
Rolling up sleeves when subversion’s in a field?

Daniel R. L. Brown
danibrown@blackberry.com

December 15, 2020

Abstract
A nothing-up-my-sleeve number is a cryptographic constant, such

as a field size in elliptic curve cryptography, with qualities to assure
users against subversion of the number by the system designer. A
number with low Kolmogorov descriptional complexity resists being
subverted to the extent that the speculated subversion would leave a
trace that cannot be hidden within the short description.

The roll programming language, a version of Godel’s 1930s def-
inition of computability, can somewhat objectively quantify low de-
scriptional complexity, a nothing-up-my-sleeve quality, of a number.
For example, curves NIST-P-256, Curve25519, and NIST-P-521 have
fields sizes with roll programs of 112, 84, and 63 words (respectively).

Field size Program Words Hours
(2127 − 1)2 Table 7 58 1

2521 − 1 Table 2 63 2
2283 Table 5 68 2

891 + 5 Table 6 68 10
2336 − 3 Table 9 79 1
2255 − 19 Table 4 84 1

2256 − 2224 + 2192 + 296 − 1 Table 3 112 1
2256 − 232 − 977 Table 8 127 1

Table 1: Shortest roll programs found (in roundly estimated time spent code
golfing) for some especially efficient, previously proposed ECC field sizes

1

1 Early estimates in roll complexity
The roll programming language is defined in §2, but the listed roll programs
aim to be almost self-explanatory, to serve as a primer on the roll program-
ming language.

The purpose of the listed programs is to provide preliminary code golf
scores of proposed field sizes in elliptic curve cryptography, towards eventu-
ally quantifying their nothing-up-my-sleeve quality.

1.1 Mersenne prime 2521 − 1
The NIST-recommended elliptic curve P-521 uses 2521 − 1 as its field size.
The curve P-521, or at least its field size, is popular in some circles, but is
not actually widely used.

Robinson discovered that 2521 − 1 is prime in 1950, during basic number
theoretic research on Mersenne primes, using the SWAC, a vacuum tube
computer at an NBS (now NIST), making the historical first machine-aided
prime number record. In dramatic terms, 2521−1 symbolizes the dawn of the
digital computer age in mathematics. Its importance as a number pre-dates
elliptic curve cryptography.

2^521-1 subs 521 in 2^-1
521 subs 65 in *8+1
65 subs 8 in *8+1
8 subs 1 in *8
2^-1 roll *2+1 up 0
*2+1 subs *2 in +1
*8+1 subs *8 in +1
*8 subs *4 in *2
*4 subs *2 in *2
*2 roll +2 up 0
1 subs in +2
0 subs in +1
+2 subs +1 in +1

Table 2: A 63-word roll program for 2521 − 1

Table 2 lists a roll program implementing a constant function that returns
2521 − 1 on any input.

2

A previous version of this report listed a 5 word longer roll program (of
68 words). The five words were eliminated by a code golfing effort re-used
from the roll programming for 891 + 5.

1.2 NIST prime P-256

2^224(2^32-1)+2^192+2^96-1 subs
2^224(2^32-1)+2^192 2^96-1 in +
2^224(2^32-1)+2^192 subs
192 2^32(2^32-1)+1 in 2^a*b
2^32(2^32-1)+1 subs 2^32(2^32-1) in +1
2^32(2^32-1) subs 32 2^32-1 in 2^a*b
2^96-1 subs 96 in 2^-1
2^32-1 subs 32 in 2^-1
192 subs 96 in *2
96 subs 64 32 in +
64 subs 32 in *2
32 subs 31 in +1
31 subs 5 in 2^-1
5 subs 3 in +2
3 subs 1 in +2
2^a*b roll *2 up a
2^-1 roll *2+1 up 0
*2+1 roll +2 up 1
1 subs in +2
*2 roll +2 up 0
+ roll +1 up a
a roll +1 up 0
+2 subs +1 in +1
0 subs in +1

Table 3: A 112-word roll program for P-256

Table 3 lists a roll program that computes the prime field size used for
NIST curve P-256. Many web sites now connect to web browsers using elliptic
curve Diffie–Hellman with curve P-256.

The prime from P-256 is often called a Solinas prime, meaning a sum of
signed version of powers of 232 aiming to have efficent modular reduction on

3

32-bit machines.

1.3 Prime 2255 − 19

2^255-19 subs 2^254-10 in *2+1
2^254-10 subs 2^253-5 in *2
2^253-5 subs 2^252-3 in *2+1
2^252-3 subs 2^251-2 in *2+1
2^251-2 subs 2^250-1 in *2
2^250-1 subs 250 in 2^-1
250 subs 125 in *2
125 subs 62 in *2+1
62 subs 31 in *2
31 subs 5 in 2^-1
5 subs 2 in *2+1
2 subs 0 in +2

2^-1 roll *2+1 up 0
*2+1 subs *2 in +1
*2 roll +2 up 0
+2 subs +1 in +1
0 subs in +1

Table 4: An 84-word roll program for 2255 − 19

Bernstein’s public domain elliptic curve Curve25519 is incorporated into
TLS 1.3 and various other systems. Its field size is the prime 2255 − 19.
Table 4 lists a roll program implementing 2255 − 19.

Further code golfing may find a shorter program than the one in Table 4,
as Table 4 uses the word roll only twice, but the shorter program Table 7
uses it four times.

1.4 Composite 2283

The field size 2283 is a composite number used by the (formerly?) NIST-
recommended curves B-283 and K-283. The curve K-283 is used in a few
real-world applications, but recent advances in the elliptic curve discrete
logarithm problem have raised concern about its security. The number 2283

can be computed by the roll program in Table 5.

4

2^283 subs 283 in 2^
283 subs 275 in +8
275 subs 273 in +2
273 subs 17 in *16+1
17 subs 1 in *16+1
*16+1 roll +16 up 1
+16 subs +8 in +8
+8 subs +4 in +4
+4 subs +2 in +2
2^ roll *2 up 1
1 subs in +2
*2 roll +2 up 0
+2 subs +1 in +1
0 subs in +1

Table 5: A 68-word program to compute 2283

A previous version of this report listed a 10 word longer program (78
words) for 2283. The newer shorter version leverages the better code golfing
used for 891 + 5 discussed in the next section.

1.5 Prime 891 + 5
Field size 891 +5 was proposed in a previous IACR eprint of the author, for of
its intuitively low Kolmogorov descriptional complexity (via the six character
expression 8^91+5) and because of its efficiencies (simple and efficient field
arithmetic for its size: addition, multiplication, inversion and square roots).
The field size 891+5 has subsequently been proposed to the Internet Research
Task Force. Table 6 lists a roll program for 891 + 5.

The six-character decimal-exponential-complexity in the expression

8^91+5

may somehow underrate its Kolmogorov descriptional complexity. If stan-
dard notations, such as decimal and exponential operators, happen to favor a
subverted number (leading to weak ECC), then the subverter would present
decimal-exponential-complexity to bolster the number.

The roll programming language aims to partially alleviate this concern
(which is a legitimate concern within the narrow confines of a subverted

5

8^91+5 subs 8^91+1 in +4
8^91+1 subs 2^273 in +1
2^273 subs 273 in 2^
273 subs 17 in *16+1
17 subs 1 in *16+1
*16+1 roll +16 up 1
+16 subs +8 in +8
+8 subs +4 in +4
+4 subs +2 in +2
2^ roll *2 up 1
1 subs in +2
*2 roll +2 up 0
+2 subs +1 in +1
0 subs in +1

Table 6: A 68-word roll program for 891 + 5

number hypothesis). It aims for greater objectivity by breaking down num-
bers to the bare basics, Godel’s computability, Peano’s axioms, which reduce
arithmetic to counting.

The number 891 + 5 was used used in designing the roll language. Pre-
cursors to the roll programming language were tested for clarity mainly by
implementing 891 + 5, and various ad hoc smaller numbers. Clarity correc-
tions were incorporated into the roll programming language. The roll pro-
gramming language could easily favor 891 + 5, merely due to its central role
in the design process, and perhaps also due to bias arising from inevitable
motivational preferences.

In any event, experience accumulated from repeatedly programming 891+
5 (with Godel’s computational constructions but with various alternative
syntaxes) likely contributed considerably to the shortness of Table 6. (Some
of this experience was recently tranferred to a roll programs for 2283 and
2521 − 1.)

1.6 Composite (2127 − 1)2

An interesting field size is (2127 − 1)2, a composite number, the square of a
famous prime 2127−1. This prime has been proposed for Galbraith–Lin–Scott
elliptic curves and variants, both for its especially efficient field arithmetic,

6

and for provided an extra efficiency to an elliptic curve.

(2^127-1)^2 subs 2^127-1 in ^2
2^127-1 subs 4 in catalan-mersenne
catalan-mersenne roll 2^-1 up 2
2^-1 roll *2+1 up 0
^2 roll +*2+1 up 0
+*2+1 roll +1 up *2+1
*2+1 roll +2 up 1
4 subs 2 in +2
2 subs 0 in +2
1 subs in +2
+2 subs +1 in +1
0 subs in +1

Table 7: A 58-word program to compute (2127 − 1)2

The prime 2127 − 1 is special in many senses. Mersenne conjectured in
1644, with little justification, that 2127 − 1 is prime. (Several of Mersenne’s
similar guesses were wrong, so his guess for 2127 − 1 seems a fluke.) Lucas
proved in 1876 that 2127 − 1 is prime. It remained the largest known prime
until 1950, when it was beat by 2521− 1. So, 2127− 1 seems to be the largest
prime ever proved by hand.

Learning from Lucas that 2127 − 1 is prime, Catalan defined Catalan–
Mersenne numbers and conjectured them to be prime, based on

2127 − 1 = 22222−1−1−1 − 1.

The next Catalan–Mersenne number has 2127−1 binary digits, and all known
tests for primality are infeasible, with known theory (the prime number theo-
rem plus some heuristics) only predicting a negligible probability (≈ 2−126.47)
of primality.

Table 7 uses the Catalan–Mersenne sequence to implement (2127 − 1)2

with a short roll program.
The concern that elliptic curve cryptography might be weaker for com-

posite field sizes is considered milder for (2127−1)2 than for 2283, because the
field extension degree 2 is smaller than 283, offering less structure to attack.

7

1.7 Bitcoin’s secp256k1 prime field size
The prime 2256−232−977 is less than 2256. It is close to a Solinas number yet
not Crandall number (which is a number close to a power of two). It is speci-
fied as a field size of a prime-order elliptic curve with complex multiplication
by 3
√

1, permitting Gallant–Lambert–Vanstone scalar multiplication. The re-
sulting curve is known as secp256k1 because of its ASN.1 object identifier
in the standard SEC2.

Table 8 lists a roll program to compute 2256 − 232 − 977, but it uses
somewhat rote code golf steps compared to the custom methods of the other
listed programs.

2^256-2^32-977 subs 2^32+977 256 in 2^b-a
2^32+977 subs 2^32 977 in +
2^32 subs 32 in 2^
977 subs 47 10 in 2^b-a
256 subs 8 in 2^
47 subs 17 6 in 2^b-a
2^b-a roll -1 up 2^
32 subs 5 in 2^
17 subs 16 in +1
16 subs 4 in 2^
10 subs 8 in +2
8 subs 6 in +2
6 subs 5 in +1
5 subs 3 in +2
4 subs 3 in +1
3 subs 1 in +2
-1 roll b up 0
2^ roll *2 up 1
1 subs in +2
*2 roll +2 up 0
+2 subs +1 in +1
+ roll +1 up a
b roll a up a
a roll +1 up 0
0 subs in +1

Table 8: A 127-word program to compute 2256 − 232 − 977

8

The curve secp256k1 is used in Bitcoin, and some other cryptocurrencies,
for transaction signatures. So, presumably, its discrete logarithm is secure.
Some might wish to argue that this curve is a less likely to be subverted than
NIST curve P-256. In particular, the curve coefficients are clearly simpler.
Reasons to consider the field size less subvertible than are P-256 are unclear.
So far, code golf efforts with roll favor the field size of P-256 over that of
secp256k1.

1.8 Prime 2336 − 3
Recently, M. Scott proposed an elliptic curve with the prime field size 2336−3.
The roll program in Table 9 computes this field size.

2^336-3 subs 2^335-2 in *2+1
2^335-2 subs 2^334-1 in *2
2^334-1 subs 334 in 2^-1
334 subs 167 in *2
167 subs 83 in *2+1
83 subs 41 in *2+1
41 subs 20 in *2+1
20 subs 10 in *2
10 subs 5 in *2
5 subs 2 in *2+1
2 subs 0 in +2

2^-1 roll *2+1 up 0
*2+1 subs *2 in +1
*2 roll +2 up 0
+2 subs +1 in +1
0 subs in +1

Table 9: A 79-word program to compute 2336 − 3

2 Defining roll
This section defines the roll programming language. Table 10, together with
the system of forward (look-ahead) references summarizes the roll program-
ming language pretty well.

9

Definition Input Output
(none) () 0
(none) (a, . . .) a + 1
f subs g ... h in k (. . .) k(g(. . .), . . . , h(. . .))
f roll g up h () 0
f roll g up h (0, . . .) h(. . .)
f roll g up h (a + 1, . . .) g(f(a, . . .), a, . . .)
f when g (. . .) min{a : 0 = g(a, . . .)}

Table 10: Functions in a roll program

2.1 Words
A roll program consists of zero or more space-separated words. A word is
any space-free sequence of characters. The length of a roll program is its
number of words. (In Linux, wc -w can compute the length.)

The five words

subs in roll up when

are verbs. Verbs define the meanings of remaining words in a program,
which are nouns.

If a noun is followed by one of the three verbs subs, roll, or when, then
the word is a name of a definition. Any other noun refers, by forward
reference, to the next occurence of that noun as a name (if there is any
such occurrence).

2.2 Roll programs as functions
Each roll program describes a mathematical function.

Many different roll programs may describe the same mathematical func-
tion. One of the tasks of this report is to seek the shortest roll program
for a given mathematical function, thereby providing one measurement of its
Kolmogorov descritpional complexity.

The focus of this report are constant functions, that always return the
size of the field. The roll programs for these constant functions internally
use intermediate non-constant functions.

10

2.3 Numbers
The range of any function described by a roll program is the set of numbers

N = {0, 1, 2, . . . }.

The image of a function is a subset of its range. For constant functions, the
image set contains just one number.

2.4 Strings
The set N∗ = ⋃

e∈N N e, using Kleene’s notation, is the set strings of num-
bers. These are finite strings of the form

(a, b, . . . , c).

The string’s entries are a, b, . . . , c ∈ N . The length of the string is its how
many entries it has. For example, the empty string () has length 0, the string
(3, 97) has length 2.

If f is the function, and (a, b, . . . , c) is an input to the function, then we
generally describe the output of the function is written as f(a, b, . . . , c), which
is the usual standard mathematical notation. In particular, if the input is
the empty string, then the output is f().

The standard notation f(a, b, . . . , c) is not part of the definition of the
roll programming language (but programmers are free to use nouns with this
notation embedded in them). The standard notation f(a, b, . . . , c) is used in
this export to explain how roll programs work.

Every function defined by a roll program takes inputs which are strings
of numbers.

2.5 Domains or partial functions
A roll program describes a function f : M → N , where M ⊆ N∗ is the
domain of the roll program. In other words, a roll program describes a
partial function f : N∗ → N . A function is total if M = N∗.

The main aim of this report is roll programs that are both total and con-
stant. In particular, all the functions defined within the example programs,
including the intermediate function internal to the programs, are total. No
partial functions appear in the examples.

11

2.6 Default function
The default function is a function f that returns 0 on the empty string and
otherwise the successor of the first entry of the input string. In other words,

f() = 0,

f(a, . . .) = a + 1.

A common example is to use +1 to refer to the default function, and to
never use +1 as the name of a definition. If the noun +1 never appears as
a name of defintion, all appearances as forward references find no name to
refer, which implies that the noun refers to the default function above, not a
program-defined function.

The domain of the default function is N∗, so the default function is a
total function N∗ → N .

2.7 Substitution
A function f can be described in a roll program with a definition of the form

f subs g ... h in k

Such a definition in a roll program defines function f using substitutions of
the form

f(a, b, . . . , c) = k(g(a, b, . . . , c), . . . , h(a, b, . . . , c)). (1)
A common example is

0 subs in +1

where +1 refers to the default function. The described function is constant,
with 0(a, b, . . . , c) = +1() = 0.

The domain of f depends on the domain of g, . . . , h, k. If the latter all
have domain N∗, then f has domain N∗. In general, an input is in the
domain of f only if it is the domain of g, . . . , h, and the resulting application
of these functions is in the domain of k.

2.8 Primitive recursion
A function f can be defined in a roll program as

f roll g up h

12

which defines function f using primitive recursion:

f() = 0 (2)
f(0, b, . . . , c) = h(b, . . . , c), (3)

f(a + 1, b, . . . , c) = g(f(a, b, . . . , c), a, b, . . . , c). (4)

A typical example is
a roll +1 up 0

which defines a function a such that a(a, b, . . . , c) = a, provided that +1 refers
to the default function, and 0 refers to some definition of the zero constant
function.

The domain of f depends on the domains of g and h. If the latter have
domain N∗, then so does f . Otherwise, an input is in the domain of f only
if, in every intermediate step, the input to each function is in its domain.

2.9 Unbounded recursion
A function f can be defined in a roll program as

f when g

which defines a function f whose defined outputs essentially take the form

f(b, . . . , c) = min{a : g(a, b, . . . , c) = 0}. (5)

More precisely, let f(b, . . . , c) = a if

g(a, b, . . . , c) = 0
g(a′, b, . . . , c) > 0

for all a′ < a. (This condition implicitly requires that g(a′, b, . . . , c) is defined
for all a′ ≤ a.)

Otherwise, f(b, . . . , c) is not defined. Roll programs that describe partial
functions N∗ → N , whose domain is not the full set N∗ of strings, must
contain the word when. In other words, if a roll program lacks the word
when, then it defines a total function.

3 Running roll programs by machine
It can helpful to have a machine run a roll program, even though a nicely
written roll program should be verifiable with basic mathematical skills.

13

3.1 Unoptimized
The following C++ code is unoptimized, except for inclusion of optimized
code described in the next section of this report. The unoptimized code takes
a time at least a constant times the difference of the output and largest input.

By changing the macro USING_NTL to 0, the code becomes valid C99 code,
but then the maximum numbers that can be processed is much smaller.
// roll.c++

#define USING_NTL 1

// Parsers:
typedef char*P;
P end(P p){return *p? 0: p;}
P blank(P p){return ' '==*p|| '\n'==*p|| '\t'==*p? p+1: 0;}
P letter(P p){return '!' <= *p&&*p <= '~'? p+1: 0;}
P space(P p){P t; while(t=blank(p))p=t; return p;}
P word(P p){P t;

if (!(p=letter(p))) return 0;
while(t=letter(p)) p=t;
return space(p);}

P hear(P p,P q){P t;
return (t=letter(p))?

*p==*q? hear(t,letter(q)): 0:
letter(q)? 0: space(p);}

#define hear(p,q) hear(p,(P)q) // needed for C++
P subs (P p){return hear(p, "subs ");}
P in (P p){return hear(p, (P)"in ");}
P roll (P p){return hear(p, (P)"roll ");}
P up (P p){return hear(p, (P)"up ");}
P when (P p){return hear(p, (P)"when ");}
P verb (P p){P t; return (t=subs(p)) || (t=roll(p)) || (t=when(p)), t;}
P term(P p){return verb(p)? 0: word(p);}
P noun(P p){return in(p)? 0: term(p);}
P sentence (P p){P t;

return (t=in(p)) || (t=noun(p)) && (t=sentence(t)), t;}
P plan (P p){P t;

return
(t=subs(p)) && (t=sentence(t)) && (t=noun(t)) ||
(t=roll(p)) && (t=noun(t)) && (t=up(t)) && (t=noun(t)) ||
(t=when(p)) && (t=noun(t)) , t;}

P strategy (P p) {P t;
return

(t=end(p)) ||
(t=noun(p)) && (t=plan(t)) && (t=strategy(t)), t;}

P program (P p){P t; return (t=space(p)) && (t=strategy(t)), t ;}

// Analyzers
int num_subs(P p){int n=0;

while(!in(p)) n+=1,p=word(p);
return n;}

// Mover
P call (P p){P t=p;

14

while(t && !strategy(t)) t=word(t);
while(t && !end(t))

if(hear(t,p)) return t;
else (t=noun(t)) && (t=plan(t));

return t;}

#if USING_NTL
#include <NTL/ZZ.h>
using namespace std;
using namespace NTL;
typedef ZZ I;
#else
typedef long long I;
#endif

// internal input managers
void let(I*j,I*i){

while(*i>-1)*j++=*i++;
*j=-1;}

int len(I*i){int len=0;
while(*i++>-1)len++;
return len;}

// general program runners
I run_strategy(P p,I*i);

// #include "opt_subs.c++"
I run_subs(P p,I*i){

int k,n = num_subs(p);
I j[n+1];
for(k=0;k<n;k++){

j[k]=run_strategy(call(p),i);
p=word(p);}

p=in(p);
j[n]=-1;
return run_strategy(call(p),j);}

#include "opt_roll.c++"
I run_roll(P p,I*i){

if(*i<=0) return 0!=*i?(I)0: run_strategy(call(up(noun(p))),i+1);
else {I o=run_roll_opt(p,i);//=(I)-1;

if (o>=0) return o;
else {

I j[len(i)+2];let(j+1,i);j[1]=0;
j[0]=run_roll(p,j+1);
for(;j[1]<i[0];j[1]+=1)

j[0]=run_strategy(call(p),j);
return j[0];}}}

I run_when(P p,I*i){
I j[len(i)+1];let(j+1,i);
for(p=call(p),j[0]=0; 0!=run_strategy(p,j); j[0]+=1);
return j[0];}

I run_plan(P p,I*i){P t; return
(t=subs(p))? run_subs(t,i):
(t=roll(p))? run_roll(t,i):

15

(t=when(p))? run_when(t,i): (I)-1;}
I run_strategy(P p,I*i){return end(p)?1+*i: run_plan(noun(p),i);}
I run_program (P p,I*i){return program(p)?run_strategy(space(p),i):(I)-7;}

// input from character strings
void decimal(I*i,int c,char**s){int b;

for(b=0;b<c;b++,i++)
#if USING_NTL

conv(*i,s[b]);
#else

{char *t; for(*i=0,t=s[b];*t;t++)*i*=10,*i+=*t-'0';}
#endif

*i=-1;}

#include <stdio.h>
#define MAX_FILE (1000*1000)

I run_file(P a,I*i){
char p[MAX_FILE+1]={};
if (fopen(a,"r")) {

p[fread(p,1,MAX_FILE,fopen(a,"r"))]=0;
run_program(p,i);}}

I run_arg1(P p,I*i){return (noun(p) && end(noun(p)))?
run_file(p,i): run_program(p,i);}

void print(I a){
#if USING_NTL

cout << a << "\n";
#else

printf("%lld\n",a);
#endif
}

int main (int c, char**a) {
if(2<=c){

I i[c-1];
decimal(i,c-2,a+2);
print(run_arg1(a[1],i));}}

3.2 Optimizations
The naive roll interpreter code of the previous section only ever modifies
integers by adding (or subtracting) one. So, running roll programs for a
secure ECC field size n with the naive interpreter would take at least n
steps, which would be too long.

For simple roll programs, a few optimization suffice to make the inter-
preter run fast enough. For example, the code

f roll +2 up g

16

can implemented with the shortcut,

f(a, b, . . . , c) = 2a + g(b, . . . , c).

For large a and efficient addition arithmetic, this is exponentially faster than
incrementing 2a times.

// opt_roll.c++

// parsers for optimizable roll steps
P opt_plus_1(P),opt_a(P),opt_b(P),opt_plus_2(P);

// optimized code
I run_roll_opt(P p,I*i){

return
opt_plus_1 (p)? run_strategy(call(up(noun(p))),i+1) + i[0]:
opt_a (p)? run_strategy(call(up(noun(p))),i+1):
opt_b (p)? i[0]-1:
opt_plus_2 (p)? run_strategy(call(up(noun(p))),i+1) + 2*i[0]:
(I)-1107;} // not optimized

// "+1" -> ""
P opt_plus_1(P p){

return hear(p,(P)"+1 ") &&
(end(call(p))) ?
noun(p): 0;}

// "+2" -> "+2 subs +1 in +1" -> ...
P opt_plus_2(P p){P t;

return hear(p,(P)"+2 ") &&
(t=opt_plus_1(subs(noun(call(p))))) &&
opt_plus_1(in(t)) ?
noun(p) : 0;}

// "0" -> "0 subs in +1" -> ...
P opt_0(P p){

return hear(p,(P)"0 ") &&
opt_plus_1(in(subs(noun(call(p))))) ?
noun(p): 0;}

// "a" -> "a roll +1 up 0" --> ...
P opt_a(P p){P t;

return hear(p,(P)"a ") &&
(t=opt_plus_1(roll(noun(call(p))))) &&
opt_0(up(t)) ?
noun(p): 0;}

// "b" --> "b roll a up a" --> ...
P opt_b(P p){P t;

return hear(p,(P)"b ") &&
(t=opt_a(roll(noun(call(p))))) &&
opt_a(up(t)) ?
noun(p): 0;}

17

4 To do
Many elaborations of this work may be doable.

• Shorter versions of the listed programs.
• Roll programs for other cryptographic constants, such as

– numbers far from a power of two (being inefficient field sizes for ECC), like
∗ the 314-bit prime 999 + 4 with a 63-word roll program,
∗ a 43-word roll program implementing a composite ≈ 22031.4,

– numbers derived from irrationals like
√

2, π and e,
– numbers derived from cryptographic hash functions.

• Bit complexity of roll programs, a normalization of word length.
• A more thoroughly optimized interpreter or compiler.
• Typical lengths (par scores) for numbers of a given bit length.
• Steamrolling: searching through all roll programs to find the shortest implementing

a constant with a given property.
• Ways to find, to verify, or to estimate, the shortest program for a given function,

especially a constant.
• Models that imply information must be embedded into subverted numbers.
• Basic language analysis for roll, such as

– illustrative tutorial and guide,
– advance programming tips and tools,
– limitation such as finite arity (roll can only describe functions depending on

the first R + 1 entries of the input string, where R is the number of words
roll in the program),

– subtleties and common pitfalls (e.g., forgetting no number is pre-defined),
– design motivation and justification,
– length bounds for restricted language subsets like

∗ primitive recursive programs (no when),
∗ non-recursive programs (no roll or when),
∗ trickle programs (each noun appears at most twice),

– Kolmogorov’s algorithmically random numbers (whose shortest program does
not use roll?),

– systematic comparison to other measures of descriptional complexity like
∗ decimal exponential complexity (e.g., 8^91+5 is six characters and stan-

dard notation as understood by bc, etc.)

18

∗ straight line programs (with addition and multiplication, but no loops),
∗ code size in terse languages, J or code golfing languages,
∗ length in various Turing tar-pits (e.g., automata),

– Turing completeness and relative efficiency,
– Kleene normal form, halting problem, and undecidability of length.

References
Wikipedia was the reference for Godel’s definition of computability.

People and organizations who proposed the cryptographic constants stud-
ied in this report are each named in the appropriate section.

19

	Early estimates in roll complexity
	Mersenne prime 2^521-1
	NIST prime P-256
	Prime 2^255-19
	Composite 2^283
	Prime 8^91+5
	Composite (2^127-1)^2
	Bitcoin's secp256k1 prime field size
	Prime 2^336-3

	Defining roll
	Words
	Roll programs as functions
	Numbers
	Strings
	Domains or partial functions
	Default function
	Substitution
	Primitive recursion
	Unbounded recursion

	Running roll programs by machine
	Unoptimized
	Optimizations

	To do

