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Abstract

A natural solution to increase the efficiency of secure computation will be to non-interactively
and securely transform diverse inexpensive-to-generate correlated randomness, like, joint sam-
ples from noise sources, into correlations useful for the secure computation while incurring low
computational overhead. Motivated by this general application for secure computation, our
work introduces the notion of secure non-interactive simulation (SNIS). Parties receive samples
of correlated randomness, and they, without any interaction, securely convert them into sam-
ples from another correlated randomness. SNIS is an extension of non-interactive simulation
of joint distributions (NIS), and non-interactive correlation distillation (NICD) to the crypto-
graphic context. It is a non-interactive version of one-way secure computation (OWSC). Our
work presents a simulation-based security definition for SNIS and initiates the study of the
feasibility and efficiency of SNIS.

We also study SNIS among fundamental correlated randomnesses like random samples from
the binary symmetric and binary erasure channels, represented by BSS and BES, respectively.
The impossibility of realizing a BES sample from BSS samples in NIS and OWSC extends to
SNIS. Additionally, we prove that a SNIS of BSS sample from BES samples is impossible, which
remains an open problem in NIS and OWSC.

Next, we prove that a SNIS of a BES(ε′) sample (a BES with noise characteristic ε′) from
BES(ε) is feasible if and only if (1 − ε′) = (1 − ε)k, for some k ∈ N. In this context, we prove
that all SNIS constructions must be linear. Furthermore, if (1− ε′) = (1− ε)k, then the rate of
simulating multiple independent BES(ε′) samples is at most 1/k, which is also achievable using
(block) linear constructions.

Finally, we show that a SNIS of a BSS(ε′) sample from BSS(ε) samples is feasible if and only
if (1−2ε′) = (1−2ε)k, for some k ∈ N. Interestingly, there are linear as well as non-linear SNIS
constructions. When (1−2ε′) = (1−2ε)k, we prove that the rate of a perfectly secure SNIS is at
most 1/k, which is achievable using linear and non-linear constructions. Our results leave open
the fascinating problem of determining the rate of statistically secure SNIS among BSS samples.

Our technical approach algebraizes the definition of SNIS and proceeds via Fourier analysis.
Our work develops general analysis methodologies for Boolean functions, explicitly incorporating
cryptographic security constraints. Our work also proves strong forms of statistical-to-perfect
security transformations: one can error-correct a statistically secure SNIS to make it perfectly
secure. We show a connection of our research with homogeneous Boolean functions and distance-
invariant codes, which may be of independent interest.
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1 Introduction

Secure multi-party computation [57, 27] (MPC) allows mutually distrusting parties to compute
securely over their private data. MPC protocols often offload most cryptographically and compu-
tationally intensive components to an offline procedure [38, 6, 18, 44]. The objective of this offline
procedure is to output secure samples from highly structured correlated randomness, for example,
Beaver triples [4]. The offline procedure relies on public-key cryptography to achieve this objective
and, consequently, is computation and communication intensive.

On the other hand, there are diverse inexpensive-to-generate correlated randomness, like, joint
samples from noise sources, that can also facilitate secure computation via interactive protocols [32].
A natural approach to increase the efficiency of this offline phase will be to non-interactively and
securely transform such correlated randomness into correlations useful for secure computation while
incurring low computational overhead. Motivated by this general application for secure computa-
tion, our work introduces the notion of secure non-interactive simulation (SNIS).

In SNIS, parties receive samples of correlated randomness, and they, without any interaction,
securely convert them into samples from another correlated randomness. Section 1.1 defines this
cryptographic primitive. SNIS is an information-theoretic analog of pseudorandom correlation gen-
erators (PCG) introduced by Boyle et al. [9, 10]. PCG is a silent local computation that transforms
the input correlated private randomness into samples from a target correlation without any in-
teraction. Boyle et al. [9, 10] construct this primitive based on various hardness of computation
assumptions and illustrate their applications to increasing the efficiency of the preprocessing step
of MPC protocols. SNIS shall convert diverse forms of correlated randomness sources into sam-
ples of a specific target correlation that is useful for the online phase of an MPC protocol with
information-theoretic security.

SNIS is an extension of non-interactive simulation of joint distribution [22, 55, 53, 30, 31, 26,
19, 25] (NIS) and non-interactive correlation distillation [41, 40, 56, 7, 14] (NICD) from information
theory. In NIS, the emphasis is on the correctness of simulation, and cryptographic security is
not a concern. Consequently, erasing information from parties’ views, for example, is permissible
in NIS, which may not be cryptographically secure. NICD specifically aims to establish shared
keys securely; however, shared keys alone do not suffice for general secure computation [24, 36, 37].
The objective of SNIS extends to securely simulating more general correlated randomness as well,
referred to as the complete correlations [32], which are necessary for general secure computation.
One can also interpret SNIS as the non-interactive version of one-way secure computation [23, 1]
(OWSC) – secure computations where only one party sends messages.

Our work presents a simulation-based security definition for SNIS and initiates the study of
the feasibility and efficiency of SNIS. Any hardness of computation results from NIS and OWSC
automatically transfer to SNIS. This work initiates the study of tight feasibility and rate character-
ization in SNIS and considers the inter-conversion among fundamental correlated randomnesses like
random samples from the binary symmetric and binary erasure channels. In this context, our work
reveals strong forms of statistical-to-perfect security transformations where one can error-correct
a statistically secure SNIS (with sufficiently small insecurity) to transform it into a perfect SNIS.
In particular, there is a dichotomy: either (1) a perfect SNIS exists, or (2) every SNIS is constant
insecure. For example, there are perfect rate-achieving SNIS; however, surpassing the maximum
rate by how-so-ever small quantity immediately incurs constant-insecurity.

Our technical approach algebraizes the definition of SNIS and proceeds via Fourier analysis. A
central contribution of our work is the development of general analysis methodologies for Boolean
functions that explicitly incorporate the cryptographic security constraints. Our research uncovers
fascinating new connections of SNIS with homogeneous Boolean functions and distance-invariant
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(xn, yn)
$←− (X,Y )⊗n
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xn

U⊗m 3 u′ = fn(xn, rA)

rA
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v′ = gn(yn, rB) ∈ V⊗m

rB
$←− RB

Figure 1: Model for secure non-interactive simulation: SNIS.

codes, which may be of independent interest (refer to Section 2.6).
Paper organization. Section 1.1 presents the SNIS model. Section 2 summarizes our contribu-

tions, connections to other research areas (Section 2.6), open problems & conjectures (Section 2.7),
and differences from previous versions of this paper (Section 2.8). All our results consider SNIS
with randomized reductions and statistical security (except Theorem 6, which considers only perfect
security). Section 3 introduces the technical background for our proofs. Section 6, Section 7, and
Section 8 present the technical outline and details of our proofs. The supporting materials contain
the missing details.

1.1 Definition: Secure Non-Interactive Simulation

Let (X,Y ) be a joint distribution over the sample space (X ,Y), and (U, V ) be a joint distribution
over the sample space (U ,V).1 The intuitive definition of secure non-interactive simulation of
joint distributions (SNIS) closely follows the presentation in Figure 1 (with parameter m = 1).
Sample (xn, yn)

$←− (X,Y )⊗n, i.e., draw n independent samples from the distribution (X,Y ). Alice
gets xn ∈ X n, and Bob gets yn ∈ Yn. Alice has private randomness rA

$←− RA and Bob has,
independent, private randomness rB

$←− RB, where RA, RB are random variables over the sample
spacesRA andRB, respectively. Suppose fn : X n×RA → U and gn : Yn×RB → V are the (possibly
randomized) reduction functions for Alice and Bob, respectively. Alice computes u′ = fn(xn, rA)
and Bob computes v′ = gn(yn, rB).

For the ease of presentation, this section only considers deterministic reduction functions, i.e.,
there is no RA and RB. All formal definitions and results in this work consider randomized reduc-
tions. Section 3.4 presents the formal simulation-based definition for SNIS.

We say that (U, V ) reduces to (X,Y )⊗n via reduction functions fn, gn with insecurity ν(n)2

(represented by, (U, V ) vν(n)
fn,gn

(X,Y )⊗n) if the following three conditions are satisfied.

1. Correctness. The distribution of the samples (u′, v′) is ν(n)-close to the distribution (U, V ) in
the statistical distance.

2. Security against corrupt Alice. Consider any (u, v) in the support of the distribution (U, V ). The
distribution of xn, conditioned on u′ = u and v′ = v, is ν(n)-close to being independent of v.3

1As is typical in this line of work in cryptography and information theory, the joint distributions (U, V ) and (X,Y )
assign probabilities to samples that are either 0 or at least a positive constant.

2In this paper, we consider ν(n) to be constant or any o(1).
3The joint distribution (A|B = b) is ν-close to being independent of b if there exists a distribution A∗ such that

(A|B = b) is ν-close to A∗ in the statistical distance, for all b ∈ Supp(B).
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3. Security against corrupt Bob. Consider any (u, v) in the support of the distribution (U, V ).
The distribution of yn, conditioned on the fact that u′ = u and v′ = v, is ν(n)-close to being
independent of u.

To discuss rate, consider SNIS of the form (U, V )⊗m(n) vν(n)
fn,gn

(X,Y )⊗n. Here, the reduction
functions outputm(n)-independent samples from the distribution (U, V ). Fixing (X,Y ) and (U, V ),
our objective is to characterize the maximum achievable production rate m(n)/n over all possible
reductions (a standard single-letter characterization). Finally, R( (U, V ), (X,Y ) ) represents the
maximum achievable m(n)/n, as n→∞, when considering all SNIS of (U, V ) from (X,Y ).

When n is clear from the context, then, instead of xn and fn, we shall only write x and f for
brevity.

Remark 1 (Adversarial model). Since we consider non-interactive protocols without private in-
puts, semi-honest and malicious security (with abort) are equivalent. So, for the simplicity, the
presentation considers (statistical) security against semi-honest adversaries, that is, parties follow
the protocol but are curious to find more information.

Remark 2 (Reasoning for providing private coins). In the cryptographic context, complete joint
distributions [32] (X,Y ) are the primary resources that one uses frugally. So, to define the rate with
respect to the cryptographically expensive resource (namely, samples from the distribution (X,Y )⊗n),
our definition of SNIS considers randomized reductions and provides private independent random
coins as a free resource. If private coins are not free, they can be incorporated into the setup by
considering the input joint distribution to be (X,Y )⊗n ⊗ Coins.

2 Our Contribution

Rabin and Crépeau [49, 50, 15] and Crépeau and Kilian [16, 17], respectively, proved that erasure
and binary symmetric channels suffice for general secure computation. These elegant sources of
noise provide an uncluttered access to abstracting the primary hurdles in achieving security. In a
similar vein, to initiate the study of the feasibility and rate of SNIS, this paper considers samples
from the following two families of distributions.

1. Binary symmetric source. X and Y are uniformly random bits {+1,−1} such that X 6= Y with
probability ε ∈ (0, 1/2). We represent this joint distribution by BSS(ε).

2. Binary erasure source. X is a uniformly random bit {+1,−1}, and Y = X with probability
(1− ε), where ε ∈ (0, 1); otherwise, Y = 0. We represent this joint distribution by BES(ε).

Comparison models. In information theory, non-interactive simulation of joint distributions
(NIS) is a similar notion of simulating joint distributions [22, 55, 53, 30, 31, 26, 19, 25]. However,
NIS only considers correctness (not security). On the other hand, there is also research on performing
secure computation using one-way messages, a.k.a., one-way secure computation (OWSC) [23, 1] –
only one party sends messages to the other party. Table 1 compares our feasibility results to results
in NIS and OWSC.

Remark 3. Non-interactive correlation distillation [41, 40, 56, 7, 14] is a special case of SNIS
where (U, V ) is restricted to shared coin, i.e., BSS(0) or BES(0) samples. This model has strong
impossibility results and comparison with this model is not particularly insightful.
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Figure 2: Binary Symmetric Source (BSS) and Binary Erasure Source (BES) with noise characteristic
ε.

2.1 SNIS Composition and Projection

Section 3.4 provides the simulation-based definition of SNIS and proves the following composition
and projection results, where the reduction functions may be randomized (the main difference is
that the simulation-based definition requires an efficient simulator, while the game-based definition
does not).

1. Parallel Composition (Theorem 13). Let P, P ′, Q, and Q′ be joint distributions. If ν-SNIS of P
from Q and ν ′-SNIS of P ′ from Q′ exist, then a (ν+ν ′)-SNIS of (P‖P ′) from (Q‖Q′) exists. The
distribution (P‖P ′) generates samples from both the joint distributions P and P ′, and (Q‖Q′)
generates samples from both the joint distributions Q and Q′.

2. Sequential Composition (Theorem 14). Let P,Q, and R be joint distributions. If ν-SNIS of P
from Q and ν ′-SNIS of Q from R exist, then a (ν + ν ′)-SNIS of P from R exists.

3. Projection (Theorem 15). Let P,Q, and R be joint distributions. If a ν-SNIS of (P‖Q) from R
exists, then a ν-SNIS of P from R also exists.

These composition and projection theorems shall assist in proving our feasibility and rate results.

2.2 Derandomization

There are a few flavors of derandomization results (for reductions) that are useful for different
contexts like feasibility/rate results with perfect/statistical security.

For feasibility results. Let (X,Y ) be a joint distribution such that the distribution (X|Y ) has
average conditional min-entropy [21]. Then, Alice can extract (statistically) secure coins from a
sufficiently large number of (X,Y ) samples.4 Analogously, if (Y |X) has average conditional min-
entropy, then Bob can also construct statistically secure coins using other (X,Y ) samples. Complete
joint distributions [32] (X,Y ) have both these average conditional min-entropy properties.5 Conse-

4Alice can perform a random walk on an appropriate expander graph using her samples to get one random bit
that is statistically secure conditioned on Bob’s samples.

5A joint distribution (X,Y ) is complete if there exists samples x0, x1 ∈ Supp(X) and y0, y1 ∈ Supp(Y ) such that
1. Pr[X = x0, Y = y0],Pr[X = x1, Y = y0],Pr[X = x1, Y = y1] > 0, and
2. Pr[X = x0, Y = y0] · Pr[X = x1, Y = y1] 6= Pr[X = x0, Y = y1] · Pr[X = x1, Y = y0].

Multiple samples of a complete distributions can be used to (interactively) implement oblivious transfer [32], the
atomic primitive for secure computation. The joint distribution BES(ε), for ε ∈ (0, 1), and BSS(ε), for ε ∈ (0, 1/2),
are complete distributions. However, BSS(0) = BES(0), BES(1), and BSS(1/2) are not complete distributions.
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quently, the following result is immediate.

Proposition 1 (Derandomization: Feasibility results). Let (X,Y ) be a complete joint distribution.
Consider a randomized SNIS (U, V ) vνf,g (X,Y )⊗n with nA and nB Alice and Bob private random-
ness complexities, respectively. Then, there exists a deterministic SNIS (U, V ) vν′f ′,g′ (X,Y )⊗n

′ such
that (for large-enough k ∈ N)

n′ = k · nA + k · nB + n, and
ν ′ = (nA + nB) · exp(−Θ(k)) + ν.

The reduction function f ′ uses the first knA samples to extract nA private bits for Alice, each
with exp(−Θ(k)) statistical security. The reduction function g′ uses the next knB samples to extract
nB private bits for Bob. Finally, the reduction functions (f ′, g′) restricted to the last n samples
are identical to (f, g). This proposition effectively rules out the usefulness of independent private
randomness in SNIS for feasibility results.

For rate results with perfect security. To study rate of SNIS, one needs a sample-preserving
derandomization6. However, in the context of perfect security, such a result is immediate for com-
plete joint distribution (U, V ). Intuitively, one can fix Alice’s local randomness to an arbitrary
value, and Bob’s local randomness to an arbitrary value. Then, the reduction functions (with these
fixed random tapes) continue to be a perfectly secure SNIS.

Proposition 2 (Derandomization: Sample-preserving & Perfect security). Let (U, V ) be a complete
joint distribution. For any randomized SNIS (U, V ) v0

f,g (X,Y )⊗n, there is a deterministic SNIS
(U, V ) v0

f ′,g′ (X,Y )⊗n.

The deterministic reduction functions f ′, g′ are the randomized reductions f, g with their random
tapes arbitrarily fixed.

For rate results with statistical security. For a statistical SNIS, we prove a sample-preserving
derandomization result of the following form.

Theorem 1 (Derandomization: Sample-preserving & Statistical security). Fix (X,Y ) and a com-
plete joint distribution (U, V ). There is a positive constant c such that the following holds. Con-
sider a randomized SNIS (U, V ) vνf,g (X,Y )⊗n. Then, there is a deterministic SNIS (U, V ) vν′f ′,g′
(X,Y )⊗n such that (a) ν ′ = c ·ν1/4, (b) the reduction function f is ν ′-close to the reduction function
f ′, and (c) the reduction function g is ν ′-close to the reduction function g′.

Appendix 9.2 proves this theorem. This theorem also yields Proposition 2 as a corollary.
The closeness of a randomized and a deterministic function is defined as follows. The function

f , for example, has domain X n×RA. Extend the domain of the deterministic function f ′ from X n
to X n × RA. The two functions are ν ′-close if their outputs differ for (at most) ν ′ fraction of the
inputs.

The constant c in the theorem depends on the joint distributions (X,Y ) and (U, V ); however,
it is independent of n. So, one can, for example, meaningfully derandomize the statistically secure
SNIS BES(ε′)⊗2 vν BES(ε)⊗n by considering (U, V ) = BES(ε′)⊗2 and (X,Y ) = BES(ε). However, it
may not be possible to meaningfully derandomize the statistically secure SNIS BES(ε′)⊗m(n) vν(n)

6Sample-preserving derandomization means replacing the randomized reduction functions with deterministic ones
that use the same number of samples with comparable insecurity.
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Input Joint Output Joint Feasible set of ε′

Distribution Distribution OWSC [23] SNIS (Our Work) NIS [58]

BES(ε)
BES(ε′) (0, 1)

{
1− (1− ε)k : k ∈ N

}
[ε, 1)

BSS(ε′) ⊇ ∅ ∅ ⊇ [ε/2, 1/2)

⊆
[
1−
√
1−ε

2
, 1/2

)
BSS(ε)

BES(ε′) ∅ ∅ ∅
BSS(ε′) ⊇

{
1−(1−2ε)k

2
: k ∈ N

} {
1−(1−2ε)k

2
: k ∈ N

}
[ε, 1/2)

Table 1: Comparison of feasible parameters for OWSC, SNIS, and NIS involving reductions between
BES and BSS families. A “⊇ S” entry indicates that the feasible set is a superset of the set S.
Therefore, a “⊇ ∅” entry indicates that no characterization of the feasible set is known. Similarly,
a “⊆ S” entry indicates that the feasible set is a subset of the set S.

BES(ε)⊗n by considering (U, V ) = BES(ε′)⊗m(n) and (X,Y ) = BES(ε). Because the value of c
depends on n (via its dependence on m(n)), and the resulting insecurity bound c · ν(n)1/4 may be
meaningless (it may be greater than one). This discussion highlights a subtlety in proving the rate
result in Theorem 4.

2.3 BSS from BES Samples

It is impossible to have a SNIS of BES(ε′) from any number of BSS(ε) samples, for any n ∈ N,
ε ∈ (0, 1/2), and ε′ ∈ (0, 1), because this reduction is already impossible in NIS and OWSC.
Reverse-hypercontractivity [2, 8, 41, 42, 31, 19, 5, 40] is a typical technical tool in NIS to show such
impossibility results. Consider the feasibility of (U, V ) v BSS(ε)⊗n. Reverse-hypercontractivity
states that if there are two samples u and v such that Pr[U = u] > 0 and Pr[V = v] > 0, then
Pr[U = u, V = v] > 0 (refer to [31] for more details and examples). Therefore, for example, correctly
constructing BES samples and random oblivious transfer samples are impossible, let alone securely.

The following result considers the reverse direction.

Theorem 2 (Infeasibility: BSS from BES). Fix noise parameters ε ∈ (0, 1) and ε′ ∈ (0, 1/2). There
is a positive constant c = c(ε, ε′) such that BSS(ε′) vν BES(ε)⊗n, for any n ∈ N, implies that ν > c.

Section 6 proves this theorem. This impossibility result remains open in NIS and OWSC.
However, using the properties of security, we even rule out SNIS that are constant-insecure. In
particular, one cannot use a larger number of BES(ε) samples to arbitrarily reduce the insecurity.

2.4 BES from BES Samples

Next, we consider the inter-conversion among binary erasure sources with different erasure prob-
abilities. At the outset, let us begin with an example of perfectly secure SNIS of BES(ε′) from
BES(ε)⊗k, where (1− ε′) = (1− ε)k for some k ∈ N. Alice’s reduction function f : {±1}k → {±1} is
defined by f(x) = x1 · x2· · ·xk, a linear function. Bob’s reduction function g : {±1, 0}k → {±1, 0}
is defined by g(y) = y1 · y2· · · yk. Observe that g(y) = 0 if and only if there is i ∈ {1, . . . , k} such
that yi = 0. Such reductions (or their negations) shall be referred to as k-linear functions. One can
verify that this reduction is a perfect SNIS.

Feasibility. We prove that, essentially, k-linear functions are the only reductions possible among
BES samples.

Theorem 3 (Feasibility: BES from BES). Fix erasure probabilities ε, ε′ ∈ (0, 1).

8



1. If (1− ε′) 6= (1− ε)k, for all k ∈ N: There is a positive constant c = c(ε, ε′) such that BES(ε′) vν
BES(ε)⊗n, for any n ∈ N, implies that ν > c.

2. If (1− ε′) = (1− ε)k, for some k ∈ N: There are positive constants c = c(ε, ε′) and d = d(ε, ε′)
such that the following result holds. If BES(ε′) vνf,g BES(ε)⊗n, for any n ∈ N, and ν 6 c, then
f is νd-close to a reduction function f∗, and g is νd-close to a reduction function g∗ such that
BES(ε′) v0

f∗,g∗ BES(ε)⊗n. Furthermore, f∗ is a k-linear function.

We remark that the “νΘ(1)-closeness” in the theorem above can be replaced by “Θ(
√
ν)-closeness;”

however, we forego this optimization as it does not change the qualitative nature of our results. This
theorem intuitively states the following.

1. If (1 − ε′) 6∈
{

(1− ε), (1− ε)2, (1− ε)3, . . .
}
, then any SNIS of BES(ε′) from BES(ε) must be

constant-insecure.

2. If (1 − ε′) = (1 − ε)k and reduction functions f, g implement a SNIS of BES(ε′) from BES(ε)
with sufficient small insecurity, then the reduction functions f and g can be error-corrected (at
at most νd-fraction of its inputs) to create reduction functions f∗, g∗, respectively, such that
the new SNIS is a perfectly secure. Furthermore, the function f∗(x) = ±xi1 · xi2 · · ·xik , for
distinct i1, i2, . . . , ik ∈ {1, . . . , n}. This result, intuitively, is a strong form of statistical-to-perfect
transformation: reductions implementing SNIS with sufficiently small insecurity can be error-
corrected into perfectly secure SNIS reductions. Furthermore, the lower the insecurity, the lesser
amount of error-correction shall be needed.

In the context of OWSC, one can achieve erasure probability ε′ that is either lower or higher
than the erasure probability ε. For SNIS, however, we show that ε′ > ε is necessary. Interestingly,
our linear SNIS construction is identical in spirit to the OWSC protocol, as presented in [23] when
(1− ε′) ∈ {(1− ε), (1− ε)2, . . . .}. However, all other values of ε′ are feasible only for OWSC [23];
not for SNIS.

Typically, NIS literature’s impossibility results rely on leveraging the reverse hypercontractivity
theorem [30, 31, 43]. However, this approach encounters a significant hurdle for samples from the
binary erasure channel [30]. The addition of the security constraint in our setting helps overcome
this hurdle.

Rate of Statistical SNIS. Observe that if (1 − ε′) = (1 − ε)k, for k ∈ N, then a block-linear7

reduction achieves 1/k-rate via a perfectly secure SNIS. Our rate result states that these reductions
are, essentially, the only rate-achieving constructions. For rate results, we consider (possibly, ran-
domized) reduction functions ~f : {±1}n → {±1}m and ~g : {±1, 0}n → {±1, 0}m. We interpret these
reductions as the concatenation of m reductions. For example, ~f =

(
f (1), f (2), . . . , f (m)

)
such that

f (i) : {±1}n → {±1}, for each i ∈ {1, 2, . . . ,m}. We refer to the function f (i) as the i-th component
of ~f .

Theorem 4 (Rate: BES from BES). Let ε, ε′ ∈ (0, 1) be erasure probabilities such that (1 − ε′) =
(1 − ε)k, for some k ∈ N. There are positive constants c = c(ε, ε′) and d = d(ε, ε′) such that the
following result holds. Suppose BES(ε′)⊗m vν~f,~g BES(ε)⊗n, for some m,n ∈ N, and ν 6 c. Then,

there are deterministic reduction functions ~f∗ and ~g∗ such that the following conditions are satisfied.
7A block-linear reduction function partitions the string of input samples into separate blocks of the same length

and applies a linear function on each block.
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1. f (i) is νd-close to f∗(i), for i ∈ {1, . . . ,m},

2. g(i) is νd-close to g∗(i), for i ∈ {1, . . . ,m},

3. Each f∗(i) is k-linear with disjoint support, for i ∈ {1, . . . ,m}, and

4. mk 6 n, i.e., R(BES(ε′),BES(ε)) 6 1/k.

A block-linear construction achieves the rate as well. We emphasize that the reductions ~f and
~g are possibly randomized. Note that this theorem does not claim that the reduction function ~f is
close to ~f∗.

Section 7 outlines the proof of Theorem 3 and Theorem 4.

2.5 BSS from BSS Samples

Finally, we consider the inter-conversion among binary symmetric samples with different noise
characteristics. Observe that if (1− 2ε′) = (1− 2ε)k, for some k ∈ N, then the following reduction
functions f, g : {±1}k → {±1} implement a perfectly secure SNIS of BSS(ε′) from BSS(ε)⊗k: f(x) =
x1 · x2· · ·xk and g(y) = y1 · y2· · · yk. One can verify that this is a perfectly secure SNIS. However,
surprisingly, unlike BES inter-conversions, linear functions are not the only secure reductions in BSS

inter-conversions. For k > 2, consider the following non-linear reductions f (1)
2k , g

(1)
2k : {±1}2k → {±1},

g
(1)
2k = f

(1)
2k , and f (1)

2k is defined below.

f
(1)
2k (x) =

{
x1 · xk+2 · xk+3· · ·x2k, if x1 = x2

x1 · x3 · x4· · ·xk+1, if x1 6= x2.

The algebraized version of f (1)
2k is

f
(1)
2k (x) =

(x1 − x2) · x3 · x4· · ·xk+1 + (x1 + x2) · xk+2 · xk+3· · ·x2k

2
.

In fact, any k-homogeneous (refer to Section 3.1 to see the definition of k-homogeneous) Boolean
reduction function f and g = f define a perfectly secure SNIS.

Although these non-linear constructions individually have worse efficiency than the linear con-
structions, they can achieve rate 1/k, similar to the block-linear constructions. For example, consider
another pair of reductions f (2)

2k , g
(2)
2k : {±1}2k → {±1}, g(2)

2k = f
(2)
2k , and f (2)

2k is defined below.

f
(2)
2k (x) =

{
−x1 · x3 · x4· · ·xk+1, if x1 = x2

x1 · xk+2 · xk+3· · ·x2k, if x1 6= x2.

That is,

f
(2)
2k (x) =

(x1 − x2) · xk+2 · xk+3· · ·x2k − (x1 + x2) · x3 · x4· · ·xk+1

2
.

Now, interestingly, the two reductions f (1)
2k ‖f

(2)
2k and g

(1)
2k ‖g

(2)
2k realize BSS(ε′)⊗2 v0 BSS(ε)⊗2k at

rate 1/k.
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Feasibility. With this discussion as background, we mention our feasibility result.

Theorem 5 (Feasibility: BSS from BSS). Fix noise characteristics ε, ε′ ∈ (0, 1/2).

1. If (1 − 2ε′) 6= (1 − 2ε)k, for all k ∈ N: There is a positive constant c = c(ε, ε′) such that
BSS(ε′) vν BSS(ε)⊗n, for any n ∈ N, implies that ν > c.

2. If (1−2ε′) = (1−2ε)k, for some k ∈ N: There are positive constants c = c(ε, ε′) and d = d(ε, ε′)
such that the following result holds. If BSS(ε′) vνf,g BSS(ε)⊗n, for any n ∈ N, and ν 6 c, then
f is νd-close to a reduction function f∗ and g is νd-close to a reduction function g∗ such that
BSS(ε′) v0

f∗,g∗ BSS(ε)⊗n. Furthermore, f∗ = g∗ is a k-homogeneous Boolean function.

Similar to the theorem for binary erasure sources, this theorem also states a strong form of a
statistical-to-perfect transformation. In the binary symmetric source case, the perfect reduction
need not be a linear function; it may be a k-homogeneous Boolean function. Incidentally, as a
consequence of the Kindler-Safra junta theorem [33, 34] (refer to Imported Theorem 1), the k-
homogeneous Boolean functions implicitly are also juntas. This junta property shall be crucial in
our proofs to show that the simulation error cannot be driven arbitrarily low by using larger number
of input samples.

Note that one cannot increase the reliability of the binary symmetric source, which is identical
to the result in [23]. However, unlike [23], we also rule out the possibility of secure non-interactive
simulation for any (1− 2ε′) 6∈

{
(1− 2ε), (1− 2ε)2, . . .

}
. For such ε′, any non-interactive simulation

is constant-insecure.

Rate for Perfect SNIS. Unlike the rate result for BES samples, we only prove a rate result for
perfectly secure SNIS for BSS samples. We leave the rate result for statistically-secure SNIS as a
fascinating open problem.

Theorem 6 (Perfect Security Rate: BSS from BSS). Let ε, ε′ ∈ (0, 1/2) be noise characteristics
such that (1 − 2ε′) = (1 − 2ε)k, for some k ∈ N. If BSS(ε′)⊗m v0

~f,~g
BSS(ε)⊗n, for some m,n ∈

N, then ~g = ~f , each component of ~f is a k-homogeneous Boolean function, and mk 6 n, i.e.,
R(BSS(ε′),BSS(ε)) 6 1/k.

We emphasize that the components of the reduction ~f need not have disjoint input supports
(as illustrated by the example above where we construct 2 output samples from 2k input samples
using non-linear functions with identical input support). Both linear and non-linear rate-achieving
perfect SNIS exist.

Section 8 outlines the proof of Theorem 5 and Theorem 6.

2.6 Technical Contribution and Connections

Homogeneous Boolean functions. A Boolean function f : {±1}n → {±1} is k-homogeneous if
its Fourier weight (refer to Section 3.1 to see the definition of Fourier weight) is entirely on degree-k
(multi-)linear terms. For example, f(x) = x1· · ·xk is a k-homogeneous function and is linear as well
(because its entire Fourier weight is concentrated on one character). Refer to the functions f (1)

2k , f
(2)
2k

in Section 2.5 for examples of non-linear k-homogeneous functions.
The algebraization of security in Claim 17 implies the following result.

Proposition 3. BSS(ε′) v0
f,g BSS(ε)⊗n if and only if g = f , f is a k-homogeneous Boolean function,

and (1− 2ε′) = (1− 2ε)k.
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In fact, we show a stronger result. If the reduction in the proposition above realizes a SNIS with
sufficiently small insecurity, then the reduction can be error-corrected to obtain a perfect reduction
(see Theorem 5).

This proposition presents a new application for the study of homogeneous Boolean functions.
The characterization of k-homogeneous Boolean functions is not well-understood. For example,
the Kindler-Safra junta theorem [33, 34] implies that such functions are juntas as well. A better
understanding of the analytical properties of these functions shall help resolve the rate of statistical
SNIS among BSS samples (refer to Conjecture 1), left open by our work.

Distance-invariant codes. For a reduction function f : {±1}n → {±1}, one can equivalently
identify it by the following code

{±1}n ⊇ C(f,+1) = {x : f(x) = +1} .

Analogously, the code C(f,−1) is the complement of the set C(f,+1).
A code C ⊆ {±1}n is distance-invariant [35] if the number of codewords Ai(c) at distance

i ∈ {0, 1, . . . , n} from a codeword c ∈ C is independent of c. For example, linear codes are distance-
invariant. There are non-linear distance-invariant codes as well. For example, when k = 2, the
function f (1)

2k in Section 2.5 yields the following code.

{±1}2k ⊃ C(f
(1)
2k ,+1) =

{
1111, 11− 11, 1− 11− 1, −1− 11− 1, −1− 1− 1− 1

1− 111, −11− 11, −11− 1− 1,

}
.

The codewords are sorted based on their distance from the codeword 1111 (i.e., their Hamming
weight). Observe that every codeword c ∈ C(f

(1)
2k ,+1) has 2 codewords at distance 1, 2, and 3;

and 1 codeword at distance 0 and 4. That is, the distance enumerator A(c, Z) :=
∑2k

i=1Ai(c)Z
i =

1 + 2Z + 2Z2 + 2Z3 + Z4, for any codeword c ∈ C(f
(1)
2k ,+1).

In fact, the code C(f
(1)
2k ,−1) is also distance-invariant (codewords are sorted by weight below)

and has an identical distance enumerator.

{±1}2k ⊃ C(f
(1)
2k ,−1) =


−1111, −1− 111, 1− 1− 1− 1,
111− 1, −111− 1, −1− 1− 11,

1− 1− 11,
11− 1− 1,

 .

Each codeword c ∈ C(f
(1)
2k ,−1) has 2 codewords at distance 1, 2, and 3; and 1 codeword at distance

0 and 4. These properties are no coincidence.

Proposition 4. BSS(ε′) v0
f,g BSS(ε), for some ε, ε′ ∈ (0, 1/2), if and only if (a) f = g, and (b)

the distance enumerators for any codeword in C(f,+1) and C(f,−1) are identical.

Therefore, if distance-invariant codes C(f,+1) and C(f,−1) have identical distance enumerator
then f is homogeneous. Section 8.2 presents the proof of Proposition 4

As a consequence of Theorem 5 and Proposition 4, we have the following corollary.

Corollary 7. Let f be Boolean function such that C(f,+1) and C(f,−1) are distance-invariant
and they have identical distance enumerator, then f is a homogeneous function.
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2.7 Open Problems

Decidability. A central research problem is to develop general analysis techniques for SNIS involving
more complex probability distributions (possibly over large sample spaces). Given, joint distribu-
tions (X,Y ) and (U, V ) the decidability of whether there exists a SNIS of (U, V ) from (multiple
samples of) (X,Y ) with ν-insecurity is not known. Similar problems in NIS have been extremely
challenging and have generated exciting research [26, 19, 25]. In particular, if a perfectly secure
SNIS is not possible, then is it possible to achieve arbitrarily small insecurity by increasing the
number of input samples? Or, is it the case that any SNIS must be a constant-insecure? Observe
that in privacy amplification, randomness extraction, and secure computation with interaction, one
can construct increasingly complex reductions that use larger number of input samples to reduce the
insecurity arbitrarily small. Implementing (U, V ) with constant-insecurity is also useful for secure
computation [29], so characterizing the smallest insecurity of SNIS is an interesting problem.

Utility of free resources. We consider SNIS where parties start with local private randomness.
It will be useful to understand the power of shared keys among parties as well, because generating
shared keys may rely on comparatively lightweight cryptography than generating samples of (X,Y ).

Monotones and Converse theorems. More generally, are there information-theoretic monotones
(for example, maximal correlation [28, 53, 2, 52, 3] for NIS, and monotones for secure computa-
tion [54, 46, 47, 48, 51]) that can help meaningfully upper bound the rate of SNIS, a.k.a., the
capacity for SNIS. For example, Fano’s inequality allows establishing converse of capacity theorems.
These results imply that surpassing the capacity must incur decoding error. However, in SNIS, for
example, for BES inter-conversion, we prove that surpassing the capacity incurs constant-insecurity.

Rate of statistical SNIS among BSS samples. An immediate open problem in light of our work
is to upper-bound the rate of BSS inter-conversion using statistically-secure SNIS. The following
conjectured property of homogeneous Boolean functions shall resolve this rate problem.

Conjecture 1 (Local-to-Global Structure for Homogeneous Boolean Functions). Let f, g, h : {±1}n →
{±1} be Boolean functions satisfying

1. f is u-homogeneous, g is v-homogeneous, and h is w-homogeneous, and

2. f · g is (u+ v)-homogeneous, g · h is (v + w)-homogeneous, and h · f is (w + u)-homogeneous.

Then, the function f · g · h is (u+ v + w)-homogeneous.

This conjecture is true when “homogeneity” is substituted by “linearity.” The linear version of
this conjecture is immediate and is implicitly used in our BES inter-conversion rate result. The
Boolean function constraint is essential; otherwise f(x) = (x1 + x2), g(x) = (x3 + x4), and h(x) =
(x1−x2)+(x3−x4) is a counterexample. As far as the authors’ knowledge, this plausible conjecture
is open.

2.8 Comparison with Previous Drafts

Proofs in the previous versions of this paper relied on both combinatorial and Fourier-analytic
treatment; however, the proofs in this draft rely entirely on Fourier-analytic approach and prove
significantly stronger results. This draft also uses the Kindler-Safra junta theorem to obtain strong
statistical-to-perfect transformations for SNIS. Furthermore, using the junta theorem, we prove
that if perfect SNIS is not possible, then any SNIS must be constant-insecure (previous version only
proved an inverse-polynomial-insecurity).

Finally, in a previous draft, a reviewer pointed out an error in the proof of the rate result
for statistically secure SNIS. The current draft presents an entirely new technique to prove this
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rate result for BES samples. For BSS samples, we present the rate result only for perfect SNIS.
Determining rate of BSS samples using statistical SNIS is left open, which we feel shall require new
analytical properties of k-homogeneous Boolean functions (see Conjecture 1).

3 Preliminaries

We denote [n] as the set {1, 2, . . . n}. For two functions f, g : Ω→ R, the equation f = g means that
f(x) = g(x) for every x ∈ Ω. We use X ,Y,U ,V, or Ω to denote the sample spaces. We also use
(X,Y ) to denote the joint distribution over (X ,Y) with probability mass function π, and πx, πy to
denote the marginal probability distributions of X and Y , respectively. For x ∈ X n, we represent
xi ∈ X as the i-th coordinate of x.

Statistical Distance. The statistical distance (total variation distance) between two distribu-
tions P and Q over a finite sample space Ω is defined as SD (P,Q) = 1

2

∑
x∈Ω|P (x)−Q(x)|.

Norms. We use L2(Ω, µ) to denote the real inner product space of functions f : Ω → R with
inner product 〈f, g〉µ = Ex∼µ [f(x) · g(x)] . The p-norm of a function f ∈ L2(Ω, µ) is defined as
‖f‖p := [Ex∼µ|f(x)|p]1/p .

3.1 Introductory Fourier Analysis over Boolean Hypercube

We recall some background in Fourier analysis that will be useful for our analysis (see [45] for more
details). Let f, g : {±1}n → R be two real-valued functions. We define the inner product of two
functions as following.

〈f, g〉 =
1

2n

∑
x∈{±1}n

f(x) · g(x) = E
x

[f(x) · g(x)]

A function is Boolean if its range is {±1}. For each S ⊆ [n], the characteristic function χS(x) =∏
i∈S xi is a linear function. The set of all χS forms an orthonormal basis for the space of all

real-valued functions on {±1}n. For any S ⊆ [n], the Fourier coefficient of f at S is defined as
f̂(S) = 〈f, χS〉. Any function f can be uniquely expressed as f =

∑
S⊆[n] f̂(S)χS which is called

multi-linear Fourier expansion of f . The Fourier weight of f on a set S ⊆ [n] is defined to be f̂(S)2,
and the Fourier weight of f at degree k is Wk[f ] :=

∑
S:|S|=k f̂(S)2. Similarly, the Fourier weight

of f on all degrees except k is W 6=k[f ] :=
∑

S:|S|6=k f̂(S)2 and the Fourier weight of f on all degrees
greater than k is W>k[f ] :=

∑
S:|S|>k f̂(S)2. Parseval’s Identity says that ‖f‖22 =

∑
S⊆[n] f̂(S)2. In

particular, if f is Boolean, it implies that
∑

S⊆[n] f̂(S)2 = 1.
Next, we summarize the basic Fourier analysis of Boolean function with restriction on the sub-

cubes. Let J and J̄ be a partition of the set [n]. Let fJ |z : {±1}J → R denote the restriction of

f to J when the coordinates in J̄ are fixed to z ∈ {±1}|J̄|. Let f̂J |z(S) be the Fourier coefficient

of the function fJ |z corresponding to the set S ⊆ J . Then, when we assume that z ∈ {±1}|J̄| is
chosen uniformly at random, we have

E
z
[f̂J |z(S)] = f̂(S) (1)

E
z
[f̂J |z(S)2] =

∑
T⊆J̄

f̂(S ∪ T )2 (2)
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For any y ∈ {±1, 0}n, we define Jy := {i ∈ [n] : yi = 0}, J̄y := [n] \ Jy, and we also define zy as the
concatenation of all non-zero symbols of y. For example, if y = (1, 0,−1, 0), then Jy = {2, 4}, J̄y =
{1, 3} and zy = (1,−1).
Degree of a Function. The degree of a function f : {±1}n → R is the degree of its multilinear
expansion, i.e., max{|S| : f̂(S) 6= 0}.
Homogeneous Functions. A function f : {±1}n → R is k-homogeneous if every term in the
multi-linear expansion of f has degree k.
Junta Functions. A function f : {±1}n → R is d-junta if the output of the function f depends on
at most d inputs, where d is usually a constant independent of n.
Linear Functions A function f : {±1}n → {±1} is linear if f = ±χS , for some S ⊆ [n].

3.2 Noise and Markov Operators

Noise Operator. Let ρ ∈ [0, 1] be the parameter determining the noise. For each fixed bit
string x ∈ {±1}n, we write y $←− Nρ(x) to denote that the random string y is drawn as fol-
lows: for each i ∈ [n], independently, yi is equal to xi with probability ρ and it is chosen uni-
formly at random with probability 1 − ρ. The noise operator with parameter ρ ∈ [0, 1] is the
linear operator Tρ that takes as input a function f : {±1}n → R and outputs the function
Tρf : {±1}n → R defined as Tρf(x) = Ey∼Nρ(x)[f(y)]. Moreover, the Fourier expansion of Tρf is
given by Tρf =

∑
S⊆[n] ρ

|S|f̂(S)χS (refer to proposition 2.47 of [45]) that means T̂ρf(S) = ρ|S|f̂(S).
In other words, applying Tρ operator to f is equivalent to scaling f̂(S) proportional to ρ|S|.

Markov Operator [39]. Let (X,Y ) be a finite distribution over (X ,Y) with probability mass
distribution π. The Markov operator associated with this distribution, denoted by T, maps a
function g ∈ L2(Y, πy) to a function Tg ∈ L2(X , πx) by the following map:

(Tg)(x) := E[g(Y ) | X = x],

where (X,Y ) is distributed according to π. Furthermore, we define the adjoint operator of T,
denoted as T, maps a function f ∈ L2(X , πx) to a function Tf ∈ L2(Y, πy) by the following map:

(Tf)(y) = E[f(X) | Y = y].

Note that the two operators T and T have the following property.

〈Tg, f〉πx = 〈g,Tf〉πy = E[f(X)g(Y )].

Example 1. For BSS(ε), both marginal distributions πx and πy are the uniform distribution over
{±1}. Both the Markov operator T and its adjoint T associated with BSS(ε) are identical to the
noise operator Tρ, where ρ = 1− 2ε.

Example 2. For BES(ε), the marginal distribution πx is the uniform distribution over {±1}, and
πy satisfies πy(+1) = πy(−1) = (1− ε)/2 and πy(0) = ε. For any functions f ∈ L2({±1}, πx) and
g ∈ L2({±1, 0}, πy), the Markov operator and its adjoint associated with BES(ε) are as follows.

(Tg)(x) = (1− ε) · g(x) + ε · g(0) for every x ∈ {±1}

(Tf)(y) =

{
f(y) if y ∈ {±1}
1/2 · f(1) + 1/2 · f(−1) if y = 0
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Claim 1 (Contraction Property of Markov Operator). Let T be a Markov operator. Then, for any
function g, it holds that ‖Tg‖1 6 ‖g‖1.

Proof. We have

‖Tg‖1 = E
x
|(Tg)(x)| = E

x

∣∣∣∣Ey [g(y)|X = x]

∣∣∣∣ (definition of Markov operator)

6 E
x
E
y
[ |g(y)| | X = x] (triangle inequality)

= E
y
|g(y)| (linearity of expectation)

= ‖g‖1

The following claim will be useful for inter-conversion between 1-norm and 2-norm. It says that
if a real-valued function is bounded and its 1-norm is bounded, then the 2-norm of this function is
also bounded. Note that by the monotone property of p-norm, the 1-norm is always less than the
2-norm.

Claim 2 (Norms Bound). Suppose f ∈ L2(Ω, µ) such that |f(x)| 6 α for every x ∈ Ω. Then, we
have ‖f‖22 6 α · ‖f‖1.

Proof. We have

‖f‖22 = E[f(x)2] = E[|f(x)|2] 6 E[|f(x)| · α] = α · E[|f(x)|] = α · ‖f‖1

3.3 Imported Theorems

This section present results that are useful for our proofs. We use the following version of Kindler-
Safra junta theorem (Theorem 1.1 in [20]).

Imported Theorem 1 (Kindler-Safra Junta Theorem [33, 34]). Fix d > 0. There exists ε0 = ε0(d)
and constant C such that for every ε < ε0, if f : {±1}n → {±1} satisfies W>d[f ] = ε then there

exists a Cd-junta and degree d function f̃ : {±1}n → {±1} such that
∥∥∥f − f̃∥∥∥2

2
6 (ε+ Cdε5/4).

This theorem states that any Boolean function whose Fourier spectrum is concentrated on low
degree multi-linear terms is close to a low degree Boolean Junta.

Lemma 1 (Exercise 1.11 Chapter 1 [45]). Suppose that f : {±1}n → {±1} has degree d > 1. Then,
for every S ⊆ [n], the Fourier coefficient f̂(S) is an integer multiple of 2/2d.

This lemma states that a bounded-degree function’s spectrum is coarse-grained.

3.4 Secure Non-Interactive Simulation: Simulation-based Definition

In this section, we define the notion of secure non-interactive simulation of joint distributions using
a simulation-based security definition [12, 11, 13]. Suppose (X,Y ) is a joint distribution over the
sample space X × Y, and (U, V ) be a joint distribution over the sample space U × V. For n ∈ N,
suppose f : X n × RA → U and g : Yn × RB → V be two reduction functions where RA and RB
denote respectively the space of private random used by Alice and Bob.
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We clarify that it is standard in the literature to assume that the sample spaces X ,Y,U , and
V are constant sized (i.e., does not depend on n). All the probabilities Pr[(X,Y ) = (x, y)] and
Pr[(U, V ) = (u, v)] are either 0 or at least a constant (i.e., for example, these probabilities do not
tend to 0 as a function of n).

We shall define simulation-based security for secure non-interactive reductions. In the real world,
we have the following experiment.

1. A trusted third party samples (xn, yn)
$←− (X,Y )⊗n, and delivers xn ∈ X n to Alice and yn ∈ Yn

to Bob.

2. Alice samples private randomness rA from RA and outputs u′ = f(xn, rA).

3. Bob samples private randomness rB from RB and outputs v′ = g(yn, rB).

For inputless functionalities and non-interactive computation, semi-honest and malicious adver-
saries are identical. Furthermore, static and adaptive corruption are also identical for this setting.
So, for simplicity, one can always consider semi-honest static corruption to interpret the security
definitions. All forms of adversary mentioned above shall turn out to be equivalent in our setting.

1. The case of no corruption. Suppose the environment does not corrupt any party. So, it
receives (U, V ) as output from the two parties in the ideal world. In the real world, the simulator
receives (f(Xn, RA), g(Y n, RB)) as output. If this reduction has at most ν(n) insecurity, then
the following must hold.

SD ( (U, V ) , (f(Xn, RA), g(Y n, RB)) ) 6 ν(n).

2. The case of Corrupt Alice. Suppose the environment statically corrupt Alice. In the real
world, the simulator receives ((Xn, RA), f(Xn, RA), g(Y n, RB)). In the ideal world, we have
a simulator SimA : U → X n × RA that receives u from the ideal functionality, and outputs
(SimA(u), u) to the environment. The environment’s view is the random variable (SimA(U), U, V ).
If this reduction has at most ν(n) insecurity, then the following must hold.

SD ( (SimA(U), U, V ) , ((Xn, RA), f(Xn, RA), g(Y n, RB)) ) 6 ν(n).

3. The case of Corrupt Bob. Analogously, there exists a simulator for Bob SimB : V → Yn×RB
and the following must hold if this reduction has at most ν(n) insecurity.

SD ( (U, V, SimB(V )) , (f(Xn, RA), g(Y n, RB), (Y n, RB)) ) 6 ν(n).

If there exists reductions functions f, g such that the insecurity is at most ν(n) as defined
above then we say that (U, V ) reduces to (X,Y )⊗n via reduction functions f, g with insecurity at
most ν(n). In our presentation, all secure reductions admit computationally efficient simulators
SimA and SimB. Moreover, all our impossibility results even rule out simulators with unbounded
computational power. We say that ν(n) is negligible in n if it decays faster than any inverse-
polynomial in n for sufficiently large values of n.
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3.5 Distance Invarianct Codes

A code C of block length n is a subset of {±1}n. We define � as the binary operator that maps two
codewords c1 = (a1, c2, . . . , cn) and c2 = (b1, b2, . . . , bn) to c1 � c2 := (a1b1, a2b2, . . . , anbn) which
may not be in C. A code C is called linear if for any c1, c2 ∈ C, we have c1 � c2 ∈ C. The
compliment of a code C is the set C := {±1}n \ C.
Hamming Distance. Let C ⊆ {±1}n be a code and c1, c2 ∈ C. Suppose c1 = (a1, a2, . . . , an)
and c2 = (b1, b2, . . . , bn). The Hamming distance between c1 and c2 is defined as the number of
coordinates that they are not the same i.e. dH(c1, c2) :=

∑
i∈[n]

1−aibi
2 .

Distance Enumerator. The distance enumerator of C at w is the polynomial

∆C,w(z) :=
∑
c∈C

zdH(w,c) =
n∑
t=0

At(w)zt

where At(w) is the number of codewords c ∈ C whose distance from w is t. Moreover, we call
(A0(w), A1(w), . . . , At(w)) the distance distribution of the code C with respect to w.
Distance Invariant. A code C ⊆ {±1}n is called a distance invariant code if for any w1, w2 ∈ C,
the two polynomials ∆C,w1(z) and ∆C,w2(z) are the same or in other words the distance distribution
of C with respect to w1 and w2 are the same.

One can verify that a linear code C is distance invariant.

4 Technical Overview

This section presents the technical overview of our feasibility and rate results.

4.1 Feasibility Results

In this section, we give an overview of the feasibility results (Theorem 2, Theorem 3, Theorem 5).
Consider a randomized SNIS A(ε′) vνf,g B(ε)⊗n, where the target A and the source B are either
BES or BSS.

Step 0: Derandomization. Using the derandomization result Proposition 1, without loss of
generality, assume that f and g are determinstic functions. The domain and range of the functions
f and g are appropriately chosen according to whether the source B is BES or BSS.

Step 1: Algebraization of Security. Section 3.4 presents the simulation-based definition of
SNIS. We algebraize the simulation-based definition of the security for the SNIS for the target A
from the source B samples as follows. Roughly, A(ε′) vνf,g B(ε)⊗n if and only if E[f ] 6 ν, E[g] 6 ν,
‖Tf − a · g‖1 6 ν, and

∥∥Tg − b · f∥∥
1
6 ν, where a, b are some constants that depend only on ε, ε′,

and T,T are the Markov and the adjoint Markov operators defined based on the joint distribution
B⊗n (see Section 3.2). In short, the simulation-based and algebraic definitions of security are
qualitatively equivalent.

Step 2: Approximate eigenvector problem. Composing the two constraints
∥∥Tf − a · g∥∥

1
6

ν, and ‖Tg − b · f‖1 6 ν yields
∥∥TTf − (ab) · f

∥∥
1
6 2ν. We show that the composition of Markov

operator with its adjoint Markov operator for either BES or BSS is always a noise operator, that is,
TT = Tρ for some appropriate ρ. Hence, ‖Tρf − (ab) · f‖ 6 2ν that is an (approximate) eigenvector
problem for the noise operator Tρ.
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Step 3: Homogeneous property. Recall that Tρ operator scales f̂(S) proportional to ρ|S| (refer
to Section 3.2). If ab 6∈ {ρ, ρ2, ρ3, . . . }, then Tρf cannot be close to (ab) · f . In this case, when f
is Boolean, there shall always be a constant gap between Tρf and (ab) · f . That is, ν is at least a
constant. The proof is done.

On the other hand, suppose ab = ρk, for some k ∈ N. In this case, any weight on f̂(S)
such that |S| 6= k contributes to the gap between Tρf and (ab) · f . Consequently, most of the
Fourier-weight of f must be on the degree-k (multi-)linear terms, in other words, f is close to a
k-homogeneous Boolean function. The Kindler-Safra junta theorem [33, 34] (refer to Imported
Theorem 1) additionally tells us that the Boolean function f is close to a junta function, which
is crucial for our strong statistical-to-perfect transformation. Due to the qualitative equivalence of
simulation-based and algebraic definition of security, if f, g witness a secure SNIS with ν insecurity,
then f∗, g witness a secure SNIS with comparable insecurity (say, poly(ν)-insecurity). Henceforth,
we shall use the k-homogeneous D-junta (Boolean) reduction function f∗ instead of the reduction
f .

The proof of the entire argument presented in this step relies on our technical theorems (Theo-
rem 8 and Theorem 9).

Step 4: This step continues the case that ab = ρk for k ∈ N. We use different arguments to prove
the (in)-feasibility results.

BSS from BES. To prove the infeasibility result, we show that poly(ν) >
∥∥Tf∗ − a · g∥∥ > c

whenever 0 < a < 1, where c is a constant depends only on ε, ε′ (see Theorem 11 for details).
This step crucially relies on the close to junta property of f . We show a connection of (adjoint)
Markov operator with Fourier coefficient of restriction function (see Claim 7). Then we employ the
Fourier-analytic techniques of restriction of Boolean functions to prove the lower bound.

BES from BES. In the previous step, we have shown that f is close to a k-homogeneous junta
Boolean function f∗. Note that for SNIS of BES from BES the parameter a is equal to 1. The
security constraint

∥∥Tf∗ − g∥∥ 6 poly(ν) additionally help show that f∗ must be a linear function
(see Theorem 12 for details). Once we conclude that f is close to a k-linear f∗, we construct a
function g∗ such that g is close to g∗ and f∗, g∗ witness a perfect SNIS of BES(ε′) from BES(ε)
samples (Claim 12).

BSS from BSS. Once we conclude that f is close to a k-homogeneous f∗, we show that g is close
to f∗ and f∗, f∗ witness a perfect SNIS of BSS(ε′) from BSS(ε) samples (Claim 19).

4.2 Rate Results

This section gives a technical overview of our rate results (Theorem 4, Theorem 6).
Rate Outline for Statistical BES from BES. Fix erasure probabilities ε, ε′ ∈ (0, 1). Consider
a randomized SNIS BES(ε′)⊗m vν~f,~g BES(ε)⊗n. We require a sample-preserving derandomization
(for statistical SNIS) to prove the rate result. However, we cannot directly derandomize this SNIS
using Theorem 1 (refer to the discussion following Theorem 1). Consequently, we have to follow a
different strategy.

Let f (i), g(i) represent the i-th component of the reductions ~f,~g, where i ∈ {1, . . . ,m}. Let
f (i)‖f (j), for 1 6 i < j 6 m, represent the pair of components f (i) and f (j). Similarly, define
g(i)‖g(j). Observe that BES(ε′)⊗2 vν

f (i)‖f (j),g(i)‖g(j) BES(ε)⊗n (by projecting on the i-th and j-th
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output samples). We can derandomize this construction using Theorem 1 (our sample-preserving de-
randomization for statistical SNIS). So, we get deterministic reduction function f̃ (i)‖f̃ (j) that is close
to f (i)‖f (j) and deterministic g̃(i)‖g̃(j) that is close to g(i)‖g(j) such that BES(ε′)⊗2 vν′

f̃ (i)‖f̃ (j),g̃(i)‖g̃(j)

BES(ε)⊗n, where ν ′ = Θ
(
ν1/4

)
.

We show that there are deterministic reduction functions f∗(i) and f∗(j) such that f∗(i) is close
to f̃ (i) (which is in turn close to f (i)) and f∗(j) is close to f̃ (j) (which is in turn close to f (j)).
Furthermore, there are reduction functions g∗(i) and g∗(j) such that BES(ε′)⊗2 v0

f∗(i)‖f∗(j),g∗(i)‖g∗(j)

BES(ε)⊗n. We emphasize that f∗(i) is independent of the choice of j ∈ {1, . . . ,m}.
At this point, we can conclude that f∗(i) and f∗(j) are both k-linear (because reductions for

perfect BES-from-BES SNIS are linear). We can use a linear construction to obtain one sample
of BES(ε′′) from BES(ε′)⊗2 with perfect security, where (1 − ε′′) = (1 − ε′)2. We compose these
two constructions to obtain a perfectly secure SNIS of BES(ε′′) from BES(ε)n, where (1 − ε′′) =
(1 − ε′)2 = (1 − ε)2k. So, the reduction of the composed SNIS must be 2k-linear; i.e., f∗(i) · f∗(j)
is 2k-linear. We conclude that f∗(i) and f∗(j) are k-linear such that they do not share any input
variables.

So, we have f∗(1), . . . , f∗(m) : {±1}n → {±1} such that each function is k-linear with pairwise
disjoint inputs. Therefore, mk 6 n.
Rate Outline for Perfect SNIS of BSS from BSS. For reduction among BSS samples we
only prove a rate result for perfect SNIS. Consider a randomized SNIS BSS(ε′)⊗m v0

~f,~g
BSS(ε)⊗n,

where (1−2ε′) = (1−2ε)k and k ∈ N. By Proposition 2 (the sample-preserving derandomization for
perfect SNIS), we can assume, without loss of generality, that ~f,~g are deterministic. For (1−2ε′′) =
(1 − 2ε′)m, there is a (deterministic) linear construction realizing BSS(ε′′) v0

f ′,g′ BSS(ε′)⊗m. By
the sequential composition of these two SNIS, we get a new SNIS BSS(ε′′) v0 BSS(ε)⊗n, where
(1 − 2ε′′) = (1 − 2ε′)m = (1 − 2ε)mk. The reduction functions of this new SNIS must be mk-
homogeneous; consequently, mk 6 n.

Section 2.7 presents Conjecture 1 that shall help upper-bound the rate of BSS interconversion
using statistical SNIS.

5 Our Technical Results

This section presents our technical results that are crucial to the proofs of the feasibility and rate
results (for not only SNIS of BSS from BES but also SNIS of BES from BES and BSS from BSS).
The following theorem basically solves the “approximate eigenvector problem”. Intuitively, it says
that if the noisy version of a Boolean function is sufficiently-close to a scaling of that function then
(1) the scaling factor must be an eigenvalue of the noise operator and (2) the Fourier spectrum
of that function is concentrated on some particular degree, i.e., it is close to a homogeneous (not
necessarily Boolean) function.

Theorem 8 (Constant Insecurity or Close to Homogeneous). Fix parameters ρ, ρ′ ∈ (0, 1). Let
f : {±1}n → {±1} be a Boolean function, and let δ = ‖Tρf − ρ′f‖1. Then, the following statements
hold.

1. If ρt+1 < ρ′ < ρt for some t ∈ [n], then δ > 1
2 min((ρ′ − ρt)2, (ρ′ − ρt+1)2).

2. If ρ′ = ρk for some k ∈ [n], then Wk[f ] > 1− 2
(1−ρ)2ρ′2

· δ.
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Next, we show that if a noisy version of a Boolean function is close to that function scaled by
an eigenvalue of the noise operator, then the function is close to a homogeneous junta Boolean
function.

Theorem 9 (Close to Homogeneous and Junta). Let ρ ∈ (0, 1) and k ∈ N. There exist constants
D = D(k) > 0, δ0 = δ0(ρ, k) > 0 such that the following statement holds. For any δ < δ0, if the
function f : {±1}n → {±1} satisfies

∥∥Tρf − ρkf∥∥1
= δ, then there exists a k-homogeneous D-junta

function f̃ : {±1}n → {±1} such that
∥∥∥f − f̃∥∥∥2

2
6 σ +Dσ5/4, where σ = 2

(1−ρ)2ρ2k
· δ.

Finally, the following result says that two low-degree Boolean functions cannot be too close.

Lemma 2 (Low-degree Boolean Functions are Far). Suppose h, ` : {±1}n → {±1} are two distinct
Boolean functions of degree (at most) d ∈ N. Then, ‖h− `‖2 > 2/2d.

As a consequence, we have the following corollary.

Corollary 10. Fix noise parameter ρ ∈ (0, 1). Suppose h, ` : {±1}n → {±1} are two distinct
d-homogeneous Boolean functions. Then,

∥∥Tρh− ρd`∥∥2
> 2ρd/2d.

5.1 Proof of Theorem 8

Since |(Tρf)(x)| 6 1 and f(x) ∈ {±1} for every x, we have∣∣(Tρf)(x)− ρ′ · f(x)
∣∣ 6 1 + ρ′ 6 2 for every x.

It implies that∥∥Tρf − ρ′f∥∥2

2
= E

x

[
(Tρf)(x)− ρ′ · f(x)

]2
6 2E

x

∣∣(Tρf)(x)− ρ′ · f(x)
∣∣ 6 2δ

Now, consider 2 cases as follows.
Case 1: If ρt+1 < ρ′ < ρt for some t ∈ [n]. We have∥∥Tρf − ρ′f∥∥1

>
1

2

∥∥Tρf − ρ′f∥∥2

2
(Claim 2)

=
1

2

∑
S⊆[n]

(ρ|S| − ρ′)2f̂(S)2 (Parseval)

>
1

2
min((ρ′ − ρt)2, (ρ′ − ρt+1)2) ·

∑
S⊆[n]

f̂(S)2

=
1

2
min((ρ′ − ρt)2, (ρ′ − ρt+1)2) (Parseval)

Case 2: ρ′ = ρk for some k ∈ N. Observe that
∣∣ρ|S| − ρ′∣∣ > ∣∣ρk+1 − ρk

∣∣ for any |S| 6= k. Therefore,
we have ∑

S : |S|6=k

(ρk+1 − ρk)2f̂(S)2 6
∑

S : |S|6=k

(ρ|S| − ρk)2f̂(S)2

=
∑
S⊆[n]

(ρ|S| − ρk)2f̂(S)2

=
∥∥∥Tρf − ρkf∥∥∥2

2

6 2δ.

This implies that W 6=k[f ] =
∑

S : |S|6=k f̂(S)2 6 2δ
ρ2k(1−ρ)2

, as desired.

21



5.2 Proof of Theorem 9

We use the Kindler-Safra junta theorem (Imported Theorem 1) and the following claim to prove
this theorem.

Claim 3. Let f, f̃ : {±1}n → {±1} be two Boolean functions. Suppose Wk[f ] > 1 − δ and∥∥∥f − f̃∥∥∥
2
6 γ. Then it holds that Wk[f̃ ] > 1− δ − 2γ.

Basically, the claim tells us that if a Boolean function f̃ is close to another Boolean function
that is also close to a homogeneous (not necessarily Boolean) function, then f̃ is also close to a
homogeneous function. We provide the proof of this claim in the Section 5.2.1. Now, we are ready
to prove Theorem 9.

Proof of Theorem 9. Applying Theorem 8 for function f satisfying
∥∥Tρf − ρkf∥∥1

6 δ yields

W 6=k[f ] = 1−Wk[f ] 6
2

(1− ρ)2ρ2k
· δ.

Let ε0 = ε0(k) be the constant achieved by applying Imported Theorem 1. Let δ1 = (1−ρ)2ρ2k

2 · ε0.
Note that δ1 depends only on k and δ1 6 ε0. This implies that, for any δ < δ1, we have W 6=k[f ] 6 ε0.
Invoking Imported Theorem 1, there exists a Ck-junta and degree k function f̃ : {±1}n → {±1}
such that ∥∥∥f − f̃∥∥∥2

2
6 σ + Ckσ5/4,

where σ = 2
(1−ρ)2ρ2k

· δ.
Next, we show that f̃ is k-homogeneous, i.e., Wk[f̃ ] = 1. By Claim 3, we have

Wk[f̃ ] > 1− σ − 2
√
σ + Ckσ5/4.

We choose δ2 to be a constant such that, for every δ < δ2,

σ + 2
√
σ + Ckσ5/4 <

1

22(k−1)
.

Such a δ2 always exists since the left hand side is an increasing function of δ and when δ = 0, the
left hand side is zero. Note that δ2 depends only on ρ and k. If Wk[f̃ ] 6= 1, it follows from Lemma 1
that W=k[f̃ ] is far from 1, in other words,

Wk[f̃ ] 6 1− 1/22(k−1) < 1− σ − 2
√
σ + Ckσ5/4,

which is a contradiction. So it must be the case that Wk[f̃ ] = 1 when δ 6 δ2. Choosing δ0 =
min(δ1, δ2) completes the proof.

5.2.1 Proof of Claim 3

Let dS =
̂̃
f(S)− f̂(S) for S ⊆ [n]. Then, by Parseval’s identity and the assumption

∥∥∥f − f̃∥∥∥
2
6 γ,

∑
S⊆[n]

d2
S =

∑
S⊆[n]

(f̂(S)− ̂̃f(S))2 =
∥∥∥f − f̃∥∥∥2

2
6 γ2.
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We bound the quantity
∑
|S|=k f̂(S)dS as follow.∑

|S|=k

f̂(S)dS

2

6

∑
|S|=k

f̂(S)2

∑
|S|=k

d2
S

 (Cauchy-Schwartz)

6

∑
S⊆[n]

f̂(S)2

∑
S⊆[n]

d2
S


6 γ2

This inequality implies that
∑
|S|=k > −γ. Therefore, we have

Wk[f̃ ] =
∑
|S|=k

(f̂(S) + dS)2

=
∑
|S|=k

(
f̂(S)2 + 2f̂(S)dS + d2

S

)
= Wk[f ] +

∑
|S|=k

d2
S + 2

∑
|S|=k

f̂(S)dS

> (1− δ) + 0− 2γ

= 1− δ − 2γ

as desired.

5.3 Proof of Lemma 2

We use the granularity property of low-degree Boolean function (see Lemma 1) to prove this lemma.
Since h and ` are two distinct functions, there exists a S∗ ⊆ [n] such that ĥ(S∗) 6= ̂̀(S∗). Invoking
Lemma 1 for low degree functions h and ` yields that the Fourier coefficients of h and ` are integer
multiple of 1/2d−1. This implies that

∣∣∣ĥ(S∗)− ̂̀(S∗)∣∣∣ > 1/2d−1. Therefore, we have

‖h− `‖22 =
∑
S⊆[n]

(ĥ(S)− ̂̀(S))2 > (ĥ(S∗)− ̂̀(S∗))2 > 1/22(d−1),

which completes the proof.

6 SNIS of BSS from BES Samples

This section proves the impossibility result of BSS from BES samples (Theorem 2). We first outline
the proof below.

Infeasibility Outline. Consider a randomized SNIS BSS(ε′) vνf,g BES(ε)⊗n, where ε ∈ (0, 1)
and ε′ ∈ (0, 1/2). Using Proposition 1 (the derandomization result for feasibility results), we can,
without loss of generality, assume that f and g are deterministic functions. Therefore, we have
f : {±1}n → {±1} and g : {±1, 0}n → {±1}. Define ρ = (1− ε) and ρ′ = (1− 2ε′).
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Step 1: Algebraization of security. Section 3.4 presents the simulation-based definition of
SNIS. This simulation-based definition of the security can be algebraized for the SNIS of BSS from
BES samples as follows.

Claim 4 (BSS-BES Algebraization of Security). For any ε ∈ (0, 1) and ε′ ∈ (0, 1/2), the following
statements hold.

1. If BSS(ε′) vνf,g BES(ε)⊗n, then E[f ] 6 ν, E[g] 6 ν,
∥∥Tf − ρ′g∥∥

1
6 4ν, and ‖Tg − ρ′f‖1 6 4ν.

2. If E[f ] 6 ν, E[g] 6 ν,
∥∥Tf − ρ′g∥∥

1
6 ν, and ‖Tg − ρ′f‖1 6 ν, then BSS(ε′) v2ν

f,g BES(ε)⊗n.

Recall that T and T are the Markov and the adjoint Markov operators associated with the
BES⊗n joint distribution. This claim shows the qualitative equivalence of the simulation-based
security definition and the algebraized definition (they incur only a multiplicative constant loss in
insecurity during interconversion). Furthermore, this claim preserves perfect security.

Step 2: Approximate eigenvector problem. Let us focus on the reduction function f : {±1}n →
{±1}. Composing the two constraints (a)

∥∥Tf − ρ′g∥∥
1
6 4ν, and (b) ‖Tg − ρ′f‖1 6 4ν, we get

that
∥∥∥TTf − ρ′2f∥∥∥

1
6 8ν. This property is an eigenvector problem for the TT = Tρ operator.

Claim 5 (“Noisy Close-to-Scaling” Constraint). Suppose BSS(ε′) vνf,g BES(ε)⊗n, then it holds that∥∥∥TTf − ρ′2f∥∥∥
1

=
∥∥∥Tρf − ρ′2f∥∥∥

1
6 8ν.

Step 3: Homogeneous property. Recall that Tρ operator scales f̂(S) proportional to ρ|S|. If
ρ′2 6∈ {ρ, ρ2, ρ3, . . . }, then Tρf cannot be close to ρ′2f . In this case, when f is Boolean, there shall
always be a constant gap between Tρf and ρ′2f . That is, ν is at least a constant. The proof is done.

On the other hand, suppose ρ′2 = ρk, for some k ∈ N. In this case, any weight on f̂(S) such
that |S| 6= k contributes to the gap between Tρf and ρ′2f . Consequently, most of the Fourier-weight
of f must be on the degree-k (multi-)linear terms. The following claim formalizes this argument.

Claim 6 (Properties of Reduction Functions). Suppose
∥∥Tρf − ρkf∥∥1

6 δ, then there exists D =
D(k) such that the following statements hold.

1. The function f is 2δ
(1−ρ)2ρ2k

-close to k-homogeneous.

2. There exists a Boolean k-homogeneous D-junta function f̃ : {±1}n → {±1} such that
∥∥∥f − f̃∥∥∥2

2
6

σ +Dσ5/4, where σ = 2
(1−ρ)2ρ2k

· δ.

The result that (the Boolean) f is close to a Boolean junta function is a consequence of Kindler-
Safra junta theorem [33, 34] (refer to Imported Theorem 1) and this property of f shall be crucial for
our strong statistical-to-perfect transformation. Due to the qualitative equivalence of simulation-
based and algebraic definition of security, if f, g witness a secure SNIS with ν insecurity, then f̃ , g
witness a secure SNIS with comparable insecurity (say, poly(ν)-insecurity). Henceforth, we shall
use the k-homogeneous D-junta (Boolean) reduction function f̃ instead of the reduction f .

The proof of the entire argument presented in this step relies on Theorem 8 and Theorem 9.

24



Step 4: Infeasibility. This step is the continuation of the case that ρ′2 = ρk, for k ∈ N. In
this step, we shall use the properties of the reduction function g : {±1, 0}n → {±1} and security to
conclude that the reduction must be constant-insecure.

Theorem 11 (Insecurity Lower Bound). Let T be the adjoint Markov operator associated with the
joint distribution BES(ε)⊗n. Suppose h : {±1}n → {±1} is a Boolean k-homogeneous D-junta func-
tion, and g : {±1, 0}n → {±1} be any arbitrary function. Then

∥∥Th− ρ′g∥∥
1
> ρ′·min

((
1−ε

2

)D
, εD

)
.

Observe that without the junta property of h, we would not have obtained a constant lower
bound to the insecurity. In the following subsections, we first prove the main theorem Theorem 2,
then we prove all the claims that are needed for the proof.

6.1 Proof of the Impossibility Result

Assuming Claim 4, Claim 5, Claim 6, and Theorem 11, we formally prove Theorem 2 as follows.

Proof. Suppose that BSS(ε′) vνf,g BES(ε)⊗n, where ε ∈ (0, 1) and ε′ ∈ (0, 1/2). By Proposition 1,
without loss of generality, assume that f and g are deterministic functions. Therefore, we can
assume that f : {±1}n → {±1} and g : {±1, 0}n → {±1}. Let ρ = (1− ε) and ρ′ = (1− 2ε′).

By Claim 4, it holds that E[f ] 6 ν, E[g] 6 ν,
∥∥Tf − ρ′g∥∥

1
6 4ν, and ‖Tg − ρ′f‖1 6 4ν.

Applying Claim 5 for the the last two constraints yields∥∥∥TTf − ρ′2f∥∥∥
1

=
∥∥∥Tρf − ρ′2f∥∥∥

1
6 8ν.

Now, consider two cases as follows.
Case 1: If ρt+1 < ρ′2 < ρt for some t ∈ [n], then by the first case of Theorem 8,∥∥∥Tρf − ρ′2f∥∥∥

1
>

1

2
min((ρ′2 − ρt)2, (ρ′2 − ρt+1)2).

This implies that the insecurity ν us at least 1
16 min((ρ′2 − ρt)2, (ρ′2 − ρt+1)2), which is a constant.

Case 2: ρ′2 = ρk for some k ∈ N. Then by Claim 6, the function f is 16ν
(1−ρ)2ρ2k

-close to k-

homogeneous and there exist D = D(k) and a Boolean k-homogeneous D-junta function f̃ such
that ∥∥∥f − f̃∥∥∥2

2
6 σ +Dσ5/4, (3)

where σ = 16
(1−ρ)2ρ2k

ν. Next, Theorem 11 implies that

∥∥∥Tf̃ − ρ′g∥∥∥
1
> ρ′ ·min

((
1− ε

2

)D
, εD

)
(4)
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Therefore, we have∥∥Tf − ρ′g∥∥
1
>
∥∥∥Tf̃ − ρ′g∥∥∥

1
−
∥∥∥Tf − Tf̃

∥∥∥
1

(triangle inequality)

> ρ′ ·min

((
1− ε

2

)D
, εD

)
−
∥∥∥Tf − Tf̃

∥∥∥
1

(inequality 4)

> ρ′ ·min

((
1− ε

2

)D
, εD

)
−
∥∥∥f − f̃∥∥∥

1
(Claim 1)

> ρ′ ·min

((
1− ε

2

)D
, εD

)
−
∥∥∥f − f̃∥∥∥

2
(monotonocity of norms)

> ρ′ ·min

((
1− ε

2

)D
, εD

)
− (σ +Dσ5/4) (inequality 3)

Recall that
∥∥Tf − ρ′g∥∥

1
6 4ν. Therefore, we have

ν >
1

4

(
ρ′ ·min

((
1− ε

2

)D
, εD

)
− (σ +Dσ5/4)

)

Thus, there exists a constant c = c(ε, ε′) such that BSS(ε′) vν BES(ε)⊗n, for any n ∈ N, implies
that ν > c, which completes the proof.

6.2 Proofs of Claims Needed for Theorem 2

In this section, we provide the proofs of all claims (Claim 4, Claim 5, Claim 6, and Theorem 11)
needed for the proof of Theorem 2.

6.2.1 Proof of the Technical Theorems

First, we prove some claims that are needed for the proof of Theorem 11. Recall that Jy := {i ∈
[n] : yi = 0} and zy denotes the concatenation of all non-zero symbols of y as defined in Section 3.2.

Claim 7 (Connection with Restriction of Functions). Let T be the adjoint Markov operator of
BES(ε)⊗n, and let f : {±1}n → {±1}. Then, for every y ∈ {±1, 0}n, it holds that (Tf)(y) =
f̂Jy |zy(∅).

Proof. Since the distribution of (X,Y ) is BES(ε), for any i ∈ [n] that yi = 1, Pr[Xi = 1|Yi = yi =
1] = 1 and for any i ∈ [n] that yi = −1, Pr[Xi = −1|Yi = yi = −1] = 1; while for any i ∈ [n] that
yi = 0, Pr[Xi = 1|Yi = yi = 0] = Pr[Xi = −1|Yi = yi = 0] = 1/2. This implies that conditioned on
non-zero symbols of y, i.e., zy, the conditional distribution over the corresponding symbols of x is
deterministic while over the rest of symbols is uniform. Therefore, we have

(Tf)(y) = E[f(X)|Y = y] (Definition of adjoint operator)
= E[f(X)|Jy, zy] (Jy, zy implies y)
= E[fJy |zy(X)] (Definition of restriction function)

= f̂Jy |zy(∅).
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Claim 8 (Fourier Property of Homogeneous Functions). Let f be a Boolean k-homogeneous func-
tion. Then, for every y ∈ {±1, 0}n satisfying

∣∣J̄y∣∣ < k, it holds that f̂Jy |zy(∅) = 0.

Proof. First, note that f̂(S) = 0 for every |S| 6= k. This together with equation (2) implies that,
for every y ∈ {±1, 0}n satisfying

∣∣J̄y∣∣ < k,

E
zy

[
f̂Jy |zy(∅)

2
]

=
∑
T⊆J̄y

f̂(T )2 = 0.

Therefore, it must hold that f̂Jy |zy(∅) = 0 as desired.

Now, we are ready to prove the main theorem.

Proof of Theorem 11. We say that a node y ∈ {±1, 0}n is “bad” if it incurs a large simulation error,
in other words,

∣∣(Th)(y)− ρ′g(y)
∣∣ is large.

First, we show that there exists a “bad” y∗ ∈ {±1, 0}n. Let y∗ ∈ {±1, 0}n be such that
∣∣J̄y∗∣∣ < k.

It follows from Claim 7 and Claim 8 that (Th)(y∗) = ĥJy∗ |zy∗ (∅) = 0. Now, since the g(y∗) ∈ {±1},
we have

∣∣(Th)(y∗)− ρ′g(y∗)
∣∣ = ρ′. Next, we construct a large set S(y∗) such that every y ∈ S(y∗)

is bad. Let I denote the set of the D coordinates that (might) have influence on the output of h.
Since h is a D-junta function, every coordinate in Ī = [n] \ I does not have any influence on the
output of the function. We construct a set of bad nodes as follow.

S(y∗) := {y ∈ {±1, 0}n : yI = y∗I}

Here, yI denotes the concatenation of all yi where i ∈ I. It follows from the junta property of h that
(Th)(y) = (Th)(y∗) = (TIh)(yI) for every y ∈ S(y∗), where TI denotes the adjoint Markov operator
associated with BES(ε)⊗|I|. So it holds that

∣∣(Th)(y)− ρ′g(y)
∣∣ = ρ′ for every y ∈ S(y∗). Note that

|S(y∗)| = 3n−D. Thus, we have∥∥Th− ρ′g∥∥
1

= E
y

∣∣(Th)(y)− ρ′g(y)
∣∣ (by definition)

>
∑

y∈S(y∗)

Pr[Y = y] ·
∣∣(Th)(y)− ρ′g(y)

∣∣
=

∑
y∈S(y∗)

Pr[Y = y] · ρ′ (identity transformation)

= ρ′ · Pr[YI = y∗I ] (identity transformation)

= ρ′ ·
(

1− ε
2

)D−t
· εt ( t is the number of zeros in y∗I )

> ρ′ ·min

((
1− ε

2

)D
, εD

)

which completes the proof.
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6.2.2 Proof of Claim 4

For ease of presentation, we omit n from xn, yn and random variables Xn, Y n. We use the notation
PA(a) to denote the probability that the random variable A is equal to some a in the sample space.
Forward Direction: It follows from BSS(ε′) vνf,g BES(ε) that there exists a simulator SimA such
that

SD ( (SimA(U), U, V ), (X, f(X), g(Y )) ) 6 ν.

By expanding this inequality, we get the following:∑
x,u,v

∣∣PSimA(U),U (x, u)PV |SimA(U),U (v|x, u)− PX,f(X)(x, u)Pg(Y )|X,f(X)(v|x, u)
∣∣ 6 2ν

Now, define Q(x, u) := PSimA(U),U (x, u) − PX,f(X)(x, u) and apply triangle inequality to the last
inequality to achieve the following:∑

x,u,v

PX,f(X)(x, u)
∣∣PV |SimA(U),U (v|x, u)− Pg(Y )|X,f(X)(v|x, u)

∣∣
6 2ν +

∑
x,u,v

|Q(x, u)|PV |SimA(U),U (v|x, u)

= 2ν +
∑
x,u

|Q(x, u)|
∑
v

PV |SimA(U),U (v|x, u)

= 2ν +
∑
x,u

|Q(x, u)|

= 2ν + 2SD ( (SimA(U), U) , (X, f(X)) )

6 2ν + 2SD ( (SimA(U), U, V ) , (X, f(X), g(X)) )

6 4ν

We shall show that:∑
x,u,v

PX,f(X)(x, u)
∣∣PV |SimA(U),U (v|x, u)− Pg(Y )|X,f(X)(v|x, u)

∣∣ =
∥∥Tg − ρ′f∥∥

1

First, notice that according to the first Markov chain of Claim 21, we have Pg(Y )|X,f(X)(x, u) =
Pg(Y )|X(x) for any u ∈ U and according to the second Markov chain of Claim 21, we have PV |SimA(U),U (v|x, u) =
PV |U (v|u) for any x ∈ X . Since v ∈ V = {±1}, we have:∑

v

∣∣PV |SimA(U),U (v|x, u)− Pg(Y )|X,f(X)(v|x, u)
∣∣

=
∑
v

∣∣PV |U (v|u)− Pg(Y )|X(v|x)
∣∣

=
∣∣PV |U (1|u)− Pg(Y )|X(1|x)

∣∣+
∣∣PV |U (−1|u)− Pg(Y )|X(−1|x)

∣∣
=
∣∣PV |U (1|u)− Pg(Y )|X(1|x)

∣∣+
∣∣1− PV |U (1|u)− (1− Pg(Y )|X(1|x))

∣∣
= 2
∣∣−PV |U (1|u) + Pg(Y )|X(1|x)

∣∣
=
∣∣1× Pg(Y )|X(1|x) + (−1)× Pg(Y )|X(−1|x)− (1× PV |U (1|u) + (−1)× PV |U (−1|u))

∣∣
=
∣∣E[g(Y )|x]− (1× PV |U (1|u) + (−1)× PV |U (−1|u))

∣∣
=
∣∣Tg(x)− (1× PV |U (1|u) + (−1)× PV |U (−1|u))

∣∣
=
∣∣Tg(x)− ρ′ × u

∣∣
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Because if u = 1, then

1× PV |U (1|u) + (−1)× PV |U (−1|u) = (1− ε′)− ε′ = 1− 2ε′ = ρ′ × u

and similarly if u = −1, then

1× PV |U (1|u) + (−1)× PV |U (−1|u) = ε′ + (−1)× (1− ε′) = 2ε′ − 1 = ρ′ × u

Therefore, we have∑
x,u,v

PX,f(X)(x, u)
∣∣PV |SimA(U),U (v|x, u)− Pg(Y )|X,f(X)(v|x, u)

∣∣
=
∑
x,u

PX,f(X)(x, u)
∑
v

∣∣PV |SimA(U),U (v|x, u)− Pg(Y )|X,f(X)(v|x, u)
∣∣

=
∑
x,u

PX,f(X)(x, u)
∣∣Tg(x)− ρ′ × u

∣∣
=
∑
x

PX(x)
∣∣Tg(x)− ρ′ × f(x)

∣∣
=
∥∥Tg − ρ′f∥∥

1

The proof of ‖Tg − ρ′f‖1 6 4ν is similar. We just need to start from

SD ( (SimB(V ), U, V ), (Y, f(X), g(Y )) ) 6 ν.

The inequality E[f ] 6 ν follows from the fact that the random variable f(X) is close to U , which
is uniform over {±1}. Similarly, one can argue that E[g] 6 ν.
Backward Direction: We will construct two simulators Sim∗A and Sim∗B that satisfy the definition
of SNIS. Let Sim∗A be the simulator that does reverse sampling by which we mean that Sim∗A given
u, outputs some x ∈ f−1(u) with probability PX(x)∑

x∈f−1(u) PX(x) . This means that for any x, u, it

happens that PX|f(X)(x|u) = PSim∗A(U)|U (x|u).
Since U = {±1} and Pr[U = 1] = Pr[U = −1] = 1

2 , it follows from |E[f(X)]| 6 ν that
SD (f(X), U) 6 ν

2 . Again, we define

Q∗(x, u) := PSim∗A(U),U (x, u)− PX,f(X)(x, u)

= PU (u)PSim∗A(U)|U (x|u)− Pf(X)(u)PX|f(X)(x|u)

= PX|f(X)(x|u)
(
PU (u)− Pf(X)(u)

)
Then, it follows that ∑

x,u

|Q∗(x, u)| 6 2SD (U, f(X)) 6 ν
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Therefore, we have

SD ( (Sim∗A(U), U, V ), (X, f(X), g(Y )) )

=
∑
x,u,v

∣∣∣PSim∗A(U),U (x, u)PV |Sim∗A(U),U (v|x, u)− PX,f(X)(x, u)Pg(Y )|X,f(X)(v|x, u)
∣∣∣

6
∑
x,u,v

PX,f(X)(x, u)
∣∣∣PV |Sim∗A(U),U (v|x, u)− Pg(Y )|X,f(X)(v|x, u)

∣∣∣+∑
x,u,v

|Q∗(x, u)|PV |Sim∗A(U),U (v|x, u)

=
∑
x,u,v

PX,f(X)(x, u)
∣∣∣PV |Sim∗A(U),U (v|x, u)− Pg(Y )|X,f(X)(v|x, u)

∣∣∣+
∑
x,u

|Q∗(x, u)|

=
∥∥Tg − ρ′f∥∥

1
+
∑
x,u

|Q∗(x, u)|

6 ν + ν = 2ν

Similarly, we can define Sim∗B as the simulator that does reverse sampling, i.e. Sim∗B on input v,
outputs some y ∈ g−1(v) with probability PY (y)∑

y∈g−1(v) PY (y) and show that

SD ( (Sim∗B(V ), U, V ), (Y, f(X), g(Y )) ) 6 ν.

6.2.3 Proof of Claim 5

We need the following result for the proof of the claim. It says that the composition of the BES(ε)
Markov operator with its adjoint Markov operator is identical to the noise (Bonami-Beckner) oper-
ator with parameter ρ = 1− ε.

Claim 9 (Composition of BES Markov operators). Let T,T be the Markov operators of BES(ε)⊗n.
Then, it holds that TT = Tρ, where ρ = (1− ε).

Proof. By tensorization property of Markov operators, it suffices to prove that TT = Tρ when n = 1,
i.e., T and T are associated Markov operators of BES(ε). For any function f : {±1} → {±1}, and
any x ∈ {±1}, we have

(TTf)(x) = E[(Tf)(Y )|X = x]

=
∑
y

Pr[Y = y|X = x] · (Tf)(y)

=
∑
y

Pr[Y = y|X = x] · E[f(X)|Y = y]

=
∑
y

Pr[Y = y|X = x] ·
∑
x′

Pr[X = x′|Y = y] · f(x′)

= Pr[Y = x|X = x] ·
∑
x′

Pr[X = x′|Y = x] · f(x′)

+ Pr[Y = 0|X = x] ·
∑
x′

Pr[X = x′|Y = 0] · f(x′)

= (1− ε) · 1 · f(x) + ε · (1/2 · f(x) + 1/2 · f(−x))

= (1− ε/2) · f(x) + ε/2 · f(−x)

= (Tρf)(x)

30



Thus, the equality TT = Tρ holds.

Now, we present the proof of Claim 5.

Proof. By Claim 4, BSS(ε′) vνf,g BES(ε)⊗n implies that
∥∥Tf − ρ′g∥∥

1
6 ν and ‖Tg − ρ′f‖1 6 ν.

Therefore, we have∥∥Tρf − ρ′2f∥∥1
=
∥∥(TT)f − ρ′2f

∥∥
1

(Claim 9)

6
∥∥(TT)f − ρ′Tg

∥∥
1

+
∥∥ρ′Tg − ρ′2f∥∥

1
(triangle ineq.)

=
∥∥T(Tf − ρ′g)

∥∥
1

+ ρ′
∥∥Tg − ρ′f∥∥

1
(linearity)

6
∥∥Tf − ρ′g∥∥

1
+ ρ′

∥∥Tg − ρ′f∥∥
1

(Claim 1)

6 ν + ρ′ν

6 2ν

as desired.

6.2.4 Proof of Claim 6

Since
∥∥Tρf − ρkf∥∥1

6 δ, it follows from Theorem 8 that

Wk[f ] > 1− 2

(1− ρ)2ρ2k
· δ

It means that f is 2δ
(1−ρ)2ρ2k

-close to k-homogeneous. By Theorem 9, there exists a Boolean k-

homogeneous D-junta function f̃ : {±1}n → {±1} such that∥∥∥f − f̃∥∥∥
2
6 σ +Dσ5/4,

where σ = 2
(1−ρ)2ρ2k

· δ, which completes the proof.

7 SNIS of BES from BES Samples

This section proves the feasibility and statistical rate results for the SNIS of BES from BES samples.
First, we outline the proof of Theorem 3 below, then Theorem 4.

Feasibility Outline. Consider a randomized SNIS BES(ε′) vνf,g BES(ε)⊗n, where ε, ε′ ∈ (0, 1).
Using Proposition 1, we can, without loss of generality, assume that f and g are deterministic
functions. Therefore, we have f : {±1}n → {±1} and g : {±1, 0}n → {±1, 0}. Define ρ = (1 − ε)
and ρ′ = (1− ε′).

Step 1: Algebraization of security. We show that simulation-based SNIS definition is quali-
tatively equivalent to the algebraized definition of SNIS.

Claim 10 (BES-BES Algebraization of Security). For any ε, ε′ ∈ (0, 1), the following statements
hold.

1. If BES(ε′) vνf,g BES(ε)⊗n, then E[f ] 6 ν, E[g] 6 ν,
∥∥Tf − g∥∥

1
6 4ν, and ‖Tg − ρ′f‖1 6 4ν.

2. If E[f ] 6 ν, E[g] 6 ν,
∥∥Tf − g∥∥

1
6 ν, and ‖Tg − ρ′f‖1 6 ν, then BES(ε′) v2ν

f,g BES(ε)⊗n.
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Step 2: Approximate eigenvector problem. Focusing on the reduction function and the
guarantees (a)

∥∥Tf − g∥∥
1
6 4ν, and (b) ‖Tg − ρ′f‖1 6 4ν, we obtain the following result.

Claim 11 (“Noisy Close-to-Scaling” Constraint). Suppose BES(ε′) vνf,g BES(ε)⊗n, then it holds that∥∥TTf − ρ′f∥∥
1

= ‖Tρf − ρ′f‖1 6 8ν.

Step 3: Homogeneous property. There are two cases to consider. If ρ′ 6∈ {ρ, ρ2, . . . }, then
the reduction is constant insecure (and the proof is done). However, if ρ′ = ρk, for some k ∈ N,
then the reduction function must be close to a k-homogeneous D-junta Boolean function f∗ (using
Claim 6). We remark that if security is perfect then f is identical to f∗. Intuitively, the set of all
possible junta functions has constant size and f can be error-corrected to the unique closest f∗.

Step 4: Only linear functions. Now it remains to prove that f∗ is linear.

Theorem 12 (Must be Linear). Let T be the adjoint Markov operator associated with the joint
distribution BES(ε)⊗n. Suppose h : {±1}n → {±1} is a Boolean k-homogeneous D-junta function,
and g : {±1, 0}n → {±1, 0} be any arbitrary function. There is a constant c = c(ε,D, k) such that
if
∥∥Th− g∥∥

1
6 c, then h must be a linear function.

It is instructive to compare this theorem with Theorem 11, where we proved that any reduction
is constant-insecure. In the theorem here, our objective is to characterize h such that

∥∥Th− g∥∥
1
is

small. In Theorem 11, the constraint was
∥∥Th− ρ′g∥∥

1
instead, where ρ′ ∈ (0, 1). This additional

ρ′ factor made every reduction function constant-insecure.
Once we conclude that f is close to a k-linear f∗, we can argue that g is also close to g∗ such

that f∗, g∗ witness a perfect SNIS of BES(ε′) from BES(ε) samples. The following claim formalizes
this reasoning.

Claim 12. Suppose BES(ε′) vνf,g BES(ε)⊗n, where (1 − ε′) = (1 − ε)k for some k ∈ N. Suppose
also that h : {±1}n → {±1} is a k-linear character χS for some S ⊆ [n] and ‖f − h‖1 6 δ. Let
` : {±1, 0}n → {±1, 0} be defined as `(y) =

∏
i∈S yi. Then, it holds that BES(ε′) v0

h,` BES(ε)⊗n and
‖g − `‖1 6 4ν + δ.

Finally, we emphasize that if ν = 0, then f and g are identical to f∗ and g∗.
We present a formal proof of Theorem 3 in Section 7.1. The proofs of Claim 10 and Claim 11

are similar to the proofs of Claim 4 and Claim 5, respectively. We provide a proof of Theorem 12
in Section 7.1.1, and a proof of Claim 12 in Section 7.1.3.

Outline: Rate of Statistical SNIS. We first recall our discussion in Section 4.2 for the proof of
Theorem 4. Fix erasure probabilities ε, ε′ ∈ (0, 1). Consider a randomized SNIS BES(ε′)⊗m vν~f,~g
BES(ε)⊗n. We require a sample-preserving derandomization (for statistical SNIS) to prove the rate
result. However, we cannot directly derandomize this SNIS using Theorem 1 (refer to the discussion
following Theorem 1). Consequently, we have to follow a different strategy.

Let f (i), g(i) represent the i-th component of the reductions ~f,~g, where i ∈ {1, . . . ,m}. Let
f (i)‖f (j), for 1 6 i < j 6 m, represent the pair of components f (i) and f (j). Similarly, define
g(i)‖g(j). Observe that BES(ε′)⊗2 vν

f (i)‖f (j),g(i)‖g(j) BES(ε)⊗n (by projecting on the i-th and j-th
output samples). We can derandomize this construction using Theorem 1 (our sample-preserving de-
randomization for statistical SNIS). So, we get deterministic reduction function f̃ (i)‖f̃ (j) that is close
to f (i)‖f (j) and deterministic g̃(i)‖g̃(j) that is close to g(i)‖g(j) such that BES(ε′)⊗2 vν′

f̃ (i)‖f̃ (j),g̃(i)‖g̃(j)

BES(ε)⊗n, where ν ′ = Θ
(
ν1/4

)
.
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We show that there are deterministic functions f∗(i) and f∗(j) such that f∗(i) is close to f̃ (i)

(which is in turn close to f (i)) and f∗(j) is close to f̃ (j) (which is in turn close to f (j)). Furthermore,
there are reduction functions g∗(i) and g∗(j) such that BES(ε′)⊗2 v0

f∗(i)‖f∗(j),g∗(i)‖g∗(j) BES(ε)⊗n. We

emphasize that f∗(i) is independent of the choice of j ∈ {1, . . . ,m}.
At this point, we can conclude that f∗(i) and f∗(j) are both k-linear (because reductions for

perfect BES-from-BES SNIS are linear). We can use a linear construction to obtain one sample
of BES(ε′′) from BES(ε′)⊗2 with perfect security, where (1 − ε′′) = (1 − ε′)2. We compose these
two constructions to obtain a perfectly secure SNIS of BES(ε′′) from BES(ε)n, where (1 − ε′′) =
(1 − ε′)2 = (1 − ε)2k. So, the reduction of the composed SNIS must be 2k-linear; i.e., f∗(i) · f∗(j)
is 2k-linear. We conclude that f∗(i) and f∗(j) are k-linear such that they do not share any input
variables.

So, we have f∗(1), . . . , f∗(m) : {±1}n → {±1} such that each function is k-linear with pairwise
disjoint inputs. Therefore, mk 6 n. This entire reasoning describes the proof of Claim 13.

Claim 13. Let ε, ε′ ∈ (0, 1) be erasure probabilities satisfying (1− ε′) = (1 − ε)k, for some k ∈ N.
There is a constant c = c(ε, ε′) such that the following holds. Suppose BES(ε′)⊗m vν~f,~g BES(ε)⊗n for

some ν 6 c. For each pair 1 6 i < j 6 m, let f̃ (i)
ij ‖f̃

(j)
ij and g̃(i)

ij ‖g̃
(j)
ij be the deterministic functions

obtained by derandomizing the SNIS BES(ε′)⊗2 vν
f (i)‖f (j),g(i)‖g(j) BES(ε)⊗n using Theorem 1. Let

f∗ij
(i) and f∗ij

(j) be k-linear Boolean functions that are close to f̃ (i)
ij and f̃ (i)

ij , respectively. It holds
that

1. f∗ij
(i) = f∗ij′

(i) for every distinct triple i, j, j′ ∈ {1, 2, . . . ,m}. Represent f∗(i) := f∗ij
(i) for any

j 6= i.

2. There exists a unique g∗ = (g∗(1), g∗(2), . . . , g∗(m)) such that, for any 1 6 i < j 6 m,

BES(ε′)
⊗2 v0

f∗(i)‖f∗(j), g∗(i)‖g∗(j) BES(ε)⊗n.

3. Furthermore, for distinct i, j ∈ {1, . . . ,m}, the input support of f∗(i) and the support of f∗(j) are
disjoint. Consequently, mk 6 n.

We provide a full proof of the rate result in Section 7.2.

7.1 Proof of the Feasibility Result

Suppose BES(ε′) vνf,g BES(ε)⊗n, where ε, ε′ ∈ (0, 1). Using Proposition 1, without loss of generality,
assume that f and g are deterministic functions. Therefore, we can assume that f : {±1}n → {±1}
and g : {±1, 0}n → {±1, 0}. Define ρ = (1 − ε) and ρ′ = (1 − ε′). By Claim 10, it holds that
E[f ] 6 ν, E[g] 6 ν,

∥∥Tf − g∥∥
1
6 4ν, and ‖Tg − ρ′f‖1 6 4ν. Applying Claim 11 for the the last

two constraints yields ∥∥TTf − ρ′f∥∥
1

=
∥∥Tρf − ρ′f∥∥1

6 8ν.

Now, consider two cases as follows.
Case 1: If ρt+1 < ρ′ < ρt for some t ∈ [n], then by the first case of Theorem 8,∥∥Tρf − ρ′f∥∥1

>
1

2
min((ρ′ − ρt)2, (ρ′ − ρt+1)2).

This implies that the insecurity ν is at least 1
16 min((ρ′ − ρt)2, (ρ′ − ρt+1)2), which is a constant.
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Case 2: ρ′ = ρk for some k ∈ N. Then by Claim 6, the function f is 16ν
(1−ρ)2ρ2k

-close to k-

homogeneous and there exist D = D(k) and a Boolean k-linear D-junta function f̃ such that∥∥∥f − f̃∥∥∥2

2
6 σ +Dσ5/4, (5)

where σ = 16
(1−ρ)2ρ2k

ν. By Theorem 12, if 4ν 6 c′, there exists a k-linear Boolean function f̃ such
that ∥∥∥Tf̃ − g∥∥∥

1
6 c′, (6)

where c′ is the constant as defined in Theorem 12. Suppose f̃ = χS for some S ⊆ [n] such that |S| =
k. Define function g̃ : {±1, 0}n → {±1, 0} such that g̃ =

∏
i∈S yi for every y ∈ {±1}n. Inequality

(5) implies that
∥∥∥f − f̃∥∥∥

1
6
√
σ +Dσ5/4. Then, applying Claim 12 yields BES(ε′) v0

f̃ ,g̃
BES(ε)⊗n

and
∥∥∥f̃ − g̃∥∥∥

1
6 4ν +

√
σ +Dσ5/4. Therefore, there exist c = c′/4 and d > 0 small enough such

that if BES(ε′) vνf,g BES(ε)⊗n, for any n ∈ N, and ν 6 c, then f is νd-close to a reduction function
f̃ , and g is νd-close to a reduction function g̃ such that BES(ε′) v0

f̃ ,g̃
BES(ε)⊗n. Furthermore, f̃ is

a k-linear function, which completes the proof.

7.1.1 Proof of Theorem 12

The following claim is crucial to the proof of the theorem.

Claim 14. Let h : {±1}n → {±1} be a k-homogeneous Boolean function such that
∣∣∣ĥJ |z(∅)∣∣∣ = 1 for

some J ⊆ [n] satisfying
∣∣J̄∣∣ = k, and for some z ∈ {±1}|J̄|. Then h is the linear character function

χJ̄ or −χJ̄ .

Remark 4. This claim still holds even if we replace the k-homogeneous constraint by W<k[h] = 0.

Intuitively, it says that if there is a size-k restriction of a k-homogeneous Boolean function f
such that the restriction function is the constant function 1, then the function f must be a linear
function.

Assuming Claim 14 we prove the main theorem as follows. We provide a proof of the claim
using the Martingale structure of restriction function (implied by equations 1) in Section 7.1.2.

Proof of Theorem 12. It follows from Claim 7 and Claim 8 that (Th)(y) = ĥJy |zy(∅) = 0 for any
y ∈ {±1, 0}n such that

∣∣J̄y∣∣ < k. Let y∗ be the filtration corresponding to the largest Fourier

coefficient in level k, i.e., y∗ = argmax
y : |J̄y|=k

∣∣∣ĥJy |zy(∅)∣∣∣. First, observe that ĥJy∗ |zy∗ (∅) must be non-zero

because otherwise, since h is k-homogeneous (ĥ(T ) = 0 when |T | 6= k), it follows from Equation 2
that for any y such that

∣∣J̄y∣∣ = k, it holds that
∑

T⊆J̄y ĥ(T )2 = E[ĥJy |zy(∅)2] = 0 which implies that
ĥ(T ) = 0 for any T of size k. This means that h must be the constant function 0.

Next, we claim that
∣∣∣ĥJy∗ |zy∗ (∅)∣∣∣ = 1 if c is sufficiently small, which is chosen later. For the sake

of contradiction, suppose it is not. We will show that∣∣(Th)(y∗)− g(y∗)
∣∣ =

∣∣∣ĥJy∗ |zy∗ (∅)− g(y∗)
∣∣∣ > 1/2k−1. (7)

34



Observe that the Boolean function hJy |zy has degree at most k since it is a restriction of a degree-
k Boolean function. According to Lemma 1, ĥJy∗ |zy∗ (∅) is an integer multiple of 1/2k−1. Since it is

not equal to 0 or ±1, it holds that 1/2k−1 6
∣∣∣ĥJy∗ |zy∗ (∅)∣∣∣ 6 1− 1/2k−1. Note that g(y∗) ∈ {±1, 0}.

Therefore, the inequality (7) must hold. Using the same idea as in the proof of Theorem 11 yields

∥∥Th− g∥∥
1
>

1

2k−1
·min

((
1− ε

2

)D
, εD

)
.

Now, choose c < 1
2k−1 · min

((
1−ε

2

)D
, εD

)
, then we have reach a contradiction. Thus, it must be

the case that
∣∣∣ĥJy∗ |zy∗ (∅)∣∣∣ = 1.

Finally, applying Claim 14 for the k-homogeneous Boolean function h implies that h is a linear
function, which completes the proof.

7.1.2 Proof of Claim 14

0

0 0

0 0 0 0

−1 +1 +1 −1 +1 −1 −1 +1

yπ(1) = −1 yπ(1) = +1

−1 +1 −1 +1

−1 +1 −1 +1 −1 +1 −1 +1

Figure 3: The figure represents a binary tree Tπ of depth n with respect to a permutation π, and
k = 3. Any edge between depth d and depth d + 1 denotes yπ(d) ∈ {±1}. We assign the value
α∅ = ĥ(∅) = E[h(X)] to the root and the value αv = ĥJv |v(∅) ∈ [−1, 1]. The value of any node is
the average of the values of its children (martingale property). The constraint W<k[h] = 0 implies
that the value of any node at depth < k is 0. If αv = +1 (−1) then all of its decendents have value
+1 (−1). We prove that if some node at depth k has a non-zero value then h must be χS or −χS
where S = {π(1), . . . , π(t)}.

First, let us introduce some notation. Corresponding to each permutation π : [n] → [n], we
define a binary tree Tπ of depth n (refer to Figure 3) such that each edge between a node and its
left child is labeled by −1 and other edges are labeled by 1. This allows us to address each node v
at depth t ∈ [n] with a string v = v1v2 . . . vt of length |v| = t which is the string of labels assigned
to the edges of the path from root to that node. We assign to a node v = v1v2 . . . vt, the value
αv := ĥJv |z(∅) where z = v and Jv = [n] \ J̄v where J̄v = {π(1), π(2), . . . , π(t)}.

Martingale Property. According to Claim 7, αv = E[h(X)|Y = y] where y is the unique string
for which zy = v, Jy = Jv i.e. yπ(1) = v1, . . . , yπ(t) = vt and yj = 0 whenever j 6∈ {π(1), . . . , π(t)}
(Jy, zy are defined in Claim 7). This implies that αv = αu+αw

2 whenever nodes u,w are children of
v in the tree Tπ, i.e. the values αv (for all v) assigned to the nodes of Tπ forms a Martingale.
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Since W<k[h] = 0, for each T ⊆ [n] of size |T | < k, ĥ(T ) = 0. Therefore, it follows from (2) that
for each J̄1 of size k − 1, and for any π that J̄1 = {π(1), π(2), . . . , π(k − 1)} the following holds

E
v∈Tπ :|v|=k−1

[α2
v] = E

v
[ĥJ1|v(∅)

2] =
∑
T⊆J̄1

ĥ(T )2 = 0

=⇒ αv = 0 ∀v ∈ Tπ : |v| = k − 1

=⇒ αv = 0 ∀v ∈ Tπ : |v| 6 k − 1 (Due to Martingale property)

where by Martingale property we mean that the value assigned to each node is the average of its
children.

Without of loss of generality, we assume that ĥJ |z(∅) = 1. This means that for some π and
some node u of length |u| = k, we have αu = 1. Let v represents the parent of u in Tπ, then since
|v| = k − 1, αv = 0, and by applying Martingale property, αw = −1 where w is the sibling of v.
Similarly, we can show that the sibling of w in any other tree is 1. By applying this argument
iteratively, one can argue that for any permutation π such that J̄ = {π(1), . . . , π(k)}, any v ∈ Tπ
that |v| = k, we have α2

v = 1. Therefore, it follows from (2) that:

1 = E
v∈Tπ :|v|=k

[α2
v] = E

v
[ĥJ |v(∅)2] =

∑
T⊆J̄

ĥ(T )2 = ĥ(J̄)2 +
∑
T⊆J̄
|T |<k

ĥ(T )2 = ĥ(J̄)2

This equation implies that ĥ(J̄) = ±1. So it must be the case that h = χJ̄ or h = −χJ̄ , which
completes the proof.

7.1.3 Proof of Claim 12

One can easily verity that h and ` is a perfect SNIS construction of BES(ε′) from BES(ε). This
implies that Th = ` by Claim 10. It follows from the assumption BES(ε′) vνf,g BES(ε)⊗n and
Claim 10 that

∥∥Tf − g∥∥ 6 4ν. Therefore, we have

‖g − `‖1 6
∥∥g − Tf

∥∥
1

+
∥∥Tf − `∥∥

1
(Triangle Inequality)

6 4ν +
∥∥Tf − Th

∥∥
1

6 4ν + ‖f − h‖1 (linearity and Claim 1)
6 4ν + δ

which completes the proof.

7.2 Proof of the Rate Result

This section prove the statistical rate result (Theorem 4) for the SNIS of BES from BES samples.
Note that Theorem 4 follows immediately from Claim 13. So it suffices to prove Claim 13. First we
state some claims that are needed for the proof. The following claim says that if Boolean functions
are close, then their product is also close.

Claim 15. Let f (1), f (2), h(1), h(2) : {±1}n → {±1} be Boolean functions such that
∥∥f (1) − h(1)

∥∥
1
6

δ1 and
∥∥f (2) − h(2)

∥∥
1
6 δ2. Then, it holds that∥∥∥f (1) · f (2) − h(1) · h(2)

∥∥∥
1
6 δ1 + δ2.
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The next result gives a characterization of perfect SNIS of BES(ε′) from BES(ε).

Proposition 5. BES(ε′) v0
f,g BES(ε)⊗n if and only if (1) (1− ε′) = (1− ε)k, for some k ∈ N, (2)

f is a linear Boolean function σ · χS for some size-k subset S of [n], and (3) g(y) = σ ·
∏
i∈S yi,

where σ ∈ {±1}.

Assuming these claims, we provide the proof of Claim 13 as follows. In the subsequent sections,
we will prove these claims.

Proof. The notation f ≈ f̃ means that f and f̃ are close in which the closeness is always poly(ν). The
notation poly(ν) is always means that the constant in the polynomial is 0 and all other coefficients
depend only on ε, ε′. Let 1 6 i < j 6 m. Recall that f̃ (i)

ij ‖f̃
(j)
ij and g̃(i)

ij ‖g̃
(j)
ij is the deterministic func-

tions obtained by derandomizing the SNIS BES(ε′)⊗2 vν
f (i)‖f (j),g(i)‖g(j) BES(ε)⊗n. By Theorem 1,

f̃
(i)
ij is close to f (j) and f̃ (j)

ij is close to f (j). By the feasibility result, f̃ (i)
ij is close to some k-linear

function f∗ij
(i). The relation between these function can be summarized as f∗ij

(i) ≈ f̃ (i)
ij ≈ f (i).

Next, for any j′ 6= j, a similar argument also yields f∗ij′
(i) ≈ f̃ (i)

ij′ ≈ f
(i). By a simple application

of triangle inequalities, it holds that f∗ij
(i) ≈ f∗ij′

(i). Now, using the fact that both f∗ij
(i) and f∗ij′

(i)

are k-linear functions, we can conclude that they must be the same when ν is chosen sufficiently
small because if they are different they are constant far apart (the constant is at least 1). Therefore,
it holds that f∗ij

(i) = f∗ij′
(i) for every distinct triple i, j, j′ ∈ [m]. According to Proposition 5, there

is a unique g∗ij
(i) such that BES(ε′) v0

f∗ij
(i),g∗ij

(i) BES(ε)⊗n. By Claim 12, g∗ij
(i) is close to g̃(i)

ij , which

is also close to g(i). With a similar argument, one can conclude that g∗ij
(i) = g∗ij′

(i) for every distinct
triple i, j, j′ ∈ [m].

Represent f∗(i) := f∗ij
(i) and g∗(i) := g∗ij

(i) for any j 6= i. By sequential composition Theorem 14,
we have

BES(ε′′) vν
f̃
(i)
ij ·f̃

(j)
ij , g̃

(i)
ij ·g̃

(i)
ij

BES(ε)⊗n

where (1− ε′′) = (1− ε′)2 = (1− ε)2k. Note that f∗(i) ≈ f̃ (i)
ij and f∗(j) ≈ f̃ (j)

ij . Therefore, it follows

from Claim 15 that f∗(i) · f∗(j) ≈ f̃ (i)
ij · f̃

(j)
ij . Similarly, g∗(i) · g∗(j) ≈ g̃(i)

ij · g̃
(j)
ij . By triangle inequality,

one can conclude that
BES(ε′′) vpoly(ν)

f∗(i)·f∗(j), g∗(i)·g∗(j)
BES(ε)⊗n

This implies that f∗(i) ·f∗(j) is poly(ν)-close to a 2k-homogeneous function. Next, we argue that, in
fact, BES(ε′′) v0

f∗(i)·f∗(j), g∗(i)·g∗(j) BES(ε)⊗n, and the input supports of f∗(i) and f∗(j) are disjoint.

For the sake of contradiction suppose that the input supports of f∗(i) intersects the input supports
of f∗(j). Then f∗(i) · f∗(j) is a <2k-linear function that is a contradiction with the requirement that
it is close to a 2k-homogeneous function. Therefore, it must hold that the input supports of f∗(i)

and f∗(j) are disjoint for every distinct i, j. Note that the domain of f∗(i) is still {±1}n for every
i ∈ [m]. Consequently, we have mk 6 n, which completes the proof.

37



7.2.1 Proof of Claim 15

We have ∥∥∥f (1)f (2) − h(1)h(2)
∥∥∥

1

6
∥∥∥f (1)f (2) − f (1)h(2)

∥∥∥
1

+
∥∥∥f (1)h(2) − h(1)h(2)

∥∥∥
1

(triangle inequality)

=
∥∥∥f (1)(f (2) − h(2))

∥∥∥
1

+
∥∥∥h(2)(f (1) − h(1))

∥∥∥
1

(identity transformation)

=
∥∥∥f (2) − h(2)

∥∥∥
1

+
∥∥∥(f (1) − h(1))

∥∥∥
1

(Boolean value)

6 δ1 + δ2

which complete the proof.

Remark 5. The claim also holds true for any p-norm.

7.2.2 Proof of Proposition 5

The forward direction of the Proposition 5 follows from Theorem 3, when the insecurity bound ν is
zero. The backward direction follows from the following claims.

Claim 16. Suppose f : {±1}n → {±1} and g : {±1, 0}n → {±1, 0} satisfying f(x) =
∏
i∈S xi and

g(y) =
∏
i∈S yi for some size-k subset of [n]. Then BSS(ε′) v0

f,g BSS(ε)⊗n for any ε, ε′ ∈ (0, 1) such
that (1− 2ε′) = (1− 2ε)k.

Proof. The value g(y) is equal to 0 if and only if there exists at least an index i such that yi = 0.
So, we have the following:

Pr[g(y) = 0] = Pr[∃i ∈ S such that yi = 0] = 1− Pr[∀i ∈ S, yi 6= 0]

= 1−
∏
i∈S

Pr[yi 6= 0] = 1−
∏
i∈S

(1− Pr[yi = 0])

= 1− (1− ε)|S| = 1− (1− ε)k

Since whenever g(y) 6= 0, we have g(y) = f(y), we conclude that the given construction simulates
BES(ε′) where ε′ = Pr[g(y) = 0] = 1 − (1 − ε)k. We need to prove that it is perfectly secure. For
each x,

(Tg)(y) = (1− ε)k × f(x) + (1− (1− ε)k)× 0 = (1− ε′)f(x)

and for each y ∈ {±1, 0}n such that for each i ∈ S, yi 6= 0,

(Tf)(y) = f(y) = g(y)

and for each y ∈ {±1, 0}n such that for at least an index i ∈ S, yi = 0, we have:

(Tf)(x) = (TχS)(x) = 0.

Thus, by Claim 10, BSS(ε′) v0
f,g BSS(ε)⊗n.
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8 SNIS of BSS from BSS Samples

We outline the proof of Theorem 5 and Theorem 6 below.

Feasibility Outline. Consider a randomized SNIS BSS(ε′) vνf,g BSS(ε)⊗n, where ε, ε′ ∈ (0, 1).
Using Proposition 1, we can, without loss of generality, assume that f and g are deterministic
functions. Therefore, we have f : {±1}n → {±1} and g : {±1}n → {±1}. Define ρ = (1 − 2ε) and
ρ′ = (1− 2ε′).

Step 1: Algebraization of security. We show that simulation-based SNIS definition is quali-
tatively equivalent to the algebraized definition of SNIS.

Claim 17 (BSS-BSS Algebraization of Security). For any ε, ε′ ∈ (0, 1/2), the following statements
hold.

1. If BSS(ε′) vνf,g BSS(ε)⊗n, then E[f ] 6 ν, E[g] 6 ν, ‖Tρf − ρ′g‖1 6 4ν, and ‖Tρg − ρ′f‖1 6 4ν.

2. If E[f ] 6 ν, E[g] 6 ν, ‖Tρf − ρ′g‖1 6 ν, and ‖Tρg − ρ′f‖1 6 ν, then BSS(ε′) v2ν
f,g BSS(ε)⊗n.

We remark that the Markov and the adjoint Markov operators associated with BSS(ε)⊗n are
both identical to the noise operator Tρ.

Step 2: Approximate eigenvector problem. Focusing on the reduction function and the
guarantees (a)

∥∥Tf − g∥∥
1
6 4ν, and (b) ‖Tg − ρ′f‖1 6 4ν, we obtain the following result.

Claim 18 (“Noisy Close-to-Scaling” Constraint). Suppose BSS(ε′) vνf,g BSS(ε)⊗n, then it holds that∥∥∥TρTρf − ρ′2f∥∥∥
1

=
∥∥∥Tρ2f − ρ′2f∥∥∥

1
6 8ν.

Step 3: Homogeneous property. There are two cases to consider. If ρ′ 6∈ {ρ, ρ2, . . . }, then the
reduction is constant insecure. However, if ρ′ = ρk, then the reduction function must be close to a
k-homogeneous D-junta Boolean function f∗ (using Claim 6).

Observe that when ν = 0, then f = g is a k-homogeneous function. In fact, any k-homogeneous
Boolean function f = g satisfies the algebraic security definition of SNIS perfectly when ρ′ = ρk.
Section 2.6 shows that such functions are related to special types of distance-invariant codes.

Once we conclude that f is close to a k-homogeneous f∗, we can argue that g is also close to
g∗ := f∗ and that f∗, g∗ witness a perfect SNIS of BSS(ε′) from BSS(ε) samples. The following
claim formalizes the argument.

Claim 19. Suppose BSS(ε′) vνf,g BSS(ε)⊗n, where (1 − 2ε′) = (1 − 2ε)k for some k ∈ N. Suppose
also that h : {±1}n → {±1} is a k-homogeneous Boolean function satisfying ‖f − h‖1 6 δ. Then, it
holds that BSS(ε′) v0

h,h BSS(ε)⊗n and ‖g − h‖1 6 4ν + δ.

The proofs of Claim 17, Claim 18, and Claim 19 are similar to the proofs of Claim 4, Claim 5,
and Claim 12, respectively.

Rate Outline. For reduction among BSS samples we only prove a rate result for perfect SNIS.
Consider a randomized SNIS BSS(ε′)⊗m v0

~f,~g
BSS(ε)⊗n, where (1− 2ε′) = (1− 2ε)k and k ∈ N. By

Proposition 2 (the sample-preserving derandomization for perfect SNIS), we can assume, without
loss of generality, that ~f,~g are deterministic. For (1− 2ε′′) = (1− 2ε′)m, there is a (deterministic)
linear construction realizing BSS(ε′′) v0

f ′,g′ BSS(ε′)⊗m. By the sequential composition (Theorem 14)
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of these two SNIS, we get a new SNIS BSS(ε′′) v0 BSS(ε)⊗n, where (1 − 2ε′′) = (1 − 2ε′)m =
(1− 2ε)mk. By applying Theorem 5 for insecurity parameter ν = 0, we conclude that the reduction
functions of this new SNIS must be mk-homogeneous; consequently, mk 6 n.

Section 2.7 presents Conjecture 1 that shall help upper-bound the rate of BSS inter-conversion
using statistical SNIS.

8.1 Our Conjecture Implies the Statistical Rate Result

This section shows that our Conjecture 1 implies the statistical rate result for the SNIS of BSS from
BSS samples. More formally, assuming the conjecture, we shall prove the following result.

Claim 20. Let ε, ε′ ∈ (0, 1/2) be noise characteristics such that (1 − 2ε′) = (1 − 2ε)k, for some
k ∈ N. Assuming Conjecture 1, there exists a constant c = c(ε, ε′) such that the following statement
holds. If BSS(ε′)⊗m vν~f,~g BSS(ε)⊗n, for some m,n ∈ N and ν 6 c, then mk 6 n.

Proof. Let f (i), g(i) represent the i-th component of the reductions ~f,~g, where i ∈ {1, . . . ,m}. Now,
we derandomize each pair of reduction functions (f (i), f (j)) and (g(i), g(j)). By a similar argument
as in the proof of Claim 13, there exists k-homogeneous deterministic Boolean functions f∗(i) and
g∗(i), for 1 6 i 6 m, such that, for every 1 6 i < j 6 m,

BES(ε′′) vpoly(ν)

f∗(i)·f∗(j), g∗(i)·g∗(j)
BES(ε)⊗n

This implies that f∗(i) · f∗(j) and g(i) · g∗(j) are poly(ν)-close to 2k-homogeneous and are junta
functions, by Theorem 5. It follows from the discreteness properties of junta Boolean functions
Lemma 2 that f∗(i) · f∗(j) and g(i) · g∗(j) witness a perfect SNIS because otherwise the insecurity is
at least a constant. Therefore, both f∗(i) · f∗(j) and g(i) · g∗(j) are exactly 2k-homogeneous for any
distinct i, j ∈ [m].

Next, we apply Conjecture 1 inductively to conclude that f∗(1) · f∗(2) · . . . · f∗(m) is mk-
homogeneous. Note that f∗(i1), f∗(i2), f∗(l)i3 are k-homogeneous and f∗(i1) · f∗(i2), f∗(i2) · f∗(i3),
f∗(i3) · f∗(i1) are 2k-homogeneous. Applying Conjecture 1 yields that f∗(i1) · f∗(i2) · f∗(i3) is 3k-
homogeneous for any distinct i1, i2, i3 ∈ [m]. Similarly, applying Conjecture 1 to three functions
f∗(i1) · f∗(i2), f∗(i3), f∗(i4) yields that f∗(i1) · f∗(i2) · f∗(i3) · f∗(i4) is 4k-homogeneous for any dis-
tinct i1, i2, i3, i4 ∈ [m]. Applying this repeatedly, one conclude that f∗(1) · f∗(2) · . . . · f∗(m) is
mk-homogeneous. Therefore, it must holds that mk 6 n, which completes the proof.

8.2 Connection to Distance Invariant Codes

In this section, we present the proof of Proposition 4 that shows that there is a connection between
the set of perfectly secure reduction functions for BSS to BSS and distance invariant codes.

Proof. Forward Direction. It follows from the security condition that for any x, u, v

Pr[g(Y ) = v|X = x, f(X) = u] = Pr[V = v|U = u,SimA(u)] = Pr[V = v|U = u]

So for u = v = 1 and any x ∈ C(f, 1), we have

1− ε′ = Pr[g(Y ) = 1|X = x] = Pr[Y ∈ f−1(1)|X = x] =

n∑
t=0

At(x)εt(1− ε)n−t,
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where At(x) denotes the number of codewords c ∈ C(f,+1) whose distance from x is t. Similarly,
for any x′ ∈ C(f,−1),

1− ε′ =
n∑
t=0

Bt(x
′)εt(1− ε)n−t,

where Bt(x′) denotes the number of codewords c ∈ C(f,−1) whose distance from x′ is t.
Now, we use the fact that BSS(ε′) v0

f,g BSS(ε)⊗n which implies that reduction functions f, g are
homogeneous. Then, it also holds that BSS(ε0) v0

f,g BSS(ε1)⊗n for any ε0, ε1 ∈ (0, 1/2) satisfying
(1− 2ε0) = (1− 2ε1)k. Therefore, for any x ∈ C(f,+1) and x′ ∈ C(f,−1), and for any ε ∈ (0, 1

2),
we have:

n∑
t=0

At(x)εt(1− ε)n−t =

n∑
t=0

Bt(x
′)εt(1− ε)n−t (8)

This implies that At(x) = Bt(x
′) for any x ∈ C(f,+1) and x′ ∈ C(f,−1). This completes the proof.

Backward Direction. Suppose that there exists C(f,+1) ⊆ {±1}n such that the distance
enumerator of any codeword in C(f,+1) is identical to the distance enumerator of any codeword of
C(f,−1). It means that

f(x) = g(x) =

{
+1 if x ∈ C(f,+1)

−1 if x ∈ C(f,−1)

By the property of distance invariant code, one can easily verify that Tρf = ρ′f , where ρ = 1− 2ε
and ρ′ = 1 − 2ε′. Moreover, since the summation of coefficients of the distance enumerator of
C(f,+1) is equal to the number of codewords in C(f,+1), it follows that |C(f,+1)| = |C(f,−1)|,
which implies that E[f ] = E[g] = 0. Therefore, by applying Theorem 5 when ν = 0, we conclude
that BSS(ε′) v0

f,g BSS(ε)⊗n.

9 Composition and Derandomization

9.1 Composition

This section proves the sequential and parallel composition theorems, and the security of projection
operation for SNIS.

As a first step, we introduce a few notations. Suppose P,Q are joint distributions (X,Y ) and
(X ′, Y ′) on sample spaces X ×Y and X ′ ×Y ′, respectively. The notation (P‖Q) represents a joint
distribution over the sample space (X ×X ′)× (Y ×Y ′) defined by the following procedure. Sample
(x, y)

$←− (X,Y ), sample (x′, y′)
$←− (X ′, Y ′), give the sample (x, x′) to Alice and (y, y′) to Bob.

For reduction functions, we shall need the following notation. Suppose f : Ω1 → Ω2, and
f ′ : Ω′1 → Ω′2. The function f‖f ′ is a function Ω1×Ω′1 → Ω2×Ω′2 defined by the following mapping
(x, x′) 7→ (f(x), f(x′)).

We remark that, in the composition theorems below, the distribution P, P ′, Q,Q′, and R may
depend on n itself.

Theorem 13 (Parallel Composition). For joint distributions P, P ′, Q, and Q′, suppose we have

P vνf,g Q and P ′ vν′f ′,g′ Q′.

Then, the following holds.
(P‖P ′) vν+ν′

f‖f ′,g‖g′ (Q‖Q′).
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Proof. Suppose the environment does not corrupt any party. Then, the bound follows from a hybrid
argument.

Suppose the environment corrupts Alice. Let SimA and Sim′A be the simulators for corrupt
Alice for P vνf,g Q and P ′ vν′f ′,g′ Q′, respectively. We consider the simulator SimA‖Sim′A for
(P‖P ′) vν+ν′

f‖f ′,g‖g′ (Q‖Q′). The result is immediate from a hybrid argument.
Similarly, when the environment corrupts Bob, the simulator SimB‖Sim′B serves as a the sim-

ulator for the composed reduction, where SimB and Sim′B are simulators for corrupt Bob in the
reductions P vνf,g Q and P ′ vν′f ′,g′ Q′, respectively.

We need one more notation for the sequential composition. Suppose f : Ω → Ω′, and f ′ : Ω′ →
Ω′′. The function f ′ ◦ f is a function Ω→ Ω′′ defined by the mapping x 7→ f ′(f(x)).

Theorem 14 (Sequential Composition). For joint distribution P,Q, and R, suppose we have

P vνf,g Q, and Q vν′f,g R.

Then, the following holds.
P vν+ν′

f◦f ′,g◦g′ R.

Proof. The only non-trivial case is when the environment corrupts one of the parties, say, Alice.
Suppose SimA and Sim′A be the simulators when Alice is corrupted by the environment in the
reduction P vνf,g Q and Q vν′f ′,g′ R. Then, the simulator Sim′A ◦ SimA suffices to prove the security
of the reduction P vν+ν′

f◦f ′,g◦g′ R using a hybrid argument.

Suppose f : Ω→ Ω′ × Ω′′, then the projection function f (1) : Ω→ Ω′ is defined by the mapping
x 7→ y if f(x) = (y, z), for some z ∈ Ω′′. Next, we formally state that projections preserve security.

Theorem 15 (Projection). For joint distribution P,Q, and R, suppose we have

(P‖Q) vνf,g R.

Then, the following holds.
P vν

f (1),g(1)
R.

Proof. The proof is a corollary of statistical distance satisfying the triangle inequality.

9.2 Deterministic Reductions from Randomized Reductions

In this section, we provide proof for Theorem 1. We will show that, without loss of generality, one
can assume the reduction functions in SNIS are deterministic, in other words, parties do not use
any private randomness.

We first define redundancy-free joint distributions in the following.

Definition 1 (Redundancy-free Joint Distribution). A joint distribution (U, V ) over U ×V is called
redundancy-free if all the following conditions hold:

1. Both marginal distributions U and V have full support, i.e. for any u ∈ U , and v ∈ V, we have
Pr[U = u] > 0 and Pr[V = v] > 0.

2. For any two distinct v1, v2 ∈ V, the conditional distributions (U |V = v1) and (U |V = v2) are
different.
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3. For any two distinct u1, u2 ∈ U , the conditional distributions (V |U = u1) and (V |U = u2) are
different.

Without loss of generality, one can assume that the target distribution (U, V ) in SNIS is
redundancy-free. This is true because if (U |V = v1) and (U |V = v1) are the same distribu-
tions, then Bob can combine v1 and v2 together and consider them as one element. Alice can do
similarly. One can get a redundancy-free distribution (U ′, V ′) after removing all redundancy from
the distribution (U, V ). One can see that (U, V ) and (U ′, V ′) can be securely reduced to each other.
We note that both BES and BSS are redundancy-free distribution. We restate Theorem 1 as follow.

Theorem 16 (Derandomization of Reduction Functions). Let (U, V ) and (X,Y ) be two joint dis-
tributions over U×V and X ×Y respectively such that (U, V ) is a redundancy-free joint distribution.
Let n ∈ N and ν ∈ [0, 1]. Let RA and RB be two random variables defined respectively over RA
and RB such that RA is independent of both RB and Xn; RB is independent of both Y n and RA.
Suppose there exist randomized reduction functions f : X n ×RA → U , and g : Yn ×RB → V such
that (U, V ) vνf,g (X,Y )⊗n. Then, there exists a constant γ(which depends on the target distribution
(U, V )), and (deterministic) reduction functions f ′ : X n → U , and g′ : Yn → V such that:

1. (U, V ) vγν
1/4

f ′,g′ (X,Y )⊗n.

2. SD (f(Xn, RA), f ′(Xn)) 6 γ × ν
1
4 and SD (g(Y n, RB), g′(Y n)) 6 γ × ν

1
4 .

We need the following claims for the proof of Theorem 16.

Claim 21. In the setting of Theorem 16, the two following Markov chains hold:

1.
f(Xn, RA)↔ (Xn, RA)↔ Xn ↔ Y n ↔ (Y n, RB)↔ g(Y n, RB)

2.
SimA(U)↔ U ↔ V ↔ SimB(V )

Claim 22. In the setting of Theorem 16, let F denote the random variable f(Xn, RA) defined over
X n ×RA and G denote the random variable g(Y n, RB) defined over Yn ×RB. Let g′ : Yn → V be
the function defined as follows:

g′(yn) := argmin
v∈V

SD ( F | Y n = yn , U | V = v )

Define α := minv1,v2∈V
v1 6=v2

SD ( U | V = v1, U | V = v2). Then, for any yn and v such that v 6= g′(yn)

it happens that
SD ( F | Y n = yn, U | V = v) >

α

2
> 0.

Claim 23. Let f, g : Z → M and Z be a random variable defined over Z. Let F and G denote
random variables f(Z) and g(Z) respectively. Then, SD (F,G) 6 Pr[F 6= G].

Assuming these claims, we prove the theorem as follow.

of Theorem 16. Let g′ be the deterministic function and α be the value defined in Claim 22. It
follows from the first Markov chain in Claim 21 that the distributions (F |Y n = yn) and (F |G =
v, (Y n, RB) = (yn, rB)) are the same. It also follows from the second Markov chain in Claim 21
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that the distributions (U |V = v) and (U |V = v,SimB(V ) = (yn, rB)) are the same. Therefore, the
two following statistical distances are equal:

SD ((F |G = v, (Y n, RB) = (yn, rB) , U |V = v,SimB(V ) = (yn, rB))

SD ( F | Y n = yn , U | V = v )

where random variables F,G are defined in Claim 22. Now, Claim 22 implies that for any rB that
g(yn, rB) = v 6= g′(yn), we have:

SD (F |G = v, (Y n, RB) = (yn, rB) , U |V = v,SimB(V ) = (yn, rB)) >
α

2

We say that yn is bad if Pr[g(yn, RB) 6= g′(yn)] > δ = ν1/2 (note that the probability is over
randomness RB). It follows from average argument that for any bad yn, there exists vyn ∈ V such
that vyn 6= g′(yn) and Pr[g(yn, RB) = vyn ] > ν1/2

|V| . Let BAD ⊆ Yn denote the subset of all bad
strings yn. Define ρ := Pr[Y n ∈ BAD].

According to our discussion above, the insecurity of simulating (U, V ) by using functions f , and
g is at least ρ× ν1/2

|V| ×
α
2 . However, we know that the insecurity is at most ν. Thus, we should have

ρ 6 2|V|ν1/2
α .

Now, we have

Pr[g(Y n, RB) 6= g′(Y n)] = Pr[g(Y n, RB) 6= g′(Y n)|Y n ∈ BAD]× Pr[Y n ∈ BAD]

+ Pr[g(Y n, RB) 6= g′(Y n)|Y n 6∈ BAD]× Pr[Y n 6∈ BAD]

6 1× 2|V|ν1/2

α
+ ν1/2 × 1

6 ν1/2 × (1 +
2|V|
α

)

By the way that we defined function g′, the new scheme defined by the reduction functions f, g′ is
more secure than the scheme f, g (with respect to a corrupt Bob); however, it guarantees correctness
with the looser bound. In fact, according to Claim 23, SD (g(Y n, RB), g′(Y n)) 6 ν1/2 × (1 + 2|V|

α )
and it follows from triangle inequality and security that

SD (g(Y n, RB), V ) 6 SD
(
g(Y n, RB), g′(Y n)

)
+ SD

(
g′(Y n), V

)
6 ν + ν1/2 × (1 +

2|V|
α

)

6 ν1/2 × (2 +
2|V|
α

)

So far, we have shown that given two functions f : X n ×RA → U , and g : Yn ×RB → V such
that (U, V ) vνf,g (X,Y )⊗n, there exists g′ : Yn → V and constant ζ = (2 + 2|V|

α ) (which depends on

distribution (U, V )) such that (U, V ) vζν
1/2

f,g′ (X,Y )⊗n. Now, we can use a similar argument to show

that there exists a function f ′ : X n → U and constant η = ζ
1
2 × (2 + 2|U|

β ), where

β := min
u1,u2∈V
u1 6=u2

SD ( V | U = u1, V | U = u2) ,

such that (U, V ) vην
1/4

f ′,g′ (X,Y )⊗n. Since ν
1
2 6 ν

1
4 , one can set γ := max(η, ζ).

44



Now, we present the proofs of Claim 21, Claim 22, Claim 23.

of Claim 21. The distribution of f(Xn, RA) is determined by the distribution of Xn and RA; while
Xn is correlated with Y n, it is independent of RB, and RA is independent of both Y n and RB.
Similarly, the distribution of g(Y n, RB) is determined by Y n and RB and Y n is independent of
RA and RB is independent of both Xn and RA. Therefore, f(Xn, RA) conditioned on Xn, is
independent of Y n and RB and g(Y n, RB) conditioned on Y n is independent of Xn and RA. This
implies the first Markov chain. Similarly, since SimA(U) is a function of U (and possibly some
private randomness) and SimB(V ) is a function of V (and possibly some private randomness), the
second Markov chain holds.

of Claim 22. We prove this claim by contradiction. Suppose v 6= g′(yn) and

SD ( F | Y n = yn, U | V = v) <
α

2

Then, according to the definition of g′(yn), we have:

SD
(
F | Y n = yn, U | V = g′(yn)

)
6 SD ( F | Y n = yn, U | V = v) <

α

2

Now, we apply triangle inequality:

SD
(
U | V = v, U | V = g′(yn)

)
6 SD

(
F | Y n = yn, U | V = g′(yn)

)
+ SD ( F | Y n = yn, U | V = v)

< α

which is a contradiction to the definition of α.

of Claim 23.

2SD (F,G) =
∑
m∈M

|Pr[F = m]− Pr[G = m]|

=
∑
m∈M

∣∣∣∣∣∣∣∣
∑
z∈Z

f(z)=m

Pr[Z = z]−
∑
z∈Z

g(z)=m

Pr[Z = z]

∣∣∣∣∣∣∣∣
=
∑
m∈M

∣∣∣∣∣∣∣∣∣∣∣
∑
z∈Z

f(z)=m
g(z)6=m

Pr[Z = z]−
∑
z∈Z

g(z)=m
f(z)6=m

Pr[Z = z]

∣∣∣∣∣∣∣∣∣∣∣
6
∑
m∈M

∑
z∈Z

f(z)=m
g(z)6=m

Pr[Z = z] +
∑
m∈M

∑
z∈Z

g(z)=m
f(z) 6=m

Pr[Z = z]

= 2 Pr[F 6= G]
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9.3 Examples

This section presents an example of SNIS and an insecure NIS. Section 9.3.1 presents a SNIS of
BES(ε′) from BES(ε), where (1 − ε′) = (1 − ε)2. Section 9.3.2 presents a NIS of BES(ε/2) from
BES(ε), where ε ∈ (0, 1). However, this NIS is insecure. The reason underlying its insecurity
highlights the additional constraints needed to ensure security.

9.3.1 SNIS Example

Consider the secure non-interactive simulation of BES(ε′) from BES(ε)⊗2, where (1− ε′) = (1− ε)2,
with perfect security. In this case we use the reduction functions f(x) = x1 · x2 and g(y) = 0 if
y1 = 0, or y2 = 0; otherwise, g(y) = y1 · y2. Let us first visualize the entire joint distribution in
Table 2.

v = +1 v = 0 v = −1
+1 + 1 −1−1 +1 0 0 +1 −1 0 0−1 0 0 +1−1 −1+1

u = +1
+1 + 1 (1−ε)2

4
(1−ε)ε

4
ε(1−ε)

4
ε2

4

−1− 1 (1−ε)2
4

(1−ε)ε
4

ε(1−ε)
4

ε2

4

u = −1
+1− 1 (1−ε)ε

4
ε(1−ε)

4
ε2

4
(1−ε)2

4

−1 + 1 ε(1−ε)
4

(1−ε)ε
4

ε2

4
(1−ε)2

4

Table 2: Joint distribution induced by SNIS of BES(ε′) from BES(ε)⊗2. Rows have elements in
X 2 = {±1}2, and columns have elements in Y2 = {±1, 0}2. The (x, y)-th entry in this matrix
represents the probability Pr

[
(X,Y )⊗2 = (x, y)

]
, and no-entry implies that the probability is 0.

Consider a corrupt Alice (refer to Table 3). The security constraint states that the condi-
tional distribution (Xn|f(Xn) = u, g(Y n) = v) is independent of v, Bob’s output. Similarly, when
Bob is corrupt (refer to Table 4). The security constraint states that the conditional distribution
(Y n|f(Xn) = u, g(Y n) = v) is independent of u.

9.3.2 Insecure NIS Example

Consider the non-interactive simulation of BSS(ε′) from BES(ε), where ε′ = ε/2 and ε ∈ (0, 1).
Alice’s reduction function is u = f(x) = x1. The reduction function for Bob is randomized (it takes
one additional random bit as input). Bob’s reduction function is g(y, rB) is defined as follows, where
rB ∈ {0, 1}. If y1 ∈ {0, 1}, then v = y1, and, if y1 =⊥, then v = rA. Observe that u 6= v with

v = +1 v = 0 v = −1

u = +1
+1 + 1 (1−ε)2

4
2ε−ε2

4

−1− 1 (1−ε)2
4

2ε−ε2
4

u = 1
+1− 1 2ε−ε2

4
(1−ε)2

4

−1 + 1 2ε−ε2
4

(1−ε)2
4

Table 3: The case of corrupt Alice for SNIS of BES(ε′) from BES(ε)⊗2. The table illustrates the joint
distribution of (X2, V ). It suffices to let SimA(+1) be the uniform distribution over {+1+1,−1−1},
and SimA(−1) be the uniform distribution over {+1− 1,−1 + 1}.
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v = +1 v = 0 v = 1
+1 + 1 −1− 1 +1 0 0 + 1 −1 0 0− 1 0 0 +1− 1 −1 + 1

u = +1 (1−ε)2
4

(1−ε)2
4

(1−ε)ε
4

ε(1−ε)
4

(1−ε)ε
4

ε(1−ε)
4

2ε2

4

u = −1 (1−ε)ε
4

ε(1−ε)
4

(1−ε)ε
4

ε(1−ε)
4

2ε2

4
(1−ε)2

4
(1−ε)2

4

Table 4: The case of corrupt Bob for the reduction of BES(ε′) to BES(ε)⊗2. The table illustrates
the joint distribution of (U, Y 2). It suffices to let SimB(+1) be the uniform distribution over
{+1 + 1,−1− 1}, SimB(1) be the uniform distribution over {+1− 1,−1 + 1}, and SimB(0) be the
distribution that outputs +1 0,−1 0, 0 +1, and 0 −1 (each) with probability ε(1 − ε)/(4ε − 2ε2),
and outputs 00 with probability 2ε2/(4ε− 2ε2).

v = +1 v = −1
+1 + 1 −1 + 1 +1− 1 −1− 1

u = +1
+1 + 1 a b b c
+1− 1 b c a b

u = −1
−1 + 1 b a c b
−1− 1 c b b a

Table 5: The joint distribution induced by the reduction f(x1, x2) = x1, g(y1, y2) = y2 which is used
to simulate BSS(1/2) from BSS(ε)⊗2. Note that a = (1−ε)2

4 , b = ε(1−ε)
4 , c = ε2

4 where ε ∈ (0, 1
2).

This reduction is perfectly correct (refer to Table 7) but not perfectly secure (refer to Table 6).
Note that the Fourier spectrum of both functions f and g are concentrated on degree one but not
the same support (see Proposition 3).

probability ε/2. However, this NIS is insecure when Bob is corrupt (this reduction is secure against
a corrupt Alice).

Fix Bob’s output v. Conditioned on this output, with probability (1 − ε), Bob knows Alice’s
output exactly. With the remaining ε probability, Bob has no advantage is predicting Alice’s output.
A secure BSS(ε/2) sample needs to ensure that conditioned on Bob’s entire view, the probability
of Alice output being u = v is (1 − ε/2) always. To summarize, NIS allows reduction functions to
erase information, which is not allowed by SNIS.

Remark 6. Note that the NIS above is randomized. One cannot derandomize this while preserving
the rate of the reduction. For example, Bob can use additional BES(ε) samples as input to simulate
the bit rA. However, the rate worsens. We shall prove that SNIS, on the other hand, admits a
sample-preserving derandomization.

47



v = +1 v = −1
+1 + 1 −1 + 1 +1− 1 −1− 1

u = +1 α 1
4 − α α 1

4 − α
u = −1 1

4 − α α 1
4 − α α

Table 6: The joint distribution achieved after collapsing the rows of the matrix of Table 5. Note
that α = a+ b = 1−ε

4 , where ε ∈ (0, 1
2), a = (1− ε)/4, and b = ε(1− ε)/4. The submatrix restricted

to v = +1 has rank 2. Therefore, this reduction is not perfectly secure against a corrupt Bob.

v = +1 v = −1

u = +1 1
4

1
4

u = −1 1
4

1
4

Table 7: The joint distribution achieved after collapsing the rows and columns of the matrix of
Table 5. This table shows that the reduction introduced in Table 5 is perfectly correct.
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