
Locally Decodable Codes with Randomized Encoding

Kuan Cheng ∗ Xin Li † Yu Zheng ‡

January 10, 2020

Abstract

We initiate a study of locally decodable codes with randomized encoding. Standard
locally decodable codes are error correcting codes with a deterministic encoding function
and a randomized decoding function, such that any desired message bit can be recovered with
good probability by querying only a small number of positions in the corrupted codeword.
This allows one to recover any message bit very efficiently in sub-linear or even logarithmic
time. Besides this straightforward application, locally decodable codes have also found many
other applications such as private information retrieval, secure multiparty computation, and
average-case complexity.

However, despite extensive research, the tradeoff between the rate of the code and the
number of queries is somewhat disappointing. For example, the best known construc-
tions still need super-polynomially long codeword length even with a logarithmic number
of queries, and need a polynomial number of queries to achieve a constant rate. In this
paper, we show that by using a randomized encoding, in several models we can achieve
significantly better rate-query tradeoff. In addition, our codes work for both the standard
Hamming errors, and the more general and harder edit errors.

1 Introduction

Locally decodable codes (LDCs) are error correcting codes that allow one to decode any specific
message symbol by querying only a few symbols from the received codeword, while still tolerating
some (say a constant) fraction of errors. This enables the appealing feature of recovering any
message symbol very efficiently without reading the entire codeword, and usually this can be
done in sublinear time. This feature is especially useful when dealing with large data streams
(e.g., databases), and when the recovering of the entire data stream is unnecessary. While locally
decodable codes can be defined over an alphabet of any size at least two, in this paper we focus
on the case of binary alphabet. Standard locally decodable codes have been studied extensively
for Hamming errors, and have found many applications in theory and practice. These include for
example private information retrieval, secure multiparty computation, average-case complexity
and many more. We refer the reader to [Yek12] for an excellent survey on this topic.

However, in contrast to standard error correcting codes which can achieve excellent rate (the
ratio between the length of the message and the length of the codeword), for locally decodable
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codes the situation is somewhat disappointing. Specifically, if one considers the most natural
and interesting case of tolerating a constant fraction of errors, then standard error correcting
codes can simultaneously achieve a constant rate. For locally decodable codes, the rate also
depends on the number of queries for decoding. Specifically, consider the standard setting where
our goal is to recover any message bit with probability 2/3. With r queries and for message
length k, it is known that the codeword length needs to be at least Ω(k(r/r−1)) [KT00] and
hence if r is a constant,1 the codeword length needs to be at least polynomially long and thus
achieving a constant rate is impossible. However, even for the case of r = O(log k) there is no
explicit construction of locally decodable codes with constant rate, and in fact the best known
construction in this case fails to achieve codeword length polynomially in k. Currently, the
best known constructions need r = kΩ(1) queries to achieve a constant rate [KSY11]. Below we
briefly summarize the parameters of the best known constructions for different regimes of query
complexity, while fixing the success probability of decoding any bit to be say 2/3. For constant
query r = O(1), the best known construction is by using matching vector codes [DGY11], which
gives for example a code that uses r = 3 · 2t−2 queries and can tolerate δ = O(1/r) fraction
of errors. The codeword has length expexpt((log k)1/t(log log k)1−1/t), which is slightly sub-
exponential. In contrast, the lower bound only gives a polynomial codeword length. For query
complexity r = O(log k), the best known construction is also due to matching vector codes,

which gives codeword length expexp(log log3−o(1) k). Note that this is super-polynomial, while
the lower bound already becomes useless. For query complexity r = logt k with constant t > 1,
Reed-Muller codes give codeword length k1+1/(t−1)+o(1). Finally, for query complexity r = kε

for any constant ε > 0, multiplicity codes [KSY11] give codeword length O(k) while tolerating
some constant δ = δ(ε) fraction of errors. Thus, there is a huge gap between the upper bounds
and the lower bounds. This means that known constructions of locally decodable codes either
need a lot of redundancy information, or need to use relatively large number of queries, which
is undesirable. Closing this gap is an important open problem, which evidently appears to be
quite hard.

Note that to ensure the property of local decoding, it is necessary to change the decoding
from a deterministic algorithm into a randomized algorithm, since otherwise an adversary can just
corrupt all the bits the decoding algorithm queries. Hence, the decoding becomes probabilistic
and allows some small probability of failure. In this paper, with the goal of improving the rate of
locally decodable codes in mind, we initialize the study of a relaxed version of locally decodable
codes which is also equipped with randomized encoding. Now the probability of decoding failure
is measured over the randomness of both the encoding and decoding.

There are several questions that we need to clarify in this new model. The first question
is: Does the decoding algorithm know and use the randomness of the encoding? Although we
cannot rule out the possibility of constructions where the decoding algorithm can succeed without
knowing the randomness of the encoding, in this paper we only consider the most natural setting,
where the decoding algorithm indeed knows and uses the randomness of encoding. After all,
without the encoding’s randomness the decoding algorithm does not even completely know the
encoding function. The second question, as we are considering an adversarial situation, is: Is
the adversary allowed to know the randomness of the encoding?

This turns out to be a very interesting question. Of course, an adversary who knows the
randomness of encoding is much stronger, and thus we need a stronger construction of codes as
well. In this paper, we provide a partial answer to this question, by showing that under some
reasonable assumption of the code, a locally decodable code in our model where the adversary
knows the randomness of encoding is equivalent (up to constant factors) to a standard locally

1For the case of r = 2 there is a stronger lower bound of 2Ω(k) [KdW04].
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decodable codes. The assumption is that the code has the following homogenous property:
Property (*) : For any fixing of the encoding’s randomness, any fixed error pattern, and any

fixed target message bit, the success probability (over the decoding’s randomness) of decoding
this bit is the same for all possible messages.

We note that this property is satisfied by all known constructions of standard locally decodable
codes. Part of the reason is that all known constructions are linear codes, and the decoding only
uses non adaptive queries. We now have the following theorem.

Theorem 1. Suppose there is an LDC with randomized encoding for Hamming errors, with
message length k, codeword length n, that can tolerate δ fraction of errors and successfully decode
any message bit with probability 1 − ε using r queries. Then there also exists a (possibly non
explicit) standard LDC, with message length k/2, codeword length n, that can tolerate δ fraction
of errors and successfully decode any message bit with probability 1− 2ε using r queries.

Proof. Fix a specific random string used by the encoding, and a target message bit for decoding
(say bit i). Since now the encoding becomes a deterministic function, and there are only finite
number of possible error patterns, there is some error pattern that is the worst for decoding,
i.e., the one that minimizes the success probability of decoding bit i. We say the fixed random
string is good for bit i if this success probability is at least 1− 2ε. Note that the overall success
probability of decoding bit i is at least 1− ε, thus by a Markov argument the probability that a
random string is good for bit i is at least 1/2.

Now again, by an averaging argument, there exists a fixed string that is good for at least
1/2 fraction of the message bits. Fix this string and the encoding now becomes deterministic.
Without loss of generality assume that the string is good for the first half of the message bits.
Now fix the rest of the message bits to any arbitrary string (e.g, all 0), we now have a standard
LDC with message length k/2, codeword length n, that can tolerate δ fraction of errors and
successfully decode any message bit with probability 1− 2ε using r queries.

The above theorem shows that, in order to get significantly better rate-query tradeoff, we
need to either forbid the adversary to know the randomness of encoding, or to construct codes
that do not satisfy property (*) (e.g., using adaptive encoding or adaptive decoding). In this
paper we study the first setting, which is naturally simpler, and we leave codes in the second
setting as an interesting open problem. In general, there are two different models where the
adversary is not allowed to know the randomness of encoding:

Shared randomness In this model, the encoder and the decoder share a private uniform
random string. Thus, the adversary does not know the randomness used by the encoder; but
he can add arbitrary errors to the codeword, including looking at the codeword first and then
adaptively add errors.

Oblivious channel In this model, the encoder and the decoder do not share any randomness.
However, the communication channel is oblivious, in the sense that the adversary can add any
error pattern non adaptively, i.e., without looking at the codeword first.

Here we study both models. We now give our formal definitions of locally decodable codes
with randomized encoding.

Definition 1 (LDC with a fixed Failure Probability). An (n, k, δ, q, ε) LDC with randomized
encoding consists of a pair of randomized functions {Enc,Dec}, such that:

• Enc : {0, 1}k → {0, 1}n is the encoding function. For every message x ∈ {0, 1}k, y =
Enc(x) ∈ {0, 1}n is the corresponding codeword.
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• Dec : [k]×{0, 1}∗ → {0, 1} is the decoding function. If the adversary adds at most δn errors
to the codeword, then for every i ∈ [k], every y ∈ {0, 1}∗ which is a corrupted codeword,

Pr[Dec(i, y) = xi] ≥ 1− ε,

where the probability is taken over the randomness of both Enc and Dec.

• Dec makes at most q queries to y.

Remark. Two remarks are in order. First, our definition is quite general in the sense that
we don’t restrict the type of errors. In particular, in this paper we study both Hamming errors
(i.e., bit flips) and edit errors (i.e., insertions, deletions, and substitutions). Second, as men-
tioned before, the model can either assume shared private randomness or an oblivious adversarial
channel.

The above definition is for a fixed failure probability ε. However, sometimes it is desirable
to achieve a smaller failure probability. For standard locally decodable codes, this can usually
be done by repeating the decoding algorithm independently for several times, and then taking
a majority vote. This decreases the failure probability at the price of increasing the query
complexity. In contrast, in our new model, this approach is not always feasible. For example, in
the extreme case one could have a situation where for some randomness used by the encoding,
the decoding succeeds with probability 1; while for other randomness used by the encoding, the
decoding succeeds with probability 0. In this case repeating the decoding algorithm won’t change
the failure probability. To rule out this situation, we also define a locally decodable codes with
flexible failure probability.

Definition 2 (LDC with Flexible Failure Probabilities). An (n, k, δ) LDC with randomized
encoding and query complexity function q : N × [0, 1] → N, consists of a pair of randomized
algorithms {Enc,Dec}, such that:

• Enc : {0, 1}k → {0, 1}n is the encoding function. For every message x ∈ {0, 1}k, y =
Enc(x) ∈ {0, 1}n is the corresponding codeword.

• Dec : [k]×{0, 1}∗ → {0, 1} is the decoding function. If the adversary adds at most δn errors
to the codeword, then for every i ∈ [k], every y ∈ {0, 1}∗ which is a corrupted codeword,
and every ε ∈ [0, 1],

Pr[Dec(i, y) = xi] ≥ 1− ε,

while Dec makes at most q = q(n, ε) queries to y. The probability is taken over the ran-
domness of both Enc and Dec.

Again, this definition can apply to both Hamming errors and edit errors, and both the model
of shared randomness and the model of an oblivious adversarial channel.

To the best of our knowledge, locally decodable codes with randomized encoding have not
been studied before in the literature. In this paper we provide several constructions with rate-
query tradeoff better than standard locally decodable codes. We have the following theorems.
The first one deals with a fixed decoding failure probability.

Theorem 2. There exists a constant 0 < δ < 1 such that for every k ∈ N there is an efficient
construction of (n, k, δ, q, ε) LDC with randomized encoding, where n = O(k). For any ε ∈ [0, 1],
the query complexity is as follows.

• for Hamming errors with shared randomness, q = O(log 1
ε );
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• for Hamming errors with an oblivious channel, q = O(log k log 1
ε );

• for Edit errors, both with shared randomness and with an oblivious channel, q = polylogk log 1
ε .

We can compare our theorem to standard locally decodable codes. Achieving q = O(log 1
ε )

is equivalent to achieving constant query complexity for success probability 2/3. For standard
LDCs we know in this case it is impossible to achieve a constant rate, and the best known
construction still has sub-exponential codeword length. Similarly, achieving q = O(log k log 1

ε ) is
equivalent to achieving query complexity O(log k) for success probability 2/3, and for standard
LDCs the best known construction still has super-polynomial codeword length. In contrast, we
can achieve a constant rate.

The next theorem deals with a flexible decoding failure probability. We note that one way
to achieve this is to repeat the encoding several times independently, and send all the obtained
codewords together. The decoding will then decode from each codeword and take a majority
vote. However, this approach can decrease the rate of the code dramatically. For example, if one
wishes to reduce the failure probability from a constant to 2−Ω(k), then one needs to repeat the
encoding for Ω(k) times and the rate of the code decreases by a factor of 1/k. In this work we
use a different construction that can achieve a much better rate.

Theorem 3. There exists a constant 0 < δ < 1 such that for every k ∈ N there is an efficient
construction of (n, k, δ) LDC with randomized encoding and flexible failure probability, where
n = O(k log k). The query complexity is as follows.

• for Hamming errors with shared randomness, q = O(log k log 1
ε );

• for Hamming errors with an oblivious channel, q = O(log2 k log 1
ε );

• for Edit errors, both with shared randomness and with an oblivious channel, q = polylogk log 1
ε .

We can also compare this theorem to standard locally decodable codes. Again, achieving
q = O(log k log 1

ε ) is equivalent to achieving query complexity O(log k) for success probability
2/3, and for standard LDCs the best known construction still has super-polynomial codeword
length. Similarly, achieving q = O(log2 k log 1

ε ) is equivalent to achieving query complexity

O(log2 k) for success probability 2/3, and for standard LDCs the best known construction using
Reed-Muller codes needs codeword length k2+o(1). In contrast, we can achieve codeword length
O(k log k).

1.1 Related works.

As mentioned earlier, standard locally decodable codes for Hamming errors have been studied
extensively, with many beautiful constructions such as [Yek08], [Efr09], [DGY11], and we refer
the reader to [Yek12] for an excellent survey.

For edit errors, the situation is quite different. Even for standard error correcting codes (not
locally decodable), the progress for edit errors is much slower than that for Hamming errors.
For example, the first asymptotically good code for edit errors is not known until the work of
Schulman and Zuckerman in 1999 [SZ99]. In recent years, there has been a line of research
[GW17], [GL16], [BG16], [Bel15], [HSV18], [CJLW18], [Hae19], [CJLW19] that makes constant
progress and finally culminates in [CJLW18], [Hae19] which give codes that can correct t edit
errors with redundancy (the extra information needed for the codeword) size O(t log2(k/t)),
where k is the message length. This is within a log(k/t) factor to optimal. In [CJLW18], the
authors also give a code that can correct t edit errors with redundancy O(t log k), which is
optimal up to constants for t ≤ k1−α, any constant α > 0. In another line of work [HS17],
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[HS18], [CHL+19], near optimal codes for edit errors over a larger alphabet are constructed,
using the constructions of synchronization strings.

In terms of locally decodable codes, no known constructions for Hamming errors can be used
directly as a code against edit error. This is due to the shift caused by insertions and deletions,
which causes the loss of information about the positions of the bits queried. The only known
previous work of locally decodable codes for edit errors is the work by Ostrovsky and Paskin-
Cherniavsky [OPC15]. There the authors provided a “compiler” to transform a standard locally
decodable code for Hamming error to a locally decodable code for edit error. Their construction
first takes a standard LDC as a black box, then concatenate it with an asymptoticaly good code
for edit errors. They showed that the fraction of error tolerated and the rate of the resulted code
both only decrease by a constant factor. Meanwhile, the query complexity increases by factor of
polylog(n), where n is the length of the codeword.

Standard error correcting codes with randomized encoding (but deterministic decoding) have
been studied by Guruswami and Smith [GS16]. They constructed such codes for an oblivious
adversarial channel that can add δ fraction of errors, where the rate of the codes approaches
the Shannon capacity 1 −H(δ). Their encoding and decoding run in polynomial time and the
decoding error is exponentially small.

1.2 Technique Overview

1.2.1 Hamming Error

We start from constructions for Hamming errors and let the fraction of errors be some constant
δ. To take advantage of a randomized encoding, our approach is to let the encoder perform a
random permutation of the codeword. Assuming the adversary does not know the randomness
of the encoding, this effectively reduces adversarial errors into random errors, in the following
sense: if we look at any subset of coordinates of the codeword before the random permutation,
then the expected fraction of errors in these coordinates after the random permutation is also
δ. A stronger statement also follows from concentration bounds that with high probability this
fraction is not far from δ, and in particular is also a constant. This immediately suggests the
following encoding strategy: first partition the message into blocks, then encode each block with
a standard asymptotically good code, and finally use a random permutation to permute all the
bits in all resulted codewords. Now to decode any target bit, one just needs to query the bits
in the corresponding codeword for the block that contains this bit. As the error fraction is
only a constant, a concentration bound for random permutations shows that in order to achieve
success probability 1 − ε, one needs block length O(log(1/ε)) and this is also the number of
queries needed. To ensure that the adversary does not learn any information about the random
permutation by looking at the codeword, we also use the shared randomness to add a mask to
the codeword (i.e., we compute the XOR of the actual codeword with a random string). This
gives our codes for a fixed failure probability, in the model of shared randomness.

To modify our construction to the model of an oblivious channel, note that here we don’t
need a random mask anymore, but the encoder has to tell the decoder the random permutation
used. However the description of the random permutation itself can be quite long, and this
defeats our purpose of local decoding. Instead, we use a pseudorandom permutation, namely an
almost κ = Θ(log 1

ε ) wise independent permutation with error ε/3. Such a permutation can be
generated by a short random seed with length r = O(κ log n+log(1/ε)), and thus is good enough
for our application. The encoder will first run the encoding algorithm described previously to
get a string y with length n/2, and then concatenate y with an encoded version z ∈ {0, 1}n/2
of the random seed. The decoder will first recover the seed and then perform local decoding as
before. To ensure the seed itself can be recovered by using only local queries, we encode the seed
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by using a concatenation code where the outer code is a (n1, k1, d1) Reed-Solomon code with
alphabet size poly(n), and the inner code is an (n2, k2, d2) asymptotically good code for O(log n)
bits, where n1n2 = n/2, k1k2 = r, d1 = n1 − k1 + 1, n2 = O(log n). That is, each symbol of the
outer code is encoded into another block of O(log n) bits. Now to recover the seed, the decoder
first randomly chooses 8k1 blocks of the concatenated codes and decodes the symbols of the outer
code. These decoded symbols will form a new (shorter) Reed-Solomon code, because they are
the evaluations of a degree k1 polynomial on 8k1 elements in Fk22 . Furthermore, this code is still
enough to recover the seed, because the seed is short and with high probability there are only a
small constant fraction of errors in the decoded symbols. So the decoder can perform a decoding
of the new Reed-Solomon code to recover the random seed with high probability. Note that the
number of queries of this decoding is 8k1n2 = O(r).

We now turn to our constructions for flexible failure probability. Here we want to achieve
failure probability from a constant to say 2−k. For each fixed failure probability we can use the
previous construction, and this means the block size changes from a constant to O(k). Instead
of going through all of these sizes, we can just choose O(log k) sizes and ensure that for any
desired failure probability ε, there is a block size that is at most twice as large as the size
we need. Specifically, the block sizes are 22i , i = 1, 2, . . . , log k. In this way, we have O(log k)
different codewords, and we combine them together to get the final codeword. Now for any failure
probability ε, the decoder can look for the corresponding codeword (i.e., the one where the block
size is the smallest size larger than 1/ε) and perform local decoding. However, we cannot simply
concatenate these codewords together since otherwise δ fraction of errors can completely ruin
some codeword. Instead, we put them up row by row into a matrix of O(log k) rows, and we
encode each column of O(log k) bits with another asymptotically good binary code. Finally we
concatenate all the resulted codewords together into our final codeword of length O(k log k).
Note that now to recover a bit for some codeword, we need to query a whole block of O(log k)
bits, thus the query complexity increases by a log k factor while the rate decreases by a log k
factor.

1.2.2 Edit Error

Our constructions for edit errors follow the same general strategy, but we need several mod-
ifications to deal with the loss of index information caused by insertions and deletions. Our
construction for edit errors can achieve the same rate as those for Hamming case, but the query
complexity for both models increases by a factor of polylogk. We now give more details. We
start with the construction of an (n = O(k), k, δ = Ω(1), q = polylogk log(1/ε), ε) LDC for any
ε ∈ (0, 1), in the model with shared randomness. As in the case of Hamming errors, the shared
randomness is used in two places: a random permutation π and some random masks to hide
information. The construction has two layers.

For the first layer, view the message x ∈ {0, 1}k as a sequence over the alphabet {0, 1}log k

and divide it into k/(k0 log k) small blocks each containing k0 symbols from {0, 1}log k. Then,
we encode each block with Enc0, which is an asymptotically good (n0, k0, d0) code for Hamming
errors over the alphabet {0, 1}log k. Concatenating these k/(k0 log k) codewords gives us a string
of length N = n0k

k0 log k over the alphabet {0, 1}log k. We then permute these N symbols using π

to get y′ = B1 ◦B2 ◦ · · · ◦BN with Bi ∈ {0, 1}log k. Since n0/k0 is a constant, we have N < k for
large enough k.

We are now ready to do the second layer of encoding. In the following, for each i ∈ [N ],
bi ∈ {0, 1}log k is the binary representation of i and ri ∈ {0, 1}log k is a random mask shared
between the encoder and decoder. C0 : {0, 1}2 log k → {0, 1}10 log k is an asymptotically good
code for edit errors and the ⊕ notation means bit-wise XOR. For each i ∈ [N ], we compute
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B′i = C0(bi ◦ (Bi⊕ ri)) ∈ {0, 1}10 log k. We output y = B′1 ◦B′2 ◦ · · · ◦B′N ∈ ({0, 1}10 log k)N , which
is of length n = 10n0

k0
k = O(k). Note that the use of the random masks ri’s is to hide the actual

codeword, so that the adversary cannot learn any information about the permutation.
To decode a given message bit, we need to find the corresponding block. The natural idea

to do this is by binary search. However, this may fail with high probability due to the constant
fraction of edit errors. To solve this issue, we use the techniques developed by [OPC15], which
use a similar second layer encoding and give a searching algorithm with the following property:
Even with δ-fraction of edit errors, at least 1 − O(δ) fraction of the blocks can be recovered
correctly with probability at least 1 − neg(k). The algorithm makes a total of polylogk queries
to the codeword for each search.

We now describe the decoding. Assume the bit we want to decode lies in the i-th block of x.
Let Ci ∈ ({0, 1}log k)n0 be the codeword we get from encoding the i-th block using Enc0. With
the information of π, we can find out n0 indices i1 to in0 such that Ci is equal to Bπ−1(i1) ◦
Bπ−1(i2) ◦ · · · ◦ Bπ−1(in0

). The decoding algorithm calls the searching algorithm from [OPC15]
to find all blocks B′i1 to B′in0

in the received codeword. We say a block is unrecoverable if the

searching algorithm failed to find it correctly. By the same concentration bound used in the
Hamming case and the result from [OPC15], the fraction of unrecoverable blocks is bounded
by a small constant with high probability. Thus, we can decode Ci correctly with the desired
success probability. In this process, each search takes polylogk queries and n0 = O(log 1/ε) of
searches are performed. The total number of queries made is thus polylogk log 1/ε.

For the model of an oblivious channel, again we use a pseudorandom permutation π that
can be generated by O(log n log 1/ε) random bits. We use the same binary code as we used in
the Hamming case to encode it and then view it as a string over the alphabet {0, 1}log k. It is
then concatenated with the code described previously before the second layer of encoding. After
that, the same second layer of encoding is applied. The random masks used in the previous
construction are no longer needed since the adversary can not see the codeword.

The construction for a flexible failure probability is also similar to the Hamming case. We
write the codes before the second layer of encoding as a matrix M . The only difference is that,
each element in the matrix M is now a symbol in {0, 1}log k. We then encode the j-th column
with an error correcting code over the alphabet {0, 1}log k to get a codeword zj , and concatenate
them to get z. After that, we do the second layer of encoding on z.

2 Preliminaries

2.1 Edit distance

Edit distance, or Levenstein distance, is a popular metric for quantifying how similar two strings
are. It is defined using three types of string operations: insertion, deletion, and substitution.
An insertion operation inserts a character into the string at a certain position. A deletion
operation deletes a particular character from the string. And a substitution operation substitutes
a character with a different one.

Definition 3. The edit distance between two strings x, y ∈ Σ∗ , denoted by dE(x, y), is the
minimal number of edit operations (insertion, deletion, and substitution) needed to transform
one into another. Assume x and y have same length n, the normalized edit distance of x and y
is dE(x, y) devided by n. We denote the normalized edit distance by ∆E(x, y)
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2.2 Pseudorandom permutation

In our construction against oblivious channel, one key idea is to integrate a short description of a
pseudorandom permutation into the codeword. We will utilize the construction of pseudorandom
permutations from [KNR09]. Here, we follow the definition from their work and introduce their
results.

Definition 4 (Statistical Distance). Let D1, D2 be distributions over a finite set Ω. The varia-
tion distance between D1 and D2 is

‖D1 −D2‖ =
1

2

∑
ω∈Ω

|D1(ω)−D2(ω)|

We say that D1 and D2 are δ-close if ‖D1 −D2‖ ≤ δ.

Definition 5 (k-wise δ-dependent permutation). Let F be a family of permutations on n el-
ements (allow repetition). Let δ > 0, we say the family F is k-wise δ-dependent if for every
k-tuple of distinct elements {x1, x2, · · · , xk} ∈ [n], for f ∈ F chosen uniformly, the distribution
{f(x1), f(x2), · · · , f(xk)} is δ-close to uniform distribution

In practice, we want to construction explicit families of permutations. Two related parameters
are:

Definition 6 (Description length). The description length of a permutation family F is the
number of random bits, used by the algorithm for sampling permutations uniformly at random
from F .

Definition 7 (Time complexity). The time complexity of a permutation family F is the running
time of the algorithm for evaluating permutation from F

It is known that we can construct families of k-wise almost independent permutations with
short description length (optimal up to a constant factor).

Theorem 4 (Theorem 5.9 of [KNR09]). Let Pn denote the set of all permutation over {0, 1}n.
There exists a k-wise δ-dependent family of permutation F ⊂ Pn. F has description length
O(kn+ log 1

δ ) and time complexity poly(n, k, log 1
δ ).

2.3 Concentration bound

In our proof, we use the following concentration bound from [CIL17]

Lemma 1 ([CIL17]). Let π : [n] → [n] be a random permutation. For any set S,W ⊆ [n], let

u = |W |
n |S|. Then the following holds.

• for any constant δ ∈ (0, 1),

Pr[|π(S) ∩W | ≤ (1− δ)µ] ≤ e−δ
2µ/2,

Pr[|π(S) ∩W | ≥ (1 + δ)µ] ≤ e−δ
2µ/3.

• for any d ≥ 6µ, Pr[|π(S) ∩W | ≥ d] ≤ 2−d.
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3 Random Encoding LDC for Hamming Errors

3.1 With a Certain Failure Probability

We first show the construction of a Random Encoding LDC with an arbitrarily fixed failure
probability for the case of shared randomness.

Theorem 5. There is an efficient construction of (n, k = Ω(n), δ = Θ(1), q = O(log n log 1
ε ), ε)

random LDC for the case of shared randomness, with arbitrarily ε ∈ [0, 1].

Construction 1. We construct an (n, k = Ω(n), δ = Θ(1), q = O(log n log 1
ε ), ε)-locally decod-

able binary code for arbitrary ε ∈ [0, 1], for the case of shared randomness.
Let δ0, γ0 be some proper constants in (0, 1).
Let (Enc0,Dec0) be an asymptotically good binary (n0, k0, d0) error correcting code with n0 =

O(log 1
ε ), k0 = γ0n0, d0 = 2δ0n0 + 1.

Encoding function Enc : {0, 1}k=Ω(n) → {0, 1}n is a random function as follows.

1. On input x ∈ {0, 1}k, cut x into blocks evenly of length k0 s.t. x = (x1, . . . , xk/k0) ∈
({0, 1}m0)k/k0 ; (If there are less than k bits in the last block then pad 0’s)

2. Compute y′ = Enc0(x1) ◦ . . . ◦ Enc0(xk/k0);

3. Generate a random permutation π : [n]→ [n], where n = κk/k0;

4. Let y = (y′π−1(1), . . . , y
′
π−1(n)), i.e. permute y′ using π;

5. Output z = y ⊕ w where w is a uniform random string.

Decoding function Dec : [k]× {0, 1}n → {0, 1}k is as follows.

1. On the input i and z, XOR it with w to get y;

2. Use r to reconstruct π;

3. Find i′ s.t. the i-th bit of the message is in the i′-th block of m0 bits;

4. Query the bits Q = { yπ(j) | j ∈ ( (i′ − 1)m0, i
′m0 ] } to get y′i′ ;

5. xi′ = Dec0(y′i′);

6. Output x[i].

Proof of Theorem 5. Consider Construction 1.
We claim that the random permutation π and the z are independent. Actually for arbitrary

permutation σ and arbitrary n-bit string a,

Pr[π = σ, z = a] =
1

n!
× 1

2n
.

Because conditioned on any fixed permutation, to let z = a, there is a unique choice of w.
On the other hand, Pr[π = σ] = 1

n! and Pr[z = a] = 2−n. This shows the independence of π
and z.

So even if the adversary operates based on knowing z, the set of positions of the tampered
bits are independent of π.
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Since the number of errors is at most δn, the expected number of corrupted bits in y′i′ is
at most δn0. By Lemma 1, the probability that the number of corrupted bits in y′i′ is at most
1.1δn0, is at least 1−2−0.01n0/3 ≥ 1−ε/2. By choosing n0 to be large enough. Let delta0 = 1.1δ.
Then Dec0 can recover the desired bit from y′i′ which has at most 1.1δn0 errors.

Note that the construction runs in polynomial time because generating random permutation,
permuting bits, (Enc0,Dec0) are all in polynomial time. The number of queries is n0 = O(log 1

ε ),
since we only query bits in y′i′ .

Next we give the construction for oblivious channels.
We use the almost t-wise independent random permutations instead of random permutations

for this case. A random function π : [n] → [n] is an ε almost t-wise independent random
permutation if for every t elements i1, . . . , it ∈ [n], (π(i1), . . . , π(it)) has statistical distance at
most ε from (π′(i1), . . . , π′(it)) where π′ is a random permutation over [n]. Kaplan, Naor and
Reingold [KNR09] gives an explicit construction.

Next we show an efficient constructable (n, k, δ, q, ε)-locally decodable code, which is asymp-
totically good, with q = O(log(1/ε)) and ε can be arbitrary in [0, 1].

Before the main construction, we first show a binary “locally decodable code” which can
recover the whole message locally when the message length is sufficiently small.

Lemma 2. For every k ≤ cn with sufficiently small constant c = c(δ) < 1, every sufficiently
small constant δ, there is an explicit (n, k, δn) binary ECC, which has a randomized decoding
algorithm s.t. it can compute the message with success probability 1 − 2−Θ(k/ logn), querying at
most q = O(k) bits.

Proof. Consider the concatenation of an (n1, k1, d1) Reed-Solomon code with alphabet {0, 1}n2=O(logn1),
n1 = n/n2, k1 = k/k2, and an explicit (n2, k2 = n2 − 2d2(log n2

d2
), d2 = Θ(n)) binary ECC.

The concatenated code is an (n1n2, k1k2, d1d2) code. Note that n1n2 = n, k1k2 = k. Also
d1 = n1 − k1 + 1 = Θ(n1), d2 = O(n2) so d1d2 = O(n).

We only need to show the decoding algorithm.
Given a codeword, we call the encoded symbols (encoded by the second code) of the first code

as blocks. The algorithm randomly picks 8k1 blocks and query them. For each block, it calls the
decoding function of the second code. After this we get 8k1 symbols of the first code. Then we
use the decoding algorithm of a (8k1, k1, 7k1 + 1) Reed Solomon code to get the message.

Next we argue that this algorithm successes with high probability. Assume there are δn =
d1d2/8 errors, then there are at most d1/4 codewords of the second code which are corrupted for
at least d2/2 bits. Since the distance of the second code is d2, there are n1 − d1/4 blocks can be
decoded to their correct messages.

Hence the expectation of the number of correctly recovered symbols of the first code is
n1−d1/4

n1
8k1 ≥ 6k1. Thus by Chernoff Bound, with probability 1− 2−Θ(k1), there are at least 5k1

symbols are correctly recovered. Note that if we look at the 8k1 queried blocks they also form a
(8k1, k1, 7k1 +1) Reed-Solomon code since it is the evaluation of the degree k1−1 polynomial on
8k1 distinct values in the field Fn2

2 . Thus, our recovered symbols form a string which has only
distance 3k1 from a codeword of the code. So by using the decoding algorithm of the code we
can get the correct message.

Construction 2. We construct an (n, k = Ω(n), δ = Θ(1), q = O(log n log 1
ε ), ε)-locally decod-

able binary code for arbitrary ε ∈ [0, 1].
Let δ0, γ0 be some proper constants in (0, 1).
Let (Enc0,Dec0) be an asymptotically good binary (n0, k0, d0) error correcting code with n0 =

O(log 1
ε ), k0 = γ0n0, d0 = 2δ0n0 + 1.
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Encoding function Enc : {0, 1}k=Ω(n) → {0, 1}n is a random function as follows.

1. On input x ∈ {0, 1}k, cut x into blocks evenly of length k0 s.t. x = (x1, . . . , xk/k0) ∈
({0, 1}m0)k/k0 ; (If there are less than k bits in the last block then pad 0’s)

2. Compute y′ = Enc0(x1) ◦ . . . ◦ Enc0(xk/k0);

3. Generate a επ = ε/10-almost κ = O(log 1
ε )-wise independent random permutation π :

[n/2]→ [n/2] using Theorem 4, where n/2 = κk/k0, the randomness used is r ∈ {0, 1}dπ=O(κ logn+log(1/επ));

4. Let y = (y′π−1(1), . . . , y
′
π−1(n)), i.e. permute y′ using π;

5. Use an (n/2, |r|, δn) ECC from Lemma 2 to encode r, getting z ∈ {0, 1}n/2;

6. Output y ◦ z.

Decoding function Dec : [k]× {0, 1}n → {0, 1}k is as follows.

1. On the input i and y ◦ z, call the decoding algorithm from Lemma 2 on z to get r;

2. Use r to reconstruct π;

3. Find i′ s.t. x[i] is in xi′ ;

4. Query the bits Q = { yπ(j) | j ∈ ( (i′ − 1)m0, i
′m0 ] } to get y′i′ ;

5. xi′ = Dec0(y′i′);

6. Output x[i].

Lemma 3. The encoding and decoding are both efficient.

Proof. Every step in the construction can be realized in polynomial time. The called functions
in the construction are all from efficient constructions.

Lemma 4. The number of queries for the decoding algorithm is q = O(log n log 1
ε ).

Proof. In step 1 of the decoding, calling the decoding algorithm from Lemma 2 takes O(dπ)
number of queries.

In step 4 of the decoding, the number of queries is n0.
So the total number of queries is n0 +O(dπ) = O(log n log 1

ε ).

Lemma 5. Assume there are δn errors, then with probability 1 − ε, the decoding can get x
correctly.

Proof. For z, the number of errors is at most δn. Thus by Lemma 2, the decoding can get r
correctly with probability 1− ε/3 by letting the constant factor in |r| = dπ to be large enough.

For y, the number of errors is at most δn. If π is a uniform random permutation then the
expected number of corrupted bits in y′i′ is 2δn0.

By Lemma 1, the probability that the number of corrupted bits in y′i′ is at most 2.2δn0 is at
least 1− 2−0.01δn0/3 ≥ 1− ε/3 if letting the constant factor in n0 to be large enough.

When π is an επ-almost n0-wise independent permutation, the probability that the number
of corrupted bits in y′i′ is at most 2.2δn0 is at least 1− 2−0.01δn0/3 + επ ≥ 1− ε/2.
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Let δ = δ0/3. Then the decoding Dec0 can recover the correct message from 2.2δn0 errors.
Hence by a union bound, with probability at least 1 − ε/3 − ε/2 ≥ 1 − ε, the decoding can

recover xi′ correctly.
Note that once xi′ is recovered, x[i] is in it and thus is correctly recovered.

Theorem 6. There is an efficient construction of (n, k = Ω(n), δ = Θ(1), q = O(log n log 1
ε ), ε)

random LDC for oblivious channels, ε ∈ [0, 1].

Proof. We use Construction 2. The theorem directly follows from Lemma 3, 4, 5.

3.2 With Flexible Failure Probabilities

Next we consider a stronger definition which can handle all decoding failure probabilities.
Intuitively we want to use the previous construction for different eps, and then combine them.

It turns out this indeed can work but with some extra techniques while the information rate is
Θ(1/ log n).

Construction 3. We construct a (n, k = Θ(n/ log n), δ = Θ(1))-locally decodable binary code.
Let (Enc0,Dec0) be a binary (n0, k0, d0) error correcting code with n0 = γ−1

0 log n, k0 = log n,
d0 = 2δ0n0 + 1, for constant γ0, δ0 ∈ [0, 1].

Let (Enci,Deci) be the (ni = n/n0, k, δi = Θ(1), qi, ε = 2−2i) LDC from Theorem 6, i ∈ [log n].
Encoding function Enc : {0, 1}k=Ω(n) → {0, 1}n is as follows.

1. On input x ∈ {0, 1}k, compute yi = Enci(x) for every i ∈ [log n].

2. Let M be a log n× n/ log n matrix s.t. M [i][j] is the j-th bit of yi.

3. Output z = (Enc0(M1), . . . ,Enc0(Mn1
) where Mj , j ∈ [n1] is the j-th column of M .

Decoding function Dec : [k]× {0, 1}∗ × [0, 1]→ {0, 1} is as follows.

1. On input u, z, ε, find the smallest i s.t. 2−2i ≤ ε; If it cannot be found, then query the
whole z;

2. Compute w = Deci(u, yi) but whenever Deci wants to query an j-th bit of yi, we query zj
and get yi[j] from Dec0(zj);

3. Output w.

Lemma 6. The encoding and decoding are both efficient.

Proof. Every step in the construction can be realized in polynomial time. The called functions
in the construction are all from efficient constructions.

Lemma 7. The number of queries for the decoding algorithm is q = O(log2 n log 1
ε ).

Proof. In step 2 of the decoding, calling the decoding algorithm from Theorem 6 takesO(log n log 1
ε )

number of queries. For each such query, the algorithm actually queries n0 bits. So the total num-
ber of queries is as stated.
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Lemma 8. Assume there are δ = δ0 minj∈[n1]{δj} fraction of errors, then with probability 1− ε,
the decoding can get x correctly.

Proof. As δ = δ0 minj{δj}, there are at most δjn1 number of zjs which each has more than δ0
fraction of errors.

As a result, for yj , there are at most δjn1 number of bits which cannot be computed correctly
during decoding step 2. So Decj can compute x[i] correctly by Theorem 6.

Theorem 7. There is an efficient construction of (n, k = Ω(n/ log n), δ = Θ(1)) random LDC
which can recover any one message bit with probability 1 − ε, for any ε ∈ [0, 1], by doing q =
O(log2 n log 1

ε ) queries.

Proof. It directly follows from Construction 3, Lemma 6, 7, 8.

Similarly we also have the following result for the case of shared randomness

Theorem 8. There is an efficient construction of (n, k = Ω(n/ log n), δ = Θ(1)) random LDC
which can recover any one message bit with probability 1 − ε, for any ε ∈ [0, 1], by doing q =
O(log2 n log 1

ε ) queries.

Proof Sketch. We modify Construction 3 by letting (Enci,Deci), i ∈ [log n] be from Theorem 5.
Note that the outputted codeword is independent of the permutations used in (Enci,Deci), i ∈

[log n] due to the using of masks in the construction of Theorem 5. This guarantees that a similar
analysis can still work for this case.

4 Constructions against Edit Error

The constructions against edit error requires an additional layer of encoding. To make our proof
easier to describe, we will utilize the following greedily constructed code from [SZ99].

Lemma 9 (Implicit from [SZ99]). For small enough δ, there exists code C : {0, 1}n → {0, 1}4n
such that the edit distance between any two codewords is at least δ and for any codeword, every
interval has at least half of 1’s.

The proof uses the same argument from [SZ99]. The only difference is that their proof only
considers insertion and deletion. Our slightly modified proof includes substitution as a type of
error.

Proof. For a codeword y, the number of words in {0, 1}n that is within edit distance 2d is at

most
(
n
2d

)2
22d. That is because each substitution can be replaced by a deletion and an insertion.

For any two codewords x and y such that dE(x, y) ≤ d, x can be transformed into y with at most
2d insertions and 2d deletions. There are

(
n
2d

)
ways to delete 2d characters from y,

(
n

n−2d

)
ways

to put the remaining characters in proper position of x, and 22d ways to choose to the inserted
characters.

Substitute d with δn for some small constant δ, since
(
n
k

)
≤ (nek )k, we have(

n

2δn

)2

22δn ≤ (
ne

2δn
)4δn22δn ≤ (

e4

4δ4
)δn = (2log e4

4δ4 )δn
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Pick δ ∈ (0, 0.018), we have
(
n

2δn

)2
22δn ≤ 21/2n. This gives a greedy construction of edit error

code with rate 1
2 and tolerates a δ fraction of edit error for constant δ ≤ 0.018. We then ensure

every interval has at least half 1’s by inserting 1’s into every other position. Note that this
operation will not decrease the edit distance. It gives us a code with rate 1/4.

In the discussion below, we will use the following error correcting code for edit distance:

C0 : {0, 1}N → {0, 1}5N

such that for each message S ∈ {0, 1}N , C0(S) is composed of two parts. The first part is a
codeword C′0(S) where C′0 : {0, 1}N → {0, 1}4N is a greedily constructed code that can tolerate
a constant fraction of edit errors. The second part is a buffer of 0’s of length N . That is,
C0(S) = C′0(S) ◦ 0N . We assume the normalized edit distance between any two codewords of
C0(S) is at least δ′.

Another key component in our construction against edit error is a searching algorithm devel-
oped by [OPC15].

Their work provides an algorithm for searching from a weighted sorted list L with a constant
fraction of errors. An element (i, ai) in the sorted list is composed of two parts, an index i
and content in that element, ai. All elements in the list are sorted by their index, i.e. the j-th
element in L is (j, aj). Beyond that, each element is equipped with a non-negative weight. When
sampling from the list, each element is sampled with probability proportional to its weight.

In [OPC15], the authors proved the following result.

Lemma 10. [Theorem 16 of [OPC15]] Assume L′ is a corrupted version of a weighted sorted list
L with k elements, such that the total weight fraction of corrupted elements is some constant δ
of the total weight of L. And the weights have the property that all sequences for r ≥ 3 elements
in the list have total weight in the range [r/2, 2r]. Then, there is an algorithm for searching L.
For at least a 1 − O(δ) fraction of the original list’s elements, it recovers them with probability
at least 1− neg(k). It makes a total of O(log3 k) queries.

This lemma enables us to search from a weighted sorted list (with corruption) with few
(polylogk) queries. To make our proof self-contained, we will describe how to turn the encoded
message in our construction into a weighted sorted list in the proof.

We are now ready to describe our construction.

4.1 Construction with Fixed Failure Probability

4.1.1 Shared Randomness

We first give the construction of an (n, k = Ω(n), δ = O(1), q = polylogk log 1
ε , ε) randomized

LDC. As before, We start with the construction assuming shared randomness.

Construction 4. We construct an (n, k = Ω(n), δ = O(1), q = polylogk log 1
ε , ε)-LDC with

randomized encoding.
Let δ0, γ0 be some proper constants in (0, 1).
Let (Enc0,Dec0) be an asymptotically good (n0, k0, d0) error correcting code for Hamming

distance over alphabet {0, 1}10 log k. Here we pick n0 = O(log 1
ε ), k0 = γ0n0, and d = 2δ0n0 + 1.

Let π be a random permutation. And ri ∈ {0, 1}log k for i ∈ [ n0k
k0 log k ] be n0k

k0 log k random masks.
Both π and ri’s are shared between the encoder and decoder.

Let C0 : {0, 1}2 log k → {0, 1}10 log k be the asymptotically good code for edit error described
previously that can tolerate a δ′ fraction of edit error.

The encoding function Enc : {0, 1}k → {0, 1}n is a random function as follows
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1. On input x ∈ {0, 1}k, view x as a string over alphabet{0, 1}log kof length k/ log k. We write
x = x1x2 · · ·xk/ log k ∈ ({0, 1}log k)k/ log k;

2. Divide x into small blocks of length k0, s.t. x = B
(0)
1 ◦ B(0)

2 ◦ · · · ◦ B(0)
k/(k0 log k)). Here,

B
(0)
i ∈ ({0, 1}log k)k0 for i ∈ [k/(k0 log k)] is a concatenation of k0 symbols in x;

3. Encode each block with Enc0. Concatenate them to get y(1) = Enc0(B
(0)
1 )◦Enc0(B

(0)
2 )◦ · · · ◦

Enc0(B
(0)
k/(k0 log k)). Notice that each Enc0(B

(0)
1 ) is composed of n0 symbols in {0, 1}log k.

Write y(1) as a string over alphabet {0, 1}log k, we have y(1) = B
(1)
1 ◦ B(1)

2 ◦ · · · ◦ B(1)
n0k

k0 log k

such that B
(1)
i ∈ {0, 1}log k;

4. Let N = n0k
k0 log k . Permute these N symbols of y(1) with permutation π to get y(2) =

B
(2)
1 ◦B(2)

2 ◦ · · · ◦B(2)
N such that B

(2)
π(i) = B

(1)
i ;

5. Let bi ∈ {0, 1}log k be the binary representation of i ∈ [N ]. This is fine since N < k when

k is larger enough. We compute B
(3)
i = C0(bi ◦ (B

(2)
i ⊕ ri)) ∈ {0, 1}10 log k for each i ∈ [T ].

We get y = B
(3)
1 ◦B(3)

2 ◦ · · · ◦B(3)
N ∈ ({0, 1}10 log k)N ;

6. Output y.

The decoding function Dec : [k] × {0, 1}n → {0, 1} takes two inputs, an index i0 ∈ [k] of the
message bit the decoder wants to know and ω ∈ {0, 1}n, the received (possibly corrupted) codeword.
It proceeds as follows

1. On input index i0 and the received codeword ω. We assume the i0-th bit lies in B
(0)
i , i.e.

the i-th block of x;

2. Notice that Enc0(B
(0)
i ) = B

(1)
(i−1)n0+1 ◦ B

(1)
(i−1)n0+2 ◦ · · · ◦ B

(1)
in0

. For each j ∈ {(i − 1)n0 +

1, (i − 1)n0 + 2, . . . , in0}, search from y to find the block B
(3)
π(j) using the algorithm from

[OPC15]. Then we can get a possibly corrupted version of Enc0(B
(0)
i )

3. Run the decoding algorithm Dec0 to find out B
(0)
i . This gives us the i0-th bit of x.

Lemma 11. The above construction 4 gives an efficient (n, k = Ω(n), δ = O(1), q = polylogk log 1
ε , ε)

randomized LDC against edit error.

Proof. We first show both the encoding and decoding can be done in polynomial time. Although
for the ease of description, we picked the greedily constructed code C0, which can be inefficient.
The codeword size of C0 is O(log k). Decoding one block can be finished in time polynomial in
k. And for our purpose, we need to encode O(k/ log k) blocks and decode polylogn log 1

ε blocks.
Thus, the additional time caused by this layer of encoding is polynomial in n. For the rest part,
the analysis is similar to that of the Hamming case. Thus, our code is polynomial time. We note
that C0 can be replaced by an efficient code for edit error.

We use the same notation as in our construction. Let y = B
(3)
1 ◦B

(3)
2 ◦· · ·◦B

(3)
N be the correct

codeword. We denote the length of each block B
(3)
j by b = 10 log k and if we view y as a binary

string, the length of y is N ′(= Nb), which is O(k). We call the received (possibly corrupted)
codeword ω. Since we can always truncate (or pad with 0) to make the length of ω be N ′, which
will only increase the edit distance by a factor no more than 2. Without loss of generality, we
assume the length of ω is also N ′.
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The decoding function Dec has two inputs: an index i0 ∈ [k] of the message bit the decoder
wants to see and the received codeword ω. The decoder also has access to the shared randomness,
which has two parts: a permutation π and N random masks, each of length log k. The first step
is to figure out the indices of the blocks it wants to query by using the shared permutation π.

Then, we can query these blocks one by one. We assume the i0-th bit lies in B
(0)
i . Then, notice

that Enc0(B
(0)
i ) = B

(1)
(i−1)n0+1 ◦ B

(1)
(i−1)n0+2 ◦ · · · ◦ B

(1)
in0

. Our goal is to find the block B
(3)
π(j) for

each j ∈ {(i− 1)n0 + 1, (i− 1)n0 + 2, . . . , in0}.
One thing we need to clarify is how to query a block since we do not know the starting point

of each block in the corrupted codeword. This is where we use the techniques developed by

[OPC15]. In the following, assume we want to find the block B
(3)
i .

We can view y as a weighted sorted list L of length N such that the i-th element in L is

simply B
(3)
i with weight b. We show that ω can be viewed as a corrupted list L′. There is a

match from y to ω which can be described by a function f : [N ]→ [N ] ∪ {⊥}. If the i-th bit is
preserved after the edit error, then f(i) = j where j is the position of that particular bit in ω.
If the i-th bit is deleted, then f(i) =⊥.

We say the i-th bit in y is preserved after the corruption if f(i) 6=⊥. For each block B
(3)
i that

is not completely deleted, let vi = f(ui), such that ui is the index of the first preserved bit in

the block B
(3)
i . We say the block B

(3)
i is recoverable if ∆E(B

(3)
i , ω[v′i,v

′
i+b−1]) ≤ δ′ for some index

v′i that is at most δ′b away from vi.

Claim 1. If ∆E(ω, y) ≤ δ, each block is recoverable with probability at least 1− δ/δ′.

Proof. The code C0 is greedily constructed and resilient to δ′ fraction of error. Here, δ is picked
smaller than δ′. To make an block corrupted, the adversary needs to produce at least a δ′

fraction of edit error in that block. The adversary channel can corrupt at most δ
δ′ fraction of all

blocks.

The searching algorithm requires sampling some elements from the sorted list L′ correspond-
ing to the corrupted codeword ω. We now explain how to do the sampling. We start by first
randomly sample a position r and read a substring of 2r + 1 bits ω[r−b,r+b] from ω. Then, we
try each substring in ω[r−b,r+b] of length b from left to right until we find first substring that
is δ0-close to some codeword of C under the normalized edit distance. If we did find such a
substring, we decode it and get bj ◦B(2)

j ⊕ rj . Otherwise, output a special symbol ⊥.
We will regard consecutive intervals in ω as elements in the weighted sorted list where weight

of the element is simply the length of the corresponding interval. The correspondence can be
described as following.

For a recoverable block B
(3)
i , again, we let vi = f(ui), such that ui is the index of the first

preserved character in block B
(3)
i . We want to find an interval Ii in ω to represent B

(3)
i in the list

L′. Since B
(3)
i is a codeword of C0 of length b. Every interval in its first 4/5 part has at least half

of 1’s and the last 1/5 part are all 0’s. For any v ∈ [vi − b+ 2δ′b, vi − 2δ′b], we know ω[v,v+b−1]

can not be δ′ close to any codeword in C0. It is because the last 1/5 part of ω[v,v+b−1] contains

at least δ′b 1’s. Thus, in the sampling procedure, if r ∈ [vi + 2δ′b, vi + b], it will return B
(3)
i . The

length of Ii is at least 1− 2δ′b. Let Ii be the maximal inteval containing [vi + 2δ′b, vi + b], such
that, if sampling r in Ii, it will output same codeword in C. Also, we argue the length of the
inteval Ii is no larger than 1 + 4δ′. Since if r ≥ vi + (1 + 2δ′)b or r ≤ vi − 2δ′b, any substring of

length b in [r− b, r+ b] is at least be δ′ far from B
(3)
i and thus output a different codeword. We

note due to the existence of adversary insertion, it is possible to get B
(3)
i outside of Ii. But this

does not affect our analysis below.
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The above method for sampling a block from ω gives us a natural way to interpret ω as a
corrupted weighted list L′. The length of ω is equal to the sum of weights of all its elements. For
each recoverable block, the interval Ii as described above is an element with weight equal to its
length. We note that all Ii’s are disjoint. We consider the remaining characters in ω as corrupted
elements in the list L. For those elements, the sampling algorithm will output wrong result or
⊥. Since the interval of the remaining elements can be large, we divide such interval into small
intervals each has length no larger than b and consider each small intervals as an element.

Next, we argue the weight fraction of corrupted elements is small. Due to claim 1, there are at

least a 1−δ/δ′ fraction of blocks recoverable after the corruption. For each recoverable block B
(3)
i ,

we can find a interval Ii in ω with length at least (1−2δ0)b. Thus, the total weight of uncorrupted
elements from the original list L is at least (1− δ/δ′)(1− 2δ′)N = (1− 2δ − 2δ0 − δ/δ0)N . Let
δ1 = 2δ+2δ′+δ/δ′ = O(δ), we know the total weight of corrupted elements is at most δ1 fraction
of the total weight of list L′. We assume δ1 is small by properly picking δ and δ′.

By lemma 10, 1 − δ2 fraction of elements can be decoded correctly with high probability
(1 − neg(n)) for some constant δ2 = O(δ). Since the content of each block is protected by
random masks. The adversary can learn nothing about the random permutation π used for
encoding. Each block is recoverable with same probability. We want to search from y to find all

blocks B
(3)
π(j) for each j ∈ {(i−1)n0 +1, (i−1)n0 +2, . . . , in0} to get a possibly corrupted version

of Enc0(B
(0)
i ). The proof of success probability follows the same concentration bound as in the

Hamming case. Here, the random masks serve the same purpose as in the Hamming case. The
content of each block (not the index) is not known to the adversary. Thus, the adversary can
learn nothing about the permutation or the message. By picking properly the code (Enc0,Dec0),
using the concentration bound, the fraction of unrecoverable blocks among these n0 blocks is
larger than 1− 1.1δ2 with probability at least 1− ε.

Finally, we count the number of queries made. Searching one block queries polylogk symbols
from the corrupted codeword ω. We need to search n0 = O(log 1

ε ) blocks. The total number of
queries made is polylogk log 1

ε .

4.1.2 Oblivious Channel

Now, we consider the oblivious channel. In this model, we assume the adversary can not read
the codeword. Same as the Hamming case, we want to send a description of a permutation to
the decoder. The decoder can then use description to recover the permutation π which is used to
encode the message. We can use the same binary error correcting code from Lemma 2 to encode
the description.

We now give the construction.

Construction 5. We construct an (n, k = Ω(n), δ = O(1), q = polylogk log 1
ε , ε)-LDC with

randomized encoding against the oblivious channel model.
Let δ0, γ0 be some proper constants in (0, 1).
Let (Enc0,Dec0) be an asymptotically good (n0, k0, d0) error correcting code for Hamming

distance on alphabet set Σ = {0, 1}10 log k. Here we pick n0 = O(log 1
ε ), k0 = γ0n0, and d =

2δ0n0 + 1.
Let C0 : {0, 1}2 log k → {0, 1}10 log k be the asymptotically good code for edit error as described

above that can tolerate a δ′ fraction of edit error.
The encoding function Enc : {0, 1}k → {0, 1}n is a random function as follows:

1. Encode the message x with Construction 4 without doing steps 4,5, and 6. This does not
require knowing permutation π. View the sequence we get as a binary string. View the
output as a binary string y with length n/10;
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2. Let N1 = n
20 log k . Generate a random seed r ∈ {0, 1}d of lengh d. Here, d = O(κ logN1 +

log(1/επ)) = O(log n log 1
ε ). Use r to sample a επ = ε/10-almost κ = O(log 1

ε )-wise
independent random permutation π : [N1]→ [N1] using Theorem 4;

3. Let δ1 be a properly chosen constant larger than δ. Encoding r with an (n/20, d, δ1n) error
correcting code from Lemma 2, we get z ∈ {0, 1}n/10;

4. View y ◦ z as a sequence in {0, 1}n/10. Divide y ◦ z ∈ {0, 1}n/10 into small blocks of size
log k. Write y ◦ z as y ◦ z = B1 ◦B2 ◦ · · · ◦Bn/(10 log k);

5. Permute first half of blocks with random permutation π to get u′ = B
(1)
1 ◦ B(1)

2 ◦ · · · ◦
B

(1)
n/(10 log k) such that B

(1)
π(i) = Bi for i ≤ n/(20 log k) and B

(1)
i = Bi for i larger than

n/(20 log k);

6. Let bi be the binary representation of i, for each i ∈ n/(10 log k), encode bi ◦B(1)
i with code

C0 to get B
(2)
i ;

7. Output u = B
(2)
1 ◦B(2)

2 ◦ · · · ◦B(2)
n/(10 log k).

The decoding function Dec : [k] × {0, 1}n → {0, 1} takes two inputs, an index i0 ∈ [k] of
the message bit the decoder wants to know and ω ∈ {0, 1}n, the received (possibly corrupted)
codeword. It proceeds as follows:

1. Search for at most O(log n log 1
ε ) blocks to decode the random seed r;

2. Use r to generate the random permutation π;

3. Run the same decoding algorithm as in the Construction 4 on the first half of ω to decode
xi0 .

Lemma 12. The above construction 4 gives an efficient (n, k = Ω(n), δ = O(1), q = polylog(n) log 1
ε , ε)

randomized LDC against an oblivious channel with edit error.

Proof. The proof of efficiency of this construction follows directly from the proof of Lemma 11.
We denote the uncorrupted codeword by u and the received codeword by ω. We assume

∆E(u, ω) ≤ δ. We first divide it into two parts ω1 and ω2 each of equal length such that
ω = ω1 ◦ω2. Similarly, we have u = u1 ◦u2 with |u1| = |u2| = n/2. We have ∆E(u1, ω1) ≤ δ and
∆E(u2, ω2) ≤ δ.

The first step is to decode r. By Lemma 2, we need to query O(d) bits of z to decode r with
high probability 1−neg(k). Thus, we need to query O(log k log 1

ε ) blocks in the second half of ω.
We can then use the same searching algorithm described in the proof of Lemma 11 to query each
block. Since we randomly choose blocks to query, we can recover r with probability 1 − neg(k)
by making polylogk log 1

ε queries to ω2.
Once we know r, we can use it to generate the random permutation π. We run the decoding

algorithm from Construction 4 with input i0 and ω1. The remaining part is the same as the
proof of Lemma 11. Notice that recovering r takes polylogk log 1

ε queries. The query complexity
for our code is still polylogk log 1

ε .
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4.2 Construction with Flexible Failure Probability

4.2.1 Shared Randomness

We now give the construction for flexible failure peobability against edit error.

Construction 6. We construct an (n, k = Θ(n/ log n), δ = O(1)) randomized LDC with query
complexity function q = polylogk log 1

ε for any given failure probability ε.
Let π be a random permutation. And ri ∈ {0, 1}log k for each i ∈ n/(10 log k) be random

masks. Both π and ri’s are shared between the encoder and decoder.
With properly picked constant γ0 and δ0. Let (Enc0,Dec0) be a (n0, k0, d0) error correcting

code on alphabet set {0, 1}log k. Here, n0 = γ−1
0 log n, k0 = log n, d0 = 2δ0n0 + 1, for constant

γ0, δ0 ∈ [0, 1].

For each i ∈ [log n], let Enci be the encoding algorithm of an (ni, k, δi = O(1), qi, ε = 2−2i)
randomized LDC from Construction 4 without steps 4,5, and 6. Let Deci be the correponding
decoding algotithm.

Let C1 : {0, 1}3 log k → {0, 1}15 log k be the asymptotically good code for edit error as described
above that can tolerate a δ′ fraction of edit error.

Encoding function Enc : {0, 1}k=Ω(n) → {0, 1}n is as follows.

1. On input x ∈ {0, 1}k, compute yi = Enci(x) for every i ∈ [log n]. As before, we view
yi = Bi1 ◦Bi2 ◦ · · · ◦BiN as the concatenation of N symbols over alphabet {0, 1}log k;

2. Let M be a log n×N matrix such that M [i][j] ∈ {0, 1}log k is the j-th symbol of yi;

3. Let Mj be the j-th column of M for each j ∈ [N ]. We compute zj = Enc0(Mj). Notice
that zj = Enc0(Mj) ∈ ({0, 1}log k)n0 is a string of length n0 over alphabet {0, 1}log k;

4. Let y(0) be the concatenation of zj’s for j ∈ [N ]. Then y(0) = z1 ◦ z2 · · · ◦ zN is a string of
length n0N over alphabet {0, 1}log k. Let n = 15 log(k)n0N = O(k log k);

5. Permute the symbols of y(0) with permutation π to get y(1) = B
(1)
1 ◦B(1)

2 ◦ · · · ◦B(1)
n0N

such

that B
(1)
π(i) = B

(0)
i ;

6. Since n0N = O(k), we assume n0N = ck for some constant c. When k is large enough, we
assume ck < k2. Let bi ∈ {0, 1}2 log k be the binary representation of i for each i ∈ [n0N ].

We compute B
(2)
i = C1(bi ◦ (B

(1)
i ⊕ ri)) ∈ {0, 1}10 log k for each i ∈ [n0N ]. We get y =

B
(2)
1 ◦B(2)

2 ◦ · · · ◦B(2)
N ′ ) ∈ ({0, 1}15 log k)n0N ;

7. Output y as a binary string of length n.

Decoding function Dec is a randomized algorithm takes three inputs: an index of the bit the
decoder wants to see,the received codeword ω, and the desired failure probability ε. It can be
described as follows.

1. On input i0, ω, ε, find the smallest i such that 2−2i ≤ ε. If it cannot be found, then query
the whole ω;

2. Compute w = Deci(i0, yi) but whenever Deci wants to query an j-th symbol of yi, we decode
zj. Notice that zj = Enc0(Mj) contains n0 symbols over alphabet {0, 1}log k. Each symbol
is encoded in a block in y. The indices of these blocks can be recovered by π. We search
each of these n0 blocks in ω. We can then get the j-th block of yi from Dec0(zj);
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3. Output w.

Lemma 13. The above construcion 6 gives an efficient (n, k = Θ(n/ log n), δ = O(1)) random-
ized LDC that can recover any bit with probability at least 1− ε for any constant ε ∈ (0, 1), with
query complexity q = polylogk log 1

ε .

Proof. In the encoding, we need to encode n0N = O(n/ log n) blocks with edit error code C0.
And in the decoding, we need decode at most polylogn log 1

ε blocks. The time caused by the
second layer is polynomial in n. Thus, our construction is efficient.

After a δ fraction of edit error. There is some constant δ1 = O(δ) such tath for at least 1− δ1
fraction of blocks, we can use the searching algorithm to find and decode them correctly with
probability 1 − neg(n). Thus, as is described in the construction, when ever we want to query
the j-th symbol of yi, we fist decode zj . The symbols of zj is encoded in n0 blocks in ω. With
π, we know the indices of these n0 blocks. We can than perform the search as described in the
proof of Lemma 11. By picking proper n0, the decoding of zj fails with a small probability. The
rest of analysis follows directly from the proof of Lemma 11.

For the query complexity, we need to query O(n0 log 1
ε ) blocks. Since n0 = O(log n) =

O(log k), the total number of queries made is still polylogk log 1
ε .

4.2.2 Oblivious Channel

Our construction for flexible failure probability against oblivious channel combines Construction
5 and Construction 6. More specifically, following the Construction 6, we replace the encod-
ing functions Enci for each i ∈ [log n] from Construction 4 with the encoding functions from
Constructon 5. The analysis follows directly. We omit the details.

5 Discussions and open problems

In this work we initiated a study of locally decodable codes with randomized encoding, and
we give constructions for both Hamming errors and edit errors, that significantly improve the
rate-query tradeoff of known constructions. Our work leaves many interesting open problems.
We list some below.

Question 1: Are there constructions of locally decodable codes with randomized encoding, such
that the decoding can succeed without known the randomness of encoding? If so how do
such codes perform?

Question 2: If the adversary is allowed to know the randomness used by the encoding, is it still
possible to achieve much better rate-query tradeoff by using locally decodable codes with
randomized encoding?

Question 3: Is it possible to construct locally decodable codes with a constant rate, while
achieving flexible failure probability, by using randomized encoding?

Question 4: Can we further improve the number of queries in our constructions for an oblivious
channel?

Finally, even standard locally decodable codes for edit errors are still are poorly understood. For
example, for a constant fraction of error and constant alphabet size, the best approach is still
due to [OPC15] which needs at least polylog(k) queries. Can we prove a lower bound for query
complexity in this case, or is there an LDC construction with constant number of queries?
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