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Abstract. Direct Anonymous Attestation (DAA) is an anonymous signature scheme, which allows the Trusted
Platform Module (TPM), a small chip embedded in a host computer, to attest to the state of the host system,
while preserving the privacy of the user. DAA provides two signature modes: fully anonymous signatures and
pseudonymous signatures. One main goal of designing DAA schemes is to reduce the TPM signing workload as
much as possible, as the TPM has only limited resources. In an optimal DAA scheme, the signing workload on the
TPM will be no more than that required for a normal signature like ECSchnorr. To date, no scheme has achieved
the optimal signing efficiency for both signature modes.

In this paper, we propose the first DAA scheme which achieves the optimal TPM signing efficiency for both
signature modes. In this scheme, the TPM takes only a single exponentiation to generate a signature, and this single
exponentiation can be pre-computed. Our scheme can be implemented using the existing TPM 2.0 commands, and
thus is compatible with the TPM 2.0 specification. We benchmarked the TPM 2.0 commands needed for three DAA
use cases on an Infineon TPM 2.0 chip, and also implemented the host signing and verification algorithm for our
scheme on a laptop with 1.80GHz Intel Core i7-8550U CPU. Our experimental results show that our DAA scheme
obtains a total signing time of about 144 ms for either of two signature modes (compared to an online signing time
of about 65 ms). Based on our benchmark results for the pseudonymous signature mode, our scheme is roughly 2×
(resp., 5×) faster than the existing DAA schemes supported by TPM 2.0 in terms of total (resp., online) signing
efficiency.

In addition, our DAA scheme supports selective attribute disclosure, which can satisfy more application require-
ments. We also extend our DAA scheme to support signature-based revocation and to guarantee privacy against
subverted TPMs. The two extended DAA schemes keep the TPM signing efficiency optimal for both of two signa-
ture modes, and outperform existing related schemes in terms of signing performance.
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1 Introduction

With the rapid growth of devices connected to the internet, it is becoming increasingly difficult to secure
these devices [CCD+17]. To achieve better security, one approach is to place a root of trust such as a Trusted
Platform Module (TPM) into such devices and use this to attest to the current state of the device. It is crucial
that such attestations are privacy-preserving. On the one hand, anonymous attestation protects the privacy
of owners of the devices, which adhere to one of the essential elements of privacy-enhancing systems (i.e.,
disassociability) developed by NIST [NIS15]. On the other hand, it minimizes the information available to
the adversary and satisfies the so-called data minimization principle [PH10]. In addition, the protection of
users’ privacy now receives more attention because of the introduction of Europe’s new privacy regulations
(General Data Protection Regulation (GDPR) [GDP16]).

The Trusted Computing Group (TCG), an industry standardization group, has used Direct Anonymous
Attestation (DAA) to realize such attestations in a privacy-preserving manner. Both the TPM 2.0 specifica-
tion [Tru16] and the corresponding ISO/IEC 11889 standard [ISO15] specify the use of DAA for anonymous



attestation, while DAA itself has also been standardized in ISO/IEC 20008-2 [Int13]. The TPM 2.0 spec-
ification [Tru16] supports multiple ECDAA schemes which are built on pairing-friendly elliptic curves. In
particular, Chen and Li [CL13] described the TPM 2.0 commands needed to implement two alternative
DAA schemes [CPS10, BL10b]. The flexibility of these commands means that they can also be used to
implement further ECDAA schemes. For example, the DAA scheme by Camenisch et al. [CDL16a] can be
implemented using these TPM 2.0 commands. More than a billion devices include TCG technologies, where
virtually all enterprise PCs, many servers and embedded systems include TPMs and are in compliance with
the TPM 2.0 specification [Tru20]. It is crucial to design DAA schemes that are compatible with TPM 2.0.

A TPM, which is a small chip embedded in a host platform, can use DAA to attest to either the current
state of the host system or the particular computations made, while preserving the user’s privacy. DAA pro-
vides two signature modes so that a user can decide whether a signature should be linkable to other signatures
or not. Specifically, signatures w.r.t. the empty basename bsn = ⊥ are fully anonymous (i.e., unlinkable).
Alternatively, signatures w.r.t. a non-empty basename bsn 6= ⊥ are pseudonymous, meaning that signatures
under the same basename are linkable, while signatures under different basenames are unlinkable. In some
applications such as anonymous subscription [KLL+18] and vehicular communication (V2X) [WCG+17],
pseudonymous signatures may be preferable or required for system operations. Pseudonymous signatures
provide an advantage of allowing users to create pseudonyms at a service provider and obtain value-added
services.

The TPM is a small discrete chip with only limited resources, while the host is more powerful (e.g., the
host is about a factor of 300× faster than the TPM according to the experimental results [CL13, BCN14]).
However, the host is much less secure than the TPM. As pointed out by Camenisch et al. [CDL16b], the
main challenge in designing DAA schemes is to distribute the computational work between the TPM and
the host such that the workload of the TPM is as small as possible, while this does not affect the security.
In an optimal DAA scheme, the signing workload on the TPM will be no more than that required for a
normal signature such as ECSchnorr [Sch91, Tru16]. Specifically, only one exponentiation is required for
the TPM when generating a signature, where one exponentiation is necessary to prevent the corrupted host
from forging signatures without interacting with the TPM. Informally, we say that the signing efficiency
of the TPM in a DAA scheme is fully optimal if the TPM takes only a single exponentiation per signature
generation for both of two signature modes, and partially optimal if one exponentiation holds for only one
signature mode.

The ECDAA schemes fall into two categories: 1) LRSW-DAA schemes [BCL08, CMS08, CPS10,
BFG+13a, BCL12, CDL16b] based on the LRSW assumption [LRSW99] or its variants; and 2) SDH-
DAA schemes [CF08, Che10, BL10b, CDL16a] based on the q-SDH assumption [BB08]. DAA has devel-
oped over fifteen years, and the signing efficiency of the TPM is improved gradually. However, only the
LRSW-DAA schemes [BFG+13a, BCL12] achieves the partially optimal TPM signing efficiency for the
fully anonymous signature mode. Furthermore, the best known SDH-DAA scheme [CDL16a] requires three
exponentiations for the TPM to generate a signature for both of two signature modes.

1.1 Our Contributions

In this paper, we propose the first DAA scheme with fully optimal TPM signing efficiency and denote it
by DAAOPT. That is, DAAOPT only requires the TPM to carry out a single exponentiation in a prime-order
group when creating a signature for both of two signature modes. Moreover, the single exponentiation can
be pre-computed, which allows DAAOPT to obtain fast on-line signing. Additionally, we present a simple
method of parallel computation to reduce the signing time on the host side. Our scheme DAAOPT is provably
secure under the DDH, DBDH and q-SDH assumptions in the random oracle model.

Our scheme DAAOPT is compatible with the TPM 2.0 specification, i.e., DAAOPT can be implemented
using the existing TPM 2.0 commands. We consider TPM 2.0 implementations of three DAA use cases



(i.e., quoting PCR values, certifying a TPM key, and signing an arbitrary message given by the host). We
benchmarked the TPM 2.0 commands on an Infineon TPM 2.0 chip, which allows one to evaluate the TPM
efficiency. We also implemented the host signing and the verification algorithm for our scheme DAAOPT

on a laptop with 1.80GHz Intel Core i7-8550U CPU over the BN P256 curve using the AMCL library.
Together with our benchmark results for the TPM 2.0 commands, we find that DAAOPT needs about 138.3
ms for signing in the fully anonymous case and 144 ms for the pseudonymous case. When pre-computation
is considered, the time of online signing reduces to 50 ms and 64.6 ms respectively. In terms of verification
efficiency, DAAOPT takes 5.9 ms for the fully anonymous signature mode and 8.1 ms for the pseudonymous
signature mode. Specifically, our scheme DAAOPT is roughly 2× faster for total signing and 5× faster for
online signing than the existing DAA schemes supported by TPM 2.0 in the pseudonymous signature mode.
When generating a fully anonymous signature, DAAOPT is about 2× more efficient than the known SDH-
DAA schemes supported by TPM 2.0. Our scheme DAAOPT has the same efficiency as the state-of-the-art
LRSW-DAA scheme compatible with TPM 2.0 in terms of generating fully anonymous signatures, and is
more efficient than this scheme for verification.

In addition, our DAA scheme DAAOPT supports selective attribute disclosure, which can satisfy more
application requirements. We also extend DAAOPT to support signature-based revocation and to guaran-
tee privacy in the presence of subverted TPMs. The two extended DAA schemes keep the TPM signing
efficiency fully optimal, and provide significantly better signing performance than known related schemes.

1.2 Applications of Our DAA Scheme

We outline three types of applications for our DAA scheme DAAOPT depending on what DAA signatures
are used for. In Section 5, we present how to use the TPM 2.0 commands to implement our DAA scheme
with three use cases in order to support these types of applications.

APPLICATION I (a signature is used to quote PCR values): We can apply DAAOPT to remote attestation,
where we report on (a.k.a. quote) the Platform Configuration Register (PCR) values recording the current
state of the host system, while preserving the privacy of users. Additionally, our scheme DAAOPT with
the pseudonymous signature mode can be applied to V2X [WCG+17] via attesting to the current status of
the vehicle which is recorded in the PCR values. In these applications, our scheme DAAOPT provides the
advantage of fast attestation/authentication.

APPLICATION II (a signature is used to certify a TPM key): We can apply DAAOPT to the Fast IDentity
Online (FIDO) authentication framework [FID17] to eliminate the unacceptably high risk in the FIDO basic
attestation scheme that an attestation key is shared across a set of authenticators with identical characteristics.
In this application, the TPM creates a new authentication key, and generates a fully anonymous signature
(by cooperating with the host) to certify that the key is stored properly in the TPM. The FIDO alliance
is in the process of standardizing a specification called FIDO ECDAA [CDE+17], which requires three
exponentiations for the TPM to generate a signature. When applying DAAOPT with a fully anonymous
signature mode to the FIDO authentication framework, we can reduce the TPM signing cost from three
exponentiations in FIDO ECDAA to only one exponentiation.

APPLICATION III (a signature is used to sign an arbitrary message given by the host): We can also apply
DAAOPT to construct an anonymous authentication scheme by combining it with TLS [CLR+], to support
anonymous public transportation systems [ALT+15], or to realize anonymous subscriptions [KLL+18]. For
these applications, our scheme DAAOPT not only prevents the sharing of credentials under the assumption
that malicious users cannot extract secret keys from the TPMs, but also provides fast authentication.

In addition, for mobile devices, Raj et al. [RSW+16] presented the implementation of a firmware-based
TPM (fTPM) using ARM TrustZone, which supports the TPM 2.0 specification. As a result, we can also
apply DAAOPT to mobile devices with ARM TrustZone by using fTPM to perform the TPM operations, and



provide the advantage of better on-line signing performance and smaller Trusted Computing Base (TCB),
compared to known DAA schemes supported by TPM 2.0.

1.3 Related Work

The original DAA scheme was introduced by Brickell, Camenisch and Chen [BCC04], but requires the TPM
to compute exponentiations over a large RSA modulus, which leads to the costly computational burden for
the TPM. Later, more efficient ECDAA schemes were proposed.

Brickell et al. [BCL08] proposed the first LRSW-DAA scheme over symmetric bilinear groups. This
scheme is further improved in [CMS08, CPS10] over asymmetric bilinear groups. Bernhard et al. [BFG+13a]
utilized the special algebraic structure of randomized credentials, which implicitly contain unlinkable tags,
to minimize the TPM’s signing cost for fully anonymous signatures. However, their LRSW-DAA scheme
still requires three exponentiations for the TPM to create a pseudonymous signature. Brickell et al. [BCL12]
uses a batch proof and verification technique to construct the most efficient LRSW-DAA scheme for now,
which reduces the TPM signing cost to two exponentiations per pseudonymous signature. However, this
scheme is not compatible with the TPM 2.0 specification [Tru16]. Canard et al. [CPS14] proposed an effi-
cient approach to delegate some computation of the TPM to the host in interactive zero-knowledge proofs
of knowledge. Using their method to the proof of knowledge for pseudonymous signatures in the DAA
scheme [BFG+13a], they show that the online signing cost of TPM can be reduced to one exponentiation.
However, their approach is not compatible with the TPM 2.0 specification.

Chen and Feng [CF08] presented the first SDH-DAA scheme. Chen [Che10] improved the signing effi-
ciency of the TPM via removing an element of the credential. Brickell and Li [BL10b] further improved the
signing efficiency of the TPM by changing the way of delegation computation between the TPM and host.
Later, Camenisch et al. [CDL16a] proposed an efficient proof of knowledge for BBS+ signature [ASM06],
and then constructed an SDH-DAA scheme, which improves the signing efficiency on the host side. Their
scheme is the most efficient SDH-DAA scheme for now, but still requires three exponentiations for the TPM
to generate a signature for both modes of signatures.

Chen and Urian [CU15] introduced DAA with attributes, which extends DAA to support attributes (e.g.,
the manufacturer and model version of the platform and an expiration date of the credential etc.), and to
allow selective attribute disclosure (i.e., a user can choose to disclose a part of attributes but undisclosed
attributes keep hidden). They proposed two DAA schemes with attributes by extending the LRSW-DAA
scheme [CPS10] and the SDH-DAA scheme [BL10b] respectively, where their schemes allow the TPM
to protect multiple attributes. Later, Camenisch et al. [CDL16a] proposed an SDH-DAA scheme with at-
tributes, which stores all attributes on the host to obtain better efficiency. All these DAA schemes with
attributes [CU15, CDL16a] can still be implemented using the TPM 2.0 commands.

Brickell and Li [BL07, BL10a] introduced Enhanced Privacy ID (EPID), which extends DAA with
signature-based revocation. This revocation extension allows one to revoke a platform, based on a previ-
ous signature from the platform, even if the signature is fully anonymous. While private key revocation in
DAA allows to revoke a platform by adding the platform’s secret key to the revocation list, signature-based
revocation allows for revocation without knowing the secret key of the platform and is an improvement
over private key revocation. The pairing-based EPID scheme [BL10a] is recommended by Intel to serve
as the industry standard for privacy-preserving authentication in Internet of Things (IoTs). These EPID
schemes [BL07, BL10a] require 6nr exponentiations for the TPM to prove that the platform has not been
revoked, where nr is the size of the signature revocation list. This is too expensive for a TPM with limited
resources. Recently, Camenisch et al. [CDL16a] showed how to delegate the TPM’s partial computations to
the host in the signature-based revocation, which reduces the overhead of the TPM to 3nr exponentiations.
However, it is still too expensive for the TPM with limited resources.



Camenisch et al. [CDL17, CCD+17] considered the case that the TPMs are possible to be subverted,
i.e., the TPMs are created by a compromised manufacturer. They proposed several DAA schemes in this
case. Following the technique in [CCD+17], we extend our scheme DAAOPT to guarantee privacy against
subverted TPMs in Appendix B.2, which obtains better signing performance than their schemes.

A DAA variant called pre-DAA requires all the computation on the platform side takes place entirely on
the TPM, and will be useful for some applications such that the host has a similar resource as the TPM, e.g.,
some use cases in Machine-to-Machine (M2M) and IoTs. Several pre-DAA schemes [BFG13b, DLST14,
Gha16, BDGT17] have been proposed, where the scheme by Barki et al. [BDGT17] achieves the best per-
formance. For some applications where the TPM has similar resources to the host, our DAA scheme is
less efficient than the pre-DAA scheme [BDGT17]. Nevertheless, our DAA scheme provides a significant
performance advantage compared to the state-of-the-art DAA schemes [CPS10, BL10b, CDL16a], in many
applications where the TPM has far fewer resources than the host.

1.4 Organization

We present the preliminaries in Section 2. We recall the definitions of DAA schemes in Section 3. In Sec-
tion 4, we present the construction of our DAA scheme DAAOPT and two ways to further improve the
efficiency of DAAOPT. In Section 5, we present the TPM 2.0 implementation of our DAA scheme involv-
ing three use cases. We evaluate the performance of our DAA scheme and compare it with known DAA
schemes supported by TPM 2.0 in Section 6. Signature-based revocation extension of our DAA scheme is
shown in Appendix B.1, and we extend our DAA scheme to guarantee privacy against subverted TPMs in
Appendix B.2. We provide an alternative description of our DAA scheme for UC security in Appendix C,
and give a full formal security proof in Appendix D.

2 Preliminaries

2.1 Notation

Throughout this paper, we denote the security parameter by λ. We use x $← S to denote that sampling x
uniformly at random from a finite set S. For a group G, G∗ denotes the set G\{1G}, where 1G is the identity
element of G. We use [n] to denote the set {1, . . . , n}. We say that a function f : N→ [0, 1] is negligible if
for every positive polynomial poly(·) and all sufficiently large λ such that f(λ) < 1/poly(λ). We say that a
function f is overwhelming if 1− f is negligible.

2.2 Bilinear Groups

Let G be a probabilistic polynomial time (PPT) bilinear-group generator that on input a security parameter
1λ, outputs a bilinear group Λ = (p,G1,G2,GT , e, g1, g2), where G1, G2 and GT are groups of prime order
p, g1 and g2 are the generators of G1 and G2 respectively, and e : G1 ×G2 → GT is a bilinear map.

We say that e : G1 × G2 → GT is a bilinear map (pairing) if it is efficiently computable and satisfies
the following properties: 1) bilinearity, i.e., e(ga1 , g

b
2) = e(g1, g2)ab ∀a, b ∈ Zp; 2) non-degeneracy, i.e.,

e(g1, g2) 6= 1GT for all generators g1 ∈ G1 and g2 ∈ G2. Following [GPS08], pairings are categorized
into three types: 1) Type-1 pairings (a.k.a. symmetric pairings) have G1 = G2; 2) Type-2 pairings require
G1 6= G2, but there exists an efficiently computable isomorphism ψ : G2 → G1 such that g1 = ψ(g2);
3) Type-3 pairings provide G1 6= G2, but now there is no efficiently computable isomorphisms between
G1 and G2. Type-2 and Type-3 pairings are called asymmetric pairings. Throughout this paper, we only
consider Type-3 pairings.



2.3 Signature Proofs of Knowledge

We will use the notation introduced by Camenisch and Stadler [CS97] to abstract Signature Proofs of Knowl-
edge (SPKs) on proving knowledge of discrete logarithms and statements about them. The SPKs can be
obtained using Fiat-Shamir heuristic [FS86] to transform the corresponding Sigma protocols. For instance,
π ← SPK{(x) : y = gx}(m) denotes a signature proof of knowledge π on a message m, which proves
knowledge of a witness x such that y = gx, where G = 〈g〉 is a group of prime order p. The SPKs
are zero-knowledge via programming the random oracle and knowledge extractable in the random oracle
model [PS00].

2.4 Assumptions

Assumption 1 (DBDH). We say that the Decisional Bilinear Diffie-Hellman (DBDH) assumption [BB04]
holds for G if any PPT adversary A and Λ = (p,G1,G2,GT , e, g1, g2) ← G(1λ), there exists a negligible
function ν(·) such that∣∣Pr[a, b, c

$← Zp : A(Λ, ga1 , g
b
2, g

c
1, g

c
2, e(g1, g2)abc) = 1]−

Pr[a, b, c, d
$← Zp : A(Λ, ga1 , g

b
2, g

c
1, g

c
2, e(g1, g2)d) = 1]

∣∣ ≤ ν(λ).

In fact, the above assumption is an asymmetric version of the original DBDH assumption [BB04] for
symmetric bilinear pairings. Desmoulins et al. [DLST14] used an analogous asymmetric version of the
original DBDH assumption, where the adversary is given an additional element gb1 as input. Freire et al.
[FHKP13] used an asymmetric version of the original DBDH assumption over Type-2 pairings (DBDH-2)
as introduced in [Gal05], where the adversary is given (g2, g

a
1 , g

b
2, g

c
2) as input. For Type-2 pairings, the el-

ements gb1 and gc1 can be computed via ψ(gb2) and ψ(gc2) respectively. Thus, the adversary is actually given
(g1, g2, g

a
1 , g

b
1, g

b
2, g

c
1, g

c
2) as input in the DBDH-2 assumption.

Assumption 2 (DDHG1). We say that the Decisional Diffie-Hellman (DDH) assumption [Bon98] holds in
group G1 if for any PPT adversary A and Λ = (p,G1,G2,GT , e, g1, g2)← G(1λ), there exists a negligible
function ν(·) such that∣∣Pr[a, b

$← Zp : A(Λ, ga1 , g
b
1, g

ab
1 ) = 1]− Pr[a, b, c

$← Zp : A(Λ, ga1 , g
b
1, g

c
1) = 1]

∣∣ ≤ ν(λ).

Assumption 3 (q-SDH). We say that the q-Strong Diffie-Hellman (q-SDH) assumption [BB08] holds for G
if for any PPT adversary A and Λ = (p,G1,G2,GT , e, g1, g2)← G(1λ), there exists a negligible function
ν(·) such that

Pr[γ
$← Z∗p : (g

1/(γ+c)
1 , c)← A(Λ, gγ1 , . . . , g

γq

1 , gγ2 )] ≤ ν(λ),

where c ∈ Zp\{−γ}.

3 Definitions of DAA Schemes

In this section, we review the syntax of DAA schemes and the desired security properties for DAA, i.e.,
anonymity, unforgeability and non-frameability. We adopt the security model for DAA by Camenisch et
al. [CDL16b], which is defined as an ideal functionality F ldaa in the Universal Composability (UC) frame-
work [Can01]. We extend this model to support the functionality of attributes by following the exten-
sion [CDL16a]. We refer the reader to Appendix A (or [CDL16b, CDL16a]) for the formal security def-
inition of DAA in the form of an ideal functionality.



3.1 Syntax of DAA Schemes

In a DAA scheme, there are four types of parties: TPMMi and host Hj constituting a platform, issuer I
and verifier V . The DAA scheme consists of three algorithms Setup, Verify and Link, and two protocols
Join and Sign.

Setup. Given a set of system parameters params on a security parameter λ, an issuer I generates its public
key ipk and secret key isk, where params and ipk are publicly available. We assume that params and ipk are
implicit inputs for the following protocols and algorithms.

Join. This is an interactive protocol between a platform (Mi,Hj) and the issuer I who decides whether
the platform is allowed to become a member. By executing the join protocol, the platform creates a secret
key gsk , and receives a number of attributes attrs = (a1, . . . , an) and a credential cre given by I. The
credential cre certifies the secret key gsk and attributes attrs , where the attributes include more information
about the platform such as the manufacturer and model version and an expiration date of the credential etc.

Sign. After being a member, a TPMMi and a hostHj can jointly sign a message m w.r.t. a basename bsn
resulting in a signature σ, where bsn is either the name string of a verifier or a special symbol ⊥. We refer
to σ as a fully anonymous signature if bsn = ⊥ and a pseudonymous signature otherwise. The platform
can also selectively disclose a part of attributes from its credential cre, e.g., disclosing that the signature
was created by a TPM of a certain manufacturer or the expiration date of the credential. We denote the
disclosure of attributes by (D, I), where D ⊆ {1, . . . , n} is a set indicating which attributes are disclosed,
I = (a1, . . . , an) is a tuple specifying the disclosed attribute values, and ai is set as ⊥ if the i-th attribute is
not disclosed. We also denote by D̄ the set of the indices of undisclosed attributes, i.e., D̄ = {1, . . . , n}\D.

Verify. Given a message m, a basename bsn, a signature σ, an attribute disclosure (D, I) and a revocation
list RL consisting of the secret keys of corrupted platforms, a verifier V can run a deterministic verification
algorithm to check that σ is valid onm w.r.t. bsn and stems from a platform that holds a credential satisfying
the predicate defined by (D, I). The verification algorithm outputs 1 if the check passes and 0 otherwise.

The revocation list RL is used to support private key revocation. When a secret key (private key) of a
corrupted platform is exposed, the secret key would be added to RL, which allows a verifier to recognize and
thus reject all the signatures created by the secret key.

Link. On input two message/signature pairs (m0, σ0) and (m1, σ1), attribute disclosure (D0, I0) and (D1, I1)
and a basename bsn 6= ⊥, a verifier V can run a deterministic link algorithm to decide whether the two sig-
natures link or not. If both σ0 and σ1 are valid on respective (m0, (D0, I0)) and (m1, (D1, I1)) w.r.t. the
same bsn 6= ⊥ and were produced by the same secret key, the link algorithm outputs 1 (linked). Otherwise,
the link algorithm outputs ⊥ if one of σ0 and σ1 is invalid and 0 (unlinked) otherwise.

3.2 Desired Security Properties for DAA

Following the work [CDL16b], a DAA scheme should satisfy the following desired security properties:

Anonymity. Given two signatures with respect to different basenames or bsn = ⊥, no adversary can dis-
tinguish whether both signatures were generated by the same honest platform, or whether they were created
by two different honest platforms. The property requires that the entire platform (TPM+host) is honest, and
should hold even if the issuer is corrupted.
Unforgeability. This property requires that the issuer is honest, and should hold even if some or all hosts
are corrupted.
1. If all unrevoked TPMs are honest, no adversary can produce a signature on a message m w.r.t. a base-

name bsn and attribute disclosure (D, I), when no platform that joined with those attributes signed m
w.r.t. bsn and (D, I).



2. An adversary can only sign in the name of corrupted TPMs. More precisely, if k corrupted and unrevoked
TPMs joined with attributes fulfilling attribute disclosure (D, I) for some integer k, the adversary can
create at most k unlinkable signatures w.r.t. the same basename bsn 6= ⊥ and attribute disclosure (D, I).

Non-frameability. No adversary can create a signature on a message m w.r.t. a basename bsn which links
to a signature created by an honest platform, when the platform never signed m w.r.t. bsn. The property
requires that the entire platform is honest, and should hold even if the issuer is corrupted.

4 Our DAA Scheme

We present the construction of our DAA scheme (denoted by DAAOPT). Our scheme DAAOPT supports se-
lective attribute disclosure, and would be degraded as a standard DAA scheme when removing the attributes
(i.e., n = 0). Following [CDL16a], we consider that only the secret key is protected by the TPM and all
attributes are stored on the host in order to obtain better efficiency. We will further improve the computa-
tional efficiency of DAAOPT by presenting online/offline DAA signatures and a simple method of parallel
computation. We prove that protocol DAAOPT securely realizes functionalityF ldaa with static corruption and
attributes defined in [CDL16b, CDL16a] under the DBDH, DDHG1 and q-SDH assumptions in the random
oracle model, based on the proofs by Camenisch et al. [CDL16b, CDL16a]. We informally argue the secu-
rity of DAAOPT in this section, and give the detailed security proof in Appendix D. First of all, we describe
the high-level ideas underlying the construction of DAAOPT.

4.1 High Level Ideas

Our scheme follows the basic framework of DAA [BCC04], where a platform (consisting of TPM and host)
obtains a credential from the issuer in the join protocol, and then in the sign protocol, proves knowledge of
the credential, as well as generating a pseudonym/unlinkable-tag, and proving in zero-knowledge correctness
of the pseudonym/unlinkable-tag. In this paper, we propose a new approach to delegate the computation of
pseudonyms and unlinkable tags to the host, while keeping compatible with the TPM 2.0 specification. Our
approach achieves the full-optimal TPM signing efficiency.

We adopt the BBS+ signature to issue credentials, where the BBS+ signature was proposed in [ASM06]
based on the schemes [BBS04, CL04]. This means that a platform will obtain a credential (A, x, u) on
a secret key gsk and attributes attrs = (a1, . . . , an) such that A = (g1ḡ

gskhu0
∏n
i=1 h

ai
i )1/(γ+x) in the

join protocol, where γ is the issuer’s secret key. We use the proof of knowledge for the BBS+ signature
in [CDL16a, BBDT17] to prove possession of such a credential. Except for the proof of knowledge of a
credential, a pseudonym and its proof are included in a signature for the pseudonymous signature mode (i.e.,
bsn 6= ⊥). Furthermore, an unlinkable tag and its proof are involved in a signature to support private-key
revocation for the fully anonymous signature mode (i.e., bsn = ⊥). Below, we show how to delegate the
computation of pseudonyms and unlinkable tags to the host.

Delegable pseudonyms. In the existing DAA schemes, a pseudonym is set as K = HG(bsn)gsk , where
HG : {0, 1}∗ → G is a random oracle and here gsk is the TPM’s secret key. This means that the TPM has
to take two exponentiations to compute K and prove its validity.

For the case of bsn 6= ⊥, we propose a technique of delegable pseudonyms, which is inspired by Canard
et al.’s method [CPS14] on delegation of zero-knowledge proofs of knowledge. Specifically, a pseudonym
on a basename bsn is computed as K = e(ḡ, HG2(bsn))gsk , where HG2 : {0, 1}∗ → G2 is a random oracle.
The new construction of pseudonyms allows the TPM to delegate the computations of a pseudonym K and
a commitment L = e(ḡ, HG2(bsn))r to the host, where L is used to prove knowledge of gsk such that
K = e(ḡ, HG2(bsn))gsk and r is a randomness picked by the TPM. Concretely, the host stores a public key
gpk = ḡgsk created by the TPM in the join protocol and receives a commitment E = ḡr from the TPM in
the sign protocol. Then, the host can compute K ← e(gpk , HG2(bsn)) and L← e(E,HG2(bsn)).



From the construction of pseudonyms, we can see that gpk = ḡgsk must keep hidden, and otherwise
gpk can be used to identify the signatures. Thus, the platform cannot directly send gpk to the issuer in the
join protocol. A possible way is to let the platform send a Pedersen commitment C = ḡgskhu

′
0 to the issuer.

However, this way is not compatible with the TPM 2.0 specification. Instead, we split the key gsk into a
secret key tsk chosen by the TPM and a secret key hsk picked by the host such that gsk = tsk + hsk , which
is based on the technique in [CDL17] used for a different purpose. Specifically, the TPM sends a public key
tpk = ḡtsk to the host, and the host stores gpk = tpk · ḡhsk . In the join protocol, the host picks u′ $← Zp and
computes C ← ḡhsk · hu′0 , and then sends tpk and C along with their zero-knowledge proofs to the issuer
for requesting a credential. Since ḡhsk is perfectly hidden, gpk is unknown against the adversary. Now, a
commitment L can be computed by the host via picking r̂ $← Zp and computing L← e(E · ḡr̂, HG2(bsn)),
where randomness r̂ is used to prove knowledge of hsk .

Delegable unlinkable tags. In the known DAA schemes, an unlinkable tag is usually constructed as (B,K =
Bgsk ), where eitherB ∈ G is chosen at random, orB = HG(str) is computed from a random string str. Un-
der the DDH assumption, we can guarantee that (B,K) is computationally indistinguishable from uniformly
random elements in G, and thus obtain unlinkability of signatures. However, this construction requires the
TPM to take two exponentiations to compute K and prove correctness of K.

For the case of bsn = ⊥, we present a technique of delegable unlinkable tags. In particular, we first
consider that unlinkable tags work over group G1 (instead of any cyclic group G). Due to the use of the
split-key technique described as above, an unlinkable tag (B,K = Bgsk = Btsk · Bhsk ) now involves the
information of both TPM key tsk and host key hsk . Therefore, proving in zero-knowledge correctness of
the unlinkable tag needs to construct a commitment L = Br+r̂ = Br ·Br̂, where r, r̂ are sampled at random
by the TPM and the host respectively. Recall that the host stores a public key gpk = ḡtsk · ḡhsk ∈ G1

in the join phase. Thus, in the sign phase, the host can choose b $← Z∗p, and then compute B ← ḡb and
K ← gpk b = Btsk · Bhsk = Bgsk . After receiving the group element E = ḡr from the TPM, the host can
also compute L← (E · ḡr̂)b = (ḡb)r · (ḡb)r̂ = Br ·Br̂.

4.2 Detailed Construction

We assume the public availability of system parameters params = (λ, p,G1,G2,GT , e, g1, g2, ḡ, `n), where
λ is a security parameter, (p,G1,G2,GT , e, g1, g2) is a set of bilinear group parameters generated by G(1λ),
ḡ ∈ G1 is a fixed generator and `n denotes the bit length of nonce picked by TPMs. We will use four
independent hash functions Hi : {0, 1}∗ → Zp for ∀i ∈ {1, 2, 3} and HG2 : {0, 1}∗ → G2 modeled as
random oracles. Note that HG2 can be implemented fast using the hashing algorithms [FCKRH12, BP17],
and the speed of calculating HG2 is doubled in the case of BN curves [FCKRH12].

Setup. Given system parameters params, an issuer I creates its public/private key pair (ipk, isk) as follows:
1. Choose h0, h1, . . . , hn

$← G∗1.
2. Pick γ $← Z∗p, and compute w ← gγ2 .
3. Prove knowledge of secret key γ on public key w by

π1 ← SPK1{(γ) : w = gγ2}(“setup”).

4. Set ipk← ({hi}ni=0, w, π1) and isk← γ.
SPK1 can be constructed in the following standard way: 1) pick r $← Zp and compute a commitment

R← gr2; 2) generate a challenge c← H3(“setup”, g2, w,R); 3) produce a response s← r + c · γ mod p;
4) output a proof π1 ← (c, s). The proof π1 = (c, s) can be easily verified publicly by doing the following:
1) recover a commitment R′ ← gs2 · w−c; 2) compute c′ ← H3(“setup”, g2, w,R

′); 3) accept the proof if
c = c′ and reject it otherwise. The issuer I also registers its public key ipk at a Certification Authority (CA)
such that anyone can get the public key ipk correctly.



TPMMi HostHj Issuer I (isk = γ)

hsk , u′
$← Zp,

tsk
$← Zp TPM.Create hpk ← ḡhsk JOIN

tpk ← ḡtsk C ← hpk · hu
′

0 NI
$← {0, 1}λ

tpk
gpk ← tpk · hpk NI

r
$← Zp TPM.Commit r̂, r′

$← Zp, R← ḡr̂ · hr
′

0

E ← ḡr E ch ← H2(“TPM.join”, ḡ, tpk , E,NI)

Nt
$← {0, 1}`n TPM.Sign, ch z ← H2(“Host.join”, ḡ, h0, C,R,NI )

c← H1(Nt, ch) ŝ← r̂ + z · hsk mod p

s← r + c · tsk mod p s′ ← r′ + z · u′ mod p

(Nt, s) c← H1(Nt, ch)

πt ← (c, s,Nt)

πh ← (z, ŝ, s′)
(tpk , C, πt, πh)

Parse πt as (c, s,Nt)

Parse πh as (z, ŝ, s′)

E′ ← ḡs · tpk−c

R′ ← ḡŝ · hs
′

0 · C−z

c′h ← H2(“TPM.join”, ḡ, tpk , E′, NI)
c′ ← H1(Nt, c

′
h)

z′ ← H2(“Host.join”, ḡ, h0, C,R
′,NI )

If c′ 6= c or z′ 6= z, abort.

u′′, x
$← Zp

A← (g1 · tpk · C · hu
′′

0 ·
∏n
i=1 h

ai
i )1/(γ+x)

attrs ← (a1, a2, . . . , an)

u← u′ + u′′ mod p
(A, x, u′′, attrs)

Y ← g1 · gpk · hu0 ·
∏n
i=1 h

ai
i

If e(A,w · gx2 ) 6= e(Y, g2), abort.
Store cre ← (A, x, u, Y, gpk , hsk) and attrs

Fig. 1: The join protocol of DAAOPT. The notation TPM.Create, TPM.Commit and TPM.Sign represent the
TPM requests of the following procedures: creating a TPM key, generating a commitment and generating a
signature respectively. Note that they are not real TPM 2.0 commands.

Join. The join protocol executed between the TPM Mi, host Hj and issuer I is shown in Figure 1,
where JOIN denotes a join request. We assume that Mi can authenticate itself to I and convince I that
tpk is created by a legitimate TPM. This can be realized by enabling Mi and I to communicate over
a semi-authenticated channel, meaning that a message sent to the issuer consists of an authenticated part
(i.e., tpk ) and an unauthenticated part (i.e., (C, πt, πh)). Multiple methods can be adopted to establish
the semi-authenticated channel using the TPM’s endorsement key [Tru16], where an overview is provided
in [BFG+13a]. We can adopt the method in [CW10] to establish the semi-authenticated channel, where the
method has been adopted by the TCG in the TPM 2.0 specification [CL13, Tru16]. Besides, by using this
method [CW10], I can send a credential (A, x, u′′) and the attributes attrs to the platform in a confidential
manner via encrypting them with an encryption scheme.



TPMMi (tsk) HostHj (cre,m, bsn, D, I)

t1
$← Z∗p, t2

$← Zp
t3 ← 1/t1 mod p, ũ← u− t2 · t3 mod p

T1 ← At1 , T2 ← Y t1 · T−x1 , Y ′ ← Y t1 · h−t20

r̂, rx, rũ, rt2 , rt3
$← Zp, rai

$← Zp for each i ∈ D̄,

Ê ← ḡr̂ , R̃1 ← Y ′
−rt3 · hrũ0 ·

∏
i∈D̄ h

rai
i ,

R2 ← T−rx1 · hrt20 , Ẽ ← E · Ê, R1 ← Ẽ · R̃1

TPM.Commit

r
$← Zp

E ← ḡr
E

If bsn = ⊥, b $← Z∗p, B ← ḡb, K ← gpkb, L← Ẽb.
If bsn 6= ⊥, B ← ⊥, K ← e(gpk , HG2(bsn)), L← e(Ẽ,HG2(bsn)).

ch ← H2(“sign”, ḡ, g1, {hi}ni=0, T1, T2, Y
′, B,K,R1, R2, L)

TPM.Sign, (m, bsn, D, I, ch)

Nt
$← {0, 1}`n

c← H1(Nt,m, bsn, D, I, ch)

s← r + c · tsk mod p

(Nt, s) c← H1(Nt,m, bsn, D, I, ch)

s̄← s+ r̂ + c · hsk mod p, sx ← rx + c · x mod p

sũ ← rũ + c · ũ mod p, st2 ← rt2 + c · t2 mod p

st3 ← rt3 + c · t3 mod p, sai ← rai + c · ai mod p for each i ∈ D̄
π2 ← (c, s̄, sx, sũ, st2 , st3 , {sai}i∈D̄, Nt)

σ ← (T1, T2, Y
′, B,K, π2)

Fig. 2: The sign protocol of DAAOPT. For the case that bsn 6= ⊥, B is set as ⊥, as e(ḡ, HG2(bsn)) can be
computed offline by the verifier. The elements marked in the dashed box can be computed offline by the
TPM and host. Again, TPM.Commit and TPM.Sign represent the TPM requests rather than real TPM 2.0
commands.

In the join protocol, Mi creates a public key tpk and Hj produces a Pedersen commitment [Ped92]
C = ḡhskhu

′
0 . Then,Mi proves knowledge of secret key tsk with the help of Hj , i.e., they cooperatively

produce a signature proof of knowledge

πt ← SPKt{(tsk) : tpk = ḡtsk}(“TPM.join”,NI ).

The hostHj also proves knowledge of secret key hsk and randomness u′ via independently generating

πh ← SPKh{(hsk , u′) : C = ḡhskhu
′

0 }(“Host.join”,NI ).

Upon receiving a tuple (tpk , C, πt, πh), I checks the validity of proofs πt and πh, and then blindly issues a
BBS+ signature (A, x, u′′) on key gsk and attributes attrs = {ai}ni=1 to platform (Mi,Hj), where gsk =
tsk + hsk mod p is the secret key of this platform. Except for the BBS+ signature (A, x, u) and secret
key hsk , Hj stores gpk = tpk · ḡhsk and Y = g1 · gpk · hu0 ·

∏n
i=1 h

ai
i in credential cre for fast signing.

To be compatible with the TPM 2.0 specification, the TPM does not output a digest c, and instead the host
re-computes c from Nt and ch.

Sign. A TPM Mi and a host Hj can cooperatively sign a message m w.r.t. basename bsn and attribute
disclosure (D, I) by executing the sign protocol shown in Figure 2, where (D, I) is selectively disclosed
by Hj . To generate a signature, Hj randomizes A and Y as T1 = At1 and Y ′ = Y t1h−t20 respectively, and
computes T2 = Y t1T−x1 such that T2 = T γ1 . Then, Hj generates an unlinkable-tag/pseudonym (B,K =



Bgsk ), where either B = ḡb or B = e(ḡ, HG2(bsn)). Next,Mi cooperates with Hj to produce a signature
proof of knowledge

π2 ← SPK2

{
(gsk , {ai}i∈D̄, x, ũ, t2, t3) : g−1

1

∏
i∈D

h−aii = Y ′−t3 ḡgskhũ0
∏
i∈D̄

haii ∧

T2/Y
′ = T−x1 ht20 ∧K = Bgsk

}
(“sign”,m, bsn, D, I),

where t3 = t−1
1 mod p and ũ = u− t2t3 mod p.

In the process of generating a proof π2, hostHj calls TPMMi to produce a signature proof of knowledge

πt ← SPKt{(tsk) : tpk = ḡtsk}(“sign”,m, bsn, D, I).

Verify. On input a message m, a basename bsn, a signature σ, attribute disclosure (D, I) and a revocation
list RL, a verifier V can verify the signature as follows:
1. Parse signature σ as (T1, T2, Y

′, B,K, π2) and proof π2 as (c, s̄, sx, sũ, st2 , st3 , {sai}i∈D̄, Nt).
2. Check that B 6= 1G1 if bsn = ⊥ and B = ⊥ otherwise. If bsn 6= ⊥, compute B ← e(ḡ, HG2(bsn)).
3. Check that e(T1, w) = e(T2, g2).
4. Verify the validity of proof π2 as follows:

(a) Compute the following three commitments:

R′1 ← Y ′
−st3 · ḡs̄ · hsũ0 ·

∏
i∈D̄

h
sai
i · g

c
1 ·
∏
i∈D

hc·aii

R′2 ← T−sx1 · hst20 · (T2/Y
′)−c

L′ ← Bs̄ ·K−c

(b) Calculate c′h ← H2(“sign”, ḡ, g1, {hi}ni=0, T1, T2, Y
′, B̃,K,R′1, R

′
2, L

′), where B̃ = B if bsn = ⊥
and B̃ = ⊥ otherwise.

(c) Compute c′ ← H1(Nt,m, bsn, D, I, c
′
h).

(d) Check that c′ = c.
5. For every gsk i ∈ RL, check that K 6= Bgsk i .
6. Output 1 if all the above checks pass and 0 otherwise.

Note that e(ḡ, HG2(bsn)) can be computed off-line by V . Besides, V can pre-compute e(ḡ, HG2(bsn))gsk i

for each gsk i ∈ RL and store the computational results for the verification of pseudonymous signatures.

Link. On input two message/signature pairs (m0, σ0) and (m1, σ1), attribute disclosure (D0, I0) and (D1, I1),
and a basename bsn 6= ⊥, a verifier V decides if the two signatures link as follows:
1. Verify the validity of σ0 and σ1, i.e., output⊥ if the verification algorithm outputs 0 on input (m0, bsn, σ0,
D0, I0, RL = ∅) or (m1, bsn, σ1, D1, I1, RL = ∅).

2. Parse σ0 and σ1 as (T1,0, T2,0, Y
′

0 , B0,K0, π2,0) and (T1,1, T2,1, Y
′

1 , B1,K1, π2,1) respectively.
3. If K0 = K1, output 1, otherwise output 0.

4.3 Efficiency Improvement

In this section, we present online/offline DAA signatures and a simple method of parallel computation to
improve the computational efficiency of DAAOPT. We only describe the efficiency improvement of the sign
protocol, but the two optimizations can be also applied to the join protocol.

Online/Offline DAA Signatures. The notion of online/offline signatures was introduced by Even, Goldreich
and Micali [EGM96]. We apply this notion into DAAOPT to obtain fast online signing time. In particular,



we transform the sign protocol of DAAOPT into an online/offline sign protocol, based on the fact that a
basename bsn is submitted online by a verifier and a message m to be signed is determined online (e.g., m
may include the PCR values of the current state of the host system or a nonce Nv from the verifier).

In the offline phase, TPMMi can pre-compute a commitment E = ḡr, and host Hj can pre-compute
the following elements: T1, T2, Y

′, Ẽ, R1, R2, t3, ũ, as they are independent of m and bsn. That is, the
elements marked in the dashed box of Figure 2 can be computed offline. In the online phase, Hj firstly
computes B,K,L and ch, and thenMi can generate (Nt, s) without any costly computation. Finally, Hj
can rapidly complete the computation of a signature by re-computing a digest c and generating a proof
π2 = (c, s̄, sx, sũ, st2 , st3 , {sai}i∈D̄, Nt) fast. By default, Mi and Hj would securely delete the interme-
diate pre-computation results after the signatures are produced. For the case of bsn = ⊥, Hj could further
pre-compute B,K,L and ch, at the cost of differentiating that pre-computation results are used to create
which type of signatures. In the above online/offline DAA signatures, we assume that the host is allowed to
select offline the attribute disclosure (D, I). If some applications only allow that the attribute disclosure is
determined online, then the host has to compute

∏
i∈D̄ h

rai
i and ch online.

In a straightforward way, a randomness r is stored inside the TPMMi after a TPM.Commit request and
deleted after a TPM.Sign request. However, such implementation is too expensive for the TPM with limited
storage, when multiple pre-computations are required. TPM 2.0 [Tru16] provides an alternative efficient
implementation without storing the random numbers, which allows us to prepare the pre-computation values
for multiple signatures. Roughly, the TPM generates a randomness r via a Key Derivation Function (KDF)
with a secret seed and a counter, and maintains a bit table of fixed size to mark which random numbers have
been used. We refer the reader to [Tru16, CL13] for the details.

Optimization Using Parallel Computation. The TPM is a small discrete chip with independent CPU and
memory, and has much less resources than the host. Therefore, when TPMMi is computing a commitment
E, hostHj can compute in parallel the following elements: t3, ũ, T1, T2, Y

′, Ê, R̃1, R2, B,K, if the number
u = |D̄| of undisclosed attributes is not very large. By using the parallel processing in this way, the signing
time on the host side can be reduced significantly. This method can be also applied to other DAA schemes,
although, as far as we know, it has not been used when implementing the existing DAA schemes.

4.4 Security Properties of Our DAA Scheme

In this section, we give an informal security analysis to argue the security of our protocol DAAOPT. For
every security property as described in Section 3.2, we argue why DAAOPT satisfies it. Note that this is
structurally quite different from the actual security proof. In the actual proof, we prove that no environment
Z can distinguish the real world where it is interacting with protocol DAAOPT and adversary A, from the
ideal world where it is interacting with ideal functionalityF ldaa and simulator S. Nevertheless, the arguments
described here are also involved in the formal security proof.

Theorem 1 (informal). The protocol DAAOPT is secure under the DBDH, DDHG1 and q-SDH assumptions
in the random oracle model.

Proof (Sketch). We argue that DAAOPT is anonymous, unforgeable and non-frameable as follows.

Anonymity. The SPK2 constructed in the sign protocol of DAAOPT is zero-knowledge by programming
random oracles H1 and H2. Thus, there exists a simulator that can simulate a proof π2 of SPK2 for any
statement, and no adversary can notice the difference. To prove that signatures are unlinkable, we pick a
fresh key gsk

$← Zp for bsn = ⊥ or a new basename bsn 6= ⊥, compute an unlinkable-tag/pseudonym
(B,K) with gsk , and simulate a proof π2 of SPK2 in every signature generation of honest platforms. This
is indistinguishable using a hybrid argument, where in the i-th game hop we use a fresh key gsk i every time
that the honest platform signs with bsni = ⊥ (or a new basename bsni 6= ⊥).



We prove that the i-th game hop is indistinguishable from the (i−1)-th one under the DDHG1 assumption
if bsni = ⊥ and the DBDH assumption otherwise. For the case of bsni = ⊥, given a DDHG1 instance
(ḡ, ḡα, ḡβ, ḡχ) with either χ = αβ or χ $← Zp, we simulate as follows. We set ḡα as the TPM’s public
key tpk and simulate a proof πt due to the zero-knowledge property of SPKt, and choose hsk

$← Zp as
the host’s secret key. When signing with bsni = ⊥, we simulate a proof π2 of SPK2, and set B = ḡβ and
K = ḡχ · (ḡβ)hsk . If χ = αβ, the same key was used to sign, and if χ $← Zp, a fresh key was used. For the
case that bsni 6= ⊥ and bsni is a new basename, given a DBDH instance (g1, g2, g

α
1 , g

β
2 , g

δ
1, g

δ
2, e(g1, g2)χ)

with either χ = αβδ or χ $← Zp, we simulate as follows. We set gδ1 as ḡ and the unknown α as the key gsk of
the platform. We can choose tsk $← Zp as the TPM’s secret key, and pick C $← G1 and simulate a proof πh,
as SPKh is zero-knowledge. We also program the random oracle such that HG2(bsni) = gβ2 . When signing
with bsni, we simulate a proof π2 and set K = e(g1, g2)χ as the pseudonym. If χ = αβδ, the same key was
used to sign, and if χ $← Zp, a fresh key was used.
Now, for any signature of honest platforms, an unlinkable-tag/pseudonym is computed using a fresh key,
a proof π2 is simulated. Besides, T1 is uniformly random in G∗1, T2 = T γ1 and Y ′ is uniformly random in
G1, and thus they do not involve any information about the honest platform. Therefore, no adversary could
break the anonymity of DAAOPT.

Unforgeability. First, we argue that no adversary could forge signatures using a credential cre from a
platform with an honest TPM even if the host is corrupted. Signatures in our protocol DAAOPT include the
proofs of SPK2 which prove knowledge of secret key gsk = tsk + hsk . Then, the adversary must know
secret key tsk if it uses the credential cre , as SPK2 is a proof of knowledge. This is infeasible under the
Discrete-Logarithm (DL) assumption implied by the assumptions in Theorem 1, where the security analysis
is very similar to the one in the non-frameability and omitted here. Second, a platform proves thatK = Bgsk

is constructed correctly using the same key from its credential via SPK2. If key gsk is added to the revocation
list RL, the private revocation check would reject all signatures created by gsk .

Next, we only need to show that no adversary could forge signatures using a credential that were not
issued by the honest issuer. We can reduce this to existential unforgeability against adaptive chosen message
attacks (EUF-CMA) of the BBS+ signature, which has been proved under the q-SDH assumption [ASM06,
CDL16a]. Specifically, for the issuance of a credential, we can extract a platform secret key gsk and a
randomness u′ from proofs πt and πh of SPKt and SPKh, and then make a query gsk to the signing oracle
and obtain a BBS+ signature (A, x, u). Then we can issue the corresponding credential (A, x, , u − u′) to
the platform. When we extract a platform secret key and credential from a forged signature, the key was not
signed by the issuer, then the key and credential must be a forgery of the BBS+ signature scheme.

Non-frameability. We argue that an honest platform cannot be framed under the DL assumption, even
though the issuer is corrupted. Given a DL instance (ḡ, ḡα), we set ḡα as the TPM’s public key tpk and
pick hsk

$← Zp as the host’s secret key. Then, we simulate a proof πt of SPKt by programming the random
oracleH1 in every execution of the join or sign protocol associated with the honest platform. If the adversary
forges a signature which links to a signature of the honest platform, it must prove knowledge of the secret
key gsk of the platform. We can extract the key gsk from the proof π2 in the forged signature, and output
gsk − hsk as the discrete logarithm α which breaks the DL assumption. ut

In the full formal security proof as described in Appendix D, we rewind to extract the witnesses from the
proofs of SPK1, SPKt, SPKh and SPK2, which is in line with the security proofs of recent DAA schemes
with Fiat-Shamir proofs in the UC model [CDL16a, CCD+17]. Camenisch et al. [CDL16b, CDL16a] also
consider that instantiating the SPKs to be online extractable via combining Paillier encryption [Pai99] with
Fiat-Shamir proofs [FS86]. However, the instantiation is considerably more expensive, and is not compatible
with TPM 2.0. As in [CDL16a, CCD+17], we prove that DAAOPT satisfies the stand-alone security instead



of UC security when instantiating the underlying SPKs by Fiat-Shamir proofs and rewinding for extraction.
As a result, we require that the join protocol is executed sequentially for the security proof.

5 TPM 2.0 Implementation of Our DAA Scheme

We show how to implement our DAA scheme DAAOPT using the TPM commands specified in the TPM
2.0 specification [Tru16]. Specifically, we first give a brief description of the TPM 2.0 commands that will
be used to implement DAAOPT, and refer the reader to TPM 2.0 [Tru16] for details. Then, we show how to
implement DAAOPT using these TPM 2.0 commands.

TPM 2.0 allows different types of signatures (e.g., ECDAA, ECSchnorr and U-Prove) to be obtained
by using the same TPM commands. This is achieved by splitting the signing procedure into two TPM
commands: the first one is TPM2 Commit() that produces a commitment and the second one is a signing
command. The signing command has several versions, dependent on what the signature is used for. As
examples, we consider three DAA use cases as follows:

– Use Case I (corresponding to APPLICATION I): a DAA signature is used to quote PCR values, and a
TPM 2.0 command TPM2 Quote() should be invoked.

– Use Case II (corresponding to APPLICATION II): a DAA signature is used to certify a key created by
the TPM, and a TPM 2.0 command TPM2 Certify() should be invoked.

– Use Case III (corresponding to APPLICATION III): a DAA signature is used to sign an arbitrary message
provided by the host, and a TPM 2.0 command TPM2 Sign() should be invoked.

In Use Cases I and II, a message m to be signed consists of two parts: a TPM message mt (i.e., either PCR
values or a TPM key) and a host message mh (e.g., a nonce from a verifier). In Use Case III, a message m
to be signed is totally provided by the host.

5.1 Outline of TPM 2.0 Commands

Following the TPM 2.0 specification [Tru16], cryptographic keys are stored in a key hierarchy, which in-
cludes a root key, an arbitrary number of layers of storage keys and one layer of leaf keys. Usually, only the
root key is stored inside the TPM. Each other key has a parent key in one layer above this key, and each
storage key protects at least one child key. A leaf key is used for encryption/decryption, signing/verification
or key exchange. A TPM makes use of a key with the following three items:

– Key handle: A key handle is a 32-bit value issued by the TPM when a key is loaded into the TPM.
When the key is subsequently used in a command, the handle is taken as input to this command. If more
than one key is involved in a command, all handles of these keys are taken as input to the command. The
key can be used for multiple commands and when no longer required it can be unloaded and its handle
released. After a key handle is released, the key needs to be re-loaded if it needs to be used again.

– Key name: The name of an asymmetric key is used for identifying the key externally, and it is a hash
digest of the public portion of the key. We use tpk .name to denote the key name of a public key tpk .

– Key blob: A key stored outside of the TPM is in a format of a key blob that is associated with its parent
key PKEY. For an asymmetric key pair, written as tk = (tpk , tsk) with the public and private portions,
the key blob is

(tk)∗ =
(
(tsk)SK, tpk ,MACMK((tsk)SK‖tpk .name)

)
,

where (tsk)SK is a symmetric-encryption ciphertext on plaintext tsk under the key SK, MACMK(·) is
a message authentication code (MAC) under a key MK, and (SK,MK) is derived from the parent key
PKEY using a key derivation function, i.e., (SK,MK)← KDF(PKEY, SALT); SALT is used to make PKEY

reusable. For simplicity, we will omit the salt from KDF(PKEY, SALT) in the rest part of this section.



When tk is used as a TPM DAA signing key or any other TPM signing keys, it has a property named as
restricted or unrestricted. A restricted signing key is used to quote PCR values, to certify a TPM key, or to
sign a TPM computed hash digest. An unrestricted key can be used to sign any given message. Therefore, a
message signed under an unrestricted key cannot be claimed that this is a set of PCR values, a key created by
the TPM etc. A TPM key tk must be restricted for Use Cases I and II, and it is either restricted or unrestricted
for Use Case III.

In the following description of TPM 2.0 commands, we continue using G1 = 〈ḡ〉 to denote a group of
prime order p with a fixed generator ḡ. Let H : {0, 1}∗ → Zp be a cryptographic hash function used by a
TPM. To implement DAAOPT, we recommend using the following TPM 2.0 commands:

– Both TPM2 Create() and TPM2 CreatePrimary() are used to create a TPM key tk = (tpk , tsk). For
TPM2 Create() : the TPM does the following:
1. Choose a fresh secret key tsk

$← Zp and compute a public key tpk ← ḡtsk .
2. Set a restricted or unrestricted attribute for the key.
3. Generate and output a key blob (tk)∗.

For TPM2 CreatePrimary() instead of creating a key from a random number, it is created from a TPM
secret seed using a KDF. To simplify the writing, we will use TPM2 Create() only in the remaining part
of this paper.

– TPM2 Load() is used to load a key into the TPM. On input TPM2 Load((tk)∗) : the TPM takes as
input a key blob (tk)∗ and its parent key handle, from that the TPM finds the parent key PKEY, which
must have already been loaded into the TPM. The TPM then generates (SK,MK) ← KDF(PKEY), com-
putes tpk .name from tpk and checks the validity of MACMK((tsk)SK‖tpk .name). The TPM decrypts
(tsk)SK, and checks if (tpk , tsk) forms a valid key pair. If the checks pass, the TPM outputs a key handle
tk .handle along with the key name tpk .name . Now tk is stored inside the TPM and can be used for
future operations.

– Several TPM 2.0 hash commands allow a TPM to compute a hash digest with different message lengths.
If the message is not longer than one hash block, use TPM2 Hash(). Otherwise, use a set of com-
mands to handle sequences. In this paper, we use TPM2 Hash() only to implement DAAOPT. On input
TPM2 Hash(msg) : with a message msg given by the host, the TPM does the following:
1. Check that the first octets of message msg are not “TPM GENERATED VALUE”.
2. If the check passes, compute a digest ct ← H(msg) and a “TPMT TK HASHCHECK” ticket τ which

is a MAC on message ct.
3. Output (ct, τ).

The TPM also has an internal hash operation that can handle a messagemt generated by the TPM, such as
PCR values or a TPM key. In this case, the message will start with the label “TPM GENERATED VALUE”.

– TPM2 Commit() is the first TPM command in the TPM signing procedure.
On input TPM2 Commit(P1, s2, y) : the TPM executes as follows:
1. If P1 6= ⊥, check whether P1 ∈ G1 or not.
2. If (s2, y) 6= ⊥, compute x = H(s2) for a cryptography hash function H , and then set B ← (x, y) and

check whether B ∈ G1 or not. The string s2 may contain a basename bsn for DAA.
3. If the above checks fail, output an error and abort.
4. Set E,K,L← ⊥.
5. Pick r $← Zp and store (ctr , r) in a list Committed, where ctr is a counter used to retrieve r. Here,

we assume that Committed and ctr are initialized as ∅ and 0 respectively.
6. If P1 6= ⊥, compute E ← P r1 .
7. If (s2, y) 6= ⊥, compute K ← Btsk and L← Br.
8. If P1 = ⊥ and (s2, y) = ⊥, compute E ← ḡr.



9. Increment ctr and output (E,K,L, ctr).

The second TPM command in the TPM signing procedure, as we discussed before, has three cases:
TPM2 Sign(), TPM2 Certify() and TPM2 Quote(), dependent on what the signature is used for.

– On input TPM2 Sign(ct, τ, ctr) : the TPM executes as follows:
1. If the TPM key is unrestricted and τ = ⊥, check that the size of ct is equal to the output length of H.

Otherwise, check the validity of ticket τ .
2. If the above check passes, execute the following CryptSign(ct, ctr) function:5

(a) Retrieve a pair (ctr , r) and remove it from list Committed, output an error if no such pair was
found.

(b) Pick Nt
$← {0, 1}`n and compute c← H(Nt, ct).

(c) Compute s← r + c · tsk mod p and output (Nt, s).
– On input TPM2 Certify(qualifyData, keyhandle, ctr) : Given an extra data qualifyData , a keyhandle

and a counter ctr , the TPM retrieves a public key mt using the key handle keyhandle , and does the
following:
1. Compute a hash digest ct ← H(qualifyData, H(“TPM GENERATED VALUE”,mt)).
2. Execute the CryptSign(ct, ctr) function as described in TPM2 Sign() to obtain (Nt, s).
3. Output (Nt, s).

– On input TPM2 Quote(qualifyData,PCRselect , ctr) : the TPM executes as follows:
1. Select the corresponding PCR values mt from the PCR according to PCRselect , and compute a hash

digest of mt denoted by pcrDigest .
2. Compute a hash digest ct ← H(qualifyData, H(“TPM GENERATED VALUE”, pcrDigest)).
3. Execute the CryptSign(ct, ctr) function as described in TPM2 Sign() to obtain (Nt, s).
4. Output (Nt, s) and pcrDigest .

– TPM2 ActivateCredential() is used to allow the DAA issuer to authenticate the public key tpk of a TPM
and to issue a credential cre ′ and a number of attributes attrs confidentially in the join protocol by using
the endorsement key ek = (epk , esk) of the TPM. Given an endorsement public key epk and a TPM
public key tpk , the issuer generates a fresh secret seed seed and a fresh symmetric encryption key k, and
then computes an encryption blob (ct)∗ as follows:

(ct)∗ = ENCepk (tpk , k) =
(
(seed)epk , (k)SK,MACMK((k)SK‖tpk .name)

)
where (seed)epk is a public-encryption ciphertext on message seed under public key epk , (SK,MK) ←
KDF(seed) and (k)SK is a symmetric-encryption ciphertext on message k under secret key SK. Addition-
ally, the issuer generates a symmetric-encryption ciphertext (cre ′‖attrs)k on message cre ′‖attrs under
key k.
On input TPM2 ActivateCredential(ek .handle, tk .handle, (ct)∗): the TPM executes as follows:
1. Retrieve a secret key esk using a key handle ek .handle , and decrypt (seed)epk with esk to obtain

seed .
2. Derive a symmetric key SK and a MAC key MK, i.e, (SK,MK)← KDF(seed).
3. Retrieve a key name tpk .name using a key handle tk .handle and compute MACMK((k)SK‖tpk .name).
4. Check whether the computed MAC value matches the one in encryption blob (ct)∗.
5. If the check fails, output an error. Otherwise, decrypt (k)SK with SK and output k.

When the TPM releases k, the host can decrypt (cre ′‖attrs)k with key k to obtain a credential cre ′ and
its attributes attrs from the issuer.

5 Note that a nonce Nt has been added to the CryptSign function in the revision 01.38 of TPM 2.0 specification [Tru16].



5.2 Implementation of Our DAA Scheme using TPM 2.0 Commands

For the sake of simplicity, we consider that a key tk = (tpk , tsk) is always loaded into the TPM via
TPM2 Load(), before it would be used. Thus, we could omit the invocation of TPM2 Load() in the de-
scription of implementing our scheme DAAOPT.

Below, we present how to use the TPM 2.0 commands described in Section 5.1 to implement the
TPM.Create, TPM.Commit and TPM.Sign procedures in DAAOPT.

– For the TPM.Create procedure, the host Hj calls a TPM command TPM2 Create(), and the TPMMi

outputs a key blob (tk)∗ including a public key tpk .

– For the TPM.Commit procedure, Hj calls a TPM command TPM2 Commit(⊥,⊥), and Mi outputs a
commitment E = ḡr and a counter ctr .

– For the TPM.Sign procedure in the join protocol, we consider two cases relying on whether a signing key
tsk is restricted or not.
1. If the TPM secret key tsk is restricted, host Hj calls a TPM command TPM2 Hash(ch), and TPM
Mi outputs a digest ct and a ticket τ . Then,Hj calls TPM2 Sign(ct, τ, ctr), andMi outputs (Nt , s).

2. If the TPM secret key tsk is unrestricted, hostHj calls TPM2 Sign(ch,⊥, ctr), and TPMMi outputs
(Nt , s).

– For the TPM.Sign procedure in the sign protocol, we consider three DAA use cases as follows.
1. For Use Case I, host Hj first computes a hash digest dh ← H(“qualifyingData”,mh, bsn, D, I, ch),

and then calls TPM2 Quote(dh,PCRselect , ctr). TPMMi outputs (Nt , s) along with pcrDigest .

2. For Use Case II, the host Hj loads the key to be certified into the TPM by calling a TPM com-
mand TPM2 Load() to receive a key handle keyhandle . Then, Hj computes a hash digest dh ←
H(“qualifyingData”,mh, bsn, D, I, ch) and calls a TPM command TPM2 Certify(dh, keyhandle, ctr).
The TPMMi outputs (Nt , s).

3. For Use Case III, we distinguish which type the TPM secret key tsk belongs to.
(a) If tsk is restricted, hostHj computes dh ← H(“hostMessage”,m, bsn, D, I, ch), and then calls a

TPM command TPM2 Hash(dh). TPMMi outputs a digest ct and a ticket τ . Then, Hj calls a
TPM command TPM2 Sign(ct, τ, ctr) andMi outputs (Nt , s).

(b) If tsk is unrestricted, host Hj can compute ct ← H(m, bsn, D, I, ch) by itself. Then, Hj calls a
TPM command TPM2 Sign(ct,⊥, ctr) and TPMMi outputs (Nt , s).

In the above TPM 2.0 implementation, we let the host compute the hash digest ofmh (orm) and bsn, D, I, ch
to achieve better performance. This has no impact for the security even if the host is corrupted, since the
simulator controls the random oracle H, can extract a tuple (mh/m, bsn, D, I, ch) from the H-list maintained
by itself, and send the tuple to the ideal functionality in the security proof. Depending on the use case and
the type of the protocol, the hash function H1 used by the TPM in the construction of our scheme DAAOPT

has different ways of implementation, which would be explicit from the application scenario and that either
the join protocol or the sign protocol is executed by a platform.

Below, we show how to use TPM2 ActivateCredential() to establish a semi-authenticated channel be-
tween the TPM and issuer in the join protocol, by following the description in [CL13].

1. A hostHj sends an endorsement public key epk and a public key tpk to an issuer I as the JOIN request.
2. Upon receiving epk and tpk , I checks the validity of epk via validating the certificate of epk . If the check

passes, I picks a nonce NI ← {0, 1}λ and generates an encryption blob (ct1)∗ ← ENCepk (tpk ,NI ).
Then I sends (ct1)∗ toHj .

3. Hj calls TPM2 ActivateCredential(ek .handle, tk .handle, (ct1)∗) and the TPMMi outputs NI , where
endorsement key ek and TPM key tk are assumed to have been loaded intoMi via TPM2 Load().



4. Upon receiving a tuple (C, πt, πh) and a nonce NI , I checks the validity of NI and proofs πt, πh.
If the check passes, I generates a credential cre ′ ← (A, x, u′′) and a number of attributes attrs =
(a1, . . . , an). Then I creates a fresh key k, and generates an encryption blob (ct2)∗ ← ENCepk (tpk , k)
and a symmetric-encryption ciphertext sc ← (cre ′‖attrs)k. I sends ((ct2)∗, sc) toHj .

5. Hj calls TPM2 ActivateCredential(ek .handle, tk .handle, (ct2)∗) and the TPMMi outputs k.Hj de-
crypts ciphertext sc with key k and obtains cre ′ = (A, x, u′′) and attrs = (a1, . . . , an).

6 Performance Evaluation

In this section, we first provide the benchmark results on an Infineon TPM 2.0 chip, which can be used to
evaluate the TPM signing performance for three use cases of DAA considered by us. Then, we give the
experimental results for the host signing and verification efficiency on a laptop for our DAA scheme without
considering attributes.

Next, we compare the efficiency of our scheme DAAOPT with the existing DAA schemes supported
by the TPM 2.0 specification [Tru16]. We use CPS, BL and CDL to denote these DAA schemes, where
CPS is based on the LRSW-DAA scheme [CPS10], BL is based on the SDH-DAA scheme [BL10b], and
CDL is the SDH-DAA scheme in the full version of [CDL16a] but removes the session identifiers for UC
security. In particular, we evaluate the efficiency of BL when considering the efficiency improvement of
this scheme using this optimization in [CU15]. We also compare the efficiency of these DAA schemes
with the functionality extension of attributes, where CPS and BL can be extended to support attributes
following [CU15], and CDL provides the support of attributes by itself. For fairness, we consider that all
the DAA schemes let the host store all attributes and the TPM protect the secret key only. We refer the
reader to [CL13, CU15] for the implementation details of CPS and BL using the TPM 2.0 commands. In all
our comparisons, we can directly obtain the efficiency of standard DAA schemes (without attributes) when
setting both the number of attributes n and the number of undisclosed attributes u as zero.

We also give the comparison of concrete sizes of credentials and signatures over two kinds of BN curves
recommended by the TCG. We omit the efficiency comparison of the join protocol, since the join protocol
is executed much less frequently than the sign protocol or the verification algorithm.

6.1 Benchmark Results and Performance of Our DAA Scheme

We present the benchmark results for the following TPM 2.0 commands:

TPM2 Commit(),TPM2 Quote(),TPM2 Certify(),TPM2 Sign(),TPM2 Hash(),

by implementing them on an Infineon TPM 2.0 chip with vendor ID IFXSLB9670. The TPM 2.0 chip is
installed on a module designed for the Raspberry Pi. The program used to obtain the timings was running on
a Raspberry Pi 3 fitted with the Infineon TPM module, and was compiled using g++ 6.3.0. The Raspberry
Pi 3 is equipped with a 64-bit ARMv7 processor, but the operating system Raspbian (version 4.14.30) runs
in 32-bit mode. We adopt SHA256 to implement the hash function H used by the TPM 2.0 chip.

The TCG recommended two types of Barreto-Naehrig (BN) curves [BN06] (i.e., BN P256 and BN P638)
to support bilinear pairings. These BN elliptic curves have the form y2 = x3 + b with embedding de-
gree 12, where b = 3 for BN P256 and b = 257 for BN P638. According to the state-of-art analysis
results [KB16, BD18], the BN P256 curve only achieves about 100-bit security level, and the BN P638
curve will provide more than 128-bit security level. Currently, only the BN P256 curve is implemented
on the TPM 2.0 chips, and the implementation of the BN P638 curve has not been available for TPM 2.0
chips. Therefore, we only consider the BN P256 curve to evaluate the computational efficiency of our DAA
scheme. However, we will adopt both the BN P256 and BN P638 curves to evaluate the sizes of credentials



Table 1: The average running time of several TPM 2.0 commands
TPM2 Commit()†

Case 1 Case 2 Case 3 Case 4 Case 5

87.4 87.6 217.1 152.3 217.0

TPM2 Quote() TPM2 Certify()

50.2 50.1

TPM2 Sign() TPM2 Hash()

49.8 23.0

† The running time is in milliseconds (ms) and averaged over 150 random instances.

Table 2: Performance of our DAA scheme without attributes

DAAOPT

Running time of the sign protocol (ms)
Verify (ms)

Signature size (Bytes)
TPM signing Host signing Platform signing
Total Online Total Opt.? Online Total Opt.? Online BN P256 BN P638

bsn = ⊥ 137.2 49.8 14.1 1.1 0.2 151.3 138.3 50.0 5.9 385 958

bsn 6= ⊥ 137.2 49.8 25.9 6.8 14.8 163.1 144.0 64.6 8.1 705 1755
? The running time in the columns of “Opt.” considers the optimization of parallel computation.

and signatures. In particular, when considering the point compression technique, the size (in bits) of an el-
ement in group Zp, G1 and respective GT is shown as follows: |Zp| = 256, |G1| = 257 and |GT | = 3072
over the BN P256 curve; and |Zp| = 638, |G1| = 639 and |GT | = 7656 over the BN P638 curve.

We consider five cases for the implementation of the TPM2 Commit() command:

Case 1. No input, i.e., P1 = ⊥ and (s2, y) = ⊥. Our scheme DAAOPT uses TPM2 Commit() in this case.

Case 2. A single elliptic curve point P1 6= ⊥ is input, but (s2, y) = ⊥. The LRSW-DAA scheme CPS uses
this case with a random P1 to generate fully anonymous signatures.

Case 3. Both a curve point P1 6= ⊥ and (s2, y) 6= ⊥ are input, and P1 is a random point. The LRSW-DAA
scheme CPS uses this case to produce pseudonymous signatures.

Case 4. Only (s2, y) 6= ⊥ is input and P1 = ⊥. In this case, only K = Btsk , L = Br are output. As far as
we know, no DAA schemes uses this case.

Case 5. Both a curve point P1 6= ⊥ and (s2, y) 6= ⊥ are input, and P1 is a fixed base point. The SDH-DAA
schemes BL and CDL use this case to generate signatures for both bsn = ⊥ and bsn 6= ⊥.

Our benchmark results for these TPM 2.0 commands are shown in Table 1. For TPM2 Quote(), only one
PCR value is selected. The running time of TPM2 Certify() does not include the time creating a public key
to be signed, where the public key is assumed to be created offline. These benchmark results will be helpful
to evaluate the TPM performance of other DAA schemes.

We use the Apache Milagro Cryptographic Library (AMCL) [SMBA19] with the BN P256 curve and
an ate pairing to evaluate the performance of the host signing and the verification algorithm for our DAA
scheme DAAOPT without considering attributes. We obtained the running time on a laptop with 1.80GHz
Intel Core i7-8550U CPU averaged over 150 random instances. We also measured the online signing time
and the signing time with an optimization of parallel computation on the host side. The performance of our
scheme DAAOPT is described in Table 2. From this table, we can see that DAAOPT provides an attractive
signing efficiency and a reasonable signature size as a trade-off of faster signing.



Table 3: Efficiency comparison of the sign protocol and verification algorithm among DAA schemes?

DAA Scheme†
Sign protocol

Verification‡TPM signing Host signing

Total Online Total Online

CPS
bsn = ⊥ 1EG1 H + mul 4EG1 + nEG1 + 1EuG1

− 1E2+n
G1

+ 1EnG1(t)
+ 1EnG2(t)

+ 4P + [2P ]

bsn 6= ⊥ 3EG1 3EG1 4EG1 + nEG1 + 1EuG1
− 1E2

G1
+1E2+n

G1
+1EnG1(t)

+1EnG2(t)
+4P+[2P ]

BL
bsn = ⊥ 3EG1 H + mul 2EG1 + 1E2+u

G1
+ 2P − 1E2

G1
+ 1E4+n

G1
+ 2P

bsn 6= ⊥ 3EG1 3EG1 2EG1 + 1E2+u
G1

+ 2P 1P 1E2
G1

+ 1E4+n
G1

+ 2P

CDL
bsn = ⊥ 3EG1 H + mul 1EG1 + 3E2

G1
+ 1E2+u

G1
− 1E2

G1
+ 1E3

G1
+ 1E4+n

G1
+ 2P

bsn 6= ⊥ 3EG1 3EG1 1EG1 + 3E2
G1

+ 1E2+u
G1

− 1E2
G1

+ 1E3
G1

+ 1E4+n
G1

+ 2P

DAAOPT
bsn = ⊥ 1EG1 H + mul 5EG1 + 3E2

G1
+ 1E2+u

G1
− 1E2

G1
+ 1E3

G1
+ 1E4+n

G1
+ 2P

bsn 6= ⊥ 1EG1 H + mul 2EG1 + 3E2
G1

+ 1E2+u
G1

+ 2P 2P 1E3
G1

+ 1E4+n
G1

+ 1E2
GT

+ 2P

? EmGi
(i ∈ {1, 2, T}): the cost of the product of m powers in Gi; EGi : the cost of one exponentiation in Gi; P : the cost of

a bilinear pairing. EmGi(t)
(i ∈ {1, 2}): the cost of one m-multi-exponentiations in group Gi with the size of the exponents

being t such as a half of the size of p. n is the total number of attributes and u denotes the number of undisclosed attributes.
† The row for bsn = ⊥ (resp., bsn 6= ⊥) represents the cost of a fully anonymous (resp., pseudonymous) signature.
‡ [X] denotes the incremental computational cost X when considering the support of attributes.

6.2 Efficiency Comparison of DAA Schemes Supported by TPM 2.0

We first give a theoretical comparison by counting the number of costly operations in each DAA scheme,
since the costly operations dominate the performance of DAA schemes. In Table 3, we compare the ef-
ficiency of the signing protocol and verification algorithm of the DAA schemes supported by TPM 2.0,
where the online signing cost for the host is obtained by assuming that attribute disclosure (D, I) is allowed
to be selected offline. We count the computational costs of a hash function and a modular multiplication
r + c · tsk mod p for the TPM (denoted by H and mul) in Table 3, since they are still expensive for the
TPM. In contrast, these computational costs are ignored for the host signing and verification algorithm, as
they are very fast and much more efficient than exponentiations for the host and verifier with much more
powerful computational capability.

From Table 3, we can see that our scheme DAAOPT is the only scheme achieving the fully optimal
TPM signing efficiency. The (online) signing efficiency of the TPM for the pseudonymous signature mode
in DAAOPT significantly outperforms other DAA schemes. The verification cost in Table 3 does not include
private key revocation. In terms of the efficiency of private key revocation, DAAOPT has the same efficiency
as other DAA schemes for fully anonymous signatures, and provides the same on-line efficiency as other
schemes for pseudonymous signatures, as the verifier can pre-compute e(ḡ, HG2(bsn))gsk for each gsk ∈ RL.

We measured the speed of AMCL [SMBA19] with the BN P256 curve and an ate pairing on a laptop
with 1.80GHz Intel Core i7-8550U CPU. We found that 1EG1 , 1EG2 , 1EGT and 1P take about 0.23 ms,
0.51 ms, 0.72 ms and 2.0 ms respectively. Using these benchmarks along with the running time for the
TPM 2.0 commands in Table 1, we compare the computational efficiency of our DAA scheme with the
known DAA schemes supported by TPM 2.0 in Figure 3. Our comparison does not consider attributes, but
considers the optimization of parallel computation between the TPM and host. In Figure 3, we estimate the
running time for the host signing and verification algorithm.6 The estimated time is not exact, but is enough
to compare the efficiency of DAA schemes. This is reasonable for comparison as the fast operations (e.g.,
hash function and modular multiplication) have little impact on the running time over the host and verifier

6 Our estimation does not consider the optimizations of multi-exponentiations and batch pairings, where they can be applied to all
the DAA schemes and further reduce the running time of the host signing and the verification algorithm.



DAA Scheme
Signing with

bsn=⊥

Signing with

bsn≠⊥

Online Sign

 with bsn=⊥

Online Sign

 with bsn≠⊥
CPS 137.9 267.4 49.8 267.1

BL 269 269 49.8 269
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Fig. 3: Efficiency comparison of DAA schemes without attributes supported by TPM 2.0

Table 4: Theoretical comparison of the sizes of credentials and signatures?

DAA
Credential Size

Signature Size
Scheme bsn = ⊥ bsn 6= ⊥
CPS 4|G1|+ n|G1| 4|G1|+ 3|Zp|+ n|G1|+ u|Zp| 5|G1|+ 3|Zp|+ n|G1|+ u|Zp|
BL 1|G1|+ 1|Zp| 3|G1|+ 6|Zp|+ u|Zp| 2|G1|+ 6|Zp|+ u|Zp|
CDL 2|G1|+ 2|Zp| 5|G1|+ 7|Zp|+ u|Zp| 4|G1|+ 7|Zp|+ u|Zp|

DAAOPT 3|G1|+ 3|Zp| 5|G1|+ 7|Zp|+ u|Zp| 3|G1|+ |GT |+ 7|Zp|+ u|Zp|
? |G|: the bit-length of an element in group G. n is the total number of attributes and u is the

number of undisclosed attributes.

Table 5: Comparison of concrete sizes of credentials and signatures?

DAA Credential Signature Size (Bytes)
Scheme Size (Bytes) bsn = ⊥ bsn 6= ⊥
CPS 129 + 33n 320 + 80n 225 + 33n+ 32u 559 + 80n+ 80u 257 + 33n+ 32u 639 + 80n+ 80u

BL 65 160 289 + 32u 719 + 80u 257 + 32u 639 + 80u

CDL 129 320 385 + 32u 958 + 80u 353 + 32u 878 + 80u

DAAOPT 193 479 385 + 32u 958 + 80u 705 + 32u 1755 + 80u

? In each section, the left column denotes the size over the BN P256 curve and the right column represents the size over
the BN P638 curve.

platforms with powerful computational capabilities. Specifically, Camenisch et al. [CDL17] used benchmark
results to estimate the efficiency of the host signing and verification algorithm for their DAA scheme. Using
the benchmark results to estimate the performance of a scheme has also appeared in [AKS12, CDD17].

For the comparison in Figure 3, we set the TPM key as unrestricted , and thus need not to invoke the
TPM2 Hash() command when signing a message in Use Case III. From Figure 3, it can be seen that our
scheme DAAOPT is about 2×more efficient than other DAA schemes for the pseudonymous signature mode,
and is about 2× faster than the SDH-DAA schemes BL and CDL for the fully anonymous signature mode. In
terms of online signing efficiency for the pseudonymous signature mode, DAAOPT is about 5× faster than
other DAA schemes. DAAOPT has the same signing efficiency as CPS for the fully anonymous signature
mode, but is more efficient than CPS in terms of the verification efficiency. For the verification efficiency,
DAAOPT is comparable to the SDH-DAA schemes BL and CDL in both signature modes.



In Table 4, we compare the sizes of credentials and signatures, where the bit-length `n of a nonce Nt

is counted as |Zp|. While the SDH-DAA schemes DAAOPT, BL and CDL have O(1) credential size, the
LRSW-DAA scheme CPS has O(n) credential size. Moreover, when supporting attributes, the incremental
size of signatures in the SDH-DAA schemes is much less than CPS. While CDL and DAAOPT are provably
secure in the UC security model, no rigorous security proof is known for CPS and BL with/without attributes
in a valid security model [BFG+13a, CU15, CDL16b, CDL16a].

In Table 5, we compare the concrete sizes of credentials and signatures, where the sizes involving n and
u are the incremental sizes when the support of attributes is required. The LRSW-DAA scheme CPS has
the smallest size for signatures without considering attributes, but the largest overhead to support attributes.
For the SDH-DAA schemes providing a better support of attributes, BL has the smallest sizes for credentials
and signatures, but has not a rigorous security proof in a valid security model. In terms of the signature size,
our scheme DAAOPT is the same as CDL for a fully anonymous signature mode, but larger than CDL for
a pseudonymous signature mode. This is a trade-off from the faster signing time demonstrated in Figure 3.
The signature size in DAAOPT is acceptable, especially for the applications that only one signature is sent in
every transaction. The applications include remote attestation, anonymous subscription services, anonymous
V2X, FIDO authentication etc. In the applications, the signing time is more crucial than the signature size, as
only one signature needs to be sent, where a pseudonymous signature in DAAOPT has at most 0.7KB/1.7KB
(resp., 1KB/2.5KB) when u = 0 (resp., u = 10).
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A Formal Security Model for DAA

In this section, we define the UC security model for DAA [CDL16b, CDL16a]. In UC, an environment Z
gives inputs to the protocol parties and receives their outputs. In the real world, honest parties execute the
protocol over a network controlled by an adversary A, who may communicate freely with Z . In the ideal
world, honest parties forward their inputs to an ideal functionality F , which then internally performs the
defined task and generates the parties’ outputs that are forwarded to Z by them.

Informally, we say that a protocolΠ securely realizes an ideal functionalityF , if the real world in which
Π is used is as secure as the ideal world where F is used. To prove the statement, one needs to show that for
every adversary A mounting an attack in the real world, there exists an ideal world adversary (often called
simulator) S that performs an equivalent attack in the ideal world. More precisely, Π securely realizes F
if for every adversary A, there exists a simulator S, such that no environment Z can distinguish interacting
with the real world with Π and A from interacting with the ideal world with F and S.

Now, we review the formal definition [CDL16b] of ideal functionalityF ldaa with static corruption, mean-
ing that the adversary decides beforehand which parties are corrupted and makes the information known to
the ideal functionality. We further extend the definition to support the functionality of attributes following
the modification [CDL16a].

In the UC model, different instances of the protocol are distinguished with session identifiers. Follow-
ing [CDL16b], we use session identifiers of the form sid = (I, sid ′) for some issuer I and a unique string
sid ′. To allow multiple sub-sessions for the join and sign related interfaces, we use unique sub-session
identifiers jsid and ssid . F ldaa is parametrized by a leakage function l : {0, 1}∗ → {0, 1}∗, which models
the information leakage that occurs in the communication between a TPMMi and a host Hj . As F ldaa is
extended to support attributes, we have parameters n and {Ai}1≤i≤n, where n is the number of attributes
that every membership credential includes and Ai is the set from which the i-th attribute is taken. Follow-
ing [CDL16a], a parameter P is used to describe which proofs over the attributes a platform can make.
Using this generic method, the ideal functionality capture both simple protocols that only support selective
attribute disclosure and more advanced protocols that support arbitrary predicates. Every value p̂ ∈ P is a
predicate over the attributes, i.e., p̂ : A1 × · · · × An → {0, 1}.

Below, we show several algorithms (ukgen, sig, ver, link, identify) which are provided by the simulator
and will be used in the ideal functionality.

– gsk ← ukgen() will be used to generate a secret key gsk for an honest platform.
– σ ← sig(gsk ,m, bsn, p̂) takes as input gsk , a message m, a basename bsn and a predicate p̂, and outputs

a signature σ. The algorithm will be used for honest platforms.
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https://trustedcomputinggroup.org/tpm-library-specification/
https://trustedcomputinggroup.org/about/


Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I.

– Verify that sid = (I, sid ′) and output (SETUP, sid) to S.
2. Set Algorithms. On input (ALG, sid , ukgen, sig, ver, link, identify) from S.

– Check that ver, link and identify are deterministic (i).
– Store (sid , ukgen, sig, ver, link, identify) and output (SETUPDONE, sid) to I.

Join
3. Join Request. On input (JOIN, sid , jsid,Mi) from hostHj .

– Create a join session record 〈jsid ,Mi,Hj ,⊥, status〉 with status ← request .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to S.

4. Join Request Delivery. On input (JOINSTART, sid , jsid) from S.
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to status ← delivered .
– Abort if I orMi is honest and a record 〈Mi, ∗, ∗, ∗〉 ∈ Members already exists (ii).
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

5. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I with attrs ∈ A1 × · · · × An.
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to ⊥ ← attrs and status ← complete .
– Output (JOINCOMPLETE, sid , jsid , attrs ′) to S, where attrs ′ ← ⊥ ifMi andHj are honest

and attrs ′ ← attrs otherwise.
6. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid , gsk) from S.

– Look up record 〈jsid ,Mi,Hj , attrs, status〉 with status = complete .
– IfMi andHj are honest, set gsk ← ⊥.
– Else verify that the provided gsk is eligible via checking
• CheckGskHonest(gsk) = 1 (iii) ifMi is honest andHj is corrupted, or
• CheckGskCorrupt(gsk) = 1 (iv) ifMi is corrupted.

– Add 〈Mi,Hj , gsk , attrs〉 into Memebers and output (JOINED, sid , jsid) toHj .

Fig. 4: The Setup and Join Related Interfaces of Ideal Functionality F ldaa. The roman numbers are the labels for the different
checks made within the ideal functionality and will be used as reference in the security proof.

– f ← ver(m, bsn, σ, p̂) takes as input a message m, a basename bsn, a signature σ and a predicate p̂, and
then outputs f = 1 if σ is valid on m w.r.t. bsn and p̂ and f = 0 otherwise. This algorithm will be used
in the VERIFY interface.

– f ← link(m0, σ0,m1, σ1, bsn) takes as input two message/signature pairs (m0, σ0) and (m1, σ1) and
a basename bsn, and outputs f = 1 if both signatures were created by the same platform and f = 0
otherwise. This algorithm will be used in the LINK interface.

– f ← identify(m, bsn, σ, gsk) takes as input a message m, a basename bsn, a signature σ and a secret
key gsk , and outputs f = 1 if σ is a signature on m w.r.t. basename bsn under key gsk and f = 0
otherwise. This algorithm will allow F ldaa to perform multiple consistency checks whenever a new key
gsk is created or provided by the simulator.

While ukgen and sig are probabilistic, the other three algorithms are deterministic. Besides, the link algo-
rithm has to be symmetric, i.e., for all inputs it must hold that

link(m0, σ0, p̂0,m1, σ1, p̂1, bsn) = link(m1, σ1, p̂1,m0, σ0, p̂0, bsn).

Note that algorithms ver and link only assist the ideal functionality for signatures which are not produced
by F ldaa itself. For signatures generated by the functionality, F ldaa enforces correct verification and linkage
using its internal records.

We provide the detailed definition of ideal functionality F ldaa in Figure 4 and Figure 5, and refer the
reader to [CDL16b, CDL16a] for the explanations ofF ldaa and the argument of whyF ldaa realizes the desired



Sign
7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) from hostHj with p̂ ∈ P.

– IfHj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid , l(m, bsn, p̂),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members.
– IfMi andHj are honest, ignore σ from S and internally generate a signature for a fresh or established gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen(). Check that CheckGskHonest(gsk) = 1 (v) and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn, p̂) and check ver(m, bsn, σ, p̂) = 1 (vi).
• Check that identify(m, bsn, σ, gsk) = 1 (vii) and check that there is noM′i 6=Mi with key gsk ′ registered in

Members or DomainKeys with identify(m, bsn, σ, gsk ′) = 1 (viii).
– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
11. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Retrieve all pairs (Mi, gsk i) from 〈Mi, ∗, gsk i, ∗〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈ DomainKeys such that
identify(m, bsn, σ, gsk i) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one key gsk i was found (ix).
• I is honest and no pair (Mi, gsk i) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈ Members with p̂(attrs) =

1 exists (x).
• There is an honestMi but no entry 〈m, bsn, ∗,Mi, p̂〉 ∈ Signed exists (xi).
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1 and no pair (Mi, gsk i) for an honestMi was

found (xii).
– If f 6= 0, set f ← ver(m, bsn, σ, p̂) (xiii).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
12. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅ (xiv).

– For each key gsk i in Members and DomainKeys, compute bi ← identify(m0, bsn, σ0, gsk i) and b′i ←
identify(m1, bsn, σ1, gsk i), and then do the following:
• Set f ← 0 if bi 6= b′i for some i (xv).
• Set f ← 1 if bi = b′i = 1 for some i (xvi).

– If f is not defined yet, set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .

Fig. 5: The Sign, Verify, and Link Related Interfaces of Ideal Functionality F ldaa.

security properties. The ideal functionality will use two “macros” to decide whether a key gsk is consistent
with its internal records or not, where the two macros are used relying on whether a TPM is honest or
corrupted. Both macros output 1 indicating a new key gsk is consistent with the internal records and 0 that



signals an invalid key. The two macros are defined as below:

CheckGskHonest(gsk) = ∀〈m, bsn, σ, ∗, ∗〉 ∈ Signed : identify(m, bsn, σ, gsk) = 0 ∧
∀〈m, bsn, σ, ∗, 1〉 ∈ VerResults : identify(m, bsn, σ, gsk) = 0

CheckGskCorrupt(gsk) = @m, bsn, σ :((
〈m, bsn, σ, ∗, ∗〉 ∈ Signed ∨ 〈m, bsn, σ, ∗, 1〉 ∈ VerResults

)
∧ ∃gsk ′ :

(
gsk 6= gsk ′ ∧

(
〈∗, ∗, gsk ′, ∗〉

∈ Members ∨ 〈∗, ∗, gsk ′〉 ∈ DomainKeys
)
∧ identify(m, bsn, σ, gsk) = identify(m, bsn, σ, gsk ′) = 1

))
.

To simplify the definition ofF ldaa, the following conventions are made : 1) all requests other than the SETUP
are ignored until one setup phase is completed; 2) when F ldaa performs any check that fails, it outputs ⊥
directly to the caller; 3) whenever F ldaa runs one of the algorithms ukgen, sig, ver, link, identify, it does so
without maintaining states.

B Two Extensions of Our DAA Schemes

B.1 Signature-Based Revocation Extension

In our scheme DAAOPT shown in Section 4, only private key revocation is involved, where a platform is
revoked when the platform’s secret key is exposed and added to the revocation list RL. In this section, we
extend our scheme DAAOPT to support signature-based revocation such that a platform can be revoked
based on a previous signature from the platform. Our DAA scheme with signature-based revocation keeps
compatible with the TPM 2.0 specification [Tru16]. While known DAA schemes with signature-based revo-
cation [BL07, BL10a, CDL16a, CCD+17] require at least 3nrEG1 for the TPM to prove that the platform
has not been revoked, our DAA scheme provides the fully optimal TPM signing efficiency, where nr denotes
the number of revoked platforms.

We present a signature-based revocation mechanism, following the basic revocation idea in the EPID
scheme [BL07]. Importantly, we propose an efficient method to delegate most computations of the TPM to
its host and keep the fully optimal signing efficiency for the TPM.

Now, we use K = e(ḡ, HG2(str))gsk for both bsn 6= ⊥ and bsn = ⊥, where str = bsn if bsn 6= ⊥
and str

$← {0, 1}`r otherwise. This unifies the form of unlinkable tags and pseudonyms, and allows us
to support signature-based revocation, at the cost of a larger size of unlinkable tags. A verifier V locally
maintains a signature revocation list SRL = {(stri,Ki)}nri=1, where Ki = e(ḡ, HG2(stri))

gsk i for some
gsk i ∈ Zp. To prove non-revocation towards V , a platform with secret key gsk needs to prove in zero-
knowledge Ki 6= e(ḡ, HG2(stri))

gsk for ∀i ∈ [nr]. The proof can be done using the zero-knowledge proof
of inequality of discrete logarithms by Camenisch and Shoup [CS]: choose vi

$← Zp and compute Vi ←
(e(ḡ, HG2(stri))

gsk/Ki)
vi ; and then generate the following proof of knowledge:

SPKr
{

({vi · gsk , vi}nri=1) : Vi = e(ḡ, HG2(stri))
vi·gsk ·K−vii

∧ 1GT = e(ḡ, HG2(str))vi·gsk ·K−vi for each i ∈ [nr]
}
,

where K = e(ḡ, HG2(str))gsk .
We can extend DAAOPT to support signature-based revocation by extending the signing operations of

the host and the verification algorithm, where the operations executed by the TPM keep unchanged. Con-
cretely, the hostHj is further given a signature revocation list SRL, and additionally performs the following
operations in the sign protocol to prove that the platform has not been revoked.



1. For each i ∈ [nr], Hj chooses vi
$← Z∗p and computes Vi ← e(gpkvi , HG2(stri)) · K−vii . Hj sends a

request TPM.Commit to the TPM and receives E as response.
2. If bsn 6= ⊥, Hj sets str ← bsn and B ← ⊥, and computes K ← e(gpk , HG2(bsn)). If bsn = ⊥,
Hj changes the computational manner of unlinkable tags as: pick str

$← {0, 1}`r , and set B ← ⊥ and
compute K ← e(gpk , HG2(str)).

3. For each i ∈ [nr], Hj picks αi, βi
$← Zp and computes Fi ← Ẽvi · ḡαi ; and then calculates Wi ←

e(Fi, HG2(stri)) ·K−βii and Zi ← e(Fi, HG2(str)) ·K−βi , where Ẽ = Eḡr̂.
4. Hj computes ch ← H2(“sign”, ḡ, g1, {hi}ni=0, T1, T2, Y

′, B,K,R1, R2, L, SRL, {Vi,Wi, Zi}nri=1). Then
Hj sends TPM.Sign, (m, str, D, I, ch) to the TPM and receives (Nt, s) as response.

5. For each i ∈ [nr], Hj computes si ← αi + s̄ · vi mod p (i.e., si = (αi + r · vi + r̂ · vi) + c · gsk · vi
mod p) and s′i ← βi + c · vi mod p, where (c, s̄) is computed byHj as in Figure 2.

6. Hj sets πr ← ({si, s′i}
nr
i=1), and outputs a signature σ ← (T1, T2, Y

′, B,K, {Vi}nri=1, π2, πr, str), where
str = bsn is unnecessary to be included in the signature if bsn 6= ⊥.

For the support of signature-based revocation, a verifier V is given a signature revocation list SRL and
additionally checks the validity of {Vi}nri=1 and proof πr. The changes of the verification algorithm are
described as follows:

1. Ignore the check ofB and computeB ← e(ḡ, HG2(str)) where str is taken from the signature if bsn = ⊥
and str = bsn otherwise.

2. For every i ∈ [nr], check that Vi 6= 1GT .
3. For each (stri,Ki) ∈ SRL, compute the following commitments W ′i ← e(ḡsi , HG2(stri)) ·K

−s′i
i · V −ci

and Z ′i ← e(ḡsi , HG2(str)) ·K−s′i .
4. Compute c′h ← H2(“sign”, ḡ, g1, {hi}ni=0, T1, T2, Y

′, B, K,R1, R2, L, SRL, {Vi,W ′i , Z ′i}
nr
i=1) and c′ ←

H1(Nt, m, str, D, I, c
′
h).

B.2 Privacy Extension against Subverted TPMs

We extend our DAA scheme DAAOPT to guarantee privacy against subverted TPMs. Our DAA scheme
with subverted TPMs keeps the TPM signing efficiency fully optimal, and outperforms the existing DAA
schemes with subverted TPMs [CDL17, CCD+17] in terms of signing performance. Recently, Camenisch
et al. [CCD+17] modified the TPM 2.0 commands with minimal changes and used them to implement two
ECDAA schemes with subverted TPMs. We can use their modified TPM 2.0 commands to implement our
DAA scheme with subverted TPMs.

Following the technique in [CCD+17], we can extend DAAOPT to guarantee privacy in the presence
of subverted TPMs, and thus avoid a subliminal channel that may be created by a subverted TPM. The
extended DAA scheme with subverted TPMs is the same as DAAOPT, except that the join and sign protocols
are changed as follows:

– For TPM.Commit request, the TPMMi picks Nt
$← {0, 1}`n and computes N̄t ← H(“nonce”, Nt) using

a hash function H : {0, 1}∗ → Zp modeled as a random oracle, and then outputs (E, N̄t) where E = ḡr.
– The hostHj chooses Nh

$← {0, 1}`n , and does the following:
• In the join protocol, send TPM.Sign, (ch, Nh) toMi.
• In the sign protocol, send TPM.Sign, (m, bsn, D, I, ch, Nh) toMi.

– On input TPM.Sign, (msg , Nh),Mi computes c← H1(Nt⊕Nh,msg), and outputs (Nt, s), where msg
is either ch or (m, bsn, D, I, ch) and s = r + c · tsk mod p.

– Hj checks whether N̄t = H(“nonce”, Nt) or not. If the check passes, Hj computes N ← Nt ⊕ Nh,
and then re-computes c ← H1(N,msg) where msg is defined as in previous step. Hj checks whether
ḡs = E · tpk c or not. If the equality holds,Hj sends (tpk , C, πt, πh) to the issuer in the join protocol; or
completes the computation of a signature σ and puts a nonce N instead of Nt to σ in the sign protocol.



Since the TPM commits to a nonce Nt before seeing the nonce Nh, and Nt is randomized as N = Nt⊕Nh

by the host, the subverted TPM cannot embed any information into the nonce N . In the random oracle
model, c = H1(N,msg) will be a random value, which cannot be controlled by the subverted TPM. A
platform secret key gsk is split into a TPM secret key tsk and a host secret key hsk in a modular addition
manner. The host proves knowledge of hsk , which randomizes the E and s from the TPM. Furthermore, the
validity of (E, c, s) is also verified by the host. As a result, a subverted TPM cannot embed any information
into a signature, and our DAA scheme guarantees privacy against subverted TPMs.

C Alternative Description of Our DAA Protocol for UC Security

In this section, we provide an alternative description of our DAA protocol DAAOPT for UC security. We add
session identifiers to DAAOPT, which is required for universal composability.

We assume that a common reference string functionality FDcrs and a certification authority functionality
Fca are available for all parties. The former will be used to provide the parties with the system parameters
params, and the latter will allow the issuer to register its public key ipk. The communication between the
TPM and host is modeled using the secure message transmission functionality F lsmt which enables confi-
dential and authenticated communication. In fact, F lsmt is naturally guaranteed by the physical proximity of
the TPM and host forming a platform [CDL16b]. We refer the reader to [Can01, Can04] for the definitions
of the standard ideal functionalities FDcrs, Fca and F lsmt. For the sake of readability, we will not explicitly
write that the parties call FDcrs and Fca to retrieve the system parameters params and the issuer’s public key
ipk, nor explicitly describe that the TPM and host call F lsmt for communication between them, which is in
line with previous work [CDL16b, CDL16a, CCD+17]. We use the ideal functionality Fauth∗ introduced
in [CDL16b] to model the semi-authenticated channel between the TPM and issuer. In particular, the TPM
can use Fauth∗ to send its public key tpk to the issuer via the host.

An alternative description of our protocol DAAOPT for UC security is shown as follows.

Setup. On input (SETUP, sid), the issuer I checks that sid = (I, sid ′) for some sid ′, and then creates its
public key ipk = ({hi}ni=0, w, π1) and secret key isk = γ as described in §4.2. Then I registers ipk with
Fca, and outputs (SETUPDONE, sid).

Join. A platform consisting of a TPMMi and a hostHj executes the join protocol with I as follows:
1. Upon input (JOIN, sid , jsid ,Mi), Hj parses sid = (I, sid ′), and sends a message (JOIN, sid , jsid) to

issuer I.
2. Upon receiving (JOIN, sid , jsid) from a party Hj , I chooses a fresh nonce NI

$← {0, 1}λ and sends
(sid , jsid ,NI ) back toHj .

3. Upon receiving (sid , jsid ,NI ) from issuer I,Hj sends (TPM.Create, sid , jsid) toMi.Mi checks that
no key record exists,7 chooses tsk $← Zp, and stores a key record (sid ,Hj , tsk). ThenMi sends a TPM
public key tpk back toHj .Mi andHj jointly generate πt ← SPKt{(tsk) : tpk = ḡtsk}(“TPM.join”,NI )
via running a protocol described in Figure 1, where the only difference is that Hj additionally sends
(sid , jsid) toMi when sending TPM.Commit or TPM.Sign requests.

4. Hj noticesMi sending tpk over Fauth∗ to I.Hj computes a commitment C ← ḡhskhu
′

0 and a platform
public key gpk ← tpk ·ḡhsk . ThenHj generates πh ← SPKh{(hsk , u′) : C = ḡhskhu

′
0 }(“Host.join”,NI )

as in Figure 1.
5. Hj appends C, πt, πh to the message tpk , which is sent to I over Fauth∗.
6. Upon receiving (tpk , C, πt, πh) from Fauth∗ where tpk is authenticated by TPM Mi, issuer I veri-

fies the validity of proofs πt and πh as in Figure 1, and checks that Mi did not join before. I stores
(jsid , tpk , C,Mi,Hj) and outputs (JOINPROCEED, sid , jsid ,Mi).

7 If we consider a TPM with different keys as multiple different “TPMs” with a single key, the check of key record can be omitted.



The join session is completed, when the issuer receives an explicit input that tells it to proceed with join
session jsid and issue attributes attrs = (a1, . . . , an).
1. Upon input (JOINPROCEED, sid , jsid , attrs), I retrieves the record (jsid , tpk , C,Mi,Hj) and marks
Mi as “joined”. Then I creates a credential A ← (g1 · tpk · C · hu

′′
0 ·

∏n
i=1 h

ai
i )1/(γ+x) for two

randomnesses u′′, x ∈ Zp. I sends (sid , jsid , (A, x, u′′), attrs) to Hj over Fauth∗. We assume that
Fauth∗ also provides the confidentiality of ((A, x, u′′), attrs). This assumption holds when we use the
method [CW10] to realize functionality Fauth∗, where this method is also adopted by TPM 2.0.8

2. Upon receiving (sid , jsid , (A, x, u′′), attrs) from I, Hj computes u ← u′ + u′′ mod p and Y ←
g1 · gpk · hu0 ·

∏n
i=1 h

ai
i , and then checks that e(A,w · gx2 ) = e(Y, g2). Hj stores (sid ,Mi, cre =

(A, x, u, Y, gpk , hsk), attrs) and outputs (JOINED, sid , jsid).

Sign. The sign protocol runs between a TPMMi and a hostHj . By executing the protocol, they can jointly
sign a message m w.r.t. a basename bsn and attribute predicate (D, I).
1. Upon input (SIGN, sid , ssid ,Mi,m, bsn, (D, I)), host Hj retrieves the join record (sid ,Mi, cre =

(A, x, u, Y, gpk , hsk), attrs). Then Hj checks if his attributes fulfill the predicate, i.e., it parses attrs
as (a1, . . . , an) and I as (a′1, . . . , a

′
n) and checks that ai = a′i for each i ∈ D. Next, Hj randomizes the

credential as T1 ← At1 , Y ′ ← Y t1h−t20 and computes T2 ← Y t1T−x1 . Hj computes an unlinkable tag
(B,K = Bgsk ) for a random B ∈ G∗1 if bsn = ⊥ and a pseudonym (B = ⊥,K = e(ḡ, HG2(bsn))gsk )
otherwise using public key gpk as in Figure 2.Hj sends (sid , ssid ,m, bsn, (D, I)) toMi.

2. Upon receiving (sid , ssid ,m, bsn, (D, I)) from Hj , TPM Mi asks for permission to proceed. Then
Mi checks that a join record (sid ,Hj , tsk) exists, and stores (sid , ssid ,m, bsn, (D, I)) and outputs
(SIGNPROCEED, sid , ssid , m, bsn, (D, I)).

The signature is completed whenMi gets permission to proceed for ssid .
1. Upon input (SIGNPROCEED, sid , ssid), Mi retrieves a join record (sid ,Hj , tsk) and a sign record

(sid , ssid , m, bsn, (D, I)). ThenMi cooperates withHj to generate

π2 ← SPK2{(gsk , {ai}i∈D̄, x, ũ, t2, t3) : g−1
1

∏
i∈D

h−aii = Y ′−t3 ḡgskhũ0
∏
i∈D̄

haii ∧

T2/Y
′ = T−x1 ht20 ∧K = Bgsk}(“sign”,m, bsn, D, I).

This is completed via executing the sign protocol described in Figure 2, except that Hj additionally
sends (sid , ssid) toMi when sending TPM.Commit or TPM.Sign requests.

2. Hj sets σ ← (T1, T2, Y
′, B,K, π2) and outputs (SIGNATURE, sid , ssid , σ).

Verify. Upon input (VERIFY, sid ,m, bsn, σ, (D, I), RL), a party V verifies the signature as follows:
1. Parse σ as (T1, T2, Y

′, B,K, π2).
2. Check that B 6= 1G1 if bsn = ⊥ and B = ⊥ otherwise. If bsn 6= ⊥, compute B ← e(ḡ, HG2(bsn)).
3. Check that e(T1, w) = e(T2, g2).
4. Verify the validity of proof π2 on message (“sign”,m, bsn, D, I) following the description in §4.2.
5. For every gsk i ∈ RL, check that K 6= Bgsk i .
6. If all the checks pass, set f ← 1, otherwise f ← 0.
7. Output (VERIFIED, sid , f).

Link. Upon input (LINK, sid ,m0, σ0, D0, I0,m1, σ1, D1, I1, bsn) with bsn 6= ⊥, a party V verifies the two
signatures and decides whether they are linked or not.
1. Verify that both σ0 and σ1 are valid with respect to (m0, bsn, D0, I0) and (m1, bsn, D1, I1) respectively.

Output ⊥ if one of them is not valid.
8 As such, the DAA schemes [CDL16a, CCD+17] need to keep the credential and attributes confidential in the join protocol.



2. Parse σ0 and σ1 as (T1,0, T2,0, Y
′

0 , B0,K0, π2,0) and (T1,1, T2,1, Y
′

1 , B1,K1, π2,1).
3. If K0 = K1, set f ← 1, otherwise f ← 0.
4. Output (LINK, sid , f).

D Formal Security Proof of Our DAA Scheme

In this section, we formally state Theorem 1, and give the full formal proof of Theorem 1 based on the
security proofs by Camenisch et al. [CDL16b, CDL16a]. As pointed out by Camenisch et al. [CCD+17], the
session identifiers for UC security can be omitted, if one is only concerned with stand-alone security. Thus,
the security of DAAOPT as described in §4.2 straightforwardly follows the one of the same protocol with an
addition of session identifiers as described in Appendix C, which would be proved in the following theorem.

Theorem 1. Protocol DAAOPT as described in Section C securely realizes F ldaa with static corruption (for
any polynomial number of attributes n, Ai = Zp and selective attribute disclosure as attribute predicates
P) under the DBDH, DDHG1 and q-SDH assumptions in the (Fauth∗,Fca, F lsmt,FDcrs)-hybrid model and the
random oracle model.

Proof. In this proof, we use
c
≈ to denote the computational indistinguishability. We also use EXECDAAOPT,A,Z

to denote the real world ensemble in which environment Z is interacting with protocol DAAOPT and adver-
saryA; IDEALF ldaa,S,Z to denote the ideal world ensemble in which Z is interacting with ideal functionality

F ldaa and simulator S. Our proof uses the known result that the BBS+ signature scheme is EUF-CMA secure
under the q-SDH assumption [ASM06, CDL16a]. Thus, we can directly reduce the security of DAAOPT to
the EUF-CMA security of the BBS+ signature scheme.

We need to prove that for every PPT adversary A, there exists a PPT simulator S, such that for every
PPT environment Z

EXECDAAOPT,A,Z
c
≈ IDEALF ldaa,S,Z

We use a sequence of games based on the ones in [CDL16b, CDL16a] to proceed the proof, and prove that
it is computationally indistinguishable between two successive games. We start with the real world protocol
execution. In the next game, we construct an entity C who runs the real world protocol for all honest parties.
Then, we split C into a functionality F and a simulator S, where F receives all inputs from honest parties
and sends the outputs to honest parties. We start with a “dummy functionality”, then gradually change F
and S accordingly, and finally end up with the full functionality F ldaa and a satisfying simulator.

Prior to describing the games, we prove that the signature proofs of knowledge SPK1, SPKt, SPKh and
SPK2 are zero-knowledge by constructing a simulator and showing that the simulation is perfect unless the
simulator aborts with negligible probability.

– For SPK1{(γ) : w = gγ2}(“setup”), a simulator Sim1 is constructed as follows: 1) pick c, s $← Zp and
compute R ← gs2 · w−c; 2) program the random oracle such that H3(“setup”, g2, w,R) = c and abort if
encountering a collision, i.e., H3(“setup”, g2, w,R) has already been defined; 3) output π1 ← (c, s).
The simulated proof has the same distribution as the real proof unless Sim1 aborts with probability ≤
qh3/p which is negligible, where qh3 is the number of queries to random oracle H3.

– For SPKt{(tsk) : tpk = ḡtsk}(“TPM.join”,NI ) with an honest host, a simulator Sim′t is constructed as
follows: 1) pick c, s $← Zp and compute E ← ḡs · tpk−c; 2) make a query (“TPM.join”, ḡ, tpk , E,NI) to
random oracleH2 and obtain ch; 3) chooseNt

$← {0, 1}`n , program random oracle such thatH1(Nt, ch) =
c, and abort if encountering a collision; 4) output πt ← (c, s,Nt).
The simulation is perfect, unless H1(Nt, ch) has been already defined with probability at most qh1/2

`n ·
(qh2/p + qh1/p), where qh1 is the number of H1 queries and qh2 denotes the number of H2 queries
associated with label “TPM.join”.



– For SPKt{(tsk) : tpk = ḡtsk}(msg) with a corrupted host, a simulator Sim′′t is constructed as fol-
lows: 1) on input a request TPM.Commit, choose c, s ← Zp and compute E ← ḡs · tpk−c, and then
output E; 2) on input (TPM.Sign,msg), pick Nt

$← {0, 1}`n and program the random oracle such that
H1(Nt,msg) = c and abort if encountering a collision; 3) output (Nt, s).
The simulation is perfect, unless H1(Nt,msg) has been defined with probability at most qh1/2

`n .

– For SPKh{(hsk , u′) : C = ḡhskhu
′

0 }(“Host.join”,NI ), a simulator Simh is constructed as follows:
1) pick z, ŝ, s′

$← Zp and compute R ← ḡŝ · hs′0 · C−c; 2) program the random oracle such that
H2(“Host.join”, ḡ, h0, C, R,NI ) = z and abort if encountering a collision; 3) output πh ← (z, ŝ, s′).
The simulation is perfect, unless H2(“Host.join”, ḡ, h0, C,R,NI ) has already been defined with proba-
bility at most q′h2

/p, where q′h2
denotes the number of H2 queries related to label “Host.join”.

– For SPK2

{
(gsk , {ai}i∈D̄, x, ũ, t2, t3) : g−1

1

∏
i∈D h

−ai
i = Y ′−t3 ḡgskhũ0

∏
i∈D̄ h

ai
i ∧ T2/Y

′ = T−x1 ht20 ∧
K = Bgsk

}
(“sign”,m, bsn, D, I), a simulator Sim2 is constructed as follows: 1) pick c, s̄, sx, sũ, st2 , st3 ,

{sai}i∈D̄
$← Zp andNt

$← {0, 1}`n ; 2) computeR1 ← Y ′−st3 ·ḡs̄ ·hsũ0 ·
∏
i∈D̄ h

sai
i ·gc1 ·

∏
i∈D h

c·ai
i ,R2 ←

T−sx1 ·hst20 · (T2/Y
′)−c and L← Bs̄ ·K−c; 3) make a query (“sign”, ḡ, g1, {hi}ni=0, T1, T2, Y

′, B,K,R1,
R2, L) to random oracle H2 and get ch as the answer; 4) program the random oracle such that H1(Nt,m,
bsn, D, I, ch) = c and abort if encountering a collision; 5) output π2 ← (c, s̄, sx, sũ, st2 , st3 , {sai}i∈D̄, Nt).
The simulated proof has the same distribution as the real proof, unless H1(Nt,m, bsn, D, I, ch) has been
already defined with probability ≤ qh1/2

`n(qh1/p + q′′h2
/p3), where q′′h2

is the number of queries to
random oracle H2 associated with label “sign”.

By rewinding and programming the random oracles, we can construct the knowledge extractors Ext1, Extt,
Exth and Ext2 for SPK1, SPKt with honest hosts, SPKh and SPK2 respectively.

We define all intermediate functionalities and simulators in Appendix D.1, and then prove that they are
indistinguishable from each other by a sequence of games as follows.

Game 1. This is the real world protocol. We have Game 1 = EXECDAAOPT,A,Z .

Game 2. C receives all inputs for honest parties and simulates the real world protocol for honest parties
via simply running the protocol DAAOPT honestly. Furthermore, C simulates all hybrid functionalities
Fauth∗,Fca,F lsmt,FDcrs honestly.

By construction, Game 2 is equivalent to Game 1.

Game 3. Now, we split C into a dummy functionality F and a simulator S. F behaves as an ideal function-
ality, and so the messages that it sends and receives are confidential and authenticated. Thus, the adversary
A will not notice them. Functionality F receives all the inputs, and forwards them to simulator S. S simu-
lates the real world protocol DAAOPT for all honest parties, and sends the outputs to F , who forwards them
to environment Z . The outputs generated by the honest parities simulated by S are not sent anywhere, and
only S notices them. S sends the equivalent outputs to F using an OUTPUT interface such that F can use
the same outputs.

Game 3 is simply game 2 except for structuring differently. Thus Game 3 = Game 2.

Game 4. Now, F uses the procedure specified in F ldaa to deal with the setup related interfaces. As a result,
S will send the algorithms ukgen, sig, ver, link, identify to F . F stores the algorithms from S, and checks
whether sid is the expected form or not. For corrupt issuer, S can extract the issuer’s secret key from SPK1.

Note that the check of F for sid does not change the view of Z , as honest issuer I does the same check
upon receiving sid and S calls the SETUP interface on behalf of corrupt issuer I. Due to the soundness of
SPK1, the view of Z is not changed. Thus, Game 4

c
≈ Game 3.



Game 5. Now, F responds the queries for VERIFY and LINK interfaces using the provided algorithms ver
and link, instead of forwarding them to S. Note that F has not to perform the additional checks (i.e., Check
(ix)-Check(xi) and Check (xv)-Check (xvi)), which will be added in later games. For Check (xii), F rejects
a signature if a matched gsk ′ ∈ RL is found, but does not eliminate honest TPMs from this check yet.

There are no message flows for the verify and link algorithms, and so we only need to show that the
outputs are equal. The verification algorithm that F uses is the same as the one of real-world protocol
DAAOPT, except that private key revocation check is omitted. F performs this revocation check separately,
and thus the outputs for verify queries are equal. The real-world link algorithm outputs ⊥ if one of two
signatures is invalid. F does the same. The algorithm compares the equality of two pseudonyms, which is
exactly what F does. Thus, the outputs for link queries are equal. In all, Game 5 = Game 4.

Game 6. In this game, F is changed to handle the join related interfaces by using the same procedure as
F ldaa, but omit the additional checks (i.e., Check (iii)-Check (iv)). If at least one of the TPM and host is
honest, S knows the identitiesM and H, and can correctly use them towards F and its simulation. If both
TPM and host are corrupted but the issuer is honest, S cannot determine the identity of the host, since the
host does not authenticate itself to the issuer in the real-world join protocol. In this case, S has to choose
an arbitrary corrupt host H to invoke the JOIN interface. In the JOINCOMPLETE interface, S needs to
provide the secret key of the platform gsk . When the TPM (resp., host) is honest, S simulates the party and
knows the secret key tsk (resp., hsk ). When the TPM (resp., host) is corrupted but the issuer is honest, S can
extract the secret key tsk (resp., hsk ) from the proof πt (resp., πh). Then S can compute gsk ← tsk + hsk
mod p. For the case that both the host and the issuer are corrupted but the TPM is honest, S does not need
to involve F and simply continues the simulation of the TPM, since F guarantees no security properties for
the case, and the TPM does not receive inputs or send outputs in the join related interfaces.

We must guarantee F outputs the same values as the real-world protocol. Since the join related interfaces
do not output any crypto value, but only messages like start and complete, we just need to assure that
whenever the real-world protocol would reach a certain output, F also allows the output, and vice versa.
From the real world to the functionality, this is clearly satisfied, as F does not perform additional checks
and thus will always proceed for any input that it receives from S. For all outputs triggered by F , S has to
give an explicit approval, which enables S to block any output by F if the real-world protocol would not
proceed at a certain point. Thus, from the functionality to the real world, this can also be satisfied.

When both the TPM and host are corrupted but the issuer is honest, S uses an arbitrary corrupt host when
calling the JOIN interface, which will result in a different host being stored in Members list of F . However,
F never uses the identity of the host in the case that both the TPM and host are corrupted. Although F sets
gsk ← ⊥ when both the TPM and host are honest, this has no impact, since the signatures are still generated
by S and the VERIFY and LINK interfaces of F do not perform additional checks that make use of the
internal records and secret keys.

We have to argue that F does not prevent an execution which was allowed in the previous game. F only
aborts ifM has already registered and I is honest. Since I checks whetherM has already registered or not
before outputting JOINPROCEED in the real-world protocol, F keeps consistent in Game 5 and Game 6.

If S can extract the secret keys from proofs πt and πh successfully, F stores the keys consistent with the
real-world protocol when the TPM and host are not both honest. Furthermore, S can simulate the real-world
protocol and keep everything in sync with F . Due to the soundness of SPKt and SPKh, we have Game 6

c
≈

Game 5.

Game 7. For signing with bsn = ⊥, F now generates signatures for honest platforms using fresh keys and
the ukgen and sig algorithms defined in the setup phase. The procedure for signing with bsn 6= ⊥ has not
changed. One difference is that the signature created by F will use a credential containing dummy attribute
values for the undisclosed attributes. This change is not noticeable, since only (T1, T2, Y

′) and proof π2 are
affected. F use sig to generate uniformly random Y ′ and T1, T2 under the constraint that T2 = T γ1 , which



have the same distribution as the elements in the signatures created by the sign protocol of DAAOPT. The
proof π2 created by F is indistinguishable from the one generated by the real-world sign protocol due to
the zero-knowledge property of SPK2. Besides, the unlinkable-tag/pseudonym (B,K) created by F has
the same distribution as the one from the real-world sign protocol, since the only difference is to generate
(B,K) using directly secret key gsk rather than using public key gpk .

We will use a hybrid argument to prove that environment Z cannot notice the change that the signatures
w.r.t. bsn = ⊥ are now produced by F using fresh keys rather than the same key. We make this change for
signing inputs with bsn = ⊥ gradually. In Game 7.k.k′, F forwards all signing inputs withMi, i > k to
S, who creates signatures as in Game 6. Signing inputs withMi, i < k are handled by F via using fresh
keys and the ukgen and sig algorithms. For signing inputs withMk, the first k′ signing inputs are handled
by F , and later signing inputs will be forwarded to S . Clearly, we have Game 7.1.0 = Game 6. Let v be
the number of honest platforms and ρk be the number of signing inputs withMk and bsn = ⊥. Clearly, we
have Game 7.k.ρk = Game 7.k + 1.0 for any k ∈ {1, . . . , v − 1} and Game 7.v.ρv = Game 7. Thus, to
prove that no environment can distinguish Game 7 from Game 6, it is enough to show that anyone cannot
distinguish Game 7.k.k′ − 1 from Game 7.k.k′ for any k ∈ [v] and k′ ∈ [ρk].

We bound the difference between Game 7.k.k′ − 1 and Game 7.k.k′ using a reduction from the DDHG1

assumption. In this reduction, we allow S and F to share information, since in the reduction the separation
of S and F is irrelevant. S is given a DDHG1 instance (p,G1,G2,GT , e, g2, ḡ, ḡ

α, ḡβ, ḡχ) for unknown
α, β ∈ Zp and aims to decide whether χ = αβ or not. We modify S working with F parametrized by
k, k′ to obtain an intermediate game G7

k,k′ , which is the same as Game 7.k.k′ − 1 except for the following
exceptions:

– S picks g1
$← G∗1 and sets (p,G1,G2,GT , e, g1, g2, ḡ) as the system parameters params, as it simulates

Fcrs.
– S sets ḡα as the public key tpk of TPMMk. S runs Sim′t to generate a proof πt in the join protocol. S

chooses hsk $← Zp as the secret key of hostHk.
– For the k′-th signature w.r.t. bsn = ⊥ forMk, we modify F to output a signature as follows:

1) Choose T1
$← G∗1 and compute T2 ← T γ1 , and then pick Y ′ $← G1.

2) Set B ← ḡβ and K ← ḡχ · (ḡβ)hsk .
3) Send (T1, T2, Y

′, B,K) to S , who runs Sim2 to generate a proof π2 and sends π2 back to F .
4) Output a signature σ = (T1, T2, Y

′, B,K, π2).
– Signing queries withMk, which are related to bsn = ⊥ but occur after the k′-th one, or are with respect

to bsn 6= ⊥, are handled by S. To create a signature for Mk, S runs Sim′′t to generate the outputs of
“Mk” in the sign protocol and executes the operations at the host side following the specification of
DAAOPT.

Due to the zero-knowledge property of SPKt, proof πt generated by Sim′t is computationally indistin-
guishable from the real proof created by the witness tsk . By the zero-knowledge property of SPKt, we
have that the signatures produced by S using Sim′′t are computationally indistinguishable from the ones
created via executing the real-world sign protocol. The elements T1, T2, Y

′ in the k′-th signature has the
same distribution as the ones generated by the sig algorithm as well as the real-world sign protocol. By the
zero-knowledge property of SPKt and SPK2, we have that G7

k,k′ is computationally indistinguishable to

Game 7.k.k′ − 1 (resp., 7.k.k′) if χ = αβ (resp., χ $← Zp) and thus the k′-th signing query is based on
the key gsk = α+ hsk from the join phase (resp., a fresh key). Thus, no polynomial-time distinguisher can
distinguish Game 7.k.k′ from Game 7.k.k′ − 1.

Overall, we have Game 7
c
≈ Game 6.

Game 8. For signing with bsn 6= ⊥, F now generates signatures for honest platforms using fresh keys and
the ukgen and sig algorithms defined in the setup phase.

Again, we will use a hybrid argument to prove that environment Z cannot notice the change that the
signatures w.r.t. fresh basename bsn 6= ⊥ are now generated by F using fresh keys instead of the same key.



We make this change for signing inputs with bsn 6= ⊥ gradually. In Game 8.k.k′, F forwards all signing
inputs withMi, i > k to S , who creates signatures as in Game 7. Signing inputs withMi, i < k are handled
by F via using fresh keys and the ukgen and sig algorithms. For signing inputs withMk, the first k′ non-
empty basenames are handled by F , and later signing inputs will be forwarded to S . Clearly, we have Game
8.1.0 = Game 7. Let v be the number of honest platforms and ρk be the number of different basenames with
Mk and bsn 6= ⊥. Clearly, we have Game 8.k.ρk = Game 8.k + 1.0 for any k ∈ {1, . . . , v − 1} and Game
8.v.ρv = Game 8. Thus, to prove that no environment can distinguish Game 8 from Game 7, it is enough to
show that anyone cannot distinguish Game 8.k.k′ − 1 from Game 8.k.k′ for any k ∈ [v] and k′ ∈ [ρk].

We bound the difference between Game 8.k.k′ − 1 and Game 8.k.k′ using a reduction from the DBDH
assumption. S is given a DBDH instance (p,G1,G2,GT , e, g1, g2, g

α
1 , g

β
2 , g

δ
1, g

δ
2, e(g1, g2)χ) for unknown

α, β, δ ∈ Zp, and aims to decide whether χ = αβδ or not. We modify S working with F parametrized by
k, k′ to obtain an intermediate game G8

k,k′ , which is the same as Game 8.k.k′ − 1 except for the following
exceptions:

– S sets ḡ = gδ1 and (p,G1,G2,GT , e, g1, g2, ḡ) as the system parameters params, as it simulates Fcrs.
– S sets the unknown discrete logarithm α as the key gsk for the honest platform with Mk. S chooses
C

$← G1 and runs Simh to generate a proof πh in the join protocol. S simulates the TPM “Mk” honestly,
i.e., choosing a key tsk

$← Zp and generates SPKt with witness tsk etc. Note that the platform public
key gpk = gαδ1 which is unknown for S.

– S chooses j∗ $← [Q] as the guess that the j∗-th query bsnj∗ to random oracle HG2 is used as the k′-th
basename bsn∗ in the signing queries, whereQ is the number ofHG2 queries. Without loss of generality,
we assume that S guesses correctly with probability 1/Q.

– S maintains a HG2-List which is initially empty. For the j-th query bsnj to random oracle HG2 , S
responds as follows:
• If bsnj has already been queried, retrieve (bsnj ,Wj , ∗) from HG2-List and return Wj .
• Otherwise, if j = j∗, respond with gβ2 and adds (bsnj∗ , g

β
2 ,−) to HG2-List.

• If j 6= j∗, pick r $← Zp, compute Wj ← gr2, adds (bsnj ,Wj , r) to HG2-List, and respond with Wj .
– When generating signatures w.r.t. the k′-th basename bsn∗ forMk, we modify F to output a signature

as follows:
1) Choose T1

$← G∗1 and compute T2 ← T γ1 , and then pick Y ′ $← G1.
2) Set B ← ⊥ and K ← e(g1, g2)χ.
3) Send (T1, T2, Y

′, B,K) to S, who runs Sim2 to generate a proof π2 and sends π2 back to F .
4) Output a signature σ = (T1, T2, Y

′, B,K, π2).
– Signing queries withMk and later basenames are handled by S. To generate a signature w.r.t. bsn 6= ⊥,
S does the following:
1) Choose T1

$← G∗1 and compute T2 ← T γ1 , and then pick Y ′ $← G1.
2) Set B ← ⊥ and retrieve (bsn, ∗, r) from HG2-List.
3) Compute a pseudonym K ← e(gα1 , (g

δ
2)r). Thus, K = e(gδ1, g

r
2)α = e(ḡ, HG2(bsn))gsk .

4) Run Sim2 to generate a proof π2 and output σ = (T1, T2, Y
′, B,K, π2).

By the zero-knowledge property of SPKh, proof πh generated by Simh is computationally indistinguish-
able from the real proof generated in the real-world join protocol. The elements T1, T2, Y

′ has the same dis-
tribution as the ones generated by the sig algorithm as well as the real-world sign protocol. Due to the zero-
knowledge property of SPK2, proof π2 created by Sim2 is computationally indistinguishable from the one
generated with the witnesses. If S guesses correctly, HG2(bsn∗) = gβ2 , and thusK = e(ḡ, HG2(bsn∗))gsk =
e(g1, g2)αβδ will be a pseudonym computed in the real-world sign protocol.

Thus, we have that G8
k,k′ is computationally indistinguishable to Game 8.k.k′ − 1 (resp., Game 8.k.k′) if

χ = αβδ (resp., χ $← Zp) and thus signatures with the k′-th basename bsn∗ are based on the key gsk = α
from the join phase (resp., a fresh key). Thus, no polynomial-time distinguisher can distinguish Game 8.k.k′

from Game 8.k.k′ − 1. In all, Game 8
c
≈ Game 7.



Game 9. Now, F checks whether the platform’s attributes fulfill the attribute predicate or not when the host
is honest, and no longer reveals (m, bsn, p̂) to S, but only the leakage l(m, bsn, p̂). All the adversary notices
are the leakage of the secure channel between the TPM and host. S can still simulate this by taking dummy
messages, basenames and attribute predicates that result in the same leakage and using the values to simulate
the real-world protocol.

In the real-world sign protocol, the host checks if his attributes fulfill the given attribute predicate. F
does the same check in the SIGN interface. Thus, no adversary can notice the change for F . As simulator S
guarantees that the dummy attribute predicate still holds for the platform’s attributes, any signing query that
would previously succeed will still succeed. Thus, we have Game 9 = Game 8.

Game 10. F no longer informs the simulator about the attributes of an honest platform in the join phase.
S now uses dummy attributes in the join protocol. Moreover, F now only allows platforms that joined with
attributes fulfilling the attribute predicate to sign, when I is honest (denoting this check by joinatt).

Although dummy attributes are used by S in the join protocol, this does not change the view of the ad-
versary, as the credential and attributes of an honest platform are sent confidentially over Fauth∗ by using
an encryption scheme. Functionality F checks whether the attribute predicate holds for the platform’s at-
tributes, and only then will S be notified. Thus, S knows that it has to simulate with some dummy attribute
predicate that holds for the dummy attributes that it chooses in the join protocol. When both the TPM and
host are honest, a signature is generated byF , and thus contains the correct attributes and attribute predicate.

We show that this check joinatt does not change the view of environment Z . Before signing with TPM
Mi in the real-world protocol, an honest host Hj always checks whether it has joined withMi and aborts
otherwise. So there is no difference for honest hosts. An honest TPMMi only signs, if it has joined with
some host Hj . Thus, there is no difference for honest TPMs. When an honest TPMMi executes the join
protocol with a corrupted host Hj and the honest issuer I, S will make a join query with F on behalf of
Hj , which guarantees thatMi and Hj are in list Members. Thus, F still allows any signing that could take
place in the real sign protocol.

Overall, we have Game 10 = Game 9.

Game 11. In this game, F additionally checks the validity of every new key gsk , which is received in the
join interface or generated in the sign interface, i.e., Check (iii), Check (iv) and Check (v).

We show that these checks will fail with negligible probability. We only consider valid signatures from
VerResults and Signed, where list Signed only contains valid signatures added for honest TPMs and
hosts, and ⊥ added for honest TPMs and corrupt hosts. Note that identify(m, bsn,⊥, gsk) = 0. Thus, we
only need to consider valid signatures.

When the TPM is corrupted, F checks that CheckGskCorrupt(gsk) = 1 for the key gsk which is ob-
tained by combining the key tsk extracted from proof πt with the key hsk extracted from proof πh. This
check prevents the adversary A from choosing a key gsk 6= gsk ′ such that both keys fit to the same
signature. It is impossible, since there exists only a single key gsk for each valid signature such that
identify(m, bsn, σ, gsk) = 1, where B 6= 1G1 if bsn = ⊥ and HG2(bsn) 6= 1G2 with overwhelming
probability otherwise. Thus, this check will fail with only negligible probability.

When the TPM is honest, F checks that CheckGskHonest(gsk) = 1 whenever it receives or creates a
new key gsk . If the host is corrupted, S extracts a key hsk from proof πh and adds this key to a simulated
key tsk such that obtaining the key gsk . By this check, we avoid the registration of platform keys such that
matching signatures already exist. Again, there is one unique key gsk matching a valid signature asB 6= 1G1

if bsn = ⊥ and HG2(bsn) 6= 1G2 with overwhelming probability otherwise. Moreover, a key gsk chosen
by the ukgen algorithm is uniformly random in an exponentially large group Zp, and this also holds for a
simulated key tsk (and thus gsk ). Thus, the probability that there already is a signature under the key gsk is
negligible.

In all, we have Game 11 ≈ Game 10.



Game 12. Now, after creating a signature, F additionally checks whether the signature passes the veri-
fication and matches the correct key, i.e., Check (vi) and Check (vii). Besides, with the help of internal
key records Members and DomainKeys, F checks that no platform has already a key matching the newly
generated signature, i.e., Check (viii).

Check (vi) will always succeed, since the sig algorithm generates valid signatures. F runs the sig algo-
rithm to set K = Bgsk for either a random B ∈ G∗1 or B = e(ḡ, HG2(bsn)), and thus Check (vii) will also
always succeed.

We reduce that Check (viii) fails to the Discrete- Logarithm (DL) assumption in G1, which is implied
by the assumptions claimed in Theorem 1. S is given a DL instance (ḡ, ḡα) in G1 and attempts to output
α. F working with S chooses one of signing queries with honest platforms at random, as there are only
polynomial many signing queries. For this chosen signing query, F sharing information with S does the
following:
1) Set the unknown α as the key gsk and ḡα as gpk .
2) Run the sig algorithm to create a signature σ with the only difference that using Sim2 to simulate a proof

π2.
3) Output a signature σ.
WhenF re-uses the unknown key α, it repeats the above same procedure. By the zero-knowledge property of
SPK2, π2 generated by Sim2 is computationally indistinguishable from the ones created by the sig algorithm.
Since B 6= 1G1 for valid signatures and HG2(bsn) = 1G2 with negligible probability, there is one unique
key matching a valid signature with overwhelming probability. If F finds a key gsk matching any of the
signatures created by the above process in Members or DomainKeys, it must be the discrete logarithm α,
and S outputs gsk .

Overall, we have Game 12
c
≈ Game 11.

Game 13. In the VERIFY interface, F now additionally checks whether it finds multiple platform keys
identifying this signature, i.e., Check (ix). If so, F rejects the signature.

We show that this check does not change the outputs of the VERIFY interface, since any signature that
would pass the verification in Game 12 will still pass the verification in this game with overwhelming
probability. If a signature σ on m w.r.t. bsn and p̂ would pass the verification in the previous game, we have
ver(m, bsn, σ, p̂) = 1. Thus, B 6= 1G1 when bsn = ⊥. The probability that B = e(ḡ, HG2(bsn)) = 1GT is
negligible, as HG2 is a random oracle. A key gsk matching a signature means that K = Bgsk , and there is
only a single key matching the signature when B 6= 1. Therefore, the event that multiple keys match a valid
signature only occurs if e(ḡ, HG2(bsn)) = 1GT that happens with negligible probability. Thus, Game 13 ≈
Game 12.

Game 14. If I is honest, F now only accepts signatures on platform keys and attribute values on which I
issued credentials.

This check changes the verification outcome with negligible probability under the assumption that the
BBS+ signature is EUF-CMA secure. This assumption holds under the q-SDH assumption [ASM06, CDL16a].
S is given a BBS+ public key ({hi}ni=0, w). In the following reduction, F and S share information, and be-
have exactly as in Game 14 with the following exceptions:

– S runs Sim1 to generate a proof π1 and registers a public key ({hi}ni=0, w, π1).
– When I needs to issue a credential in the join protocol, S runs Extt to extract a TPM key tsk from proof
πt if the TPM is corrupted, and runs Exth to extract a witness (hsk , u′) from proof πh if the host is
corrupted. If the TPM or the host are honest, S knows the related key as it simulates the party. Then, S
computes gsk ← tsk+hsk mod p. Next, S makes a query (gsk , attrs) to its signing oracle and receives
a BBS+ signature (A, x, u). Finally, S calculates u′′ ← u − u′ mod p and sends (A, x, u′′, attrs) on
behalf of I over Fauth∗ .



– When signing for honest platforms, F uses the signing oracle to generate BBS+ signatures on fresh keys
and attributes that the platform joined with. Note that all the platform keys queried to the signing oracle
are stored in Members or DomainKeys, and the attributes of platforms are stored in Members.

– When F finds a valid signature σ = (T1, T2, Y
′, B,K, π2) w.r.t. attribute predicate p̂ = (D, I) such that

no matching key gsk has been found for a certain platform with attributes fulfilling p̂, S uses Ext2 to ex-
tract a witness (gsk , {ai}i∈D̄, x, ũ, t2, t3) from π2 such that g−1

1

∏
i∈D h

−ai
i = Y ′−t3 ḡgskhũ0

∏
i∈D̄ h

ai
i ,

T2/Y
′ = T−x1 ht20 and K = Bgsk . Then S sets attrs according the attribute disclosure (D, I) and

the extracted attributes {ai}i∈D̄, and computes A ← T t31 and u ← ũ + t2 · t3 mod p. S outputs
((gsk , attrs), (A, x, u)) as a forgery of the BBS+ signature scheme.

Due to the zero-knowledge property of SPK1, environmentZ cannot distinguish a simulated proof π1 from a
real proof. By the soundness of SPKt and SPKh, S can simulate the executions of join protocol successfully.
Below, we show that the extracted credential (A, x, u) is a valid BBS+ signature on a message (gsk , attrs).
Since σ is a valid signature, the equation e(T1, w) = e(T2, g2) holds, and thus T2 = T γ1 . From the equalities
g−1

1

∏
i∈D h

−ai
i = Y ′−t3 ḡgskhũ0

∏
i∈D̄ h

ai
i and T2/Y

′ = T−x1 ht20 , we have the following relation holds:
T t3x1 T t32 = g1ḡ

gskhũ+t2t3
0

∏n
i=1 h

ai
i . Replacing T t31 , T2 and ũ + t2t3 with A, T γ1 and u respectively, we

have Aγ+x = g1ḡ
gskhu0

∏n
i=1 h

ai
i . Since no matching key gsk has been found for a certain platform with

attributes fulfilling (D, I), F and S never make a query (gsk , attrs) to the signing oracle. Overall, we have
Game 14

c
≈ Game 13.

Game 15. Now, F rejects any signature σ on message m w.r.t. basename bsn and predicate p̂ such that σ
matches the key gsk of a platform with an honest TPM, but the TPM never signed m w.r.t. bsn and p̂, i.e.,
additionally performing Check (xi).

We use a hybrid argument to prove that environment Z cannot notice this change under the DL assump-
tion. We distinguish two cases depending whether the host is honest or not.

For the case that the TPM is honest but the host is corrupt, we proceed the following hybrid argument.
Game 15.i is the same as Game 14, except that F performs this check (xi) for the first i platforms with an
honest TPM and a corrupt host. We use a reduction from the DL assumption to bound the difference between
Game 15.i− 1 and Game 15.i. S is given a DL instance (ḡ, ḡα) in G1 and simulates as follows:

– S sets the unknown α and ḡα as the secret key tsk and respective public key tpk of TPMMi.
– For the join session and sign sessions withMi, S uses Sim′′t to generate the proofs of SPKt.
– As the corresponding hostHj is corrupted, S uses Exth to extract hsk from proof πh. Then, S computes
gpk ← tpk · ḡhsk as the public key of the platform.

– For any verification query with a signature σ w.r.t. bsn 6= ⊥, F can check that K = e(gpk , HG2(bsn))
to decide if σ matches the key gsk = α + hsk . When F finds a valid signature σ on message m w.r.t.
basename bsn 6= ⊥ and attribute predicate p̂ matching key gsk butMi never signed m w.r.t. bsn and p̂,
S runs Ext2 to extract key gsk from proof π2 in signature σ. Then S outputs α← gsk − hsk mod p as
the solution of the DL problem.

– For verification queries with signatures w.r.t. bsn = ⊥, F now skips the check that one pair (Mi, gsk)
is found, as it does not know the key gsk . Since there are only polynomial many verification queries,
F chooses one verification query at random as the guess that this is the first verification query with a
signature σ on message m w.r.t. bsn = ⊥ and predicate p̂ such that σ is valid and matches the key gsk
butMi never signed m w.r.t. bsn and p̂. If F guesses successfully, S uses Ext2 to extract the key gsk
from the proof π2 in signature σ. Then S outputs α ← gsk − hsk mod p as the solution of the DL
problem.

For the case that both the TPM and host are honest, we use a reduction from the DL assumption to bound
the difference between Game 14 and Game 15. S is given a DL instance (ḡ, ḡα) in G1, shares information
with F , and simulates as follows:



– Whenever F would choose a new key gsk i to sign for an honest platform, F picks ri
$← Z∗p and sets

the unknown αri as gsk i and computes gpk i ← (ḡα)ri . Then, F generates a signature using the sig
algorithm and public key gpk i, except for using Sim2 to simulate a proof π2.

– For any verification query with a signature σ w.r.t. bsn 6= ⊥, F can check that K = e(gpk i, HG2(bsn))
to decide if σ matches the key gsk i. When F finds a valid signature σ on message m w.r.t. bsn 6= ⊥ and
p̂ matching some key gsk i but the platform never signed m w.r.t. bsn and p̂, S runs Ext2 to extract key
gsk i from proof π2 in signature σ, and outputs gsk i/ri mod p as the solution of the DL problem.

– For verification queries with signatures w.r.t. bsn = ⊥, F now skips the check that one pair (∗, gsk i)
for an honest platform is found, as it cannot know the key gsk i = αri. Since there are only polynomial
many verification queries, F chooses one verification query at random as the guess that the signature σ
on message m w.r.t. bsn = ⊥ and p̂ in this query is the first valid signature such that matching some key
gsk i for an honest platform but the platform never signedmw.r.t. bsn = ⊥ and p̂. If F guesses correctly,
S uses Ext2 to extract the key gsk i from the proof π2 in signature σ, and outputs gsk i/ri mod p as the
solution of the DL problem.

By the zero-knowledge of SPKt and SPK2 and the soundness of SPKh and SPK2, Game 15
c
≈ Game 14.

Game 16. Now F prevents private key revocation of platforms with an honest TPM.
If an environment Z can put a key gsk into the revocation list RL such that gsk matches a signature from

a platform with an honest TPM, we can construct an algorithm breaking the DL assumption. We show this
in two steps: first F prevents this for pairs (Mi, gsk) from Members; and then F prevents this also for pairs
(Mi, gsk) from DomainKeys. Note that for honest platforms there are only pairs (Mi, gsk) in DomainKeys

such that gsk 6= ⊥; for honest TPMs with corrupt hosts, there are only pairs (Mi, gsk) in Members.
For the case that this check aborts for a pair found in Members, we can solve the DL problem. S is given

a DL instance (ḡ, ḡα) in G1. S chooses one platform with honest TPMMi and corrupt hostHj at random as
the guess that (Mi, ∗) is the first pair such that this check aborts. S sets ḡα as the public key tpk ofMi, and
extracts hsk from proof πh. S uses Sim′′t to simulate the proofs of SPKt in the join and sign protocols for
Mi. When F finds a key gsk in the revocation list RL matching a signature from the platform with honest
Mi, S outputs gsk − hsk mod p as the solution of the DL problem, since there is only one key matching
a signature.

For the case that this check aborts for a pair found in DomainKeys, we can solve the DL problem. S
is given a DL instance (ḡ, ḡα) in G1. Whenever F would choose a new key gsk i to sign for an honest
platform, F picks ri

$← Z∗p and sets the unknown αri as gsk i and computes gpk i ← (ḡα)ri . Then, F
generates a signature using the sig algorithm and public key gpk i, except for using Sim2 to simulate a proof
π2. When F finds a key gsk matching one signature created by gsk i in the revocation list RL, S outputs
gsk/ri mod p as the solution of the DL problem.

In all, we have Game 16
c
≈ Game 15.

Game 17. F performs all the additional checks done by F ldaa for the LINK interface, i.e., Check (xv) and
Check (xvi).

We show that these checks do not change the output of the link queries. If a platform key matching one
of two signatures but not the other, F outputs f = 0. If one key matches both signatures, F outputs f = 1.
For the signatures that have already been verified, we have B 6= 1G1 if bsn = ⊥ and e(ḡ, HG2(bsn)) 6= 1GT
with overwhelming probability otherwise. Thus, there is one unique key gsk ∈ Zp such that identify(m, bsn,
σ, gsk) = 1 with overwhelming probability. If there is a key gsk that matches one of two signatures but not
the other, we have K0 6= K1 and the link algorithm would also output 0 by the soundness of SPK2. If there
is some key gsk matching both signatures, we have K0 = K1 and the link algorithm would also output 1 by
the soundness of SPK2.

Overall, we have Game 17
c
≈ Game 16.

The functionality in Game 17 is equal to F ldaa, i.e., Game 17 = IDEALF ldaa,S,Z
. ut



D.1 Functionalities and Simulators

Setup
1. On input (SETUP, sid) from issuer I.

– Output (FORWARD, (SETUP, sid), I) to S.

Join
2. On input (JOIN, sid , jsid ,Mi) from hostHj .

– Output (FORWARD, (JOIN, sid , jsid ,Mi),Hj) to S.
3. On input (JOINPROCEED, sid , jsid , attrs) from I with attrs ∈ A1 × · · · × An.

– Output (FORWARD, (JOINPROCEED, sid , jsid , attrs), I) to S.

Sign
4. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) from hostHj with p̂ ∈ P.

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p̂),Hj) to S.
5. On input (SIGNPROCEED, sid , ssid) fromMi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify
6. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Output (FORWARD, (VERIFY, sid ,m, bsn, σ, p̂, RL),V) to S.

Link
7. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output (FORWARD, (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn),V) to S.

Output
8. On input (OUTPUT,P,m) from S.

– Output (m) to P .

Fig. 6: Functionality F for Game 3



Setup
– Upon receiving (FORWARD, (SETUP, sid), I) from F , S provides I with input (SETUP, sid).

Join
– Upon receiving (FORWARD, (JOIN, sid , jsid ,Mi),Hj) from F , S providesHj with input (JOIN, sid , jsid ,Mi).
– Upon receiving (FORWARD, (JOINPROCEED, sid , jsid , attrs), I) from F , S provides “I” with input

(JOINPROCEED, sid , jsid , attrs).

Sign
– Upon receiving (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p̂),Hj) from F , S provides “Hj” with input

(SIGN, sid , ssid ,Mi,m, bsn, p̂).
– Upon receiving (FORWARD, (SIGNPROCEED, sid , ssid),Mi) from F , S provides “Mi” with input

(SIGNPROCEED, sid , ssid).

Verify
– Upon receiving (FORWARD, (VERIFY, sid ,m, bsn, σ, p̂, RL),V) from F , S provides “V” with input

(VERIFY, sid ,m, bsn, σ, p̂, RL).

Link
– Upon receiving (FORWARD, (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn),V) from F , S provides “V” with input

(LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn).

Output
– When any party “P” simulated by S outputs a message m, S sends (OUTPUT,P,m) to functionality F .

Fig. 7: Simulator for Game 3

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I.

– Verify that sid = (I, sid ′) and output (SETUP, sid) to S.
2. Set Algorithms. On input (ALG, sid , ukgen, sig, ver, link, identify) from S.

– Check that ver, link and identify are deterministic.
– Store (sid , ukgen, sig, ver, link, identify) and output (SETUPDONE, sid) to I.

Join
3. On input (JOIN, sid , jsid ,Mi) from hostHj .

– Output (FORWARD, (JOIN, sid , jsid ,Mi),Hj) to S.
4. On input (JOINPROCEED, sid , jsid , attrs) from I with attrs ∈ A1 × · · · × An.

– Output (FORWARD, (JOINPROCEED, sid , jsid , attrs), I) to S.

Sign
5. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) from hostHj with p̂ ∈ P.

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p̂),Hj) to S.
6. On input (SIGNPROCEED, sid , ssid) fromMi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify
7. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Output (FORWARD, (VERIFY, sid ,m, bsn, σ, p̂, RL),V) to S.

Link
8. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output (FORWARD, (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn),V) to S.

Output
9. On input (OUTPUT,P,m) from S.

– Output (m) to P .

Fig. 8: Functionality F for Game 4



Setup

Honest Issuer I
– On input (SETUP, sid) from F .
• Try to parse sid as (I, sid ′) and output ⊥ to I if that fails.
• Provide “I” with input (SETUP, sid).
• Upon receiving an output (SETUPDONE, sid) from “I”, S creates its public key ipk = ({hi}ni=0, w, π1) and secret key

isk = γ following the specification of DAAOPT.
• Define ukgen() as follows: choose gsk ← Zp and output gsk .
• Define sig(gsk ,m, bsn, p̂) as follows:

1) Create a BBS+ credential (A, x, u) on gsk and attributes attrs = (a1, . . . , an) where the disclosed attributes are
taken from predicate p̂ = (D, I) and the undisclosed attributes are set as dummy values.

2) Compute gpk ← ḡgsk and Y ← g1 · gpk · hu0 ·
∏n
i=1 h

ai
i .

3) Following the computational operations at the host side in the real-world sign protocol, randomizeA, Y and compute
B,K as follows:
(a) Choose t1

$← Z∗p and t2
$← Zp, and compute T1 ← At1 , T2 ← Y t1 · T−x1 and Y ′ ← Y t1 · h−t20 .

(b) If bsn = ⊥, pick b $← Z∗p and compute B ← ḡb,K ← gpkb; Otherwise, set B ← ⊥ and compute K ←
e(gpk , HG2(bsn)).

4) Compute t3 = t−1
1 mod p and ũ = u − t2 · t3 mod p. Without the necessity of distributing the computa-

tions between the TPM and host, straightforwardly generate a proof π2 ← SPK2

{
(gsk , {ai}i∈D̄, x, ũ, t2, t3) :

g−1
1

∏
i∈D h

−ai
i = Y ′−t3 ḡgskhũ0

∏
i∈D̄ h

ai
i ∧ T2/Y

′ = T−x1 ht20 ∧K = Bgsk
}

(“sign”,m, bsn, D, I) as below:

(a) Choose r̄, rx, rũ, rt2 , rt3
$← Zp, Nt

$← {0, 1}`n , and rai
$← Zp for each i ∈ D̄.

(b) Compute R1 ← Y ′−rt3 · ḡr̄ · hrũ0 ·
∏
i∈D̄ h

rai
i , R2 ← T−rx1 · hrt20

(c) Calculate L← Br̄ if bsn = ⊥ and L← e(ḡ, HG2(bsn))r̄ otherwise.
(d) Compute ch ← H2(“sign”, ḡ, g1, {hi}ni=0, T1, T2, Y

′, B,K,R1, R2, L).
(e) Compute c← H1(Nt,m, bsn, D, I, ch).
(f) Compute s̄← r̄+ c ·gsk mod p, sx ← rx+ c ·x mod p, sũ ← rũ+ c · ũ mod p, st2 ← rt2 + c · t2 mod p,

st3 ← rt3 + c · t3 mod p, and sai ← rai + c · ai mod p for each i ∈ D̄ where ai is a dummy value.
(g) Set π2 ← (c, s̄, sx, sũ, st2 , st3 , {sai}i∈D̄, Nt).

5) Output a signature σ ← (T1, T2, Y
′, B,K, π2).

• Define ver(m, bsn, σ, p̂) as the real world verification algorithm except that the private key revocation check is omitted.
• Define link(m0, σ0, p̂0,m1, σ1, p̂1, bsn) as follows: 1) parse the signatures σ0 and σ1 as (T1,0, T2,0, Y

′
0 , B0,K0, π2,0)

and (T1,1, T2,1, Y
′
1 , B1,K1, π2,1) respectively; 2) output 1 if K0 = K1 and 0 otherwise.

• Define identify(m, bsn, σ, gsk) as follows: 1) parse σ as (T1, T2, Y
′, B,K, π2); 2) compute B ← e(ḡ, HG2(bsn)) if

bsn 6= ⊥; 3) check gsk ∈ Zp and K = Bgsk ; 4) output 1 if the check passes and 0 otherwise.
• S sends (ALG, sid , ukgen, sig, ver, link, identify) to F .

Corrupt Issuer I
– S notices this setup as it notices I registering a public key with “Fca” with sid = (I, sid ′).
• If the registered key ipk is of the form h0, h1, . . . , hn, w, π1 and the proof π1 is valid, S uses Ext1 to extract a secret key γ

from proof π1.
• S defines the algorithms ukgen, sig, ver, link, identify as before, but now relying on the extracted secret key.
• S sends (SETUP, sid) to F on behalf of I.

– S sends (ALG, sid , ukgen, sig, ver, link, identify) to F .

Join, Sign, Verify, Link
– Unchanged.

Output
– When any simulated party “P” outputs a message m which is not explicitly handled by S yet, S sends (OUTPUT,P,m) to F .

Fig. 9: Simulator for Game 4



Setup
Unchanged

Join
3. On input (JOIN, sid , jsid ,Mi) from hostHj .

– Output (FORWARD, (JOIN, sid , jsid ,Mi),Hj) to S.
4. On input (JOINPROCEED, sid , jsid , attrs) from I with attrs ∈ A1 × · · · × An.

– Output (FORWARD, (JOINPROCEED, sid , jsid , attrs), I) to S.

Sign
5. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) from hostHj with p̂ ∈ P.

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p̂),Hj) to S.
6. On input (SIGNPROCEED, sid , ssid) fromMi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Set f ← 0 if at least one of the following conditions hold:
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1.

– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
8. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– Set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .

Output
9. On input (OUTPUT,P,m) from S.

– Output (m) to P .

Fig. 10: Functionality F for Game 5

Setup
– Unchanged.

Join
– Unchanged.

Sign
– Unchanged.

Verify
– Nothing to simulate.

Link
– Nothing to simulate.

Output
– When any simulated party “P” outputs a message m which is not explicitly handled by S yet, S sends (OUTPUT,P,m) to F .

Fig. 11: Simulator for Game 5



Setup
Unchanged

Join
3. Join Request. On input (JOIN, sid , jsid ,Mi) from hostHj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to S.

4. Join Request Delivery. On input (JOINSTART, sid , jsid) from S.
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to status ← delivered .
– Abort if I orMi is honest and a record 〈Mi, ∗, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

5. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I with attrs ∈ A1 × · · · × An.
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to ⊥ ← attrs and status ← complete .
– Output (JOINCOMPLETE, sid , jsid , attrs) to S.

6. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid , gsk) from S.
– Look up record 〈jsid ,Mi,Hj , attrs, status〉 with status = complete .
– IfMi andHj are honest, set gsk ← ⊥.
– Add 〈Mi,Hj , gsk , attrs〉 into Memebers and output (JOINED, sid , jsid) toHj .

Sign
7. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) from hostHj with p̂ ∈ P.

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p̂),Hj) to S.
8. On input (SIGNPROCEED, sid , ssid) fromMi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify
9. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Set f ← 0 if at least one of the following conditions hold:
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1.

– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
10. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– Set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .

Output
11. On input (OUTPUT,P,m) from S.

– Output (m) to P .

Fig. 12: Functionality F for Game 6



Setup, Sign: Unchanged.

Join

Honest H, I
– S receives (JOINSTART, sid , jsid ,Mi,Hj) from F .
• S simulates the real-world protocol via giving “Hj” input (JOIN, sid , jsid ,Mi) and waits for output (JOINPROCEED, sid ,

jsid ,Mi) from “I”.
• IfMi is honest, S knows tsk as it is simulatingMi. IfMi is corrupted, S runs Extt to extract tsk from proof πt. Since S

simulates the honest hostHj , it knows hsk . Finally, S computes gsk ← tsk + hsk mod p.
• S sends (JOINSTART, sid , jsid) to F .

– On input (JOINCOMPLETE, sid , jsid , attrs) from F .
• S continues the simulation by giving “I” input (JOINPROCEED, sid , jsid , attrs), and waits for output

(JOINED, sid , jsid) from “Hj”.
• Output (JOINCOMPLETE, sid , jsid , gsk) to F .

Honest H,Corrupt I
– On input (JOINSTART, sid , jsid ,Mi,Hj) from F .
• S simulates the real-world protocol via giving “Hj” input (JOIN, sid , jsid ,Mi) and waits for output (JOINED, sid , jsid)

from “Hj”. S knows which attributes attrs the corrupted issuer issued to “Hj”, as it simulates “Hj”.
• S sends (JOINSTART, sid , jsid) to F .

– Upon receiving (JOINPROCEED, sid , jsid ,Mi) from F , S sends (JOINPROCEED, sid , jsid , attrs) to F on behalf of I.
– Upon receiving (JOINCOMPLETE, sid , jsid , attrs) from F , S sends (JOINCOMPLETE, sid , jsid ,⊥) to F .

HonestM, I,Corrupt H
– S notices the join as “I” outputs (JOINPROCEED, sid , jsid ,Mi).
• S knows the identity of the hostHj involved in the join session, as it is simulating “Mi”.
• S takes tsk from simulating “Mi”, and runs Exth to extract hsk from proof πh. Then S sets gsk ← tsk + hsk mod p.
• S sends (JOIN, sid , jsid ,Mi) on behalf ofHj to F .

– S receives (JOINSTART, sid , jsid ,Mi,Hj) from F .
• S continues the simulation of “Mi” until “I” outputs (JOINPROCEED, sid , jsid ,Mi).
• S sends (JOINSTART, sid , jsid) to F .

– Upon receiving (JOINCOMPLETE, sid , jsid , attrs) from F , S sends (JOINCOMPLETE, sid , jsid , gsk) to F .
– Upon receiving (JOINED, sid , jsid) from F as host Hj is corrupted, S continues the simulation via giving “I” input

(JOINPROCEED, sid , jsid , attrs).

Honest I,CorruptM,H
– S notices the join as “I” receives (SENT, (Mi, I, sid ′), jsid , (tpk , C, πt, πh),H′j) from Fauth∗.
• S runs Extt to extract tsk from proof πt and uses Exth to extract hsk from proof πh. Then, S sets gsk ← tsk +hsk mod p.
• S does not know the exact identity of the host who launched the join session. So, S chooses an arbitrary corrupt hostHj and

proceeds as if it is the host who launched the join session. For corrupt platforms, the exact identity of the host does not matter.
• S sends (JOIN, sid , jsid ,Mi) to F on behalf ofHj .

– S receives (JOINSTART, sid , jsid ,Mi,Hj) from F .
• S continues simulating “I” until it outputs (JOINPROCEED, sid , jsid ,Mi).
• S sends (JOINSTART, sid , jsid) to F .

– Upon receiving (JOINCOMPLETE, sid , jsid , attrs) from F , S sends (JOINCOMPLETE, sid , jsid , gsk) to F .
– Upon receiving (JOINED, sid , jsid) from F as host Hj is corrupted, S continues the simulation by giving “I” input

(JOINPROCEED, sid , jsid , attrs).

HonestM,Corrupt H, I
– S notices this join as “Mi” receives a message (TPM.Create, sid , jsid) from hostHj .
– S simply simulates “Mi” honestly, and does not need to involve F , sinceMi does not receive inputs or send outputs in the join

related interfaces, and F does not guarantee any security property for platforms with corrupt hosts when the issuer is corrupted.

Verify, Link: Nothing to simulate.

Output: When any simulated party “P” outputs a messagemwhich is not explicitly handled by S yet, S sends (OUTPUT,P,m)
to F .

Fig. 13: Simulator for Game 6



Setup
Unchanged

Join
Unchanged

Sign with bsn 6= ⊥
7. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) from hostHj with p̂ ∈ P.

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p̂),Hj) to S.
8. On input (SIGNPROCEED, sid , ssid) fromMi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Sign with bsn = ⊥
9. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid ,m, bsn, p̂,Mi,Hj) to S.

10. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

11. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

12. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– IfMi andHj are honest, ignore σ from S and internally generate a signature for a fresh or established gsk :
• As bsn = ⊥, generate gsk ← ukgen(), and then store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂).

– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
13. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Set f ← 0 if at least one of the following conditions hold:
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1.

– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
14. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– Set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .

Output
15. On input (OUTPUT,P,m) from S.

– Output (m) to P .

Fig. 14: Functionality F for Game 7



Setup
– Unchanged.

Join
– Unchanged.

Sign with bsn 6= ⊥
– Upon receiving (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn, p̂),Hj) from F , S provides “Hj” with input

(SIGN, sid , ssid ,Mi,m, bsn, p̂).
– Upon receiving (FORWARD, (SIGNPROCEED, sid , ssid),Mi) from F , S provides “Mi” with input

(SIGNPROCEED, sid , ssid).

Sign with bsn = ⊥
HonestM,H

– Upon receiving (SIGNSTART, sid , ssid ,m, bsn, p̂,Mi,Hj) with bsn = ⊥ from F .
• S starts the simulation via giving “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p̂).
• When “Mi” outputs (SIGNPROCEED, sid , ssid ,m, bsn, p̂), S sends (SIGNSTART, sid , ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F .
• S continues the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).
• When “Hj” outputs (SIGNATURE, sid , ssid , σ), S sends (SIGNCOMPLETE, sid , ssid ,⊥) to F .

Honest H,CorruptM
– Upon receiving (SIGNSTART, sid , ssid ,m, bsn, p̂,Mi,Hj) with bsn = ⊥ from F .
• S sends (SIGNSTART, sid , ssid) to F .

– Upon receiving (SIGNPROCEED, sid , ssid ,m, bsn, p̂) from F asMi is corrupted.
• S starts the simulation by giving “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p̂).
• When “Hj” outputs (SIGNATURE, sid , ssid , σ), S sends (SIGNPROCEED, sid , ssid) to F on behalf ofMi.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F .
• S sends (SIGNCOMPLETE, sid , ssid , σ) to F .

HonestM,Corrupt H
– S notices this sign session as “Mi” receives (sid , ssid ,m, bsn, p̂) fromHj .
• S sends (SIGN, sid , ssid ,Mi,m, bsn, p̂) to F on behalf ofHj .

– Upon receiving (SIGNSTART, sid , ssid ,m, bsn, p̂,Mi,Hj) from F .
• S continues the simulation of “Mi” until it outputs (SIGNPROCEED, sid , ssid ,m, bsn, p̂).
• S sends (SIGNSTART, sid , ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F .
• S sends (SIGNCOMPLETE, sid , ssid ,⊥) to F .

– Upon receiving (SIGNATURE, sid , ssid ,⊥) from F asHj is corrupted.
• S continues the simulation via giving “Mi” input (SIGNPROCEED, sid , ssid).

Verify
– Nothing to simulate.

Link
– Nothing to simulate.

Output
– When any simulated party “P” outputs a message m which is not explicitly handled by S yet, S sends (OUTPUT,P,m) to
F .

Fig. 15: Simulator for Game 7



Setup
Unchanged

Join
Unchanged

Sign
7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .

– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid ,m, bsn, p̂,Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– IfMi andHj are honest, ignore σ from S and internally generate a signature for a fresh or established gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen() and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂).

– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
11. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Set f ← 0 if at least one of the following conditions hold:
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1.

– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
12. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– Set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .

Fig. 16: Functionality F for Game 8



Setup
– Unchanged.

Join
– Unchanged.

Sign

HonestM,H
– Upon receiving (SIGNSTART, sid , ssid ,m, bsn, p̂,Mi,Hj) from F .
• S starts the simulation via giving “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p̂).
• When “Mi” outputs (SIGNPROCEED, sid , ssid ,m, bsn, p̂), S sends (SIGNSTART, sid , ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F .
• S continues the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).
• When “Hj” outputs (SIGNATURE, sid , ssid , σ), S sends (SIGNCOMPLETE, sid , ssid ,⊥) to F .

Honest H,CorruptM
– Upon receiving (SIGNSTART, sid , ssid ,m, bsn, p̂,Mi,Hj) from F .
• S sends (SIGNSTART, sid , ssid) to F .

– Upon receiving (SIGNPROCEED, sid , ssid ,m, bsn, p̂) from F asMi is corrupted.
• S starts the simulation by giving “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p̂).
• When “Hj” outputs (SIGNATURE, sid , ssid , σ), S sends (SIGNPROCEED, sid , ssid) to F on behalf ofMi.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F .
• S sends (SIGNCOMPLETE, sid , ssid , σ) to F .

HonestM,Corrupt H
– S notices this sign session as “Mi” receives (sid , ssid ,m, bsn, p̂) fromHj .
• S sends (SIGN, sid , ssid ,Mi,m, bsn, p̂) to F on behalf ofHj .

– Upon receiving (SIGNSTART, sid , ssid ,m, bsn, p̂,Mi,Hj) from F .
• S continues the simulation of “Mi” until it outputs (SIGNPROCEED, sid , ssid ,m, bsn, p̂).
• S sends (SIGNSTART, sid , ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F .
• S sends (SIGNCOMPLETE, sid , ssid ,⊥) to F .

– Upon receiving (SIGNATURE, sid , ssid ,⊥) from F asHj is corrupted.
• S continues the simulation via giving “Mi” input (SIGNPROCEED, sid , ssid).

Verify
– Nothing to simulate.

Link
– Nothing to simulate.

Fig. 17: Simulator for Game 8



Setup
Unchanged

Join
Unchanged

Sign
7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .

– IfHj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid , l(m, bsn, p̂),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– IfMi andHj are honest, ignore the signature σ from S and internally generate a signature for a fresh or established

gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen() and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂).

– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
11. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Set f ← 0 if at least one of the following conditions hold:
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1.

– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
12. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– Set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .

Fig. 18: Functionality F for Game 9



Setup
– Unchanged.

Join
– Unchanged.

Sign

HonestM,H
– Upon receiving (SIGNSTART, sid , ssid , l,Mi,Hj) from F .
• S takes a dummy message m′, basename bsn′ and attribute predicate p̂′ such that l(m′, bsn′, p̂′) = l and p̂′ holds for the

platform’s attributes which are learned by S from the join protocol.
• S starts the simulation via giving “Hj” input (SIGN, sid , ssid ,Mi,m

′, bsn′, p̂′).
• When “Mi” outputs (SIGNPROCEED, sid , ssid ,m′, bsn′, p̂′), S sends (SIGNSTART, sid , ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F .
• S continues the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).
• When “Hj” outputs (SIGNATURE, sid , ssid , σ), S sends (SIGNCOMPLETE, sid , ssid ,⊥) to F .

Honest H,CorruptM
– Upon receiving (SIGNSTART, sid , ssid , l,Mi,Hj) from F .
• S sends (SIGNSTART, sid , ssid) to F .

– Upon receiving (SIGNPROCEED, sid , ssid ,m, bsn, p̂) from F asMi is corrupted.
• S starts the simulation by giving “Hj” input (SIGN, sid , ssid ,Mi,m, bsn, p̂).
• When “Hj” outputs (SIGNATURE, sid , ssid , σ), S sends (SIGNPROCEED, sid , ssid) to F on behalf ofMi.

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F .
• S sends (SIGNCOMPLETE, sid , ssid , σ) to F .

HonestM,Corrupt H
– S notices this sign session as “Mi” receives (sid , ssid ,m, bsn, p̂) fromHj .
• S sends (SIGN, sid , ssid ,Mi,m, bsn, p̂) to F on behalf ofHj .

– Upon receiving (SIGNSTART, sid , ssid , l,Mi,Hj) from F .
• S continues the simulation of “Mi” until it outputs (SIGNPROCEED, sid , ssid ,m, bsn, p̂).
• S sends (SIGNSTART, sid , ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F .
• S sends (SIGNCOMPLETE, sid , ssid ,⊥) to F .

– Upon receiving (SIGNATURE, sid , ssid ,⊥) from F asHj is corrupted.
• S continues the simulation via giving “Mi” input (SIGNPROCEED, sid , ssid).

Verify
– Nothing to simulate.

Link
– Nothing to simulate.

Fig. 19: Simulator for Game 9



Setup
Unchanged

Join
3. Join Request. On input (JOIN, sid , jsid ,Mi) from hostHj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to S.

4. Join Request Delivery. On input (JOINSTART, sid , jsid) from S.
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to status ← delivered .
– Abort if I orMi is honest and a record 〈Mi, ∗, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

5. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I with attrs ∈ A1 × · · · × An.
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to ⊥ ← attrs and status ← complete .
– Output (JOINCOMPLETE, sid , jsid , attrs ′) to S, where attrs ′ ← ⊥ ifMi andHj are honest

and attrs ′ ← attrs otherwise.
6. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid , gsk) from S.

– Look up record 〈jsid ,Mi,Hj , attrs, status〉 with status = complete .
– IfMi andHj are honest, set gsk ← ⊥.
– Add 〈Mi,Hj , gsk , attrs〉 into Memebers and output (JOINED, sid , jsid) toHj .

Sign
7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .

– IfHj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid , l(m, bsn, p̂),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members.
– IfMi andHj are honest, ignore σ from S and internally generate a signature for a fresh or established gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen() and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂).

– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
11. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Set f ← 0 if at least one of the following conditions hold:
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1.

– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
12. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– Set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .

Fig. 20: Functionality F for Game 10



Setup
– Unchanged.

Join
HonestM,H, I

– Upon receiving (JOINSTART, sid , jsid ,Mi,Hj) from F , S does the following:
• S simulates the real-world join protocol via giving “Hj” input (JOIN, sid , jsid ,Mi).
• When “I” outputs (JOINPROCEED, sid , jsid ,Mi), S sends (JOINSTART, sid , jsid) to F .

– Upon receiving (JOINCOMPLETE, sid , jsid , attrs) from F .
• S does not know the attributes, as it receives attrs = ⊥. Thus, S picks a random attrs ′ ∈ A1 × . . .An.
• S continues the simulation by giving “I” input (JOINPROCEED, sid , jsid , attrs ′).
• When “Hj” outputs (JOINED, sid , jsid), S outputs (JOINCOMPLETE, sid , jsid , gsk) to F .

Other Cases
– Unchanged.

Sign

HonestM,H
– Upon receiving (SIGNSTART, sid , ssid , l,Mi,Hj) from F .
• S takes a dummy message m′, basename bsn′ and attribute predicate p̂′ such that l(m′, bsn′, p̂′) = l and p̂′ holds for the

dummy attributes that are chosen at random by S in the join protocol.
• S starts the simulation via giving “Hj” input (SIGN, sid , ssid ,Mi,m

′, bsn′, p̂′).
• When “Mi” outputs (SIGNPROCEED, sid , ssid ,m′, bsn′, p̂′), S sends (SIGNSTART, sid , ssid) to F .

– Upon receiving (SIGNCOMPLETE, sid , ssid) from F .
• S continues the simulation by giving “Mi” input (SIGNPROCEED, sid , ssid).
• When “Hj” outputs (SIGNATURE, sid , ssid , σ), S sends (SIGNCOMPLETE, sid , ssid ,⊥) to F .

Other Cases

– Unchanged.

Verify
– Nothing to simulate.

Link
– Nothing to simulate.

Fig. 21: Simulator for Game 10



Setup
Unchanged

Join
3. Join Request. On input (JOIN, sid , jsid ,Mi) from hostHj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOINSTART, sid , jsid ,Mi,Hj) to S.

4. Join Request Delivery. On input (JOINSTART, sid , jsid) from S.
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to status ← delivered .
– Abort if I orMi is honest and a record 〈Mi, ∗, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

5. Join Proceed. On input (JOINPROCEED, sid , jsid , attrs) from I with attrs ∈ A1 × · · · × An.
– Update the session record 〈jsid ,Mi,Hj ,⊥, status〉 to ⊥ ← attrs and status ← complete .
– Output (JOINCOMPLETE, sid , jsid , attrs ′) to S, where attrs ′ ← ⊥ ifMi andHj are honest and attrs ′ ← attrs

otherwise.
6. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid , gsk) from S.

– Look up record 〈jsid ,Mi,Hj , attrs, status〉 with status = complete .
– IfMi andHj are honest, set gsk ← ⊥.
– Else verify that the provided gsk is eligible via checking
• CheckGskHonest(gsk) = 1 ifMi is honest andHj is corrupted.
• CheckGskCorrupt(gsk) = 1 ifMi is corrupted.

– Add 〈Mi,Hj , gsk , attrs〉 into Memebers and output (JOINED, sid , jsid) toHj .
Sign

7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .
– IfHj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid , l(m, bsn, p̂),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members.
– IfMi andHj are honest, ignore σ from S and internally generate a signature for a fresh or established gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen(). Check that CheckGskHonest(gsk) = 1 and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂).

– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
Unchanged

Link
Unchanged

Fig. 22: Functionality F for Game 11



Setup
– Unchanged.

Join
– Unchanged.

Sign
– Unchanged.

Verify
– Unchanged.

Link
– Unchanged.

Fig. 23: Simulators for Games 11-17

Setup
Unchanged

Join
Unchanged

Sign
7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .

– IfHj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid , l(m, bsn, p̂),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members.
– IfMi andHj are honest, ignore the signature σ from S and internally generate a signature for a fresh or established

gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen(). Check that CheckGskHonest(gsk) = 1 and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂) and check ver(m, bsn, σ, p̂) = 1.
• Check that identify(m, bsn, σ, gsk) = 1 and check that there is no M′i 6= Mi with key gsk ′ registered in

Members or DomainKeys with identify(m, bsn, σ, gsk ′) = 1.
– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
Unchanged

Link
Unchanged
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Sign
7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .

– IfHj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid , l(m, bsn, p̂),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members.
– IfMi andHj are honest, ignore σ from S and internally generate a signature for a fresh or established gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen(). Check that CheckGskHonest(gsk) = 1 and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂) and check ver(m, bsn, σ, p̂) = 1.
• Check that identify(m, bsn, σ, gsk) = 1 and check that there is no M′i 6= Mi with key gsk ′ registered in

Members or DomainKeys with identify(m, bsn, σ, gsk ′) = 1.
– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
11. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Retrieve all pairs (Mi, gsk i) from 〈Mi, ∗, gsk i, ∗〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈ DomainKeys such that
identify(m, bsn, σ, gsk i) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one key gsk i was found.
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1.

– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
12. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– Set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .
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7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .

– IfHj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid , l(m, bsn, p̂),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members.
– IfMi andHj are honest, ignore σ from S and internally generate a signature for a fresh or established gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen(). Check that CheckGskHonest(gsk) = 1 and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂) and check ver(m, bsn, σ, p̂) = 1.
• Check that identify(m, bsn, σ, gsk) = 1 and check that there is no M′i 6= Mi with key gsk ′ registered in

Members or DomainKeys with identify(m, bsn, σ, gsk ′) = 1.
– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
11. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Retrieve all pairs (Mi, gsk i) from 〈Mi, ∗, gsk i, ∗〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈ DomainKeys such that
identify(m, bsn, σ, gsk i) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one key gsk i was found.
• I is honest and no pair (Mi, gsk i) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈ Members with p̂(attrs) =

1 exists.
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1.

– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
12. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– Set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .
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7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .

– IfHj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid , l(m, bsn, p̂),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members.
– IfMi andHj are honest, ignore σ from S and internally generate a signature for a fresh or established gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen(). Check that CheckGskHonest(gsk) = 1 and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂) and check ver(m, bsn, σ, p̂) = 1.
• Check that identify(m, bsn, σ, gsk) = 1 and check that there is no M′i 6= Mi with key gsk ′ registered in

Members or DomainKeys with identify(m, bsn, σ, gsk ′) = 1.
– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
11. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Retrieve all pairs (Mi, gsk i) from 〈Mi, ∗, gsk i, ∗〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈ DomainKeys such that
identify(m, bsn, σ, gsk i) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one key gsk i was found.
• I is honest and no pair (Mi, gsk i) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈ Members with p̂(attrs) =

1 exists.
• There is an honestMi but no entry 〈m, bsn, ∗,Mi, p̂〉 ∈ Signed exists.
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1.

– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
12. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– Set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .
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7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .

– IfHj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid , l(m, bsn, p̂),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members.
– IfMi andHj are honest, ignore σ from S and internally generate a signature for a fresh or established gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen(). Check that CheckGskHonest(gsk) = 1 and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂) and check ver(m, bsn, σ, p̂) = 1.
• Check that identify(m, bsn, σ, gsk) = 1 and check that there is no M′i 6= Mi with key gsk ′ registered in

Members or DomainKeys with identify(m, bsn, σ, gsk ′) = 1.
– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
11. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Retrieve all pairs (Mi, gsk i) from 〈Mi, ∗, gsk i, ∗〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈ DomainKeys such that
identify(m, bsn, σ, gsk i) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one key gsk i was found.
• I is honest and no pair (Mi, gsk i) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈ Members with p̂(attrs) =

1 exists.
• There is an honestMi but no entry 〈m, bsn, ∗,Mi, p̂〉 ∈ Signed exists.
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1 and no pair (Mi, gsk i) for an honestMi was

found.
– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
12. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– Set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .
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7. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn, p̂) with bsn = ⊥ and p̂ ∈ P from hostHj .

– IfHj is honest and no entry 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status ← request .
– Output (SIGNSTART, sid , ssid , l(m, bsn, p̂),Mi,Hj) to S.

8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S.
– Update the session record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 to status ← delivered .
– Output (SIGNPROCEED, sid , ssid ,m, bsn, p̂) toMi.

9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) fromMi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, p̂, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid , σ) from S.
– If I is honest, check that 〈Mi,Hj , ∗, attrs〉 with p̂(attrs) = 1 exists in Members.
– IfMi andHj are honest, ignore σ from S and internally generate a signature for a fresh or established gsk :
• If bsn 6= ⊥, retrieve gsk from 〈Mi, bsn, gsk〉 ∈ DomainKeys for (Mi, bsn). If no such gsk exists or bsn = ⊥,

generate gsk ← ukgen(). Check that CheckGskHonest(gsk) = 1 and store 〈Mi, bsn, gsk〉 in DomainKeys.
• Compute a signature as σ ← sig(gsk ,m, bsn, p̂) and check ver(m, bsn, σ, p̂) = 1.
• Check that identify(m, bsn, σ, gsk) = 1 and check that there is no M′i 6= Mi with key gsk ′ registered in

Members or DomainKeys with identify(m, bsn, σ, gsk ′) = 1.
– IfMi is honest, store 〈m, bsn, σ,Mi, p̂〉 in Signed.
– Output (SIGNATURE, sid , ssid , σ) toHj .

Verify
11. Verify. On input (VERIFY, sid ,m, bsn, σ, p̂, RL) from some party V .

– Retrieve all pairs (Mi, gsk i) from 〈Mi, ∗, gsk i, ∗〉 ∈ Members and 〈Mi, ∗, gsk i〉 ∈ DomainKeys such that
identify(m, bsn, σ, gsk i) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one key gsk i was found.
• I is honest and no pair (Mi, gsk i) was found for which an entry 〈Mi, ∗, ∗, attrs〉 ∈ Members with p̂(attrs) =

1 exists.
• There is an honestMi but no entry 〈m, bsn, ∗,Mi, p̂〉 ∈ Signed exists.
• There is a gsk ′ ∈ RL such that identify(m, bsn, σ, gsk ′) = 1 and no pair (Mi, gsk i) for an honestMi was

found.
– If f 6= 0, set f ← ver(m, bsn, σ, p̂).
– Add 〈m, bsn, σ, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V .

Link
12. Link. On input (LINK, sid ,m0, σ0, p̂0,m1, σ1, p̂1, bsn) from some party V with bsn 6= ⊥.

– Output ⊥ to V if at least one signature tuple (m0, bsn, σ0, p̂0) or (m1, bsn, σ1, p̂1) is not valid, which is verified via
the VERIFY interface with RL = ∅.

– For each key gsk i in Members and DomainKeys, compute bi ← identify(m0, bsn, σ0, gsk i) and b′i ←
identify(m1, bsn, σ1, gsk i), and then do the following:
• Set f ← 0 if bi 6= b′i for some i.
• Set f ← 1 if bi = b′i = 1 for some i.

– If f is not defined yet, set f ← link(m0, σ0,m1, σ1, bsn).
– Output (LINK, sid , f) to V .

Fig. 29: Functionality F for Game 17
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