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Abstract. We propose a security model for authenticated key establish-
ment in the quantum setting. Our model is the first for authenticated
key establishment that allows for quantum superpositions of queries. The
model builds on the classical Canetti-Krawczyk model but allows quan-
tum interactions between the adversary and quantum oracles that emu-
late classical parties. We demonstrate that this new security definition is
satisfiable by giving a generic construction from simpler cryptographic
primitives and a specific protocol which is secure in the quantum random
oracle model, under the supersingular isogeny decisional Diffie-Hellman
assumption (SIDH).

1 Introduction

Key establishment is a fundamental cryptographic primitive which allows parties
communicating over an insecure but authenticated channel (that is, a channel
whose messages can be eavesdropped on, but whose origin and authenticity are
guaranteed) to establish a secure common cryptographic key, and hence establish
a secure communication channel. Of course, modern Internet communications
are not inherently authenticated, and so more sophisticated authenticated key
establishment protocols are required to establish secure keys in this regime; in
particular, ubiquitous Internet communication protocol suites such as SSL/TLS
and IPsec include a wide array of authenticated key establishment protocols.
Though public-key key establishment protocols date back at least to the
Diffie-Hellman protocol [9], the first formal security analysis of authenticated
key establishment was due to Bellare and Rogaway [4]; since this seminal work,
many extensions and modifications have been made to the Bellare-Rogaway se-
curity model in the classical setting [3,7,16], and some work has been done to
model quantum protocols in a similar regime [18]. Despite the breadth of work
that has been done on modelling the security of authenticated key establishment



protocols, there has been little explicit consideration of quantum-safe security
of authenticated key establishment protocols, beyond using quantum- safe com-
putational assumptions. In particular—and in stark contrast with the situation
of encryption [1,6,11] and signature schemes [6]—to the best of our knowledge
no security model for authenticated key establishment has been proposed which
allow for quantum interactions between the adversary and key-establishing par-
ties. The first major result of this work is to establish a formal framework for
truly quantum-safe security of authenticated key establishment protocols. It is
important that we understand how to analyze the security of our protocols in
the quantum setting to face the looming threat of quantum computers.

Of course, ideally we would like to have a protocol for authenticated key es-
tablishment which is secure in our quantum-safe model. To this end, we develop a
generic construction which combines the simpler primitives of key establishment
and digital signatures to obtain a secure authenticated key establishment proto-
col. We then apply our generic construction to isogeny-based key establishment
and signatures to obtain a truly quantum-safe authenticated key establishment
protocol, which can in principle be used to create secure classical channels, even
when faced with an adversary with significant quantum capabilities.

To reiterate, in this work we:

1. Give a novel quantum-safe security model and definition for authenticated
key establishment;

2. Give a generic construction for secure protocols in this model, and;

3. Apply our generic construction to build an isogeny-based authenticated key
establishment protocol.

Related work. There are a number of quantum-safe authenticated key es-
tablishment protocols based on standard security assumptions. In the realm of
isogenies, [27] uses a standard signature-based construction to add authentica-
tion to the isogeny-based protocol due to Jao et al. Our protocol is reminiscent
of this one, but uses a different signature scheme with security amplifications to
achieve a much stronger security property than is shown in [27]. There is also a
code-based construction [2] which uses a key encapsulation mechanism authen-
ticated by a signature scheme. Again, this method is not known to achieve the
strong security properties achieved by the protocol in this work. Arguably the
most novel and satisfying previously-known solution, presented in [30], is based
on the Ring Learning with Errors (Ring-LWE) problem in ideal lattices. This
protocol does not follow the framework of the previous two protocols; parties
do not encrypt or sign the messages of an unauthenticated key establishment
protocol to produce an authenticated variant. The protocol has many desirable
properties (in particular, because it does not use signatures its security is based
solely on the hardness of the Ring-LWE problem; it has perfect forward secrecy,
and it can be formulated as a one-pass scheme) and is extremely efficient; how-
ever, this protocol is not known to be quantum-safe in the sense we propose.



Structure of this work. In Sections 2 and 3 we detail the necessary crypto-
graphic and algebrogeometric preliminaries for our security model, construction,
and final protocol. Section 4 lists the constructions from previous works that we
use to construct our protocol. Section 5 contains an explanation of the security
model and Section 6 contains our generic construction using signature schemes.
Section 7 contains an explanation of our specific scheme. Finally, we conclude
and consider future avenues of study in Section 8.

2 Aspects of Post-Quantum Cryptography

2.1 Quantum Oracles and Post-Quantum Security Definitions

In classical cryptography, often an adversary is provided oracle access to a func-
tion. For instance, in the well-known EUF-CMA security definition for signature
schemes, the adversary is given oracle access to the signing function Signg; that
is, the adversary is given a “black box” which takes in messages m and outputs
a signature o = Signg (m). In the quantum-safe setting, the adversary may in-
stead be provided with a guantum oracle for a function. If f: {0,1}"™ — {0,1}"
is a function, then a quantum oracle Uy for f acts on basis states as

Ur: o) ly) = [2) [y @ f(2)) .

In the EUF-qCMA security definition for signature schemes [6], the adversary
is given quantum oracle access to the signing function:

Definition 1 (Strong EUF-qCMA Security).

A signature scheme (Sign, Ver) is strongly existentially unforgeable against
a quantum adaptive chosen message attack (strongly EUF-qCMA secure) if the
advantage that any polynomial-time adversary has at winning the following game
1s negligible:

1. The challenger C runs the key generation algorithm on input 1* to obtain
the key pair (sk, pk), and publishes pk.

2. Fori=1,2,...,t:
a) The adversary A sends |v;) =3, .y |m)|y) to C.
b) C returns Usign,, [%i) = -, , Qm,y M) [y + Signg(m))

3. A produces (m7,07),(m3,03),...,(mf 1, 001). A wins the game if the pairs
(m},of) are distinct and Verp(m!,of) =1 for 1 <i<t+1.

Quantum oracle access to encryption functions (for cryptosystems) and sign-
ing functions (for signature schemes) are standard in the study of quantum
cryptanalysis (see, for instance, [6,11,14]). In Section 5 we present a security
model for authenticated key establishment that allows the analogous interaction
with key establishing parties.



2.2 The Quantum Random Oracle Model

In the quantum setting, any actual implementation of a protocol with a random
oracle will use a concrete hash function. Hence the most natural approach to
security analysis is to allow quantum calls to any random oracle, a construction
known as the quantum random oracle model (QRO). It is easy to see how this
capability might cause trouble in security proofs—it is not clear how an entity
can generate new random values for queries to new inputs while at the same time
maintaining consistency with previously-returned hash values (this, of course,
is not a problem in the classical setting, where the entity can simply keep a
table of values of all previously-requested hash values; this is infeasible in the
quantum setting because the entity would have to keep a table which contains
hash values for all classical input values, since the adversary could query the
random oracle on a superposition of all those values). For this reason, standard
proof techniques in the classical random oracle model do not necessarily translate
well to the quantum setting. Some progress has been made in developing proof
techniques and constructions that work in the quantum random oracle model
(see, for instance, [24,29]). In Section 7 we employ a construction due to Eaton
and Song [10, Theorem 4] which can be used to obtain a signature scheme which
is secure in the quantum random oracle model from a signature scheme which
is secure in the classical random oracle model against an adversary who can run
quantum computations.

Essentially all security models for quantum-safe cryptography can be framed
independently of the quantum random oracle model, and so we end up with
different “versions” of security definitions which differ only in whether random
oracles are quantumly-accessible. If a definition allows for random oracles but
does not allow them to be accessed quantumly, we may append -RO to the name
(e.g., EUF-qCMA-RO), while if a definition allows for random oracles and allows
them to be accessed quantumly then we append -QRO (e.g., EUF-qCMA-QRO).
We may append no suffix if it is clear from context which is meant.

3 Mathematical Background

3.1 Elliptic Curves, Isogenies, and the j-Invariant

Definition 2 (Elliptic Curve [20, Section IIL.3]). An elliptic curve F is
a nonsingular curve (i.e., a projective variety of dimension one) of genus one,
with a distinguished point O, called the point at infinity.

We say that an elliptic curve E is defined over a field K if it is defined over K
as an algebraic set and O has coordinates in K.

It can be shown ([20, Section IIL.1]) that an elliptic curve defined over a field
K with char K # 2,3 can be written as

E={(z,y) € A*(K) : y* = 2% +ax + b} U{O}



We can introduce a group structure on an elliptic curve E in a natural way [20,
Section II1.2, Proposition 2.2], and this group structure allows us to define a class
of functions, called isogenies, which preserve some of this algebraic structure, as
well as the geometric structure of the curves.

Definition 3 (Isogeny [20, Section I11.4]). Let E and E’ be elliptic curves
defined over a field K. An isogeny from E to E’ is an algebraic morphism ¢: E —
E' such that $(Og) = Op:.

We say that an isogeny ¢: E — E’ is defined over a field K if it is defined over
K as a rational map. The degree of an isogeny is its degree when considered as
a rational map. If ¢ is a separable isogeny, then deg ¢ = |ker ¢| [8, Section 2].

For elliptic curves F and E’, we say that E’ is isogenous to E over K if and
only if there is an isogeny ¢ from E to E’ defined over K such that ¢(F) # {Og }.
It can be shown (q.v. [20, Section III.6, Theorem 6.1]) that E’ is isogenous to
E over K if and only if E is isogenous to E’ over K; that is, the property of
“being isogenous” is an equivalence relation, and we define the isogeny class of
a curve E defined over K to be the set of all curves E” which are isogenous to E,
up to K-isomorphism as algebraic sets. Since any algebraic morphism of curves
is either constant or surjective [12, Chapter II, Section 6, Proposition 6.8], if
¢: E — FE' is a nontrivial isogeny, then ¢(F) = E'.

A theorem of Tate [23, Section 3, Theorem 1] says that if £ and E’ are
defined over a finite field K = GF(q), then E and E’ are isogenous over K if
and only if |E(K')| = |E'(K')| for every finite extension K’ of K.

Let E be defined over a field of characteristic p > 0, and for each £ € Z, let
E[{] denote the set of ¢-torsion points of E. If p t £, the map

[4]: E—FE
[(]: P— (P

is separable and has degree £2; hence, since E[{] = ker [{] is a finite Abelian group,
it must be that E[¢] = Z/{Z & Z/{Z, since any other 2-generated Abelian group
of order ¢2 has elements of order strictly greater than ¢, by the Fundamental
Theorem of Finitely Generated Abelian Groups [19, Chapter 10, Theorem 10.20].
Additionally, either E[p"] = {O} for all r € Z, or E[p"| X Z/p"Z for all r € Z
[20, Chapter V, Section 3, Theorem 3.1]; in the first case we say that F is
supersingular, while in the second case we say that F is ordinary. Any two
isogenous elliptic curves are either both ordinary or both supersingular. We will
be concerned only with supersingular elliptic curves for our applications.

Any supersingular elliptic curve E is defined over GF(p?) for some prime p,
and for each prime ¢ # p there are ¢ + 1 isogenies of degree ¢ with domain F
(though not all of them are defined over GF(p?), in general) [8]. These isogenies
of degree ¢ are in one-to-one correspondence with the subgroups @ of E of order
£; moreover, each such subgroup is the kernel of a unique isogeny ¢, and we write
®(E) = E/® |20, Chapter III, Section 4, Proposition 4.12]. Hence to specify an
isogeny it suffices to specify its kernel, and conversely given a subgroup @ of F
we can construct the isogeny ¢ whose kernel is @, using Vélu’s formulae [26]. In



particular, if @ is generated by a point R € E(GF(p?)), then we have a compact
representation of ¢, and we can compute ¢ efficiently from R [8]. We will use
such isogenies in an authenticated key establishment protocol in Section 7.

Associated to every elliptic curve E defined over K is a field j(E) € K, called
the j-invariant of the curve. As the name suggests, the j-invariant is invariant
under K-isomorphisms of algebraic sets, and so a j-invariant uniquely identifies
a K-isomorphism class of elliptic curves over K. Given an elliptic curve E, its j-
invariant can be found in polynomial-time; moreover, given a j-invariant j* € K,
one can find in polynomial time the curve F with j(E) = 5*. Knowing this, we
have a compact description of an elliptic curve for the purposes of communication
during a key establishment protocol.

3.2 Supersingular Elliptic Curve Isogeny-based Cryptography

In the following definition, let p = £5*¢5F f =1 be a prime, where ¢4 and {p are
distinct small primes, and f is a small cofactor used to ensure that p is prime—
we will not quantify what is meant by “small.” As well, let E be a supersingular
elliptic curve defined over K = GF(p?) with E(GF(p?)) =2 Z/(pF1)Z®Z/(p F
1)Z, and let {P4,Qp} and {Pp, @} be bases for E[¢%*] and E[¢{7], respectively.

Definition 4 (Supersingular Isogeny Decisional Diffie-Hellman Prob-
lem (SIDH)). Let ¢pa: E — E4 be an isogeny with kernel (maPa + naQa)
where ma,na are chosen uniformly at random from Z/{*Z, not both divisi-
ble by €a. Let ¢p: E — Ep be an isogeny with kernel (mpPp + npQp) where
mp,np are chosen uniformly at random from Z /{5 7, not both divisible by {p.
Given a tuple (E,Ea, Ep,¢4(PB),$a(QB), #5(Pa), 98(Qa), Ec) where either
Ec =Esp =E/(maPa+naQa, mpPs+npQp) or Ec is sampled uniformly at
random from the set of all curves of the form E/(xaPas+yaQa,xpPp+ypQp)
where x o, ya and xp,yp are chosen with the same conditions as ma,na and
mp,np, each with probability %, the supersingular isogeny decisional Diffie-
Hellman problem (SIDH) is to determine which is the case.

The corresponding security assumption is that arbitrary instances of SIDH
cannot be solved in polynomial-time on a quantum computer with non-negligible
advantage. Presently the best known quantum algorithm for this problem runs
in fully-exponential time O(/p), [5] while the best known classical attack runs
in time O(y/p) [8, Section 5.2].

In particular, we will use a strong designated verifier signature scheme due to
Sun et al. [22] and a key establishment protocol due to De Feo, Jao, and Plit [8],
both based on supersingular elliptic curve isogenies to make an authenticated
key establishment protocol. We note that it is not necessary to use a strong
designated verifier signature scheme for the construction—any sufficiently secure
signature scheme will do. We chose this signature scheme primarily because it is
conceptually simple, stateless, and is based on more conventional computational
assumptions than other isogeny-based signature schemes.



4 Tools for Constructing a Secure AKE Protocol

In this section we briefly mention three tools we require to construct our key
establishment protocol: chameleon hash functions, and two generic security-
strengthening transformations for signature schemes.

4.1 Chameleon Hash Functions

Intuitively, chameleon hash functions—introduced by Krawczyk and Rabin [15]—
are a type of hash function which are collision resistant for anybody who does
not know an associated piece of secret information, but for which collisions can
easily be found for any input given that piece of secret information. We will
use them to construct signature schemes which are secure in the quantum ran-
dom oracle model. A precise definition of chameleon hash function is given in
Definition 5.

Definition 5 (Chameleon Hash Function (Adapted from [6, Definition
3.9])).

A chameleon hash function H is a tuple (Gen, H,Inv, Sample) of algorithms
such that:

1. Gen(\) generates a key pair (sk, pk) with security parameter X;

2. Hpk(m, ) maps messages m to some target space Y;

3. Sample(\) samples v such that Hpx(m,r) is distributed computationally in-
distinguishably from uniform over the image of Hpx(m,-) for every pair
(pk,m)°;

4. Invgc(h, m) produces r such that Hpx(m,r) = h (where (sk, pk) is generated
by Gen(X) ), with distribution computationally indistinguishable from that of
Sample(A) conditioned on Hpx(m,r) = h; and,

5. For any pk, Hpk(-,-) is collision resistant.

A chameleon hash function is quantum-safe if it is collision-resistant against
a quantum adversary who can query the function in superposition.

4.2 Generic Security-Strengthening Transformations

We would like to use a signature scheme for authentication in an authenticated
key establishment protocol which is secure in a quantum model where the ad-
versary can make quantum queries to oracles which emulate classical parties,
and to random oracles. For this purpose, clearly a signature scheme which is
EUF-qCMA secure in the quantum random oracle model (EUF-qCMA-QRO)
is required. The strong designated verifier signature scheme that we use in Sec-
tion 7 provides only EUF-CMA-RO security. To get from EUF-CMA-RO to
EUF-qCMA-QRO, we apply two generic transformations:

5 Here and elsewhere, we use - as above to indicate inputs to a function which are not
fixed when others (pk and m, above) are fixed.



1. Eaton & Song [10, Theorem 4]: EUF-CMA-RO — EUF-CMA-QRO;
2. Boneh & Zhandry [6, Constr. 3.12]: EUF-CMA-QRO — EUF-qCMA-QRO.

The resulting protocols are described in detail in Section 7.

5 The Security Model

To model different “levels” of security, security models for authenticated key
establishment do not typically have fixed assumptions on the computational ca-
pabilities of the adversary. In particular, they do not explicitly disallow adver-
saries access to a quantum computer. However, to model the interaction of the
adversary and honest parties, these security models typically follow the lead of
the extended Canetti-Krawczyk model [16] and its predecessors [4,7] and allow
the adversary to interact only classically with the parties; that is, they can only
deliver single, classical messages, rather than quantum superpositions. On the
contrary, in this work we consider the case where the parties are modelled as
quantum oracles (with memory) with which the adversary interacts. As noted
in the introduction, such quantum-aware security models have been previously
introduced in other settings [1,6,11], and the attacks which make particular use
of the quantum nature of the oracles have been studied under the name “super-
position attacks,” “quantum chosen message attacks” (for MAC and signature
schemes), and “quantum chosen ciphertext attacks” (for encryption schemes).

Though the model may seem to give the adversary unreasonable abilities,
it has a number of desirable properties that make it very natural and useful to
study. For instance:

1. It is simple enough that analyzing the security of specific protocols and the
effects of natural quantum attacks is sufficiently easy;

2. It encompasses all common classical and non-interactive quantum attacks on
stateless key establishment protocols, and in that sense is “stronger” than
previously-considered models;

3. Because it explicitly allows for quantum interactions, protocols proved secure
in this model can be used without modification on a quantum computer with-
out worrying about novel attacks. Though in principle this could be solved
by (for instance) requiring all quantum input as part of a classical protocol
be measured to collapse superpositions, this requires particular engineering
of the devices; moreover, our method will work even on untrusted devices
(q.v. “device-independent” quantum cryptography [17,25]), and;

4. Tt allows for security in some unorthodox quantum-safe scenarios which allow
quantum interactions; for instance, if an adversary with quantum computing
capabilities is given an obfuscated classical circuit which emulates a classical
key-establishing party on given sessions, in order to (for example) temporar-
ily delegate key establishment to a server.



5.1 Definitions

Definition 6 (Party). A party P is an interactive classical Turing machine'
with access to a source of random bits.

Associated to each party P is a (possibly empty) private key/public key
pair (sk, pk). For the purposes of the model, it is assumed that each party has a
genuine copy of each other party’s public key, in order to allow for authentication.
Moreover, to each party we associate a unique identifier id. It is assumed that
each party has a genuine copy of each other party’s identifier.

Definition 7 (Protocol). A protocol IT is a specification of subroutines, to be
run by some number of parties, to establish a session key.

A protocol IT is said to be correct if, when II is executed correctly and
all messages are relayed faithfully (i.e., without changes to their content or
ordering), all parties involved compute the same key.

Protocols are message-driven; that is, upon receiving a message, a party
computes the response message and sends it to the intended recipient. The party
does no further computations and sends no more messages until it is activated
again by an incoming message. This assumption sacrifices no generality, since
any computations can be performed before sending out a new message.

Definition 8 (Session). A session is an instance of a protocol at a party.

Associated to each session is a unique session identifier ¥—which we use to
refer to the session—chosen by the session’s owner. If a party P has a session
¥, the parties with whom P believes they are attempting to establish a key are
called peers to P in session ¥, and the peers’ associated sessions (if they exist)
are called matching sessions.

If a party P with identifier id who owns a given session ¥, with matching
session ¥’ and peer P’ with identifier id’ has received messages my1,...,mg_1 in
this session, then we denote by P(¥,¥’, id, id’; pk, pk’,sk;my, ..., mg;7y) the
message that P sends given that the next message it receives in this session is
my, and it uses randomness ry for this session. We abbreviate this expression
as P(my) if the other inputs are clear from context.

Invalid Messages In a key establishment security model, it is typical to model
a mechanism for parties to abort a session in the event that it receives an “in-
valid” message. What exactly constitutes an invalid message is defined by a given
protocol, but typically an invalid message is one which does not make sense in

the context of the protocol or fails to validate under the public key of the party

! Though we will allow quantum access to messaging oracles which emulate parties,
the parties themselves must be defined to be classical, because we intend to model
classical cryptosystems. The quantum-safe security comes from the quantum inter-
actions that we allow for the security experiment.



believed to have sent the message. If we allow the adversary to deliver superposi-
tions of messages, however, it does not make sense to consider such termination
since parties cannot “read off” messages from a superposition and thus cannot
tell whether to terminate the session. Measuring the state would collapse it and
defeat the purpose of considering quantum queries entirely. To handle such cases,
we introduce a fail character L to be used when a session would be terminated.
Define P(¥,¥’, id, id’; pk, pk’, sk;my, ..., my;7¢) =L when my is invalid, and
define all further messages in a session after a response has been 1 to be L. This
formalism allows a session to be in a superposition of terminated and active.

5.2 Party and Adversarial Capabilities

Aside from classical computations, parties can issue a Send(id,m) command,
which requests that the message m be delivered to to the party identified by
id. Parties may store private/public value pairs (k, K) in memory, associated
to sessions. That is, for a key establishment session ¥ a party may construct
an ephemeral secret key sky and corresponding ephemeral public value pky. To
be consistent with other quantum-safe security definitions, randomness is drawn
classically; that is, if a function f(-;r) which depends on randomness r is to be
applied in superposition, the value of r is chosen classically and the map Uy,
is applied.

In order to make protocols meaningfully quantum-resistant, during the secu-
rity experiment the challenger will provide a quantum messaging oracle Op for
each party P, defined inductively as follows. Before Op receives any messages in
session ¥ with matching session ¥’ and peer P’ with identifier id’, we define

Op (W) |m1) y) = |m1) |y & P(¥,¥’,1d, id’; pk, pk’, sk; m1; 7))

for all m; € M, and extend linearly to superpositions. Notice that the session ¥
considered by Op must be given as classical input. Op then keeps the first regis-
ter, and returns the second. It is important that Op hold onto the register, since
otherwise it “forgets” what the adversary has sent it, and then does not know
its stage in the protocol and cannot respond to future messages appropriately.
After receiving k — 1 messages, Op will hold k — 1 registers. When queried
again, we consider its input as the first k41 registers of some global (pure) state

Provided by A

——
1) = amy |ma) - fmi—1) ) Jy) |Hmy)
m,y M LY .
7 Held by Challenger Remaining registers

It acts as Op (#) [ma) - - [mi) [y) = [ma) - - [mx) [y & P(mg))

This model differs from others in that it does not allow for parties to keep
an internal “state” which specifies what has happened previously in a session;
rather, it requires that parties essentially keep a (quantum) transcript of received
messages. For many protocols (in particular, the one we present in Section 7) our
choice makes no difference for security. However, there may be subtle differences



for stateful protocols—in particular, for protocols using hash-based signatures
for authentication. We do not consider such protocols here.

If P does not own a session ¥, then we simply define Op(¥) |m) |y) to be
|m) |y & L). For simplicity, for the purposes of the security experiment, the ad-
versary interacts only with these quantum messaging oracles.

The adversary interacts with the quantum messaging oracles by delivering
(quantum superpositions of) messages to them. The adversary may also issue
the following “information-leakage” commands:

1. RevealEphemeralKey(id,¥): If the identified party owns a session ¥, the
challenger reveals any ephemeral secret key associated to ¥.

2. RevealPrivateKey(id): The identified party reveals their private key.

3. Corrupt(id): The party identified by id reveals all classical information is
knows to the adversary, turns over all its quantum memory to the adversary,
and becomes adversarially-controlled.

As well, the adversary may issue a RevealSessionKey(id,¥) query, defined as
follows: if Ky := K(¥,¥’,id,id’; pk, pk’,sk;my, ..., my;7y) is the key that the
party identified by id would compute in session ¥ with peer identifier id’ and
matching session ¥, and it has so far received messages my, ..., my, then if the
global state is

Provided by A

=
1) = amy [ma)--- |mi) lv) lbmy)
m,y M LY .
’ Held by Challenger Remaining registers

the result of this query is defined by
[ma) -« [mi) [y) = [ma) - [m) [y & Ko) .

As a result of this query Op returns the first k& + 1 registers of the global
state (that is, the target register and the message registers it held).

In particular, if the adversary chooses not to entangle the registers of different
pairs of sessions, then for each session ¥ whose session key the adversary reveals,
the adversary will have the state

Z ey (1) - M) [y © Kw)

mi,...,mMg3yY

and the registers corresponding to different revealed sessions will be disentangled
from one another. This is precisely analogous to qCPA security of encryption
schemes and qCMA security of signatures schemes, where the adversary receives

> Gy [m) |y ® Encac(m; ), or ) amy |m) |y @ Signg,(m;r)) .

m,y m,y



5.3 The Security Experiment

A session ¥ owned by party P with peer P’ and partner session ¥’ is “clean” if:

1. At session completion, neither P nor P’ was adversarially-controlled;

2. At session completion, A had issued neither RequestPrivateKey(id) nor
RequestPrivateKey(id');

3. A has not revealed the ephemeral secret key for ¥ or ¥’ and;

4. A has not revealed the session key for ¥ or ¥’.

For the security experiment, the adversary issues a Test(id,¥) query on a
clean session ¥ owned by the party with identifier id, defined as follows: the
adversary provides a target register |y), and the challenger selects b € {0,1}
uniformly at random. If b = 1, Test(id, ¥) acts like a RevealSessionKey query;
if b = 0, the result is defined by

[ma) -« [mi) [y) = [ma) - - m) [y ® R(ma, ... my))
where R(my, ma, ..., my) is a random string in K subject to
R(my,mo,...,my) =L < KW,V id,id’;pk,pk’,sk;m;ry) =1 .

In any case, all £+ 1 of these registers are returned. We call a key establishment
protocol IT secure if the probability that a polynomial-time adversary A can

correctly guess the value of b is at most negligibly greater than %

6 A Construction for Secure Protocols

In this section we present a construction for secure authenticated key estab-
lishment protocols from an unauthenticated key establishment protocol and an
EUF-qCMA signature scheme. This is analogous to the well-known result of Bel-
lare, Canetti, and Krawczyk [3, Proposition 4], which states that an EUF-CMA
signature scheme can be used as an authentication method for an unauthenti-
cated key establishment protocol.

Theorem 1. Let & = (Gen, Sign, Ver) be a strongly EUF-qCMA secure signa-
ture scheme, and let II be a two-round, two-party key establishment protocol.
Consider the protocol IT' with the following properties:

1. Each party P, has a key pair (skg,pk) for S and, moreover, each party
knows each other party’s public key.

2. Whenever an initiating party Py would send a message m, it instead con-
structs the message my) = (m,idy, idg, W(I)) (where idg is the peer’s ses-
sion identifier and 1) is P} ’s session identifier) and sends (myu),opm ),
where oy = Signg,, (m, idy, idg, wW)



3. Whenever a party Py, would respond to a message (m, ¥ o) from an ini-
tiating party P; with a message m’, it computes

b = Verka (mw(z) , JW(I)) = Verpkl((m, id[, idR, W(I)), O’).

If b =0, Py responds with (L, L, L); otherwise, Py constructs the message
mym = (m',idy, idg, D 0B and sends (myr), ogr)), where oy =
Signg, . (my ) = Signg, (m/,idy, idg, v ()

4. If a party Py, would compute a session key for a session W) with partner
Py and partner session W9, it checks whether the signature in the message
it recetved was valid; if not it outputs session key L. If the signature is valid,
it outputs the session key as usual.

Then:

1. If II is correct, then II' is correct; and,
2. IfII is secure against adversaries A which are required to deliver all messages
faithfully, then IT' is secure.

Proof Idea. The idea of the proof is intuitive, though the proof itself is involved;
the proof appears in appendix A.

At its core, the proof resembles analogous classical results (for instance, [3,
Proposition 4]), which use the security of the signature scheme to argue that the
adversary cannot deliver any message m in session ¥ to a party P with identifier
id which:

1. Is unsent (i.e., no party issued Send(id,m) in a session matching ¥),
2. Does not come from a corrupted party, and
3. Is valid (i.e., the messages pass P’s authentication check)

The complication that arises in our setting is that messages can be delivered
in superposition, and so may “simultaneously” be valid and invalid, in the sense
that some parts of the superposition may be valid while other are not. To ad-
dress this, we demonstrate that under the security assumptions of the theorem,
no adversary can construct a superposition |I') = >2 , aum.o [p)[m, o) of
messages which:

1. Is unsent,

2. Does not come from a corrupted party, and

3. Has nonnegligible valid content (i.e., >, (m,0) | m.o|? is nonnegligible,
where the sum is taken over valid pairs (m,o).)

From this, we show that in the test session, either

1. The adversary does not interfere with the test session, and so cannot win the
security game by virtue of the security of the underlying key establishment
protocol, or

2. The adversary interferes with the test session, and by doing so ensures that
the valid content of the output of the test query is negligible.



In the second scenario, the adversary cannot distinguish the output of either
the b = 0 or b = 1 case from being given a state where all key registers are
1 except with negligible probability, and hence in particular cannot distinguish
b =0 from b = 1; this means that IT’ is secure.

Figure 2 in Appendix A.2 illustrates a pair of matching sessions of a generic
protocol IT" constructed according to Theorem 1.

7 A Protocol using Supersingular Elliptic Curve Isogenies

Here we apply the generic construction from Section 6 to construct a secure
authenticated key establishment protocol based on the Supersingular Isogeny
Decisional Diffie-Hellman assumption (SIDH). The underling key establishment
protocol is De Feo, Jao, and Plit’s scheme [8], with authentication provided by
a signature scheme constructed by applying Eaton and Song’s [10] and Boneh
and Zhandry’s [6] transformations to Sun ef. al’s [22] strong designated verifier
signature scheme, reminiscent of Soukharev, Jao, and Seshadri’s work in [21].
For readability we use the “vanilla” protocol from [8] without consideration
for optimizations (e.g. [28]); such optimizations can be adapted for the protocol
our protocol in a straightforward fashion without affecting the proof of security.

7.1 Owur Authenticated Key Establishment Protocol
First we list the required global parameters. Authentication requires

. pa =LY fa+1, aprime, for primes £g and £y and small cofactor fa;
. Ea, a supersingular elliptic curve defined over K4 = GF(p?);

. {Ps,Qs} and {Py, Qv }, bases for E4[(E°] and E4[(7)], respectively;
H= (Gen(Hc), H,.,Inv,Sample), a quantum-safe chameleon hash; and,

. 01,04, 03, random oracles (in practice, hash functions).

CUA W N

For key establishment we require

1. pg =705 frx £ 1, a prime, for primes ¢; and ¢ and small cofactor fx;
2. Ex, a supersingular elliptic curve defined over Kx = GF(p%); and,
3. {Pr,Qr} and {Pr,Qr}, bases for Ex[(;"] and Ex[l}], respectively.

Each party Py must establish authentication keys; associated to each will be
a key pair for signing and a key pair for verification. In particular, P, selects

mgk),ngk) € Z/tEZ not both divisible by ¢g uniformly at random, and sets

Eék) = EA/<mfgk)P5 + ngk)QS>. Let qi)fgk) dengte the isogeny with domain E,
gk). Similarly, Py selects mgc), nif) € Z/03Y Z not both divisible by

£y uniformly at random, sets E‘(/k) = EA/(mi,k)Pv + ni/k)Qw7 and further sets

and image F

¢§/’? ) to be the isogeny with domain F 4 and image E‘(/k ). P, must also select a



private key/public key pair (skgf)7 pkg)) for the chameleon hash function. Then
Pr.’s authentication key pair is

(Sk(k) k(k)) - (( k(k)7 k%f),sk(k)), (pk(k) k(k), k(k) )
k k k k k k
= (&0, 0, k) L (BE, 08 (Pv), 98 (@),

(BY 0 (Ps), 6 (Qs)), pkR) ) -
Then for each pair (P, Py) of parties there is a curve Egy) defined by
kL ¢ k ¢
EGY = BY im0 (Ps) + 067 (Qs));

notice that Egi}e) E(Sevk), and so both Py and P, can compute it using their
secret keys and the other’s public keys. This curve will be used for Py to sign
a message to Py. Figure 1 in Appendix A.2 depicts the j-invariant computation
for this protocol.

The protocol is as follows (with Py, initiating and P, responding):

1. Upon being instructed to start a session with Py, Py:
a) Selects a session identifier ¥;
b) Selects 2%, y\") € 7,057, not both divisible by ¢;, uniformly at ran-
dom;
¢) Constructs R¥) = xgql)PI + yg‘p)QI, defines ¢(*) to be the isogeny with
kernel (R(")), and sets

m™) = (EW) = Ex /(R™M), ¢ (Pr), ¢ (Qr), idy, ids, ¥);

d) Selects ) € {0,1}* at random;
e) Sets

U(Q/) = (017 02, 03)

= (Sample(3), 01 (r|[F(EG)). Inv, g0 (), 02(0s(m™, 01)]02))).

and;
f) Activates Send(idy, m(*), o))
2. Upon receiving (m, o), Pp:
a) Computes

b(@) _ lif o9 = 01( k(k)(02(03(m UI)HUQ) US)HJ(E(k 2))) .
0 otherwise ;

If 5% = 0 the delivered message is invalid and is hence rejected; then
Py activates Send(idg; L, L, 1). Otherwise, Py:
b) Selects a session identifier ¥’;



c) Selects xgl),yg,) € Z/UFZ, not both divisible by g, uniformly at
random;

d) Constructs RY) = xg,)PR + yg,)QR, defines ¢(%") to be the isogeny
with kernel (R")), and sets

m") = (E") = Ex /(R")), ") (Pp), 67)(Q1), 1dy, ids, U, 0");

e) Selects r¥") € {0,1}* at random;
f) Sets

U(W,) - (017 g2, 0.3)

= (Sample(A), 01 (r*[§(EGH)), v, o (17, 02(Oa(m ™, 1)or2))),

and;
g) Activates Send(idg, m¥"), o))
After receiving the message, Py computes the session key

wy )L =0
K= (@) (@) :
my/(xy 'ma +yp 'ms) otherwise

3. Upon receiving (m, o), Py computes the session key

. . 0,k
p _ 1 02 = O1(H 0 (02(Os(m. 01)l[2), ) F(EG))
0 otherwise

After receiving the message, Py computes the session key

ma /(" m + g

mg +y; 'm3) otherwise

Theorem 2. The scheme described above is correct.
Proof. This follows immediately from the results of [8, Section 3.1].

Theorem 3. Under the Supersingular Isogeny Decisional Diffie-Hellman as-
sumption, the scheme described above is secure in the security model described
in Section 5 in the quantum random oracle model.

Proof. This follows from Theorem 1 by the security results of [8,22,10,6].

Thus we have demonstrated that we have constructed a protocol, based on
now-standard post-quantum cryptographic assumptions, which resists superpo-
sition attacks in the quantum random oracle model.



8 Conclusion

We have presented a security model for authenticated key establishment in which
the adversary can deliver quantum superpositions of messages to parties who
would ordinarily be participating in a classical protocol, analogous to allowing
quantum signing queries in EUF-qCMA security of signature schemes or quan-
tum encryption/decryption queries in standard quantum-safe security definitions
of encryption. We demonstrated that the corresponding new security definition
is achievable by constructing a specific example of a secure key establishment
protocol assuming the quantum hardness of a Diffie-Hellman-type problem for
isogenies of supersingular elliptic curves, and gave a generic construction for se-
cure protocols using sufficiently secure signature schemes and unauthenticated
key establishment protocols.

Limitations and Future Work. Although the security model we present
is a natural for quantum-safe authenticated key establishment, it remains to
establish a separation between this security definition and, for instance, the
more standard Canetti-Krawczyk model with a quantum adversary—that is, we
must show that there are protocols which are secure in the Canetti-Krawczyk
model when the adversary has access to a quantum computer which are insecure
when the adversary can deliver quantum superpositions of messages. We would
like to establish this separation to demonstrate the necessity of our quantum-
safe security model. Once this separation is established, we can work solving the
following problems:

1. Are current “quantum-safe” key establishment protocols secure in this model?

2. Are there other simple generic constructions for secure protocols; in partic-
ular, does our construction generalize to the case of many-round protocols?

3. Can we introduce more security properties: e.g., resilience against key com-
promise impersonation and malicious insiders [16]?

4. Our security definitions do not adequately model stateful protocols; this
choice was made to avoid entangling the (classical) state of the protocol user
with the global (quantum) state of the adversary and environment. This
means that the model is not sufficient for analyzing certain well-known types
of protocols, such as hash-based schemes. How best to allow stateful protocols
while remaining grounded in reality is a matter for further consideration.

References

1. Alagic, Gorjan and Broadbent, Anne and Fefferman, Bill and Gagliardoni, Tom-
maso and Schaffner, Christian and St. Jules, Michael. Computational Security of
Quantum Encryption. In Nascimento, Anderson C.A. and Barreto, Paulo, editor,
Information Theoretic Security, pages 47-71. Springer International Publishing,
2016.



10.

11.

12.

13.

14.

15.

16.

17.

. Paulo S. L. M. Barreto, Shay Gueron, Tim Gueneysu, Rafael Misoczki, Edoardo

Persichetti, Nicolas Sendrier, and Jean-Pierre Tillich. Cake: Code-based algorithm
for key encapsulation. Cryptology ePrint Archive, Report 2017/757, 2017.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols. In Proceedings
of STOC 98, pages 419-428. ACM Press, 1998.

Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribution.
In Stinson, Douglas R., editor, Advances in Cryptology — CRYPTO ’93, pages
232-249, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

Jean-Francois Biasse, David Jao, and Anirudh Sankar. A Quantum Algorithm for
Computing Isogenies between Supersingular Elliptic Curves. In Meier, Willi and
Mukhopadhyay, Debdeep, editor, Progress in Cryptology — INDOCRYPT 2014,
pages 428-442, Cham, 2014. Springer International Publishing.

Dan Boneh and Mark Zhandry. Secure Signatures and Chosen Ciphertext Security
in a Quantum Computing World. In Canetti, Ran and Garay, Juan A., editor,
Advances in Cryptology — CRYPTO 2013, pages 361-379, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and Their
Use for Building Secure Channels. In Pfitzmann, Birgit, editor, Advances in Cryp-
tology — FUROCRYPT 2001, pages 453-474, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg.

Luca De Feo, David Jao, and Jérome Plut. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. J. Math. Cryptol., 8:209-247,
2014.

Whitfield Diffie and Martin Hellman. New Directions in Cryptography. [EEE
Trans. Inf. Theor., 22(6):644-654, September 2006.

Edward Eaton and Fang Song. Making Existential-Unforgeable Signatures
Strongly Unforgeable in the Quantum Random-Oracle Model. In Proceedings of
TQC, pages 1-16, Germany, 2015. Dagstuhl Publishing.

Tommaso Gagliardoni, Andreas Hiilsing, and Christian Schaffner. Semantic se-
curity and indistinguishability in the quantum world. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology — CRYPTO 2016, pages 60-89,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

Robin Hartshorne. Algebraic Geometry. Number 52 in Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1977.

A.S. Holevo. An analog of the theory of statistical decisions in noncommutative
probability theory. Trans. Mosc. Math. Soc., 26:133-149, 1972.

Marc Kaplan, Gaétan Leurent, Anthony Leverrier, and Maria Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology — CRYPTO 2016,
pages 207-237, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

Hugo Krawczyk and Tal Rabin. Chameleon Hashing and Signatures, 1997.
Manuscript.

Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger Security of Au-
thenticated Key Exchange. In Susilo, Willy and Liu, Joseph K. and Mu, Yi, editor,
Provable Security: First International Conference, pages 1-16, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

Dominic Mayers and Andrew Yao. Quantum cryptography with imperfect appa-
ratus. In Proceedings of the 89th Annual Symposium on Foundations of Computer
Science, FOCS ’98, Washington, DC, USA, 1998. IEEE Computer Society.



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Michele Mosca, Douglas Stebila, and Berkant Ustaoglu. Quantum Key Distribution
in the Classical Authenticated Key Exchange Framework. In Gaborit, Philippe,
editor, Post-Quantum Cryptography: 5th International Workshop, pages 136154,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Joseph J. Rotman. An Introduction to the Theory of Groups. Number 148 in
Graduate Texts in Mathematics. Springer, New York, 1995.

Joseph H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate
Texts in Mathematics. Springer, New York, 1986.

Vladimir Soukharev, David Jao, and Srinath Seshadri. Post-Quantum Security
Models for Authenticated Encryption. In Takagi, Tsuyoshi, editor, Post-Quantum
Cryptography: Tth International Workshop, pages 64-78, Cham, 2016. Springer
International Publishing.

Xi Sun, Haibo Tian, and Yumin Wang. Toward Quantum-resistant Strong Desig-
nated Verifier Signature. Int. J. Grid Util. Comput., 5(2):80-86, 2014.

John Tate. Endomorphisms of Abelian Varieties Over Finite Fields. Invent. Math.,
2:134 — 144, 1966.

Dominique Unruh. Quantum Position Verification in the Random Oracle Model. In
Garay, Juan A. and Gennaro, Rosario, editor, Advances in Cryptology — CRYPTO
2014, pages 1-18, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

Umesh Vazirani and Thomas Vidick. Fully device-independent quantum key dis-
tribution. Phys. Rev. Lett., 113:140501, Sep 2014.

Jacques Vélu. Isogénies Entre Courbes Elliptiques. C. R. Acad. Sci. Paris Sér.
A-B, 273:A238 — A241, 1971.

Han Weiwei and He Debiao. An authenticated key agreement protocol using iso-
genies between elliptic curves. 2010 Second International Workshop on Education
Technology and Computer Science, 1:366-369, 2010.

Gustavo H. M. Zanon, Marcos A. Simplicio Jr., Geovandro C. C. F. Pereira,
Javad Doliskani, and Paulo S. L. M. Barreto. Faster isogeny-based compressed
key agreement. Cryptology ePrint Archive, Report 2017/1143, 2017. https:
//eprint.iacr.org/2017/1143.

Mark Zhandry. Secure Identity-Based Encryption in the Quantum Random Oracle
Model. In Advances in Cryptology — CRYPTO 2012, 2012.

Jiang Zhang, Zhenfeng Zhang, Jintai Ding, Michael Snook, and Ozgiir Dagdelen.
Authenticated key exchange from ideal lattices. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015, pages 719-751.
Springer Berlin Heidelberg, 2015.


https://eprint.iacr.org/2017/1143
https://eprint.iacr.org/2017/1143

A Figures

A.1 A Depiction of the j-Invariant Computation for our Protocol

vsing (25,6 (Py), 0§ @y )

Fig. 1. A diagram explaining the j-invariant computation for the authentication por-
tion. If Pi wishes to send a message to Py, they follow the blue and red arrows,
respectively, in the upper half of the diagram to sign and verify. If P, wishes to send a
message to Py, they use the bottom half of the diagram.



A.2 A Depiction of a Pair of Matching Sessions for a Protocol
Generated from our Construction (Theorem 1)

/ /
Pr Pr
My (1), Oy (1) = Sighsk, (My 1)) ;o
My (1) (mf,07)
bg,(n) =
Verpk, (m}, o7)
. My (r), Oy (r) = Signg, . (My )
(Mg, 0R) '
(If by r) =1)
b'I/(I) =
!
Verpi, (Mg, 0'z)
If bW(I) = 1, If b‘I/(R> = 1,
accept Ky (r) accept K (r)

If b@(I) =1= bg,(R), then K\p(U = K.I,(m

Fig. 2. An execution of a secure AKE protocol constructed as in Theorem 1. Values
in blue are computed by the initiating party, while those in red are computed by the
responding party.

B Proof of Theorem 1

To prove this result, we must first show how, given an instance (pk) of the
strongly EUF-qCMA game, we can emulate a quantum messaging oracle Op,
for a party Py with public key pk for S.

For an unauthenticated key exchange protocol II, let the parties be denoted
by Py for some values of k, and for each such party let P, denote the corre-
sponding party for protocol II’ defined as in Theorem 1. Notice that

, [ (4, 1) if Verpy,, (m,0) =0
Pr(m,o) = { (Pr.(m), Signsk:k (Pr(m)) otherwise

Then, to emulate the quantum messaging oracle, first write P(m) to an auxiliary
register to obtain

Y @y Im) o) [P(m)) ly)
m,o,Yy
Use the strongly EUF-qCMA signing oracle on the third register to obtain
Y Qmoym) o) [P(m)) [Signg (P(m)) ly) -

m,o0,y



Then apply Uyer which maps |m') [o7) |y) |z) to

|m’) |o”) |y & m') |z @ o’) if Ver(m,o) =1
|m’) |o’) ly® L) |z@ L) otherwise

to the last registers to obtain

Y oy lm) o) [P(m)) [Signg (P(m))) ly & P(m,0)) ;

m,o0,Y

the last register is the one we give to A. Note in particular that we are holding
onto the registers that contain valid message/signature pairs; in fact, we hold
one such pair of registers for each query we make to the signing oracle. It follows
that if we can persuade A to send us a pair of registers which, when measured,
yield a valid message-signature pair different from those that we will obtain by
measuring the registers we already hold, then with non-negligible probability we
can win the strongly EUF-qCMA game.

Knowing that we can use the quantum signing oracle for the strongly EUF-
qCMA game to emulate a quantum messaging oracle for a party, we show that the
security of the signature scheme restricts the class of messages that an adversary
can construct. The results are presented in the following technical lemmas.

We first demonstrate two restrictions that we can place on the behaviour of
A without loss of generality.

Lemma 1. Suppose there is an adversary A who wins the security game for IT'
with advantage Adv who delivers two or more messages to a single party in a
given session. Then there is an adversary A’ who wins the security game for IT'
with the same advantage who never delivers two or more messages to a single
party i a given Session.

Proof. The response to any message delivered to a party in a given session
beyond the first is (L, L); this is because IT is a two-round key establishment
protocol and so any message delivered beyond the first is invalid. Let A’ be
defined as A is, except that whenever A’ would deliver the second message to a
party in a given session, it instead simply writes (L, 1) to its target register. It
is clear that A" wins the security game with the same probability as A.

Lemma 2. Suppose there is an adversary A who wins the security game for I’
with advantage Adv, who at some point sends the last register of the global state

|F> = Z Apm,o |lj/> |m70>
H,m,o

to a responding party Pr in session W', who believes they are participating in a
session W with initiating party Pr, such that

> 2 lowmol’
1 p

Vergy; (m,0)=



is negligible. Then there is an adversary A’ who wins the security game with
advantage Adv' which differs only negligibly from Adv, such that A’ never sends
a register in such a state.

Proof. Let A be such an adversary. First we show that ¥’ cannot possibly be
the session on which A will choose to be tested. Suppose to the contrary that
¥’ is the test session. The global state after the Test query will be

D= S Y e ) mo) 1)

Versk, (m,0)=0 p

+ Z Zal"»m70' |H> |m, (7> ‘/@b(m»

Vergk; (m,0)=1 K

where kp(m) is either a correct key for session ¥’ on incoming message m, or a
random string; in particular, in either case is it not 1. Consider the state

|F’> = Z Zau,m,o |H> |m70> |J->

Versi, (m,o)=0 n

+ > D apme ) my o) r(m))

Vergk; (m,0)=1 K

for randomly chosen strings r(m). In particular, observe that the ensembles
D = {Dy,} and D' = {D,,} of measurement outcomes of |I") and |I") (pa-
rameterized by the security parameter and random input) are computationally
indistinguishable by the previous lemma, since if they were not, we could distin-
guish |I') from |I'') with non-negligible advantage. In particular, in this case this
means that if A were instead given |I"}, and then performed his measurement in
order to guess the value b, the result would, except with negligible probability,
be indistinguishable from the result of measuring |I"), regardless of the value
of b. Since |I'") carries no information about b, A cannot possibly guess b by
measuring |I”) with probability different from 1. Thus when measuring |I") and
guessing, A guesses correctly with probability at most negligibly greater than %,
contradicting our assumption. Hence ¥’ cannot be the test session.

By a similar argument, .4 can construct a register that is indistinguishable
from the response Pr would give on this input register. Hence A’ proceeds
exactly as A would, except that whenever he would send a register as described in
the statement of the lemma, he instead constructs an indistinguishable register.

Since A deals with at most polynomially-many registers, we can make as
many substitutions of this kind as required and the probability that the resultant
state is distinguishable from the correct state is negligible; hence, A’, defined in
this way, wins the security game with advantage at most negligibly different from
Adv, as required.

Hence we can assume without loss of generality that our adversary A never
delivers more than one message in a session and never delivers a superposition
of messages for which the total probability amplitude of the valid content is



negligible. This will allow us to use an adversary A who delivers a superposition
of messages in a session for which the amplitude of a valid, but unsent, message
is non-negligible as a forger for a signature scheme; this tells us then that the
probability of the adversary delivering such a message is negligible.

Lemma 3. Let A be an adversary which wins the security game with non-
negligible advantage. Let

| = Z Qp,mr,or ) Imr,or)

Km0

be the global state after the last register is delivered by A to Pr in a clean session.
Further, let (m*,0*) be the message and signature that P;r would send in this
session. Let

F ={(my,01): Verpy,(mr,01) =1 and (my,o1) # (m7,07)}

of potential “forgeries.” If (Gen, Sign, Ver) is strongly EUF-qCMA, then except
with negligible probability, the quantity

— 2
P = Z |au’m1,01|

pn,(mr,or)EF
1s negligible.

Proof. We show how to forge a signature against (Gen, Sign, Ver) in the strongly
EUF-qCMA game if ¢ is non-negligible.

Suppose we are given an instance (pk) of the EUF-qCMA game. We will
run A essentially as normal, by establishing public key/private key pairs for as
many parties as A requires; for one party P;» chosen at random, however, we will
set their private key as pk (and the underlying secret key will remain unknown
to us). With probability at least ﬁ, where p(A) is a bound on the number

of parties A requires (and which is at most polynomial in ), we have selected
the initiator of this clean session. In particular this means that, at least until
the session is over, A will not issue RequestPrivateKey(id;-), and so we will
not have to produce it. Whenever a party needs to sign a message we use their
private key, unless that party is P;-, in which case we simply use the signing
oracle from the strongly EUF-qCMA game, as described above. Notice that by
our assumption that A never delivers two or more messages to a party in the same
session, each time we query the signing oracle we are querying it for a different
session; since the session identifier is included in the signed message, this means
that, in particular, if we measure the results of our queries to the signing oracle
we will never obtain the same message/signature pairs. Moreover, because of the
construction we use to model the party from the signing oracle, each use of the
signing oracle results in a register which will, with probability 1, yield a valid
message/signature pair upon measurement. In particular, this means that if A
ever sends us a superposition of messages for which the probability amplitude



of a forged message is non-negligible, then by measuring that register and the
registers we hold, we will obtain ¢ + 1 distinct valid message/signature pairs,
where ¢ is the number of calls we have made to the signing oracle.

A will perform some unitary operations on the qubits he holds; thus the
global state becomes

DYy = 3" s 1) M, 0%) [mr,o7)
H,my,or

and A sends the last register to Pr (i.e., to us). If we now measure the qubits
we hold, then with probability @, we will obtain ¢ + 1 valid message/signature
pairs. If @ is non-negligible, we can win the strongly EUF-qCMA game for our
signature scheme; since the signature scheme is strongly EUF-qCMA, this forgery
can occur with at most negligible probability, and so the probability that %

is non-negligible (and hence that @ is non-negligible) is negligible, as required.

Lemma 4. Let

|F> = Z Qp,.mr,or,mg,0R ‘M> ‘mla UI> |mR70'R>

K, M1,01, MR, 0OR

be the global state after the completion of a clean session ¥ owned by Pg, the
responding party, where the second register is the message register sent by A to
Pr, and the third is the message register sent by A to Py, the initiating party, if
it exists. Let (m},0%) be the message and signature that would actually be sent
by Pr in step 3e of the protocol, and let (m%,,0%) be the message and signature
that Pr would respond with if the messages were relayed faithfully. Let # denote
the set

{(my,o1,mg,0r): (3v € {I,R}: Veryy (m,,0,) =1 and (m,,0,) # (m;,0;))}

of potential tuples containing a “forged” signature. If (Gen, Sign, Ver) is strongly
EUF-qCMA, then, except with negligible probability, the quantity

o 2
P = Z Z |au,m1,01,mR70R‘

(mr,01,mR,0R)EF MK
1s negligible.
Proof. Define
F1 ={(mr,01,mp,0Rr) € F: Verpy,(my,01) = 1A (my,01) # (m7,07)}
and
Fp ={(mr,01,mg,0R) € F: Verpy, (my,01) =0V (my,01) = (m},07)}

and observe that % = %7 U .#_; and that this union is disjoint. By Lemma 3,

we know that
2
P = E E |au,m1701,mR7UR|

(mr,01,mR,0R)EF] M



is negligible. Then we need only prove that

45_‘1 - Z Z |a“’7mR:‘7R7mI7UI|2

(mr,crmpr,0cR)EF -1 M

is negligible, since ® = &;4+&_ ;. As in the proof of lemma 3, we can try to win the
EUF-qCMA game by choosing a random party P and hoping that A4 “forges”
a signature against them; then we measure the registers we hold to obtain a
forgery. This succeeds with probability at least @_;, and so this quantity must
be negligible except with negligible probability, as required.

Lemma 5. Let

Iy = Z Q. |m>+2ac\c> and |I'") = Z Qo |m>+2ac|r(c)>

meM ceC meM ceC

be normalized quantum states, where M and C are disjoint, nonempty, finite
sets, r(c) € M for all c € C, and Y . |ac|® is negligible. Then the advantage
that any adversary has in distinguishing |I') from |I"') is negligible.

Proof. Note that 1 — [(I'| I'")|* < 23" . |ac|*. The result then follows from
the Holevo-Helstrom theorem [13, Sections 5-7].

Lemma 6. Consider the following state distinguishing game for some quantum
states states |Ip), |I1), |I) and |I7):

i. C selects b € {0,1} uniformly at random, and sends |I}) to A.
ii. A performs some computations and outputs a guess .
iti. A wins if b/ =b.

Let A be an adversary for this game, and now consider the following game:

i. C selects b € {0,1} uniformly at random, and sends |I}) to A.
it. A performs some computations and outputs a quess b'.
iti. A wins if b = b.

The probability that A wins the second game differs from the probability that A
wins the first game by at most

3 (VI-IBI R+ L= [l )

Proof. Consider the problem of distinguishing |Ip) from |I}}). By the Holevo-
Helstrom Theorem the advantage that any procedure has in distinguishing these
two states is at most 3/1 — [ (Lo[ I7) [2.

Consider the following distinguishing procedure: given a state |I') which is
either in the state |I) or |I}}), each with probability 3, give the state to A. If




A produces the guess b’ = 0, guess that the state is |Ip), and otherwise guess
that the state is |Ij). Then

P[This Method is Correct] = P[b' = 0 A |I)) = |Io)] + P’ = 1 A |TY) = |17)]
=P’ = 0[|I) = [Tv)] - P[II) = |To)]
+ PR =1]|I5) = 15)] - PITy) = [15)]

1 1
= P = 0[15) = [10)] + 5 (1 =P’ = 0 |15) = |I5)])
so that

1 1
P[This Method is Correct] = 2 + 3 (Bb' = 0] 1) = |T)] = B[Y = 0] 1)) = | %))

If this is not at least %, we obtain a better procedure by switching our guesses;
in any case, there is a procedure that can be used to distinguish |Ip) from |I7)
with advantage % (P[b' = 0| [I}}) = |Io)] — P[b' = 0| |[I}/) = |I}})]), and so

[Py = O[|I5) = [Io)] = P[b" = 0] |I) = [Tp)]| < /1 — [{To] I5) [*.

A similar argument gives that

P = 1| I7) = [10)] = Pb" = 1] |I7) = [T)]| < /1 = [{Ta] I7) [*.

Let |I') be the state given to A in the first game, and |I’) be the state given
to A in the second game. Then

|P[A wins the first game| — P[A wins the second game]|
=[P’ =0 A |I') = [Io)] +Pb' = 1A |T') = |I1)]
=P =0AI[I") = |I5)] =P = 1A[T") = [IT)]|
<[P[" = 0[|I") = |I)IP(I]") = |1})]
=P = 0] |1y) = [IQ)P(I") = [Io)]]
+ [P = 1[|I") = [I)]P(|II7) = |11)]
=P = 1[|I7) = [IDIP[II") = |I1)]]

<3 (Vi-T@im e+ L= lnime)

as required.



Corollary 1. Suppose the global state in an instance of the security erperiment
for the protocol just before the Test query is issued by A be

1) = Cpmitormi.on 1) M7, 07) Im, oR)
©n

+ > Qumrormaon 1) M7, 07) MR, 0%)

m
Verka (mI,UI):O
oT Verpi (mpg,0r)=0

+ ) Cpmrormuon 1) M, 07) M, 0h)

m
(mr,0r,mRr,0R)EF

where (m},07) is the message/signature pair that would actually have been sent
by the initiating party in the test session, and (mpy,0%) is the corresponding
response. After the Test query is issued, the challenger selects b uniformly at
random from {0,1}, and should return the last three registers of the global state

15) = Qi ot 1) MG, 07) M, o) ko (mG, mp))
"

+ > Qpmyormpon ) Mo or) me,og) | L)

m
Verpx, (mr,01)=0
or Verka (mR,aR)=O

+ Z Ypmp,ormpon |1 M1, 01) MR, oR) [Ke(mr, mpg))

n
(mr,0r1,mRr,0R)EF

to A, where as before ko(mr, mpg) is the session key corresponding to messages
mr,mgr and k1(mr,mg) is simply a random function. If instead C returns the
last three registers of the state

10) =) Cpims op.mion, 1) (M7, 07) [m, o) [ (mf, m))
y7

+ Y Cpmiormaos 1) M or) me,or) | L)

n
Verka (m1701)=0
OT Verpk (mgr,0r)=0

+ ) 0pmsormpon 1) M, 01) ImR, og) K1 (mr, mpg))

n
(mr,01,mRr,0R)EF

then except with negligible probability, the probability that A guesses the value of
b correctly given this state differs at most negligibly from the probability that A
guesses the value of b correctly given |Iy,), regardless of the value of b.



Corollary 2. Let |I') be drawn from one of the following distributions, each
with probability %

AN anlmm)+ Y i) Im)+ S auelu)le) form* < D, and
®

w; meM p; ceC

AN aplw i)+ Y i) Im) + S e ) [r(e) for i D
©n

p;meM p;ceC

where D and D’ are probability distributions on some set, M, C, and the sup-
ports of D and D are disjoint, finite, nonempty sets, r(c) € M for all c € C,
and )2, cec |ce|? is megligible. Then if there is an efficient quantum adversary
A which determines from which distribution |I") is drawn with non-negligible ad-
vantage Adv, then there is an efficient procedure, using A as a subroutine, which
distinguishes D from D with non-negligible advantage.

Proof. Let A be as described. Suppose you are given m and wish to know from
which distribution it is drawn. Construct the state

1) =" ) 1) + 3 g ) [m) + ) e ) o)

I
meM

Notice that if m is drawn from D then |I") is drawn from A, while if 7 is drawn
from D, then /1 — | (| I'") |? is negligible; hence the probability that A wins
the game given |I"') differs only negligibly from the probability that .4 wins the
game given a true sample from A or A by Lemma 6.

We will guess that m is drawn from D if A guesses that |I") is drawn from
A, and we guess that 7 is drawn from D if A guesses that [I”) is drawn from
A. The probability that we guess correctly is then

P[We guess correctly] = P[A guesses Al + D] + P[A guesses Al < D)
> P[A guesses A||I') < A] + P[A guesses A||I") « A
— |P[A is correct| |I') < A or A] — P[A is correct||I") = |I")]]

1
2§+Adv—e

for a negligible function €. Indeed, this procedure works with non-negligible ad-
vantage Adv — €, as required.

Finally we are able to prove the security of the protocol IT'.

Proof (Theorem 1). Suppose we are faced with an instance of the security game
for IT; that is, given the messages sent by the initiator P; in session ¥ with
responder Pg in session ¥’ are mj and m},, respectively, we wish to determine
whether a given string kp is the true session key for session ¥ if b = 0, or a
random string if b = 1. Suppose to the contrary that there is an adversary A
who wins the security game against II’ with non-negligible advantage Adv. We
will use A as a distinguisher for our instance of the security game against I7.



Before starting an instance of A, select two indices i*, 7* which are less than
the (polynomially-bounded) number of parties p that A4 will require. Further,
choose a number s* less than the (polynomially-bounded) number of pairs of
session ¢ that A will use. Run A essentially as usual, but with the following
modifications.

Set the private key/public key information for P;« and P;« to that of P; and
Pr, respectively. If A initiates fewer than s* sessions, if its s**! session is not
initiated by P;» with responder P;=, or if its s*t" session is not the test session,
abort and select new ¢*, j* and s*.

Given that A initiates the s*'* with initiator P;» and responder P;j-, set the
session identifier as ¥ and the peer session identifier as ¥’. Set the initiator’s
outgoing message as (mj,o; = Signg, (ids, idgr;¥;m7;ry)) and the responder’s
message as (mp, o), where of, = Signg,_(idr, idgr; ¥, ¥'; mp; rys). If this is not
eventually the test session, abort and choose i*, j* and s* again; in particular, if
A ever issues a command that would make either session no longer clean, abort.

By Lemma 4, we know that the adversary cannot construct a state for which
the amplitude of a valid responding message is non-negligible; hence by Lemma
2 we know that A must pass some registers to the responding party P;«, since
otherwise the probability amplitude of states for which the session key obtained
from the registers sent to the initiating party will be valid for ¥ is negligible, and
there will be no matching session ¥’ to test. Moreover, the adversary must either
deliver some response registers to the initiating party or the test session must
be @', since otherwise the adversary cannot win the game with non-negligible
advantage. In either case, the global state before the test session is

1) =D umi.opmia, 1) M5, 07) [mi, oF)
"

+ ) Qpmrormpan |8 M1, 01) MR, oR)

M
Verka (mI,O'I):O
Or Verpkp, (mgr,0r)=0

+ Z Qu,mr,or,mp,0R |l"'> |m1a UI> |mR70'P»>

M
(mr,0r,mRr,0R)EF

where the second register is the one delivered to P~ and the third is the one
obtained from P; in session ¥’, possibly after applying some unitary operator,
and, except with negligible probability,

Q= Z Ia#7m17017mR70R|2
I

(mr,0r,mr,0R)EF
is negligible, again by Lemma 4.
When the Test query is issued, if the test session is ¥ apply the map:

|mr,oR) |y © k) if (mror) = (mp,0R)

|mR’0R> |y> = |mR7 0R> |y@ L> lf VerSkR(mR7 O'R) = O
Imp,or) |y ® p(mpg)) otherwise



to the register received by P;« in session ¥ and the target register provided by
A, where p maps pairs of messages to random strings. If instead the test session
is ¥’ apply the map

‘m170-1> |yEBK/b> if <m170'1) = (m?’g;)
Imz,o1) |y) — { |mp,or) |y @ L) if Verg, (mr,07) =0
|my,or) |y @® p(my)) otherwise

In either case, the global state after the test query is
1) =3 Cpmioi i, [1) (M7, 07) M, 0) [y © k)
.y

+ > Cpmrormaon 1) M1, 01) [me,or) |y ® L)

Ky
Verpk, (myp,01)=0

or Verka (mR,O'R)=0

+ ) pmyormpon |0 o, o1) me, or) [y & o (mr, mg)).

1220
(mr1,01,mR,0R)EF

Notice that this is simply |1}) from Corollary 1, and so A will guess b correctly
(in the context of its security game) with advantage Adv — € for some negligible
function e. Then, by Corollary 2, this correct guess will be the correct guess
for our security game with advantage Adv — € — ¢ where € is negligible; in
particular, our advantage is non-negligible provided that we have chosen the
correct i*, 5%, and s*. Since we choose these correctly with probability at least
p%w’ a polynomial fraction, we see that our probability of winning the game

using A as a subroutine is at least % + Ad‘z’);if which is non-negligibly greater

than a half; that is, protocol IT is insecure. This is a contradiction, and so no
such adversary A must exist; that is, the protocol II’ is secure.
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