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Abstract. An extensive research of MPC protocols in different adver-
sarial settings over the past few years has led to various improvements
in this domain. Goyal et al.[14] in their paper addressed the issue of
an efficient MPC protocol in active adversarial setting by removing the
dependency on multiplication depth Dm in the arithmetic circuit. This
development was followed by Hirt et al.[16] which proposed an efficient
MPC protocol tolerating mixed adversary with communication complex-
ity of O((ci + cm + co)nκ+ ciBA(κ) +Dm(n3κ+ nBA(κ))) bits, where
Dm is the multiplicative depth of the circuit and κ is the size of an ele-
ment in the field. Additionally, Hirt et al.[16], proposed an open problem
to construct a protocol for the mixed adversarial setting, independent of
the multiplicative depth Dm, with linear communication complexity. In
this paper, we resolve this problem in the affirmative by providing an
efficient MPC protocol in the mixed adversarial setting independent of
the multiplicative depth of the circuit.

Keywords: Multi-Party Computation · Efficiency · Mixed Adversary ·
Multiplicative Depth

1 Introduction

Consider a scenario with n parties who do not trust each other. However, they
want to jointly compute a function without revealing their private inputs. This
function is represented as a circuit over a finite field. In cryptography literature,
this problem is known as secure multi-party computation (MPC)[19]. This prob-
lem has been extensively studied in the modern literature with several different
models of computation.

Adversarial setting is one such model of computation which has been one
of the most prominent variation of secure multi-party computation. The three
major types corruption that can be induced in an adversarial setting are perpe-
trated by active(which can behave in arbitrary way), passive(which can eaves-
drop) and fail-stop adversaries(which can crash during execution). There exists
other adversaries such as mobile adversary, but that’s irrelevant to the scope of
this work. Adversarial setting refers to the type of corruption that a protocol
can withstand maintaining its correctness, consistency and completeness. Every
adversarial setting comes with reliable boundary conditions on the number of
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parties that can be corrupted in previous influential works. It is well established
that a perfectly secure protocol with n parties can handle not more than n

3 − 1
active corruptions and n

2 −1 passive corruptions. These boundary conditions can
be improved provided the security of the protocol is relaxed.

In terms of practicality, while the passive setting does offer us a better bound-
ary condition on the allowed number of corruptions, it is quite impractical and
wildly optimistic. Active adversarial setting, on the other hand, does prepare us
for the worst but is highly pessimistic and leaves us with a boundary condition
of at most n

3 − 1 corruptions. The real world isn’t either black or white but a
spectrum of colours. Similarly, a set of parties can be a combination of different
types of corruptions. On top of that, a party can crash during execution of a
protocol in the network which is a very realistic scenario. To counter this lack
of practicality, Fitzi et al.[10] tried reaching a middle ground and pointed out
a trade-off between the adversarial capabilities and the allowed number of cor-
ruptions. Fitzi et al.[10] relaxed the number of active corruptions represented as
ta and accommodated passive and crash fault corruptions represented as tp and
tf respectively to create a more realistic model of adversarial setting called as
mixed adversarial setting. This hybrid setting paved way for a more scenario that
accounts for all types of aforementioned corruptions with a boundary condition
of 3ta + 2tp + tf < n.

A parallel discussion that has been around for quite a while is on the efficiency
of the MPC protocols. Goldwasser et al. [13] and Chaum et al. [5] presented the
first protocols for MPC in pure setting and Fitzi et al.[10] presented the same
for mixed setting but they were expensive and incurred a communication cost
of Ω(n6) field elements in the evaluation of one multiplication gate. Over the
years, many challenges have been overcome leading to improvements in pure
and mixed adversarial settings through the works of [7], [17], [9], [2], [3], [12],
[14], [16] making the communication complexity per multiplication gates linear
in terms of the number of parties. Hirt et al.[16] studied the efficiency of a secure

Reference Papers Adversarial
Setting

Communication
Complexity

Dependency on
Multiplicative
Depth

Beerliová-Trub́ıniová
et al.[2]

Active linear 3

Goyal et al.[14] Active linear 7

Hirt et al.[16] Mixed linear 3

Our Paper Mixed linear 7

Table 1. MPC variations

MPC protocol in mixed adversarial setting. Their construction, however, yielded
a protocol whose final communication complexity depended on the multiplicative
depth of the circuit. In this paper, we answer the following open problem raised
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by Hirt et al.[16] in affirmative: “Is it possible to remove the dependency on the
multiplicative depth of the circuit in the overall communication complexity of a
secure MPC protocol while maintaining its efficiency and the restrictions on the
number of corruptions such that 3ta + 2tp + tf < n?”

For our construction, we assume that every pair of parties is connected by a
secure channel and the communication between parties is synchronous.

1.1 Contributions

This paper improves the work done by Hirt et al.[15] in the mixed adversarial
setting. The communication complexity of evaluating all the multiplication gates
is O(cm ∗nκ+D(n3κ+nBA(1))) where cm is the number of multiplication gates
and D is the multiplicative depth of the circuit. Most of the works involving
active setting also suffer from this term [9],[8],[3]. As suggested in Hirt et al.[15],
we remove the inherent dependency on multiplicative depth D by combining
their technique with the technique proposed by Goyal et al.[14]. In this technique,
the public reconstruction protocol for intermediate result is replaced with a
reconstruction protocol involving a single party PKing which reconstructs the
intermediate result and broadcasts it to all parties. The work done by Goyal
et. al. was applicable to active setting. This paper transforms the technique
proposed by Goyal et. al. to work in mixed adversarial setting. We also provide
simulation-based proofs for the constructions involved in the technique.

There are two main changes adopted to work under mixed adversarial set-
ting. Firstly, the protocol proposed by Goyal et. al. works for active adversary
setting with threshold ta. In this paper, we handle active, passive as well as
fail corrupt adversary. Hence, the sub-protocols for player-elimination frame-
work, input gate and public reconstruction are followed from Hirt et. al.[16]
upon which the technique proposed by Goyal et. al. is constructed. Secondly,
during the reconstruction of intermediate result, PKing plays a significant role
in reconstruction and distribution of the result. This party PKing, like others, is
also susceptible to crash fault. For handling this case, we perform a heartbeat
protocol with PKing from all the parties to ensure that the results are correctly
reconstructed and distributed among the parties before the verification proceeds.
The rest of the changes involving simulation and functionality, ensure that the
security of the protocol remains unhindered.

It might seem that the solution is lacking novelty but answering this open
question is considered to be an important addition to the existing MPC litera-
ture. Our protocol is useful specifically in the cases where circuit is “narrow” in
terms of multiplication depth.

1.2 Structure

There are mainly four sections including introduction. Section 2 establishes the
necessary preliminaries such as byzantine agreement, Heartbeat and 4-consistency
etc. Section 3 and 4 presents preparation and evaluation phase respectively.
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Each section consists of ideal functionalities. Each ideal functionality is then
defined and realized in real world using combination of necessary protocols and
hybrid functionalities which can further be replaced with their real world proto-
cols. At the end of each functionality, a simulation-based proof and complexity is
provided to prove the security of individual functionality and thereby the entire
technique.

2 Preliminaries & Basic Setting

In our constructions, we will frequently use a few symbols to simplify the de-
scriptions associated with them. The parties which are involved in the protocol
are represented as a set P such that P = {P1, ..., Pn} is a set of n parties. Since
the protocols are executed withing player-elimination framework, some parties
are eliminated as the protocol progresses. This set of current parties is denoted
as P ′. We define a configuration as (P ′, t′a, t

′
p, t
′
f ) where t′a, t

′
p, t
′
f are the respec-

tive counterparts of the corruption thresholds and n′ = |P ′|. A configuration
(P ′, t′a, t

′
p, t
′
f ) is valid (i) if P ′ ⊆ P due to player-elimination framwork, (ii) if

ta + tp < n′ − 2t′a − t′f since we require Shamir secret sharings with degree
d = ta + tp be even reconstructable by parties in P ′ and (iii) |P ′a| ≤ t′a, |P ′p| ≤ t′p,
|P ′f | ≤ t′f . Also, let Λ be the default input when a party does not provide any
input.

The parties involved wants to compute a function that is represented as
a circuit over a finite field F . Circuits consist of various types of gates which
frequently appears in the descriptions as well as the protocol complexities. Hence,
using symbols to quantify different gates simplifies the representation of of the
protocol. In our construction, we will use ci input, co output, cm multiplication,
ca addition. This work also requires understanding of Byzantine agreement[11],
Circuit randomization[1] and Hyper Invertible matrix[2] as a prerequisite whose
extensive study material can be found in [6].

Complete break down : When the configuration is invalid or the values are not
consistent, this protocol is executed. It stops the execution and sends the inputs
to adversary, which then can evaluate all outputs. In such cases, no security can
be guaranteed since the prerequisite conditions are not met. Hence, simulator
construction is not required.

2.1 Adversary Model

Mixed Adversary: A mixed adversary is a more practical and realistic form
of adversary that can corrupt the participating parties in Byzantine and fail-
stop fashion. It is represented as (P, ta, tp, tf ) and can corrupt up to ta, tp and
tf parties in active, passive and fail-stop manner, respectively. In an active
corruption, the adversary gains complete control of a party with the ability to
modify the the messages that are sent. Passive corruption, on the other hand,
only allows an adversary to read the messages sent by a party. A fail-stop
corruption is an intricate detail that makes the mixed adversary setting a
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much more realistic possibility. In a fail-stop corruption, an adversary forces a
node to crash however the crashed node follows the protocol honestly until the
time of crash. An interesting property of a fail-stop corrupt party is that the
adversary cannot see the internal state i.e. the inputs or the messages processed
by the party (unless they are simultaneously actively or passively corrupted).
Adversarial models often associate parties with tags such as honest, dishonest,
correct, incorrect e.t.c which might leave some room of subtle differences. One
such subtlety is the difference between a correct and an honest party. A correct
party is one which has not been actively corrupted but can be either passively
corrupted or is prone to crash however an honest party is one which correctly
follows the protocol.

2.2 Byzantine Agreement

Byzantine agreement refers to the concept of non faulty nodes reaching an agree-
ment upon a value in the presence of a Byzantine adversary. Formally, it can be
represented as an output y taking a value xi provided all the non faulty nodes
agree upon a common value i.e. xi through a consensus protocol. The idea of
Byzantine consensus was initially conceived as interactive consistency amongst
the nodes such that all non faulty nodes have the same value at the end which
is ultimately the output. Our construction is based on mixed setting and Garay
and Perry [11] formalized the guarantees of consensus in the mixed setting which
include consistency and persistence. Consistency makes sure that the output of
all parties that are not actively corrupted are equal and persistence makes sure
that the input and output of all correct parties are same.

Broadcast is closely related to consensus such that in a broadcast protocol,
every party agrees upon a value sent by a designated sender. Just like consensus,
broadcast protocol too comes in various shapes and forms. A reliable broadcast,
which is valid, is one in which a correct party sends a message and all other
correct parties eventually receives it. A terminating reliable broadcast is a reli-
able broadcast that takes termination into account such that every correct party
delivers some value.

In the mixed setting, we require the same consistency as in consensus. Garay
and Perry [11] gave a consensus protocol for active setting with fail-stop corrup-
tion to achieve one bit consensus. This protocol allowed no passive corruptions
such that tp = 0 assuming that 3ta + tf < n. The communication complexity of
the protocol in [11] is O(n3). However, by applying the king-simulation technique
of [4], this complexity can be reduced to O(n2).

To accommodate the mixed adversarial setting, we use a player-elimination
framework to eliminate faulty parties thereby creating a reduced party set P ′.
Byzantine consensus is invoked amongst parties in P ′. So, the following protocol
is implemented which internally invokes a consensus protocol which is secure
under the assumption that 3ta + 2tp + tf < n.

Protocol 1: Consensus({xi}Pi∈P′)
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– Consensus protocols in [11], [4] can be used by parties in P ′ such that
the input of Pi is xi.

– Each Pi sends its output to all parties in P\P ′ where Pi ∈ P ′.
– All parties ∈ P ′ outputs the result of the consensus, and all parties in
P\P ′ determines its output using the rule of the majority.

The cost of Consensus in [11], [4] is O(n2) where n is the size of the initial set P.
Let BA(κ) be the complexity of broadcasting or reaching consensus on a k− bit
message in mixed setting. Hence using the aforementioned protocols gives us
BA(κ) = O(n2κ).

2.3 Circuit Randomization

Circuit randomization technique by Beaver et al.[1] helps in randomizing the
inputs of a circuit and facilitates the pre-processing phase which reduces the
overall communication complexity of the protocol. Given z = xy such that x is
shared as [x]d and y is shared as [y]d with d being the degree of polynomial used
for sharing the secret, circuit randomization allows us to compute a sharing [z]d
at the costs of two public reconstructions provided a random triplet [a]d, [b]d,
[c]d such that c = ab which has been pre-shared is available. In this technique, we
first prepare cm shared multiplication triplets [a]d, [b]d, [c]d and then we evaluate
a circuit with cm multiplications through a sequence of public reconstructions.
In circuit randomization we express z = xy as z = ((x + a) − a)(y + b) − b).
Let q = x + a and e = y + b, then, z = qe − qb − ae + c, where (a, b, c) is a
multiplication triplet. If the multiplication triplet (a, b, c) is random then q and
e are random values irrespective of x and y. Hence, a sharing [z]d can be linearly
computed as [z]d = qe− q[b]d − e[a]d + [c]d, by reconstructing [q]d = [x]d + [a]d
and [e]d = [y]d + [b]d.

2.4 Secret Sharing

In this section, we are establishing secret sharing variations, similar to [16],
as a fundamental building block for further protocols. We use Shamir’s secret
sharing scheme[18] to share and reconstruct secrets amongst n parties. In this
work, Share protocol simply distributes the secret input of a player Pi using a
random polynomial. PrivReconRobust protocol is a robust private reconstruction
where secret is reconstructed towards a single party. PubReconRobust protocol
reconstructs l secret sharings towards all the parties robustly with the help of
player-elimination framework.

Share

Protocol 2: Share(Pi, d, s, (P
′, t′a, t

′
p, t
′
f ))

– Party Pi chooses a random polynomial g of degree d such that
s = g(0) and distributes share sj = g(αj) to party Pj ∈ P ′.
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Public Reconstruction

Protocol 3: PubReconRobust(d, l, [s1]d, ..., [s
l]d, (P

′, t′a, t
′
p, t
′
f ))

For each bucket [ŝ1]d, ..., [ŝ
l]d of size l ≤ n′ − t′a do the following step 1 to

4 :

1. Expansion : All the parties compute locally
([u1]d, ..., [u

n′ ]d)T = V ([ŝ1]d, ..., [ŝ
l]d)T where V is the Vandermonde

matrix of size n′ × l defined by fixed vector β with unique values.
2. Distributing the shares : For i ∈ {1, ..., n′}, the parties send their

share of [ui]d towards Pi.
3. Reconstructing secret : Each Pi ∈ P ′ sends ui to every Pj ∈ P ′.
4. Checking validity : Every Pj ∈ P ′ checks whether there exists a

polynomial g of degree l − 1 such that all points (β1, u1), ..., (βn′ , un
′
)

lie on g. If this is the case, Pi considers ŝ1, ..., ŝl as correct. Otherwise,
Pj sets happy bit as unhappy.

5. Fault Detection : All parties now perform fault detection step from
player elimination framework. If the output is “happy” then the
reconstructed values are considered correct and move to the next
segment. Otherwise, continue to next step.

6. Fault localization : Let Pr ∈ P ′ be the party with the smallest index.
All parties Pi ∈ P ′ sends to Pr the values generated, sent and received
in the above steps. Also, message Mi received during Fault Detection
step.
Now, Pr simulates the above steps on the behalf of each Pi ∈ P ′ to
reconstruct the sharing polynomial and the correct shares of each
party. If Pr identifies a Pi which does not follow the steps, then it
broadcasts (Pi, corrupt). If Pi finds a conflict between message index l
where Pi should have sent x to Pk but Pk claimed to have received x′

such that x 6= x′ then Pr broadcasts (l, Pi, Pk, x, x
′, disputed).

In case of dispute message broadcast by Pr, the conflicting parties Pi

and Pk respond by broadcasting their stand (agree/disagree).
If Pi disagrees, all parties set E = {Pi, Pr}. If Pk disagrees, all parties
set E = {Pk, Pr}. Otherwise, every party sets E = {Pi, Pk}.

7. Crash-check fault localization : For party Ph ∈ {Pi, Pk, Pr}, the
parties perform heartbeat protocol.

8. Player elimination : If all the parties Pi, Pr and Pk are alive, then all
parties set P ′ = P ′\E,n′ = n′ − 2 and t′a = t′a − 1. Otherwise set E as
parties for which were detected as crashed by heartbeat protocol. Set
P ′ = P ′\E,n′ = n′ − |E| and t′f = t′f − |E|. Repeat the procedure
with updated (P ′, t′a, t

′
p, t
′
f ).

This robust protocol publicly reconstruct the secret under the assumption that
d < n− 2t′a − t′f .

Robust Private Reconstruction
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Protocol 4: PrivReconRobust(Pi, d, [s]d, (P
′, t′a, t

′
p, t
′
f ))

1. Every party Pj ∈ P ′ send their share sj of the sharing [s]d to party Pi.
2. If there exists a polynomial g with party Pi of degree d such that

atleast d+ t′a + 1 shares received must lie on g, then output s = g(0).
Otherwise Pi becomes unhappy.

This robust protocol privately reconstruct the secret towards a party under the
assumption that d < n− 2t′a − t′f .

2.5 4-Consistency

[14] used 4-consistency to allow verification of randomized shares. In a protocol,
we use random (n′ − 1)-shares in order to evaluate the circuit. We need all
the shares from P ′ to reconstruct the value and there are no redundancies.
However, due to the lack of redundancy, sharing becomes vulnerable which means
the verification becomes harder. This means a party can change the value by
changing its own share without being detected. To solve this issue, we need 4-
consistency which allows each party to commit their shares after evaluation of
the circuit thereby helping in the verification process. In our definition, n′ is the
number of active parties and ta is the maximum number of actively corrupted
parties an adversary can control.

Definition 1. For a partition π of P ′ = P1∪P2∪P3 such that |P1|, |P2|, |P3| ≤
ta + 1, a tuple of ta-sharings [r] = ([0r]ta , [1r]ta , [2r]ta , [3r]ta) is a 4-consistent
tuple with respect to π if 0r = r and there exists a degree-(n′− 1) polynomial p()
with p(0) = r and for all Pi ∈ Pj , p(αi) is the ith share of the sharing [jr]ta . [14]

We generate [r]ta,n′−1 for evaluation. The terms ([1r]ta , [2r]ta , [3r]ta) are gener-
ated to commit the shares of [r]n′−1 in verification.

Lemma 1. 4-consistency is preserved under linear combinations[14]

2.6 Heartbeat & Player-Elimination Framework

Protocol 5: Heartbeat(Ph, (P
′, t′a, t

′
p, t
′
f ))

– The party Ph sends a bit with value 1 to every party Pj 6=h ∈ P .
– Every party Pj runs a consensus protocol with an input of value 1 if

that’s the value it received from Ph otherwise with an input of value 0.
– If the output of the consensus is 1 then, the parties output “alive”

otherwise the parties output “crashed”.

The purpose of this sub-protocol is to adapt player-elimination framework
[15] for mixed adversarial setting. Let Ph be a party such that Ph ∈ P ′ and all
Pi 6=h ∈ P ′ wants to find out whether Ph is crashed. The sub-protocol Heartbeat
allows them to reach an agreement on whether Ph is alive.
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Protocol 6: PlayerElimination(Π)

1. Initialization : All parties set their happy-bit to “happy”
2. Execution : All parties execute protocol Π
3. Fault detection : Every party send their happy-bit to every other

party and sets its own happy-bit to “unhappy” if from at least one
party it either receives an “unhappy” bit or does not receive any bit.
All parties run consensus on their happy-bits. Every player sets its
happy-bit as per the result of the consensus. If the outcome is happy
then all parties halt. Otherwise, perform next step.

4. Fault localization : Let Pr ∈ P ′ be the party with the smallest index.
All parties Pi ∈ Pr sends to Pr the values generated, sent and received
in the above steps. If Pr does not receive values from some parties, it
uses some default value.
Now, Pr simulates the above steps on the behalf of each Pi ∈ P ′ to
check the correctness of the result generated. If Pr identifies a Pi

which does not follow the steps, then it broadcasts (Pi, corrupt) and
all parties set E = {Pr, Pi}. If Pi finds a conflict between message
index l where Pi should have sent x to Pk but Pk claimed to have
received x′ such that x 6= x′ then Pr broadcasts
(l, Pi, Pk, x, x

′, disputed).
In case of dispute message broadcast by Pr, the conflicting parties Pi

and Pk respond by broadcasting their stand (agree/disagree).
If Pi disagrees, all parties set E = {Pi, Pr}. If Pk disagrees, all parties
set E = {Pk, Pr}. Otherwise, every party sets E = {Pi, Pk}.

5. Crash-check fault localization : For party Ph ∈ {Pi, Pk, Pr}, the
parties perform heartbeat protocol.

6. Output : If all the parties Pi, Pr and Pk are alive, then all parties in
P ′ consider E as output. Otherwise set E as parties for which were
detected as crashed by heartbeat protocol.

3 Preparation Phase

3.1 The functionality Ftriplets

Functionality Ftriplets

The functionality receives set of corrupted parties Pa, Pp, Pf . Let d = ta+tp.

1. Receive l and a valid configuration (P ′, t′a, t
′
p, t
′
f ) from each party.

2. If the received values are not consistent (except Λ) or the
configuration is invalid then execute Complete Break Down. Otherwise
send configuration (P ′, t′a, t

′
p, t
′
f ), l to the adversary and proceed.

3. Adversary can send following three types of messages:
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4. If adversary sends (TRIPLETS, (([akj ]d, [b
k
j ]d, [c

k
j ]d))k=1,...,l,Pj∈(Pa∪Pp),

(([akj ]n′−1, [b
k
j ]n′−1))k=1,...,l,Pj∈(Pa∪Pp) then generate l multiplication

triplets among parties in P ′ by simulating the shares of honest
parties. For each multiplication triplet k, choose random ak, bk such
that ck = ak.bk. For each k = 1, ..., l, choose polynomials gka , g

k
b , g

k
c at

random from set of polynomials with degree d such that gka , g
k
b , g

k
c

goes through (0, ak), (0, bk), (0, ck) respectively and all the points in
set {(αj , [a

k
j ]d)|Pj ∈ (Pa ∪ Pp)}, {(αj , [b

k
j ]d)|Pj ∈ (Pa ∪ Pp)},

{(αj , [c
k
j ]d)|Pj ∈ (Pa ∪ Pp)} respectively. Also, for each k = 1, ..., l,

choose polynomials hka, h
k
b at random from set of polynomials with

degree n′ − 1 such that hka, h
k
b goes through (0, ak), (0, bk) respectively

and all the points in set {(αj , [a
k
j ]n′−1)|Pj ∈ (Pa ∪ Pp)} and

{(αj , [b
k
j ]n′−1)|Pj ∈ (Pa ∪ Pp)} respectively. Send to each Pi ∈ P ′ its

share of triplets gka(αi), g
k
b (αi), g

k
c (αi) and hka(αi), h

k
b (αi).

5. If adversary sends (ACTIVESET,E), where E ⊆ P ′, |E ∩ Pa| ≥ |E|2
then Send (ACTIVESET, E) to the parties.

6. If adversary sends (CRASHSET,E), where E ⊆ P ′, E ⊆ Pf ∪ Pa and
E 6= ∅ then Send (CRASHSET, E) to the parties.

7. Otherwise treat message as (TRIPLETS, ((0, 0, 0))k=1,...,l,Pj∈(Pa∪Pp),
((0, 0))k=1,...,l,Pj∈(Pa∪Pp)) and goto step 4.

3.2 Realizing functionality Ftriplets

Generating Random Triplet-Sharings Identical to [14], this protocol
TripletShareRandom generates l random triplet sharings [r]d,d′,d′′ and
distributes them using polynomials of degree d, d′, d′′. Initially, all n′ parties
distribute their randomness using polynomials of degree d, d′, d′′.
Hyper-invertible matrix, as described in [2], is applied which generates new
sharings such that any n′ − t′a output sharings are uniform random if any
n′ − t′a input sharings were random. The correctness of the output sharings is
verified in step 3 by reconstructing 2t′a sharings. The remaining l sharings are
considered as output of the protocol.

Protocol 1: TripletShareRandom(d, d′, d′′, l, (P ′, t′a, t
′
p, t
′
f ))

Generate each bucket of size L = n′− 2t′a− t′p−min(t′a, t
′
p) using following

protocol:

1. Distributing randomness : Every party Pi ∈ P ′ randomly chooses
si ∈ F and performs share protocol thrice among P ′ as
Share(Pi, d, s

i, (P ′, t′a, t
′
p, t
′
f )), Share(Pi, d

′, si, (P ′, t′a, t
′
p, t
′
f )) and

Share(Pi, d
′′, si, (P ′, t′a, t

′
p, t
′
f )). Each party in Pj ∈ P ′ receives j-th

share of [si]d,d′,d′′ .
2. Applying hyper-invertible matrix : Every party computes locally
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[r1]d,d′,d′′ , [r
2]d,d′,d′′ , ..., [r

n′ ]d,d′,d′′ =

M([s1]d,d′,d′′ , [s
2]d,d′,d′′ , ..., [s

n′ ]d,d′,d′′) where M is hyper-invertible
matrix of size n′ × n′.

3. Checking correctness : All parties Pi ∈ P ′ send their shares of
[rj ]d,d′,d′′ to respective Pj where j ∈ {1, 2, ..., 2t′a}. Each Pj with
j ∈ {1, 2, ..., 2t′a} checks whether the received triplet sharing is correct
or not by constructing polynomial g1 with degree d from [rj ]d,
polynomial g2 with degree d′ from [rj ]d′ and polynomial g3 with
degree d′′ from [rj ]d′′ . If g1(0) = g2(0) = g3(0) does not hold then Pj

sets its happy-bit as unhappy.
4. Output : All parties in P ′ consider remaining L sharings as output of

the bucket i.e. [rn
′−L+1]d,d′,d′′ , ..., [r

n′ ]d,d′,d′′ .

Lemma 2. TripletShareRandom detectably generates l correct (d, d′, d′′) -
sharings and the shared value corresponding to each sharing is uniformly
random in the presence of adversary provided that (P ′, t′a, t

′
p, t
′
f ) is valid and

input values of parties are consistent. Also, the communication complexity of
TripletShareRandom is O(ln′κ+ n′2κ)

Proof. We prove the correctness and security with the assumption that no
party crashed during the protocol execution and all correct parties are happy
at the end of the protocol.
Correctness : The values si ∈ F randomly chosen by parties Pi ∈ P ′ in step 1
of the protocol, are generated & shared properly by atleast n′ − t′a parties
which makes at least n′ − t′a sharings from [si]d,d′,d′′ to be correct. In step 3 of
the given protocol, at least t′a sharings of [ri]d,d′,d′′ are verified by correct
parties. In total, there are n′ correct sharings (n′ − t′a sharings of [si]d,d′,d′′ and
t′a sharings of [ri]d,d′,d′′). Due to the bijective property of hyper-invertible
matrix, any other sharing can be written as a linear combination of the correct
n′ sharing which makes all the involved sharings correct.
Privacy : t′a + t′p values of si(Shares generated by actively or passively

corrupted parties) and min(2t′a, t
′
a + t′p) values of ri (reconstructed in

verification phase) are known to the adversary. In total, 2t′a + t′p+min(t′a, t
′
p)

values are fixed by adversary. Hence, there exists a bijective mapping between
the last L ≤ n′ − 2t′a − t′p−min(t′a, t

′
p) values of ri and L values of si generated

by either honest or fail-stop corrupted parties. Hence, the values
[rn
′−l+1]d,d′,d′′ , ..., [r

n′ ]d,d′,d′′ outputted by the protocol are uniformly random
and hidden from the adversary.
Complexity : Each execution of the above protocol results in O(n′2κ) bits of
communication(n′ shares are broadcasted to n′ parties). Each bucket execution
generates L ≤ n′ − 2t′a − t′p−min(t′a, t

′
p) triple-sharings. Since 3t′a < n′ and

2t′p < n′, L ≤ n′ − 2t′a − t′p−min(t′a, t
′
p) at least 1

5n
′. Therefore, the complexity

of TripletShareRandom is O(( 5l
n′ + 1)n′2κ) = O(ln′κ+ n′2κ)

Generating Random Multiplication Tuples Goyal et al. [14] described
the steps to generate multiplication tuples, which we have inherited in this
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work. Initially, all the parties in P ′ execute TripletShareRandom protocol to
generate and distribute three random values a, b and r. The values a and b, are
distributed using polynomials of degree d, d′ and n′ − 1 whereas r is distributed
using polynomials of degree d, 2d′ and n′ − 1. Now, each party locally computes
[c]2d′ = [a]d′ × [b]d′ and [e]2d′ = [c]2d′ − [r]2d′ . In the following step, the parties
publicly reconstruct e towards all parties. Then each party locally compute
their d-sharing of product as [r]d + e. At the end, l multiplication triplets
(a, b, c) are formed and all parties hold their respective sharings along
polynomial d and n′− 1 except c for which n′− 1 shares are discarded.

Protocol 2: GenerateMultiplicationtriplets(d, l, (P ′, t′a, t
′
p, t
′
f ))

1. Generate three random triplets : All parties in Pi ∈ P ′ invoke
TripletShareRandom(d, d′, n′ − 1, l, (P ′, t′a, t

′
p, t
′
f )),

TripletShareRandom(d, d′, n′ − 1, l, (P ′, t′a, t
′
p, t
′
f )) and

TripletShareRandom(d, 2d′, n′ − 1, l, (P ′, t′a, t
′
p, t
′
f )), where d′ = t′a + t′p,

in parallel to generate random triplet sharings for
[a1]d,d′,n′−1, ..., [a

l]d,d′,n′−1, [b1]d,d′,n′−1, ..., [b
l]d,d′,n′−1 and

[r1]d,2d′,n′−1, ..., [r
l]d,2d′,n′−1 respectively.

2. Local Computations : All parties Pi ∈ P such that i ∈ {1, ..., l},
locally compute [ci]2d′ = [ai]d′ .[b

i]d′ and [ei]2d′ = [ci]2d′ − [ri]2d′

3. Reconstructing the blinded product : All parties perform PubRecon to
reconstruct (e1, ..., el) towards all parties in P ′

4. Forming l triplets : Parties Pi ∈ P such that i ∈ {1, ..., l} locally
compute d-sharing of ci = ai.bi as [ci]d = [ri]d + ei

5. Output : Parties Pi where i ∈ {1, ..., l} output l triplets as
([a1]d,n′−1, [b

1]d,n′−1, [c
1]d), ..., ([al]d,n′−1, [b

l]d,n′−1, [c
l]d)

Lemma 3. GenerateMultiplicationtriplets detectably generates l correct
triplets of d-sharings and the shared values a and b corresponding to each
triplet sharing ([a]d, [b]d, [c]d) are uniformly random in the presence of
adversary provided that (P ′, t′a, t

′
p, t
′
f ) is valid and input values of parties are

consistent. Also, the communication complexity of
GenerateMultiplicationtriplets is O(ln′κ+ n′2κ)

Proof. Correctness and Secrecy : Correctness and secrecy follows from lemma
TripletShareRandomlemma and PubRecon since the degree, 2d′, in
reconstructing the blinded product phase satisfies the condition
2d′ = 2t′a + 2t′p < n′ − t′a. Complexity : Since the protocol is based on
TripletShareRandom and PubRecon, the complexity O(ln′κ+ n′2κ) follows
from lemma 3.2 and PubRecon.

Realising Ftriplets

Theorem 1. Assuming that 3ta + 2ta + tf < n, the protocol
PlayerElimination(GenerateMultiplicationtriplets) securly evaluates Ftriplets in
the presence of a static mixed adversary.
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Proof. We construct a simulator Striplets towards real-world adversary A. It
interacts with ideal-world functionality with a black-box access to A and
executing the protocol. We have to prove that output is distributed correctly in
both(real and ideal) worlds.

Simulator Striplets

1. Receive (P ′, t′a, t
′
p, t
′
f ), l from Ftriplets.

2. Execute
PlayerElimination(GenerateMultiplicationtriplets((d, l, (P ′, t′a, t

′
p, t
′
f ))))

till Fault Detection step on behalf of correct parties in P ′ excluding
actively corrupted parties.
In each round, send the messages generated by the protocol to A and
receive the messages from corrupted parties & keep track of crashed
parties.

3. If the parties do not agree on the output of Fault Detection phase
then abort.

4. Otherwise if the output of fault detection step was happy then
For each triplet k = 1, ..., l, compute the shares of the corrupted
parties in P ′ that would result from the protocol depending on
messages exchanged during protocol execution. Choose random shares
for the corrupted parties not in P ′. Send these shares combined as
(TRIPLETS, shares) to Ftriplets.

5. If the output of fault detection step was unhappy then continue
executing the next step (fault localization). If the honest parties do
not agree on the resulting set E then abort. Otherwise, send
(ACTIVESET, E) or (CRASHSET,E) to Ftriplets depending on the
outcome of fault localization step.

If the honest parties do not input consistent values or valid configuration then
the simulator aborts and Complete Break Down is executed. Assume that the
honest parties input consistent values l, P ′, t′a, t

′
p, t
′
f and valid set P ′. Due to

consensus nature of fault detection, simulator does not abort at step 3.
Simulator sends tripletS command to the functionality Ftriplets if and only if
the result of fault detection step is happy which is also same in real world
implying that no fault caught in this computation.

Assume that the simulator sends tripletS command which implies, in an real
world, that no party crashed and no honest party is unhappy after executing
GenerateMultiplicationtriplets. From lemma 3, shared values a and b are
uniformly random and independent of the view of adversary. It also guarantees
the correctness of c = ab. Hence, the triplets are distributed identically
compared to the ideal world. It can also be seen that in both worlds, real and
ideal, the polynomials are uniformly random and consistent with the shares
outputted by corrupted parties and the triplet value(a,b,c). Otherwise, at least
one honest party gets unhappy.
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Since there are no private inputs and deterministic nature of ideal
functionality, correctness need to be proven. For correctness, it is only required
to prove that the set E is generated correctly compared to ideal world. In case
of CRASHSET, the completeness of Heartbeat protocol 2.6 ensures that the set
E contains no correct party. In case of ACTIVESET, the set E always consists
of pair of parties making conflicting claims from {Pi, Pj}, {Pr, Pj}, {Pi, Pr}.

3.3 The functionality FPreparation

This functionality takes l number of triplets and current configuration
(P ′, t′a, t

′
p, t
′
f ) as input. Adversary sends a valid set P ′′ ⊆ P ′ with thresholds

t′′a, t
′′
p , t
′′
f which could be smaller subset of parties that do not include parties

eliminated by player elimination framework for being fail-corrupt. The
adversary also sends the shares of actively and passively corrupted parties. The
new configuration (P ′′, t′′a, t

′′
p , t
′′
f ) is sent to all parties with their share of l

multiplication triplets of degree d = ta + tp and n′ − 1.

Functionality FPreparation

The functionality receives set of corrupted parties Pa, Pp, Pf . Let d = ta+tp

1. Receive l and a valid configuration (P ′, t′a, t
′
p, t
′
f ) from each party.

2. If the received values are not consistent (except Λ) or the
configuration is invalid then execute Complete Break Down. Otherwise
send configuration (P ′, t′a, t

′
p, t
′
f ), l to the adversary and proceed.

3. Adversary sends a valid set P ′′ ⊆ P ′ with thresholds t′′a, t
′′
p , t
′′
f and for

each party Pj ∈ (Pa ∪ Pp) sends shares held of each triplet i.e.
(([akj ]d, [b

k
j ]d, [c

k
j ]d))k=1,...,l and (([akj ]n′−1, [b

k
j ]n′−1))k=1,...,l. If values

are not received, assume
P ′′ = P ′, t′′a = t′a, t

′′
p = t′p, t

′′
f = t′f , (([a

k
j ]d, [b

k
j ]d, [c

k
j ]d))k=1,...,l = (0, 0, 0),

(([akj ]n′−1, [b
k
j ]n′−1))k=1,...,l = (0, 0).

4. Send the new configuration (P ′′, t′′a, t
′′
p , t
′′
f )to all parties.

5. Generate l multiplication triplets among parties in P ′′ by simulting
the shares of honest parties. For each multiplication triplet k, choose
random ak, bk such that ck = ak.bk. For each k = 1, ..., l, choose
polynomials gka , g

k
b , g

k
c at random from set of polynomials with degree

d such that gka , g
k
b , g

k
c goes through (0, ak), (0, bk), (0, ck) respectively

and all the points in set {(αj , [a
k
j ]d)|Pj ∈ (Pa ∪ Pp)},

{(αj , [b
k
j ]d)|Pj ∈ (Pa ∪ Pp)}, {(αj , [c

k
j ]d)|Pj ∈ (Pa ∪ Pp)} respectively.

Also, for each k = 1, ..., l, choose polynomials hka, h
k
b at random from

set of polynomials with degree n′ − 1 such that hka, h
k
b goes through

(0, ak), (0, bk) respectively and all the points in set
{(αj , [a

k
j ]n′−1)|Pj ∈ (Pa ∪ Pp)} and {(αj , [b

k
j ]n′−1)|Pj ∈ (Pa ∪ Pp)}

respectively.
6. Send to each Pi ∈ P ′′ its share of triplets gka(αi), g

k
b (αi), g

k
c (αi) and

hka(αi), h
k
b (αi) .
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This functionality generates l number of triplets and handles case of failure by
identifying set containing actively corrupted or fail corrupted parties. The
parties input l number of triplets and current configuration (P ′, t′a, t

′
p, t
′
f ).

Based on adversary action, one of the following outcomes occur:
(i)The computation succeeds, if adversary provides its own shares, by
computing and sharing l multiplication triplets with degree d = ta + tp and
n′ − 1 among P ′ parties.
(ii) The actively corrupted parties disrupt the protocol and a set containing an
actively corrupt party is identified and given to all parties.
(iii) The actively corrupted parties disrupt the protocol as well as a set of
fail-corrupt parties are given to all parties.
If none of the above criteria is satisfied, the parties receive shared triplets with
corrupt party shares set to 0.

3.4 Realizing functionality FPreparation in the Ftriplets− hybrid
model

This protocol realizes FPreparation in the Ftriplets− hybrid model. It divides
the number of triplets L into ta + tf segments of size l and calls Ftriplets

sequentially with l as input. If it outputs set E of adversaries then it eliminates
parties from P ′′. It results with all parties giving output set P ′′ and parties in
P ′′ share of the triplets.

Protocol 3: PreparationPhase(L, (P ′, t′a, t
′
p, t
′
f ))

Let l = d L
ta+tf

e, d = ta + tp Set P ′′ = P ′, t′′a = t′a, t
′′
p = t′p, t

′′
f = t′f . For each

segment k = 1...(ta + tf ) do:

1. Send configuration (P ′′, t′′a, t
′′
p , t
′′
f ), l to the functionality Ftriplets.

2. If Ftriplets outputs (ACTIVESET,E) then set P ′′ = P ′′

E and t′′a = t′′a − |E|/2 and repeat step 1.
3. If Ftriplets outputs (CRASHSET,E) then set P ′′ = P ′′

E and t′′f = t′′f − |E| and repeat step 1.
4. Otherwise save the sharings received from Ftriplets and repeat step 1

with next segment k + 1. If all segments are evaluated then continue.
5. Every party outputs new configuration (P ′′, t′′a, t

′′
p , t
′′
f ) and remaining

parties in P ′′ output last l triplets of shares received from Ftriplets.

Theorem 2. Assuming that 3ta + 2tp + tf < n, the above protocol securely
realizes FPreparation in the Ftriplets−hybrid model, in the presence of mixed
adversary.

Proof. To prove the security of the above protocol, we need a simultor which
will interacts with adversary in ideal world. Functionality Ftriplets performs
this simulation. Further, we need to prove that the output in real world and
ideal world are same. In the real world execution, following invariants are
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followed : (i)(P ′′, t′′a, t
′′
p , t
′′
f ) is a valid configuration, (ii)The shares outputted by

parties in P ′′ form correct d− sharing and (n′ − 1)− sharings of triplets.
Configuration is updated only when parties are eliminated. Since whenever
parties are eliminated, n′′ − 2t′′a − t′′f is preserved by the protocol implying
3t′′a + 2t′′p + t′′f < n′′. Since d is constant and (n′ − 1) is set at the beginning of
the execution(n′′ changes), a d sharing in P ′ and n′ − 1 sharing in P ′ remain
correct in P ′′.

4 Evaluation Phase

4.1 Functionality F4−Consistency

Functionality F4−Consistency

The functionality receives set of corrupted parties Pa, Pp, Pf . Let d = ta+tp
and P1,P2,P3 be partitions of P ′.

1. Receive a valid configuration (P ′, t′a, t
′
p, t
′
f ), l(number of random

tuples) from each party and P1,P2,P3 such that P1 ∪ P2 ∪ P3 = P ′

and |P1|, |P2|, |P3| ≤ d+ 1.
2. If the received values are not consistent (except Λ) or the input

configuration is invalid then execute Complete Break Down. Also, if
P1 ∪ P2 ∪ P3 6= P ′ or |P1|, |P2|, |P3| > d+ 1 then execute Complete
Break Down. Otherwise send configuration (P ′, t′a, t

′
p, t
′
f ), l and

P1,P2,P3 to the adversary and proceed.
3. If adversary sends (TUPLES,

([0r
k
j ]d, [1r

k
j ]d, [2r

k
j ]d, [3r

k
j ]d)k=1,...,l,Pj∈(Pa∪Pp)), then generate l tuples

among parties in P ′ by simulating the shares of honest parties. For
every k ∈ 1, ..., l, choose polynomials gk0 , g

k
1 , g

k
2 , g

k
3 at random from set

of polynomials with degree d such that gk0 , g
k
1 , g

k
2 , g

k
3 goes through all

the points in set {(αj , [0r
k
j ]d|Pj ∈ (Pa ∪ Pp)},

{(αj , [0r
k
j ]d|Pj ∈ (Pa ∪ Pp)}, {(αj , [0r

k
j ]d|Pj ∈ (Pa ∪ Pp)} and

{(αj , [0r
k
j ]d|Pj ∈ (Pa ∪ Pp)} respectively. Send to every player Pi ∈ P ′,

the ith share of [rk] = ([0r
k
i ]d, [1r

k
i ]d, [2r

k
i ]d, [3r

k
i ]d) for k ∈ 1, ..., l.

4. If adversary sends (ACTIVESET,E), where E ⊆ P ′, |E ∩ Pa| ≥ |E|2
then Send (ACTIVESET, E) to the parties.

5. If adversary sends (CRASHSET,E), where E ⊆ P ′, E ⊆ Pf ∪ Pa and
E 6= ∅ then Send (CRASHSET, E) to the parties.

6. Otherwise treat the message as (TUPLES,
(0, 0, 0, 0)k=1,...,l,Pj∈(Pa∪Pp)) and goto step 3.

4.2 Realizing functionality F4−Consistency

This protocol is obtained from [14] which generates l correct and random
4-consistent tuples [r] = ([0r]d, [1r]d, [2r]d, [3r]d). P1,P2,P3 are partitions of
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parties such that P1 ∪ P2 ∪ P3 = P and |P1|, |P2|, |P3| ≤ d+ 1. The partitions
allows to create redundancy of matrix ([s1], ..., [sn]n−1) such that the entire
matrix can be recovered even if the adversary corrupts its shares. Each row of
this matrix is chosen d sharing such that even if adversary tampers its shares,
the original matrix and the 3 matrix which belong to each partition can be
recovered. For extensive details, refer to [14]. Each party distributes a random
4-consistent tuple, and using hyper-invertible matrix new random sharings are
constructed. For verifying the correctness, 2t′a 4-consistent tuples are
reconstructed. If they are invalid, parties set their happy bit as unhappy.
Otherwise l 4-consistent tuples are outputted.

Protocol 1: QuadrupleShareRandom(l, (P ′, t′a, t
′
p, t
′
f ), (P1,P2,P3))

1. Distributing randomness : Every party Pi ∈ P ′ produces a random
4-consistent tuple [si] = ([0s

i]d, [1s
i]d, [2s

i]d, [3s
i]d). Each party Pj

receives j-th share of [si] from Pi.
2. Applying hyper-invertible matrix : Every party computes locally

([r1], [r2], ..., [rn
′
]) = M([s1], [s2], ..., [sn

′
]) where M is

hyper-invertible matrix of size n′ × n′.
3. Checking correctness : All parties Pi ∈ P ′ send their shares of [rj] to

respective Pj where j ∈ {1, 2, ..., 2t′a}. Each Pj with j ∈ {1, 2, ..., 2t′a}
checks whether the received 4-consistent tuple [rj] is correct or not. If
it is invalid then Pj sets its happy-bit as unhappy.

4. Output : All parties in P ′ consider remaining l sharings as output i.e.
[rn
′−l+1], ..., [rn

′
].

Lemma 4. QuadrupleShareRandom detectably generates l correct random
4-consistent tuple and the shared value corresponding to each tuple sharing
([0r]d, [1r]d, [2r]d, [3r]d) are uniformly random in the presence of adversary
provided that (P ′, t′a, t

′
p, t
′
f ) is valid and input values of parties are consistent.

Also, the communication complexity of QuadrupleShareRandom is
O(ln′κ+ n′2κ)

Proof. Correctness and Secrecy : Since 4 sharings are distributed instead of 3,
the correctness and secrecy follows from lemma 3.2. Complexity : Since the
protocol is similar to TripletShareRandom, the complexity O(ln′κ+ n′2κ)
follows from lemma 3.2.

Theorem 3. Assuming that 3ta + 2ta + tf < n, the protocol
PlayerElimination(QuadrupleShareRandom) securly evaluates F4−Consistency

in the presence of a static mixed adversary.

Simulator S4−Consistency

Proof. 1. Receive (P ′, t′a, t
′
p, t
′
f ), l and P1,P2,P3 from F4−Consistency.

2. Execute PlayerElimination(QuadrupleShareRandom((l, (P ′, t′a, t
′
p, t
′
f ),
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(P1,P2,P3)))) till Fault Detection step on behalf of correct parties in
P ′ excluding actively corrupted parties.
In each round, send the messages generated by the protocol to A and
receive the messages from corrupted parties & keep track of crashed
parties.

3. If the parties do not agree on the output of Fault Detection phase then
abort.

4. Otherwise if the output of fault detection step was happy then
For each triplet k = 1, ..., l, compute the shares ([0r

k
j ]d, [1r

k
j ]d, [2r

k
j ]d, [3r

k
j ]d)

of the corrupted parties in P ′ that would result from the protocol de-
pending on messages exchanged during protocol execution. Choose ran-
dom shares for the corrupted parties not in P ′. Send these shares com-
bined as (TUPLES, shares) to F4−Consistency.

5. If the output of fault detection step was unhappy then continue execut-
ing the next step (fault localization). If the honest parties do not agree
on the resulting set E then abort. Otherwise, send (ACTIVESET, E) or
(CRASHSET,E) to F4−Consistency depending on the outcome of fault
localization step.

We constructed a simulator S4−Consistency towards real-world adversary A. It
interacts with ideal-world functionality with a black-box access to A and
executing the protocol. We have to prove that output is distributed correctly in
both(real and ideal) worlds.

If the honest parties do not input consistent values or valid configuration then
the simulator aborts and Complete Break Down is executed. Assume that the
honest parties input consistent values l, P ′, t′a, t

′
p, t
′
f and valid set P ′. Due to

consensus nature of fault detection, simulator does not abort at step 3.
Simulator sends TUPLES command to the functionality F4−Consistency if and
only if the result of fault detection step is happy which is also same in real
world implying that no fault caught in this computation.

Assume that the simulator sends TUPLES command which implies, in an real
world, that no party crashed and no honest party is unhappy after executing
QuadrupleShareRandom. From lemma 4, shared value r is uniformly random
and independent of the view of adversary. Hence, the tuples are distributed
identically compared to the ideal world. It can also be seen that in both
worlds, real and ideal, the polynomials are uniformly random and consistent
with the shares outputted by corrupted parties. Otherwise, at least one honest
party gets unhappy.

Since there are no private inputs and deterministic nature of ideal functionality,
only correctness need to be proven. For correctness, it is only required to prove
that the set E is generated correctly compared to ideal world. In case of
CRASHSET, the completeness of Heartbeat protocol 2.6 ensures that the set
E contains no correct party. In case of ACTIVESET, the set E always consists
of pair of parties making conflicting claims from {Pi, Pj}, {Pr, Pj}, {Pi, Pr}.
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4.3 Functionality FMultiplication

Functionality FMultiplication

The functionality receives set of corrupted parties Pa, Pp, Pf . Let d = ta+tp

1. Receive l(number of multiplications in a segment) and a valid
configuration (P ′, t′a, t

′
p, t
′
f ) from each party. From each party Pi ∈ P ′

receive d & (n′ − 1) shares of (xk, yk, ak, bk, ck)k=1...l where xk, yk are
inputs to the gate and (ak, bk, ck) are the multiplication triplet.

2. If the received values are not consistent (except Λ) or the input
configuration is invalid then execute Complete Break Down. Also, if
the received shares of xk, yk, ak, bk, ck do not make a correct d-sharings
or triplets for any value of k then execute Complete Break Down.

3. For each k = {1, ..., l}, choose polynomials gka , g
k
b , g

k
c , g

k
x, g

k
y at random

from set of polynomials with degree d such that gka , g
k
b , g

k
c , g

k
x, g

k
y goes

through (0, ak), (0, bk), (0, ck), (0, xk), (0, yk) respectively and all the
points in set {(αj , [a

k
j ]d)|Pj ∈ P ′}, {(αj , [b

k
j ]d)|Pj ∈ P ′},

{(αj , [c
k
j ]d)|Pj ∈ P ′}, {(αj , [x

k
j ]d)|Pj ∈ P ′}, {(αj , [y

k
j ]d)|Pj ∈ P ′}

respectively. Also, for each k = 1, ..., l, choose polynomials hka, h
k
b at

random from set of polynomials with degree n′ − 1 such that hka, h
k
b

goes through (0, ak), (0, bk) respectively and all the points in set
{(αj , [a

k
j ]n′−1)|Pj ∈ P ′} and {(αj , [b

k
j ]n′−1)|Pj ∈ P ′} respectively.

4. Send to adversary l, (P ′, t′a, t
′
p, t
′
f ). Compute & send, for all

k = {1, ..., l}, hkq = gkx + hka and hke = gky + hkb to the adversary. Also,
send, for all k = {1, ..., l},
(gka(αj), g

k
b (αj), g

k
c (αj), h

k
a(αj), h

k
b (αj))Pj∈(Pa∪Pp).

5. Receive a valid configuration (P ′′, t′′a, t
′′
p , t
′′
f ) such that P ′′ ⊆ P ′ and for

each player k = 1, ..., l, shares of (zkj )Pj∈Pa∪Pp
. If no such values are

received then set (P ′′ = P ′, t′′a = t′a, t
′′
p = t′p, t

′′
f = t′f ), (zkj ) = 0.

6. Send the new configuration (P ′′, t′′a, t
′′
p , t
′′
f )to all parties and for each

k = 1, ..., l choose a polynomial gkz at random from set of polynomials
with degree d such that gkz goes through (0, gkx(0).gky (0)) respectively

and all the points in set {(αj , [z
k
j ]d)|Pj ∈ (Pa ∪ Pp)}. Send the share

gkz (αi) to each Pi ∈ P ′′. For next steps set
P ′ = P ′′, t′a = t′′a, t

′
p = t′′p , t

′
f = t′′f .

7. Now, adversary sends following three types of messages:
8. If adversary sends (([qkj ]0, [e

k
j ]0)k=1,...,l,Pj∈(Pa∪Pp) where qk = hkq (0)

and ek = hke(0), then the send the shares for k = 1, ..., l, ([qki ]0, [e
k
i ]0)

to all parties Pi ∈ P ′′ such that [qkj ]0 = [qki ]0 and [ekj ]0 = [eki ]0.

9. If adversary sends (ACTIVESET,E), where E ⊆ P ′, |E ∩ Pa| ≥ |E|2
then Send (ACTIVESET, E) to the parties.

10. If adversary sends (CRASHSET,E), where E ⊆ P ′, E ⊆ Pf ∪ Pa and
E 6= ∅ then Send (CRASHSET, E) to the parties.
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11. Otherwise treat message as ((0, 0))k=1,...,l,Pj∈(Pa∪Pp), and goto step 7.

12. For k = {1, ..., l}, compute gkq = gkx + gka and gke = gky + gkb
Receive from adversary new configuration (P ′′, t′′a, t

′′
p , t
′′
f ) such that

P ′′ ⊆ P ′.
If, for all k = {1, ..., l}, hkq (0) = gkq (0) and hke(0) = gke (0) then consider

gkz (αi) sent in step 6 to each Pi as output. Otherwise, continue with
next steps.
Set (P ′ = P ′′, t′a = t′′a, t

′
p = t′′p , t

′
f = t′′f )

13. This step is explained in the simulator and functionality receives from
adversary A, [js

i]d for j ∈ {1, 2, 3} and Pi ∈ H \ H′ where parties in
H′ have been checked by non-corrupt parties only.
Each party Pi ∈ P ′, choose polynomials g

1si , g2si , g3si at random from
set of polynomials with degree d such that for j ∈ {1, 2, 3}, g

jsi goes

through {(αk, [s
i
k]n′−1)|Pk ∈ Pj} and goes through the corrupted

shares received.
Each party Pi ∈ P ′ sends to each party Pk ∈ P ′ \ Pj , gjsi(αk).

14. If adversary sends set E or Pfaultyset then set E is sent to all parties
and repeat the execution of FMultiplication with updated configuration
P ′′ = P ′ \ E,, if received ACTIVESET then
t′′a = t′a − |E|/2, t′′f = t′f , t

′′
p = t′p else received CRASHSET then

t′′f = t′f − |E|, t′′a = t′a, t
′′
p = t′p. Otherwise, adversary sends all shares of

corrupt parties of all random 4-consistent tuples as
([0r

j ]n, [1r
j ]n, [2r

j ]n, [3r
j ]n) for corrupt party Pn.

To send all shares of a 4-consistent tuple to a corrupt party, honestly
generate random 4-consistent tuple [uj]. For each honest party Pj ,
generate a random 4-consistent tuple such that for every corrupt
party Pn, ([0u

j ]n, [1u
j ]n, [2u

j ]n, [3u
j ]n) =

([0s
j ]n, [1s

j ]n, [2s
j ]n, [3s

j ]n) + ([0r
j ]n, [1r

j ]n, [2r
j ]n, [3r

j ]n).
Send to adversary all shares of a 4-consistent tuple i.e. for all corrupt
Pn, ([0u

j ]n, [1u
j ]n, [2u

j ]n, [3u
j ]n).

If adversary again sends set E or Pfaultyset then set E is sent to all
parties and repeat the execution of FMultiplication with updated
configuration P ′′ = P ′ \ E,, if received ACTIVESET then
t′′a = t′a − |E|/2, t′′f = t′f , t

′′
p = t′p else received CRASHSET then

t′′f = t′f − |E|, t′′a = t′a, t
′′
p = t′p. Otherwise, adversary sends OK to

continue to the next step.
15. Generate g

jqi
∗ randomly from a set of polynomials with degree d such

that g
jqi
∗ (αk) = [qi

∗
]n′−1 for honest party Pk ∈ Pj . Receive corrupt

party shares from A and forward both i.e. honest and corrupt party
shares to PKing. If PKing is honest then it finds a k∗ value which does
not match with the received shares and equivalent party Pk∗ is
identified and removed from P ′. If PKing is corrupt then receive from
A, a set of parties (PKing, P

∗
k ). If parties are alive then
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t′′a = t′a − |E|/2, t′′f = t′f , t
′′
p = t′p. Otherwise, whichever party is crashed

is removed. Repeat the functionality with updated configuration.

4.4 Realizing functionality FMultiplication

Checking Consistency Like [14] version of CheckConsistencyKing, it is used
to check whether PKing is corrupt or not during the execution of
MultiplicationGateEval. In the first step, given l sharings are extended into
l+ d′ using hyper-invertible matrix. These shares are given to each party and it
checks whether it is valid or not. If it is invalid then it sets its happy bit as
unhappy indicating PKing might be corrupt. Further, fault detection and
localization steps detect, using a referee party Pr, which pair of parties cheated
during the protocol. Also, if any of the parties crashed during the execution of
the protocol then these are added to set of crashed parties.

Protocol 2: CheckConsistencyKing(l, Pking, (P
′, t′a, t

′
p, t
′
f ), [d1]0, ..., [d

l]0)

Let d′ = t′a + t′p.

1. Applying hyper-invertible matrix : Every party computes locally
[r1]0, [r

2]0, ..., [r
l+d′ ]0 = M([d1]0, [d

2]0, ..., [d
l]0) where M is

hyper-invertible matrix of size (l + d′)× l.
2. Distributing Shares : All parties send the shares of [rj ]0 to Pj where
j ∈ {1, ..., l + d′}

3. Checking validity : If all shares of [rj ]0 are equal then [rj ]0 is valid.
Otherwise Pj sets its happy-bit as unhappy.

4. Fault detection : Each party sends its own happy-bit to every other
party.
A party sets its own happy-bit as unhappy if it receives unhappy bit
from at least one party or it does not receive any bit from at least one
party.
Perform consensus protocol on the modified happy bits. If the
outcome is happy then all parties halt. Otherwise, perform next step.

5. Fault localization : Let Pr ∈ P ′ be the party with the smallest index.
All parties Pi ∈ Pr sends to Pr the values generated, sent and received
in the above steps. Also, Pking sends d1, ..., dl to Pr.
Now, Pr simulates the above steps on the behalf of each Pi ∈ P ′ to
check the correctness of the result generated. If Pr identifies a Pi

which does not follow the steps, then it broadcasts (Pi, corrupt). If Pi

finds a conflict between message index l where Pi should have sent x
to Pk but Pk claimed to have received x′ such that x 6= x′ then Pr

broadcasts (l, Pi, Pk, x, x
′, disputed).

In case of dispute message broadcast by Pr, the conflicting parties Pi

and Pk respond by broadcasting their stand (agree/disagree).
If Pi disagrees, all parties set E = {Pi, Pr}. If Pk disagrees, all parties
set E = {Pk, Pr}. Otherwise, every party sets E = {Pi, Pk}.
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6. Crash-check fault localization : For party Ph ∈ {Pi, Pk, Pr}, the
parties perform heartbeat protocol.

7. Output : If all the parties Pi, Pr and Pk are alive, then all parties in
P ′ consider E as output. Otherwise set E as parties for which were
detected as crashed by heartbeat protocol.

Lemma 5. CheckConsistencyKing securely checks if a party Pking sent l
same elements to all other parties in the presence of mixed adversary provided
that (P ′, t′a, t

′
p, t
′
f ) is valid. Also, the communication complexity of

CheckConsistencyKing is O(nκ+ (ta + tf )(n2κ+BA(κ)))

Proof. Complexity : In the distributing shares step, all parties send O(n2)
elements. The rest of the steps are similar to party elimination framework
except Pking sends additional O(n) elements to Pr during fault-localization
step. Hence, the overall communication complexity is
O(nκ+ (ta + tf )(n2κ+BA(κ))). .

Checking 4-Consistent Tuples

Protocol 3: Check4ConsistentTuple(l, (P ′, t′a, t
′
p, t
′
f ), (P1,P2,P3), {[sj]}n′j=1)

Let d′ = t′a + t′p.

1. 4-consistent tuple generation : Send a configuration (P ′, t′a, t
′
p, t
′
f ), l

and (P1,P2,P3) from each party to functionality F4−Consistency.
2. If F4−Consistency outputs (ACTIVESET,E) then set P ′′ = P ′′ \E and
t′′a = t′′a − |E|/2 and halt.

3. If F4−Consistency outputs (CRASHSET,E) then set P ′′ = P ′′ \ E and
t′′f = t′′f − |E| and halt.

4. Otherwise every party saves the shares of 4-consistent tuples received
from F4−Consistency denoted as {[r1], ..., [rl]}.

5. Distributing Shares : All parties send the shares of [rj] to Pj and
compute [uj] = [sj] + [rj] where j ∈ {1, ..., n′}

6. Applying hyper-invertible matrix : Every party computes locally
([v1], [v2], ..., [vl+d′]) = M([ulj+1], ..., [ulj+l]) where M is
hyper-invertible matrix of size (l + d′)× l.
For k ∈ {1, ..., l + d′}, all parties send the shares of [rk] to Pk. If the
received 4-consistent tuple is valid then Pk sets its happy-bit as
happy. Otherwise Pj sets its happy-bit as unhappy.

Repeat this steps for values of j given as j ∈ {0, ..., dn
′

l e − 1}.
7. Fault detection : Each party sends its own happy-bit to every other

party.
A party sets its own happy-bit as unhappy if it receives unhappy bit
from at least one party or it does not receive any bit from at least one
party.
Perform consensus protocol on the modified happy bits. If the
outcome is happy then all parties halt. Otherwise, perform next step.
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8. Fault localization : Let Pr ∈ P ′ be the party with the smallest index.
All parties Pi ∈ Pr sends to Pr the values generated, sent and received
in the above steps. Also, each party Pi sends [ui] to Pr.
Now, Pr simulates the above steps on the behalf of each Pi ∈ P ′ to
check the correctness of the result generated. If Pr identifies a Pi

which does not follow the steps, then it broadcasts (Pi, corrupt). If Pi

finds a conflict between message index l where Pi should have sent x
to Pk but Pk claimed to have received x′ such that x 6= x′ then Pr

broadcasts (l, Pi, Pk, x, x
′, disputed).

In case of dispute message broadcast by Pr, the conflicting parties Pi

and Pk respond by broadcasting their stand (agree/disagree).
If Pi disagrees, all parties set E = {Pi, Pr}. If Pk disagrees, all parties
set E = {Pk, Pr}. Otherwise, every party sets E = {Pi, Pk}.

9. Crash-check fault localization : For party Ph ∈ {Pi, Pk, Pr}, the
parties perform heartbeat protocol.

10. Output : If all the parties Pi, Pr and Pk are alive, then all parties in
P ′ consider E as output. Otherwise set E as parties for which were
detected as crashed by heartbeat protocol.

Check4ConsistentTuple generates and checks whether each party distributed a
correct random 4-consistent tuple. Firstly, each party generates l random
4-consistent tuples. It generates such dn

′

l e sets of l random tuples of
4-consistent sharings. Each random 4-consistent tuple is associated with
corresponding input 4-consistent tuples. Instead of revealing the input
4-consistent tuples, all parties perform checking over the addition of the two
tuples. Further, all parties apply hyper-invertible matrix to obtain l + d
random 4-consistent tuples. Each of these tuples is now reconstructed by
different parties and it checks whether it is valid or not. If it is invalid then it
sets its happy bit as unhappy implying that 4-consistent tuple has been
modified. Further, fault detection and localization steps detect, using a referee
party Pr, which pair of parties cheated during the protocol. Here, the referee
party checks the summation of the 4-consistent tuples instead of the original
input 4-consistent tuples. Also, if any of the parties crashed during the
execution of the protocol then these are added to set of crashed parties.

Lemma 6. Check4ConsistentTuples securely checks if each party
distributed a correct 4-consistent tuple in the presence of mixed adversary
provided that (P ′, t′a, t

′
p, t
′
f ) is valid. Also, the communication complexity of

Check4ConsistentTuples is O(2nκ+ (ta + tf )(2n2κ+BA(κ)))

Proof. Complexity : In the distributing shares step, all parties send O(n2)
elements to reconstruct n′ number of [rj]s. Also, all parties send O(n2) more
elements for reconstructing l + t′ number of [vk]s. The rest of the steps are
similar to party elimination framework except each Pi sends additional
elements to Pr during fault-localization step which makes up O(n2) elements.
Hence, the overall communication complexity is
O(n2κ+ (ta + tf )(2n2κ+BA(κ))).
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Realizing FMultiplication in the F4−Consistency− Hybrid Model A
circuit is divided into multiples segments. For each segment seg,
MultiplicationGateEval computes multiplication gates present. Unlike [16],
there is no restriction on the depth of the multiplication gates present in a
segment. Initially, partition P ′ is aggreed among the parties in the protocol.
Protocol begins with the generation of multiplication triplet per multiplication
gate. Using circuit randomization technique from [1] along with PKing, all
parties evaluate multiplication gates in the segment. Similarly, addition gate is
evaluated with each party adding their shares locally of the respective inputs.
Since, n′ − 1-sharings are used during the computation of multiplication gates,
it prohibits PKing from learning any additional information. To detect whether
incorrect shares have been sent to PKing or PKing is corrupt during
multiplication gate evaluation, all parties perform CheckConsistencyKing. Once
it is confirmed that the values sent by PKing are not tampered, for verifying
that the reconstructed values were correct parties perform public
reconstruction using d-sharings. If the reconstructed values are same as
obtained during gate evaluation then the output of the evaluation in step 3 is
considered correct. Otherwise, all parties verify the randomness used during
the generation of multiplication triplets by committing the randomness with
the help of 4-consistent tuples. This 4-consistent tuple is now verified by
Check4ConsistentTuple. If the 4-consistent tuple is invalid then it returns pair
of disputed or set of crashed parties. Otherwise, PKing identifies the disputed
parties by finding mismatched value [q]d during gate evaluation phase and
reconstruction using values from 4-consistent tuple.

Protocol 4: MultiplicationGateEval

Let Pking ∈ P ′ be the party with highest index and d = ta + tp.

1. Receive l(number of multiplications in a segment) and a valid configu-
ration (P ′, t′a, t

′
p, t
′
f ) from each party. From each party Pi ∈ P ′ receive

d & (n′ − 1) shares of (xk, yk, ak, bk, ck)k=1...l where xk, yk are inputs
to the gate and (ak, bk, ck) are the multiplication triplet.

2. Evaluate gates : For each multiplication gate, we denote input sharings
as [x]d, [y]d and corresponding multiplication triplet as
([a]d,n′−1, [b]d,n′−1, [c]d,n′−1).
All parties compute [q]n′−1 = [x]d + [a]n′−1 and [e]n′−1 = [y]d + [b]n′−1.
All parties send the shares of [q]n′−1 and [e]n′−1 to Pking.
Pking reconstructs values of q and e which are broadcasted to all other
parties.
All parties now compute output sharings as [z]d = qe−q[b]d−e[a]d+[c]d.
After computing all l multiplication gates, Pking performs heartbeat
protocol.
If the output of heartbeat protocol is “alive” then all parties out-
put “Success” and continue. Otherwise parties output “fail” and take
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Pfaultyset = {PKing} and update the configuration P ′ = P ′−PKing, t
′
a =

t′a, t
′
a = t′a, t

′
f = t′f − 1 and halt.

3. Validate consistency for Pking : We denote the elements distributed
by Pking in previous step as q1, ..., ql and e1, ..., el which is same as
distributing [q1]0, ..., [q

l]0 and [e1]0, ..., [e
l]0.

All parties perform
CheckConsistencyKing(l, Pking, (P

′, t′a, t
′
p, t
′
f ), [q1]0, ..., [q

l]0)

and CheckConsistencyKing(l, Pking, (P
′, t′a, t

′
p, t
′
f ), [e1]0, ..., [e

l]0). If the
output from either of the two executions is a pair of disputed parties
or set of crashed parties denoted as Pfaultyset then all parties take it as
output and halt.

4. Rechecking the reconstructions : For each multiplication gate, each
party computes [q]d = [x]d + [a]d and [e]d = [y]d + [b]d.
For given segment seg, we denote the values of q and e as q1, ..., ql and
e1, ..., el.
Each party sends l,(P ′, t′a, t

′
p, t
′
f ) and [q1], ..., [ql] to PubReconRobust.

Every party receives (P ′′, t′′a, t
′′
p , t
′′
f ) from PubReconRobust and sets

P ′ = P ′′, t′a = t′′a, t
′
p = t′′p , t

′
f = t′′f .

Each party sends l,(P ′, t′a, t
′
p, t
′
f ) and [e1], ..., [el] to PubReconRobust.

Every party receives (P ′′, t′′a, t
′′
p , t
′′
f ) from PubReconRobust and sets

P ′ = P ′′, t′a = t′′a, t
′
p = t′′p , t

′
f = t′′f .

Every party now checks whether the reconstructed values q1, ..., ql and
e1, ..., el from PubReconRobust match with the values distributed by
Pking in step 2. If all values match then the output shares generated
in step 2 are considered correct and shares of output wire are taken
as output. Otherwise, continue to the next step with the first incorrect
value be denoted as qi

∗
.

5. Rechecking the randomness from multiplication triplets of party Pi : Let
[si]d,n′−1 be the d− sharing and (n′−1)− sharing of si which a party Pi

distributed during one of the invokation of TripletShareRandom during
evaluation of multiplication triplets.
Party Pi randomly generates [1s

i]d, [2s
i]d, [3s

i]d such that kth share of
[js

i] is [sik]n′−1 for j ∈ {1, 2, 3} and Pk ∈ Pj . For Pk ∈ P ′\Pj , Pi sends
kth share of [js

i]d to Pk.
6. Check 4-Consistency : Let [si] denote the tuple sharings

[0s
i]d, [1s

i]d, [2s
i]d, [3s

i]d where [0s
i]d = [si]d

All parties perform

Check4ConsistentTuples(l, (P ′, t′a, t
′
p, t
′
f ), (P1,P2,P3), {[sj]n

′

j=1}) which
interacts with F4−Consistency.
If F4−Consistency outputs (ACTIVESET, E) or Ftriplets outputs (CRASH-
SET, E) then all parties take E as output and halt. Otherwise, continue
to the next step.
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7. Finding disputed parties : Let Mi∗ be the i∗th row of M , where M
is the hyper-invertible matrix used in TripletShareRandom, such that
[ai
∗
]n′−1 = Mi∗([s

1]n′−1, ..., [s
n′ ]n′−1).

All parties compute [jq
i∗ ]d = [xi

∗
]d + Mi∗([js

1]d, ..., [js
n′ ]d) for j ∈

{1, 2, 3} and send their shares to Pking.

For a certain j, Pking finds a k∗ where k∗
th

share of [jq
i∗ ]d is not

equal to the value received from Pk∗ in evaluate phase and broadcasts
(k∗, corrupt).
For party Ph ∈ {Pking, P

∗
k }, the parties perform heartbeat protocol.

If both the parties Pking, Pk∗ are alive, then all parties in P ′ consider
E = Pking, Pk∗ as output. Otherwise set E as parties for which were
detected as crashed by heartbeat protocol.

Theorem 4. Assuming that 3ta + 2ta + tf < n, the protocol
MultiplicationGateEval securly evaluates FMultiplicationin the
F4−Consistency−hybrid model, in the presence of a static mixed adversary. Also,
the communication complexity of MultiplicationGateEval is
O(lnκ+ (ta + tf )(2n2κ+BA(κ)))

Proof. We construct a simulator SMultiplication towards real-world adversary
A. It interacts with ideal-world functionality with a black-box access to A and
executing the protocol. We have to prove that output is distributed correctly in
both worlds.

Simulator SMultiplication

Simulator SMultiplication outputs whateverA outputs. Emulating FMultiplication

1. Receive l, (P ′, t′a, t
′
p, t
′
f ), for all k = {1, ..., l}, hkq , hke ,

(gka(αj), g
k
b (αj), g

k
c (αj), h

k
a(αj), h

k
b (αj))Pj∈(Pa∪Pp) from FMultiplication.

Now, emulating 4.4 as follows
2. For every honest party, simulator send elements such that it lies on the

polynomials hkq and hke to Pking. If Pking is honest then receive from
A, new configuration (P ′′, t′′a, t′′p , t′′f ) and reconstruct the n′−1 sharings

to compute hkq , hke and thereby, [zkj ]d = hkq (0).hke(0) − hkq (0).gkb (αj) −
hke(0).gka(αj) + gkc (αj) shares of corrupt parties Pj ∈ (Pa ∪Pp). If Pking

is actively corrupted, then, for k ∈ {1, ..., l}, simulator forwards the
received elements to A. Receive from A new configuration and shares
of corrupted parties. Send the computed shares and new configuration
received from A to FMultiplication. Heartbeat towards Pking can be sim-
ulated since all its inputs are known to the simulator.

3. Validate consistency for Pking : Since the elements q, e are public, simu-
lator continues to be honest by forwarding the shares of corrupt parties
to the adversary A while executing this step. If the output of Fault De-
tection step during execution of CheckConsistencyKing is “happy” then
for k ∈ {1, ..., l}, send shares of corrupted parties in P ′ from the above
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execution generated by A to FMultiplication. For corrupted parties not
in P ′ send random shares to FMultiplication. Otherwise continue to the
next step after Fault Detect. If the parties do not agree on set E then
abort else send (ACTIVESET,E) or (CRASHSET,E) from execution
to FMultiplication.

4. Rechecking the reconstructions : Simulator computes the values of q1, ..., ql

and e1, ..., el. Simulator already knows the shares held by corrupt parties
of [ak]n′−1 and [bk]n′−1 for k ∈ {1, ..., l} from generate multiplication
triplets phase. It also knows the shares held by corrupt parties for [xk]d
and [yk]d. Simulator already sent random values for reconstruction of
[qk]n′−1 and [ek]n′−1 on behalf of honest parties. Hence, it learns all
shares of [qk]n′−1 and [ek]n′−1. Simulator randomly computes d− shar-
ings of [qk]d, [ek]d of honest parties from its knowledge of corrupt shares
of [qk]d, [ek]d and qk, ek. After the execution of this step, it forwards
the configuration received from the adversary to FMultiplication.

5. Rechecking the randomness from multiplication triplets of party Pi :
Let Pcheck be set of actively and passively corrupt parties that check
(n′ − 1) sharings when TripletShareRandom was invoked by all par-
ties. dcheck = |Pcheck| ≤ min(2t′a, t

′
a + t′p). Simulator sets the shares

of [sk]n′−1 held by honest parties in set H′ = n′ − (n′ − 2t′a − t′p −
min(t′a, t

′
p)) − t′a − t′p − dcheck to random uniform values. Let H −

H′ represent rest of the honest parties. By the property of Hyper-
Invertible matrix, there exists a matrix N such that (ski )Pi∈H−H′ =

N(a
n′−(n′−2t′a−t

′
p−min(t′a,t

′
p))+1

i , ..., an
′

i , (a
k
i )Pk∈Pcheck

, (ski )Pk∈Pa∪Pp∪H′)
where (ski )Pi∈H−H′ represents vector of shares held by the rest of the
honest parties,

(a
n′−(n′−2t′a−t

′
p−min(t′a,t

′
p))+1

i , ..., an
′

i , (a
k
i )Pk∈Pcheck

, (ski )Pk∈Pa∪Pp∪H′) is the
vector containing shares of ai held by the parties, shares held by the cor-
rupt parties involved in verification phase i.e. Pcheck of first elements
of k multiplication triplets and the shares of [sk]n′−1 held by honest
parties in H′ and corrupt parties in (Pa ∪ Pp).
We have (ski )Pi∈H−H′ = N(q1i , ..., q

l
i, (a

k
i )Pj∈Pcheck

, (ski )Pk∈Pa∪Pp∪H′) -
N(x1i , ..., x

l
i, 0, ..., 0).

Let Ui = N(x1i , ..., x
l
i, 0, ..., 0) which is ([U j ]d)Pj∈H−H′ =

N([x1]d, ..., [x
l]d, 0, ..., 0). This makes Ui as the vector of ith shares of

([U j ]d)Pj∈H−H′ . Hence, sji = V j
i − U

j
i where

V j
i = N(q1i , ..., q

l
i, (a

k
i )Pj∈Pcheck

, (ski )Pk∈Pa∪Pp∪H′).
The shares of [sk]n′−1 held by corrupt parties are already fixed. Simula-
tor also knows U j

i for actively and passively corrupt parties, that is the
linear combination of i−th shares of [x1]d, ..., [x

l]d, for corrupt parties
and sets V j

i = sji + U j
i .

Further, simulator generates [1s
j ]d, [2s

j ]d, [3s
j ]d honestly for honest par-

ties in H′ and [1V
j ]d, [2V

j ]d, [3V
j ]d are randomly generated for rest of

the honest parties in H \ H′ such that for k ∈ {1, 2, 3} and Pm ∈ Pk,
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the m−th share of [kV
j ]d is V j

m and set [ks
j ]d = [kV

j ]d − [U j ]d for
k ∈ {1, 2, 3}. Simulator learns all shares of [ks

j ]d = [kV
j ]d − [U j ]d

for k ∈ {1, 2, 3} which are held by corrupt parties. For every hon-
est party, simulator also sends m−th share of [ks

j ]d to Pm for all
Pm ∈ (Pa ∪ Pp) \ Pk to make up the rest of the matrix.
Simulator forwards the generated shares of corrupt parties to FMultiplication

on behalf of adversary A.
6. Check 4-Consistency : Simulator honestly emulates F4−Consistency. If

Simulator receives set E or Pfaultyset as output from adversary A
during the emulation of F4−Consistency then set E is forwarded to
FMultiplication, if received ACTIVESET then forward (ACTIVESET,E)
else received CRASHSET then forward (CRASHSET,E) to FMultiplication.
Otherwise simulator forwards shares of corrupt parties
([0r

j ]n, [1r
j ]n, [2r

j ]n, [3r
j ]n) for corrupt party Pn.

Receive all shares of corrupt parties of all random 4-consistent tu-
ples. For every corrupt party Pn, (0u

j ]n, 1u
j ]n, 2u

j ]n, 3u
j ]n). Send these

shares to adversary A.
If Simulator receives set E or Pfaultyset as output from adversary A
then set E is forwarded to FMultiplication, if received ACTIVESET
then forward (ACTIVESET,E) else received CRASHSET then forward
(CRASHSET,E) to FMultiplication. Otherwise, send OK to FMultiplication.

7. Finding disputed parties : Simulator randomly generates [jq
i∗ ]d such

that jq
i∗

k is the k−th share of [qi
∗
]n′−1 for honest party Pk ∈ Pj and

[xi
∗
]d+Mi∗([js

1]d, ..., [js
n′ ]d) for corrupt parties. Send the corrupt party

shares to FMultiplication.

We need to show that the output distribution is identical in both, real and
ideal worlds. Simulator generates [jq

i∗ ]d for j = 1, 2, 3 in step 7. Here, we prove
that its distribution is identical in real and ideal world. If the size of
|Pj ∪ Pa ∪ Pp| ≥ d+ 1 then all shares of [jq

i∗ ]d can be determined by corrupt
parties. For j = 1, 2, 3 and corrupt parties Pj , the k− th share of [jq

i∗ ]d is fixed
in both worlds by the adversaryA. Similarly, for honest parties Pk ∈ Pj the
k − th share of [jq

i∗ ]d is the k − th share of [qi
∗
]n′−1 set by honest parties in

both worlds. Consider [jq
i∗ ]d = [xi

∗
]d +Mi∗([js

1]d, ..., [js
n′ ]d), where [js

k]d] is a
random d− sharing such that for every honest Pi ∈ Pj , js

k
i is the i− th share

of [sk]n′−1 ensured by F4−Consistency. Also, for the corrupt parties, share js
k
i is

already sent by corrupt parties Pi ∈ (Pa ∪ Pp). Hence, [js
k]d] is a random d−

sharing when the shares of corrupt parties in Pj are fixed by adversary, thereby
making [jq

i∗ ]d a random d− sharing. This makes the distribution of [jq
i∗ ]d for

j = 1, 2, 3 identical for both worlds. The same proof follows for [je
i∗ ]d with

j = 1, 2, 3.

Simulator generates [1s
i]d, [2s

i]d, [3s
i]d in step 5. Here, we prove that its

distribution is identical in both, real and ideal worlds. Since it involves
[s1]n′−1, [s

2]n′−1, ..., [s
n′ ]n′−1, we first ensure that the view of its shares is

uniformly random. For an honest party Pj , the shares obtained by corrupted
parties of [sj ]n′−1 are fixed by honest party. Consider an honest party Pi who
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received the shares that satisfy (a1i , .., a
n′

i ) = M(s1i , .., s
n′

i ) during execution of

TripletShareRandom. For j ∈ {n′ − l + 1, ..., n′}, aji is fixed by correctness of

TripletShareRandom and computed as aji = [qji ]n′−1 − [xji ]d. For corrupt

parties Pj , s
j
i is fixed as an honest party Pi receives it from a corrupt party.

Also, if j ≤ {n′ − l} and Pj is a corrupt party whose shares of [aj ]n′−1 are

checked during TripletShareRandom, aji is fixed since it has been sent by a
corrupt party. Hence, (n′ − 2t′a) + t′a + t′acheck

≤ n′ number of fixed values of

(a1i , .., a
n′

i ), (s1i , .., s
n′

i ) are fixed. This makes the distribution of {sji} for honest

parties Pj uniformly random and satisfying (a1i , .., a
n′

i ) = M(s1i , .., s
n′

i ). Due to
property of Hyper-Invertible Matrix, using (n′ − 2t′a) + t′a + t′acheck

elements of

{sji} for honest Pj , simulator can construct the remaining values for honest Pj .
Now, simulator chose a set H′ of (n′ − (n′ − 2t′a)− t′a − t′acheck

) honest parties

and set the value sji uniformly random for Pj ∈ H′ in step 5. It simulates the
parties in H′ by generating all shares of [sj ]n′−1 honestly. In case of rest of the
honest parties, simulator genrates the shares of [sj ]n′−1 held by corrupted
parties only. For the rest of the honest parties Pj , using

(a1i , ..., a
(n− 2t′a)i, (a

j
i )Pj∈Pcheck

, (sji )Pj∈Pa∪Pp∪H′), {s
j
i} are computed. This

makes the distribution of {[sj ]n′−1} for honest party Pj identical in both the
real and ideal world. Also, [1s

i]d, [2s
i]d, [3s

i]d have same distribution in both
worlds because they are computed using {[sj ]n′−1} for honest party Pj .
Complexity : In step 2, the communication complexity of
GenerateMultiplicationtriplets(d, d′, n′ − 1, l, (P ′, t′a, t

′
p, t
′
f )). is

O(lnκ+ n2κ+BA(κ)). In step 3, for each multiplication Pking receives and
sends O(nκ) bits.
In step 4, CheckConsistencyKing is performed twice where the communication
complexity is O(nκ+ (ta + tf )(n2κ+BA(κ))).
In step 5, PubReconRobust is also performed twice with the communication
complexity (public reconstruction complexity n2κ).
In step 6, combined O(n2) elements are shared to distribute
[0s

i]d, 1s
i]d, [2s

i]d, [3s
i]d.

In step 7, Check4ConsistentTuples is invoked once which has complexity of
O(2nκ+ (ta + tf )(2n2κ+BA(κ))).
In step 8, all parties send O(n) elements to Pking and broadcast from Pking

along with heartbeat takes O(BA(κ)).
Hence, the communication complexity of cm multiplication gates is
O(cmnκ+ cm

l (ta + tf )(2n2κ+BA(κ))).

4.5 Functionality FMPC

We provide a simple functionality of FMPC which evaluates a circuit inputted
by parties in P . It handles the case of fail corrupt parties whose inputs are Λ
by considering the default input as 0. It also provides set of parties with input
Λ to output receiving parties which now know if a party participated in the
protocol.
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Functionality FMPC

1. Receive a circuit C from each party and inputs to C from involved
parties.

2. If C cannot be evaluated or different values for C are received then
execute Complete Break Down.

3. Set the inputs for circuit C to 0 for parties whose input was Λ.
4. Evaluate C and send its output and set of parties whose input was Λ

to the respective parties from output gate.

4.6 Realizing functionality FMPC

Input Gates For each input gate, a party who holds the corresponding input
performs this protocol. Initially, the initiating party performs private
reconstruction of a random value r to itself. It then subtracts this random
value from its input to obtain blinded input. This blinded input is broadcasted
by the initiating party to all the other parties. Further, The initiating party
performs Heartbeat protocol. If the output of Heartbeat is “alive”, then each
party computes its own share of input value by adding the blinded input with
the random value and the protocol outputs “success”. Otherwise the protocol
outputs “fail” indicating faulty input party.

Protocol 5: InputGateEval(Pi, [r]d, (P
′, t′a, t

′
p, t
′
f ))

Let sk be the input of party Pi which wants to evaluate input gate.

1. Party Pi invokes PrivReconRobust(Pi, d, [r]d, (P
′, t′a, t

′
p, t
′
f )) to

reconstruct r towards itself.
2. Pi broadcasts e = sk − r to all other parties.
3. Pi performs heartbeat protocol.
4. If the output of heartbeat protocol is “alive” then all parties output

“success” and each party Pj ∈ P ′ performs e+ rj , where rj is Pj ’s
share of r, to obtain share of e+ r. Otherwise, each Pj ∈ P ′ output
“fail”.

5. Repeat the above steps for k ∈ {1, ..., ci}

Lemma 7. InputGateEval securely distributes secret si for each party Pi in
the presence of mixed adversary provided that (P ′, t′a, t

′
p, t
′
f ) is valid. Also, the

communication complexity of InputGateEval is O(ci(nκ+BA(κ))

Proof. Correctness and Secrecy : Correctness and secrecy is followed by robust
reconstruction of randomness towards Pi and blinded secret.
Complexity : From PrivReconRobust, O(n) bits are communicated for
reconstruction step. For ci input gates, the overall complexity becomes
O(ci(nκ+BA(κ))
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Generating Random 0-Sharings ZeroShareRandom is yet another protocol
that was described by Goyal et al. in [14] which has been inherited in this
work. This protocol generates l random t-sharings of 0. Initially, parties
generates l random triplet sharings of r using a polynomial of degree d′, such
that ([a]d′ , [b]d′ , [c]d′) are the triplet sharings and r = a = b = c. The parties
then locally compute [b]d′ − [a]d′ to finally evaluate their shares of 0.
ZeroShareRandom is used for ouptut gate evaluation.

Protocol 6: ZeroShareRandom(l, (P ′, t′a, t
′
p, t
′
f ))

1. Distributing random triplet sharings : Every party Pi ∈ P ′ performs
TripletShareRandom(d′, d′, d′, l, (P ′, t′a, t

′
p, t
′
f )) where d′ = t′a + t′p to

generate [rn
′−l+1]d′,d′,d′ , ..., [r

n′ ]d′,d′,d′ . If
TripletShareRandom(d′, d′, d′, l, (P ′, t′a, t

′
p, t
′
f )) outputs disputed

parties then all parties halt.
2. Local computation : Every triplet sharing ([rj ]d′,d′,d′) for
j ∈ {n′ − l + 1, ..., n} is expressed as ([aj ]d′ , [b

j ]d′ , [c
j ]d′ , ) where the

value is the same i.e. rj = aj = bj = cj . Every party locally computes
[bj ]d′ − [aj ]d′ for j ∈ {n′ − l + 1, ..., n} to obtain shares of 0.

3. Output : All parties consider [0n
′−l+1,...,n′ ]d′ , ..., [0

n′ ]d′ as output.

Lemma 8. ZeroShareRandom detectably generates l correct t - sharings of
0 and the share value corresponding to each sharing is uniformly random in the
presence of adversary provided that (P ′, t′a, t

′
p, t
′
f ) is valid and input values of

parties are consistent. Also, the communication complexity of
ZeroShareRandom is O(ln′κ+ n′2κ)

Proof. Correctness and Secrecy : Since ZeroShareRandom invokes
TripletShareRandom, the correctness and secrecy follows from lemma 3.2.
Complexity : Since the protocol is based on TripletShareRandom, the
complexity O(ln′κ+ n′2κ) follows from lemma 3.2.

Output Gate

Protocol 7: OutputGateEval(l, (P ′, t′a, t
′
p, t
′
f ))

For each segment of size l :

1. Outputting 0-Random Shares: All parties perform ZeroShareRandom.
If the output of ZeroShareRandom is a pair of disputed parties or set
of crashed parties denoted as Pfaultyset then remove these parties
from further computation such that P ′ = P ′\Pfaultyset and repeat the
above step with modified P ′.
Otherwise continue with l d−sharings of 0.

2. Let Po ∈ P ′ be the party which receives the output s. For each output
s, [s]t is t−sharing.



32 Achintya Desai, Shubham Raj, and Kannan Srinathan

All parties P ∈ P ′ compute [s]t = [s]t + [0]t and send [s]t to Po.
Party Po ∈ P ′ now reconstructs the output s from the received shares.

Lemma 9. OutputGateEval securely reconstructs the output to the specific
party Po in the presence of mixed adversary provided that (P ′, t′a, t

′
p, t
′
f ) is

valid. Also, the communication complexity of OutputGateEval is
O((n+ d col e)(conκ+ lnκ+ n2κ))

Proof. Complexity : In step 1, ZeroShareRandom is performed atmost
O(n) + d col e times. Hence, the overall communication complexity is
O((n+ d col e)(conκ+ lnκ+ n2κ))

Realizing FMPC in the (FPreparation,FMultiplication−) Hybrid
Model We realize the functionality FMPC with the following protocol:

Protocol 8: MainProtocolFunctionality(C)

Let P ′ = P, t′a = ta, t
′
p = tp, t

′
f = tf and C = {ci, cm, co}.

1. Preparation : Each party Pi ∈ P sends configuration (P, ta, tp, tf ) and
value ci + cm to FPreparation. Functionality FPreparation outputs a
new configuration set as (P ′, t′a, t

′
p, t
′
f ) and each party in P ′ stores the

ci + cm number of triplets.
2. Input Gates : Each party Pi ∈ P performs

InputGateEval(Pi, [a]d, (P
′, t′a, t

′
p, t
′
f )) where [a]d belongs to

[a]d, [b]d, [c]d the multiplication triplet corresponding to the ci input
gates. If output is “success” then every other Pj ∈ P ′ stores the
shares. Otherwise, every Pj adds Pi to a set D

3. For each Pi ∈ D, every Pj ∈ P ′ sets the share of input gates
corresponding to Pi such that the input value was 0.

4. Evaluation : For addition gate, each party Pi ∈ P ′ computes it’s
output share by locally applying the addition operation to the shares.
For multiplication gates, all parties agree on partition of circuit into
segments (seg1, seg2, ..., segdcm/le),
where each segment consists of l multiplication gates independent of
multiplication depth. For each segment k ∈ {1, ..., d cml e}, let
([aki ]d, [b

k
i ]d, [c

k
i ]d), ([aki ]n′−1, [b

k
i ]n′−1 and [xki ]d, [y

k
i ]d be d-sharings,

(n′ − 1)-sharings of multiplication triplet and d-sharings of gate inputs
respectively. Each player Pi ∈ P ′ sends l, (P ′, t′a, t

′
p, t
′
f ),

([aki ]d, [b
k
i ]d, [c

k
i ]d), ([aki ]n′−1, [b

k
i ]n′−1 and [xki ]d, [y

k
i ]d to functionality

FMultiplication. FMultiplication outputs, for every Pi ∈ P ′ a valid
configuration (P ′′, t′′a, t

′′
p , t
′′
f ) and share of output [zki ]d. Every party

sets P ′ = P ′′, t′a = t′′a, t
′
p = t′′p , t

′
f = t′′f .

5. Output Gates : Let o be the number of outputs. All parties perform
OutputGateEval(o, (P ′, t′a, t

′
p, t
′
f )).
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Theorem 5. Assuming that 3ta + 2ta + tf < n, the protocol
MainProtocolFunctionality(C) securly evaluates FMPC in the
FPreparation,FMultiplication−hybrid model, in the presence of a static mixed
adversary. Also, the communication complexity of
MainProtocolFunctionality is O((n+ d col e)(conκ+ lnκ+ n2κ))

Proof. We construct a simulator SMPC towards real-world adversary A. It
interacts with ideal-world functionality with a black-box access to A and
executing the protocol. We have to prove that output is distributed correctly in
both worlds.

Simulator SMPC

Simulator SMPC outputs whatever A outputs.

1. Preparation : Emulating FPreparation: Send configuration (P, ta, tp, tf )
and value l to A.
Receive valid configuration (P ′, t′a, t

′
p, t
′
f ) and shares

(([akj ]d, [b
k
j ]d, [c

k
j ]d))k=1,...,l and (([akj ]n′−1, [b

k
j ]n′−1))k=1,...,l held by

Pj inPa ∪ Pp. Set D = ∅.
2. Input Gates : For each input gate with respect to party Pi ∈ P ′,

If the party Pi is actively or passively corrupted then choose a
polynomial ga randomly from a set of polynomials with degree d, such
that ga passes through the points in set {(αj , [aj ]d)|Pj ∈ (Pa ∪ Pp)}
where [aj ]d is the corrupted share of party Pj ∈ (Pa ∪ Pp) from
multiplication triplet [aj ]d, [bj ]d, [cj ]d corresponding to input gate. All
inputs to the PrivReconRobust, and subsequently, Heartbeat and
broadcast protocol in InputGateEval are set. Emulate
InputeGateEval. Otherwise, only party Pi receives messages during
PrivReconRobust which is not a passively or actively corrupted party,
emulate InputGateEval with random e as input to broadcast.
If the result of InputGateEval is “success”, save the corrupted shares
as aj + e′ where e′ was output of broadcast. Otherwise, the corrupted
shares are set to 0.
If Pi is fail-corrupted and output of InputGateEval is “fail” then add
Pi to set D.
If Pi was actively corrupted then if the result of InputGateEval is
“success” then compute the input by evaluating e′ + ga(0). Otherwise,
consider input as Λ.
After evaluating all the input gates for Pi ∈ P ′, set the corrupted
shares of output to 0 if Pi ∈ D.

3. Evaluation : For addition gate, each corrupt party Pj ∈ (Pa ∪ Pp)
computes it’s output share by locally applying the addition operation
to the shares it holds.
Emulating FMultiplication :
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For each segment k ∈ {1, ..., d cml e}, let ([akj ]d, [b
k
j ]d, [c

k
j ]d),

([akj ]n′−1, [b
k
j ]n′−1 and [xkj ]d, [y

k
j ]d be d-sharings, (n′ − 1)-sharings of

multiplication triplet and d-sharings of gate inputs respectively held
by corrupt parties Pj ∈ Pa ∪ Pp respectively.
For each k = 1, ..., d cml e, choose qk and ek randomly on behalf of
corrupt parties to compute [qkj ]n′−1 = [xkj ]d + [akj ]n′−1 + qk and

[ekj ]n′−1 = [ykj ]d + [bkj ]n′−1 + ek. choose a polynomial hkq , h
k
e randomly

from a set of polynomials with degree n′ − 1, such that hkq passes

through the points in set {(αj , [qj ]d)|Pj ∈ (Pa ∪ Pp)} and point (0, qk),
& hke passes through the points in set {(αj , [ej ]d)|Pj ∈ (Pa ∪ Pp)} and
point (0, ek).
Send to adversary l, (P ′, t′a, t

′
p, t
′
f ), for k ∈ {1, ..., l}, hkq , hke and

[akj ]d, [b
k
j ]d, [c

k
j ]d, [a

k
j ]n′−1, [b

k
j ]n′−1.

Receive from adversary a configuration (P ′′, t′′a, t
′′
p , t
′′
f ) and [zkj ]d for

Pj ∈ (Pa ∪ Pp) i.e. corrupted shares of output zk. Set
P ′ = P ′′, t′a = t′′a, t

′
p = t′′p , t

′
f = t′′f .

4. Output : In simulation, set the inputs of actively-corrupt parties and
fail-corrupt parties(set it to Λ) to the OutputGateEval and receive the
outputs of actively and passively corrupted parties.
Foe all parties Pi which receive the output value, if Pi ∈ Pa ∪ Pp then
let [sj ]d such that Pj ∈ Pa ∪ Pp be the corrupted shares of input and s
is the output received from functionality FMPC . Choose a polynomial
gs randomly from a set of polynomials with degree d, such that gs
passes through the points in set {(αj , [sj ]d)|Pj ∈ (Pa ∪ Pp)} and point
(0, s). Now, simulator can compute all the inputs to OutputGateEval
from gs and emulate towards A.

We have to prove that the simulator interaction with adversary A is the same
as in the real world. For private reconstruction, if a party towards which the
value is constructed is not actively or passively corrupted then there is no
interaction with corrupt parties. Hence, the simulation is trivial. Otherwise,
simulator uses a random shares as input to Private Reconstruction protocol
which is same as the real world. For broadcast, only if the sender is actively or
passively corrupt then it obtains the input. In this case, simulator can
recompute the messages sent by every party. Heartbeat protocol can be
emulated by the simulator without any issue since simulator knows the set of
crashed parties. Hence, it can be seen that the inputs of the corrupted parties,
the corrupted shares of output by simulator(i.e.e′ + ga(0)) and set D is same as
in the real world.

For addition gates, it is clear to see that the corrupted shares in the simulator
are same as in the real world as the operation is local and the corrupted shares
of input are already shown to be same as the real world.

For multiplication gate, in real world, the parties have shares of correct d and
n′ − 1 multiplication triplets which is ensured by FPreparation and shares of
correct inputs which are ensured by InputGateEval. FMultiplication returns the
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shares of xy where the polynomial selected is consistent with the shares of
corrupted parties provided by A. In ideal world, since the output value is xy,
simulator also chooses polynomial which is consistent with the shares of
corrupted parties provided by A.
In real world, adversary receives sharing polynomials hq, he and the corrupted
shares of triplets [aj ]d, [bj ]d, [cj ]d, [aj ]n′−1, [bj ]n′−1. Since a and b were
randomly selected by FPreparation, the values generated by polynomials hq, he
i.e. q = x+ a, e = y + e are random and independet of adversary view. In ideal
world, the shares of corrupted parties are given to the simulator by
FPreparation which selected them randomly which also makes the values
generated by polynomials in simulator random. Hence, the distribution of
corrupt shares is identical in real and ideal world. Also, the values generated by
polynomials hq, he are also random and independent of adversary view in real
and ideal world.
In output phase, since the inputs sent by simulator to FMPC are same as
evaluated in InputGateEval in ideal world and the circuit is correctly evaluated
in real world, the sharings reconstructed by ReconPrivRobust have same
coefficients of random polynomials in both real and ideal worlds. Further, these
random polynomials are also consistent with the corrupted shares known to
adversary A. This implies that the inputs to ReconPrivRobust are identically
distributed in both worlds.
Complexity : For ci input gates, the communication complexity is
O(ci(nκ+BA(κ))).
For cm multiplication gates, the communication complexity is
O(cmnκ+ d cml e(ta + tf )(2n2κ+BA(κ))).
For co output gates, the communication complexity is
O((n+ d col e)(conκ+ lnκ+ n2κ)).
Hence, the overall communication complexity of evaluation phase is
O((ci + cm + co)nκ+ (ci + cm)(BA(κ)) + n3k + nBA(κ) + co

2nκ).
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