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ABSTRACT
Password-hardened encryption (PHE) was introduced by Lai et

al. at USENIX 2018 and immediately productized by VirgilSecurity.

PHE is a password-based key derivation protocol that involves an

oblivious external crypto service for key derivation. The security

of PHE protects against offline brute-force attacks, even when the

attacker is given the entire database. Furthermore, the crypto ser-

vice neither learns the derived key nor the password. PHE supports

key-rotation meaning that both the server and crypto service can

update their keys without involving the user. While PHE signif-

icantly strengthens data security, it introduces a single point of

failure because key-derivation always requires access to the crypto

service. In this work, we address this issue and simultaneously

increase security by introducing threshold password-hardened en-

cryption. Our formalization of this primitive revealed shortcomings

of the original PHE definition that we also address in this work.

Following the spirit of prior works, we give a simple and efficient

construction using lightweight tools only. We also implement our

construction and evaluate its efficiency. Our experiments confirm

the practical efficiency of our scheme and show that it is more effi-

cient than common memory-hard functions, such as scrypt. From a

practical perspective this means that threshold PHE can be used as

an alternative to scrypt for password protection and key-derivation,

offering better security in terms of offline brute force attacks.
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1 INTRODUCTION
An increasing amount of sensitive information is collected, pro-

cessed, and made accessible by online services. For several years
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we witness a significant increase of data breaches and prominent

victims in 2019 include Capital One, Facebook, and Canva
1
, just to

name a few. Common encryption techniques to protect data acces-

sible on the Internet seem to be ineffective to prevent data breaches,

especially against insider attackers that have stolen the databases.

Not only can the attacker break the passwords of individual users

using offline brute-force attacks, but it can also directly learn the

master key and hence all user data.

Lai et al. [12] recently introduced password-hardened encryption

(PHE) as a password-based key-derivation protocol that involves

an external party, called rate-limiter, in addition to the server for

key derivation. Intuitively, PHE allows the server to derive a data

key that depends on the password of the user, the server key, and

the rate-limiter key, while the rate-limiter remains oblivious to the

password and the data key. The security of PHE states that neither

an active adversary having stolen the database nor the rate-limiter

alone should learn anything about the encoded password and the

data key. To recover the data key, a corrupt partymust communicate

with the other party, who rate-limits decryption attempts. Finally,

PHE supports key-rotation, which allows rotating the keys of the

server and rate-limiterwith succinct communication. Thereafter, the

server can locally update all ciphertexts without further interaction

with the rate-limiter or end-users. This property of key-rotation

is demanded by the payment card industry data security standard

(PCI DSS) [15]. PHE was directly productized by VirgilSecurity
2
.

While PHE significantly improves security, it also introduces a

single point of failure. If the rate-limiter is unreachable, e.g., due
to network failure or malicious attacks, the data would become

unavailable to the end-users as the server cannot provide decryption

service alone. Even worse, if the rate-limiter key is lost, then all

user data is effectively lost permanently. These potential issues may

discourage service providers from deploying PHE, as they may not

want to ultimately depend on third parties for emergency access to

their data. The naïve solution of duplicating the rate-limiter into

multiple instances increases availability, but at a cost of security. If

anyone of the instances of the rate-limiter is corrupt, any benefit

brought by PHE would be nullified.

1.1 Our Contribution
Our main contributions are the invention, construction, and imple-

mentation of threshold password-hardened encryption with the

overall goal to address the availability and trust issues of PHE. The

1
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basic idea is to remove the single point of failure by spreading the

responsibility of a single rate-limiter to𝑚 independent rate-limiters.

We increase the availability by setting a threshold number 𝑡 that

are necessary and sufficient for successful en/decryption. The secu-

rity of ((𝑡,𝑚)-PHE) guarantees that as long as the adversary does

not control both the server and at least 𝑡 rate-limiters, (𝑡,𝑚)-PHE
schemes provide the same security guarantees like those of PHE

schemes. We stress that the rate-limiters are not aware of each

other and primarily interact with the server. Practically speaking,

this allows services to make use of rate-limiters hosted by differ-

ent providers, or even have some of them “in cold storage” locally

where they can be reactivated in emergency situations to avoid data

loss. Additionally, this allows strengthening security by requiring

more than one honest rate-limiter for successful decryption. In the

following, we discuss our contributions:

Formalization. We formalize (𝑡,𝑚)-PHE and define two security

properties, hiding and soundness, which consolidate und unify the

definitions of message hiding, partial obliviousness, (strong) sound-

ness, and forward security of PHE [12]. Note that since (𝑡,𝑚)-PHE
is a generalization of PHE (where 𝑡 =𝑚 = 1), we obtain also con-

solidated security definitions for PHE. In our model we assume

semi-adaptive corruptions, where the adversary must declare the

set of corrupt parties for the next time epoch when instructing a

key-rotation. Note that security under semi-adaptive corruption is

already stronger than the static security defined in [12], where the

corrupt party is fixed for the entire duration of the experiments.

Hiding. Hiding refers to the property that the adversary cannot

do better than performing online password guessing attacks to learn
an encrypted message, as long as it does not corrupt the server and

at least 𝑡 rate-limiters at the same time. Our hiding definition con-

solidates the previous hiding, obliviousness, and forward security

definitions of PHE [12]. In particular, the new hiding definition

captures attack strategies in which the adversary corrupts different

parties at different points in time.

Soundness. Soundness refers to the property that the server can-

not be fooled to make wrong decisions during decryption. More

precisely, it means that, for any fixed server secret key, a ciphertext

cannot encode two different valid password-message pairs at the

same time. Our soundness definition consolidates the previous ones

by capturing all attack strategies in a single security experiment.

Construction and Impossibility Result. We present a simple

and efficient construction that relies on lightweight cryptographic

components only. On a very high-level, our construction exploits

the linearity of the Shamir secret sharing scheme [18] and the El-

Gamal encryption scheme [6]. Assuming a communication model

where the rate-limiters are not allowed to communicate with each

other, the resulting encryption protocol consists of 3 rounds, while

the decryption protocol consists of 6 rounds. It has the nice property

that rate-limiters cannot tell whether the same incorrect password

was used in two failed decryption attempts of the same user. Re-

garding security, we prove that the construction is secure under

the DDH assumption in the random oracle model assuming semi-

adaptive corruption. Via a meta-reduction, we show that this result

is optimal and that the construction does not achieve our stronger

notion of full adaptivity. We also give evidence that an efficient yet

fully adaptively secure construction is unlikely to exist.

Implementation and Evaluation. Our prototypical implementa-

tion in Python confirms the practical efficiency of our construction.

We evaluated the latency and throughput of (𝑡,𝑚)-PHE for multiple

threshold levels 𝑡 and number of cores. The experimental evalu-

ation (see Section 4) shows that our (𝑡,𝑚)-PHE can process up

to 1045 encryption and up to 394 decryption requests per second.

Scaling (𝑡,𝑚)-PHE can easily be achieved by increasing the num-

ber of cores. Additionally, throughput performance increases faster

with the number of cores than it is slowed down by the number of

rate-limiters. Considering current recommendations for best prac-

tice [19] on password hashing and password-based key-derivation,

we note that algorithms like scrypt or Argon2 [5] are usually con-

figured to limit login throughput to tens of requests per second

which is significantly slower than using (𝑡,𝑚)-PHE.

1.2 Related Work
The original concept of password-hardening (PH) is due to Face-

book [14]. Everspaugh et al. [7] made the first step towards formal-

izing PH and identified key-rotation as the key property to make

such schemes useful in practice, which is also the key challenge

when designing PH and PHE schemes. The notion of PH has been

subsequently refined by Schneider et al. [16] and Lai et al. [13]. In
addition to password verification, Lai et al. [12] later introduced
the concept of password-hardened encryption (PHE) that allows

associated data to be encrypted under a per-user key that is inac-

cessible without the user’s password and provides strong security

guarantees analogous to those of PH.

The construction of (𝑡,𝑚)-PHE in this work is based on the

PHE scheme in [12], which in turn is based on the PH scheme

in [13]. As observed in [12], it is unclear how the PH scheme in [7]

(formalized as a partially oblivious pseudorandom function) can be

extended to a PHE scheme. Therefore, although the scheme in [7]

has a natural threshold variant, it is not helpful for constructing

(𝑡,𝑚)-PHE schemes.

A closely related notion is password-protected secret sharing

(PPSS) [4], which provides similar functionality as that of (𝑡,𝑚)-
PHE, with different formulations in syntax and security definitions.

The key feature separating (𝑡,𝑚)-PHE from PPSS is key-rotation. In-

deed, a (𝑡,𝑚)-PHE can be seen as a PPSS scheme with key-rotation.

Password-based threshold authentication (PbTA) [1] is a recent

related notion where, instead of recovering a data key, the goal

is to produce an authentication token which can be verified by

the service provider. Moreover, the PbTA scheme in [1] does not

support key-rotation.

2 DEFINITIONS
Preliminaries. Let 𝜆 ∈ N be the security parameter and𝑚 ∈ N.
The set {1, . . . ,𝑚} is denoted by [𝑚], and the set {𝑎, 𝑎 + 1, . . . , 𝑏} is
denoted by [𝑎, 𝑏]. We denote by

((𝑦1; view1), . . . , (𝑦𝑚 ; view𝑚))
← Π⟨P1 (𝑥1; 𝑟1), . . . ,P𝑚 (𝑥𝑚 ; 𝑟𝑚)⟩

the protocol Π between the interactive algorithms P1, . . . ,P𝑚 ,

whereP𝑖 has input𝑥𝑖 , randomness 𝑟𝑖 , output𝑦𝑖 , and view view𝑖 . The
2



view view𝑖 consists of the input 𝑥𝑖 , the input randomness 𝑟𝑖 , and all

messages received by P𝑖 during the protocol execution. Let 𝐼 ⊆ [𝑚].
We use the shorthand view𝐼 to denote the set {(𝑖, view𝑖 )}𝑖∈𝐼 . In case
that the output P𝑖 is not explicitly needed, we write ∗ instead of 𝑦𝑖 .
For ease of readability, we omit the randomness 𝑟𝑖 and/or the view

view𝑖 of P𝑖 if they are not explicitly needed. When the randomness

𝑟𝑖 is omitted, it means that 𝑟𝑖 is chosen uniformly from the appro-

priate domain. We use the special and distinct symbols 𝜖 and ⊥ to

denote the empty string and an error (e.g., protocol abortion), re-
spectively. Unless specified, the symbols 𝜖 and ⊥ are by default not

a member of any set considered. Let 𝑏 be a Boolean value. We use

the shorthand “ensure 𝑏” to denote the procedure which outputs

⊥ (prematurely) if 𝑏 ≠ 1.

Definition of (𝑡,𝑚)-PHE. Let 𝑡,𝑚 ∈ N with 𝑡 ≤ 𝑚. Let PW and

M be the password space and the message space, respectively. Let

S and R𝑖 refer to the server and the 𝑖-th rate-limiter respectively

for 𝑖 ∈ [𝑚].
A 𝑡-out-of-𝑚 threshold password-hardened encryption, or

((𝑡,𝑚)-PHE) scheme, for PW andM consists of the efficient al-

gorithms and protocols (Setup, Enc,Dec,Rotate,Udt), which we

define as follows:

(crs, sk
0
, . . . , sk𝑚) ← Setup(1𝜆, 1𝑚, 1𝑡 ):

The setup algorithm inputs the security parameter 𝜆, the number of

rate-limiters𝑚, and the threshold 𝑡 in unary. It outputs the common

reference string crs, the secret key sk
0
for the server and the secret

key sk𝑖 for the 𝑖-th rate-limiter, for all 𝑖 ∈ [𝑚]. The common refer-

ence string is an implicit input to all other algorithms and protocols

for all parties.

((𝑛,𝐶), 𝜖, . . . , 𝜖) ← Enc

〈S(“enc”, sk0
, pw, 𝑀),

R1 (“enc”, sk1
),

. . . ,

R𝑚 (“enc”, sk𝑚)

〉
:

The encryption protocol is run between the server and (possibly

a subset of) the𝑚 rate-limiters. The server inputs its secret key,

a password pw ∈ PW, and a message 𝑀 ∈ M. The rate-limiters

input their respective secret keys. The server outputs a nonce 𝑛 and

a ciphertext 𝐶 , while each rate-limiter outputs an empty string 𝜖 .

(𝑀,𝑛1, . . . , 𝑛𝑚) ← Dec

〈S(“dec”, sk0
, pw, 𝑛0,𝐶),

R1 (“dec”, sk1
),

. . . ,

R𝑚 (“dec”, sk𝑚)

〉
:

The decryption protocol is run between the server and (possibly

a subset of) the𝑚 rate-limiters. The server inputs its secret key, a

candidate password pw ∈ PW, a nonce 𝑛0, and a ciphertext𝐶 . The

rate-limiters input their respective secret keys. The server outputs

a message 𝑀 . Each rate-limiter outputs a nonce 𝑛𝑖 which can be

interpreted as the identifier of the ciphertext 𝐶 in the view of R𝑖 .

((sk′
0
, 𝜏), sk′

1
, . . . , sk′𝑚) ← Rotate

〈 S(“rot”, sk0
),

R1 (“rot”, sk1
),

. . . ,

R𝑚 (“rot”, sk𝑚)

〉
:

The rotation protocol is run between the server and all 𝑚 rate-

limiters. Each party inputs its secret key and outputs a rotated key.

The server additionally outputs an update token 𝜏 .

𝐶 ′ ← Udt(𝜏, 𝑛,𝐶):
The update algorithm inputs an update token 𝜏 , a nonce 𝑛, and a

ciphertext 𝐶 . It outputs a new ciphertext 𝐶 ′.

Correctness. Correctness is defined in the obvious way and the

formal definition is omitted. Roughly speaking, a (𝑡,𝑚)-PHE is

correct whenever all honestly generated ciphertexts can be success-

fully decrypted to recover the encrypted message with the correct

password, at long as at least 𝑡 rate-limiters participate in the de-

cryption protocol. Moreover, if a ciphertext passes decryption with

respect to some secret keys, then the updated ciphertext also passes

decryption with respect to the rotated keys.

Remarks. Our model requires a trusted party to run the setup

algorithm. In a typical application of (𝑡,𝑚)-PHE it is acceptable to

let the server run the setup algorithm, send the rate-limiter keys

to the respective rate-limiters, and securely delete those keys. This

is because it is for the server’s own benefit to employ a (𝑡,𝑚)-
PHE scheme in the first place. Moreover, the rate-limiters do not

contribute any private inputs other than their secret keys in any

protocols. If we insist that the server cannot be trusted to run the

setup, a standard solution is to emulate the setup using a secure

multi-party computation (MPC) protocol.

In our syntax, we handle the nonces differently compared to the

approach in previous work [12]. We believe that the new approach

models the reality more closely and is more intuitive. Previously, the

encryption and decryption protocols take a “label” as common input

for both the server and the rate-limiter, where the label consists of a

server-side nonce and a rate-limiter-side nonce. This model deviates

from the reality where the nonce is generated during (instead of

before) the encryption protocol, stored by the server, and sent to the

rate-limiter during decryption. More confusingly, the label input to

the encryption protocol is by default an empty string, unless it is

called in the forward security experiment.

2.1 Security of (𝑡,𝑚)-PHE
We define the hiding and soundness properties of (𝑡,𝑚)-PHE. We

assume that each rate-limiter has an authenticated channel to the

server and that the rate limiters are not aware of each other, i.e., for

𝑖 ≠ 𝑗 , there may not exist any communication channel between R𝑖
and R 𝑗 . We focus on a semi-adaptive corruption model, where the

adversary must declare the set of corrupt parties for the next time

period, where a time period is the time between two honest key-

rotations. The possibility to corrupt parties during a time period

is modeled in the oracle RotateO, where the adversary can set

HonestRot to 1 and define a set 𝐼 for which he wishes to learn the

private-keys.

This corruption model is already stronger than that in previous

work [12, 13], where the adversary must declare the corrupt party at

the very beginning of the experiment, and cannot change its choice

throughout the experiment. For completeness, we also define a fully

adaptive variant, where the adversary can request to corrupt any

party at any time.

2.1.1 Hiding. Intuitively, hiding models the property that no party

should be able to do better than online brute force attacks against

the password space. As passwords have limited entropy, we limit

the adversary’s decryption queries using the counter DecCount
3



Hid𝑏
Π,A,𝑄Dec,PW (1

𝜆, 1𝑚, 1𝑡 , 𝐼 )
1 : ensure |𝐼 ∩ [𝑚] | < 𝑡 ∨ 0 ∉ 𝐼

2 : IsChallenged := 0, 𝜏 := 𝜖, DecCount := 0

3 : CorruptParties := 𝐼

4 : (sk
0
, . . . , sk𝑚) ← Setup(1𝜆, 1𝑚, 1𝑡 )

5 : O := {EncO,DecO, CorrO ,RotateO,
6 : UdtO,ChO𝑏 ,DecChO}
7 : 𝑏′ ← AO (1𝜆, {sk𝑖 }𝑖∈𝐼 )
8 : if DecCount ≥ 𝑄Dec then 𝑏′ ←$ {0, 1}
9 : return 𝑏′

EncO(pw, 𝑀, 𝐼, {P𝑖 }𝑖∈𝐼 )
1 : ensure 𝐼 ⊆ CorruptParties

2 : S∗ := if 0 ∈ 𝐼 then PO
0
else := S(“enc”, sk

0
, pw, 𝑀)

3 : R∗𝑖 := if 𝑖 ∈ 𝐼 then PO𝑖 else R𝑖 (“enc”, sk𝑖 ) ∀𝑖 ∈ [𝑚]
4 : ( (𝑛,𝐶 ; view0), (∗; view1), . . . , (∗; view𝑚)) ← ⟨S∗, R∗1, . . . , R∗𝑚 ⟩
5 : return (𝑛,𝐶, view𝐼 )

DecO(pw, 𝑛0,𝐶, 𝐼 , {P𝑖 }𝑖∈𝐼 )
1 : ensure 𝐼 ⊆ CorruptParties

2 : S∗ := if 0 ∈ 𝐼 then PO
0
else := S(“dec”, sk

0
, pw, 𝑛0,𝐶)

3 : R∗𝑖 := if 𝑖 ∈ 𝐼 then PO𝑖 else R𝑖 (“dec”, sk𝑖 , 𝑛) ∀𝑖 ∈ [𝑚]
4 : ( (𝑀 ; view0), (𝑛1; view1), . . . , (𝑛𝑚 ; view𝑚)) ← ⟨S∗, R∗1, . . . , R∗𝑚 ⟩
5 : 𝑏0 := (0 ∈ 𝐼 ∨ 𝑛0 = 𝑛∗)
6 : 𝑏1 := ( |𝐼 ∩ [𝑚] | + | {𝑖 : 𝑛𝑖 = 𝑛

∗ } | ≥ 𝑡 )
7 : if 𝑏0 ∧ 𝑏1 then DecCount := DecCount + 1

8 : return (𝑀, view𝐼 )

DecChO(𝐶, 𝐼, {P𝑖 }𝑖∈𝐼 )
1 : ensure IsChallenged = 1 ∧ 𝐼 ⊆ CorruptParties \ {0}
2 : S∗ := S(“dec”, sk

0
, pw∗, 𝑛∗,𝐶)

3 : R∗𝑖 := if 𝑖 ∈ 𝐼 then PO𝑖 else R𝑖 (“dec”, sk𝑖 , 𝑛) ∀𝑖 ∈ [𝑚]
4 : ( (∗; view0), . . . , (∗; view𝑚)) ← ⟨S∗, R∗1, . . . , R∗𝑚 ⟩
5 : return view𝐼

RotateO(HonestRot, 𝐼 , {P𝑖 }𝑖∈𝐼 )
1 : if HonestRot = 1 then // Honest rotation then corruption

2 : ensure |𝐼 ∩ [𝑚] | < 𝑡 ∨ 0 ∉ 𝐼

3 : S∗ := S(“rot”, sk
0
)

4 : R∗𝑖 := R𝑖 (“rot”, sk𝑖 ) ∀𝑖 ∈ [𝑚]
5 : ( (sk

0
, 𝜏), sk

1
, . . . , sk𝑚) ← ⟨S∗, R∗1, . . . , R∗𝑚 ⟩

6 : CorruptParties := 𝐼

7 : return {sk𝑖 }𝑖∈𝐼
8 : else // Malicious rotation

9 : ensure 𝐼 ⊆ CorruptParties

10 : S∗ := if 0 ∈ 𝐼 then PO
0
else S(“rot”, sk

0
)

11 : R∗𝑖 := if 𝑖 ∈ 𝐼 then PO𝑖 else R𝑖 (“rot”, sk𝑖 ) ∀𝑖 ∈ [𝑚]
12 : ( (sk

0
, 𝜏 ; view0), (sk1

; view1), . . . , (sk𝑚 ; view𝑚)) ←
13 : ⟨S∗, R∗

1
, . . . , R∗𝑚 ⟩

14 : return view𝐼

15 : endif

CorrO(𝑖) Only available in fully adaptive variant

1 : CorruptParties′ := CorruptParties ∪ {𝑖 }
2 : ensure |CorruptParties′ ∩ [𝑚] | < 𝑡 ∨ 0 ∉ CorruptParties′

3 : CorruptParties := CorruptParties′

4 : return sk𝑖

UdtO(𝑛,𝐶)
1 : ensure 𝜏 ≠ 𝜖

2 : 𝐶′ ← Udt(𝜏,𝑛,𝐶)
3 : return𝐶′

ChO𝑏 (𝑀∗0 , 𝑀
∗
1
, 𝐼 , {P𝑖 }𝑖∈𝐼 )

1 : ensure IsChallenged = 0 ∧ 𝐼 ⊆ CorruptParties \ {0}
2 : IsChallenged := 1, pw∗ ←$ PW
3 : S∗ := S(“enc”, sk

0
, pw∗, 𝑀∗

𝑏
)

4 : R∗𝑖 := if 𝑖 ∈ 𝐼 then PO𝑖 else R𝑖 (“enc”, sk𝑖 ) ∀𝑖 ∈ [𝑚]
5 : ( (𝑛∗,𝐶∗), (∗; view1), . . . , (∗; view𝑚)) ← ⟨S∗, R∗1, . . . , R∗𝑚 ⟩
6 : return (𝑛∗,𝐶∗, view𝐼 )

Figure 1: Hiding Experiment (Procedures in dashed boxes are provided for variant with fully adaptive corruption.)

which is bounded by 𝑄Dec. At any given time, the adversary may

either corrupt the server and up to 𝑡 −1 rate limiters, or an arbitrary

subset of rate-limiters but not the server. It can also instruct the

parties to execute an honest key-rotation, after which all parties

are considered honest, and the adversary can corrupt a possibly

different subset of parties again.

The Oracles. The (encryption, decryption, key rotation, and cipher-
text update) oracles are formally defined in Figure 1. The oracles

interface protocol executions by inputting a set of adversarial proce-

dures and running the respective protocols with the codes of some

honest parties replaced. The encrypt and decrypt oracles EncO and

DecO model normal interactions with adversarially choosen mes-

sages resp. ciphertexts. The decrypt challenge oracle DecChO, in
contrast, allows the adversary to observe interactions between an

honest server and potentially malicious rate-limiters with the cor-

rect challenge password. The oracle RotateO allows the adversary

to request key-rotation. The adversary can request for an honest

key-rotation, where the update token remains secret, while the set

of corrupted parties is reset depending on the choice of the adver-

sary. The adversary can also request for a malicious key-rotation,

where the code of some parties are possibly replaced by malicious

ones. The oracle UdtO allows updating any ciphertext with the

4



most recent update token 𝜏 . In the fully adaptive variant, the ad-

versary gains access to an additional corrupt oracle CorrO from

which it can learn the current secret keys of parties of its choice.

Finally, the adversary can generate a challenge ciphertext using

ChO. Notice that the challenge may only be generated once
3
and

the server code used to generate the challenge ciphertext is honest

(although the server key might be revealed via CorrO and RotateO).
Intuitively this is reasonable as a malicious server can store the mes-

sage and the password outside the protocol, and therefore security

for maliciously generated ciphertexts is unrealistic.

Definition 1 (Hiding) . A (𝑡,𝑚)-PHE Π is semi-adaptively
hiding if, for any PPT adversary A, any integer 𝑄Dec ≥ 0, and any
password space PW4 with support size of at least 𝑄Dec,

1

2

��� Pr

[
Hid0

Π,A,𝑄Dec,PW (1
𝜆, 1𝑚, 1𝑡 ) = 1

]
−

Pr

[
Hid1

Π,A,𝑄Dec,PW (1
𝜆, 1𝑚, 1𝑡 ) = 1

] ��� ≤ 𝑄Dec

|PW| + negl (𝜆 ) .

The (𝑡,𝑚)-PHE Π is fully adaptively hiding if in Hid the adversary
A is given access to the CorrO oracle.

2.1.2 Soundness. Our definition of soundness is inspired by the

complete robustness definition [8] for encryption schemes, which

intuitively captures the property that a ciphertext cannot be encrypt-

ing two distinct messages. In [12], the soundness of PHE requires

that there is no inconsistency between an encryption session and a

decryption session, whereas the strong soundness notion further

requires that there is no inconsistency between two decryption

sessions. To unify both deception strategies, we define a sound-

ness experiment where the adversary is given an encryption and a

decryption oracle. The former takes as input all the inputs of the

server, including the randomness, during an encryption session,

and possibly malicious programs for all the rate-limiters. The oracle

then runs the encryption protocol between an honest execution

of the server code on the given input, and the possibly malicious

rate-limiters. The decryption oracle is defined in a similar way, ex-

cept that the decryption protocol is run. The adversary is successful

if an inconsistency occur between the communication transcripts

produced by any two oracle queries.

Definition 2 (Soundness) . A (𝑡,𝑚)-PHE Π is sound if,
for any PPT adversary A,

Pr

[
Soundness0

Π,A (1
𝜆, 1𝑚, 1𝑡 ) = 1

]
≤ negl (𝜆 ) .

3 CONSTRUCTION
Our construction of a (𝑡,𝑚)-PHE scheme can be seen as a gen-

eralization of the PHE scheme of [12], where a secret key of one

rate-limiter is shared to multiple rate-limiters. In contrast to [12] it

uses a private-key encryption scheme and exploits the linearity of

the Shamir secret sharing [18] and the ElGamal encryption [6].

3
A multi-challenge version of the definition is implied by the single-challenge one

using standard hybrid argument.

4
For simplicity, we assume that passwords are distributed uniformly in the pass-

word space. The definition can be easily generalized to cover arbitrary password

distributions.

3.1 Construction Overview
Let G be a cyclic group of prime order 𝑝 with generator 𝐺 , and

let 𝐻0, 𝐻1 : {0, 1}∗ → G be two independent hash functions. A

ciphertext 𝐶 = SKE.Enc(𝑠0, (𝐶0,𝐶1)) consists of a symmetric-key

ciphertext of two group elements𝐶0 and𝐶1 under the server secret

key component 𝑠0, and is accompanied by a nonce 𝑛. The elements

𝐶0 and 𝐶1 are computed as follows

𝐶0 = 𝐻0 (pw, 𝑛) · 𝐻0 (𝑛)𝑠0

𝐶1 = 𝐻1 (pw, 𝑛) · 𝐻1 (𝑛)𝑠0 ·𝑀

where 𝑠0 is part of the conceptual rate-limiter secret key, and 𝑀

is the encrypted message. The conceptual key 𝑠0 is secret-shared

among𝑚 rate-limiters using the well-known Shamir secret sharing

scheme with reconstruction threshold 𝑡 . In contrast to [12], we

do not distinguish between server and rate-limiter nonces. In our

scheme, the nonce𝑛 is obtained via a coin-flipping protocol between

the server and 𝑡 rate-limiters. The server key is now used in a secret-

key encryption scheme to allow for stronger security properties.

An important feature of the Shamir secret sharing scheme is that

the reconstruction function is linear. That is, given a set of 𝑡 shares

and their indices {(𝑖 𝑗 , 𝑠𝑖 𝑗 )}𝑡𝑗=1
, there exists a public linear combina-

tion with some coefficients (𝜆1, . . . , 𝜆𝑡 ) such that 𝑠0 =
∑𝑡
𝑗=1

𝜆 𝑗𝑠𝑖 𝑗 .

This feature is crucial for the decryption protocol, as we will see.

3.2 Formal Description
Ingredients. Given a finite set P of size |P | ≥ 𝑡 , let Subset𝑡 (P)

be an algorithm which returns an arbitrary size-𝑡 subset 𝑃 of P.
Let GGen : 1

𝜆 ↦→ (G, 𝑝,𝐺) be a group generation algorithm which

maps the security parameter 1
𝜆
to the description (G, 𝑝,𝐺) of a

cyclic groupG of prime order 𝑝 with generator𝐺 . Let 𝑡,𝑚 ∈ Nwith

𝑡 ≤ 𝑚 ≤ 𝑝 . For any subset 𝑃 ⊆ [𝑚] and 𝑖 ∈ 𝑃 , recall the Lagrange
polynomial ℓ𝑃,𝑖 (𝑥) :=

∏
𝑗 ∈𝑃\{𝑖 }

𝑥−𝑗
𝑖−𝑗 . Let 𝜆𝑃,𝑖 := ℓ𝑃,𝑖 (0). For the ease

of notation, we define 𝜆𝑃,0 := 1 for all 𝑃 . Let 𝐻0, 𝐻1 : {0, 1}∗ → G
and𝐻 : {0, 1}∗ → {0, 1}𝜆 be independent hash functions to be mod-

eled as random oracles. Let SKE.(KGen, Enc,Dec) be a symmetric-

key encryption scheme. Let (GGen, Prove,Vf) be a non-interactive
zero-knowledge proof of knowledge (NIZKPoK) scheme for the

relation

𝑅GDL :=



(G,𝐺, 𝑝),©«
𝐴1,1 . . . 𝐴1,𝑛 𝐵1

.

.

.
. . .

.

.

.
.
.
.

𝐴𝑚,1 . . . 𝐴𝑚,𝑛 𝐵𝑚

ª®®¬ ∈ G𝑚×(𝑛+1) ,
(𝑥1, . . . , 𝑥𝑛) ∈ Z𝑛𝑝 :

∀𝑖 ∈ [𝑚], 𝐵𝑖 =
∏𝑛
𝑗=1
𝐴
𝑥 𝑗
𝑖, 𝑗


as described in Appendix A.2. Here, the tuple (G,𝐺, 𝑝) is a com-

mon reference string, the matrix in G𝑚×(𝑛+1) is the statement, and

(𝑥1, . . . , 𝑥𝑛) ∈ Z𝑛𝑝 is a witness satisfying the statement.

Setup (Figure 3). The setup algorithm runs GGen to generate

the description of the group. It then generates the secret keys

sk
0
, . . . , sk𝑚 ,where sk𝑖 has the format (𝑠𝑖 , 𝑘𝑖 , 𝐾0, {𝑆 𝑗 , 𝐾𝑗 }𝑡−1

𝑗=0
)where
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SoundnessΠ,A (1𝜆)
1 : Queries := ∅
2 : O := {EncO,DecO }

3 : (𝑖, 𝑗) ← AO (1𝜆)
4 : (sk

0
, 𝑛,𝐶, pw, 𝑀) := Queries[𝑖 ]

5 : (sk′
0
, 𝑛′,𝐶′, pw′, 𝑀′) := Queries[ 𝑗 ]

6 : 𝑏0 := ( (sk
0
,𝐶) = (sk′

0
,𝐶′))

7 : 𝑏1 := (𝑀 ≠ ⊥ ∧𝑀′ ≠ ⊥)
8 : 𝑏2 := ( ( (𝑛, pw) = (𝑛′, pw′)) ∧ (𝑀 ≠ 𝑀′))
9 : 𝑏3 := ( ( (𝑛, pw) ≠ (𝑛′, pw′)) ∧ (𝑀,𝑀′ ∈ M))
10 : return 𝑏0 ∧ 𝑏1 ∧ (𝑏2 ∨ 𝑏3)

EncO(sk
0
, pw, 𝑀, 𝑟,𝑚, ˜R1, . . . , ˜R𝑚)

1 : ( (𝑛,𝐶), ∗, . . . , ∗) ← ⟨S(“enc”, sk
0
, pw, 𝑀 ; 𝑟 ), ˜RO

1
, . . . , ˜RO𝑚 ⟩

2 : Queries := Queries ∪
{
(sk

0
, 𝑛,𝐶, pw, 𝑀)

}
3 : return 𝜖

DecO(sk
0
, pw, 𝑛,𝐶, 𝑟,𝑚, ˜R1, . . . , ˜R𝑚)

1 : (𝑀, ∗, . . . , ∗) ← ⟨S(“dec”, sk
0
, pw, 𝑛,𝐶 ; 𝑟 ), ˜RO

1
, . . . , ˜RO𝑚 ⟩

2 : Queries := Queries ∪
{
(sk

0
, 𝑛,𝐶, pw, 𝑀)

}
3 : return 𝜖

Figure 2: Soundness Experiment

𝑠0 is a secret key for a symmetric key encryption scheme SKE and

𝐺𝑠𝑖 =
∏𝑡−1

𝑗=0
𝑆𝑖

𝑗

𝑗 , 𝑖 ∈ [𝑚]

𝐺𝑘𝑖 =

{
𝐾0 𝑖 = 0∏𝑡−1

𝑗=0
𝐾𝑖

𝑗

𝑗
𝑖 ∈ [𝑚] .

Each party can verify the validity of their keys using the subroutine

KVf defined in Figure 5.

Encryption (Figure 3). The encryption protocol begins with a

coin-flipping procedure. Each party samples some randomness 𝑛𝑖
and exchanges their randomness with each other. They then hash

all randomness using the hash function 𝐻 to create a nonce 𝑛.

With the help of the rate-limiters, the server computes the tuple

(𝐶0,𝐶1) := (𝐻0 (pw, 𝑛) · 𝐻0 (𝑛)𝑠0 , 𝐻1 (pw, 𝑛) · 𝐻1 (𝑛)𝑠0 · 𝑀). It then
compute 𝐶 ← SKE.Enc(𝑠0, (𝐶0,𝐶1)).

Let 𝑃 be any 𝑡-subset of [𝑚]. The ciphertext components𝐻0 (𝑛)𝑠0

and 𝐻1 (𝑛)𝑠0
can be expressed as 𝐻0 (𝑛)𝑠0 = 𝐻0 (𝑛)

∑
𝑖∈𝑃 𝜆𝑃,𝑖𝑠𝑖 and

𝐻1 (𝑛)𝑠0 = 𝐻1 (𝑛)
∑

𝑖∈𝑃 𝜆𝑃,𝑖𝑠𝑖 respectively.

Decryption (Figure 4). The decryption protocol begins with the

server informing the rate-limiters of the nonce𝑛, and decrypting the

ciphertext𝐶 to obtain (𝐶0,𝐶1). The server then computes the value

𝑌0,0 := 𝐶0 ·𝐻0 (pw, 𝑛)−1
, while the 𝑖-th rate-limiter computes 𝑌𝑖,0 :=

𝐻0 (𝑛)𝑠𝑖 . Conceptually, the parties would like to check if 𝑌0,0 =∏
𝑖∈𝑃𝑌

𝜆𝑃,𝑖
𝑖,0

for some 𝑡-subset 𝑃 of [𝑚]. If the relation is satisfied,

meaning that the password is likely correct, the rate-limiters would

jointly help the server to compute 𝐻1 (𝑛)𝑠0
, which allows the latter

to recover the message𝑀 . However, naively performing the joint

computation of𝐻1 (𝑛)𝑠0
would cost one extra round of computation.

In the following, we outline a three-phase protocol where the round

for computing the value 𝐻1 (𝑛)𝑠0
is merged with one of the rounds

in the checking procedure.

First, the parties jointly compute an encryption of the value

𝑍 := 𝑌−1

0,0

∏
𝑖∈𝑃𝑌

𝜆𝑃,𝑖
𝑖,0

under the public key 𝐾 = 𝐾0 · 𝐾0, where the

corresponding secret key is secret-shared among the participants.

This can be done by having the parties encrypt their respective in-

puts using the linearly-homomorphic ElGamal encryption scheme,

exchange the ciphertexts with each other (via the server), and ho-

momorphically compute an encryption of 𝑍 locally. This costs 2

rounds of communication.

Recall that the goal of the protocol is to allow the server to obtain

𝐻1 (𝑛)𝑠0
in the case 𝑍 = 𝐼 (the identity element). We observe that

for a randomly sampled 𝑟 and for an arbitrary group element 𝐴,

𝑍𝑟 · 𝐴 = 𝐴 when 𝑍 = 𝐼 , and uniformly random otherwise. With

this observation, in the second phase the parties jointly compute

the encryption of 𝑍𝑟 and 𝑍𝑟
′ · 𝐻1 (𝑛)𝑠0

respectively for random 𝑟

and 𝑟 ′. Similar to the first phase, this costs another 2 rounds of

communication.

In the last phase, the parties jointly help the server to decrypt

the ciphertexts, so that the latter can check whether 𝑍𝑟 = 𝐼 (and

hence 𝑍 = 𝐼 ), and if so obtain 𝐻1 (𝑛)𝑠0
. This costs 1 round of com-

munication. Together with the first round where the server sends

the nonce 𝑛, we obtain a 6-round protocol.

At this point, the decryption functionality is already achieved

and the protocol can already be terminated. However, the rate-

limiters have no knowledge about whether the decryption was

successful or not, i.e., whether 𝑍 = 𝐼 , and thus can only perform

“coarse-grained” rate-limiting. That is, the rate-limiters would count

both successful and failed decryption attempts, since they cannot

distinguish between the two. This is often sufficient in applications,

since typically a user would not login (successfully) too frequently.

To support “fine-grained” rate-limiting, the server would send an

extra message to the rate-limiters to allow them to decrypt the

encryption of 𝑍𝑟 . These additional steps are highlighted in dashed

boxes in Figure 8. This costs an extra round of communication and

results in a 7-round protocol.

Key Rotation and Ciphertext Update (Figure 5). The goal of key-
rotation is to update the secret keys from sk𝑖 to sk′𝑖 , where

sk𝑖 = (𝑠𝑖 , 𝑘𝑖 , 𝐾0, {𝑆 𝑗 , 𝐾𝑗 }𝑡−1

𝑗=0
)

sk′𝑖 = (𝑠
′
𝑖 , 𝑘
′
𝑖 , 𝐾
′
0
, {𝑆 ′𝑗 , 𝐾

′
𝑗 }
𝑡−1

𝑗=0
)
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Setup(1𝜆, 1𝑚, 1𝑡 )
// 𝑠 and 𝑆 keys are used for encrypting password records

// 𝑘 and 𝐾 keys are used in the decryption protocol

crs := (G, 𝑝,𝐺) ← GGen(1𝜆)
𝑠0 ← SKE.KGen(1𝜆), 𝑘0 ←$Z𝑝 // Server key

𝐾0 := 𝐺𝑘0

// Rate-limiter keys (to be shared)

𝑠 𝑗 , ¯𝑘 𝑗 ←$Z𝑝 , ∀𝑗 ∈ [0, 𝑡 − 1]

𝑠 (𝑥) :=

𝑡−1∑︁
𝑗=0

𝑠 𝑗𝑥
𝑗 , ¯𝑘 (𝑥) :=

𝑡−1∑︁
𝑗=0

¯𝑘 𝑗𝑥
𝑗

𝑆 𝑗 := 𝐺𝑠 𝑗 , �̄�𝑗 := 𝐺
¯𝑘 𝑗 , ∀𝑗 ∈ [0, 𝑡 − 1]

𝑠𝑖 := 𝑠 (𝑖), 𝑘𝑖 := ¯𝑘 (𝑖), ∀𝑖 ∈ [𝑚]
sk𝑖 := (𝑠𝑖 , 𝑘𝑖 , 𝐾0, {𝑆 𝑗 , �̄�𝑗 }𝑡−1

𝑗=0
) ∀𝑖 ∈ [0,𝑚]

return (crs, sk
0
, . . . , sk𝑚)

Enc⟨S(“enc”, sk
0
, pw, 𝑀), · · ·⟩

ensure KVf (0, sk
0
)

𝑛0 ←$ {0, 1}𝜆

receive 𝑛𝑖 from R𝑖 ∀𝑖 ∈ [𝑚]
P := {𝑖 : 𝑛𝑖 ≠ ⊥}
ensure |P | ≥ 𝑡
𝑃 ← Subset𝑡 (P)
send { 𝑗, 𝑛 𝑗 } 𝑗∈𝑃∪{0} to R𝑖 ∀𝑖 ∈ 𝑃
𝑛 := 𝐻 ( {𝑖, 𝑛𝑖 }𝑖∈𝑃∪{0})
𝑋0 ← 𝐻0 (𝑛), 𝑋1 ← 𝐻1 (𝑛)
𝑌0,0 ← 𝐻0 (pw, 𝑛), 𝑌0,1 ← 𝐻1 (pw, 𝑛)
receive (𝑌𝑖,0, 𝑌𝑖,1, 𝜋𝑖 ) from R𝑖 ∀𝑖 ∈ 𝑃

𝑆𝑖 :=
∏𝑡−1

𝑗=0
𝑆𝑖

𝑗

𝑗 , ∀𝑖 ∈ 𝑃

ensure ∀𝑖 ∈ 𝑃 : Vf ©«crs, ©«
𝐺 𝑆𝑖

𝑋0 𝑌𝑖,0

𝑋1 𝑌𝑖,1

ª®¬ , 𝜋𝑖ª®¬
𝐶0 :=

∏
𝑖∈𝑃∪{0}𝑌

𝜆𝑃,𝑖
𝑖,0

, 𝐶1 :=
∏

𝑖∈𝑃∪{0}𝑌
𝜆𝑃,𝑖
𝑖,1
·𝑀

𝐶 := SKE.Enc(𝑠0, (𝐶0,𝐶1))
return (𝑛,𝐶)

Enc⟨· · · ,R𝑖 (“enc”, sk𝑖 ), · · ·⟩, ∀𝑖 ∈ [𝑚]
ensure KVf (𝑖, sk𝑖 )
𝑛𝑖 ←$ {0, 1}𝜆

send 𝑛𝑖 to S
receive { 𝑗, 𝑛′𝑗 } 𝑗∈𝑃∪{0} from S
ensure 𝑛𝑖 = 𝑛′𝑖
𝑛 := 𝐻 ( {𝑖, 𝑛𝑖 }𝑖∈𝑃∪{0})
𝑋0 ← 𝐻0 (𝑛), 𝑋1 ← 𝐻1 (𝑛)
𝑌𝑖,0 ← 𝑋

𝑠𝑖
0
, 𝑌𝑖,1 ← 𝑋

𝑠𝑖
1

𝑆𝑖 := 𝐺𝑠𝑖

𝜋𝑖 ← Prove ©«crs, ©«
𝐺 𝑆𝑖

𝑋0 𝑌𝑖,0

𝑋1 𝑌𝑖,1

ª®¬ , 𝑠𝑖ª®¬
send (𝑌𝑖,0, 𝑌𝑖,1, 𝜋𝑖 ) to S
return 𝜖

Figure 3: Setup Algorithm and Encryption Protocol of TPHE

where 𝑠 ′
0
is a fresh SKE secret key, and the following hold:

𝐾 ′
0
= 𝐾

𝛾

0
= 𝐺𝑘

′
0 ,

∀𝑗 ∈ [0, 𝑡 − 1] 𝑆 ′𝑗 = 𝑆 𝑗𝐺
¯𝛽 𝑗 ,

∀𝑗 ∈ [0, 𝑡 − 1] 𝐾 ′𝑗 = 𝐾
𝛾

𝑗
𝐺

¯𝛿 𝑗 ,

∀𝑖 ∈ [𝑚] 𝐺𝑠
′
𝑖 =

∏𝑡
𝑗=0
𝑆 ′𝑖

𝑗

𝑗 , and

∀𝑖 ∈ [𝑚] 𝐺𝑘
′
𝑖 =

∏𝑡
𝑗=0
𝐾 ′𝑖

𝑗

𝑗 ,

for some random
¯𝛽0, . . . , ¯𝛽𝑡−1, 𝛾, ¯𝛿0, . . . , ¯𝛿𝑡−1 sampled by the server.

With the update token (𝑠0, 𝑠 ′
0
, ¯𝛽0) and a nonce𝑛, the server can up-

date each𝐶 ∈ SKE.Enc(𝑠0, (𝐶0,𝐶1)) to𝐶 ′ ← SKE.Enc(𝑠 ′
0
, (𝐶 ′

0
,𝐶 ′

1
))

where 𝐶 ′
0

:= 𝐶0 · 𝐻0 (𝑛)
¯𝛽0
and 𝐶 ′

1
:= 𝐶1 · 𝐻1 (𝑛)

¯𝛽0
.

3.3 Correctness and Security
The correctness of our construction follows from the correctness

of SKE and the completeness of the NIZKPoK scheme described

in Appendix A.2. Below, we state the security of our construction,

and give a proof sketch.

Theorem 3.1 (Hiding) . If the decisionalDiffie-Hellman (DDH)
assumption holds with respect to GGen, and SKE is CCA-secure, then
the (𝑡,𝑚)-PHE scheme constructed above is semi-adaptively hiding
in the random oracle model.

Proof. We first note that the well known generalized Schnorr

protocol [17] (recalled in Figure 7) is a perfectly zero-knowledge

NIZKPoK for the relation 𝑅GDL in the random oracle model. We

therefore do not need extra assumptions on the NIZKPoK.

Wewant to prove that construction is hiding (under semi-adaptive

corruption). That is, for any PPT adversaryA, any integer𝑄Dec ≥ 0,

and a uniform password distribution PW with |PW| ≥ 𝑄Dec,

1

2

��� Pr

[
Hid0

Π,A,𝑄Dec,PW (1
𝜆, 1𝑚, 1𝑡 ) = 1

]
−

Pr

[
Hid1

Π,A,𝑄Dec,PW (1
𝜆, 1𝑚, 1𝑡 ) = 1

] ��� ≤ 𝑄Dec

|PW| + negl (𝜆 ) .

Wewill prove the above statement via a typical hybrid argument,

for that we define the following hybrid experiments:

• Hyb𝑏,0 is identical to Hid𝑏
Π,A,𝑄Dec,PW (1

𝜆, 1𝑚, 1𝑡 ).
• Hyb𝑏,1 is mostly identical to Hyb𝑏,0, except that all zero-
knowledge proofs are simulated by running the simulator of

the NIZKPoK scheme. It it straightforward to show that, for

all 𝑏 ∈ {0, 1} ,��� Pr

[
Hyb𝑏,0 = 1

]
− Pr

[
Hyb𝑏,1 = 1

] ��� ≤ negl (𝜆 )

using the zero-knowledge property of the NIZKPoK scheme.

• Hyb𝑏,2 is mostly identical to Hyb𝑏,1, except that when an

honest key rotation is triggered (the adversary queries the

RotateO oracle with HonestRot = 1), the secret key com-

ponents (𝑘𝑖 , 𝐾0, {𝐾𝑗 }𝑡−1

𝑗=0
) are freshly generated. For all 𝑏 ∈

{0, 1} , note that Hyb𝑏,1 and Hyb𝑏,2 are functionally equiva-

lent, therefore

Pr

[
Hyb𝑏,1 = 1

]
= Pr

[
Hyb𝑏,2 = 1

]
.

• Hyb𝑏,3,0 is identical to Hyb𝑏,2.
• Hyb𝑏,3,𝑞 , where 𝑞 ∈ [𝑄Dec], is mostly identical to Hyb𝑏,𝑞−1

,

except that when answering the adversary’s 𝑞-th query to

the DecO oracle which triggers the increment of the counter

DecCount (called a critical query hereinafter), the group el-

ements sent by honest parties are replaced by uniformly

7



Dec⟨. . . , . . .⟩
Server S(“dec”, sk

0
, pw, 𝑛,𝐶) Rate-limiter R𝑖 (“dec”, sk𝑖 ), ∀𝑖 ∈ [𝑚]

ensure KVf (0, sk
0
) ensure KVf (𝑖, sk𝑖 )

(𝐶0,𝐶1) ← SKE.Dec(𝑠0,𝐶)

ensure (𝐶0,𝐶1) ≠ ⊥ 𝑛

𝑋0 := 𝐻0 (𝑛), 𝑋1 := 𝐻1 (𝑛) 𝑋0 := 𝐻0 (𝑛), 𝑋1 := 𝐻1 (𝑛)

𝑌−1

0,0 := 𝐶−1

0
·𝐻0 (pw, 𝑛) 𝑌𝑖,0 := 𝑋

𝑠𝑖
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Computing encryption of 𝑍 := 𝑌−1

0,0
·∏𝑖∈𝑃𝑌

𝜆𝑃,𝑖
𝑖,0

for some 𝑡 -subset 𝑃 ⊆ [𝑚] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝐾 := 𝐾0 · �̄�0 𝐾 := 𝐾0 · �̄�0

𝑟0 ←$Z𝑝 , (𝑈0,𝑉0) := (𝐺𝑟
0 , 𝐾𝑟

0 · 𝑌−1

0,0 ) 𝑟𝑖 ←$Z𝑝 , (𝑈𝑖 ,𝑉𝑖 ) := (𝐺𝑟𝑖 , 𝐾𝑟𝑖 · 𝑌𝑖,0)

𝑆 𝑗 :=
∏𝑡−1

ℓ=0
𝑆
𝑗ℓ

ℓ
, ∀𝑗 ∈ [𝑚] 𝑆 𝑗 := 𝐺

∏𝑡−1

ℓ=0
𝑆
𝑗ℓ

ℓ , ∀𝑗 ∈ [𝑚] \ {𝑖 }
𝜋1,0 ← Prove (crs, (𝐺,𝑈0), 𝑟0) 𝑆𝑖 := 𝐺𝑠𝑖

P :=

{
𝑗 ∈ [𝑚] : Vf

(
crs,

(
𝐺, 𝐼, 𝑆 𝑗
𝐼 , 𝐺, 𝑈 𝑗
𝑋0, 𝐾, 𝑉𝑗

)
, 𝜋1, 𝑗

)
= 1

}
𝑈𝑖 ,𝑉𝑖 , 𝜋1,𝑖 𝜋1,𝑖 ← Prove

(
crs,

(
𝐺, 𝐼, 𝑆𝑖
𝐼 , 𝐺, 𝑈𝑖
𝑋0, 𝐾, 𝑉𝑖

)
,

(
𝑠𝑖
𝑟𝑖

))
ensure |P | ≥ 𝑡

𝑃 ← Subset𝑡 (P)
{
( 𝑗,𝑈 𝑗 ,𝑉𝑗 , 𝜋1, 𝑗 ) 𝑗∈(𝑃∪{0})\{𝑖}

}
to 𝑖 ∈ 𝑃

ensure ∀𝑗 ∈ 𝑃 \ {𝑖 } : Vf

(
crs,

(
𝐺, 𝐼, 𝑆 𝑗
𝐼 , 𝐺, 𝑈 𝑗
𝑋0, 𝐾, 𝑉𝑗

)
, 𝜋1, 𝑗

)
ensure Vf

(
crs, (𝐺,𝑈0), 𝜋1,0

)
(𝑈 ,𝑉 ) :=

(∏
𝑗∈𝑃∪{0}𝑈

𝜆𝑃,𝑗
𝑗

,
∏

𝑗∈𝑃∪{0}𝑉
𝜆𝑃,𝑗
𝑗

)
(𝑈 ,𝑉 ) :=

(∏
𝑗∈𝑃∪{0}𝑈

𝜆𝑃,𝑗
𝑗

,
∏

𝑗∈𝑃∪{0}𝑉
𝜆𝑃,𝑗
𝑗

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Computing encryption of (𝑍𝑟 , 𝑍𝑟 ′ ·𝐻1 (pw, 𝑛) ·𝐻1 (𝑛)

∑
𝑖∈𝑃 𝜆𝑃,𝑖𝑠𝑖 ) for some random 𝑟 and 𝑟 ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑟0, 𝑟
′
0
←$Z𝑝 𝑟𝑖 , 𝑟

′
𝑖 ←$Z𝑝

(�̃�0, �̃�0) :=

(
𝑈 𝑟

0 ,𝑉 𝑟
0

)
, (�̃� ′

0
, �̃� ′

0
) :=

(
𝑈
𝑟 ′

0 ,𝑉
𝑟 ′

0 ·𝐻1 (pw, 𝑛)
)

(�̃�𝑖 , �̃�𝑖 ) :=

(
𝑈 𝑟𝑖 ,𝑉 𝑟𝑖

)
, (�̃� ′𝑖 , �̃�

′
𝑖 ) :=

(
𝑈
𝑟 ′
𝑖 ,𝑉

𝑟 ′
𝑖 ·𝑋

𝜆𝑃,𝑖 ·𝑠𝑖
1

)
𝜋2,0 ← Prove

(
crs, (𝑈 ,�̃�0), 𝑟0

)
𝜋2,𝑖 ← Prove

(
crs,

(
𝑈 �̃�𝑖
𝑉 �̃�𝑖

)
, 𝑟𝑖

)
𝜋′

2,0 ← Prove
(
crs, (𝑈 ,�̃� ′

0
), 𝑟 ′

0

)
�̃�𝑖 , �̃�𝑖 , 𝜋2,𝑖 , �̃�

′
𝑖 , �̃�
′
𝑖 , 𝜋
′
2,𝑖 𝜋′

2,𝑖 ← Prove
©«crs,

©«
𝑈 𝐼 �̃� ′

𝑖

𝑉 𝑋
𝜆𝑃,𝑖
1

�̃� ′
𝑖

𝐼 𝐺 𝑆𝑖

ª®®¬ ,
(
𝑟 ′
𝑖
𝑠𝑖

)ª®®¬
ensure ∀𝑗 ∈ 𝑃 : Vf

(
crs,

(
𝑈 �̃� 𝑗

𝑉 �̃�𝑗

)
, 𝜋2, 𝑗

) {( 𝑗, �̃� 𝑗 , �̃�𝑗 , 𝜋2, 𝑗 , �̃�
′
𝑗
, �̃� ′

𝑗
, 𝜋′

2, 𝑗
) } 𝑗∈(𝑃∪{0})\{𝑖}

to 𝑖 ∈ 𝑃
ensure ∀𝑗 ∈ 𝑃 \ {𝑖 } : Vf

(
crs,

(
𝑈 �̃� 𝑗

𝑉 �̃�𝑗

)
, 𝜋2, 𝑗

)

ensure ∀𝑗 ∈ 𝑃 : Vf
©«crs,

©«
𝑈 𝐼 �̃� ′

𝑗

𝑉 𝑋
𝜆𝑃,𝑗
1

�̃� ′
𝑗

𝐼 𝐺 𝑆 𝑗

ª®®¬ , 𝜋′2, 𝑗
ª®®¬ ensure ∀𝑗 ∈ 𝑃 \ {𝑖 } : Vf

©«crs,
©«
𝑈 𝐼 �̃� ′

𝑗

𝑉 𝑋
𝜆𝑃,𝑗
1

�̃� ′
𝑗

𝐼 𝐺 𝑆 𝑗

ª®®¬ , 𝜋′2, 𝑗
ª®®¬

ensure Vf
(
crs, (𝑈 ,�̃�0), 𝜋2,0

)
∧ Vf

(
crs, (𝑈 ,�̃� ′

0
), 𝜋′

2,0

)
(�̃� , �̃� ) :=

(∏
𝑗∈𝑃∪{0}�̃� 𝑗 ,

∏
𝑗∈𝑃∪{0}�̃�𝑗

)
(�̃� , �̃� ) :=

(∏
𝑗∈𝑃∪{0}�̃� 𝑗 ,

∏
𝑗∈𝑃∪{0}�̃�𝑗

)
(�̃� ′, �̃� ′) :=

(∏
𝑗∈𝑃∪{0}�̃�

′
𝑗 ,

∏
𝑗∈𝑃∪{0}�̃�

′
𝑗

)
(�̃� ′, �̃� ′) :=

(∏
𝑗∈𝑃∪{0}�̃�

′
𝑗 ,

∏
𝑗∈𝑃∪{0}�̃�

′
𝑗

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Joint decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑇0 := �̃�𝑘
0 , 𝑇 ′

0
:= �̃� ′𝑘0 𝑇𝑖 := �̃�𝑘𝑖 , 𝑇 ′𝑖 := �̃� ′𝑘𝑖

𝐾𝑗 :=
∏𝑡−1

ℓ=0
�̄�
𝑗ℓ

ℓ
, ∀𝑗 ∈ 𝑃 𝐾𝑖 := 𝐺𝑘𝑖

𝜋3,𝑖 ← Prove
(
crs,

(
𝐺 𝐾𝑖
�̃� 𝑇𝑖

)
, 𝑘𝑖

)
ensure ∀𝑗 ∈ 𝑃 : Vf

(
crs,

(
𝐺 𝐾𝑗

�̃� 𝑇𝑗

)
, 𝜋3, 𝑗

)
𝑇𝑖 , 𝜋3,𝑖 ,𝑇

′
𝑖 , 𝜋
′
3,𝑖 𝜋′

3,𝑖 ← Prove
(
crs,

(
𝐺 𝐾𝑖
�̃� ′ 𝑇 ′

𝑖

)
, 𝑘𝑖

)
ensure ∀𝑗 ∈ 𝑃 : Vf

(
crs,

(
𝐺 𝐾𝑗

�̃� ′ 𝑇 ′
𝑗

)
, 𝜋′

3, 𝑗

)
𝑇 :=

∏
𝑗∈𝑃∪{0}𝑇

𝜆𝑃,𝑗
𝑗

, 𝑇 ′ :=
∏

𝑗∈𝑃∪{0}𝑇
′𝜆𝑃,𝑗
𝑗

if (�̃� ≠ 𝑇 ) then return 𝜖

𝑀 := (𝐶1/(�̃� ′ ·𝑇 ′−1))
return𝑀 return 𝑛

Figure 4: Decryption Protocol (Procedures for fine-grained rate-limiting in Figure 8)
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Rotate⟨S(“rot”, sk
0
), · · ·⟩

𝛾 ←$Z∗𝑝 , ¯𝛽 𝑗 , ¯𝛿 𝑗 ←$Z𝑝 , ∀𝑗 ∈ [0, 𝑡 − 1]

¯𝛽 (𝑥) :=

𝑡−1∑︁
𝑗=0

¯𝛽 𝑗𝑥
𝑗 , ¯𝛿 (𝑥) :=

𝑡−1∑︁
𝑗=0

¯𝛿 𝑗𝑥
𝑗

𝛽𝑖 := ¯𝛽 (𝑖), 𝛿𝑖 := ¯𝛿 (𝑖), ∀𝑖 ∈ [𝑚]
𝑠′

0
:= SKE.KGen(1𝜆)

𝑘′
0

:= 𝛾 · 𝑘0

𝐾 ′
0

:= 𝐾
𝛾

0

𝑆′𝑗 := 𝑆 𝑗 ·𝐺
¯𝛽 𝑗 , �̄� ′𝑗 := �̄�

𝛾

𝑗
𝐺

¯𝛿 𝑗 , ∀𝑗 ∈ {0, . . . , 𝑡 − 1}

send (𝛽𝑖 , 𝛾, 𝛿𝑖 , {𝑆′𝑗 , �̄� ′𝑗 }𝑡−1

𝑗=0
) to R𝑖 , ∀𝑖 ∈ [𝑚]

sk′
0
← (𝑠′

0
, 𝑘′

0
, 𝐾 ′

0
, {𝑆′𝑗 , �̄� ′𝑗 }𝑡−1

𝑗=0
), 𝜏 := (𝑠0, 𝑠

′
0
, ¯𝛽0)

return (sk′
0
, 𝜏)

Rotate⟨· · · ,R𝑖 (“rot”, sk𝑖 ), · · ·⟩
receive (𝛽𝑖 , 𝛾, 𝛿𝑖 , {𝑆′𝑗 , �̄� ′𝑗 }𝑡−1

𝑗=0
) from S

ensure 𝛾 ≠ 0

𝑠′𝑖 := 𝑠𝑖 + 𝛽𝑖
𝑘′𝑖 := 𝛾 · 𝑘𝑖 + 𝛿𝑖
𝐾 ′

0
:= 𝐾

𝛾

0

sk′𝑖 := (𝑠′𝑖 , 𝑘′𝑖 , 𝐾 ′0, {𝑆′𝑗 , �̄� ′𝑗 }𝑡−1

𝑗=0
)

ensure KVf (𝑖, sk′𝑖 )
return sk′𝑖

Udt(𝜏, 𝑛,𝐶)
parse 𝜏 as (𝑠0, 𝑠0, ¯𝛽0)
parse SKE.Dec( (𝑠0,𝐶) as (𝐶0,𝐶1)

𝐶′
0

:= 𝐶0 ·𝐻0 (𝑛)
¯𝛽0 , 𝐶′

1
:= 𝐶1 ·𝐻1 (𝑛)

¯𝛽0

return𝐶′ := SKE.Enc(𝑠0, (𝐶′0,𝐶′1))

KVf (𝑖, sk𝑖 )
if 𝑖 = 0 then return (𝐺𝑘

0 = 𝐾0)

else return (𝐺𝑠𝑖 =
∏𝑡−1

𝑗=0
𝑆𝑖

𝑗

𝑗 ∧𝐺
𝑘𝑖 =

∏𝑡−1

𝑗=0
�̄�𝑖 𝑗

𝑗 )

Figure 5: Key-Rotation Protocol, Update Algorithm, and Key Verification Algorithm of TPHE

random elements, and the output𝑀 of the server (if honest)

is always the empty string 𝜖 .

It remains to show that for all 𝑏 ∈ {0, 1} and all 𝑞 ∈ [𝑄Dec],��� Pr

[
Hyb𝑏,3,𝑞−1

= 1

]
− Pr

[
Hyb𝑏,3,𝑞 = 1

] ��� ≤ 1

|PW| + negl (𝜆 ) ,

and ��� Pr

[
Hyb

0,3,𝑄Dec
= 1

]
− Pr

[
Hyb

1,3,𝑄Dec
= 1

] ��� ≤ negl (𝜆 ) .

The theorem then follows.

3.3.1 From Hyb𝑏,3,𝑞−1
to Hyb𝑏,3,𝑞 . We show that��� Pr

[
Hyb𝑏,3,𝑞−1

= 1

]
− Pr

[
Hyb𝑏,3,𝑞 = 1

] ��� ≤ 1

|PW| + negl (𝜆 )

under the DDH assumption in the random oracle model for all

𝑏 ∈ {0, 1} and 𝑞 ∈ [𝑄Dec].
We define an intermediate hybrid experiment Hyb′

𝑏,3,𝑞
, which

is mostly identical to Hyb𝑏,3,𝑞 except that when answering the

adversary’s 𝑞-th critical query, then the server returns𝑀 = 𝑀∗
𝑏
if

pw = pw∗. Otherwise the server returns 𝜖 .
We can immediately see that��� Pr

[
Hyb′

𝑏,3,𝑞
= 1

]
− Pr

[
Hyb𝑏,3,𝑞 = 1

] ��� ≤ 1

|PW|

since the only way to distinguish between the two is to queryDecO
with pw = pw∗.

It thus suffices to show that��� Pr

[
Hyb𝑏,3,𝑞−1

= 1

]
− Pr

[
Hyb′

𝑏,3,𝑞
= 1

] ��� ≤ negl (𝜆 )

under the DDH assumption.

Suppose not, we construct an adversary B against DDH as fol-

lows. Let the 𝑡-th honest key rotation query be the latest one before

the 𝑞-th critical query. We can assume without loss of generality

that B knows 𝑡 as B can guess 𝑡 correctly with inverse-polynomial

probability. Let 𝐼 be the set of corrupt parties requested byA during

the 𝑡-th honest key rotation query. We consider two cases.

Case 1: 0 ∉ 𝐼 . Without loss of generality, we can assume that

𝐼 = [𝑚]. In this case, B receives a DDH instance (𝐺,𝐺𝛼 ,𝐺𝛽 ,𝐺𝛾 ),
and set 𝐾 ′

0
:= 𝐺𝛼 when answering the 𝑡-th honest key rotation

query. Note that B does not know 𝑘0 := 𝛼 and hence, during the

time between the 𝑡-th and (𝑡 + 1)-st honest key rotation, cannot

answer DecO oracle queries
5
honestly. B however has knowledge

of
¯𝑘0 for which 𝐾0 = 𝐺

¯𝑘0
. B therefore simulate the answers to

DecO oracle queries during this time period as follows.

B computes the views of all parties honestly except for the values

𝑈0,𝑉0,𝑇0 and𝑇
′
0
. For the 𝑞-th query, B sets𝑈0 := 𝐺𝛽 and𝑉0 := 𝐺𝛾 ·

𝐺𝛽
¯𝑘0 ·𝑌−1

0,0
. For other queries,B computes𝑈0 and𝑉0 honestly. For all

queries, to compute𝑇0 and𝑇
′
0
,B runs the extractor of the NIZKPoK

to extract the discrete logarithm �̃� and �̃� ′ such that �̃� = 𝐺�̃� and

�̃� ′ = 𝐺�̃�
′
. It then compute 𝑇0 := 𝐺𝛼�̃� and 𝑇 ′

0
:= 𝐺𝛼�̃�

′
.

Clearly, if (𝐺,𝐺𝛼 ,𝐺𝛽 ,𝐺𝛾 ) is a DH tuple, B simulates Hyb𝑏,3,𝑞−1

perfectly. Else, if (𝐺,𝐺𝛼 ,𝐺𝛽 ,𝐺𝛾 ) is a random tuple, B simulates

Hyb′
𝑏,3,𝑞

perfectly. The claim then follows.

Case 2: 0 ∈ 𝐼 . Without loss of generality, we can assume that

𝐼 = {0, 𝑖1, . . . , 𝑖𝑡−1} for some 𝐼 := {𝑖1, . . . , 𝑖𝑡−1} ⊆ [𝑚]. In this case,

let𝑀𝐼 be the following (𝑡 − 1)-by-𝑡 matrix

𝑀𝐼 :=


1 𝑖1 . . . 𝑖𝑡−1

1

.

.

.
.
.
.

. . .
.
.
.

1 𝑖𝑡−1 . . . 𝑖𝑡−1

𝑡−1

 .
B receives a DDH instance (𝐺,𝐺𝛼 ,𝐺𝛽 ,𝐺𝛾 ). When answering

the 𝑡-th honest key rotation query, B generates secret key shares

for the combined public key𝐾 ′
0

:= 𝐺𝛼 . For this, it samples a random

vector u := (𝑢0, . . . , 𝑢𝑡−1)𝑇 ←$ Ker(𝑀𝐼 ) in the kernel of 𝑀𝐼 , i.e.,
𝑀𝐼u = 0. It also samples a random vector v = (𝑣0, . . . , 𝑣𝑡−1)𝑇 ←$Z𝑡𝑝 .

It sets 𝐾 ′
𝑗

:= 𝐺𝛼𝑢 𝑗+𝑣𝑗
for all 𝑗 ∈ [0, 𝑡 − 1]. For the corrupt parties

𝑖 ∈ 𝐼 , B can compute secret keys 𝑘𝑖 without knowledge of 𝛼 as

𝑘𝑖 :=
∑𝑡−1

𝑗=0
(𝛼𝑢 𝑗 +𝑣 𝑗 )𝑖 𝑗 =

∑𝑡−1

𝑗=0
𝑣 𝑗 𝑖

𝑗
(since𝑀𝐼u = 0), which are then

5B can answer DecChO oracle queries honestly since it does not need to return the

view of S, while the views of R𝑖 for all 𝑖 ∈ [𝑚] can be computed without knowing

𝑘0 .
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returned to A. Note that B does not know 𝑘𝑖 :=
∑𝑡−1

𝑗=0
(𝛼𝑢 𝑗 + 𝑣 𝑗 )𝑖 𝑗

for the honest parties 𝑖 ∉ 𝐼 and hence, during the time between the

𝑡-th and (𝑡 + 1)-st honest key rotation, cannot answer DecO oracle

queries honestly. B can however simulate the views of all parties

in a DecO query using the DDH instance and the extractor of the

NIZKPoK as in case 1. We thus arrive at a similar conclusion that, if

(𝐺,𝐺𝛼 ,𝐺𝛽 ,𝐺𝛾 ) is a DH tuple,B simulatesHyb𝑏,3,𝑞−1
perfectly and,

if (𝐺,𝐺𝛼 ,𝐺𝛽 ,𝐺𝛾 ) is a random tuple, B simulates Hyb′
𝑏,3,𝑞

perfectly.

The claim then follows.

3.3.2 From Hyb
0,3,𝑄Dec

to Hyb
1,3,𝑄Dec

. We show that��� Pr

[
Hyb

0,3,𝑄Dec
= 1

]
− Pr

[
Hyb

1,3,𝑄Dec
= 1

] ��� ≤ negl (𝜆 ) .

assuming the CCA-security of SKE and DDH.

Suppose not, we construct an adversary B against the CCA-

security of SKE or DDH as follows. Without loss of generality, let

the 𝑡-th honest key rotation query be the latest one before the

ChO𝑏 oracle query. Let 𝐼 be the set of corrupt parties requested by

A during this key rotation query. We consider two cases.

Case 1: 0 ∉ 𝐼 . Without loss of generality, we can assume that 𝐼 =

[𝑚]. In this case, note that S remains uncorrupt when answering

the ChO𝑏 oracle query, as well as the last (say 𝑡 ′-th, potentially
malicious) key rotation query. For the 𝑡 ′-th key rotation query,

B simulates most secret key components honestly, except that it

sets 𝑠0 := 𝜖 . To generate the challenge ciphertext, B computes

𝐶0 := 𝐻0 (pw∗, 𝑛∗)𝐻0 (𝑛∗)𝑠0
and𝐶

1,𝑏 := 𝐻1 (pw∗, 𝑛∗)𝐻1 (𝑛∗)𝑠0𝑀∗
𝑏
by

interacting with the possibly malicious rate-limiters. It then submits

(𝐶0,𝐶1,0) and (𝐶0,𝐶1,1) to the challenge oracle of SKE. During the

time between the 𝑡 ′-th and the (𝑡 ′ + 1)-st key rotation queries,

whenever SKE.Enc(𝑠0, ·) is supposed to be executed (except when

answering the ChO𝑏 oracle query), B delegates the computation

to the encryption oracle of SKE. B makes a random guess 𝑏 ′ of the
random bit used by the SKE challenger. Whenever SKE.Dec(𝑠0, ·) is
supposed to be executed on the challenge ciphertext 𝐶∗, the return
value is replaced by (𝐶0,𝐶1,𝑏′). When it is supposed to be executed

on other non-challenge ciphertext, B delegates the computation to

the decryption oracle of SKE. Clearly,when the guess𝑏 ′ is correct,B
perfectly simulates the environments of Hyb

0,3,𝑄Dec
or Hyb

1,3,𝑄Dec
,

depending on the secret bit chosen by the SKE challenger.

Case 2: 0 ∈ 𝐼 . We define an intermediate hybrid Hyb′
𝑏,3,𝑄Dec

which is mostly identical to Hyb
0,3,𝑄Dec

, except that when generat-

ing the challenge ciphertext, the experiment samples (𝐶0,𝐶1) ←$G2

uniformly at random (independent of𝑀∗
𝑏
). Clearly Hyb′

0,3,𝑄Dec
and

Hyb′
1,3,𝑄Dec

are functionally equivalent. It therefore suffices to show��� Pr

[
Hyb′

𝑏,3,𝑄Dec
= 1

]
− Pr

[
Hyb𝑏,3,𝑄Dec

= 1

] ��� ≤ negl (𝜆 ) .

Without loss of generality,we can assume that 𝐼 = {0, 𝑖1, . . . , 𝑖𝑡−1}
for some 𝐼 := {𝑖1, . . . , 𝑖𝑡−1} ⊆ [𝑚]. In this case, we will make use of

the matrix𝑀𝐼 defined above, and simulate the secret key compo-

nents 𝑠𝑖 for 𝑖 ∈ 𝐼 in a similar fashion. As before, althoughB does not

possess the knowledge of 𝑠𝑖 (but only𝐺
𝑠𝑖
) for 𝑖 ∉ 𝐼 , encryption and

decryption can be simulated given a DDH instance and by program-

ming the random oracles
6
. If B is given a DH instance, it simulates

Hyb𝑏,3,𝑄Dec
perfectly. Otherwise,B is given a random instance, and

it simulates Hyb′
𝑏,3,𝑄Dec

perfectly. The claim then follows. □

Theorem 3.2 (Soundness) . If the discrete logarithm as-
sumption holds with respect to GGen, then the (𝑡,𝑚)-PHE scheme
constructed above is sound in the random oracle model7.

Proof. Firstly,we recall that thewell known generalized Schnorr

protocol [17] (recalled in Figure 7) is a statistical proof of knowl-

edge in the random oracle model. We therefore do not need extra

assumptions on the NIZKPoK.

We give a high level idea of why an adversary against sound-

ness cannot exist in the random oracle model, under the discrete

logarithm assumption. Suppose such an adversaryA exists, we con-

sider the following experiment. First, it runsA as in the soundness

experiment until A outputs the indices (𝑖, 𝑗). It then retrieves

(sk
0
, 𝑛,𝐶, pw, 𝑀) := Queries[𝑖] and

(sk′
0
, 𝑛′,𝐶 ′, pw′, 𝑀 ′) := Queries[ 𝑗] .

With non-negligible probability, the condition 𝑏0 ∧ 𝑏1 ∧ (𝑏2 ∨ 𝑏3)
is satisfied. Since 𝑏0 ∧ 𝑏1 is satisfied, we have

(sk
0
,𝐶) = (sk′

0
,𝐶 ′)∧

𝑀 ≠ ⊥ ∧𝑀 ′ ≠ ⊥.

By the second condition, we can deduce that regardless of whether

these tuples were created during an encryption or decryption oracle

query, the server did not abort the protocol. Thus, we must have

KVf (0, sk
0
) = 1, which means sk

0
is of the form sk

0
= (𝑠0, 𝑘0,

𝐾0, {𝑆 𝑗 , 𝐾𝑗 }𝑡−1

𝑗=0
) where 𝐾0 = 𝐺𝑘0

. In the following, let (𝐶0,𝐶1) ←
SKE.Dec(𝑠0,𝐶).

Suppose (sk
0
, 𝑛,𝐶, pw, 𝑀) is created during an encryption oracle

query. Then we must have 𝑀 ≠ 𝜖 . By running the extractor E,
whose existence is guaranteed by the proof of knowledge property

of the NIZKPoK, on the proofs generated by the (possibly malicious)

rate-limiters, the reduction can extract 𝑠0 such that

𝐶0 = 𝐻0 (pw, 𝑛)𝐻0 (𝑛)𝑠0
(1)

𝐶1 = 𝐻1 (pw, 𝑛)𝐻1 (𝑛)𝑠0𝑀. (2)

Similarly, if (sk′
0
, 𝑛′,𝐶 ′, pw′, 𝑀 ′) is created during an encryption

oracle query, then𝑀 ′ ≠ 𝜖 , and the reduction can extract 𝑠0 with

𝐶0 = 𝐻0 (pw′, 𝑛′)𝐻0 (𝑛′)𝑠0
(3)

𝐶1 = 𝐻1 (pw′, 𝑛′)𝐻1 (𝑛′)𝑠0𝑀 ′. (4)

Suppose (sk
0
, 𝑛,𝐶, pw, 𝑀) is created during a decryption oracle

query, we consider two cases: 1) 𝑀 ≠ 𝜖 , and 2) 𝑀 = 𝜖 . In the first

case, the extraction process is slightly more complicated than when

the tuple is created via encryption. Nevertheless, the experiment

6e.g., to compute 𝐻0 (𝑛)𝑠𝑖 and 𝐻1 (𝑛)𝑠𝑖 for 𝑛 ≠ 𝑛∗ , B first samples 𝑥0 and 𝑥1 and

programs 𝐻0 (𝑛) := 𝐺𝑥
0 and 𝐻1 (𝑛) := 𝐺𝑥

1 . It can then compute 𝐻0 (𝑛)𝑠𝑖 = 𝐺𝑥
0
𝑠𝑖

and 𝐻1 (𝑛)𝑠𝑖 = 𝐺𝑥
1
𝑠𝑖 . For 𝑛 = 𝑛∗ , B programs the random oracle similarly except

that𝐺𝑥
0 and𝐺𝑥

1 are derived from the DDH instance.

7
There is an error in [12], where the strong soundness property is claimed to hold

assuming only the soundness of the NIZKPoK, which in turn holds unconditionally in

the random oracle model. In fact, they would also need to rely on the discrete logarithm

assumption.
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can also extract 𝑠0 so that it satisfies the above relations. In the

second case, we can deduce that

𝐶0 ≠ 𝐻0 (pw, 𝑛)𝐻0 (𝑛)𝑠0 . (5)

Similar conclusion can be made if (sk′
0
, 𝑛′,𝐶 ′, pw′, 𝑀 ′) is created

during a decryption oracle query.

Next, we examine the conditions 𝑏2 and 𝑏3, where at least one of

them must be satisfied. Suppose 𝑏2 is satisfied, we have ((𝑛, pw) =
(𝑛′, pw′)) ∧ (𝑀 ≠ 𝑀 ′). There are two possibilities.

(1) 𝑀 = 𝜖 and 𝑀 ′ ≠ 𝜖 (or 𝑀 ≠ 𝜖 and 𝑀 ′ = 𝜖): Since 𝑀 = 𝜖 , the

tuple must have been produced via decryption, and by Equa-

tion (5) we have 𝐶0 ≠ 𝐻0 (pw, 𝑛)𝐻0 (𝑛)𝑠0
. However, since

𝑀 ′ ≠ 𝜖 , by Equation (3) we have 𝐶0 = 𝐻0 (pw, 𝑛)𝐻0 (𝑛)𝑠0

(note that (𝑛, pw) = (𝑛′, pw′)) which is a contradicton.

(2) 𝑀 ≠ 𝜖 and𝑀 ′ ≠ 𝜖 : From Equations (2) and (4) we can deduce

that𝑀 = 𝑀 ′, which is a contradiction.

Suppose 𝑏3 is satisfied, we have ((𝑛, pw) ≠ (𝑛′, pw′))∧ (𝑀,𝑀 ′ ∈
M). Since 𝑀,𝑀 ′ ∈ M, we must have 𝑀 ≠ 𝜖 and 𝑀 ′ ≠ 𝜖 . Then,

from Equations (1) and (3), we can deduce

𝐻0 (pw, 𝑛)𝐻0 (𝑛)𝑠0𝐻0 (pw′, 𝑛′)−1𝐻0 (𝑛′)−𝑠0 = 𝐼

However, since (𝑛, pw) ≠ (𝑛′, pw′), 𝐻0 (pw, 𝑛) and 𝐻0 (pw′, 𝑛′) are
independent random elements, we obtain a non-trivial discrete

logarithm representation of the identity element, which violates

the discrete logarithm assumption. □

4 EVALUATION
We have implemented our construction in Python using the Charm

framework [2]. For interactions we use the falcon REST frame-

work (for the rate-limiter), Python requests (for the server), and

HTTP keep-alive. As in [12] we instantiate the hash functions with

SHA-256 and the group with NIST P-256. This enables meaningful

comparison between our results and those of [12].

All our results are measured in a LAN and a more realistic WAN

setting (between North California and Oregon; ping 21ms) for dif-

ferent choices of the threshold 𝑡 and number of rate-limiters𝑚. In-

teractions are made by POST calls. The rate-limiters use in-memory

dictionaries for storing the states. The server is sending out multiple

requests at once and waits for 𝑡 rate-limiters to respond.

4.1 Results
Latency. We measured the latency of encryption (resp. decryp-

tion) of the (𝑡,𝑚)-PHE scheme, i.e., the time needed to complete

an encryption (resp. decryption) protocol execution. For 𝑡 =𝑚 = 1,

Table 1 shows that the average latency for encryption is 8.431 ms

(LAN) and 94.911 ms (WAN), and that for decryption is 18.763 ms

(LAN) and 147.970 ms (WAN), where the averages are taken over

1000 executions. Further experiments show that the threshold 𝑡

and total number of rate-limiters𝑚 do not affect the latency sig-

nificantly, except for a minor communication overhead, because

the protocol will continue as soon as 𝑡 parties, who run in parallel,

have answered.

Our scheme has a higher latency by an estimated factor of two

for encryption and a factor slightly higher than three for decryption

(see Table 1), mainly due to the additional communication rounds

Scheme Latency in ms

[12] - Encrypt 4.501

[12] - Decrypt 4.959

(𝑡,𝑚)-PHE in LAN - Encrypt 8.431

(𝑡,𝑚)-PHE in LAN - Decrypt 18.763

(𝑡,𝑚)-PHE in WAN - Encrypt 94.911

(𝑡,𝑚)-PHE in WAN - Decrypt 147.970

Table 1: Latency Comparison

(2x for encryption and 3x for the decryption protocol) compared to

the PHE in [12].

Throughput. To estimate the computational resources needed,we

also measured the throughput (maximum number of encryption and

decryption requests per time) of (𝑡,𝑚)-PHE for different thresholds

𝑡 and number of rate-limiters𝑚. For various values of (𝑡,𝑚) with 𝑡 =
𝑚, Figure 6 shows the inverse of the throughput (i.e., amortized time

per request) of the server against the threshold of 𝑡 . Likewise, we

report the inverse of the throughput of the rate-limiters in Figure 6.

Points on the figure are averages over single-, dual, quad- and octa-

core performances, with 1000 executions each. The raw data is

reported in Table 2. For generating amortized benchmarking results,

we fixed the time for network traffic and randomness generation, as

generating large numbers of random values may cause odd runtime

artifacts. However, this is not a restriction, because generating those

values can be done via pseudorandom functions (e.g., SHA2 or AES

with hardware acceleration). Figure 6 shows that the amortized time

per request scales linearly with the threshold 𝑡 . Further experiments

show that increasing the number of rate-limiters 𝑚 for a fixed

threshold 𝑡 does not significantly affect the throughput.
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Figure 6: Amortized time per request against threshold 𝑡

4.2 Scalability
Table 2 shows that the throughput of (𝑡,𝑚)-PHE scales linearly

with the number of cores. Note that throughput performance is

increasing faster with the core count than it is decreasing with

the corruption threshold. This ensures easy adaptability in real-

world applications, because service providers can easily compensate

the lower throughput caused by higher corruption thresholds by

using more cores. For real-world deployment, we would expect an

implementation to use a single TLS connection for all messages in

an encryption or decryption protocol execution.
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Encryption Requests/s

Threshold 𝑡 1-Core 2-Core 4-Core 8-Core

1 ([12]) 1097.51 2186.59 4466.24 8509.77

1 1044.93 1993.20 3821.29 7469.21

3 546.76 1080.64 2087.75 4020.21

5 367.70 742.97 1440.42 2820.17

8 257.51 510.17 992.99 1920.39

11 192.95 375.96 744.61 1436.60

13 162.88 324.38 636.10 1244.31

15 144.27 286.98 567.06 1093.45

Decryption Requests/s

Threshold 𝑡 1-Core 2-Core 4-Core 8-Core

1 ([12]) 958.23 1739.31 3658.78 7081.30

1 394.05 770.41 1460.12 2883.66

3 166.77 336.20 648.21 1259.41

5 107.46 214.14 412.59 807.90

8 70.49 139.80 272.14 528.41

11 51.64 103.00 201.24 387.20

13 43.98 87.71 171.18 329.63

15 38.41 76.42 150.07 288.05

Table 2: Encryption and Decryption Requests per Second

4.3 Comparison to Memory-Hard Functions
Memory-hard functions are used in practice for password hashing

and password-based key-derivation. Considering current recom-

mendations for best practice [19], we note that algorithms like

scrypt or Argon2 [5] are usually configured to limit login through-

put to tens of requests per second which is significantly slower

than using (𝑡,𝑚)-PHE. Therefore, (𝑡,𝑚)-PHE can directly be used

in practice while simultaneously offering better security against

offline-brute force attacks.
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A PRELIMINARIES
A.1 Computational Assumption
We recall the discrete logarithm and decisional Diffie-Hellman as-

sumptions.

Definition A.1 (Discrete Logarithm). We say that the discrete

logarithm assumption holds with respect to GGen if for all PPT
adversaries A

Pr

𝑥 = 𝑥 ′ :

(G, 𝑝,𝐺) ← GGen(1𝜆)
𝑥 ←$Z𝑝

𝑥 ′ ← A(G, 𝑝,𝐺,𝐺𝑥 )

 ≤ negl (𝜆 ) .

Definition A.2 (DDH). We say that the decisional Diffie-Hellman

assumption holds with respect to GGen if for all PPT adversaries

A ������������
Pr

𝑏 = 1 :

(G, 𝑝,𝐺) ← GGen(1𝜆)
𝑥,𝑦←$Z𝑝

𝑏 ← A(G, 𝑝,𝐺,𝐺𝑥 ,𝐺𝑦,𝐺𝑥𝑦)


−Pr

𝑏 = 1 :

(G, 𝑝,𝐺) ← GGen(1𝜆)
𝑥,𝑦, 𝑧←$Z𝑝

𝑏 ← A(G, 𝑝,𝐺,𝐺𝑥 ,𝐺𝑦,𝐺𝑧)



������������
≤ negl (𝜆 ) .

A.2 Non-Interactive Zero-Knowledge Proof of
Knowledge (NIZKPoK)

We recall the notion of non-interactive zero-knowledge proof of

knowledge (NIZKPoK) and a construction for generalized discrete

logarithm relations.

Let 𝑅 ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary relation decidable

in polynomial time. Given a common reference string (CRS) crs, we
say that𝑤 is a witness of a statement 𝑥 if (crs, 𝑥,𝑤) ∈ 𝑅.

A tuple of PPT algorithms (Gen, Prove,Vf) is said to be a non-

interactive proof of knowledge (NIZKPoK) scheme for the relation

𝑅 if the following properties hold:

• (Perfect Completeness) For all non-uniform polynomial-time

algorithms A,

Pr

(crs, 𝑥,𝑤) ∉ 𝑅 ∨ 𝑏 = 1 :

crs← Gen(1𝜆)
(𝑥,𝑤) ← A(crs)

𝜋 ← Prove(crs, 𝑥,𝑤)
𝑏 ← Vf (crs, 𝑥, 𝜋)

 = 1.

• (Statistical Proof of Knowledge) There exists a probabilistic

polynomial time extractor E such that, for all (unbounded)

adversaries A,

Pr

(crs, 𝑥,𝑤) ∉ 𝑅 ∧ 𝑏 = 1 :

crs← Gen(1𝜆)
(𝑥, 𝜋) ← A(crs)
𝑤 ← E(crs, 𝑥, 𝜋)
𝑏 ← Vf (crs, 𝑥, 𝜋)

 ≤ negl (𝜆 ) .

Note that schemes satisfying this property in the common-

reference-string model cannot be zero-knowledge, as the

extractor E does not have secret inputs. This is however not

an issue in the random oracle model, where E has black-

box access to further copies ofA with the randomness used

to define (𝑥, 𝜋), and simulates responses to random oracle

queries made by A. Furthermore, A is restricted to make

only a polynomial number of random oracle queries.

• (Computational Zero-Knowledge) There exists a probabilis-

tic polynomial time simulatorS, such that for all probabilistic
polynomial time adversaries A1 and non-uniform polyno-

mial time algorithms A2,������������
Pr

 (crs, 𝑥,𝑤) ∈ 𝑅∧A1 (crs, 𝑥, 𝜋) = 1

:

crs← Gen(1𝜆)
(𝑥,𝑤) ← A2 (crs)
𝜋 ← Prove(crs, 𝑥,𝑤)


−Pr

 (crs, 𝑥,𝑤) ∈ 𝑅∧A1 (crs, 𝑥, 𝜋) = 1

:

crs← Gen(1𝜆)
(𝑥,𝑤) ← A2 (crs)
𝜋 ← S(crs, 𝑥)



������������
≤ negl (𝜆 ) .

In the random oracle model, S simulates responses to ran-

dom oracle queries made by A1 and A2. Furthermore, A2

is restricted to make only a polynomial number of random

oracle queries.

Let GGen : 1
𝜆 ↦→ crs = (G,𝐺, 𝑝) be a group generator which

generates a cyclic group G of order 𝑝 with generator 𝐺 . Let 𝐻 :

{0, 1}∗ → Z𝑝 be a hash function. We recall in Figure 7 a generalized

Schnorr protocol [17] (Prove,Vf) which is made non-interactive

using the Fiat-Shamir transformation [9]. It is well known that the

scheme (GGen, Prove,Vf) is (unconditionally) a NIZKPoK for the

relation 𝑅GDL if 𝐻 is modeled as a random oracle.

B DISCUSSION
In this section we discuss miscellaneous topics related to our con-

struction, including different variants, an optimization, a general-

ization, extensions, and applications.

B.1 Fine-Grained Rate-Limiting
Our construction leads to two slightly different variants of (𝑡,𝑚)-
PHE – one which supports fine-grained rate-limiting and one which

only supports coarse-grained rate-limiting. The former requires a

7-round decryption protocol while the latter requires only 6 rounds.

Apart from saving communication costs, the coarse-grained variant
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Prove(crs, 𝑥,𝑤)

parse 𝑥 as
©«
𝐴1,1 . . . 𝐴1,𝑛 𝐵1

.

.

.
. . .

.

.

.
.
.
.

𝐴𝑚,1 . . . 𝐴𝑚,𝑛 𝐵𝑚

ª®®®¬
parse 𝑤 as (𝑥1, . . . , 𝑥𝑛)
(𝑟1, . . . , 𝑟𝑛) ←$Z𝑝

𝑅𝑖 :=
∏𝑛

𝑗=1
𝐴
𝑟 𝑗
𝑖,𝑗
, ∀𝑖 ∈ [𝑚]

𝑐 := 𝐻 (crs, 𝑥, 𝑅1, . . . , 𝑅𝑚)
(𝑦1, . . . , 𝑦𝑛) := 𝑐 · (𝑥1, . . . , 𝑥𝑛) + (𝑟1, . . . , 𝑟𝑛)
return (𝑅1, . . . , 𝑅𝑚, 𝑦1, . . . , 𝑦𝑛)

Vf (crs, 𝑥, 𝜋)

parse 𝑥 as
©«
𝐴1,1 . . . 𝐴1,𝑛 𝐵1

.

.

.
. . .

.

.

.
.
.
.

𝐴𝑚,1 . . . 𝐴𝑚,𝑛 𝐵𝑚

ª®®®¬
parse 𝜋 as (𝑅1, . . . , 𝑅𝑚, 𝑦1, . . . , 𝑦𝑛)
𝑐 := 𝐻 (crs, 𝑥, 𝑅1, . . . , 𝑅𝑚)

𝑏 := (∀𝑖 ∈ [𝑚], ∏𝑛
𝑗=1
𝐴
𝑦 𝑗

𝑖,𝑗
= 𝐵𝑐𝑖 · 𝑅𝑖 )

return 𝑏

Figure 7: A NIZKPoK for the relation 𝑅GDL

Joint Decryption

Server S(“dec”, sk
0
, pw, 𝑛,𝐶) Rate-limiter R𝑖 (“dec”, sk𝑖 ), ∀𝑖 ∈ [𝑚]

𝑇0 := �̃�𝑘
0 , 𝑇 ′

0
:= �̃� ′𝑘0 𝑇𝑖 := �̃�𝑘𝑖 , 𝑇 ′𝑖 := �̃� ′𝑘𝑖

𝐾𝑗 :=
∏𝑡−1

ℓ=0
�̄�
𝑗ℓ

ℓ
, ∀𝑗 ∈ 𝑃 𝐾𝑖 := 𝐺𝑘𝑖 , 𝐾𝑗 :=

∏𝑡−1

ℓ=0
�̄�
𝑗ℓ

ℓ
, ∀𝑗 ∈ 𝑃 \ {𝑖 }

𝜋3,0 ← Prove
(
crs,

(
𝐺 𝐾0

�̃� 𝑇0

)
, 𝑘0

)
𝜋3,𝑖 ← Prove

(
crs,

(
𝐺 𝐾𝑖
�̃� 𝑇𝑖

)
, 𝑘𝑖

)
ensure ∀𝑗 ∈ 𝑃 : Vf

(
crs,

(
𝐺 𝐾𝑗

�̃� 𝑇𝑗

)
, 𝜋3, 𝑗

)
𝑇𝑖 , 𝜋3,𝑖 ,𝑇

′
𝑖 , 𝜋
′
3,𝑖 𝜋′

3,𝑖 ← Prove
(
crs,

(
𝐺 𝐾𝑖
�̃� ′ 𝑇 ′

𝑖

)
, 𝑘𝑖

)
ensure ∀𝑗 ∈ 𝑃 : Vf

(
crs,

(
𝐺 𝐾𝑗

�̃� ′ 𝑇 ′
𝑗

)
, 𝜋′

3, 𝑗

) {( 𝑗,𝑇𝑗 , 𝜋3, 𝑗 ) } 𝑗∈(𝑃∪{0})\{𝑖}
to 𝑖 ∈ 𝑃

𝑏𝑖 :=

(
∀𝑗 ∈ 𝑃 \ {𝑖 } : Vf

(
crs,

(
𝐺 𝐾𝑗

�̃� 𝑇𝑗

)
, 𝜋3, 𝑗

))

𝑇 :=
∏

𝑗∈𝑃∪{0}𝑇
𝜆𝑃,𝑗
𝑗

, 𝑇 ′ :=
∏

𝑗∈𝑃∪{0}𝑇
′𝜆𝑃,𝑗
𝑗

𝑇 :=
∏

𝑗∈𝑃∪{0}𝑇
𝜆𝑃,𝑗
𝑗

if (�̃� ≠ 𝑇 ) then return 𝜖 if (𝑏𝑖 = 1) ∧ (�̃� ·𝑇−1 = 𝐼 ) then return 𝜖

𝑀 := (𝐶1/(�̃� ′ ·𝑇 ′−1))
return𝑀 return 𝑛

Figure 8: Joint Decryption with Fine-Grained Rate-Limiting

has an additional benefit that the rate-limiters stay oblivious to

whether the password was correct. For practical purposes this can

also be interpreted as follows: For a login process, server and rate-

limiters first execute the 6-round protocol, and the server considers

the user as successfully authenticated. The last message (the 7-th

round) can then be sent in the background to the rate-limiters, who

will then “refund” the login attempt.

Both variants are covered by our security definitions and proofs:

While the fine-grained variant is covered natively, the coarse-grained

variant is also covered as it only penalizes the adversary for addi-

tional (successful) decryption attempts.

B.2 Further Optimizations
We note that the proofs 𝜋1,𝑖 , 𝜋2,𝑖 , 𝜋

′
2,𝑖

can be merged into a single

proof in a non-blackbox way. Conceptually, until the joint decryp-

tion phase, the parties only compute on random group elements

and thus verifying the integrity of the messages can be delayed

until right before the joint decryption phase. Merging the proofs

saves some communication cost by not sending duplicating commit-

ments corresponding to the same witness. However doing so would

further complicate the presentation of our protocol and hide its

structure. Therefore we choose to not incorporate this optimization.

B.3 More General Access Structures and
Dynamic Rate-Limiters

We discuss extensions of our (𝑡,𝑚)-PHE scheme obtained by ex-

tending the underlying secret sharing scheme.

The scheme we presented only supports a basic threshold access

structure. In real-world deployments, more complex access struc-

tures might be desirable (e.g., to have a single backup rate-limiter

who is normally offline, or to require rate-limiters from different

geographic areas in addition to a threshold of them).

To this end, observe that the Shamir secret sharing schemewe are

using can be replaced by any linear secret sharing scheme without

further changing the protocol. The resulting construction supports

any access policies specified by monotone span programs [11].
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In a real-world application of (𝑡,𝑚)-PHE, it might happen that

the keys of some rate-limiters are lost due to an incident ormalicious

intervention. If too many rate-limiter keys are lost, the server risks

losing all the user data as they can no longer be decrypted. To

prevent such situations, it is useful to consider natural extensions

of (𝑡,𝑚)-PHE which allows recovery of lost rate-limiter keys and

changing the set of rate-limiters (to a new set of possibly different

size) dynamically.

While standard methods [3] exist for dynamic resharing, due to

our more relaxed security requirements, the round complexity of

dynamic resharing can be improved: Let 𝑠𝑖 be the 𝑖-th share of the

conceptual rate-limiter secret key 𝑠0 generated by a (𝑡,𝑚)-secret
sharing scheme. To convert to a new (𝑡 ′,𝑚′) system, a 𝑡-subset

𝐼 ⊂ [𝑚] of the previous share-holders create𝑚′ shares {𝑠𝑖, 𝑗 } 𝑗 ∈[𝑚′ ]
of their shares 𝑠𝑖 as follows. Each 𝑖 ∈ 𝐼 sets 𝑠𝑖,0 := 𝑠𝑖 and samples

𝑠𝑖,𝑘 for 𝑘 ∈ [𝑡 ′ − 1]. It then computes 𝑠𝑖, 𝑗 :=
∑𝑡 ′−1

𝑘=0
𝑠𝑖,𝑘 𝑗

𝑘
for each

𝑗 ∈ [𝑚′], and 𝑆𝑖,𝑘 for 𝑘 ∈ [𝑡 ′ − 1]. The share 𝑠𝑖, 𝑗 is sent to the

new 𝑗-th rate-limiter, while {𝑆𝑖,𝑘 = 𝐺𝑠𝑖,𝑘 }𝑡 ′−1

𝑘=0
is broadcasted. Upon

receiving the shares

{
𝑠𝑖, 𝑗

}
𝑖∈𝐼 , each new shareholder 𝑗 ∈ [𝑚′] can

recover their share 𝑠 ′
𝑗
as

𝑠 ′𝑗 = L𝐼
(
𝑠𝑖1, 𝑗 , . . . , 𝑠𝑖𝑡 , 𝑗

)
using a linear function L𝐼 determined by the set 𝐼 . To see that

{𝑠 ′
𝑗
} 𝑗 ∈[𝑚′ ] are valid shares of the conceptual secret key 𝑠0, note

that for any 𝑡 ′-subset 𝐽 ⊆ [𝑚′], we have

L𝐽
(
{𝑠 ′𝑗 } 𝑗 ∈𝐽

)
=L𝐽

({
L𝐼

({
𝑠𝑖, 𝑗

}
𝑖∈𝐼

) }
𝑗 ∈𝐽

)
=L𝐼

({
L𝐽

({
𝑠𝑖, 𝑗

}
𝑗 ∈𝐽

) }
𝑖∈𝐼

)
=L𝐼 ({𝑠𝑖 }𝑖∈𝐼 ) = 𝑠0 .

All parties can also compute the new public key 𝑆 ′
𝑘
for 𝑘 ∈ [0, 𝑡 ′−1]

as a power product of {𝑆𝑖,𝑘 }𝑖∈𝐼 with coefficients given by L𝐼 . The
well-formedness of 𝑠 ′

𝑗
can then be publicly verified using the new

public keys 𝑆 ′
0
, . . . , 𝑆 ′

𝑡 ′−1
.

B.4 Cold Storage
One of the applications of (𝑡,𝑚)-PHE concerns cold storage: The

server operator spawns a number of additional rate-limiters which

suffices to perform decryption, and stores their keys offline. In case

of irresponsive rate-limiters, the server operator can always recover

its data. If these keys are well-protected (e.g., physically) this does
not reduce the security of the deployed system.

The non-interactive nature of our key-rotation protocol helps

with this use-case. As long as key-rotations happen infrequently,

it is possible to store (a sequence of) key-rotation materials for

each rate-limiters in cold-storage along with the rate-limiter keys.

Once needed these materials can the be recombined to restore an

up-to-date set of rate-limiter keys.

B.5 On Round Complexity
The round complexity of (𝑡,𝑚)-PHE is critical as network latency

is the main efficiency bottleneck. A theoretical way to reduce the

round complexity is to use a round-optimal MPC to emulate a

PHE scheme. In our communication model where the rate-limiters

are not allowed to communicate, this approach leads to a 3-round

(resp. 4-round) decryption protocol with fine-grained (resp. coarse-

grained) rate-limiting. For practical purposes,however,using general-

purpose round-optimal MPC protocols are highly inefficient for

group operations which are extensively used in PHE. From a more

foundational perspective, such an approach would require evaluat-

ing hash functions which are modeled as random oracles over an

MPC. This makes the scheme regrettably unprovable from standard

assumptions, even in the random oracle model.

While we strongly believe that reducing the round-complexity

(and thereby the latency) of (𝑡,𝑚)-PHE is of considerable practical

interest, we believe that the improved efficiency and security guar-

antees make the special-purpose protocol presented in this paper

the more desirable variant.

B.6 Non-Interactive Rotation
The key-rotation protocol in our construction is a non-interactive

protocol initiated by the server. This is useful in practice as it means

that not all rate-limiters need to be reachable to execute the key-

rotation protocol. Instead, the server can initiate key-rotation ahead

of time, and cache themessages supposed to be sent the rate-limiters

until they become available. It is even possible to queue several

key-rotations while a rate-limiter is unavailable (e.g., due to main-

tenance) and later apply all the changes in one shot.

We emphasize that leaking the key-rotation materials will defeat

the self-healing properties of key-rotation. An adversarywho learns

this information can construct the new (resp. old) keys associated

with this key-rotation material if it also has knowledge of the old

(resp. new) keys. Therefore caching the key-rotation materials has

to be based on a balanced decision in practical deployments.

C ON FULL-ADAPTIVE HIDING
In this section we outline the impossibility of proving the construc-

tion in Section 3 fully-adaptively hiding via a reduction from any

reasonable computational assumptions, with a mild assumption on

the reduction. We also give evidence suggesting that an efficient

and fully-adaptive solution seems unlikely to exist.

C.1 Impossibility Result
We show that if there exists a PPT reduction R from the problem of

deciding any NP language L to the full-adaptive hiding property

of the construction in Section 3, then L is PPT decidable, with a

mild assumption that the reduction simulates the environment of

the hiding experiment to any PPT adversaryA with non-negligible

probability.
8
The latter essentially says that the reduction should

not rely on the unpredictable behavior of the adversary when the

simulation is not faithful, which holds virtually for all known re-

ductions in cryptography. The impossibility holds even if we do

not allow the adversary to make key-rotation queries.

The impossibility can be shown by constructing a PPT meta-

reductionM which decides the language L when given non-black-

box access to thePPT reductionR, if itwere to exist. Themain idea is

to exploit the property of the secret keys sk𝑖 = (𝑠𝑖 , 𝑘𝑖 , 𝐾0, {𝑆 𝑗 , 𝐾𝑗 }𝑡−1

𝑗=0
)

8
More precisely, we require that for any statement 𝑥 and any PPT algorithm A, the

probability of A failing to distinguish whether it is interacting with R(𝑥) or Hid𝑏
for some 𝑏 ∈ {0, 1} is non-negligible.
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that {𝑆 𝑗 }𝑡−1

𝑗=0
is fixed for all keys and acts as a perfectly binding com-

mitment to the “logical” secret keys {𝑠 𝑗 }𝑡−1

𝑗=0
. In the following, we

assume that PW is a password space with 0 < |PW| = poly (𝜆 ).
This assumption can be made without loss of generality since, if the

construction in Section 3 is adaptively hiding, there should exist a

reduction R for this particular password space PW.

To decide if 𝑥 ∈ L,M runs R on 𝑥 while playing the role of the

adversary A, who interacts with R(𝑥).M first instructs A to cor-

rupt the server, and receives a secret key sk
0
= (𝑠0, 𝑘0, 𝐾0, {𝑆 𝑗 , 𝐾𝑗 }𝑡−1

𝑗=0
).

M then forks R into two parallel instances. In the 𝛽-th instance,

M samples a random (𝑡 − 1)-subset 𝐼𝛽 of [𝑚], instructs A to cor-

rupt the subset 𝐼𝛽 of rate limiters, and receives sk𝑖 for 𝑖 ∈ 𝐼𝛽 . With

non-negligible probability, we have 𝐼0 ≠ 𝐼1, and hence |𝐼0 ∪ 𝐼1 | ≥ 𝑡 .
With the assumption that R simulates the hiding experiment faith-

fully with non-negligible probability, we have 𝐺𝑠𝑖 =
∏𝑡−1

𝑗=0
𝑆𝑖

𝑗

𝑗
for

all 𝑖 ∈ 𝐼𝛽 and for all 𝛽 ∈ {0, 1} with non-negligible probability,

for otherwise we can construct a distinguisher which only fails to

distinguish R(𝑥) from Hid𝑏 with negligible probability.

Using Gaussian elimination, we can extract 𝑠0 such that 𝑆0 = 𝐺𝑠0
.

Next,M instructs A to query the challenge oracle (say in the

first instance) on (𝑀∗
0
, 𝑀∗

1
, ∅, ∅) for some random messages𝑀∗

0
and

𝑀∗
1
, and receives 𝑛∗ and 𝐶∗. Suppose the simulation is faithful,

which we assume to happen with non-negligible probability, then

SKE.Dec(𝑠0,𝐶∗) is of the form
(𝐶∗

0
,𝐶∗

1
) = (𝐻0 (pw∗, 𝑛∗) · 𝐻0 (𝑛∗)𝑠0 , 𝐻1 (pw∗, 𝑛∗) · 𝐻1 (𝑛∗)𝑠0 ·𝑀∗

𝑏
)

for some password pw∗ ∈ PW and𝑏 ∈ {0, 1} . Using the knowledge
of 𝑠0,M can obtain 𝐻0 (pw∗, 𝑛∗) from 𝐶∗

0
. Then, using brute-force,

M finds pw† ∈ PW such that 𝐻0 (pw†, 𝑛∗) = 𝐻0 (pw∗, 𝑛∗). Since
|PW| = poly (𝜆 ), this can be done in polynomial time. Since 𝐻0 is

modeled as a random oracle, it holds that pw† = pw∗ except with

negligible probability.M can then obtain𝑀∗
𝑏
, and hence 𝑏, from𝐶∗

1

and pw∗. SinceM correctly guesses 𝑏 with non-negligible proba-

bility, without querying the decryption oracle even once, R should

be able to decide whether 𝑥 ∈ L with non-negligible probability,

so doesM. This however means that L is PPT decidable (byMR ).

C.2 Implausibility of Efficient Construction
The meta-reduction exploits the perfectly binding property of the

commitments that are part of a secret key and prevents the reduction

from generating fresh secret keys once parties get corrupted. This

particular issue can be fixed by replacing the perfectly binding

commitments (e.g.,𝐺𝑠 𝑗 ) with perfectly hiding commitments: Instead

of 𝐺𝑠 𝑗 we have Com(𝑠 𝑗 ; 𝑟 𝑗 ) for some commitment scheme Com,

and instead of 𝑠𝑖 we have (𝑠𝑖 , 𝑟𝑖 ) where 𝑟𝑖 is the randomness of the

commitment to 𝑠𝑖 .

However there are other similar issues, e.g., in the encryption

protocol, (𝑌𝑖,0, 𝑌𝑖,1) is a perfectly binding commitment of 𝑠𝑖 . This

does not seem to be easily fixable using the above trick: Abstractly

speaking, the above trick introduces one degree of freedom by

increasing the key length by 1 (there is only one commitment to 𝑠 𝑗
generated as part of the setup). To fix the problem in the encryption

protocol, however, we would need to increase the key length by

𝑄Enc, where𝑄Enc is the total number of encryption queries as each

encryption query commits independently to the secret key which

makes this solution clearly impractical.

In general, this seems to be related to the problem of constructing

a kind of non-committing encryption, where a ciphertext is non-

committing to the secret key. Virtually the only way we know how

to build practical (non-interactive) non-committing encryption is to

break the algebraic structure of the ciphertext using a random oracle.

However, such a technique seems incompatible with (t-)PHE since

the algebraic structure is crucial for thresholding and key-rotation.
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