
Implementing Token-Based Obfuscation under
(Ring) LWE

Cheng Chen1, Nicholas Genise2, Daniele Micciancio2, Yuriy Polyakov3,4, and
Kurt Rohloff3

1 MIT CSAIL
2 UCSD
3 NJIT

4 Duality Technologies, Inc.

October 7, 2019

Abstract. Token-based obfuscation (TBO) is an interactive approach
to cryptographic program obfuscation that was proposed by Goldwasser
et al. (STOC 2013) as a potentially more practical alternative to conven-
tional non-interactive security models, such as Virtual Black Box (VBB)
and Indistinguishability Obfuscation. We introduce a query-revealing
variant of TBO, and implement in PALISADE several optimized query-
revealing TBO constructions based on (Ring) LWE covering a rela-
tively broad spectrum of capabilities: linear functions, conjunctions, and
branching programs.
Our main focus is the obfuscation of general branching programs, which
are asymptotically more efficient and expressive than permutation branch-
ing programs traditionally considered in program obfuscation studies.
Our work implements read-once branching programs that are signifi-
cantly more advanced than those implemented by Halevi et al. (ACM
CCS 2017), and achieves program evaluation runtimes that are two or-
ders of magnitude smaller. Our implementation introduces many algo-
rithmic and code-level optimizations, as compared to the original the-
oretical construction proposed by Chen et al. (CRYPTO 2018). These
include new trapdoor sampling algorithms for matrices of ring elements,
extension of the original LWE construction to Ring LWE (with a hard-
ness proof for non-uniform Ring LWE), asymptotically and practically
faster token generation procedure, Residue Number System procedures
for fast large integer arithmetic, and others.
We also present efficient implementations for TBO of conjunction pro-
grams and linear functions, which significantly outperform prior imple-
mentations of these obfuscation capabilities, e.g., our conjunction obfus-
cation implementation is one order of magnitude faster than the VBB
implementation by Cousins et al. (IEEE S&P 2018). We also provide
an example where linear function TBO is used for classifying an ovar-
ian cancer data set. All implementations done as part of this work are
packaged in a TBO toolkit that is made publicly available.

Keywords: Lattice-Based Cryptography · Token-Based Program Obfuscation ·
Lattice Trapdoors · Residue Number Systems · Software Implementation

1 Introduction

Program obfuscation has long been of interest to the cyber-security commu-
nity. Obfuscated programs need to be difficult (computationally hard) to re-
verse engineer, and have to protect intellectual property contained in software
from theft. For many years, practical program obfuscation techniques have been
heuristic and have not provided secure approaches to obfuscation based on the
computational hardness of mathematical problems. In this regard, there have
been multiple recent attempts to develop cryptographically secure approaches
to program obfuscation based on the computational hardness of mathematical
problems (see [9] for a survey of these approaches). There are multiple defi-
nitions used for cryptographically secure program obfuscation. Two prominent
definitions are Virtual Black Box and Indistinguishability Obfuscation.

Virtual Black Box (VBB) obfuscation is an intuitive definition of secure
program obfuscation where the obfuscated program reveals nothing more than
black-box access to the program via an oracle [40]. VBB is known to have strong
limitations [10, 15, 37]. The most significant limitation is that general-purpose
VBB obfuscation is unachievable [10].

To address limitations of VBB, Barak et al. [10] define a weaker security
notion of Indistinguishability Obfuscation (IO) for general-purpose program ob-
fuscation. IO requires that the obfuscations of any two circuits (programs) of
the same size and same functionality (namely, the same truth table) are compu-
tationally indistinguishable. The IO concept has been of current interest, with
recent advances to identify candidate IO constructions based on multi-linear
maps [34,48,49, 50]. There has also been recent work to implement multi-linear
map constructions [4,21,27,41,47]. Recent results show that these constructions
might not be secure [23,26]. The only IO construction supporting general func-
tions that is not subject to any attack to date is the work by Garg et al. [31].
These cryptographically secure program obfuscation capabilities have also been
considered impractical due to their computational and storage inefficiencies.

There have also been attempts to securely obfuscate under the VBB model
(and its variants) certain special-purpose functions, such as point, conjunction,
and evasive functions, using potentially practical techniques. For example, there
have been several approaches to obfuscating point functions [6,12,28]. Unfortu-
nately, point functions have limited applicability.

Both VBB and IO are non-interactive models of program obfuscation where
the obfuscated program is made available to a computationally bound adversary.
The adversary can then run a large number of queries (bounded only by its com-
putational power) against the obfuscated program. In many practical scenarios,
e.g., classification problems, the obfuscated program can be potentially learned
by analyzing input-output maps.

An alternative approach to program obfuscation involves interactions with
a trusted party, which allows one to build program obfuscation systems where
the number of queries is limited by the trusted party. The two main models
for interactive program obfuscation are Trusted-Hardware Obfuscation (THO)
and Token-Based Obfuscation (TBO). In the THO model, the user first executes

2

the obfuscated program for a given input and then interacts with a trusted
hardware to obtain the decryption of the result [16,39]. In the TBO model, the
user obtains a special token before executing the obfuscated program and then
finds the decrypted result by herself [38]. The latter model is more flexible and
can support the use cases where the tokens are pre-generated offline, i.e., the
trusted hardware does not need to be accessible to the user.

To illustrate TBO, consider a scenario where a vendor publishes an intensive
obfuscated program and provides tokens representing the rights to run the pro-
gram on specific inputs. When a user wants to input a query x to the program,
she also gets a token for x from the vendor, and then executes the obfuscated
program. This allows the vendor to offload the computation to the user without
fear of leaking nontrivial information about the program. Another key feature
for TBO is the ability to obfuscate learnable functions which cannot be obfus-
cated under the VBB model. These learnable functions are why general-purpose
VBB obfuscation does not exist in-general [10]. TBO can be used on learnable
functions since the vendor controls what input-output data is revealed.

1.1 Our Contributions

Our work introduces a query-revealing variant of TBO (where input queries are
in the clear), which is more efficient than the query-hiding TBO model proposed
in [38] based on functional encryption/reusable garbled circuits. Our variant
is adequate for most obfuscation scenarios as program inputs are typically not
hidden. Query-revealing TBO (QR-TBO) thus provides an efficient method to
obfuscate the classes of functions that can be learned.

We develop optimized constructions, implement them in PALISADE, and re-
port experimental results for the TBO of several types of programs under (Ring)
LWE, including linear functions, conjunctions [20], permutation branching pro-
grams [20], and general branching programs [24].

Our most significant contribution is the optimized implementation for the
TBO of general branching programs based on the theoretical construction for
constrained-hiding constrained PRFs proposed in [24]. We evaluate the perfor-
mance of our implementation for a program that finds a Hamming distance
between two strings of equal length. The evaluation runtime of our implementa-
tion, which supports more than 500 accepting states, is two orders of magnitude
smaller than the implementation [41] for a simpler program (with about 100
states; note that the construction from [41] was subsequently broken in [24]).
The main optimizations introduced in our implementation include:

1. Development of an efficient Residue Number System (RNS) ring variant of
construction [24], requiring a hardness proof for non-uniform Ring LWE, and
RNS scaling and lattice trapdoor sampling procedures.

2. New algorithms for lattice trapdoor sampling of matrices of ring elements.
3. Improved key generation and evaluation algorithms for token generation

(both runtime and storage requirements are reduced by about two orders
of magnitude as compared to the original construciton.)

3

4. A larger alphabet for encoding bits in the input, which reduces the multlin-
earity degree of the construction.

5. Significantly tighter correctness constraints, which reduce the main func-
tional parameter.

6. Many code-level and system optimizations, which are of independent interest
for other lattice primitives.

We also present efficient implementations of the TBO for permutation branch-
ing programs, conjunction programs, and linear functions. Our performance re-
sults for conjunction obfuscation suggest that this implementation is faster by
one order of magnitude and requires a 3x smaller program size, as compared to
the prior recent distributional VBB conjunction obfuscation implementation [27].
The linear function obfuscation is first introduced in this work, and outperforms
prior constructions based on functional encryption.

All our implementations of TBO constructions and lower-level lattice algo-
rithms are added as modules to PALISADE, thus effectively providing a TBO
toolkit that is made publicly available.

1.2 Related Work

The TBO construction in [38] is formulated for the case of hidden queries using
reusable garbled circuits, which in their turn can be built on top of a functional
encryption (FE) scheme. This implies that a TBO scheme can be derived from
an FE scheme by treating a secret key for evaluating a specific function on
encrypted data as a token.

General FE constructions are currently impractical. One approach is based
on a combination of key-policy attribute-based encryption and fully homomor-
phic encryption [38]. The state-of-the-art results in key-policy attribute encryp-
tion [33] suggest these schemes are still inefficient, and hence their use in FE
where each attribute bit needs to be encrypted with FHE is currently not prac-
tical. Initial experimental results for multi-input FE are presented in [21] but
they are far from practical.

However, more efficient constructions exist for simpler functions, such as
inner products. For instance, Agrawal et al. proposed an FE for inner prod-
uct predicates as an extension of identity-based encryption using dual Regev’s
public key encryption scheme (based on LWE) and lattice trapdoor sampling.
Another FE construction for inner product predicates builds directly on top of
dual Regev’s public key encryption scheme [1] (our construction for inner prod-
ucts is asymptotically smaller and faster as shown later in this work). Several
works considered the scenario of function-hiding inner product encryption where
the result of inner product is computed while keeping both input vectors hid-
den [13, 44]. The experimental results for the scheme based on the Symmetric
External Diffie-Hellman (SDXH) assumption for bilinear groups are presented
in [44].

The main difference between QR-TBO used in our work and FE (TBO model
in [38]) is that the input queries in our model are in the clear, just like in the non-

4

interactive program obfuscation models. This enables more efficient construc-
tions for TBO. For instance, our linear function (inner product) construction
based on LWE is significantly faster (by orders of magnitude) than function-
hiding inner product encryption based on SDXH in [44], as can be seen from
comparing Table 1 in our work with Table 1 in [44].

More recently, the works of [11,14] present an efficient scheme for obfuscating
conjunctions. However, both schemes are in the non-standard generic group ad-
versarial model (where the adversary can only attack by using group operations)
and use distributional VBB security. This leads to a significant security gap com-
pared to our standard LWE construction which has a strong, simulation-based
security definition5.

1.3 Organization

In view of the complexity of TBO for general branchining programs, we use sim-
pler constructions to introduce the concepts and optimizations that ultimately
apply to the obfuscation of general branching programs. We start with linear
functions, then move to conjunction programs, and finally discuss pemutation
and general branching programs.

2 Preliminaries

We denote the integers modulo q as Zq := Z/qZ. Our implementation utilizes
power-of-two cyclotomic polynomial rings R = Z[x]/ 〈xn + 1〉 and Rq = R/qR,
where n is a power of 2 and q is an integer modulus. An element in the ring
is represented via the coefficient embedding, or by its vector of coefficients.
Importantly, we measure the norm of a ring element, or a vector of ring el-
ements, through this coefficient embedding. The norm is the Euclidean norm
unless stated otherwise.

The discrete Gaussian distribution over a lattice Λ ⊂ Rn is defined with prob-
ability mass proportional to ρc,σ(x) = e−π‖x−c‖

2/σ2

and is denoted as DΛ,c,σ,
where c ∈ Rn is the center and σ is the distribution parameter. If the center c
is omitted, it is assumed to be set to zero. When discrete Gaussian sampling is
applied to cyclotomic rings, we denote discrete Gaussian distribution as DR,σ.
In this work, all discrete Gaussian sampling over rings is done in the coefficient
representation (representing a polynomial by its coefficient vector)6.

We use Uq to denote discrete uniform distribution over Zq and Rq. We define
k = dlog2 qe as the number of bits required to represent integers in Zq.

5 The recent work in [30] cannot be straight-forwardly adapted to a QR-TBO scheme
since their CHCPRFs are only proved secure in the weaker, indistinguishablity se-
curity definition instead of our simulation-based definition.

6 R can be viewed as a lattice in Rn by mapping a(x) = an−1x
n−1 + · · ·+ a1x+ a0 to

(an−1, · · · , a0) ∈ Zn.

5

2.1 Double-CRT (RNS) Representation

Our implementation utilizes the Chinese Remainder Theorem (referred to as in-
teger CRT) representation to break multi-precision integers in Zq into vectors
of smaller integers to perform operations efficiently using native (64-bit) integer
types. The integer CRT representation is also often referred to as the Residue-
Number-System (RNS) representation. We use a chain of same-size prime mod-
uli q0, q1, q2, . . . satisfying qi ≡ 1 mod 2n. Here, the modulus q is computed
as
∏l−1
i=0 qi, where l is the number of prime moduli needed to represent q. All

polynomial multiplications are performed on ring elements in polynomial CRT
representation where all integer components are represented in the integer CRT
basis. Using the notation proposed in [35], we refer to this representation of
polynomials as “Double-CRT”.

2.2 Ring Learning with Errors

The following distinguishing problem, originated by Regev and modified to an
algebraic version [51], will be our source of cryptographic hardness.

Definition 1. (Gaussian-secret, cyclotomic-RLWE). Let R be a power-of-two
cyclotomic ring of dimension n over Z, q ≥ 2 be integer used as a modulus, and
m > 0. Let DR,σ be a discrete Gaussian distribution over Rq (sampled over R,
then taken modulo q). Then, the (Rl,m, q,DR,σ,DR,σ)RLWE problem is to dis-
tinguish between the following two distributions: {(A, sTA+eT)} and {(A,uT)},
where, s← DlR,σ, A← U(Rq)l×m, e← DmR,σ and u← U(Rqm)7.

Note, the hardness of discrete-Gaussian-secret (R)LWE is usually called the
normal form of (R)LWE [5,52].

The LWE assumption is often extended to its multi-secret form. We will only
need the multi-secret case when R = Z, and pseudorandomness follows from
LWE [53, Lemma 2.9]. Specifically, the κ-secret (n, q,m,DZ,σ)LWE distribution
is (A,AS + E) where A ← U(Zm×nq), S ← Dn×κZ,σ , and E ← Dm×κ

Z,σ . We will
need the hardness of multi-secret LWE when the noise distribution is p · DZ,σ
instead of DZ,σ, where p does not divide q. The pseudorandomness of LWE with
error drawn from p · DZ,σ is equivalent to LWE with error from DZ,σ (proved by
multiplying by p and p−1).

2.3 GGH15 Encoding

We will use the generalized GGH15 construction [34] given in [24], called γ-
GGH15. Here we give a brief description, though for a complete description, see
Section 2 of [24]. The main idea is that the γ-GGH15 construction provides a
way to multiply matrices homomorphically under the security of LWE.

First, we give the parameters and variables. Fix some ring Rq. Let ` > 0 be a
fixed computation length, (Mi,b ∈ Rqw×w)i∈[`],b∈{0,1} be a collection of binary,

7 This problem is referred to as GLWE or MLWE in literature [18,46], though we refer
to it as RLWE for succintness.

6

scalar matrices to be used as a form of computation, e.g. a matrix-branching
program, and let (si,b ∈ Rq)i∈[`],b∈{0,1} be a tuple ring elements. Let γ(M, s)
be a function mapping (M, s) to another matrix satisfying γ(M, s)γ(M′, s′) =
γ(MM′, ss′). The three choices of γ we will use are γ(M, s) = s, γ(M, s) =
M⊗ s, and γ(M, s) = diag(s,M⊗ s) where diag(·, ·) is a diagonal matrix. For

an x ∈ {0, 1}`, define the matrix subset products Zx =
∏`
i=1 Zi,xi

given any
tuple of matrices (Zi,b)i∈[`],b∈{0,1}.

The γ-GGH15 construction, given as input the matrices (Mi,b, si,b)i∈[`],b∈{0,1}
along with an additional matrix A`, returns the matrix A0 as well as the tuple
(Di∈[`],b∈{0,1}) satisfying A0Dx ≈ γ(Mx, sx)A` mod q for any x ∈ {0, 1}`.

2.4 Query-Revealing TBO

Here we define TBO with restricted queries. Our definition is similar to [38],
though weaker since the input query x is in the clear. Let λ be a security pa-
rameter throughout the following two definitions.

Definition 2 (Query-Revealing TBO). Let n = n(λ) ∈ N. A query-revealing
TBO scheme for a class of circuits {Cn}n∈N, where each Cn is a set of n-bit-input
circuits, is a tuple of probabilistic polynomial-time algorithms (Setup,Obfuscate,TokenGen)
with the following properties:

– Setup(1λ) takes as input a security parameter λ and returns a secret key osk.
– Obfuscate(osk, C ∈ Cn) takes as input a circuit C, a secret key osk, and

outputs an obfuscated circuit O.
– TokenGen(osk, x) takes as input the secret key osk and some input x ∈
{0, 1}n, and returns a token tkx.

We require O(tkx) = C(x) with all but negligible probability.

Next, we define the security game in Figure 1. We abbreviate (Obfuscate,
TokenGen) as (Obf,TG). In Figure 1, OS(·, C)[[stS]] is an oracle that on
input x from A2, runs S2 with inputs C(x), x (note that it was 1|x| in the query-
hiding TBO of [38]), and the current state of S, stS . S2 responds with a fake tk∗x
and a new state st′S which OS will feed to S2 on the next call. OS returns tk∗x
to A2.

Definition 3 (Security). The TBO scheme is secure if there exists a pair of
PPT simulation algorithms (S1,S2) such that for all PPT adversaries (A1,A2),
the two probabilistic experiments defined in Figure 1 are computationally indis-
tinguishable {Expreal

tOB,A(1λ)} ≈c {Expideal
tOB,A,S(1λ)}.

3 QR-TBO of Linear Functions

We first consider the following simple TBO scheme for the class of inner product
functions (over a fixed finite field): Setup samples a uniformly random vector

7

Expreal
tOB,A(1λ):

osk← Setup(1λ)

(C, stA)← A1(1λ)

O← Obf(osk,C)

α← A
TG(osk,·)
2 (C,O, stA)

Return α

Expideal
tOB,A,S(1λ):

(C, stA)← A1(1λ)

(O∗, stS)← S1(1λ, 1|C|)

α← A
OS(·,C)[[stS]]
2 (C,O∗, stA)

Return α

Fig. 1: TBO security game.

r = osk as the secret key, TokenGen computes an inner product with the input
and the key tkx = 〈r,x〉, and Obfuscate takes a function w and returns the
information-theoretically secure o = w + r. To evaluate the obfuscated program
on input x, the user computes 〈o,x〉 − tkx = 〈w,x〉. This simple scheme illus-
trates the main idea behind our LWE-based linear QR-TBO scheme. One clear
drawback of the information-theoretically secure scheme is that each obfuscation
requires a new secret key, the size of the program. On the other hand, our LWE
scheme can use the same secret key to obfuscate many programs.

We now present an LWE secret-key scheme that can be used for the TBO
of linear functions. Note, the linear functional encryption scheme of [1] can be
used to instantiate a less efficient TBO scheme for linear functions. We provide
a comparison in Appendix A.

3.1 LWE Secret Key Scheme for Evaluating Linear Weighted Sums

The purpose of this scheme is to perform evaluation on obfuscated tests for

linear functions. The evaluation function can be described as
N∑
i=1

wixi, where

x = (x1, . . . , xN) ∈ ZNp and w = (w1, . . . , wN) ∈ ZNp refer to data and weights,
respectively. Here, N is the dataset size (number of variables in the linear func-
tion). In the obfuscation case, the weights are encrypted and data (inputs) are
in clear. For each input, a new token is generated.

It is also possible to invert this problem by encrypting the inputs and storing
the weights in the clear. Each vector of weights would then require a token. This
formulation would apply to use cases where the function is public but data need
to stay encrypted.

The scheme is a tuple of functions, which includes ParamGen, KeyGen,
Obfuscate, TokenGen, and Eval, where the functions are defined as follows:

– ParamGen(1λ, N, p) : Given a security parameter λ and system parameters
N and p, select an integer modulus q, LWE security parameter n, and discrete
Gaussian distribution χ with standard deviation σ/

√
2π.

– KeyGen(N) → SK. Generate N secret vectors si ∈ Znq , where N ≥ 2. For
example, use a nonce K and define si to be a hash of K concatenated to the
index i.

8

– Obfuscate(SK,w) → O. Choose a random vector a ∈ Znq and error values
(numbers) ei ∈ Zq generated using χ. Compute the obfuscated program

O :=
[
a,b := {〈a, si〉+ pei + wi}Ni=1

]
.

– TokenGen(SK,x) → t. Generate tokens for data x as t :=
N∑
i=1

xisi ∈ Znq .

For each distinct data input, a separate token needs to be generated.
– Eval(O, t,x) → µ̄. Compute

µ̄ :=

N∑
i=1

bixi − 〈a, t〉 mod p.

The scheme is correct, i.e., µ̄ =
N∑
i=1

wixi, as long as the noise does not cause a

wrap-around w.r.t. modq. Indeed,

N∑
i=1

bixi − 〈a, t〉 =

N∑
i=1

xi · 〈a, si〉+ p ·
N∑
i=1

xiei

+

N∑
i=1

wixi − 〈a,
N∑
i=1

xisi〉 = p ·
N∑
i=1

xiei +

N∑
i=1

wixi,

where the first term in the result is eliminated after applying modp. For the
evaluation to be correct, the following correctness constraint has to be satisified:∥∥∥∥∥p ·

N∑
i=1

xiei

∥∥∥∥∥
∞

< q/4.

Note on key generation. Another alternative for key generation is to
compute secret keys as AES(K,i). More specifically, we can generate a secret
key K for AES and do encryptions of a counter to generate 128-bit random
sequences. These sequences would then be used for random numbers in Zq. In
this scenario, we need to store only the nonce K and can generate a particular
key on the fly. In other words, the space requirements for the secret key vectors
are limited by the value of n (negligibly small from the practical perspective).
This method is also supported by our implementation.

Security The obfuscated program O is secure under LWE. We prove the secu-
rity of the TBO scheme using Definition 2.

Theorem 1. The LWE secret-key scheme for evaluating linear weighted sums
is secure under QR-TBO (Definition 2).

The main practical security limitation comes from the use of linear functions.
All weights can be found in at most N queries. When the weights vector w

9

is sparse (especially if the locations of some zeros are known) or some weight
components are correlated, the number of queries is even smaller. This implies
that the maximum number of queries for which tokens can be generated should
be selected based on the dimension N as well as sparsity and other possible
special properties of the weights vector w.

Application to Binary Linear Classifiers The TBO of linear functions can
be applied for prediction using linear classifiers. As an example, we consider in
Section 7 a binary linear Support Vector Machine (SVM) classification model
that can be represented as a vector of weights and a bias [29,43], and obfuscated
using the linear TBO scheme. To convert the weights and bias from real numbers
to integers, we multiply the real numbers by scaling factors and round them to
achieve the desired accuracy. The plaintext modulus p is chosen large enough to
avoid a wrap-around when computing the linear weighted sum.

4 QR-TBO of Conjunctions

We next consider a construction for the token-based obfuscation of conjunctions
based on Ring LWE. Our TBO construction is a significantly optimized variant
of the bit-fixing construction for constraint-hiding constrained PRFs proposed
in Section 5.1 of [20]. We chose the example of conjunctions to give a fair com-
parison with a prior recent non-interactive (distributional VBB) conjunction
obfuscation construction implemented in [27] and introduce several major opti-
mizations used in the next section for the TBO of more general programs, i.e.,
branching programs.

Compared to the non-interactive conjunction obfuscation construction im-
plemented in [27] (and originally formulated in [19]), the TBO construction has
several advantages w.r.t. both security and efficiency. The construction [19,27] is
secure under entropic (non-standard) Ring LWE while the current construction
is secure under LWE. The token-based security model allows one to limit the
number of queries versus the unbounded number of queries in the case of [27]
(the latter would allow the adversary to learn the full pattern unless a relatively
long pattern with high entropy is used). Our complexity analysis (and exper-
imental results later in the paper) show that the program size and evaluation
runtime in the case of TBO are significantly smaller. The only drawback of TBO
is the need to have a trusted party generating tokens (either in advance or for
each query on demand).

4.1 Definition of Conjunctions

We define a conjunction as a function on L-bit inputs, specified as f (x1, . . . , xL) =∧
i∈I yi, where yi is either xi or ¬xi and I ⊆ [L]. The conjunction program checks

that the values xi : i ∈ I match some fixed pattern while the values with indices
outside I can be arbitrary. We represent conjunctions further in the paper as

10

vectors v ∈ {0, 1, ?}L, where we define Fv (x1, . . . , xL) = 1 iff for all i ∈ [L] we
have xi = vi or vi = ?. We refer to ? as a “wildcard”.

This type of conjunctions is used in machine learning to execute or approxi-
mate classes of classifiers [45,57]. Conjunctions can be used to encode binary clas-
sifiers but with some additional restrictions due to the wild-card-based (rather
than arbitrary) format of patterns. A more detailed discussion on conjunctions
and their applications is presented in [27].

4.2 Conceptual Model

The scheme for the TBO of conjunctions includes the same tuple of functions
as the TBO for linear functions (Section 3.1) but the concept of token is used
differently. The conceptual workflow is defined as follows:

– ParamGen: Generate lattice parameters based on the length of the pattern
and security level.

– KeyGen: Generate trapdoor key pairs and an unconstrained master secret
key. The unconstrained key corresponds to a pattern of all wild cards (which
accepts any pattern).

– Obfuscate: An obfuscated program (constrained key) for a given pattern is
generated by replacing the master key elements with random samples where a
specific bit is fixed (no changes are made for wild cards in the input pattern).

– TokenGen: Compute a vector y′ ∈ R1×m
p , which is a result of evaluating the

PRF, to generate the token using the master (unconstrained) key.
– Eval: Evaluate the obfuscated program using the constrained key (obfuscated

program) and output a vector y ∈ R1×m
p , where Rp = Zp[x]/ 〈xn + 1〉. Com-

pare y with y′; if they match, output 1 (True), otherwise output 0 (False).

The output of TokenGen is the PRF value, and is used as the “token” in
this case. If the token for the unconstrained key (master seret key) matches the
output for the constrained key (obfuscated program), the result is 1 (True).

The TokenGen procedure is executed for each input by a trusted party.
The Eval operation is executed by a public (untrusted) party. ParamGen,
KeyGen, and Obfuscate are offline operations. EvalToken and Eval are
online operations in the scenario where a token generator is available to generate
a token for each input on demand.

We next describe the algorithms for each function.

4.3 Algorithms for TBO Functions

The building blocks of the TBO construction for conjuctions, such as lattice
trapdoor sampling and GGH15 directed encoding, are the same as for the distri-
butional VBB conjunction obfuscation construction implemented in [27], which
makes it possible to provide a fair comparison of both constructions. In this
section we provide the pseudocode for the algorithms, focusing on the differ-
ences between the constructions and our optimizations w.r.t. to the theoretical
bit-fixing constraint-hiding constrained PRF construction proposed in [20].

11

The main difference of the TBO model as compared to the distributional VBB
model [27] is the interaction between untrusted and trusted components of the
system. This bounds the number of evaluation queries and prevents exhaustive
search attacks that the distributional VBB construction is amenable to.

The main optimizations w.r.t. the construction in [20] include the use of a
larger (non-binary) alphabet for encoding words of the pattern, an asymptoti-
cally and practically faster procedure (with much smaller storage requirements)
for generating the tokens, and significantly tighter correctness constraints.

Algorithm 1 Key generation

function KeyGen(1λ)
for i = 0..L do

Ai, T̃i := TrapGen(1λ)

for i = 1..L do
for b = 0..2w-1 do

si,b ← DR,σ
return KMSK :=(
{si,b}i∈{1,..,L},b∈{0,..,2w−1}, {Ai, T̃i}i∈{0,..,L}

)

The key generation algorithm is listed in Algorithm 1. The prameter L =
dL/we is the effective length of conjunction pattern, w is the number of bits
per word of the pattern, si,b ∈ R is the i-th word secret-key component for the
b-th value of the current word, Ai ∈ R1×m

q is the public key for the i-th word,

T̃i ∈ R2×κ
q is the trapdoor for the i-th word, κ is the number of digits used

in Gaussian sampling, and m = 2 + κ. The key generation procedure includes
two major steps: generating L trapdoors (the definition of TrapGen is given in
Appendix G) and computing the unconstrained key as L×b short ring elements.

As compared to the construction in [20], we optimized the master secret
key generation to only sample short ring elements si,b (without calling com-
plex lattice trapdoor sampling for these short ring elements), which reduces the
storage and speed complexity for the unconstrained key by a factor of O(m2).
In the original construction, the size of the master key was approximately the
same as the obfuscated program. In summary, the storage requirement for the
keys in our construction is O(Lbn) + O(L(m + 2κ)n) integers in Zq versus
O(m2Lbn) + O(L(m + 2κ)n) integers in the original construction. Storing the
secret keys rather their GGH15 encodings does not effect the security of the
construction in the TBO model as the trusted party is allowed to have access to
the secret keys by definition.

Algorithm 2 lists the pseudocode for the main obfuscation function Obfuscate.
We encode words of conjunction pattern v ∈ {0, 1, ?}L rather than bits as in
the original construction [20]. Each word is w bits long, and 2w is the number
of encoding matrices for each encoded word of the pattern. The actual pattern
length L gets replaced with the effective length L = dL/we to reduce the number

12

Algorithm 2 Obfuscation

function Obfuscate(v ∈ {0, 1, ∗}L,KMSK , σ)
for i = 1..L do

Build binary mask M (0’s correspond to wild-card bits, 1’s correspond to
fixed bits)

for b = 0..2w-1 do
if (b ∧M) 6= (v ∧M) then

ri,b ← DR,σ
else

ri,b := si,b

Di,b := EncodeAi−1→Ai(T̃i−1, ri,b, σ)

return πv :=
(
A0, {Di,b}i∈[L],b∈{0,...,2w−1}

)

of encoding levels (multi-linearity degree). When the fixed bits in the encoded
word match the fixed bits in the pattern being obfuscated, the obfuscated pro-
gram uses the short ring elements si,b from the unconstrained key. Otherwise,
new short ring elements ri,b specific to the obfuscated program are generated.

The Obfuscate procedure relies on an Encode algorithm for the directed-
encoding ring instantiation to encode each word of the conjunction pattern. The
Encode algorithm is depicted in Algorithm 3 and is the same GGH15 directed
encoding procedure as described in [27]. The lattice trapdoor sampling procedure
GaussSamp is described in Appendix G.

The storage requirement for the obfuscated program πv is O(Lbm2n) .

Algorithm 3 Directed encoding

function EncodeAi→Ai+1(Ti, r, σ)
ei+1 ← DR,σ ∈ Rq1×m.
bi+1 := rAi+1 + ei+1 ∈ R1×m

q

Ri+1 := GaussSamp(Ai,Ti,bi+1, σt, σs) ∈ Rm×mq

return Ri+1

Algorithm 4 Token Generation: Evaluation by a trusted party (using the mas-
ter secret key)

function TokenGen(x ∈ {0, 1}L, KMSK)
∆ := AL[1]

∏L
i=1 si,x[1+(i−1)w : iw]

return y′ := b 2
q
∆e ∈ Zn2

Algorithm 4 lists the pseudocode for TokenGen, i.e., the evaluation of the
input using unconstrained key. Our variant is significantly optimized compared
to the construction in [20]: it multiplies short ring elements followed by a single

13

scalar product with the second ring element of the public key A0 (in contrast
to vector-matrix products in [20]), which reduces the computational complexity
by a factor of O(m2).

Algorithm 5 shows the psedocode for the evaluation of a given input using
the obfuscated program (constrained key).

Algorithm 5 Evaluation using the obfuscated program

function Eval(x ∈ {0, 1}L, πv, y′)
Dπ := A0

for i = 1..L do
Dπ := DπDi,x[1+(i−1)w : iw] ∈ Rq1×m

y := b 2
q
Dπ[1]e ∈ Zn2

return (y = y′)

In this case, the token y′ is generated using a lattice PRF. We do not need
to perform the comparison of all polynomial coefficients in y′ and y. Instead
we can perform it for the number of coefficients that makes the probability of a
false positive negligibly small. In our experiments, we chose this number to be
128. Dropping a fixed number of bits from a PRF retains all security measures.

Next, we note that the probability of comparison error is linear in the number
of coefficients compared under the heuristic that the coefficients are independent
and uniformly distributed over Zq. Let B be our bound on the GGH15 noise.
Then, the probability of a rounding error in a comparison of the entire output
is less than (nmd) 4B

q since there are two “bad” regions of Zq of size 2B corre-
sponding to rounding errors and there are nmd Zq-coefficients being rounded to
bits (nmd bits)8. By only comparing α bits, we can replace this by α · 4Bq . The
choice of α and the probability upper-bound for a comparison error will affect
the modulus size (Appendix D).

4.4 Security

The TBO construction for conjunctions is secure under Definition 2 for QR-TBO
under Ring LWE. The proof showing that the existence of constraint-hiding
constrained PRF implies an the existence of a QR-TBO scheme is presented in
Appendix C. Further, we are able to base security on plain RLWE instead of
small-entry A RLWE [17]. See Remark 1 in Appendix C for more details.

4.5 Setting the Parameters

Ring-LWE trapdoor construction. The trapdoor secret polynomials are gen-
erated with a noise width σ, which is at least the smoothing parameter estimated

8 This analysis is nearly identical to the original LWE to LWR reduction in [8] for
p = 2.

14

as
√

ln(2nm/ε)/π, where nm is the maximum ring dimension and ε is the bound
on the statistical error introduced by each randomized-rounding operation [54].
For nm ≤ 214 and ε ≤ 2−80, we choose a value of σ ≈ 4.578.

Short Ring Elements in Directed Encoding. For short ring elements
si,b, ri,b and noise ring elements, we use error distribution with the distribution
parameter σ. This implies we rely on Ring-LWE for directed encoding.

G-Sampling. Our G-sampling procedure requires that σt = (t+ 1)σ. This
guarantees that all integer sampling operations (noise widths) inside G-sampling
are at least the smoothing parameter σ, which is sufficient to approximate the
continuous Gaussian distribution with a negligible error.

Spectral norm σs. Parameter σs is the spectral norm used in computing the
Cholesky decomposition matrix (it guarantees that the perturbation covariance
matrix is well-defined). To bound σs, we use inequality σs > s1 (X)σt, where
X is a sub-Gaussian random matrix with parameter σ [54]. Lemma 2.9 of [54]
states that s1 (X) ≤ C0σ

(√
nκ+

√
2n+ C1

)
, where C0 is a constant and C1 is

at most 4.7. We can now rewrite σs as σs > C0σσt
(√
nκ+

√
2n+ 4.7

)
. In our

experiments we used C0 = 1.3, which was found empirically.
Modulus q. The correctness constraint for a conjunction pattern with L

words (L ≥ 2) is expressed as q > 210P−1e Be (βσs
√
mn)

L−1
, where Be = 6σ, β =

6, Pe = 2−20, and all other parameters are the same as in [27]. The derivation
details are presented in Appendix D.

Ring Dimension n. All of the security proofs presented in [20] for the
constraint-hiding constrained PRF directly apply to our construction, which
implies that the TBO of conjunctions is secure under Ring LWE. To choose the
ring dimension, we run the LWE security estimator9 (commit a2296b8) [3] to find
the lowest security levels for the uSVP, decoding, and dual attacks following the
standard homomorphic encryption security recommendations [22]. We choose the
least value of λ for all 3 attacks on classical computers based on the estimates
for the BKZ sieve reduction cost model, and then multiply it by the number
of encoded matrices, corresponding to the number of Ring LWE problems that
need to be solved.

Dimension m. The dimension m was set to 2 + κ following the logic de-
scribed in [27].

Word size w. We found w = 8 to be the optimal value for all our experi-
ments, using the same procedure as in [27].

4.6 Comparison with Construction in [27]

As the building blocks and many underlying parameters for the TBO construc-
tion are the same as for the distributional VBB constructon [27], we can directly
compare them. The noise constraints are approximately the same as the smaller
depth in the TBO construction (by 1) is compensated by the extra factor of
approximately 25P−1e introduced by the rounding. The construction in [27] re-
quires computing two product chains versus just one product chain in our TBO

9 https://bitbucket.org/malb/lwe-estimator

15

construction. All other parameters are the same. This implies that the TBO
construction should be at least twice faster in obfuscation and evaluation, and
requires 2x smaller storage for the obfuscated program. We provide their exper-
imental comparison later in the paper.

From the security perspective, the TBO model can be used to bound the
number of queries and restrict the format of inputs, thus overcoming the main
security limitation of the conjunction obfuscation construction discussed in [27].

5 QR-TBO of Branching Programs

In this section we present a construction for the TBO of more general classes of
programs, namely permutation and general branching programs. For permuta-
tion branching programs, we develop an optimized variant of the constrained-
hiding constrained PRF construction presented in Section 5.2 of [20]. For gen-
eral branching programs, we adapt the private constrained PRF10 construction
of [24] (Section 7.2) to rings and add several optimizations to it. Both classes
of branching programs are integrated in the same framework, hence we deal
with one general construction for the TBO of branching programs. The TBO
construction is secure under Ring LWE.

The construction for the TBO of branching programs builds on top of the
same procedures as the TBO for conjunctions discussed in Section 4 and then
adds an extra layer dealing with matrix branching programs. Conceptually speak-
ing, the TBO of conjunctions may be considered as a simple special case of the
TBO for branching programs. In this section we focus on the aspects specific
to branching programs, implying that all other underlying building blocks and
parameters are the same as for the TBO of conjunctions.

Compared to the constructions in [24] and [20], our construction includes
the following optimizations: (1) significantly improved key generation and evalu-
ation algorithms for the token generator (both runtime and storage requirements
are dramatically reduced), (2) much tighter correctness constraints (using lower
values of main parameters and Central Limit Theorem/subgaussian analysis),
and (3) a larger alphabet for encoding input bits.

5.1 Matrix Branching Programs

First, we provide the main definitions of branching programs supported by our
construction.

Definition 4. (Matrix branching programs [24]) Let l, L ∈ N be the bit-length
of the input x ∈ {0, 1}l and the index of the branching program. Let f : {0, 1}l →
{0, 1}L be the input-to-index map and F : {0, 1}L → {0, 1}l be the index-to-input
map.

10 Private constrained PRF and constrained-hiding constrained PRF are two inter-
changeable terms referring to the same capability.

16

A dimension-u, length-L matrix branching program over l-bit inputs consists
of an input-to-index map f , a sequence of pairs of 0-1 matrices, and two disjoint
sets of target matrices P0 and P1:

Γ =
{
f, {Mi,b ∈ {0, 1}u×u}i∈[L],b∈{0,1},P0,P1

}
.

This branching program decides the language L ⊆ {0, 1}l defined as

L(x) =

{
0 Mf(x) =

∏
i∈[L] Mi,F (i) ∈ P0,

1 Mf(x) =
∏
i∈[L] Mi,F (i) ∈ P1.

The dimension u and length L are typically referred to as the width and
length of a matrix branching program.

Looking ahead, the applications in this paper may require additional con-
straint on the target sets P0,P1 to perform the correct functionality.

The following 2 types are supported by our TBO construction.

Definition 5. (Permutation branching programs: Type II branching programs
in [24])

1. Mi,b’s are permutation matrices

2. The target sets P0,P1 satisfy e1 · P1 = {e1}; e1 · P0 = {e2}, where ei ∈
{0, 1}1×u denotes the unit vector with the ith coordinate being 1, and the rest
being 0.

Permutation branching programs can be used to represent NC1 circuits. Bar-
rington’s theorem converts any depth-δ Boolean circuits into an oblivious branch-
ing program of length L ≤ 4δ composed of permutation matrices {Mi,b}i∈[L],b∈{0,1}
of dimension u (by default u = 5). Evaluation is done by multiplying the ma-
trices selected by input bits, with the final output Iu×u or a u-cycle Pi, where
i ∈ {0, 1}, recognizing 0 and 1, respectively. In practice, we can manually con-
struct branching programs with shorter length L and smaller width u than those
provided by the general conversion of Barrington’s Theorem.

Note that the branching programs obtained by Barrington’s theorem directly
satisfy Definition 5.

Definition 6. (General branching programs: Type I branching programs in [24]).
For vector v ∈ {0, 1}1×u, the target sets P0,P1 satisfy v ·P1 = {01×u}; v ·P0 ⊆
{0, 1}1×u \ {01×u}.

General branching programs can be used to represent formulas in Conjunctive
Normal Form (CNF) (see [24] for two specific representations of CNFs).

The relationships between these two types of branching programs are dis-
cussed in [24].

17

Algorithm 6 Key generation for branching programs

function KeyGen(1λ)
for i = 0..L do

Ai, T̃i := TrapGen(1λ), Ai ∈ Rqd×dm

J := e1; AJ := JA0

for i = 1..L do
for b = 0..2w-1 do

si,b ← DR,σ
return KMSK :=(
{si,b}i∈{1,..,L},b∈{0,..,2w−1}, {Ai, T̃i}i∈{0,..,L},AJ

)

5.2 TBO Construction

At a high level, the TBO construction for branching programs has the same
functions as the one for the TBO of conjunctions. The main difference is in how
the programs are encoded.

In the case of conjunctions, each bit is encoded as a short ring element s
(we ignore here for simplicity the larger-alphabet optimization). For branching
programs, each bit is encoded as a square matrix of ring elements, which is a
tensor product of a matrix with 0’s and 1’s by a random short ring element.

We define the encoding function as γ(M, s). For permutation programs, we
have γ(M, s) = M⊗ s. For general branching programs, γ(M, s) = diag(s,M⊗
s), where diag refers to a function building a diagonal matrix. If u is the di-
mension of the matrix M, then γ(M, s) for permutation branching programs
is a u × u square matrix of ring elements, and γ(M, s) for general branching
programs is a (u+ 1)× (u+ 1) square matrix of ring elements.

Algorithm 7 Obfuscation for branching programs

function Obfuscate({Mi,b}i∈[L],b∈{0,1},KMSK , σ)
for i = 1..L do

for b = 0..2w-1 do
M̂i,b =

∏w
j=1 M(i−1)w+j,bj ∈ Rd×d

q

Di,b := EncodeAi−1→Ai(T̃i−1, γ(M̂i,b, si,b), σ)

return πv :=
(
AJ, {Di,b}i∈[L],b∈{0,...,2w−1}

)

Next we describe the TBO algorithms focusing on the discussion of differences
brought about by the encoding of matrix branching programs. To present the
same procedures for both types of branching programs, we use d as the dimension
of γ(M, s) rather than the dimension u of the underlying matrix M.

The key generation algorithm is listed in Algorithm 6. The main differences
compared to Algorithm 1 are (1) the computation of AJ term, which is needed for
the security of the construction for general branching programs proposed in [24],

18

Algorithm 8 Directed encoding for matrices

function EncodeAi→Ai+1(T̃i,S ∈ Rqd×d, σ)

Ei+1 ← Dd×dmR,σ ∈ Rqd×dm.

Bi+1 := SAi+1 + Ei+1 ∈ Rd×dmq

Ri+1 := GaussSamp(Ai, T̃i,Bi+1, σt, σs) ∈ Rdm×dmq

return Ri+1

and (2) the increased dimensions for both public key and secret trapdoors (a
square d×d increase as compared to the conjunction case). Note that J := (1,v)
for general branching programs and J := Id for permutation programs. The
TrapGen algorithm used in this case is a generalization for the module-LWE
probem, which is discussed in Section 6.1 and Appendix F.

Algorithm 9 Evaluation by a trusted party (using the master secret key)

function TokenGen(x ∈ {0, 1}L, KMSK)
∆ := AL[1]

∏L
i=1 si,x[1+(i−1)w : iw]

return y′ := b 2
q
∆e ∈ Zn2

The obfuscation and encoding procedures are presented in Algorithms 7 and
8. Conceptually the obfuscation procedure is similar to Algorithm 2 but deals
with the encoding of matrices of d × d short ring elements corresponding to
the matrix branching program, rather than individual short ring elements in the
conjunction construction. This implies that the storage requirements are at least
d2 larger as compared to conjunctions (they are actually more due to increased

noise requirements). The M̂i,b is introduced to support a larger alphabet (word
size) when encoding the program, which is a major optimization compared to
the constructons in [24] and [20].

Algorithm 9 lists the pseudocode for TokenGen, the evaluation using un-
constrained key. The computational complexity is the same as for conjunctions,
and O (dm) smaller than for the original branching program construction [24].

Algorithm 10 Evaluation using the obfuscated program

function Eval(x ∈ {0, 1}L, πv, y′)
Dπ := AJ

for i = 1..L do
Dπ := DπDi,x[1+(i−1)w : iw] ∈ Rq1×dm

y := b 2
q
Dπ[1]e ∈ Zn2

return (y = y′)

19

Algorithm 10 shows the pseudocode for the evaluation using the obfuscated
program (constrained key). The main difference compared to Algorithm 5 for
conjunctions is that we multiply by AJ rather than A0 to satisfy the security
requirements for the TBO of general branching programs. The computational
complexity is O(d2) higher than in the case of conjunctions.

5.3 Security

The TBO construction for permutation branching programs is secure under Def-
inition 2 for QR-TBO under Ring LWE. The proof showing that the existence of
constraint-hiding constrained PRF (also referred to as private constrained PRF)
implies the existence of a QR-TBO scheme is presented in Appendix C, and we
can rely on plain RLWE since the construction from [20] only needs small-entry
A RLWE for pseudorandomness, which is not a requirement in Definition 2. See
Remark 1 in Appendix C for more details.

The security of general branching programs can be provable based on RLWE
with an increase in the secret dimension and secret distribution width, from
si,b ∈ R to Si,b ∈ Rz×z for z = logt(q), where t is the Gaussian width of Si,b.
See Remark 2 in Appendix H for more details.

5.4 Parameter Selection

The correctness constraint for branching programs with L words (L ≥ 2) is

expressed as q > 210P−1e BJBe

(
6σs
√
dmn

)L−1
, where Bj = d for general

branching programs and Bj = 1 for permutation branching programs, and

σs = C0σσt

(√
dnκ+

√
2n+ 4.7

)
. All other parameters are the same as for

the TBO of conjunctions. The derivation details are presented in Appendix E.

5.5 Efficiency of Branching Programs

The general branching program represention is typically significantly more effi-
cient than the permutation representation [24]. The programs with l-bit input
can be represented as general branching programs of length l. In the case of
permutation programs, the length of branching programs typically has to be at
least l2 or the width has to be set to at least 2l [24], which leads to a dramatic
performance degradation when the length l is increased and makes the permuta-
tion branching program approach nonviable for most useful practical scenarios.
Hence in this work we present experimental results only for general branching
programs.

5.6 Application: Hamming Distance

To illustrate the TBO of general branching programs, we consider an example
of obfuscating a procedure to find whether the Hamming distance between two

20

strings of equal length K is below a certain threshold T . The Hamming distance
is defined as the number of positions at which the corresponding symbols of the
strings are different. We denote as φ ∈ {0, 1, ?}l the l-bit string to be obfuscated.
Note that wildcard values are allowed.

The following branching program can be used to represent this problem:

1. Initialization, for all i ∈ [K], b ∈ {0, 1}, let Mi,b := IT+1.

2. If φi = 0, set Mi,1 := N.

3. If φi = 1, set Mi,0 := N.

4. For b ∈ {0, 1}, set Ml,b := Ml,bR.

Here, N ∈ {0, 1}(T+1)×(T+1) is a matrix where Ni,i+1 = 1, NT+1,T+1 = 1 and
all other values are set to 0; R ∈ {0, 1}(T+1)×(T+1) is a matrix where RT+1,T+1 =
1 and all other values are set to 0. The vector v ∈ {0, 1}T+1 is [1 0 0 . . . 0].

This branching program has the length of K and width of T + 1.

6 Efficient Lattice Trapdoor Algorithms

In this section, we describe the underlying lattice trapdoor mechanism used in
our construction and its efficient algorithms. The trapdoor technique is an opti-
mized instantiation of the MP12 framework [54] (which in turn is an optimized
instantiation of [36]). In addition, we introduce an algorithm, SampleMat, used
to sample a perturbation of arbitrary dimension over R efficiently. This algo-
rithm may be of independent interest and is described in Appendix F.

The pseudocode for trapdoor generation and sampling is given in Appendix F.
In short, TrapGen takes as input a security parameter and outputs a pseudo-
random matrix A over Rq along with a trapdoor matrix T with small entries
over R. This trapdoor T allows us to sample discrete Gaussian preimage vectors
x over R such that Ax mod q = u for u given as an input. Sampling a discrete
Gaussian matrix X over R where AX = U mod q is done by sampling each
column of X independently.

6.1 Perturbation Sampling for the General Covariance Matrices of
Ring Elements

We now discuss SampleMat, needed to extend the efficient perturbation sam-
pling methods of [32] to the broad, module-LWE setting. Specifically, Sam-
pleMat replaces [32]’s algorithm Sample2z. This new algorithm may be of
independent interest since it samples a discrete Gaussian perturbation with a
covariance described as a matrix of any dimension over the ring R via the Schur
complement method of [32]. We remark the proof of SampleMat’s statistical
correctness follows from [32, Theorem 4.1], whose proof only depends on the lat-
tice dimension and is oblivious to the underlying algebraic structure or module
dimension.

21

6.2 RNS Algorithms

We implemented all procedures for the TBO constructions of conjunctions and
branching programs in the Double-CRT (RNS) representation, which supports
parallel operations over vectors of fast native integers (64-bit for x86-64 archi-
tectures). There are many benefits of using the Double-CRT representation, and
new algorithms have recently been proposed [2, 7, 33, 42]. The two procedures
that require special handling are the lattice trapdoor sampling in Encode and
the scale-and-round operation in TokenGen and Eval.

Lattice trapdoor sampling calls digit decomposition for each polynomial co-
efficient in the G-sampling step. The conventional digit decomposition is not
compatible with RNS, and requires expensive conversion to the positional (multi-
precision) format to extract the digits. Instead, we use a CRT representation of
the gadget matrix that was recently proposed in [33], which allows us to perform
“digit” decomposition directly in RNS. We discuss the changes introduced by the
use of CRT representation for the gadget matrix, as compared to the trapdoor
algorithms in [27], in Appendix G.

For the scale-and-round operation, we utilize the RNS scaling procedure pro-
posed in [42] for the decryption in the Brakerski/Fan-Vercauteren homomorphic
encryption scheme. The technique is based on the use of floating-point operations
for some intermediate computations.

7 Implementation and Results

7.1 Software Implementation

We implemented the TBO constructions in PALISADE v1.3.1 [55], an open-
source lattice cryptography library. PALISADE uses a layered approach with
four software layers, each including a collection of C++ classes to provide en-
capsulation, low inter-class coupling and high intra-class cohesion. The software
layers are (1) cryptographic, (2) encoding, (3) lattice, and (4) arithmetic (prim-
itive math).

Our TBO toolkit is a new PALISADE module called “tbo”, which includes
the following new features broken down by layer: (1) TBO of linear functions,
conjunctions, and branching programs in the cryptographic layer; (2) variants of
GGH15 encoding in the encoding layer; and (3) trapdoor sampling for matrices
of ring elements in the lattice layer.

Several lattice- and arithmetic-layer optimizations are also applied for run-
time improvements. OpenMP loop parallelization is used to achieve speedup in
the multi-threaded mode.

7.2 Experimental Testbed

The experiments for linear function TBO were performed on a desktop com-
puter with an Intel Core i7-3770 CPU with 4 cores rated at 3.40GHz and 16GB

22

Table 1: Single-threaded execution times and program size of an obfuscated bi-
nary linear SVM classifier for an ovarian cancer data set with 4,000 features [25];
n = 2048, log2 p = 25, dlog2 qe = 52, λ ≥ 128, σ = 8/

√
2π.

Mode Key Program size KeyGen Obf. TokenGen Eval
[KB] [KB] [ms] [ms] [ms] [ms]

w/ AES 0.023 31.3 0.40 515 492 0.27
w/o AES 64,032 31.3 1,204 78.3 55.9 0.27

Table 2: Execution times and program size for conjunction obfuscation; λ ≥ 80.
L # n dlog2 qe log2 t Program size Obf. TokenGen Eval EvalTotal

[bits] threads [GB] [min] [ms] [ms] [ms]
Token-Based Obfuscation

32 1 4096 180 20 11.6 23.5 1.3 75.8 77.1
32 14 4096 180 20 11.6 5.1 0.6 11.0 11.6
64 28 8192 360 20 300 52.5 4.0 269.9 273.9

Optimized Distributional VBB Obfuscation [27]
32 14 4096 180 15 36.8 12.4 – – 53.0

of memory, which had Linux CentOS 7 and g++ (GCC) 7.3.1 installed. The ex-
periments for conjunction and branching program obfuscation were performed
using a server computing node with 2 sockets of Intel(R) Xeon(R) CPU E5-
2680 v4 @ 2.40GHz, each with 14 cores. 500GB of RAM was accessible for the
experiments. The node had Fedora 26 OS and g++ (GCC) 7.1.1 installed.

7.3 TBO of Linear Functions

To demonstrate an application of TBO for linear functions, we present perfor-
mance results for a high-resolution ovarian cancer data set from the FDA-NCI
Clinical Proteomics Program Databank11. The data set was generated using a
WCX2 protein array, and includes 95 controls and 121 subjects with ovarian
cancer. The number of features used in classification is 4,000. An extensive de-
scription of this data set can be found in [25].

Table 1 shows the execution times and storage requirements for two different
modes of linear function TBO: (1) when secret keys are generated on the fly using
a counter mode of AES and (2) when secret keys are pre-generated using uniform
random distribution. The first mode requires minimal space for secret keys, and
is beneficial when the linear dimension N is large. However, it minimizes the
storage at the expense of higher token generation runtime. The second mode
has fast token generation runtime and is a better option when N is relatively
small (less than 1,000).

The results in Table 1 suggest that linear function TBO performs well even
for a relatively high number of features. The total evaluation time, which is a

11 http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

23

Table 3: Execution times and program size for TBO of the branching program
checking whether two 24-bit strings (one of them is obfuscated) have a Hamming
distance less than T ; # threads = 28, n = 4096, dlog2 qe = 180, log2 t = 20,
λ ≥ 80.

T d Program size Obf. TokenGen Eval
[GB] [min] [ms] [ms]

1 3 76.6 26.9 0.6 55.0
2 4 136 44.8 0.6 66.6
3 5 213 72.6 0.9 133

sum of TokenGen and Eval, is under 1 second in both modes. The obfusca-
tion runtime and program size are also small. The accuracy of the classification
results is almost as high as for the linear SVM classification in the clear. To
confirm this, we trained the linear SVM model using the data for all 216 sub-
jects and then ran obfuscated classification, yielding no false positives and no
false negatives. The scheme is based on exact integer arithmetic and uses ap-
proximations only during the encoding of real numbers into integers by standard
fixed-precision techniques. The number of decimal digits can be chosen as high
as needed without dramatically affecting the performance.

The above results imply that the obfuscation of linear SVMs is already prac-
tical, as long as the number of queries (and possibly the format of query inputs)
is adequately restricted by the token generator based on the statistical properties
of the classifiers being obfuscated.

7.4 TBO of Conjunctions

Table 2 presents the peformance results for the TBO of 32-bit and 64-bit con-
junctions, along with the results for an optimized implementation of the distri-
butional VBB obfuscation [19,27] of 32-bit conjunctions for comparison.

The TBO of 32-bit conjunctions is close to being practical, with a total
evaluation runtime of 11.6 milliseconds, obfuscation runtime of 5.1 minutes, and
program size of 11.6 GB for a setting with more than 80 bits of security. As
compared to the distributional VBB results presented in [27] for the same lattice
parameters, the evaluation is 10.1x faster, obfuscation is 7.4x faster, and program
size is 3.3x smaller. As TBO provides a mechanism for bounding the number
of queries, this construction is also more secure. For a more complete picture,
we also ran experiments for the optimized distributional VBB implementation
(using the same RNS and low-level optimizations as in our TBO implementation)
to provide a fair comparison of the runtimes for the TBO and distributional VBB
security models. The experimental speed-ups due to the use of the TBO model
are 4.6x for evaluation time and 2.4x for obfuscation time, which are somewhat
higher than predicted by our high-level complexity analysis in Section 4.

We also examined the effect of OpenMP loop parallelization optimizations
by comparing the results for single- and multi-threaded scenarios (Table 2).

24

Here, we chose 14 (matching the number of cores per socket) as the number of
threads as the main parallelization dimension in both evaluation and obfuscation
is m = 11, and increasing the number of threads further than that degrades the
performance due to multi-threading overhead. The speed-ups in the evaluation
and obfuscation runtimes are 6.6x and 4.6x, respectively, with the maximum
theoretical limit for this case being 11. This suggests there is room for further
loop parallelization optimizations.

Our 64-bit conjunction obfuscation results are much further from being prac-
tical, mainly due to a large program size requirement. On the other hand, they
are significantly better than prior distributional VBB results for the same lattice
parameters. For instance, the evaluation is 9x faster, obfuscation is 7.7x faster,
and program size is 2.5x smaller.

7.5 TBO of Branching Programs

Table 3 shows the performance results for the TBO of general branching pro-
grams using the Hamming distance problem as an example application. Note that
d = 5 corresponds to the classical Barrington’s theorem permutation branching
program case. Hence these results can be used for benchmarking the TBO of
both permutation and general branching programs of length L = 24 bits.

The results suggest that the program size is the main efficiency limitation of
the TBO for branching programs, which is due to the large size of the GGH15
encoding matrices (in this case, we have 3d2 × 256 of m×m matrices with ring
elements of dimension n). Even for the case of the Hamming distance threshold
of 3 and 24-bit strings, the TBO construction requires 213 GB to store the
obfuscated program. At the same time, the evaluation and obfuscation runtimes
are much closer to being practical.

The best prior results for general branching programs are provided by Halevi
et al. for general read-once branching programs [41]. Although this construc-
tion was subsequently broken using a rank attack in [24], it can be used as a
benchmark for comparison because the construction uses many similar building
blocks (but for the case of matrices rather than rings), such as GGH15 encoding
and Micciancio-Peikert lattice trapdoors. The obfuscation and evaluation times
for a 24-bit program with about 100 states are 67 minutes and 13 seconds, re-
spectively [41]. Our results for a Hamming distance program obfuscation with
more than 500 states on a comparable system are 72.6 minutes and 0.13 sec-
onds, respectively. The total storage requirements appear to be similar, but they
are harder to compare due to implementation differences. In summary, our im-
plementation evaluates more complex branching programs about two orders of
magnitude faster, and is not vulnerable to known attacks.

8 Conclusion

We have presented implementation results for several TBO constructions. Some
of these constructions are practical (binary classifiers based on linear functions)
or close to being practical (conjunctions) while the more advanced (general

25

branching program) constructions still need to be further improved. The impor-
tant benefit of TBO is the ability to support the obfuscation of certain programs,
such as some binary classifiers, that can be learned under the non-interactive
models of VBB or IO. This is solely from the token generator’s ability to limit
the number of queries and restrict allowed inputs.

9 Acknowledgements

We gratefully acknowledge the input and feedback from Vinod Vaikuntanathan
and Shafi Goldwasser. This work was sponsored by the Defense Advanced Re-
search Projects Agency (DARPA) and the Army Research Laboratory (ARL) un-
der Contract Numbers W911NF-15-C-0226 and W911NF-15-C-0233. The views
expressed are those of the authors and do not necessarily reflect the official policy
or position of the Department of Defense or the U.S. Government.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) Public-Key Cryptography – PKC
2015. pp. 733–751. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

2. Al Badawi, A., Polyakov, Y., Aung, K.M.M., Veeravalli, B., Rohloff, K.: Imple-
mentation and performance evaluation of rns variants of the bfv homomorphic
encryption scheme. IEEE Transactions on Emerging Topics in Computing (2019)

3. Albrecht, M., Scott, S., Player, R.: On the concrete hardness of learning with errors.
Journal of Mathematical Cryptology 9(3), 169–203 (10 2015)

4. Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryptographic
program obfuscation. Cryptology ePrint Archive, Report 2014/779 (2014)

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Advances
in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. pp. 595–
618 (2009). https://doi.org/10.1007/978-3-642-03356-8 35, https://doi.org/10.
1007/978-3-642-03356-8_35

6. Bahler, L., Di Crescenzo, G., Polyakov, Y., Rohloff, K., Cousins, D.B.: Practical
implementation of lattice-based program obfuscators for point functions. In: HPCS
2017. pp. 761–768 (2017)

7. Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full rns variant of fv like some-
what homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) Selected
Areas in Cryptography – SAC 2016. pp. 423–442 (2017)

8. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
EUROCRYPT 2012. pp. 719–737 (2012)

9. Barak, B.: Hopes, fears, and software obfuscation. Commun. ACM 59(3), 88–96
(Feb 2016)

10. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1–6:48 (May
2012)

26

11. Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New techniques for obfuscating con-
junctions. In: EUROCRYPT (3). Lecture Notes in Computer Science, vol. 11478,
pp. 636–666. Springer (2019)

12. Bellare, M., Stepanovs, I.: Point-function obfuscation: A framework and generic
constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. pp. 565–594 (2016)

13. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
ASIACRYPT 2015. pp. 470–491 (2015)

14. Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi, K.: A simple
obfuscation scheme for pattern-matching with wildcards. In: CRYPTO (3). Lecture
Notes in Computer Science, vol. 10993, pp. 731–752. Springer (2018)

15. Bitansky, N., Canetti, R., Cohn, H., Goldwasser, S., Kalai, Y.T., Paneth, O., Rosen,
A.: The impossibility of obfuscation with auxiliary input or a universal simulator.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. pp. 71–89 (2014)

16. Bitansky, N., Canetti, R., Goldwasser, S., Halevi, S., Kalai, Y.T., Rothblum, G.N.:
Program obfuscation with leaky hardware. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. pp. 722–739 (2011)

17. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic prfs
and their applications. In: CRYPTO 2013. pp. 410–428 (2013)

18. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: Innovations in Theoretical Computer Science
2012. pp. 309–325 (2012)

19. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring lwe. In: Proceedings of the 2016 ACM Conference on Innova-
tions in Theoretical Computer Science. pp. 147–156. ITCS ’16 (2016)

20. Canetti, R., Chen, Y.: Constraint-hiding constrained prfs for nc1 from lwe. Cryptol-
ogy ePrint Archive, Report 2017/143 (2017), https://eprint.iacr.org/2017/143

21. Carmer, B., Malozemoff, A.J., Raykova, M.: 5gen-c: Multi-input functional en-
cryption and program obfuscation for arithmetic circuits. In: ACM CCS’17. pp.
747–764 (2017)

22. Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Hoffstein, J., Lauter,
K., Lokam, S., Moody, D., Morrison, T., Sahai, A., Vaikuntanathan, V.: Security
of homomorphic encryption. Tech. rep., HomomorphicEncryption.org, Redmond
WA (July 2017)

23. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017. pp. 278–307
(2017)

24. Chen, Y., Vaikuntanathan, V., Wee, H.: Ggh15 beyond permutation branching
programs: Proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. pp. 577–607 (2018)

25. Conrads, T.P., Fusaro, V.A., Ross, S., Johann, D., Rajapakse, V., Hitt, B.A.,
Steinberg, S.M., Kohn, E.C., Fishman, D.A., Whitely, G., et al.: High-resolution
serum proteomic features for ovarian cancer detection. Endocrine-related cancer
11(2), 163–178 (2004)

26. Coron, J.S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistin-
guishability obfuscation over clt13. In: Fehr, S. (ed.) PKC 2017. pp. 41–58 (2017)

27. Cousins, D.B., Crescenzo, G.D., Gür, K.D., King, K., Polyakov, Y., Rohloff, K.,
Ryan, G.W., Savas, E.: Implementing conjunction obfuscation under entropic ring
lwe. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 354–371 (2018)

28. Crescenzo, G.D., Bahler, L., Coan, B.A., Polyakov, Y., Rohloff, K., Cousins, D.B.:
Practical implementations of program obfuscators for point functions. In: HPCS
2016. pp. 460–467 (2016)

27

29. Cristianini, N., Shawe-Taylor, J., et al.: An introduction to support vector machines
and other kernel-based learning methods. Cambridge university press (2000)

30. Davidson, A., Katsumata, S., Nishimaki, R., Yamada, S.: Constrained prfs for
bit-fixing (and more) from owfs with adaptive security and constant collusion re-
sistance. Cryptology ePrint Archive, Report 2018/982 (2018), https://eprint.

iacr.org/2018/982

31. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. pp. 241–268 (2016)

32. Genise, N., Micciancio, D.: Faster gaussian sampling for trapdoor lattices with
arbitrary modulus. In: EUROCRYPT 2018. pp. 174–203 (2018)

33. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit:
Subgaussian sampling and more. In: Advances in Cryptology – EUROCRYPT
2019. pp. 655–684 (2019)

34. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. pp. 498–527 (2015)

35. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. pp. 850–867 (2012)

36. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC ’08. pp. 197–206 (2008)

37. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS’05. pp. 553–562 (Oct 2005)

38. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: STOC ’13. pp. 555–564
(2013)

39. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) Theory of Cryptography.
pp. 308–326. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

40. Hada, S.: Zero-knowledge and code obfuscation. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. pp. 443–457 (2000)

41. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing bp-
obfuscation using graph-induced encoding. In: ACM CCS ’17. pp. 783–798 (2017)

42. Halevi, S., Polyakov, Y., Shoup, V.: An improved rns variant of the bfv homomor-
phic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. pp. 83–105 (2019)

43. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Science & Business Media (2009)

44. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
Security and Cryptography for Networks. pp. 544–562 (2018)

45. Kubat, M.: An Introduction to Machine Learning. Springer Publishing Company,
Incorporated, 1st edn. (2015)

46. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptography 75(3), 565–599 (2015)

47. Lewi, K., Malozemoff, A.J., Apon, D., Carmer, B., Foltzer, A., Wagner, D., Archer,
D.W., Boneh, D., Katz, J., Raykova, M.: 5gen: A framework for prototyping ap-
plications using multilinear maps and matrix branching programs. In: ACM CCS
’16. pp. 981–992 (2016)

48. Lin, H.: Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5
prgs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. pp. 599–629 (2017)

28

Table 4: Asymptotic complexity of our construction vs. the LWE construction
based on functional encryption of inner products in [1]; m > (N + n + 1) log q;
computational complexity is expressed as the number of modular integer multi-
plications and additions

Space complexity Computational complexity
Scheme MSK a/MPK t O Obfuscate TokenGen Eval

Ours Nn log q n log q n log q (N + n) log q O(Nn) O(Nn) O(N + n)

[1] Nn log q Nm log q n log q (N + n) log q O(mn+Nm) O(Nn) O(N + n)

49. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.)
PKC 2016. pp. 447–462 (2016)

50. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local prgs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. pp. 630–660 (2017)

51. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. pp. 1–23 (2010)

52. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: EUROCRYPT. vol. 7881, pp. 35–54. Springer (2013)

53. Micciancio, D.: On the hardness of learning with errors with binary secrets. Theory
of Computing 14(1), 1–17 (2018)

54. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Advances in Cryptology–EUROCRYPT 2012, pp. 700–718. Springer (2012)

55. Polyakov, Y., Rohloff, K., Ryan, G.W.: PALISADE lattice cryptography library.
https://git.njit.edu/palisade/PALISADE (Accessed November 2018)

56. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

57. Xiao, Y., Mehrotra, K.G., Mohan, C.K.: Efficient classification of binary data
stream with concept drifting using conjunction rule based boolean classifier. In:
Ali, M., Kwon, Y.S., Lee, C.H., Kim, J., Kim, Y. (eds.) IEA/AIE 2015. pp. 457–
467 (2015)

Appendices

A Comparison of Linear TBO with [1]

Abdalla et al. propose a functional encryption scheme for inner products based
on LWE that reveals nothing else other than the result of the inner product. This
scheme can be inverted to instantiate a QR-TBO for inner products. In this case,
the secret key can be treated as a “token”, and the scheme complexity can be
directly compared to our construction. Table 4 compares the asymptotic com-
plexity of both constructions using the TBO notation. The table suggests that
the size of the master public key and corresponding public-key encryption time
grow quadratically with N , preventing the practical use of scheme [1] for large
N . In contrast, the key requirements and obfuscation times of our construction
are significantly smaller, and grow linearly with N .

29

B Proof of Theorem 1

Proof. The outline of the proof is as follows: first we sketch a transformation
from our scheme to one which follows the definition of TBO given in the pre-
liminaries (Definition 2), including a simulation mode for token generation, then
we prove the distributions of (C, stA,O, {x}, {tkx}) are computationally close in
both games.

General transformation. First, we transform our construction to match
the definition given in the preliminaries. We fold ParamGen and KeyGen into
Setup. Since Eval is implicit, we now assume the scheme is described as a tuple
of PPT algorithms (Setup,Obfuscate,TokenGen).

Simulators. Next, we define the simulator S1(1λ, 1|C|) to sample a uniformly
random S ∈ Zn×Nq , and encode the 0-linear function O∗ ← Obfuscate(S,0).
We assume a’s first entry, a1, is invertible over Zq (the proof works as long
some index i has ai ∈ Z∗q , which is true with high probability). The state sts is
the LWE public vector a and secret S. S2(C(x), x, sts) simulates token keys by
returning

t∗x = Sx− a−11

[
wTx

0

]
mod q

=

(
S− a−11

[
wT

0

])
x mod q = S′x

along with stS = S.

Indistinguishability. Now we argue the distributions

{(C, stateA,O, {x, tx}) : Expreal
tOB,A(1λ)}

and

{(C, stateA,O
∗, {x, t∗x}) : Expideal

tOB,S,A(1λ)}

are computationally indistinguishable. The distribution of (C, stA) is the same in
both games by definition. Next, the distribution of (C, stA,O) is computation-
ally indistinguishable from (C, stA,O

∗) by the pseudorandomness of N -secret
LWE. Indeed, the same is true for (C, stA,O, x) and (C, stA,O

∗, x), where x is
A2’s first token query. Finally, the token queries are computationally indistin-
guishable since both S and S′ are uniformly random matrices conditioned on
bt − atS = pet + wt in the real game, and b∗t − atS′ = pet + wt in the ideal
game. This implies the evaluations tx = Sx and t∗x = S′x are indistinguish-
able to the adversary. Therefore, the views of A2 in the real and ideal games
are computationally indistinguishable, which implies its respective outputs are
computationally indistinguishable. �

30

C Query-Revealing TBO from Constraint-Hiding
Constrained PRF

Here we prove that the existence of a constraint-hiding constrained pseudoran-
dom function (CHCPRF) implies the existence of a query-revealing TBO scheme.
First, we recall the definition of a (one-key) CHCPRF [20,24].

Definition 7. Consider a family of functions {Fλ}, Fλ = {Fk : Dλ → Rλ} is a
set of keyed functions, and a constraint family C = {Cλ} where Cλ = {C : Dλ →
{0, 1}} is a set of circuits. Let

(Gen,Constrain,Eval,Constrain.Eval)

be a tuple of algorithms such that Eval and Constrain.Eval are deterministic,
the PPT Gen(1λ) returns a master secret key msk, and the PPT returns a con-
strained key CKC . Further, Eval(msk, x) = Fmsk(x) and Constrain.Eval(CKC , x) =
FCKC

(x). We say the tuple of efficient algorithms (Gen,Constrain,Eval,Constrain.Eval)
is a CHCPRF for {Fλ} if:

1. For all inputs x ∈ Dλ s.t. C(x) = 1, we have
Pr{Eval(msk, x) = Constrain.Eval(CKC , x)} ≥ 1−neglible(λ) where the
probability is taken over Gen and Constrain’s random coins.

2. There exists a PPT simulator pair (S1,S2) such that for all PPT adversaries
(A1,A2), the outputs of
RealCHCPRF,A(1λ) and IdealCHCPRF,A,S(1λ) are computationally indistin-
guishable (Figure 2).

The simulator S1 takes as input the security parameter and the circuit size, and
outputs a fake constrained key CK∗C as well as a state stS. Next, the simulator
S2 takes as input an x ∈ Dλ, C(x), where C : Dλ → {0, 1} is the circuit
chosen by the adversary, a state stS, and it returns a fake evaluation y and
an updated state st′S. The oracle OP(·, C)[[stS]] takes as input x ∈ Dλ and
runs (y, st′S) ← S2(x,C(x), stS). Then, it updates its internal state to st′S and
returns y if C(x) = 1, or it returns a uniformly sampled element in the range,
u← U(Rλ), if C(x) = 0. Further, we assume Constrain.Eval is implicit given
CKC .

Theorem 2. The existence of a one-key CHCPRF scheme for a class of circuits
{Cλ} and an Rλ with |Rλ| = λω(1) implies the existence of a query-revealing
token-based obfuscation scheme for the same class of circuits, {Cλ}.

Proof. Functionality. Given a CHCPRF scheme
(Gen,Constrain,Eval,Constrain.Eval), construct the TBO scheme

(Setup′,Obfuscate′,TokenGen′)

as follows:

31

RealCHCPRF,A(1λ):

msk← Gen(1λ)

(C, stA)← A1(1λ)

CKC ← Constrain(msk,C)

α← A
Eval(msk,·)
2 (C,CKC , stA)

Return α

IdealCHCPRF,A,S(1λ):

(C, stA)← A1(1λ)

(CK∗C , stS)← S1(1λ, 1|C|)

α← A
OP(·,C)[[stS]]
2 (C,CK∗C , stA)

Return α

Fig. 2: The one-key CHCPRF security games.

– Setup′(1λ) returns osk← Gen(1λ).
– Given a secret key, osk, and a circuit, Obfuscate′(osk,C) returns a con-

strained key as the obfuscated circuit O← Contrain(osk,C).
– Next, we define TokenGen′(osk, x) to return the function evaluation as the

token tkx ← Eval(osk, x).
– Finally, we evaluate the obfuscated circuit on x by checking

Constrain.Eval(CKC , x) = tkx

(Fosk(x) = FCKC
(x)).

By the correctness of the CHCPRF scheme, we have O(tkx) = 1 = C(x) with
1−negl(λ) probability whenever C(x) = 1. Further, we have Fosk(x) 6= FCKC

(x)
when C(x) = 0 with high probability since |Rλ| = λω(1) along with the PRF
property12. The rest of the proof follows from the definition of the security games
for qr-TBO and (one-key) CHCPRF.

Real games. First, we show for all adversaries the real games have the same
distribution. Consider a fixed adversary (A1,A2), then the distribution

{(osk,C, stA,CKC , α) : RealCHCPRF,A(1λ)}

is exactly the distribution generated in the real qr-TBO game (Definition 3) with
adversary (A1,A2),

{(osk,C, stA,O, α) : Expreal
tOB,A(1λ)}.

Ideal games. Next, we consider the ideal CHCPRF game and show for all
simulators and adversaries, there exists a simulator pair so the ideal games have
the same distribution (with the adversaries unchanged). Let (S1,S2) be PPT
simulators and (A1,A2) be PPT adversaries again. Let STBO

1 := S1. Then, let
STBO
2 (x,C(x), stS) consist of the following steps:

1. First, it runs S2, (y, st′S)← S2(x,C(x), stS).

12 Here we remark that the PRF property is stronger than what is needed for the proof
to go through. Specifically, a min-entropy argument here would suffice.

32

2. Next, it will return (y, st′S) if C(x) = 1, or it will overwrite y with a uniformly
sampled element in the range, u← U(Rλ), and return (u, stS) if C(x) = 0.

Now, the distribution of {(C, stA,CK∗C , α)} in the ideal-CHCPRF is the same
as the distribution of {(C, stA,O∗, α)} in the ideal game of the qr-TBO game.
(The description of STBO

2 merely accounts for the differing behaviors of the
query/evaluation oracles in the two games.)

Bridging the games. Finally, we let (S1,S2) be the PPT simulators such
that the real and ideal CHCPRF games are computationally indistinguishable.
The equivalences given above show the ideal qr-TBO game with simulators
(STBO

1 ,STBO
2) is computationally indistinguishable from the real qr-TBO game

for any adversary (A1,A2). �

Remark 1. Note, the correctness of the qr-TBO scheme does not need the PRF
property (a security property) when C(x) = 0. Instead, all we need is Eval(osk, x)
6= Constrain.Eval(CKC , x) with high probability whenever C(x) = 0, a much
weaker property than being a PRF. This freedom from the PRF requirement
allows us to base the security of our conjunctions and permutation branching
programs on regular RLWE and not “non-uniform” RLWE (Gaussian A in-
stead of uniformly random as used in [17]). This is given explicitly by Theorems
5.4 and 5.8 in [20]13. Correctness for our schemes based on [20] was confirmed
experimentally.

D Noise Analysis for Token-Based Obfuscation of
Conjunctions

The bound B on the noise introduced by error terms in the GGH15 encoding
(for the case of conjunctions) can be estimated as follows:∥∥∥∥∥A0

L∏
i=1

Di,xi
−
L∏
i=1

si,xi
·AL

∥∥∥∥∥
∞

=∥∥∥∥∥∥
L∑
j=1

j−1∏
i=1

si,xi · ej,xj ·
L∏

k=j+1

Dk,xk
)

∥∥∥∥∥∥
∞

≤

6σL
(
6σs
√
mn
)L−1

.

Here, we used the Central Limit Theorem (subgaussian analysis) and the
following bounds:

‖si,xi‖∞ ≤ 6σ,
∥∥ej,xj

∥∥
∞ ≤ 6σ, ‖Dk,xk

‖∞ ≤ 6σs.

Using the fact that ‖Dk,xk
‖∞ � ‖si,xi‖∞, yields the boundB := 12σ (6σs

√
mn)

L−1
.

13 This is reflected in their proofs which treat the simulators separately via distinct
lemmas (Lemmas 5.5 and 5.9 in [20], respectively), reducing security directly to
GLWE.

33

For the rounding to work correctly, we set q ≥ 2pαB/Pe, where α is the
number of bits used in comparing the PRF values and Pe is the probability of
a rounding error for one polynomial coefficient. We set α = 128 and Pe = 2−20,
i.e., assume that the number of queries is bounded by 220.

E Noise Analysis for Token-Based Obfuscation of
Branching Programs

The bound B on the noise introduced by error terms in the GGH15 encoding
(for the case of branching programs) can be estimated as follows:

∥∥∥∥∥A0

L∏
i=1

Di,xi −
L∏
i=1

γ(M̂i,xi , si,xi) ·AL

∥∥∥∥∥
∞

=∥∥∥∥∥∥
L∑
j=1

j−1∏
i=1

γ(M̂i,xi
, si,xi

) ·Ej,xj
·
L∏

k=j+1

Dk,xk
)

∥∥∥∥∥∥
∞

≤

6σL
(

6σs
√
dmn

)L−1
.

Here, we used the Central Limit Theorem (subgaussian analysis) and the
following bounds:∥∥∥γ(M̂i,xi , si,xi)

∥∥∥
∞
≤ 6σ,

∥∥Ej,xj

∥∥
∞ ≤ 6σ, ‖Dk,xk

‖∞ ≤ 6σs.

Using the fact that ‖Dk,xk
‖∞ �

∥∥∥γ(M̂i,xi
, si,xi

)
∥∥∥
∞

and adding the mul-

tiplicative term J, yields the bound B := 12σd
(

6σs
√
dmn

)L−1
for general

branching programs (for permutation branching programs, the factor d is re-
moved).

For the rounding to work correctly, we set q ≥ 2pαB/Pe, where α is the
number of bits used in comparing the PRF values and Pe is the probability of
a rounding error for one polynomial coefficient. We set α = 128 and Pe = 2−20,
i.e., assume that the number of queries is bounded by 220.

F Trapdoor Algorithms for Matrices of Ring Elements

F.1 Preliminaries

Let K be the corresponding power of two cyclotomic field to the cyclotomic
ring R, K = Q[x]/

〈
x2n + 1

〉
. Here we describe the trapdoor preimage sampling

technique used in our implementation, an instantiation of [54]. These are mainly
the algorithms of [32], but here we replace the algorithm Sample2z in [32], which
samples two-dimensional ring perturbations with covariances in K2×2, with a

34

more generic algorithm for a larger dimension. We remark that the proof of
correctness regarding the statistical properties of the sample is the same as [32,
Section 4]. This broadens the efficient trapdoor sampling methods of [32] to
GLWE/MLWE.

G-Lattice Sampling We will be sampling discrete Gaussians over lattices and
lattice cosets, whose width is larger than the smoothing parameter (defined be-
low). Informally, the smoothing parameter of a lattice is the smallest width for
which a discrete Gaussian over the lattice behaves like a continuous Gaussian.
Efficiently sampling discrete Gaussians over lattices above the smoothing pa-
rameter was first rigorously analyzed by Gentry et al. [36].

Definition 8. For an ε > 0 and a lattice L, the ε-smoothing parameter is the
smallest s > 0 such that ρ(s · L∗) ≤ 1 + ε.

Let κ = dlogt qe, and let G = Il ⊗ gT ∈ Rql×lκ be the “power-of-t” G-matrix, a
block diagonal matrix with gT = (1, t, · · · , tκ−1) as the non-zero blocks. Then,
the G-lattice is Λ⊥q (G) = {x ∈ Rκ : Gx = 0 ∈ Rql}. For any u ∈ Rql, we have

the coset Λ⊥u (G) = {x ∈ Rlκ : Gx = u ∈ Rql}. We will need the following,
G-lattice sampling lemma.

Lemma 1. ([32, 54]) For any σ > (t + 1)ω(
√

log nl), there is a probabilistic
O(κ)-time algorithm whose output is distributed statistically close to DΛ⊥u (G),σ.

F.2 Main Procedures

Here we describe the trapdoor generation and discrete Gaussian sampling pro-
cedures. The latter contains a new algorithm for sampling perturbations with
covariances described as d×d matrices over R (compared to only 2×2 matrices
as in [32]).

Our trapdoor construction is identical to the original MP12 construction
[54] for RLWE. Specifically, we are sampling the “computational instantiation”
described in Section 5 of [54].

TrapGen simply takes as input a security parameter λ and performs the
following:

1. Sample a uniformly random matrix Ā← U(Rd×dq).

2. Sample RLWE secrets R ∈ Rd×dκ and RLWE errors E ∈ Rd×dκ, both
having discrete Gaussian entries in R.

3. Return the trapdoor, T := (R,E), and the public matrix A = [A′|G−A′T]
where G is the common “gadget” matrix and A′ = (Ā, I).

We use a standard, t-ary definition of the gadget matrix G = Id⊗gT , where
gT =

{
1, t, . . . , tκ−1

}
. This generalizes to the RNS form in a straightforward

manner, presented in [33] and here in Appendix G.

35

Algorithm 11 Trapdoor generation using MLWE for G lattice; κ = logt q

function TrapGen(1λ)
Ā← Uq ∈ Rd×dq

R := [r1, . . . , rκ]← DRd×d,σ ∈ Rd×dκq

E := [e1, . . . , eκ]← DRd×d,σ ∈ Rd×dκq

A := [Ā, Id,G− (ĀR + E)] ∈ Rd×d(2+κ)q

T := (R,E) ∈ R2d×dκ

return (A,T)

Algorithm 12 Trapdoor Sampling

function GaussSamp(A,T,b, σt, s)
Sample a perturbation p←SamplePert(Σd,T, s, η).
Set a G-lattice coset v← p−Ap ∈ Rqd.
Sample the G-lattice z←SampleG(v).

return p +

[
T

I

]
z.

Perturbation Sampling Here we describe the perturbation algorithm, which
takes as input a structured covariance matrix Σ (described as ring elements/
polynomials), and returns a discrete Gaussian vector over the integers with
the input covariance. The algorithms presented here are the techniques of [32]
adapted to larger matrices over R. They use an FFT-like technique to sample
smaller and smaller structured covariances. Our techniques differ in that we in-
troduce an intermediate algorithm SampleMat for this generalization, which
takes the place of Sample2z in [32].

The main algorithm is Algorithm 13, or SamplePert, which given a trap-
door matrix T over R and a bound s, returns a discrete Gaussian perturbation
(p,q) with covariance

Σ =

[
s2I− η2TTT −η2T
−η2TT (s2 − η2)I

]

where s is greater than the largest singular value of the trapdoor T and η = ηε is
the smoothing parameter of the G-lattice [54]. It calls a subroutine, Algorithm 14
or SampleMat, which given a positive definite matrix Σd ∈ Kd×d, returns a
discrete Gaussian perturbation with covariance Σd. In the case of SamplePert,
Σd = s2I− η2TTT .

SampleMat is a recursive algorithm which calls a function SampleF, Algo-
rithm 15, at its base case. SampleF takes as input a field element f representing
a covariance as well as a field element c and returns a discrete Gaussian sample
with covariance f centered at c. SampleF is identical to [32]. SampleMat,

36

however, breaks its input matrix into

Σd =

[
A B

BT D

]

and follows the Schur-complement sampling method from [32]. The matrices
A,D,B ∈ Kd/2×d/2 for an even dimension d. For an odd dimension, A ∈
Kdd/2e×dd/2e , D ∈ Kbd/2c×bd/2c, and B ∈ Kdd/2e×bd/2c. The last algorithm
called is a one-dimensional discrete Gaussian sampler, SampleZ.

Parameters Here we give the parameters for which these trapdoor algorithms

are correct. Let ε > 0 be some error term and let Cε,N =
√

log(2N(1+1/ε))
π be

our approximation for the smoothing parameter of ZN . The G-lattice Gaussian
width satisfies σt ≥ (t + 1)Cε,dκ [32]. Then, the parameter s in Algorithm 13
must satisfy s2 ≥ σ2

t (s1(T)2+1)+C2
ε,d(2+κ), where s1(T) denotes the trapdoor’s

largest singular value.

Algorithm 13 Perturbation Sampling

function SamplePert(Σd,T, s, η)
for i = 0, · · · , d2κn− 1 do

qi ←SampleZ(s2 − η2)

c := −η2
s2−η2Tq

p←SampleMat(Σd, c)
return (p,q)

Algorithm 14 Perturbation Sampling, Matrix

function SampleMat(Σ, c)
if d = 1 then

return SampleF(Σ, c)

c = (c0, c1) ∈ Kd
q1 ← SampleMat(D, c1).
Σ′ := A−BD−1BT .
q0 ←SampleMat(Σ′, c0 + BD−1(q1 − c1)).
return (q0,q1)

37

Algorithm 15 Perturbation Sampling, Field Element

function SampleF(f, c)
if n = 1 then

return SampleZ(f, c)

Let f(x) = f0(x2) + xf1(x2).
Let c(x) = c0(x2) + xc1(x2).
q1 ← SampleF(f0, c1).
c0 := c0 + f1f

−1
0 (q1 − c1).

q0 ← SampleF(f0 − xf2
1 f
−1
0 , c0).

return (q0, q1)

G Trapdoor Algorithms in CRT

G.1 Trapdoor Generation

The TrapGen procedure is the same as described in Algorithm 1 of [27] but
w.r.t. the CRT gadget vector gTCRT rather than the regular gadget vector gT ={

1, t, t2, . . . , tκ
}

.
The CRT gadget vector gTCRT used in our implementation is described as fol-

lows. For each coprime factor qi, fix the base-t gadget vector as gTi := (1, t, · · · , tκi−1)
where κi = dlogt(qi)e. Let κ =

∑
i κi, q

∗
i = q/qi, and q̂i = (q∗i)−1 mod qi. We

then define the CRT gadget vector gTCRT = (q∗1 q̂1 · gT1 , · · · , q∗l q̂l · gTl) mod q
∈ Z1×κ

q [33].
Note that in the implementation the q∗i q̂i factors are dropped because (q∗i q̂i) ≡

1 mod qi. Hence, no precomputations are needed.

G.2 Trapdoor Sampling

The GaussSamp algorithm is the same as Algorithm 2 in [27] but the SampleG
operation is called independently for each native-integer polynomial in the Double-
CRT representation. The perturbation sampling is not affected by the use of CRT
gadget vectors.

H Non-uniform Ring LWE

Extending the security proof [24, Thm 7.5] of private constrained PRFs to cyclo-
tomic rings assumes the hardness of RLWE (or GLWE) with discrete Gaussian
public samples, a ∈ Rq in the equation a · s + e. We prove the security of this
GLWE variant since its pseudorandomness is, at first glance, not obvious and it
is the main step needed to extend [24] to the GLWE setting. The proof of the
following theorem is adapted from [17], Section 4, with slightly better parame-
ters. We remark that this is only needed for extending the security proof and our
construction for general branching programs use a pseudorandom GLWE matrix
A over Rq (with large entries).

38

The proof outline is straightforward: given (A,ut = stA + et), simply view
the GLWE sample as stA + et = stGG−1(A) + et, and re-randomize the the
secret stG to uniformly random.

Theorem 3. (Discrete Gaussian Matrix GLWE) There is a probabilistic poly-
nomial time reduction from the generalized
(R, d,m, q, χ,U(Rq)) GLWE problem to the (R, d′,m, q, χ,DZm,s) GLWE prob-

lem for any d′ ≥ d logt q, q, m and s ≥
√
t2 + 1ω(

√
log(nd)) for any t ≥ 2.

Proof. (of Theorem 3) We will simply map the uniformly random matrix A ∈
Rqd×m to a discrete Gaussian B ∈ Rqd

′×m, along with mapping a GLWE sample
u with public matrix A to a GLWE sample v defined by B. Further, uniform u
will map to a new uniform vector under our mapping. The proof makes crucial
use of discrete Gaussian G-lattice sampling algorithms, Lemma 1.

We can pad G = Id ⊗ gT with columns of all 0s in Rqd so Lemma 1 easily
extends to an d′ ≥ d logt q.

Given an input (A,u) ∈ Rqd×m ×Rqm, we perform the following steps:

1. For each column ai ∈ Rqd of A = [a1, · · · ,am] ∈ Rqd×m, sample an in-
dependent discrete Gaussian bi ← G−1(ai). Assemble these vectors into a

matrix B = [b1, · · · ,bm] ∈ Rqd
′×m. Notice A = GB.

2. Sample a uniformly random vector r ∼ U(Rqd
′
).

3. Return the tuple (B,vT = uT + rTB) ∈ Rqd
′×m ×Rqm.

Since we are sampling above the smoothing parameter of Λ⊥q (G), a conse-
quence of Claim 3.8 in [56] is the columns of B are i.i.d. vectors distributed as
DRd′ ,s. Next, we see when u is uniformly random over Rqm vT is as well. On

the other hand, we have uT + rTB = eT + sTA + rTB = eT + (sTG + rT)B
when u is a (R, d,m, q, χ)LWE sample.

Remark 2. Since the base t can be chosen as a large parameter, the dimension-
increase from RLWE to non-uniform GLWE can be small in-practice. Therefore,
an increase in the dimension and the Gaussian width of the secrets in Section 5
leads to a TBO scheme for general branching programs provably secure from
RLWE using the reductions in [24] along with Theorem 3.

39

