distributions are 7-close and the entropy differs by §, the number n must
satisfy n = Q(y71) (see Corollary 2). It remains to construct two such distributions with
possibly small v and possibly big 0. By solving the related optimization task (which we do
by an elegant application of majorization theory), we conclude that a simpler and better
choice is one distribution being flat, and other being a combination of a flat distribution
with a unit mass (see the proof of Lemma 4). We remark that our optimization approach
not only gives better lower bounds for Renyi entropy, but may be also applied to similar
estimation problems, e.g. lower bounds on the complexity for estimating functionals of a
discrete distribution. The lower bounds are summarized in Table 1.

2  Preliminaries
For any natural a and real number z, by z% = H?:_OI (x — i) we denote the a-th falling
power of z, with the convention 22 = 1. If a discrete random variable X has a probability
distribution p, we denote p(x) = Pr[X = z]. For any distribution X by X™ we denote the
n-fold product of independent copies of X. The moment of a distribution p of order « equals
Pa =, p(x)*. Through the paper, we use logarithms at base 2.

» Definition 1 (Total variation (statistical closeness)). For two distributions p,q over the
same finite alphabet the total variation equals dry = 1> |p(z) — q(z)|. If dryv(p,q) < €
we also say that p and q are e-close.
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» Definition 2 (Renyi Entropy). The Renyi entropy of order « for o > 1 equals

def 1 o 1
Ha(p) = ———log <Zp($) > =~ logpa.

Sometimes for shortness we simply say "a-entropy', referring to Renyi entropy of order «.

» Definition 3 (Entropy Estimators). Given an alphabet X’ and a fixed number n we say that
an algorithm f provides a (J, €)-approximation to a-entropy if for any distribution p over X

|f(3:1,...,mn) — H,(p)| >0

holds with probability at most ¢ over samples x1,...,x, drawn independently from p.

3 Auxiliary Facts

Define &;(z) = [X; = z] and the empirical frequency of the symbol x by
n(z) = &(a). (1)
i=1

Note that the vector (n(z))zex follows a multinomial distribution with sum n and probabilities
(p(2))zex. The lemma below states that we have very simple expressions for the falling
powers of n(x).

» Lemma 1 (Falling powers of empirical frequencies). For every « we have
n@= > &(@&(@) .G (@). (2)
il?éi27£~--7éia

In particular, we have

E [Z n(x)a] = n%pq,. (3)

xT

The proof appears in Appendix A. We also obtain the following closed-form expressions for
the variance of the sum of falling powers

» Lemma 2 (Variance of frequency falling powers sums). We have

«

) n(x)a] = n((n - ) — n®)2 + 3 n%(n - aw(‘;) N poae (4)

(=1

Var

x

The proof appears in Appendix B.

4 Upper Bounds

Similarly as in | ], we observe that to estimate Renyi entropy with additive accuracy
0O(9), it suffices to estimate power sums with multiplicative accuracy O(J).

» Theorem 4 (Estimator Performance). The number of samples needed to estimate p,, up to
a—1

a multiplicative error § and error probability € equals n = Oy, (2 o Halp)§=2 log(l/e)).

From this result one immediately obtains
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» Corollary 1. The number of samples needed to estimate H,(p), up to an additive error §
and error probability €, equals n = O, (2%'Ha (P)§—2 log(l/e)). The matching estimator is
Algorithm 1.

Proof of Theorem 4. It suffices to construct an estimator with error probability % We can
amplify this probability to e with a loss of a factor of O(log(1/¢)) in the sample size, by
a standard argument: running the estimator in parallel on fresh samples and taking the
median (as in | D-
From Lemma 2 we conclude that the variance of the estimator equals
o
Var[Est] = —04(1) - (pa)’ + Y Oa(1) 0 Pra—s
=1

where O,(1) are constants dependent on «. Note that we have

2a—4¢

P2a—v¢ < (pa) @

by elementary inequalities*, and therefore

VarlEst] = Oa(1) - 1 Za: (np(é)*f = 0u(1) nlpl " "f (npc%)%
(=1

=0

Note that the negative term —0,(1)n~1(p,)? we skipped is of smaller order than the term
£ =1 of the sum on the right hand side, so it doesn’t help to improve the bounds. For

1 _1
n > 2p& the right hand side equals O, (1) n_lp(ly «. By the Chebyszev Inequality

n Var[Est] BRI
XEEPHESt(X )) = Pal > 6pa] < W =0a(1) 0" "pa~d 7,
which is smaller than % for some n = O4(1) ~p;%5’2. <
5 Lower Bounds
We will need the following lemma, stated in a slightly different way in [ ]. Tt captures

the intuition that if two distributions differ much in entropy, then they must be far away in
total variation (otherwise the estimator, presumably working well, would distinguish them).
» Lemma 3 (Estimation is continuous in total variation). Suppose that fisa (6, €)-estimator
for H,. Then the following is true:

VXY |Ho(X)—Ho(Y)| 220 =dpry(X™Y") 21— 2 (5)
The proof is illustrated on Figure 1 and appears in Appendix C. By combining Lemma 3
with a simple inequality drv (X™, Y") < n-dry(X,Y) (which can be proved by a hybrid
argument) we obtain
» Corollary 2. Let X,Y be such that (a) dry (X;Y) < v and (b) |Ho(X) — Ho(Y)| > 26.
Then any (J, €)-estimator for H,, where € < %, requires %7_1 samples.

We will need the following inequalities, that refine the known Bernoulli-inequality (1 +
u)® > 1 + au by introducing higher-order terms.

1
* We use the fact that a-norms, defined by [|p|lo = (ZZ |pi\a) «, are decreasing in . The same inequality
is applied in [ ], the proof of Lemma 2.1.
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to = Hal+Ha(¥)
«“ :
IS !
o 1
Ho(X) Ho(Y)
Est

Figure 1 Turning estimators into distinguishers in total variation.

» Proposition 1 (Bernouli-type inequalities). We have

Va>1, Vu>-1: (1+u)*>1+au (6)
Vaz2, Vu>0: (14+uw)*>1+au+u® (7)
-1
Va € [1,2], Vue [0,1]: (14 u)” 21+au+%u2 (8)
-1
Vo €[1,2], Vu >1: (1+u)a>1+au+a u® (9)

Proof. To prove Equation (6) consider the function f(u) = (14+u)®. It is convex when o > 1,
hence its graph is above the tangent line at u = 0. This means that f(u) > f(0) + %f(O)u,
and since f(0) =1 and %(0) = « the inequality follows.

In order to prove Equation (7), we consider the function f(u) = (14 uw)* — 1 — au — u®.

Its derivative equals %(u) = ((1 +u)ot —qgomt — 1). If we show it is non-negative for

u > 0, we establish the claimed inequality as then f(u) > f(0) > 0. We calculate the second
derivative %(u) =a(a—1) ((1+u)*"2 —u®"?2) and see it is positive when u > 0 (here we
use the assumption that « > 2). We conclude that %(u) is increasing for u > 0 and hence
%(u) > %(O) = 0, which finishes the proof.

To prove Equation (8) we define f = (1 +u)* — 1 — au — %u? We note that
%(u) =a(l+u)*t—a-— WU This function is concave because o € [1,2]. Since
290)=0and 9L(1) = a1 +1)* ' —a — 70‘(&2_1) >a?—a-— 7’1(0‘2_1) =3 —a) >0
(we have used the Bernouli inequality (1 +1)*"! > 1+ o — 1), by concavity we conclude
that the %(u) > 0 on the whole interval u € [0, 1]. This means that f is decreasing and
f(u) = f(0) =0 for u € [0,1], which establishes the claimed inequality.

To obtain Equation (9) we consider the function f(u) = (1 4+ u)® — 1 — au — Cu®. Its

)

derivative equals 2% (u) = a ((1+u)* ' =1 — Cu®"'). It suffices to choose C' such that

f(1) > 0 and %(u) > 0 for u > 1 as then f(u) > 1 for u > 1. The second derivative
equals %(u) = afa— 1) ((1+u)*? - Cu*"?), and we conclude that, for 1 < a < 2
and u > 1, it bigger than zero when C' < 222 Thus the first derivative increases and is
non-negative if, in addition, %(1) > 0, that is C < 2°~1 —1. We conclude that f(u) > 0 with

C =min (272,271 — 1,2 — o — 1), that is when 2°£(1), 2L(1), f(1) are all non-negative.

ou? ’ Ou
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Under the assumption « < 2 this can be simplified to C' = 2% — 1 — a. We notice further
that 27! — 1 —a > (In4 — 1)(a — 1) when « € (1,2) which shows that we can take
C =0.38(a — 1). <

» Lemma 4 (Distributions with different entropy yet close in total variation). For any real o > 1
and any set S of size K > 2 there exist distributions on S that are -close but with Renyi
a-entropy different by at least A, for any parameters satisfying the following

For any A < 1,any a € [1,2] and vy = O (max (A%K*%,K*HiAi))

For any A <1, any a > 2 and v = O (A%K*Hi)

For any A > 1, any a € [1,2] and v = max (2(175A)K_1+é,2%AK_%)

For any A > 1,any a > 2 and v = O (2(1_5)AK_1+é)

In particular, by applying Corollary 2 to the setting in the lemma above, we obtain the
lower bounds on the sample complexity.
» Corollary 3 (Estimating entropy with constant additive error). For any constant o > 1,

estimating a-entropy with additive error at most 1 requires at least (1) - max (K 3 K 1’é>

samples. More generally bounds (for any accuracy A) apply as shown in Table 1.

Proof of Lemma 4. Fix a K-element set S and a parameter € > 0 and consider the following
pair of distributions (given the choice of X, the choice of Y is close to the "worst" choice as
shown in Appendix D):

(a) X is uniform over S

(b) Y puts a mass of % + + on one fixed point of S and % — 75 on the remaining points
of S

where the exact value of the parameter 7 is to be optimized later. We calculate that

S (Pr(@)® = (K +79)" + (K - 1) (K = y(K —1)~H)*
and

K S ) = (1 K" 4 (1) (1)

x

«

Since Y- (Px(x))* = K'~* we get

2, (Py ()"
2. (Px ()

Now if either Ky < 1 and « € (1,2) or o > 2, by Proposition 1 we obtain

_ g ((1+K7)(’ (K - 1) (1 —WKK_1>Q> (10)

1+ Ky)* + (K —1) (1 - 7KK_1> > K + Qq(1) min (K7)2, (K7)*) (1)

for some constants depending on «, where we have used Equation (6) to lower-bound
(1 - 7%) and Equations (7) and (8) to lower-bound (1 + K~)®. More precisely, we have

N K+ (Ky)~ ifae(1,2)ANKy>1
(1+K7)a+(K—1)<1—7K_1) >4 K+ (Kq)? ifae(1,2)AKy <1
K+ (Ky)* ifa>2
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Using this bound in the right-hand side of Equation (10), we obtain

o L 1+ otk 1y ifae (1,2)AKy > 1
<W)al> 142D 2 g c(1,2)AKy<1 (12)
Zw(PX(I))a 1 Y jigyeY ) S
1+ Ko by ifa>2
It remains to choose the parameter v, remembering about the assumptions on v and « made

in Equation (11). We may choose it the following ways:
Case 1: for A € (0,1) and a > 2 we will choose: L - K7 1y* < 1

By taking the logarithm of Equation (12) and dividing by « — 1 we obtain

H,(Y) — Hy(X) > log (1+ K*'4%).

a—1
Now the elementary inequality log(1 4+ u) > w valid for 0 < u < 1 yields
1

a—1

a—1_«a

H,Y)—Hy,(X) > ¥

Thus we achieve the entropy gap A = ﬁlﬁ'a—lva and the distance v = ((a — 1)A) Kt
for any A between 0 and 1.

Case 2: for A <1 and a € (1,2) we choose min (K~% K 1y%) < 1

Using Equation (12), taking the logarithm of both sides and dividing by o — 1 we obtain

ala—1)

Ha(Y) - Ha(X) >

log (1
o1 og( +

- min (K’yQ, Kalfya)> .
Now the elementary inequality log(1 4+ u) > w valid for 0 < u < 1 yields
Ho(Y) = Ho(X) > 7 -min (K%, K°7'9°).

Hence we can have the entropy gap A = ¢ - min (K2, K*"'v*) and the distance y =

X 1 L 1
max (K*HE (%) “ K72 (%) 2). The number A can be arbitrary between 0 and 1.
Case 3: for A > 1 and « > 2 we choose ﬁ CKeTlye >

Under this assumption, Equation (12) holds with the term K*~14® on the right-hand side.

By taking the logarithm in Equation (12) and dividing by o — 1 we obtain
1
H,Y)—-H,(X) > p] log (1+ K"‘_lyo‘) )
o —

Now the inequality log(1 + u) > logw implies

Ho(Y) — Hy(X) > log (K*~'y%) .

a—1

666:9

Thus, we can have the entropy gap A = ﬁ log (Ka_l'ya) and the distance v = 2A(1_5)K_1+é,

for any 1 < A <log K — O(1) (the upper bound follows by substituting v = % which is
the maximal value).

Case 4: for A > 1 and a € (1,2) we choose min (K~%, K*~1y%) > 1

Recall, as for Case 2, that for a < 2 we have K 14* > K~2 when K~ > 1. Using this in
Equation (12), taking the logarithm of both sides and dividing by o — 1 we obtain

-1
log (1 + % - min (K'yQ,KO‘_lvo‘)> .

H,(Y)—-Hy,(X) >

a—1
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Now the inequality log(1 + u) > logu implies

Ha(Y) ~ Ha(X) > plos (a(a4_ i (K727K“Wa)) .
a J—

Thus, for the entropy gap A = ﬁ log (% - min (K"yQ, Ko‘_lvo‘)) we get the distance

1

V= s nax (2A(1‘§)K‘1+a72%AK‘%), for for any 1 < A < Ly log K — O(1) (the

upper bound follows by substituting v = % which is the maximal value) .

<

6 Conclusion

This paper offers stronger upper and lower bounds on the complexity of estimating Renyi
entropy. Except quantitative improvements, it also provides simplifies the analysis, and
provides more insight into the technique used to prove lower bounds.

Applying this technique to related problems, e.g. estimating different properties of
discrete distributions besides entropy, is an interesting problem for future research.

We also emphasize that our construction for the lower bounds can be somewhat improved
in two aspects: firstly, in Lemma 4 the choice of Y is optimal but X may be not - we assumed
for simplicity that it is flat; secondly, there may be need for a more carefull bound on the
variational distance between n-fold product distributions Lemma 3.

As for upper bounds, it remains an intriguing question if we can obtain improvements
also for Shannon entropy estimation in low or medium entropy regimes.
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A Proof of Lemma 1

Proof. The proof of Equation (2) goes by induction. It is clearly valid for « = 1. Assuming
that it is valid for some « > 1, we obtain

n(@)* = = n(z)* - (n(z) - )
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Since &; are boolean we have
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By putting together the last two equations we end the proof of Equation (2). To get

Equation (3) we simply take the expectation and use independence. <
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B Proof of Lemma 2

Proof. Note that
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where we observed that if the sets {i1,...,i,} and {j1,...,ja} have exactly ¢ common

elements then E ], &, (2)¢;, (z) = p(z)?*~*, and that there are n®(n — a)2=£( ) I! choices
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for the such sets {i1,...,i} and {Jj1,...,ja}°. Putting this all together we obtain

o 2
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which completes the proof. <

C Proof of Lemma 3

Proof. We will use the fact that if two distributions are e-close (i.e. dry (X', Y”’) <€) then
no distinguisher can distinguish between them with advaliltage greater then 5. Let us assume
that |H(X) — Ho(Y)| = 20, then by using estimator f as part of the distinguisher i.e. if
|£(.)= Ha(X)| < 0 then distinguisher "guesses’ that initial distribution was X™, else "guesses"
Y. Now we notice that initial distribution was X™ distinguisher will "guess" correctly with
probability 1 — ¢, and if the initial distribution was Y then estimator with probability 1 — €

will output value in [H,(Y) — ¢ ; Ho(Y) 4 6] thus distinguisher will guess correctly again.

Our distinguisher achieves 1/2 — e advantage thus we deduce that dry (X™;Y™) > 1 — 2e.
<4

D Maximizing entropy gap within variational distance constraints

» Theorem 5. Let q be a fized distribution over k elements, and o > 1, € € (0,1) be fized.
Suppose that g1 = qo > ... = qx. Then the distribution p which is e-close to q and has
minimal possible a-entropy is given by

p1+6 ’L:].
v 1<i<ig
4 = o (13)
Pio = 2 jzi i =10
0 >1

where ig is the biggest number such that Zi2i0 pi = €, for some xg such that p(xg) is the
biggest mass, and for some €' < e.

Proof. We will apply majorization techniques | ]. Let g be optimal. Suppose that
q(z1) > p(z1) and q(z2) > p(xa) where x1 # xo. Since ¢ has the biggest possible power sum
S(q) =", q(x)* we see that p(z1) and p(z2) are two biggest probability masses. Assume,
without loss of generality, that ¢(z1) > q(z2). For some small § > 0 we perturb ¢ into ¢’ such
that ¢'(z1) = q(x1) 4+ ¢ and ¢'(z1) = q(x1) — 6 and ¢'(z) = ¢(z). Note that for small § the
distance between ¢’ and p is at most as between p and ¢, and that ¢’ majorizes ¢ (considered
as vectors) and the power sum S(gq) is Schur convex, hence S(q) > S(¢'). The contradiction
means that ¢(z) > p(z) for only one z = zy.

5 For a quick sanity check of this formula, note that when p; = 1 (a constant random variable) then
we should get (n%)? = ZZ:O n%(n — a)ﬂ(?)Ql!. For a = 2 this reduces to the identity n(n — 1) =
(n—=2)(n—-3)+4(n—-2)+2.
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Consider now the smallest values q(z1), ¢(x2) such that 0 < g(z1) < p(z1),0 < g(x2) <
p(xz2) for 1 # o that are strictly bigger than zero. For some small § > 0 we perturb ¢ into
¢ such that ¢'(z1) = q(z1) + 6 and ¢'(z1) = g(x1) — ¢ and ¢/(z) = g(x). We see that for &
small enough the distance from ¢’ to p is at most as from g to p and that ¢’ majorizes ¢
which means S(¢’) > S(g). The contradiction means that 0 < ¢(z) < p(z) for at most one
xr = Xg. <
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