
Machine learning and classical side-channel
analysis in a CTF competition

Yongbo Hu1, Yeyang Zheng1, Pengwei Feng1, Lirui Liu1,Chen Zhang1, Aron
Gohr2, Sven Jacob2, Werner Schindler2, Ileana Buhan3, Karim Tobich3

1 Goodix, China,
email: lastnamefirstname@goodix.com

2 Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany
email: firstname.lastname@bsi.bund.de

3 Riscure, Netherlands
email: buhan@riscure.com

Abstract. Machine learning is nowadays supplanting or extending human expertise
in many domains ranging from board games to text translation. Correspondingly,
the use of such tools is also on the rise in computer security. Alongside CHES 2018, a
side channel challenge was organised under the theme of ’Deep Learning vs Classical
SCA’ to test whether Deep Learning is presently widely used in the SCA community
and whether it yields competitive results. The competition had 58 participants, it
ran for three months, and a quantity of 35GB of data was used as a test sample. This
paper presents the solutions of the teams that captured a flag and then discusses
the results. While deep learning was used by neither team, other machine learning
methods turned out to be very useful. The first contribution is a snapshot in time
of the expertise in the community, and shows a clear bias towards classic SCA. The
second contribution is the presentation of novel techniques for key extraction for the
challenges proposed and a reference for black-box evaluation of crypto primitives
by experts in the field. The third contribution is a baseline which can be used to
further improve upon. Based on the results of this competition, we conclude that
human expertise remains very important in the design of successful SCA attacks and
machine learning can be a useful tool.
Section 2,3 and 4 of this report have been directly contributed by the winning
teams; as a consequence, section 3 is essentially identical to the previous eprint
https://eprint.iacr.org/2019/094/20190131:230649 [8] authored by A. Gohr, S.
Jacob and W. Schindler.
Keywords: key recovery, deep learning, machine learning, side channel analysis,
black-box evaluation

1 Introduction
Evaluating the resilience of cryptographic algorithms to side channel analysis (SCA) is
required by several national and private certification schemes. A typical SCA evaluation
requires a complex end-to-end procedure: an initial leakage assessment stage, an optional
dimensionality reduction phase, a signal processing step (e.g., static alignment, filtering,
re-sampling), the construction of a stochastic model of the leakage that is specific to the
situation at hand, and finally the application of one or several attack methods.

Machine learning (ML) might increase the effectiveness of such a work-flow in various
ways, on the one hand by making some steps easier to execute and on the other hand
by allowing for the exploitation of leakage signals that a human SCA expert might not

https://eprint.iacr.org/2019/094/20190131:230649

2 Machine learning and classical side-channel analysis in a CTF competition

consider. In terms of comparison to classical SCA attacks, the features that distinguish
ML based attacks are the use of general-purpose tools for the construction of the leakage
model and the limited assumptions made about the nature of the leakage. SCA-specific
expertise, however, may or may not still be leveraged.

Since 2017, several national and private schemes mandate the application of deep
learning in side channel analysis (deep SCA) in the certification of secure products, which
places deep SCA and ML-supported SCA more generally into the category of fundamental,
required analysis techniques. However, to this date there is no objective comparison
between the strength of deep SCA and classic SCA. For a meaningful benchmark, one
needs a specifically designed trace set with traces collected on multiple devices which
allow training a network, allow key extraction with classic SCA and cover a variety of
possible SCA targets. Furthermore, the work factor of performing both classical SCA
and machine-learning based SCA on the same targets is a significant obstacle for such a
comparison for any single team. The results of the comparison will depend on the tools
used and on the expertise of the person doing the analysis with either classic or deep SCA.
To get closer to an answer to the question which of the two techniques is more widely
used by the community, we set up an experiment. This paper presents an overview of the
solutions developed by the teams to win at least one flag in the competition and discusses
the results and their significance for the community.

Description of the experiment. In the summer of 2018, a new traceset was released that
allows key recovery with classic and deep SCA covering three cryptographic primitives.
For three months researchers in the community used their skills and knowledge to extract
the keys. The experiment was set-up as a competition open for individuals and teams.

Figure 1: Timeline for the experiment. The preparation phase begins on the 3rd of July
and ends on the 3rd of September when the challenge phase begins.

The challenges consist of three primitives: two symmetric key algorithms (hardware
DES, software AES-128) and a public key algorithm (RSA-512). For each primitive, traces
are collected from four physical devices (denoted by A,B,C,D), and two different keys
needed to be extracted in the challenge phase. The first key tests the recovery of traces
from a device known to the attacker, which we refer to as non-portability. This is the
classic case, where the adversary has physical access to the target device, of a key he does
not know. Recovery of the second key tests the case of an adversary who has no access to
the target devices and uses other devices from the same class to profile. We refer to this
scenario as portability.

Any technique is in scope, in the minimum amount of time possible. The model for
scoring is "winner takes it all" with all the points going to the participant who wins the
challenge. When multiple participants find the full key the winner is chosen based on
the submission time. Based on the timeline information in Figure 1, we note that the
experiment is biased to favor participants who chose deep learning, with two months of
preparation to build and test their network, vs a few days allowed for the participants

Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu,Chen Zhang, Aron Gohr, Sven Jacob,
Werner Schindler, Ileana Buhan, Karim Tobich 3

who chose classic SCA. The traces are in HDF5 format and are available online [6]. While
it would be feasible in principle to solve the DES and RSA challenges by cryptanalysis
instead of side-channel analysis, such an approach would not have been competitive, since
the team to first solve a challenge wins that challenge.

Choice of the primitives. We chose classical primitives, familiar to the community, which
cover both hardware and software engines, symmetric and public key algorithms. A limiting
factor in the choices made was the size of the traces. The current set has a size of 35GB of
data. The first challenge is a hardware DES implementation on a basic card ZC 5.4 with
no (noticeable) countermeasures. The second primitive is a software AES implemented on
an ARM-CORTEX M0 with random, boolean masking added to the round key. The third
primitive is an RSA-512 algorithm with random exponent blinding implemented on an
ARM-CORTEX M0 platform. As the tracesets remain public, we limit the description of
the countermeasures.

Description of the tracesets. For each primitive four sets of traces are provided, in the
following denoted by Set 1 to Set 4, which allowed the participants to develop and test
their attack. The power traces in Set 1 to Set 3 came from three different devices A,B,C,
and each power trace corresponded to encryption with a freshly chosen key. Set 4 contained
power traces from Device C, which in contrast were generated with a single key shared by
all traces. Plaintexts, ciphertexts and keys were known. No information was given on the
countermeasures against power analysis deployed in the implementation. In the challenge
phase, two sets with attack traces were published, Set 5 (no-portability challenge) with
traces collected from device C, Set 6 (portability challenge) with traces collected from
device D. The task was to recover the particular keys.

2 The DES Challenge
Standard CPA[1][2], a specific form of Classical Profiling, is used to solve DES challenge.
The round structure for DES algorithm is illustrated in Figure 2.

K(i)

L(i-1) R(i-1)

F function

L(i) R(i)

Figure 2: Round structure of DES

2.1 Preliminary tests
The power traces for the DES Challenge are not aligned, which is shown in Figure 3,
so it is necessary to properly align the traces with standard static alignment. Since the
acquisition frequency of the sample is not provided, the x-axes of the relevant Figures are
labeled as "Samples".

4 Machine learning and classical side-channel analysis in a CTF competition

0 200 400 600 800 1000 1200 1400 1600
Samples

-100

-50

0

50

A
m
pl
itu
de

Raw power trace for DES

Figure 3: The first 10 raw traces, real time versus the power amplitude,from DES learning
traces.

After the alignment, we perform leakage assessment and as a result, we find that
in the switching of the DES state register from R0 to R1 the Hamming distance
HD(R0, R1) leaks. We assume a linear model of the power consumption T defined
as T (t) = ξHD(R0, R1) + l, where l indicates the noise present in the traces. Let ξ denote
the linear parameter. The correlation between the model and the power traces is defined
as corr(t) = Pearson_Correlation(HD(R0, R1), T (t)). With the formula of correlation,
the leakage assessment can be obtained during profiling with all the traces for learning
from set 1 to set 3, as is shown in Figure 4. Because of the leakage shown in Figure 4, both
template attack [3] and standard CPA are applicable, but the latter one is less complicated
and this is why it is preferred. However, considering only 1K traces are available in the
attack phase, the simplified profiling,which indicates the selection of high leakage points,
still plays an essential part in increasing the attacking confidence. And in this way, the
POI(Points Of Interests), defined as Tsets : {t|corr(t) > threshold}, can be filtered out.
Let OFFSET be the offset of the learning traces and attack traces, the POI selection for
attack traces are defined as:OFFSET + Tsets as shown in Figure 5.

0 200 400 600 800 1000 1200 1400 1600
Sample

-100

-50

0

50

A
m

pl
itu

de

Aligned traces

0 200 400 600 800 1000 1200 1400 1600
Sample

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
or

re
la

tio
n

Leakage accessment for R0 R1
S1
S2
S3
S4

S5
S6
S7
S8

Figure 4: Leakage assessment on HD(R0,R1) for learning traces

Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu,Chen Zhang, Aron Gohr, Sven Jacob,
Werner Schindler, Ileana Buhan, Karim Tobich 5

0 200 400 600 800 1000 1200 1400 1600
Sample

-100

-80

-60

-40

-20

0

20

40

Am
pl

itu
de

Power traces after static alignment

0 200 400 600 800 1000 1200 1400 1600
Sample

-100

-80

-60

-40

-20

0

20

40

Am
pl

itu
de

POI peroid location

POI

Figure 5: Aligned traces and the POI selection for attack-phase traces

2.2 Attack phase

At attack phase, the Pearson Correlation calculation between the 1K power traces and
the intermediate data for different key hypothesis per Sbox can be performed for both
portability traces and the non-portability traces. Figure 6 illustrates the attack results of
8 Sboxes with non-portability traces.

650 700 750 800
Sample

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
or
re
la
tio
n

CPA results for SBox:1

650 700 750 800
Sample

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
or
re
la
tio
n

CPA results for SBox:2

650 700 750 800
Sample

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

C
or
re
la
tio
n

CPA results for SBox:3

650 700 750 800
Sample

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

C
or
re
la
tio
n

CPA results for SBox:4

650 700 750 800
Sample

-0.1

-0.05

0

0.05

0.1

0.15

C
or
re
la
tio
n

CPA results for SBox:5

650 700 750 800
Sample

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
or
re
la
tio
n

CPA results for SBox:6

650 700 750 800
Sample

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

C
or

re
la

tio
n

CPA results for SBox:7

650 700 750 800
Sample

-0.15

-0.1

-0.05

0

0.05

0.1

C
or

re
la

tio
n

CPA results for SBox:8

Figure 6: CPA results for 8 SBOXes

The correct key for each Sbox is defined as below

k = argmaxk{corr(k, t), k = 0, 1...63} (1)

6 Machine learning and classical side-channel analysis in a CTF competition

2.3 Results
In Figure 6, the correlation curves the of correct key hypothesis are easy to distinguish
except for S4 and S8. The side channel part of the attack only tries to recover the first
subkey. Here we do not have good results for two Sboxes(S4 and S8), meaning these have
to be brute-forced. Also, the first subkey only yields 48 bits of information on the full 56
bits root key, so another 8 bits remaining key bits have to be brute-forced. This gives the
desired 26 ∗ 26 ∗ 28 = 220 remaining complexity.

All in all, the attack provides a fast and comprehensive solution for DES challenge.
We summarize the work-flow in Figure 7. Furthermore, this method only learns the
POI off-line using learning traces and attacks the on-line 1K traces without any other
information and knowledge, so it is very robust to device change. This helps to solve both
portability and non-portability challenge with one unified approach.

Alignment of the learning traces

Leakage assessments to identify the
leakage model

POI selection based on the correlation

Alignment of the attack traces

Intermediate data calculation based on
the leakage model identified in profiling

POI adjustment considering the offset
between learning and attack trace

CPA analysis with the correlation
calculation

A brute-force of the remaining key bits

Profiling Attack

Figure 7: Work-flow for the attack of DES challenge

What can be done to potentially optimize the attack further about the DES challenges
is listed as below

1. To improve the CPA efficiency with some pre-process since the leakage is not a single
point one;

2. To perform template attack[3] or deep learning with the leakage;

3. To exploit the leakage of R1⊕R2 and partial key bit from Figure 6 with CPA to
reduce the remaining key entropy.

3 The AES Challenge
In this section, we describe our attack on the AES challenge. The exposition here given is
up to some minor editing identical to the previous eprint [8] contributed by team AGSJWS

Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu,Chen Zhang, Aron Gohr, Sven Jacob,
Werner Schindler, Ileana Buhan, Karim Tobich 7

describing the same solution.

3.1 The attack
3.1.1 Preliminary tests

In a first step we verified that the key expansion process was not masked. For this, we
used a Decision Tree Classifier trained using scikit-learn [4] to distinguish Set 3 and Set 4.
The rationale here was that a non-randomized key schedule used with a fixed key should
produce a consistent signal in the traces that can be used to recognise traces from Set 4,
and that the main cipher operation was very likely to be randomized. Training these
distinguishers was immediately successful. The signal was for this purpose partitioned
into segments 1000 data points long, where only every tenth point of each segment was
used for training and evaluation. We trained decision tree classifiers with maximal depth
5, using otherwise the default parameters of the DecisionTreeClassifier class in scikit-learn.
Half of the samples in Set 3 and Set 4 were used for training, and half were withheld for
validation.

Evaluating our decision tree classifiers, we found that classification accuracy varied
strongly with the data segment considered but that distinguishing Set 3 and Set 4 was
very easy for some data segments, reaching classification accuracies up to 99.7 percent.
Looking at validation accuracy as a function of data segment number, a pattern emerged
that suggested that a strong key-dependent signal could be found at the very beginning of
the trace, maybe related to the device reading in key data, and during an operation, likely
a key expansion step, that is executed before each round transformation. The validation
accuracy of these distinguishers by data segment number can be found in Figure 8.

The same conclusion can be reached by comparing point-wise variances between Set 3
and Set 4. In the parts of the traces that we suspect correspond to the key schedule,
measured current varies much more in Set 3 than in Set 4. This is naturally expected if we
assume that these parts of the traces perform unmasked key schedule operations. With a
fixed key (Set 4), observed variance in power usage will mostly be noise in this case, which
may include non-random signals from the measuring equipment or environmental triggers.
For random keys (Set 3), on the other hand, a key-dependent varying leakage signal is
added on top of the noise.

We then reduced the size of the traces in Set 3 by discarding all the data points with
index 6= 0(mod 10). For these reduced traces, we calculated for every data point the
correlation between the Hamming weight of the key and the power usage at this data
point. The results convinced us that targeting the Hamming weights of the subkey bytes
was feasible.

3.1.2 Attack: Phase I

Goals and setup. The aim of Phase I was to guess the Hamming weights of the 176 (
= 11∗16) bytes of the 11 round keys. We assumed a weight model, i.e. we guessed that the
Hamming weight of extended key bytes would leak from some parts of the trace, preferably
with an affine leakage function and a manageable noise contribution to the signal.

Approaches studied. We tried various machine learning methods based on neural net-
works and decision trees. We found that owing to the relatively small number of samples
provided, overfitting was a significant problem for many network architectures. Two
approaches in particular fared well with regards to naturally controlling overfitting. One
was a deep convolutional network designed to process the entire reduced trace while
having a relatively small number of weights. The second was a very simple design with
just one input and one output layer and only linear activations. These designs worked

8 Machine learning and classical side-channel analysis in a CTF competition

Figure 8: Distinguishing Set 3 and Set 4 by decision tree classifiers. The dataset is
partitioned into windows of size 1000 and the validation accuracy of a decision tree
classifier trying to distinguish both sample sets is shown. Since Set 3 and Set 4 target the
same device and differ chiefly in Set 4 having a constant key, success in distinguishing
between samples of both sets is heuristically indicative of key leakage. Significant leakage
is visible at the beginning of the trace and at 12 subsequent peaks. While distinguishing
power is significantly larger than random guessing throughout the trace, it seems plausible
that in between the visible peaks of leakage, the remaining success of the decision tree
classifier may be explainable by other factors such as changes in operating conditions
between both sets of measurements.

reasonably well without manual elimination of uninteresting parts of the sample. Decision
tree classifiers also showed some promise. The linear design showed the best learning, so
we selected it for further development.

Model structure. Our final model θ can be described as a single-layer perceptron with a
particular step function as activation. In other words, θ is the concatenation of an affine
function f : R65000 → R176 with componentwise application of the step function

s : R→ N2, s(x) := (bxc, dxe).

Hence, we have θ := −→s ◦ f , where −→s is componentwise application of s to a vector in
Rn (with n = 176). Given a trace v with extended AES key k, the output tuple θ(v)i is
interpreted as the top2-guess for the Hamming weight of the i-th extended key byte ki.
We say that the guess for the extended key byte ki is true if ki ∈ θ(v)i and otherwise say
that it is false.

Training. The step function was chosen manually. Connection weights were learned
by Ridge regression, i.e. by minimizing the error term ‖AX + b − Y ‖2

2 + α‖A‖2
2, where

f(x) = Ax+b and where X is a set of training traces, while Y is the set of the corresponding
Hamming weight vectors (A ∈ R176×65000, b, Y ∈ R176, x ∈ R65000, α ∈ R). This is a
special case of Tikhonov regularization. The regularization term α was chosen by grid
search with generalized cross validation using the GridCV class in scikit-learn [4]. In this
step X and Y were set to the union of Set 1 and Set 2. The classifier so trained was
tested using Set 3 and Set 4. We found that classifier performance was easily sufficient to
solve the portability challenge, and with the approach thereby validated restarted training

Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu,Chen Zhang, Aron Gohr, Sven Jacob,
Werner Schindler, Ileana Buhan, Karim Tobich 9

using the same methods but using all three training sets Set 1, Set 2 and Set 3 to obtain
a new set of weights that was expected to be even more robust to change of device or
operating conditions. The resulting classifier was validated against Set 4. While validation
against Set 4 had the disadvantage of testing against a set with just one key and against
a device already used in training, given the viability of the general approach used we
were confident that the resulting classifier would be better than the one trained only
on two training datasets. Grid search for the regularization parameter α chose α = 214.
Reasonable regularisation parameters would be a lot smaller if traces were normalised
before processing, but in our tests normalisation did not seem to help prediction accuracy.

3.1.3 Combining traces

Our classifier θ takes as input a single trace and outputs a vector of 176 top-2 guesses for
the Hamming weights of the extended key bytes. It is intuitive that prediction accuracy
can be improved by averaging the outputs of f over many traces, as this is expected to
reduce the noise component of the signal. Since f is a linear function, this averaging can
equivalently be performed at the level of input data. Hence, when given a set S of n traces
to predict, our approach is to calculate tav :=

∑
v∈S

v

n and produce the top-2 prediction
θ(tav).

3.1.4 Attack: Phase II

Phase I provided 176 top-2 guesses for the round key bytes. In Phase II we applied a SAT
solver to solve a system of non-linear equations, which is given by the AES key expansion
algorithm and restrictions on the values of the expanded key bytes given by our top-2
guesses. We then removed a randomly selected a subset of 20 key bytes (’drop out’), and
we only gave the top-2 guesses of the remaining 156 key bytes to the SAT solver.

This approach tolerates a small number of false top-2 guesses in Phase I as explained
below.

The probability that a uniformly distributed byte has Hamming weight m or m+ 1 is
≤ 126/256 < 0.5 (’=’ holds for m = 3, 4). Hence each top-2 guess provides more than 1 bit
information. A straight-forward (admittedly heuristic) argumentation suggests that 156
top-2 guesses from attack Phase I should determine the AES key uniquely. This conclusion
matches with our experiments.

The Pseudoalgorithm below sketches our attack.

Pseudoalgorithm
Determine 176 top-2 guesses (Attack Phase~I)
Repeat (Attack Phase~II)

- select randomly 20 top-2 guesses (’drop-out’)
- input the remaining 156 top-2 guesses into the SAT

solver
- terminate the SAT solver if it is unlikely that

a solution exists
until the SAT solver finds the key

As SAT solver, we used CryptoMinisat 5.0.1 [5] via the python interface given by
the pycryptosat package (version 0.1.4) [7]. Search on a particular SAT instance was
terminated if the number of conflicts encountered during search exceeded 300000 (thus
limiting the size of the search tree explored by the SAT solver). This took on average 20
seconds on our machine. Solutions were usually found within that time frame.

10 Machine learning and classical side-channel analysis in a CTF competition

3.1.5 Results

In the contest the neural network in Phase I delivered 176 correct top-2 key guesses for
both Set 5 (no-portability challenge) and Set 6 (portability challenge). The SAT solver
needed some seconds to find the correct keys.

3.2 Further Investigations
3.2.1 Reducing the number of traces

After the contest we had a closer look at our attack. Our results are explained below. The
most interesting question, of course, was how many power traces our attack requires at
least to recover the key (in a reasonable time, with modest computing resources).

For the Set 5 (no-portability challenge) in most cases even a single trace turned out to
be sufficient. In the following we consider Set 6 (portability challenge).

We already know that the attack will succeed if all the false top-2 guesses are contained
in the drop-out. Of course, if there are m false guesses this probability equals

Prob(all m false top-2 guesses in the drop-out) =
(20
m

)(176
m

) , (2)

and the expected number of trials in the attack Phase II (= no. of systems of non-linear
equations) is given by the reciprocal of (2) divided by a constant c (empirically close to 1)
that is given by the likelihood that attack Phase II will abort on a solvable SAT instance.

We divided the 1, 000 attack traces from Set 6 into non-overlapping subsets of N =
2, 3, 4, 5 power traces. Table 1 shows the empirical cumulative distribution of false top-2
guesses for different sample sizes. Table 2 shows the expected number of trials in Phase II
and the expected execution time under the assumption that each trial needs 20 seconds. We
furthermore assume that our abort condition does not lose a significant fraction of solvable
instances. Both assumptions are approximately true with single-threaded execution on our
machine and our chosen abort condition at 300000 conflicts. For the solution of difficult
instances, parallelization is of course desirable and easy to accomplish for our algorithm.

These results show that our attack is expected to be nearly almost successful for N = 5
if we are willing to spend less than half an hour of CPU time. If we spend 44 hours then
even for sample size N = 2 more than half of the attacks will be successful.

Table 1: Number of false top-2 guesses (cumulative, empirical results, among 176 top-2
guesses)

number of false top-2 guesses
0 ≤ 1 ≤ 2 ≤ 3 ≤ 4

N = 2 1% 8% 24% 41% 57%
N = 3 10% 38% 63% 82% 91%
N = 4 31% 60% 84% 96% 98%
N = 5 45% 83% 95% 99% 100%

3.2.2 Anatomy of the classifier

We have examined the weights of our trained model to see whether anything can be learned
from them. We find that the sixteen bytes of the original key cause a strong power signal
in three active regions of the trace, while the remaining bytes of the expanded key have
one active region of the trace each. The three active regions for bytes 0 and 1 are shown
in Figure 9.

Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu,Chen Zhang, Aron Gohr, Sven Jacob,
Werner Schindler, Ileana Buhan, Karim Tobich 11

(a) (b)

(c) (d)

(e) (f)

Figure 9: (a-c) Coefficients for the Hamming weight prediction of byte 0 (green) and
byte 1 (red) of the AES key in our best classifier. Only the active areas of the trace are
shown. The x-axis indicates the index of each coefficient. (d) All coefficients for byte 0.
(e) Weights for the prediction of bytes 25 (blue) and 26 (green). Only the active part of
the trace is shown. (f) All weights for byte 25.

12 Machine learning and classical side-channel analysis in a CTF competition

Table 2: Expected no. of trials in Attack Phase II and the expected execution time
depending on the number of false top-2 guesses (among all 176 top-2 guesses)

number of false top-2 guesses
0 1 2 3 4

E(# systems of eq.) 1 9 81 784 7973
E(exec. time) 20 sec 3 min 27 min 4.3 h 44 h

Figure 10: Error rates of our main model by byte for Set 4 and hybridized Set 4. Hy-
bridization is seen to affect predictive performance across the whole trace.

We see that the active regions for byte 0 and byte 1 have significant overlap. Further,
we see that the classifier assumes a negative relationship between the power usage in some
parts of the trace and the Hamming weight of both byte 0 and byte 1. For some of the
relevant points, single-point regression also shows a negative correlation. In other points of
the trace, negative coefficients for the prediction of byte 0 seem to conincide with positive
values for byte 1. A possible explanation might be that the negative coefficients are an
adaptation minimizing crosstalk between the power signatures of consecutive bytes. In
general, the curves for single-point regression and the coefficients of our classifier have a
similar shape, but do not follow each other entirely.

It is natural to assume that the coefficients in the inactive regions of the trace are just
noise, i.e. that they do not contribute to predictive accuracy. However, this assumption
seems to be wrong, as the following experiment demonstrates.

Denote by ti the i-th trace of Set 4 and let π : Z10000 → Z10000 be a random permutation.
Let ti[a : b] denote the subtrace consisting of the data points with indices {a, a+1, . . . , b−1}
of trace ti and let || be concatenation of arrays. We created a set of hybridized traces t′i
by setting t′i := ti[0 : 30000]||tπ(i)[30000 : 65000]. This set of traces will in the sequel be
called hybridized Set 4. All traces in Set 4 have the same key and correspond to the same
device, so if prediction of Hamming weights is a largely local operation, we would expect
that a loss in prediction performance when our classifier is applied to hybridized traces
instead of regular traces will mostly happen around the splicing point, i.e. affect maybe a
few bytes of the key but leave most untouched.

However, it turns out that top-2 prediction error on hybridized Set 4 is strictly higher
than on Set 4 for 156 of the 176 bytes predicted. Figure 10 shows top-2 prediction error

Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu,Chen Zhang, Aron Gohr, Sven Jacob,
Werner Schindler, Ileana Buhan, Karim Tobich 13

rates on both sets as a function of the byte predicted. We hypothesize that the coefficients
in inactive regions of the trace serve to adapt the model against change of device or
environmental conditions.

We tested this hypothesis by looking at the combined output of the inactive weights for
byte 25 of the trace. Byte 25 of the extended key is relatively difficult to predict using our
approach, as is shown also in Figure 10. Visual examination of the weight vector suggested
identifying indices 15000 to 17000 of the trace as the active part of the trace for the
purposes of byte 25 prediction. We then zeroized the corresponding weights (i.e. weights
15000 to 17000) in our predictor and computed the combined outputs of the remaining
weights for all 30000 training traces. Denote by o(t) the output value so computed for
input the trace t.

Recall that for a vector v ∈ Rn the mean of v is defined by setting

m(v) := 1
n

n∑
i=1

vi

and for n > 1 the empirical standard deviation1 is given by

s(v) :=

√∑n
i=1(vi −m(v))2

n− 1 .

Further, for a vector v ∈ Rn with n > 2 and s(v) 6= 0 we define its normalisation to be
ν(v) := (v − m(v))/s(v), where addition between vectors and scalars is defined in the
natural way, i.e. component-wise.

We then find that Y25 := ν((o(ti))0≤i≤30000) and σ := ν((s(ti))0≤i≤30000) are in close
correspondence to each other for ti ∈ Set 1 ∪ Set 2 ∪ Set 3 (see Figure 11). This is
slightly surprising, as the output of the inactive part of a trace is a linear function of the
trace, whereas the empirical standard deviation is a nonlinear function. However, it is a
differentiable function in the area of interest, so the traces may simply be close enough to
each other in R65000 for this function to have a good linear approximation locally.

As can be seen from Figure 11, the standard deviation of a trace is an excellent tool for
device discrimination, so the results of this test confirm our hypothesis that the predictor
uses parts of the trace that do not directly carry information about the extended key bytes
to take into account device properties or environmental factors.

3.3 Concluding remarks on the AES challenge
We have shown how a combination of a linear classifier and a SAT solver can break a
protected AES implementation by power analysis with a very small number of traces. To
develop our attack, the adversary does not need to know much about the implementation.
Analyzing the solution, some knowledge about the implementation is, however gained; for
instance, we see evidence of an unprotected initial key setup phase and an unprotected key
schedule. It would be interesting to know the physics underlying some negative correlations
between power usage and Hamming weight of key bytes. A hypothesis related to cross-talk
between signals of consecutive bytes may offer a partial explanation in some cases.

In terms of a comparison to classical profiling, machine learning is quite useful in this
case study in terms of automatically taking care of relations between a wide range of
observations and the variables of interest. Our classifier naturally combines the results
of thousands of measurements into one Hamming weight estimate and we did in fact get
significantly worse results when restricting our approach to small sets of time slices judged
interesting in terms of key prediction (note that such restriction would have to be fairly

1Note that this treats each trace as though it were a vector of realisations of a random variable. Of
course it isn’t.

14 Machine learning and classical side-channel analysis in a CTF competition

Figure 11: Normalised empirical standard deviations (sigma) for the traces of Set 1 to
Set 3 compared to normalised output of our predictor restricted to inactive areas of the
trace for extended key byte 25 (Y25). Normalised output closely follows the standard
deviation for the trace. Traces 0-9999 correspond to Set 1, traces 10000-19999 correspond
to Set 2, and the remaining traces 20000-29999 correspond to set 3. (Left) Data for all
30000 training traces. (Right) Same data for a few traces within Set 2.

drastic in order to be useful since we seek to predict all 176 Hamming weights of the
extended key). On the other hand, it is generally easier in classical profiling to deal with
overfitting, and models are more closely tied to pre-existing knowledge about the physics
of the device under attack. There is, however, no hard boundary between both approaches
and combining the advantages of both worlds may well be feasible in future attacks.

4 The RSA challenge

4.1 Preliminary tests

Template attack[3], a Classical Profiling attack, has been chosen for RSA challenge.
Considering the different patterns, a first partitioning of the trace into three parts can
be found visually as illustrated in Figure 12. The head part of the trace identifies some
pre-processing of RSA, followed by a modular exponentiation part which is the main
function of RSA decryption and a tail part with some post-processing.

Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu,Chen Zhang, Aron Gohr, Sven Jacob,
Werner Schindler, Ileana Buhan, Karim Tobich 15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Sample 106

-100

0

100
Am

pl
itu

de

Header part of one RSA trace

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Sample 106

-100

0

100

Am
pl

itu
de

Tail part of the one RSA trace

Modular exponationPre-Process

Modular exponation
Post-Process

Figure 12: Simple power analysis for RSA

The head part includes two operations, the first operation may be the blinding process
of private d as in Eq.(3) and the latter may indicate the conversion to Montgomery-Domain
as in Eq.(4).

d′ = d+ rφ(N) (3)

T (x) = Mont(x,R2) (4)

The tail of the trace, the post processing, includes a time consuming communication
part, a CPU-Call to output the results of decryption and one modular operation, which
indicates the transform of data from Montgomery-Domain to standard representation as
below

T (x) = Mont(x, 1) (5)

The rest of the trace, containing the modular exponentiation, is comprised of two
kinds of operations, which are modular multiplication and square. When counting total
operation number, totally 810 operations are found with the first trace in set 1 as an
example. Moreover,d′ = d+ rφ(N) is 544 bits since φ(N) is 512 bits and r is 32 bits for
this case, and we have

Ratio = 810
512 + 32 = 1.489 (6)

Hence the modular exponentiation is the basic right-to-left or left-to-right algorithm
without always modular multiplication square countermeasures, otherwise the Ratio above
should be nearly 2. Furthermore, when calculating the operation number for a specific
RSA calculation in learning traces, we can make the conclusion that the algorithm is as
below.

4.2 Profiling phase
To get more information about every operation, either a 544 bits modular multiplication or
a 544 bits square, the trace for each one is extracted out from the raw trace and and we will
hereafter refer to these sub-traces as segment-traces. The necessary alignment of traces is
performed leveraging the pattern marked in red and marked as Alignment target. In other
words, each segment-traces will start from a specific pattern marked with Alignment target
and last for 260K sample points. These segment-traces will correspond to an operation,
either the modular multiplication or the square. After successful alignment, the leakage

16 Machine learning and classical side-channel analysis in a CTF competition

Algorithm 1 The left-to-right modular exponentiation
Require: M,d = {dn−1, dn−1, ...d1, d0}
Ensure: Md

1: out=1;
2: for i = n− 1 to 0 do
3: out = out2

4: if di == 1 then
5: out = out ∗M
6: end if
7: end for
8: return out

assessment, i.e. the correlation between the tag of the operation(tag = 1 indicates a 544
bits square, tag = 0 indicates a 544 bits modular multiplication) and the segment-traces,
can be performed, as is shown in Figure 13.

Figure 13: Above figure: The first 10 segment-traces for the first 10 operations with
alignment; Below figure: Correlation between the operations and segment-traces for
leakage assessment

Significant leakage points, marked with the first red circle in Figure 13, represent
different operations for the storage of out and M , with notations as in Algorithm 1. As out
and M are stored in different memories, access to out is sufficient for the modular square
operation while an extra access to storage is mandatory for the modular multiplication
operation.

In the experiment with learning traces, only taking advantage of the leakage points
marked in the first red circle to build the template, attacking the same trace sets as used in

Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu,Chen Zhang, Aron Gohr, Sven Jacob,
Werner Schindler, Ileana Buhan, Karim Tobich 17

profiling phase works, however attacking other traces does not present very high accuracy.
So in order to effectively retrieve the whole key with higher confidence, more POIs with
more leakage are needed. Please notice the leakage points marked in the second red circle
in Figure 13, they locate in small operations within a 544 bits operation. A total of 16
small operations exists in each 544 bit modular multiplication or square, which may be
caused by the implementation of dividing 544 bits modular multiplication into smaller size
of operations. However, the specific implementation does not impact to our attack.

Hence if the alignment of the traces can be based on small operations, more POIs may
potentially appear within each small operation. This speculation can be verified after the
advanced alignment and leakage assessment afterwards as is shown in Figure 14. The root
cause for the leakage of small operations may be the different storage access of the small
operations between 544 bits modular multiplication and square. We call the resulting
alignment procedure advanced alignment.

0 2 4 6 8 10
Sample 104

-100

-50

0

50

100

Am
pl
itu
de

RSA traces with segment alignment

0 2 4 6 8 10
Sample 104

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

C
or
re
la
tio
n

Leakage assessment using correlation calculation

Figure 14: Above figure: The first 10 segment-traces(either a 544 bits modular multi-
plication or a square) with advanced alignment; Below figure: Correlation between the
operations and segment-traces for leakage assessment

After 804 POIs have been selected which satisfy |correlation| > 0.3, the profiling for
template attack[3], modeling with {u(i, t)(i = 0, 1), C−1}, is performed for Challenge 5,6
and an extra 7 as below. In the whole attack, operation = 1 indicates a 544 bits modular
square and operation = 0 indicates a 544 bits modular multiplication.

u(i, t) =
∑
operation=i T (t)∑
operation=i 1

C = Covoperation=0T (t) + Covoperation=1T (t)
2

(7)

18 Machine learning and classical side-channel analysis in a CTF competition

4.3 Attack phase

Let m be the operation number for one Challenge trace and let {O0, O1, . . . Om−2, Om−1}
be the operation series. Let {T (j), j = 0, 1, 2 . . .m− 1} denote the segment-traces after
pre-processing, exactly the same as what we did for profiling, the probability for attack
phase and the operation series can be obtained as below.

P ji =(T (j)− u(i)) ∗ C−1 ∗ (T (j)− u(i)), i = 0, 1
Oj =argmaxk(P jk), j = 0, 1 . . .m− 1, k = 0, 1

(8)

A final step of key brute-force computation, a decryption-encryption algorithm with
public key (N, e), can be applied to confirm the private key after retrieving the operation
series Oi in attack phase. N is provided and e = 65537 is verified after trying both e = 3
and e = 65537 with the first private key in learning traces.

Algorithm 2 Brute force using decryption-encryption for RSA
Require: O = O0, O1, . . . Om−2, Om−1
Ensure: privatekey : d′

Msg=Random()
2: for (O1 and O have less than k bits difference) do

Key = ConvertMultiplicationAndSquareToRootKey(O1)
4: if (MsgKey)e == Msg then

return Key
6: end if

end for
8: return NULL

Then the whole RSA key for Challenge Round-5 and Round-6 can be retrieved with a
maximum of 3 bits error tolerance which indicates an error probability of 3

1.5∗(512+32) =
0.37%. The expected computational effort for this error correction is then given by

(
544 ∗ 1.5

0

)
+
(

544 ∗ 1.5
1

)
+
(

544 ∗ 1.5
2

)
+
(

544 ∗ 1.5
3

)
= 26831985 = 224.7 (9)

modular exponentiations.

In conclusion, the work-flow of this attack is summarized as Figure 15. What’s
more, this proposal describes a solution to RSA challenge which can retrieve the whole
RSA private key without any knowledge of the implementation with a single decryption
power trace for both Challenge Round 5 and 6. This attack can be applied to the RSA
implementation with countermeasures of exponentiation blinding, message blinding or
both, because this is purely a single trace attack. Moreover, the attack provide a results
benchmark and work-flow to exploit the extra smaller operation within the big modular
operation, e.g. 544 bits modular multiplication or square in this case.

Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu,Chen Zhang, Aron Gohr, Sven Jacob,
Werner Schindler, Ileana Buhan, Karim Tobich 19

Advanced alignment based on smaller
multiplier in each 544 bit operation

Leakage assessments to identify the
POI

To build the template using (u,C) model

Same alignment process as profiling

Calculation of the probability based on
the template build in profiling

POI selection based on the process in
profiling phase

Collection of the operation(multiplier or
square) serials

A brute force to confirm the private key

Profiling Attack

Simple power trace analysis to identify
the operation of RSA decryption

Alignment based on the 544 bit
operation, the multiplier of square

Figure 15: Work-flow for the attack of RSA challenge

What’s more, what we can research further about the RSA part at least includes three
aspects.

1. To attack the private key masking operation which is d′ = d+ rφ(N).

2. To exploit the existence of the extra subtraction operation for modular multiplication
or square.

3. To perform Deep Learning for the traces without too much pre-processing.

5 Conclusion
We use a combination of profiling, POI selection and leakage model assessment, for
extracting the keys for the DES challenges. This results in a robust and relatively fast
solution. All the techniques used can be classified as classic SCA. It remains to be seen if
deep learning or other flavours of machine learning can further improve the performance
of this attack.

For the AES challenges, the solution here discussed is based on a combination of domain
knowledge and machine learning. Our ML model has 65000 free parameters and requires
almost no preprocessing of the trace data prior to training or inference. We show that
our model without manual intervention learned to take device properties into account
for its predictions. The combined solution consisting of the leakage model, SAT solver
and error correction is very efficient: using a modest amount of computation on a single
desktop computer, we can solve the portability challenge using only a few traces. In
the non-portability challenge, even a single trace usually suffices. Our results show that
a combination of relatively simple machine learning techniques and modern constraint
satisfaction tools can produce state-of-the-art results on this side channel challenge. DL
models on this challenge will have to exploit the leakage extremely well to improve
significantly on these results.

20 Machine learning and classical side-channel analysis in a CTF competition

For the RSA challenges, the presented solution retrieves the whole key with a single
trace without any knowledge of the implementation. We use simple trace analysis to
identify the patterns. Next, to filter the leakage points we use advanced trace alignment
for small multiplication based on automatic patter searching. To confirm the private key
we use the template model and a simple brute force scheme. Same as the solution for
AES challenges, this solution is a hybrid between classical side channel analysis and the
machine learning (used for trace alignment).

Although we tipped the scale in favour of deep learning, by allowing a lot of time for
preparation, we observe the participants who captured the flag preferred classic SCA, or
made use a hybrid approach which combines machine learning and classic side channel
analysis. We have no results on the performance of machine learning techniques on the
hardware engine. This is an interesting finding, when certification bodies in the industry
mandate the use of deep learning for high-end security evaluations.

The main contribution of this paper is therefore a snapshot in time, of the state of
the art in the community with respect to the application of deep learning techniques for
side channel analysis. The second contribution of this paper is an in-depth description
of the most successful solutions for key extraction which is a learning opportunity for
performing side channel analysis in a black-box scenario by experts in this field. We
conclude from the presented solutions that human expertise remains very important in the
design of successful attacks by improving it with the use of machine learning techniques.
As a third contribution, the solutions presented in this paper serve both as a baseline for
future research and as a possible template or other efficient side channel attack designs.
Performance improvement may be possible here e.g. in terms of the number of traces
required to retrieve the key, the amount of processing applied to the raw traces and the
number of bits left for brute forcing.

Acknowledgements This work was partly supported by the European Unions H2020
programme under grant agreement number ICT-731591 (REASSURE).

References
[1] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis: Leaking Secrets.

International Cryptology Conference 1999.

[2] E. Brier, C. Clavier, F. Olivier. Correlation Power Analysis with a Leakage Model.
Cryptographic Hardware and Embedded Systems, CHES 2004. Springer Berlin Hei-
delberg.

[3] Chari S, Rao J R, Rohatgi P. Template Attacks. International Workshop on Crypto-
graphic Hardware and Embedded Systems. 2002.

[4] F. Pedregosa et al., Scikit-learn: Machine Learning in Python, Journal of Machine
Learning Research, vol. 12, p. 282-2830, 2011

[5] M. Soos, K. Nohl, C. Castelluccia, Extending SAT solvers to Cryptographic Problems,
Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009

[6] Repository for the tracesets, https://chesctf.riscure.com/2018/training/, accessed
2019/12/01

[7] Pycryptosat homepage, https://pypi.org/project/pycryptosat/, accessed 2018/10/08

Yongbo Hu, Yeyang Zheng, Pengwei Feng, Lirui Liu,Chen Zhang, Aron Gohr, Sven Jacob,
Werner Schindler, Ileana Buhan, Karim Tobich 21

[8] A. Gohr, S. Jacob, W. Schindler. CHES 2018 Side Channel Contest CTF - Solution
of the AES Challenges. IACR e-print report 2019/094, https://eprint.iacr.org/
2019/094/20190131:230649

https://eprint.iacr.org/2019/094/20190131:230649
https://eprint.iacr.org/2019/094/20190131:230649

	Introduction
	The DES Challenge
	Preliminary tests
	Attack phase
	Results

	The AES Challenge
	The attack
	Further Investigations
	Concluding remarks on the AES challenge

	The RSA challenge
	Preliminary tests
	Profiling phase
	Attack phase

	Conclusion

