
On the Attack Evaluation and the Generalization
Ability in Profiling Side-channel Analysis

Lichao Wu1, Léo Weissbart1,2, Marina Krček1, Huimin Li1, Guilherme Perin1,
Lejla Batina2, and Stjepan Picek1

1 Delft University of Technology, The Netherlands
2 Digital Security Group, Radboud University, The Netherlands

Abstract. Guessing entropy is a common metric in side-channel anal-
ysis, and it represents the average key rank position of the correct key
among all possible key guesses. By evaluating it, we estimate the effort
needed to break the implementation. As such, the guessing entropy be-
havior should be stable to avoid misleading conclusions about the attack
performance.
In this work, we investigate this problem of misleading conclusions from
the guessing entropy behavior, and we define two new notions: simple and
generalized guessing entropy. We demonstrate that the first one needs
only a limited number of attack traces but can lead to wrong interpreta-
tions about the attack performance. The second notion requires a large
(sometimes unavailable) number of attack traces, but it represents the
optimal way of calculating guessing entropy. We propose a new met-
ric (denoted the profiling model fitting metric) to estimate how reliable
the guessing entropy estimation is. With it, we also obtain additional
information about the generalization ability of the profiling model. We
confirm our observations with extensive experimental analysis.

Keywords: Side-channel Analysis · Profiling Analysis · Deep Learning · Guess-
ing Entropy · Ideal Key Rank · Profiling Model Fitting

1 Introduction

Side-channel attacks (SCAs) are recognized as powerful attacks on implementa-
tions of cryptographic algorithms. Commonly, one divides side-channel attacks
into direct attacks like Simple Power Analysis (SPA) and Differential Power
Analysis (DPA) [11] and two-stage (profiling) attacks like template attack [3],
stochastic models [23], and machine learning-based attacks [13,14,21]. Direct at-
tacks have an advantage that they do not require access to an identical and
open copy of the device under attack, but to break an implementation, such at-
tacks might require tens of thousands of measurements (or more, depending on
the level of protection deployed). On the other hand, two-stage attacks assume
an “open” device (or a copy of it), but the actual key recovery stage requires
only a few measurements or, in some cases, a single trace [10]. In recent years,

machine learning-based attacks positioned themselves as a strong direction for
profiling SCA. Additionally, the deep learning domain’s rapid improvements also
advanced SCA as deep learning methods showed capable of breaking even pro-
tected implementations [2,10]. In the rest of this paper, we consider profiling
SCA only and focus on deep learning-based SCA.

To evaluate the attack’s performance, we require reliable metrics, and the
averaged key rank (guessing entropy) is commonly accepted as one of the most
suitable metrics for SCA.3 More precisely, the level of convergence of guessing
entropy for the correct key candidate indicates how successful an attack is [24].
When considering the common scenarios for profiling side-channel analysis, we
can distinguish between two perspectives: 1) the evaluator’s perspective, who
knows the correct key and can analyze how successful the attack is, not only
by trying the most likely key guesses, but also by examining the correct key
position, and 2) the attacker’s perspective, where the attacker obtains the list of
key guesses sorted from the most likely to the least likely, and he will typically
try a number of top keys hoping for a successful attack. Clearly, the second
perspective is more general and more challenging as we assume no knowledge
of the correct key. For profiling attacks to be successful, the number of attack
traces in the test or attack phase to reach guessing entropy of 14 depends on the
profiling model (i.e., templates for template attack or machine learning model)
ability to fit existing leakage and generalize it properly to a separate attack set.
Additionally, under the assumption that the profiling model can fit the existing
leakage, issues like noise (from the environment of countermeasures) also affect
the number of required attack traces. As the attacker’s goal is to obtain the
best possible results (i.e., retrieve secret information), he will use all available
traces to estimate the attack performance, especially since the guessing entropy
convergence for the correct key might only happen after processing sufficiently
many traces.

A natural question to ask is on the reliability of guessing entropy in all cases.
Does it happen that it might suggest wrong key guesses (as the most likely ones),
and regardless of the utilized computational effort (i.e., the number of traces
used), the correct key’s rank keeps on increasing? We answer this question in
the affirmative and put this observation forward as one of the motivations for
this work.

In this paper, we start by providing a comprehensive interpretation of guess-
ing entropy behaviors in the profiling side-channel analysis. Our results show
that guessing entropy metric can be deceptive and indicate that a wrong key
is the correct one and thus result in a decrease of the attack performance (as
measured with the correct key) with the increase in the number of attack traces.
We define two specific notions of guessing entropy: simple guessing entropy and
generalized guessing entropy. The former derives guessing entropy due to com-

3 A second common metric is success rate, which is less interesting in our considera-
tions, as explained in Section 4.

4 Guessing entropy equal to one means that the correct key is ranked as the best key
candidate in the attack phase.

2

puting key rank multiple times with all available attack traces, where the attack
traces are simply shuffled in order of processing for each key rank calculation.
The generalized guessing entropy metric assumes that for each key rank calcu-
lation, the attacker randomly selects a portion of the attack traces to have a
higher level of randomization and, consequently, an evident convergence of the
guessing entropy. Next, we propose Leakage Distribution Difference as a metric
to measure the difference between the correct key and all incorrect keys.

Finally, we propose a novel profiling model fitting metric that calculates the
correlation between Leakage Distribution Difference and the ranked vector of key
guesses. With it, we can properly estimate the profiling attack performance in
cases when we do not have enough attack measurements to evaluate generalized
guessing entropy, but we can also get additional information about the profiling
model’s generalization ability.

The main contributions of this paper are:
1. We discuss the guessing entropy behaviors one might obtain as the result of

an attack. Consequently, we define two new notions of guessing entropy to
evaluate the attack performance in profiling SCA, i.e., we introduce simple
guessing entropy and generalized guessing entropy. Finally, we define the
notion of deceptive guessing entropy, which can cause the wrong estimation
of the attack performance for the profiling attacks.

2. We propose a novel way to calculate the distance between the correct key
and wrong keys, called Leakage Distribution Difference (LDD), and by doing
so, we can obtain information about the relationship between the correct key
and guessed keys. More precisely, our new metric can be regarded as an Ideal
Key Rank.

3. We introduce a new metric to estimate how well the profiling model fits the
data. To that end, we show that the Pearson correlation between LDD and
the key guessing vector can reliably indicate the attack’s performance. Our
metric: 1) works well even when using the notion of simple guessing entropy,
2) if used with generalized guessing entropy, it requires fewer measurements
to assess the attack, and 3) allows to better estimate profiling model gener-
alization than guessing entropy.
We provide extensive experimental results on two publicly available datasets

and one simulated dataset to validate our claims. We also consider two commonly
used deep learning techniques in SCA: multilayer perceptron and convolutional
neural networks. Finally, to better illustrate several concepts, we use the tem-
plate attack.

2 Background

2.1 Notation

We use calligraphic letters like X to denote sets and the corresponding upper-
case letters X to denote random variables and random vectors X over X . The
corresponding lower-case letters x and x denote realizations of X and X, respec-
tively. We use sans serif font for functions (e.g., f).

3

Let b be the number of bits in the target cryptographic state, k is a key
byte candidate that takes its value from the keyspace K, and k∗ is the correct
key byte. A dataset is defined as a collection of traces T, where each trace ti
is associated with a plaintext di and a key ki (the ranges for i in ti/di and ki
need not be the same), or key byte ki,j and plaintext byte di,j when considering
partial key recovery. The number of profiling traces equals N , and the number
of attack traces equals Q. In the remainder, θ denotes the vector of parameters
to be learned in a profiling model (e.g., the weights in neural networks), while
H denotes the set of hyperparameters defining the profiling model.

2.2 Supervised Learning

Supervised learning deals with the task to learn a mapping f between a set of
input variables from X and an output variable Y (f : X → Y). The model f is
parameterized by θ ∈ Rn, where n denotes the number of trainable parameters.
Supervised learning happens in two phases: training and test. The goal of the
training phase is to learn such parameters θ′ that minimize the empirical risk
represented by a loss function L on a dataset T of size N (T = {(xi, yi)}Ni=1):

θ′ = argminθ
1

N

N∑
i

L(fθ(xi), yi). (1)

Note that in this paper, we consider only the classification task as the side-
channel attack’s goal. We know the data and corresponding labels in the classi-
fication procedure, and we aim to predict the labels for previously unobserved
data. With the classification task, we consider a setting where there are multiple
discrete label values. For supervised learning to be useful in the SCA setting, we
require to train a model that generalizes well (i.e., does not overfit), and that
has a negligible bias.

Definition 1. Model generalization. It represents the model’s ability to adapt
properly to new, previously unobserved data, drawn from the same distribution
used to create the model.

Definition 2. Overfitting. It represents the phenomenon when a model learns
the detail and noise in the training data to the extent that it negatively impacts
the model’s performance on test data.

Definition 3. Bias of a model. It represents the error from wrong assump-
tions in the learning algorithm.

2.3 Profiling Side-channel Analysis

A profiling side-channel attack is a category of side-channel analysis methods
that can map a set of inputs (e.g., side-channel traces) to a set of outputs (e.g.,
probability vector of key hypothesis). Profiling side-channel attacks consist of
two phases:

4

1. Learning or profiling phase. The profiling phase consists of training the
parameters vector θ of a model on a set of N profiling traces labeled with
the leakage value of the keys used to compute the ciphertexts of all traces
with their corresponding plaintexts. The goal is to fit the parameters of a
function that maps the traces to the dataset’s labels in the best way.

2. Test or attack phase. The attack phase consists of obtaining label pre-
dictions for the traces of a different dataset of Q attack traces to test the
model. The trained model processes each separate attack trace and produce
the attack’s output as a vector of probabilities pi,j ∈ K, where each index is
the individual probability that a trace i is associated with the leakage value
j.
Profiling side-channel attacks are mainly composed of template attacks, ma-

chine learning attacks, and deep learning attacks. We consider three common
profiling attack methods.
Template Attack. Template attack (TA) uses Bayes theorem to obtain pre-
dictions, dealing with multivariate probability distributions as the leakage over
consecutive time samples is not independent [4]. In the state-of-the-art, tem-
plate attack relies mostly on a normal distribution.

Multilayer Perceptron. The multilayer perceptron (MLP) is a feed-forward
neural network that maps sets of inputs onto sets of appropriate outputs [6].
MLP consists of multiple layers of nodes in a directed graph, where each layer
is fully connected to the next one, and training of the network is done with
the backpropagation algorithm. There are at least three layers: one input layer,
one output layer, and one hidden layer. If there is more than one hidden layer,
then such an architecture already represents deep learning.

Convolutional Neural Networks. Convolutional neural networks (CNNs)
commonly consist of three types of layers: convolutional layers, pooling layers,
and fully-connected layers. The convolution layer computes the output of neu-
rons that are connected to local regions in the input, each computing a dot
product between their weights and a small region they are connected to in the
input volume. Pooling decreases the number of extracted features by performing
a down-sampling operation along the spatial dimensions. The fully-connected
layer (the same as in MLP) computes either the hidden activations or the class
scores.

2.4 Evaluating the Attack Performance

Definition 4. Profiling model A profiling model fθM is a statistical model used
to map the inputs (side-channel measurements) to the outputs (classes as ob-
tained by evaluating the leakage model on the sensitive operation). fθM represents
the profiling model trained for a given leakage model M and learning parameters
θ.

Definition 5. Key guessing vector. The key guessing vector g is the vector
of key candidates ranked by decreasing order of probabilities from the averaged

5

output of the profiling model’s prediction:

g = sort

(
Q∑
i

log Pr(Ti; f
θ
M)

)
, (2)

where Pr(Ti; f
θ
M) is the prediction vector from the profiling model fθM on trace Ti.

Q is the number of traces guessing entropy is estimated on and sort is the function
that sorts array elements in order of decreasing values of their probabilities. Note
that we follow the log-likelihood principle where we sum the logarithms of the
probabilities.

From g, g1 is the most-likely, and g|K| is the least-likely key candidate.

Definition 6. Guessing entropy The guessing entropy5 represents the aver-
age position of the correct key k∗ in the key guessing vector g:

GE =
1

a

a∑
i=1

rankk∗(g), (3)

where rankk(g) ∈ {1, . . . , |K|}, and a denotes the number of individual experi-
ments we average over. This value is commonly set to 100 in related works.

Definition 7. Success rate. The success rate of order o is the average empir-
ical probability that the secret key k∗ is located within the first o elements of the
key guessing vector g.

2.5 Datasets

ASCAD Dataset. The ASCAD dataset contains 200 000 traces for profiling, with
random keys and random plaintexts, and 100 000 for the attack phase, with fixed
key and random plaintexts [1]. Side-channel traces in this dataset represent the
AES encryption, where the attacked trace interval represents the processing of
the third byte in the S-box operation presented in the first round. A window of
1 400 points of interest is extracted around the leaking spot. The operation is
masked, and we assume no knowledge about masks in the profiling phase.

CHES CTF Dataset. This dataset refers to the CHES Capture-the-flag (CTF)
AES-128 trace set, released in 2018 for the Conference on Cryptographic Hard-
ware and Embedded Systems (CHES). The traces consist of masked AES-128
encryption running on a 32-bit STM microcontroller. In our experiments, we
consider 43 000 traces for the training set, which contains a fixed key. The
validation and test set consist of 1 000 traces each. The key used in the train-
ing and validation set is different from the key configured for the test set. Each
trace consists of 2 200 features. This dataset is available at https://chesctf.

riscure.com/2018/news.

5 As we attack only a single key byte, the proper term is partial guessing entropy.
Nevertheless, we use the two terms interchangeably.

6

https://chesctf.riscure.com/2018/news
https://chesctf.riscure.com/2018/news

3 Related Works

In Chari et al.’s seminal work, the authors developed the template attack (TA)
and showed it could break implementations secure against other forms of side-
channel attacks [4]. This attack is the most powerful one from the information-
theoretic point of view, but to reach its full power, it requires an unbounded
number of traces, and that the noise follows the Gaussian distribution [13]. In-
stead of using one covariance matrix for each label y, the authors of [5] proposed
to use one pooled covariance matrix averaged over all labels to make it more ef-
ficient concerning the computation complexity. Finally, the third type of attack,
called stochastic models, utilizes linear regression instead of probability density
estimation (as used in TA) [23].

While machine learning techniques are widely used for several decades, the
SCA community showed interest in such techniques one decade ago. First, the
most interest sparked techniques like random forest [12] and support vector
machines [9,8,21]. Besides those techniques, a multilayer perceptron method also
demonstrated a significant potential [7], but the boundary between machine
learning and deep learning is often not very clear as the first works do not
report precisely the neural network sizes.

The rapid development of deep learning-based SCAs started in 2016 when
Maghrebi et al. demonstrated the strong performance of several neural network
types, most notably, convolutional neural networks [14]. Deep neural networks
configurations are difficult to tune. The good performance of multilayer percep-
trons or convolutional neural networks relies on an efficient selection of hyper-
parameters for specific datasets. In [26], the authors proposed a methodology to
select hyperparameters that are related to the size (number of learnable param-
eters, i.e., weights and biases) of layers in CNNs. This includes the number of
filters, kernel sizes, strides, and the number of neurons in fully-connected layers.
In [1], an empirical evaluation for different hyperparameters is conducted for
CNNs on the ASCAD database. Still, to the best of our knowledge, there are
no publications providing solutions for hyperparameters optimization algorithms
for the context of side-channel analysis. Kim et al. investigated how adding noise
to the input (thus, serving as regularization) improves the performance of pro-
filing SCAs [10]. Depending on the number of profiling traces, the number of
features (or sample points), and the protection level of the target device (includ-
ing masking and hiding countermeasures), the number of the machine or deep
learning models that can be tested is easily limited by computation power or
time budget. In this case, the security evaluator or attacker has two options:
1) train the maximum possible number of profiling models within the available
resources, or 2) train a limited number of profiling models by using optimiza-
tion methods. Nevertheless, the best leakage model selection also influences the
performance of deep learning model [19].

It is intuitive that the number of measurements also limits the performance
of a profiling attack. Deep neural networks are known to provide top-level per-
formances in many domains when the amount of training data is sufficiently
large. However, it could also provide remarkable performance when the amount

7

of training data is reduced. In the context of profile side-channel attacks, Cagli et
al. investigated how to create measurements that improve the attack performance
synthetically [2]. Differing from the previous work where the authors developed
a specialized data augmentation technique, Picek et al. showed that generic data
augmentation techniques help in profiling SCA also [20]. Researchers also inves-
tigated whether limiting the number of measurements can be beneficial, both
from the experimental setup and performance sides [22].

Commonly, in machine learning, one estimates the behavior of a profiling
model based on statistics of individual observations like accuracy, loss, or re-
call. Unfortunately, such metrics can be misleading in SCA, as one considers
cumulative predictions. Picek et al. showed that common machine learning met-
rics could suggest radically different performance than the SCA metrics [20].
Masure et al. connected the perceived information and negative log-likelihood,
which shows there can be common ground when using machine learning metrics
in SCA [16]. Finally, Perin et al. discussed how mutual information could be a
good metric to indicate when to stop the machine learning training process [18].

4 On Possible Guessing Entropy Behaviors

Recall, guessing entropy is the average rank of the correct key k∗ in a key guessing
vector g after processing Q attack traces. From a practical perspective, the
number of attack traces Q is always limited and defined according to side-channel
measurements’ availability. When a certain number of Q measurements is not
sufficient for the attack, a natural choice for the attacker or security evaluator is
to increase the number of attack traces in key rank calculations used to obtain
guessing entropy. By following that procedure of taking as many measurements
as needed for a successful attack (but at the same time, not using more attack
traces than strictly needed), we can observe several characteristic behaviors for
a single key byte GE:

– GE can continuously decrease with increasing the number of attack traces.
It is intuitive to assume that increasing the number of attack traces will
lead to successful key recovery with the trained model as the final guessing
entropy converges. This behavior is shown as blue curves in Figures 1 and 2.
The GE value can also stabilize for some specific value when it does not
converge anymore with more added attack traces.

– GE can stay close to (2b−1)/2, where b is the number of bits in the target
cryptographic state. Consequently, GE then behaves like random guessing.
Then, we cannot determine GE’s behavior or convergence by adding more
attack traces, as the increase or decrease of GE could only be confirmed by
processing a very large number of attack traces that may be unavailable.
This behavior is shown as green curves in Figures 1 and 2.

– GE can continuously increase with increasing the number of attack traces
(red curves in Figures 1 and 2). It is intuitive to assume that adding more
traces would only increase GE toward the worst rank equal to 2b − 1 (but
not necessarily reaching it).

8

Definition 8. Deceptive Guessing Entropy. Deceptive guessing entropy denotes
any setting where, by adding more attack traces, guessing entropy increases.

Note that while the first and second behaviors are commonly seen in the re-
search community, the third behavior is never discussed, and one could assume it
does not happen in practice. Unfortunately, as clearly seen from Figures 1 and 2,
it can easily occur, which leads to wrong conclusions about the attack perfor-
mance.6 Next, we provide experimental results obtained on publicly available
datasets and publicly available attack methods (neural network architectures)
for all three described behaviors.

The discussed GE behaviors lead to commonly accepted interpretations about
the profiling model performance. When GE increases with more processed at-
tack traces or stays random, the profiling model is wrong because it does not
learn side-channel leakages related to the correct key. On the other hand, when
GE decreases, the profiling model is trained correctly and can fit the existing
leakage. Adding more attack traces will lead to GE indicating a correct key can-
didate ranked among the first ones. Thus, one could assume that the random or
deceptive GE behavior depends solely on how well the profiling model fits the
data. Indeed, this is one common cause.

However, the random or deceptive GE behavior can also happen due to the
attack traces selection procedure. We can distinguish between two general ways
how to select the traces and, consequently, between two notions of guessing
entropy.7 In the first setting, the evaluator aims to maximize the number of
attack traces used in each key rank calculation. In this case, the final key rank
value obtained after the processing of Q attack traces, for all key candidates ki,
is the same in each key rank calculation, which leads to the first GE notion.

Definition 9. Simple Guessing Entropy (SGE). Given Q attack traces,
the simple guessing entropy results from the average computation of multiple
attacks, where each calculation considers the full set of available Q attack traces
with some traces being shuffled.

6 One could assume that the increase of GE with the increase in the number of attack
traces does not pose a serious threat, as it will be enough to wait for the correct key
to reach the worst possible rank. Our experiments indicate that this rarely happens.
What is more, even if it would happen, there is no intuitive reason to look at the
least likely keys (unless the attacker knows the correct key).

7 Note that up to now, we discussed only the guessing entropy behaviors, while there
are other SCA metrics to evaluate the attack performance. We claim that key rank
and success rate do not exhibit problematic behavior due to their more limited
nature (this holds for the second reason - attack selection procedure. Naturally, all
metrics can indicate wrong attack behavior if the model is not well trained). The key
rank takes only a single selection of attack traces and does not suffer from the issues
arising in the averaging process when using repeated traces. Success rate (or more
precisely, first-order success rate) only considers if the most-likely key is the correct
key. Thus, it cannot show deceptive attack behavior as every key guess, except the
most likely, is treated in the same way.

9

(a) MLP without any changes in the ar-
chitecture or hyperparameters on the syn-
chronized ASCAD dataset with a fixed
key.

(b) MLP without any changes in the
architecture or hyperparameters on the
desynchronized (N [0] = 50) ASCAD
dataset with a fixed key.

(c) MLP on the DPAcontest v4 dataset.
he uniform weight initializer, Tanh in-
ner activation functions, 50 epochs, 50
batch size, 1e-3 learning rate, 4 000 train-
ing traces, and 500 attacking traces.

(d) MLP on the AES HD dataset. glo-
rot normal weight initializer, ELU inner
activation functions, 50 epochs, 256 batch
size, 1e-3 learning rate, 45 000 training
traces, and 5 000 attacking traces.

Fig. 1: Examples of GE behaviors with MLP taken from [1] and the identity
leakage model. Note that not all figures show all three types of behavior. The
MLP has six layers with 200 neurons per layer. It uses glorot uniform as the
weight initializer in every layer, and ReLU is used as the activation function in
all except the last layer. For the last layer, Softmax activation function is used.
MLP is trained with RMSProp optimizer for ASCAD dataset, and with Adam
optimizer for DPA contest v4 dataset and AES HD dataset.
DPAcontest v4 is a masked software implementation that can be easily trans-
formed into unmasked implementation. It consists of 100 000 traces where
each trace has 3 000 features. DPAcontest v4 dataset is available at http:

//www.dpacontest.org/v4/42_traces.php.
AES HD is an unprotected hardware implementation where the common leak-
age model to attack is the Hamming distance model. It consists of 50 000 mea-
surements where each trace has 1 250 features. AES HD dataset is available
at https://github.com/AESHD/AES_HD_Dataset.

10

http://www.dpacontest.org/v4/42_traces.php
http://www.dpacontest.org/v4/42_traces.php
https://github.com/AESHD/AES_HD_Dataset

(a) CNN from [26] on the synchronized
ASCAD dataset with random keys and
the identity leakage model.

(b) CNN from [26] on the synchronized
ASCAD dataset with a fixed key and the
Hamming weight leakage model.

Fig. 2: Examples of GE behaviors with CNNs. The architecture and hyperpa-
rameters are not changed from the original paper except for the leakage model
in Figure 2b.

Following Definition 5, gsge represents the key guessing vector obtained from
guessing entropy computed according to Definition 9. Considering the full set
of Q attack traces, the shuffling and averaging for SGE does not bring any
statistical improvement as one uses all the traces for every key rank calculation
for the guessing entropy evaluation.

Still, as it will be shown, to have consistent conclusions about GE and at-
tack performance, we need to investigate a generalized way to compute guessing
entropy, and what is possible to conclude when this generalization cannot be
made. Consequently, we present the definition of generalized guessing entropy:

Definition 10. Generalized Guessing Entropy (GGE). Given Q attack
traces, the generalized guessing entropy is the mean over all key rank calculations,
each of which considers a randomly selected U out of Q traces (i.e., a fraction of
available traces), where U equals Q(1−r). The randomization factor r = 1−U/Q,
for U ≤ Q and 0 ≤ r < 1, defines the level of randomization of attack traces for
each (independent) key rank calculation. The higher the randomization factor r,
the higher the generalization level represented by generalized guessing entropy.
Following Definition 5, ggge represents the key guessing vector obtained from
guessing entropy computed according to Definition 10.

Definition 11. Bootstrap sampling. A method involving drawing of sample
data repeatedly with replacement from a data source to estimate a population
parameter.

There is a connection between the way how GGE is calculated and the boot-
strap sampling process. Let us consider a case where we calculate guessing en-
tropy for N traces (calculations for other trace quantities are done indepen-
dently, so the same experiment procedure is repeated). In GGE, we select Z

11

traces, where Z < N , and we calculate key rank and repeat the procedure to
obtain GGE. With bootstrap, we select with replacement from N traces, which
will cause that the number of unique measurements is smaller than N . Then, by
taking unique measurements only, we can calculate key rank, and by repeating
the procedure, guessing entropy. The main difference lies in the fact that our
definition of GGE relies on an explicitly defined less than N measurements to
be used for each key rank calculation. For bootstrap, “less than N” is a conse-
quence of considering unique measurements in a sampling procedure that takes
replacement into account.

The traces selected for each key rank calculation for GGE always represent
only a small subset of the available attack traces (thus with different noise dis-
tribution). Finally, by increasing the randomization factor r, we increase the
GE estimation’s reproducibility. For GGE, to provide an accurate estimation of
the profiling model’s performance for different attack sets, the number of attack
traces must be larger than for the SGE analysis. When the number of attack
traces is too small to compute GGE, it is still possible to evaluate if a profil-
ing model can be successful. Consequently, we propose in Section 5 a metric to
measure how well the profiling model fits the SCA leakage.

Remark 1. We do not claim that we “discovered” any of the two notions of
guessing entropy. Rather, to the best of our knowledge, we are the first ones
discussing the differences and consequences of those notions in SCA. Seminal
related works on the topic are rather vague, where the definitions either remind
more of SGE or discuss GE in an abstract way. For instance, J. Massey defined
guessing entropy as: “The guessing entropy of a random variable X is the aver-
age number of questions of the kind “does X = x hold” that must be asked to
guess X’s value correctly” [15]. In [24], GE is interpreted from [15] as the ex-
pected value of the random variable of the algorithm representing a side-channel
key recovery adversary ability to find the index of the correct key class in the
key guessing vector. Thus, we see that both definitions do not account for the
numbers of traces required for the reliable estimate of the attack performance.

Finally, it is difficult to deduce by simple code evaluation whether one calculates
SGE or GGE, see, e.g., [26,1]. The main difference lies in the maximal number
of attack traces one takes compared to the attack dataset’s size.

5 On the Relationships between Guessed Keys and the
Correct Key

After training a profiling model, it is essential to determine whether the model
fitted data or noise. Commonly, this is done by evaluating the performance on
the attack dataset. If the model fitted data (i.e., learned from the actual leakage
information), its bias must be low, and by adding more attack traces, an SCA
metric should indicate improved attack performance. Even if the profiling model
outputs a wrong key as the most likely key, one will hope that the correct key
is among the most likely ones and that the correct key and most likely wrong

12

keys share a certain relationship. On the other hand, if the model fitted noise,
it will behave as random guessing or even consistently point toward wrong key
candidates. Then, one would assume there is little or no relationship between the
guessed and the correct key. Next, we introduce the first metric (to the best of
our knowledge) to assess the relationship between different key candidates and
the correct key.

5.1 Leakage Distribution Difference Metric

First, to better evaluate the profiling model’s preference (i.e., the mapping deci-
sion) for specific key candidates, we calculate a hypothetical leakage distribution
for every key candidate and all plaintexts for a given dataset. We denote this
distribution as the leakage distribution of a dataset. The leakage distribution
variation between different key candidates represents the Leakage Distribution
Difference metric, denoted as LDD. LDD provides an estimation of the hypo-
thetical label distribution variation between different key candidates. A specific
key will then have a smaller probability to be selected based on a (properly)
trained model if LDD is large between that key and the correct key. Conse-
quently, LDD can be considered as an ideal key rank metric indicating the best
possible scenario where the correct key is maximally separated from all the other
keys.

Eq. (4) shows the sum of the squared difference between the leakage distribu-
tion of all key hypotheses k ∈ K and the correct key candidate k∗ over Q attack
traces. Since all problem dimensions are comparable, we use the Euclidean dis-
tance (L2 norm). Larger difference between the two leakage values will introduce
more significant LDD variation. Note that LDD is a vector of size |K|, that is
computed as follows:

LDD(k∗, k) =

Q∑
i=0

‖f(di, k
∗)− f(di, k)‖2 , k ∈ K. (4)

In the above expression, f(di, k) is the leakage model function that returns
the leakage value according to a key candidate k and data value di ∈ Q, where
Q denotes the number of attack traces in the dataset. LDD is computed for
every key candidate and gives a unique distribution of all key candidates based
on their difference to the correct key. LDD is equal to zero for the correct key
(thus, providing the ideal key rank distinction between the correct key and wrong
keys).

For instance, if the leakage function relies on the Hamming weight of a target
byte in S-box output, we define the Hamming Weight Distribution Difference
(HWDD) for the correct key candidate k∗ and a key candidate k as:

HWDD(k∗, k) =

Q∑
i=0

‖HW (Sbox(di ⊕ k∗))−HW (Sbox(di ⊕ k))‖2 . (5)

13

As we can observe, the leakage function in Eq. (5) is set to HW (Sbox(di⊕k)),
where⊕ is the exclusive OR operation. Similarly, we could also define the Identity
Leakage Distribution (IDD) where the target state is the S-box output. In this
case, the leakage function equals Sbox(di⊕ k) and the IDD value for the correct
key candidate k∗ and a key candidate k is:

IDD(k∗, k) =

Q∑
i=0

‖Sbox(di ⊕ k∗)− Sbox(di ⊕ k)‖2 . (6)

When it is clear from the context, we use the notations LDD(k∗, k) and
LDD interchangeably. The LDD definition can be extended to any leakage
model, e.g., the Hamming distance (HD) or the least significant bit (LSB). This
paper considers the analysis for HW and identity leakage models for the AES
cipher.8

Figure 3 illustrates HWDD and IDD for the correct key candidates k∗ = 34
(correct key for the ASCAD dataset with random keys) and k∗ = 224 (correct
key for the ASCAD dataset with a fixed key). Note that the leakage distribution
for each key candidate is unique. The selection of the reference key, therefore,
determines the LDD value for each key candidate. For instance, the correct key
candidate has a distribution difference equal to zero (if the correct key is also the
reference key). For the remaining key byte candidates, the lower the distribution
difference, the more similar are the key bytes to the reference key.

0 50 100 150 200 250
Key Candidates

0

200

400

600

800

1000

1200

HW
DD

K=34
K=224

(a) HWDD.

0 50 100 150 200 250
Key Candidates

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

ID
D

K=34
K=224

(b) IDD.

Fig. 3: Illustration for the HWDD and IDD for key candidates 34 and 224.

Besides the similarity between key guesses, LDD also indicates the likelihood
of other keys being selected by the classifier when one key is used as a reference

8 The publicly available datasets consider AES and leak mostly in those leakage mod-
els. They leak mostly in the Hamming weight leakage model, and that leakage model
will produce the best results. Still, the ASCAD dataset also leaks in the identity
leakage model, enabling us to investigate the IDD scenario.

14

key. Note that in Figure 3, LDD values between two wrong key guesses are
much smaller than the one with the correct key (we can obtain such values by
simple subtraction of values for different keys). Even when considering an ideal
classifier and no noise scenario, LDD shows it is not a 0/1 decision between the
correct key and incorrect keys. Instead, the inner relationships exist between key
candidates, and those inner relationships make the classification procedure more
difficult. The same conclusions can also be drawn in terms of the relationship
between different intermediate data, as Figure 3 can be easily transferred to map
the relationship between LDD (y-axis) and possible intermediate data (x-axis).

To confirm this assumption, we use the simulated measurements with a strong
HW and identity leakages and a controlled Gaussian noise level, normally dis-
tributed with a variance of 0.01 around a mean of zero. The simulated dataset
consists of traces of one hundred features where all features are equal but for
two features that hold the leakage, which is proportional to HW (Sbox(d ⊕ k))
or Sbox(d ⊕ k), for the HW and ID leakages, respectively. The profiling set has
plaintexts d and keys k chosen from a uniformly random distribution. The at-
tack set’s plaintexts are selected uniformly at random, while the attack key is
the same for the whole set. We use the template attack and consider increasing
profiling traces N to reduce the templates’ noise. To obtain the true probability
of being selected for every key, based on Eq. (2), the accumulated probability
summed for 10 000 attack traces (with the fixed key) is calculated. The com-
parison between the normalized key-selection probability and normalized LDD
is shown in Figure 4. From the results, the key-selection probability perfectly
matches the LDD value for each key, and this observation applies to both HW
and ID leakage models. The slight deviation between the two lines is caused
by the existence of the noise in the traces. One can expect even more reduced
difference if the number of attack traces is further increased.

This observation could also be extended to the real dataset. Indeed, the noise
and countermeasures’ existence push the accumulated probability of each key
away from ideal. Still, LDD serves as an (ideal) indicator of the key-selection
probability.

5.2 On the Relationships Between LDD and the Probability
Density Function

While we established that LDD gives insights into the relationship between
different keys, it still remains to be shown how this information can be used to
provide information about the profiling model and the attack performance. Con-
sequently, we consider LDD and template attack, and investigate how can we
obtain information about the attack from LDD. To investigate the relationship
between LDD and Probability Density Function (PDF), we use a ChipWhis-
perer dataset as there the correct key can be retrieved within ten attack traces
with a template attack (TA) [17]. Note that this dataset is not perfectly noise-
less, but it is difficult to obtain less noisy measurements without resorting to
simulations. Additionally, only two points of interest (we denote them as POI1
and POI2) are required to successfully attack this dataset. Consequently, the

15

0 50 100 150 200 250
Key Candidates

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

Normalized accumulated probability
Normalized LDD

(a) Key-selection probability v.s. HWDD;
the correct/reference key is 34.

0 50 100 150 200 250
Key Candidates

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Normalized accumulated probability
Normalized LDD

(b) Key-selection probability v.s. IDD;
the correct/reference key is 224.

Fig. 4: Key selection probability v.s. LDD for different correct keys.

probability density function (PDF) for each cluster, which is equivalent to the
templates built during the profiling phase, can be represented by a 2D image. By
visualizing the distribution of different cluster’s PDFs, we can better understand
the LDD metric and the relationships between the most-likely and least-likely
key guesses.

Figures 5a and 5b show PDFs and the distributions of 1 000 POIs for most-
likely and least-likely key candidates for TA. Note that, in this case, the most-
likely key is also the correct key. We run this experiment with 1 000 random
plaintexts. Since we use the HW leakage model, nine PDFs representing nine
HW clusters are built during the profiling phase. Each PDF is represented by two
contour lines that denote 0.5 (low) and 0.9 (high) of the maximum probabilities.
The color of each point is attributed based on their cluster label. The distribution
of the POI pairs for the same label is denoted as HW-POI distribution (e.g.,
HW-POI distribution for HW 0).

From the results, we observe 1) POI1 and POI2 are strongly correlated,
2) the HW-POI distribution for the most-likely (correct) key matches better
to its labeled cluster than for the least-likely key, and 3) that the centers of
each HW-POI distribution are not overlapping (indicating clear separability).
Based on these observations, we can conclude that the HW variation is strongly
correlated with the mean differences in PDFs. In other words, HW values that
are more different (where the distance metric is the Hamming weight) also have
PDFs that are more separated.

Then, we extend the single HW difference to the HW distribution difference
(HWDD, which is done for all possible keys). Based on the conclusions drawn
from Figure 5, the HW-POI distribution of the most-likely key matches the un-
derlying PDFs distribution the best. What is more, a larger HWDD difference
between the most-likely key (correct key) and another key candidate k indi-
cates a low match between k’s HW-POI distribution and PDFs (see Figure 5b).
Consequently, one could expect a low key rank for the key k.

16

0.320.300.280.260.24
POI 1

0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24

PO
I 2

HW_0
HW_1
HW_2
HW_3
HW_4
HW_5
HW_6
HW_7
HW_8

(a) PDFs and HW-POI distribution for
the most-likely key.

0.320.300.280.260.24
POI 1

0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24

PO
I 2

HW_0
HW_1
HW_2
HW_3
HW_4
HW_5
HW_6
HW_7
HW_8

(b) PDFs and HW-POI distribution for
the least-likely key.

Fig. 5: PDFs and HW-POI distribution with different keys without noise.

However, when noise is introduced, the PDF output is less determined by the
leakage but by the random fluctuation of the POIs value (i.e., the noise), which
eventually obscures the output probability of different clusters. To demonstrate
this, we introduce a Gaussian noise with zero mean and 0.3 variance to the
original trace set. Since the difference between the most-likely and least-likely
keys is demonstrated in Figure 5, we present the PDFs and HW-POI distribution
for the correct key and most-likely key in Figures 6a and 6b.

1.00 0.75 0.50 0.25 0.00 0.25 0.50
POI 1

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

PO
I 2

HW_0
HW_1
HW_2
HW_3
HW_4
HW_5
HW_6
HW_7
HW_8

(a) PDFs and HW-POI distribution for
the correct key.

1.00 0.75 0.50 0.25 0.00 0.25 0.50
POI 1

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

PO
I 2

HW_0
HW_1
HW_2
HW_3
HW_4
HW_5
HW_6
HW_7
HW_8

(b) PDFs and HW-POI distribution for
the most-likely key

Fig. 6: PDFs and HW-POI distribution with different keys with noise.

From the figures, the PDFs built with noisy data distributed similarly to
the noise added to the traces (thus, the signal-to-noise ratio becomes very low).
Consequently, the overlapping area for each PDF is increased, and the differ-
ences in the output probabilities for each PDF become smaller. Similarly, when

17

comparing the HW-POI distribution in Figures 6a and 6b, one can hardly iden-
tify which key (correct or most-likely) fits the PDFs better. From the attack
perspective, the correct key has the rank equal to four after applying more than
1 000 attack traces, indicating that the profiling model did not fit the leakage
as good as for the original dataset (reaches one within ten attack traces). Even
worse, the noise’s random addition could lead to different most-likely keys, even
with a fixed amount of attack traces. To be specific, although there is always an
HW-POI distribution key that fits the PDFs/templates the best, the variation
of PDFs’ distribution manipulated by the random noise makes the most-likely
key unpredictable. Finally, considering an extreme case that the traces only con-
tains the random noise, every key candidate has equal chances to become the
most-likely key.

5.3 Correlation between LDD and the Key Guessing Vector g

In terms of guessing entropy for each key candidate, a larger LDD value indicates
that the two evaluated key candidates are less likely to have a similar GE. In
other words, LDD can estimate the GE distribution. One could expect a stronger
statistical relationship between LDD and g if the model fits the leakage. In case
the model fails to fit the data, the outputted random GE for all key candidates
would lead to a low correlation between LDD and g.

Following this, the leakage distribution difference (given for any selected leak-
age model, e.g., HWDD or IDD) can be used to define a profiling model fitting
metric, Lm(LDD,g), as a function of LDD and the key guessing vector g:

Lm(LDD,g) = corr(argsort(LDD),g). (7)

Eq. (7) defines how well a profiling model fits the data with respect to a key
candidate k∗ for a chosen leakage model. The notation corr designate the Pear-
son’s correlation function and the function argsort(X) returns the rank position
by order of magnitude of each element xi in a vector X = [x0, x1, . . . , x|K|−1].
As a result, the Lm(LDD,g) metric can sort the key candidates according to
their leakage difference from the correct key candidate k∗. Next, we define the
concept of perfectly fitted profiling model, while in Section 6, we discuss the
performance of our new metric on publicly available datasets.

Definition 12. Perfectly fitted profiling model. A perfectly fitted profiling
model reaches Lm = 1 in the attack phase for any set of Q attack traces.9

Figure 7 depicts the “almost” perfectly fitted profiling model for the HW and
ID leakage models. We use simulated measurements as described in Section 4.
We use the template attack and consider increasing profiling traces N . In both
figures, the correlation between LDD and the key guessing vector gsge increases
w.r.t. the number of profiling traces and reaches the Pearson’s correlation of

9 We assume there are many possible ways to select Q traces out of all possible traces.

18

0.999 and 0.998 for the HW and ID leakage models using one million profiling
traces.

Results in Figure 7 confirm the correctness of Definition 12 as the correlation
between LDD and gsge tends to increase with better (more fit) models (since we
use template attack, better models are those that are trained with more traces
as we follow the standard assumptions for template attack).

0 50 100 150 200 250
gsge

0

50

100

150

200

250

HW
DD

 ra
nk

N=1e+03
N=1e+06

(a) HW leakage model.

0 50 100 150 200 250
gsge

0

50

100

150

200

250

ID
D

ra
nk

N=1e+04
N=1e+06

(b) ID leakage model.

Fig. 7: Perfectly fitted profiling model with template attack, considering the HW
and ID leakage models on simulated traces with increasing number of profiling
traces N .

6 Experimental Evaluation

In this section, we provide experimental results for the Lm(LDD,g) metric
on publicly available datasets. Note that, we cannot expect the perfectly fitted
profiling model, which helps us to evaluate the performance of our metric in
realistic cases. Our analysis considers the attack performance and the profiling
model generalization ability. To strengthen our experimental analysis, we provide
additional results in Section A.

6.1 Evaluating Leakage Fitting with Generalized Guessing Entropy
and Simple Guessing Entropy

We assume that GGE is the optimal way of computing guessing entropy as
it considers a sufficient (where sufficient means that the available number of
traces is much larger than the number of traces we require to break the target)
number of attack traces. While GGE can be infeasible to obtain (as only a limited
number of attack traces could be available in the attack phase), SGE calculation
may point to the wrong conclusions about the attack, mostly due to a lack of
generalization ability.

19

From an evaluator’s perspective, to minimize this issue, it is important to
understand the minimal number of attack traces needed to estimate whether
the profiling model correctly fits the leakage (which we denote as leakage fitting
in the rest of this section). Unfortunately, this is a difficult task as it depends
on 1) selection of a good attack method, 2) the correct leakage model, and 3)
characteristics of the dataset (noise, countermeasures).

To further investigate the model’s generalization ability as well as its possible
influencing factors, we evaluate different model’s performance and generalization
ability on neural networks with different sizes. The results emphasize that GGE
offers a proper indication of the attack performance while SGE may require
additional information as provided with Lm(LDD,gsge) (correlation between
LDD and gsge values). This section uses MLP and the Hamming weight leakage
model to provide a unified view for all the experiments. In Sections A.1 and A.2,
we provide additional results when evaluating the robustness of our metric for
different levels of noise, profiling model complexities, and the number of epochs.
Finally, in Section A.3, we provide the results for the Hamming weight leakage
model and CNNs, and we repeat the experiments done in this section. Before
presenting experimental results, we briefly discuss the differences between the
attack performance and generalization ability notions. Here, we consider the
number of attack traces needed to reach guessing entropy of zero by attack
performance. Naturally, to obtain such a result, we expect that the profiling
model fits the leakage and generalizes to attack traces. On the other hand, by the
generalization ability, we consider how well the profiling model fits the leakage
in general (regardless of the selected attack traces). For instance, the profiling
model can generalize well, but the attack performance can be bad as maybe we do
not use enough attack traces or use SGE. Thus, the difference between attack
performance and generalization ability can be subtle depending on a specific
setting but is important in general.

Analysis for the ASCAD dataset. To evaluate generalization’s ability of
neural networks for the ASCAD dataset (details in Section 2.5), we define two
different multilayer perceptrons: 4-layer MLP and 6-layer MLP. The latter has
the same structure as proposed in [1], and the first is a shallower version of it,
with all hidden layers containing 200 neurons each and ReLU as the activation
function. For both neural network architectures, the learning rate is set to 1e-5
with Adam as the optimizer. The models are trained for 50 epochs with a mini-
batch of 400 traces. The leakage model is the Hamming weight of Sbox output,
where we target the third key byte of the first AES encryption round.

The two MLPs are trained with a different number of profiling traces, starting
from 1 000 traces, and ranging up to 200 000 traces, with a step of 1 000 traces.
This adds up to 200 trained models for each MLP. For each of the 200 trained
models, we calculate GGE and Lm(HWDD,ggge) by considering Q = 100 000
and U ranging from U = 1 000 up to U = 10 000, with a step of 1 000 attack
traces. This means that the randomization factor for GGE (see Definition 10)
ranges from r = 0.9 to r = 0.99. Results are shown in Figure 8. Observe that

20

changing the value U (and, consequently, the randomization factor r) changes
the final guessing entropy obtained for a model trained on a certain number of
profiling traces. The differences in the final guessing entropy results for differ-
ent U values are more significant when the number of profiling traces is lower.
For example, when MLP is trained with 20 000 traces, GGE when U = 1 000 is
around 50, while GGE for the same profiling model after processing U = 10 000
is already 1. Note that this is expected, as, for a low number of attack traces,
the guessing entropy might not reach its lowest possible value for a certain pro-
filing model. Still, this means that depending on the available number of attack
traces to be used, we can reach different conclusions about profiling model per-
formance (due to a different number of attack traces) but also about profiling
model generalization ability (due to a different number of profiling traces). Si-
multaneously, the Lm(HWDD,ggge) metric varies marginally for different U ,
even for a smaller number of profiling traces, which indicates that the profiled
model learned the leakage well. What is more, the marginally changing results
for different U suggest Lm(HWDD,ggge) to be a better indicator or the gen-
eralization ability, as this is a notion connected with the profiling model, and
not the attack setting (while GGE shows the influence of U when assessing the
generalization ability of the profiling model).

This analysis depicts that if Q is sufficiently large (100 000 in the current
example), the behavior of generalized guessing entropy with a small U is a reliable
metric. This conclusion can be confirmed by observing Figures 8a and 8c, where
Lm(HWDD,ggge) is very similar for different number of attack traces U , even
when the number of profiling traces is low. Lm(HWDD,ggge) is a reliable metric
to estimate the attack performance, regardless of the dataset size U , and it is
additionally a reliable indicator of the profiling model generalization ability.

Remark 2. Generalized guessing entropy is a reliable attack metric, but depend-
ing on the setup, it may be prohibitively difficult to obtain enough attack traces.

Next, we demonstrate that computing guessing entropy using SGE (Defini-
tion 9) for a limited number of attack traces could lead to wrong conclusions
about the profiling model’s ability to fit the leakage. Recall, the trained model
tends to demonstrate a preference (the way the mapping is done) for some key
byte candidates, and the reliability of such conclusions can also be estimated
from the way SGE is calculated. If the model learns the leakage, then the prefer-
ence happens for the correct key candidate in the attack set. On the other hand,
if the preference happens for the wrong key candidate, we can assume that the
profiling model did not fit leakage but noise.

Simple guessing entropy may be insufficient to indicate the profiling model
leakage fitting when the number of attack traces Q is not large enough. In this
case, GE would likely be computed for U = Q (with a randomization factor r =
0). More precisely, we calculate simple guessing entropy, as the attacker would
use the maximum number of available attack traces for the key rank calculation.
To avoid misleading conclusions about model performance and generalization, it
is very important to identify whether SGE shows biased results.

21

(a) Lm(HWDD,ggge) for 4-layer MLP. (b) GGE for 4-layer MLP.

(c) Lm(HWDD,ggge) for 6-layer MLP. (d) GGE for 6-layer MLP.

Fig. 8: ASCAD results: Lm(HWDD,ggge) and GGE with respect to different
number of profiling and attack traces.

In Figure 9, we depict the results for SGE and Lm(HWDD,gsge) for the
same two MLP models trained on different profiling attack trace sizes. We pro-
vide SGE and Lm(HWDD,gsge) results for attack trace sets ranging from
U = Q = 1 000 to U = Q = 10 000. The SGE behavior is more fluctuat-
ing compared to the GGE behavior, which indicates that SGE is indeed less
appropriate metric to assess the attack performance and, consequently, model
generalization. Besides that, the most important observation is related to the
wrong indications about model’s generalization ability provided by SGE when
insufficient attack traces U = Q are considered. This is particularly clear when
comparing Figures 9a and 9c for 4-layer and 6-layer MLPs, respectively. As we
can see, when using only U = Q = 1 000 attack traces for Lm(HWDD,gsge)
the evaluator is unable to conclude about model’s generalization ability (or, at
least, he would conclude that the profiling model is not generalizing well, which
contradicts the observations from Figure 8).

It is clear that the 4-layer MLP generalizes better than 6-layer MLP, and
only using enough attack traces for SGE can provide a reliable generalization
estimation (as is the case of plotting line for U = Q = 10 000 in Figure 9c). Ad-
ditionally, we see that the estimation of the generalization ability is less reliable
with Lm(HWDD,gsge) compared to Lm(HWDD,ggge).

The obtained results indicate the need to answer the question when the
Lm(HWDD,g) metric is needed. To answer it, we plot the correlation between
Lm computed from GGE and SGE in Figures 10a and 10b for 4-layers and 6-
layer MLPs, respectively. These figures contain 200 dots, one for each trained
model with different profiling set size, as specified before. As we can observe in

22

(a) Lm(HWDD,gsge) for 4-layer MLP. (b) SGE for 4-layer MLP.

(c) Lm(HWDD,gsge) for 6-layer MLP. (d) SGE for 6-layer MLP.

Fig. 9: ASCAD results: Lm(HWDD,gsge) and SGE with respect to different
number of profiling and attack traces.

Figure 10a, regardless of the number of traces to compute SGE, the correspond-
ing Lm metric is highly correlated to Lm metric computed from GGE values
(correlation is always close to 0.9). This means that simple guessing entropy
together with Lm for U = 1 000 provides enough indication of model’s gener-
alization ability. Consequently, GGE calculation, which can be impractical in
many cases, is no longer needed for this conclusion. In the case of the 6-layer
MLP model, the Lm values for SGE start to be highly correlated to Lm obtained
from GGE as soon as at least U = 5 000 traces are used. This means that this
model’s generalization is not as good as the previous one, and the Lm values
for SGE will keep growing until a minimum sufficient number of attack traces
are considered. In the example of Figure 10b, U = 10 000 for SGE allows us to
obtain the same indication of the profiling model generalization as GGE. This
indication can be given by the Lm metric.

Analysis for the CHES CTF dataset. For the CHES CTF dataset, both
profiling and attack sets are smaller, and therefore, the verification of general-
ization of a profiling model can be less reliable. Here, we also investigate the
generalization ability of two different profiling models concerning guessing en-
tropy calculations. For that, we define two MLPs, one with two hidden layers and
a second MLP with four hidden layers. In both cases, hidden layers are config-
ures with 200 neurons each, ReLU activation function, learning rate of 1e-3 and
Adam as the optimizer. Training processes are performed over 50 epochs con-
sidering a mini-batch of 400 traces. The leakage model is the Hamming weight

23

(a) Results with 4-layer MLP on the ASCAD dataset. From left to right: U = 1 000,
U = 5 000 and U = 10 000.

(b) Results with 6-layer MLP on the ASCAD dataset. From left to right: U = 1 000,
U = 5 000 and U = 10 000.

Fig. 10: Correlation for Lm calculated with SGE and GGE for the ASCAD
dataset with the Hamming weight leakage model.

of Sbox output, where we target the first key byte on the first AES encryption
round.

Both MLP models are trained with different profiling set sizes, ranging from
1 000 to 44 000 profiling traces, and having a step of 1 000 traces. This adds up to
44 profiling models for each configured MLP. For the attack phase with GGE, we
consider Q = 5 000 traces and we define U from 100 (r = 0.98) to 1 000 (r = 0.8).
Figure 11 shows results for Lm(HWDD,ggge) and GGE for two MLP models
trained on multiple profiling set sizes for the CHES CTF dataset. As the line
plots for GGE clearly show, the model generalization indication based on GGE
heavily depends on U , and using a high randomization factor (when U = 100
and r = 0.98) might lead to inconsistent conclusions about model generalization.
This is an example when Lm(HWDD,ggge) is a supporting metric to verify the
actual model generalization. For both MLPs trained on 44 000 profiling traces
and when Q = 5 000 and U = 100, the final (generalized) guessing entropy
values are 90 and 78 for 2-layer and 4-layer MLPs, respectively, as illustrated
in Figures 11b and 11d. By observing Lm(HWDD,ggge) on the same number

24

of profiling and attack traces, Lm shows almost no differences with regards to
the choice of U , where the correlation values are above 0.4. This justifies the
usage of the proposed metric together with GGE to verify model’s generalization.
Simultaneously, high correlation values also indicate that the profiling model is
capable of strong attack performance (but for that, enough attack traces need
to be used, which is information obtained from the GGE plots).

(a) Lm(HWDD,ggge) for 2-layer MLP. (b) GGE for 2-layer MLP.

(c) Lm(HWDD,ggge) for 4-layer MLP. (d) GGE for 4-layer MLP.

Fig. 11: CHES CTF results: Lm(HWDD,ggge) and GGE with respect to differ-
ent number of profiling and attack traces.

Figure 12 shows the corresponding results for SGE and Lm(HWDD,gsge).
Lm tends to indicate similar results regardless of the number of attack traces
used to calculate SGE. The final guessing entropy values computed from U = 100
traces would lead to conclusions that the model does not generalize well. With
this small number of attack traces, it is also hard to verify from SGE val-
ues alone if the model improves its generalization when trained on more pro-
filing traces. That is not the case for the Lm metric computed from SGE,
which does not depend on the considered number of attack traces. Therefore,
Lm(HWDD,gsge) metric is a supporting metric when the number of attack
traces is limited. Finally, observe that Lm(HWDD,gsge) provides less stable
results than Lm(HWDD,ggge).

Figures 13a and 13b provide more evidence that calculating Lm for small
values of U on SGE can already indicate the profiling model generalization ca-
pacity. For both MLPs trained on CHES CTF dataset, the results demonstrate
that using Q = 100 attack traces for SGE or Q = 5 000 (with U = 1, 000) attack
traces for GGE provide similar results about model generalization.

25

(a) Lm(HWDD,gsge) for 2-layer MLP. (b) SGE for 2-layer MLP.

(c) Lm(HWDD,gsge) for 4-layer MLP. (d) SGE for 4-layer MLP.

Fig. 12: CHES CTF results: Lm(HWDD,gsge) and SGE with respect to differ-
ent number of profiling and attack traces.

Remark 3. Simple guessing entropy should not be considered as a reliable attack
metric in the general case. Instead, one needs to evaluate the correlation between
LDD and gsge.

6.2 General Observations

Here, we list the general observations based on the results from the previous
sections and the results from Section A.

1. The LDD metric can be considered as an ideal rank metric indicating the re-
lationship between the reference key and all the other keys. The magnitude of
this metric depends on the leakage model and the number of measurements.

2. For a proper attack performance estimation, one should use GGE. It is also
possible to use Lm(LDD,ggge) to obtain additional information about the
profiling model generalization ability. Lm(LDD,ggge) needs less profiling
traces for a confident estimate compared to GGE.

3. When the number of available attack traces is low (not sufficient for GGE),
calculate Lm(LDD,gsge). If the correlation value is high, SGE can be a
reliable indicator of the attack performance. Lm(LDD,gsge) gives additional
information about the model generalization ability even when faced with a
limited number of profiling/attack traces.

4. Lm(LDD,g) does not give direct attack performance and does not replace
the information obtained through guessing entropy. Indeed, from Lm(LDD,g),
one cannot deduce the number of attack traces needed to reach guess-

26

(a) Results on 2-layer MLP on the CHES CTF dataset. From left to right: U = 100,
U = 5000 and U = 1 000.

(b) Results on 4-layer MLP on the CHES CTF dataset. From left to right: U = 100,
U = 5000 and U = 1 000.

Fig. 13: Correlation for Lm calculated with SGE and GGE for the CHES CTF
dataset with the Hamming weight leakage model.

ing entropy equal to 0. Still, our experimental analysis suggests that, e.g.,
Lm(HWDD,g) higher than ≈ 0.4 will result in strong attack performance.

5. Lm(LDD,g) is a robust metric: it is reliable for various noise levels, profiling
model complexities, and the number of training epochs. What is more, to
reach a reliable estimate, Lm(LDD,g), requires only a small number of
attack traces (e.g., 100 traces), which is significantly less than for GGE to
reach the same level of confidence.

6. Lm(LDD,g) metric should be used in profiling SCA only as non-profiled
attacks do not build models to be evaluated through Lm.

7 Conclusions and Future Work

In the profiling side-channel analysis, one commonly uses guessing entropy to
estimate the attack performance. Additionally, it is common to use all available
attack traces in the guessing entropy calculation to make the evaluation more
reliable. This work shows how such a practice can lead to misleading results,

27

where one obtains a wrong indication of the profiling model performance. First,
we define two guessing entropy notions: simple guessing entropy and generalized
guessing entropy. We show that generalized guessing entropy is a more powerful
metric but could be difficult to apply in practice.

We propose the Leakage Distribution Difference (LDD) metric, which in-
dicates the relationships among different keys and could be considered as the
Ideal Key Rank metric when using the correct key as the reference key. Next, we
show that by observing the correlation between LDD and key guessing vector,
one can reliably and efficiently deduce the attack’s performance and the profil-
ing model generalization ability. Our findings are confirmed over a number of
experiments considering various attack methods, leakage models, and datasets.
In future work, we plan to examine the potential of Lm as a metric for early
stopping in the training process. Additionally, we plan to examine Lm in the
context of leakage assessment.

References

1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for
side-channel analysis and introduction to ASCAD database. J. Cryptographic
Engineering 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8,
https://doi.org/10.1007/s13389-019-00220-8

2. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N.
(eds.) Cryptographic Hardware and Embedded Systems – CHES 2017. pp. 45–68.
Springer International Publishing, Cham (2017)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr., B.S.K., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002,
4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers. Lecture Notes in Computer Science, vol. 2523, pp. 13–28.
Springer (2002). https://doi.org/10.1007/3-540-36400-5 3, https://doi.org/10.

1007/3-540-36400-5_3

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002.
pp. 13–28. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

5. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) Smart Card Research and Advanced Applications. pp. 253–270. Springer
International Publishing, Cham (2014)

6. Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences. Atmospheric envi-
ronment 32(14-15), 2627–2636 (1998)

7. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a
masked implementation of AES. In: 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). pp. 106–111 (May 2015).
https://doi.org/10.1109/HST.2015.7140247

8. Heuser, A., Zohner, M.: Intelligent Machine Homicide - Breaking Cryptographic
Devices Using Support Vector Machines. In: Schindler, W., Huss, S.A. (eds.)
COSADE. LNCS, vol. 7275, pp. 249–264. Springer (2012)

28

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1109/HST.2015.7140247

9. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4),
293–302 (2011). https://doi.org/10.1007/s13389-011-0023-x, https://doi.org/

10.1007/s13389-011-0023-x
10. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing

the power of convolutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 148–179
(2019)

11. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener,
M.J. (ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397.
Springer (1999). https://doi.org/10.1007/3-540-48405-1 25, https://doi.org/10.
1007/3-540-48405-1_25

12. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A Machine Learning
Approach Against a Masked AES. In: CARDIS. Lecture Notes in Computer Sci-
ence, Springer (November 2013), berlin, Germany

13. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In: International Workshop on Constructive Side-Channel
Analysis and Secure Design. pp. 20–33. Springer (2015)

14. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering. pp. 3–26. Springer (2016)

15. Massey, J.L.: Guessing and entropy. In: Proceedings of 1994 IEEE International
Symposium on Information Theory. pp. 204– (1994)

16. Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep
learning for side-channel analysis. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2020(1), 348–375 (Nov 2019).
https://doi.org/10.13154/tches.v2020.i1.348-375, https://tches.iacr.org/

index.php/TCHES/article/view/8402
17. O’Flynn, C., Chen, Z.D.: Chipwhisperer: An open-source platform for hardware

embedded security research. In: International Workshop on Constructive Side-
Channel Analysis and Secure Design. pp. 243–260. Springer (2014)

18. Perin, G., Buhan, I., Picek, S.: Learning when to stop: a mutual information
approach to fight overfitting in profiled side-channel analysis. Cryptology ePrint
Archive, Report 2020/058 (2020), https://eprint.iacr.org/2020/058

19. Perin, G., Chmielewski, L., Picek, S.: Strength in numbers: Improving gener-
alization with ensembles in machine learning-based profiled side-channel anal-
ysis. IACR Transactions on Cryptographic Hardware and Embedded Systems
2020(4), 337–364 (Aug 2020). https://doi.org/10.13154/tches.v2020.i4.337-364,
https://tches.iacr.org/index.php/TCHES/article/view/8686

20. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class
imbalance and conflicting metrics with machine learning for side-channel evalu-
ations. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(1), 209–237 (Nov 2018). https://doi.org/10.13154/tches.v2019.i1.209-237,
https://tches.iacr.org/index.php/TCHES/article/view/7339

21. Picek, S., Heuser, A., Jovic, A., Ludwig, S.A., Guilley, S., Jakobovic, D., Mentens,
N.: Side-channel analysis and machine learning: A practical perspective. In: 2017
International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK,
USA, May 14-19, 2017. pp. 4095–4102 (2017)

29

https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.13154/tches.v2020.i1.348-375
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://eprint.iacr.org/2020/058
https://doi.org/10.13154/tches.v2020.i4.337-364
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://doi.org/10.13154/tches.v2019.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/7339

22. Picek, S., Heuser, A., Perin, G., Guilley, S.: Profiling side-channel analysis in the
efficient attacker framework. Cryptology ePrint Archive, Report 2019/168 (2019),
https://eprint.iacr.org/2019/168

23. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side chan-
nel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) Cryptographic Hardware and
Embedded Systems – CHES 2005. pp. 30–46. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005)

24. Standaert, F.X., Malkin, T.G., Yung, M.: A unified framework for the analysis
of side-channel key recovery attacks. In: Joux, A. (ed.) Advances in Cryptology -
EUROCRYPT 2009. pp. 443–461. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

25. Wu, L., Picek, S.: Remove some noise: On pre-processing of side-
channel measurements with autoencoders. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2020(4), 389–415 (Aug 2020).
https://doi.org/10.13154/tches.v2020.i4.389-415, https://tches.iacr.org/

index.php/TCHES/article/view/8688

26. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for effi-
cient cnn architectures in profiling attacks. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2020(1), 1–36 (Nov 2019).
https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/index.

php/TCHES/article/view/8391

A Supplementary Material

A.1 Measuring Leakage Fit for Different Noise Levels

Intuitively, the leakage becomes more challenging for a model to fit when the
traces become noisy. To simulate the noise, we consider random values following
Gaussian distribution with zero mean and variance ranging from 0 to 10 in steps
of 0.5. We add them to the ASCAD dataset with random keys. In terms of attack
settings, CNN and template attack use 50 000 traces (randomly selected out of
200 000 profiling traces) for profiling and 5 000 traces (randomly selected out of
100 000 attack traces) for the attack. We use CNN best architecture from the
ASCAD paper for deep learning attack [1]. For TA, we select 20 POIs from the
traces according to the trace variation of the HW of the intermediate data (S-
box output). The guessing entropy is averaged on 100 attacks. Moreover, instead
of only using the final GGE to calculate Lm(HWDD,ggge), we investigate the
correlation changes for every attack trace. The results are shown in Figure 14.

For the attacks where GGE for the correct key reaches zero (in blue), Lm
increases quickly when the number of attacks traces increases; the final corre-
lation values are above 0.7 and 0.5 for CNN and template attack, respectively.
A detailed analysis is presented in Figures 14b and 14d. We calculate Lm for
two different numbers of attack traces (highlighted in blue); the purple line is
the GGE calculated with 5 000 attack traces. We see that Lm reduces with the
increased variation of noise, which is also reflected in the increasing value of gen-
eralized guessing entropy (highlighted in purple). Note that 100 attack traces is
far from sufficient for GGE of the correct key to reach zero. However, with such

30

https://eprint.iacr.org/2019/168
https://doi.org/10.13154/tches.v2020.i4.389-415
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://tches.iacr.org/index.php/TCHES/article/view/8688
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391

0 1000 2000 3000 4000 5000
Number of Traces

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L m
(H

W
DD

, g
gg

e)

GGE = 0
GGE > 0

(a) CNN: Lm vs attack traces.

0 2 4 6 8 10
Variation of Gaussian noise

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L m
(H

W
DD

, g
gg

e)

0

20

40

60

80

100

120

140

160

Ge
ne

ra
liz

ed
 G

ue
ss

in
g

En
tro

py

Lm_100trs
Lm_5000trs
GGE

(b) CNN: Lm vs noise variation.

0 1000 2000 3000 4000 5000
Number of Traces

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L m
(H

W
DD

, g
gg

e)

GGE = 0
GGE > 0

(c) TA: Lm vs attack traces.

0 2 4 6 8 10
Variation of Gaussian noise

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L m
(H

W
DD

, g
gg

e)

0

20

40

60

80

100

120

140

160

Ge
ne

ra
liz

ed
 G

ue
ss

in
g

En
tro

py

Lm_100trs
Lm_5000trs
GGE

(d) TA: Lm vs noise variation.

Fig. 14: The relationship between the leakage fitting and different level of noise.

a limited number of traces, Lm clearly indicates the model’s ability to obtain
the correct key.

Moreover, by comparing Lm changes with 100 and 5 000 attack traces in
these two figures, some of the attacks with higher noise variation could reach
similar Lm by increasing the number of attack traces. Indeed, the accumulating
of the model’s output class probabilities with more attack traces benefits the
classification performance [19]. However, if the model failed to learn from the
leakage (e.g., due to the high noise variation), adding more attack traces would
not help retrieve the correct key.

In general, the addition of the noise degrades how well the profiling model
fits the leakage. We note that there is research showing that the addition of
noise could enhance the robustness of the model (as it serves as a regularization
factor), eventually becoming beneficial in the process of classification [10,25].
Based on our results, the level of “beneficial” noise has an upper limit, and the
noise we added is larger than the limitation.

Remark 4. Adding noise negatively influences the model’s ability to fit the leak-
age. Lm can estimate model leakage fit correctly with a smaller number of traces
than we require to reach GGE equal to 0.

31

A.2 Measuring Leakage Fit for Different Number of Epochs and
Profiling Model Complexities

Model complexity and the number of training epochs are two major contributing
factors to how well the profiling model fits the leakage. Specifically, by increasing
the number of training epochs, one can expect that the profiling model’s fit
improves if overfitting does not occur. On the other hand, adjusting the profiling
model size will directly influence its capacity. Here, we evaluate different profiling
models by independently varying the number of training epochs and profiling
model size.

Aligned with the previous section, CNN used for attacks is listed in Table 1.
The variable i determines the number of the filters and neurons in the fully-
connected layer. We use i to estimate the complexity of a profiling model roughly.
Note, for the CNN best from the ASCAD paper, i equals 64.

Table 1: CNN architecture used for attacking.
Layer Filter size # of filters Pooling stride # of neurons

Conv block 11 i*1 2 -
Conv block 11 i*2 2 -
Conv block 11 i*4 2 -
Conv block 11 i*8 2 -
Flatten - - - -
Fully-connected * 2 - - - i*64

First, CNN best (i=64) was trained for a different number of epochs ranging
from 10 to 300 in steps of 10. For each step, Lm is calculated with a different
number of attack traces (100 and 5 000) and two different leakage models: HW
and identity. The result is shown in Figure 15.

For the HW leakage model, as shown in Figure 15a, the number of required
attack traces for the correct key reduces significantly when training epochs in-
crease from 0 to 80, indicating than the profiling model gradually learns from the
dataset. After that, it becomes stable when it is further trained. The same ten-
dency could be identified with the Lm(HWDD,ggge) metric with both 100 and
5 000 attack traces. The Lm metric can properly estimate the profiling model’s
fit to the leakage with only 100 traces (at least ten times less than GGE), sug-
gesting the effectiveness of this metric in evaluating how well the profiling model
fits the leakage.

For the ID leakage model (Figure 15b), we see both Lm(IDD,ggge) and
the number of required attack traces behaves unexpectedly when the number
of training epoch increases: the number of the required attack traces decreases
quickly when training epochs go from 0 to 60, then gradually increase with
more training epochs. Indeed, by observing the training accuracy and loss, the
overfitting becomes dominant for more than 60 training epochs, which means

32

0 50 100 150 200 250 300
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L m
(H

W
DD

, g
gg

e)

0

1000

2000

3000

4000

5000

Re
qu

ire
d

at
ta

ck
 tr

ac
es

Lm_100trs
Lm_5000trs
Attack traces

(a) Lm(HWDD,ggge) vs training epochs
with the HW leakage model.

0 50 100 150 200 250 300
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L m
(ID

D,
 g

gg
e)

0

1000

2000

3000

4000

5000

Re
qu

ire
d

at
ta

ck
 tr

ac
es

Lm_100trs
Lm_5000trs
Attack traces

(b) Lm(IDD,ggge) vs training epochs
with the identity leakage model.

Fig. 15: The relationship between leakage fitting and the number of training
epochs.

the profiling model’s classification capability is degraded if it is further trained.
Interestingly, this conclusion is perfectly aligned with the Lm tendency for the
increase of the epochs: the value reaches a maximum with 60 training epochs,
decreases, and becomes stable at around 0.22 when the number of epoch increases
further. Therefore, we confirm that Lm quantifies how well the profiling model
fits the leakage. Again, 100 attack traces are sufficient for this metric to evaluate
the profiling model’s performance.

Remark 5. Adding more epochs improves the profiling model fit to the leakage
provided that it does not start to overfit. Lm can correctly estimate the profiling
model performance for a small number of attack traces.

After evaluating the profiling model’s performance with different training
epochs, we set the number of epochs to 100, and we tune the profiling model.
Here, i, the controlling factor of the profiling model’s complexity, varies from
1 to 64. We use the HW leakage model for the attack. The results are shown
in Figure 16a with GGE of the correct key as a reference. Within the profiling
model size range where GGE reaches one, we give a zoom-in view using the
required number of attack traces to retrieve the key (instead of GGE) for the
evaluation of the attack performance (Figure 16b).

Lm(HWDD,ggge) increases significantly (from 0.1 to 0.68) when i increases
from 1 to 11, which is aligned with the decreasing tendency of GGE. Then, when
the Lm is above 0.7 (i > 26), GGE reaches the value 0. From the zoom-in view
in Figure 16b, one could observe that Lm is still slowly rising with the increase of
i; the required attack traces, on the other hand, decrease gradually and become
stable at around 1 100. Indeed, how well a profiling model fits the leakage in a
certain dataset has its limitations; in our case, it is “saturated” when i is greater
than 26. Further increase of the profiling model size will not contribute to a
better attack performance. Again, these observations are observable from Lm.

33

10 20 30 40 50 60
Model size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L m
(H

W
DD

, g
gg

e)

0

20

40

60

80

100

120

Ge
ne

ra
liz

ed
 G

ue
ss

in
g

En
tro

py

Lm_100trs
Lm_5000trs
GGE

(a) Lm vs model size.

20 30 40 50 60
Model size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L m
(H

W
DD

, g
gg

e)

0

1000

2000

3000

4000

5000

Re
qu

ire
d

at
ta

ck
 tr

ac
es

Lm_100trs
Lm_5000trs
Attack traces

(b) Zoom-in view: Lm vs model size.

Fig. 16: The relationship between learnability metric and model complexity.

Finally, the attack set with 100 traces is sufficient for evaluating the profiling
model, which is aligned with the previous experiment.

Remark 6. Increasing the profiling model capacity improves the ability of a pro-
filing model to fit the leakage. Lm can correctly estimate the model fit to the
leakage for a small number of attack traces.

A.3 Evaluating Leakage Fitting with GGE and SGE - Results for
CNNs

This section provides additional experimental results to demonstrate that the
proposed leakage fitting evaluation with GGE and SGE is also applicable to
convolutional neural networks (CNNs). Results in this section are provided for
the CHES CTF dataset.

Two different CNNs are implemented in order to provide results for different
neural network sizes. The first CNN is small, containing one convolutional layer
(10 filters, stride of 10 and kernel size of 10) and two fully connected layers with
200 neurons each. All layers are set to ReLU activation function. The second
CNN is larger and configured with two convolutional layers (10 and 20 filters,
kernel sizes of 10 and 4, and strides of 10 and 2, respectively). For this second
CNN, we configured three fully connected layers with 200 neurons each. Again,
ReLU activation function is selected. For both CNNs, the learning rate is 0.0001,
Adam is used as the optimizer, the number of epochs is 50, and mini-batch is set
to 400 traces. The leakage model is the Hamming weight of Sbox output, where
we target the first key byte in the first AES encryption round.

Figure 17 shows generalized guessing entropy results for both CNNs. Follow-
ing the same procedure applied on Section 6, we train the CNNs for different
amounts of profiling traces, ranging from 1 000 to 44 000 traces with a step of
1 000 traces. This adds up to 44 profiled models for each CNN. For the attack
phase, we considered Q = 5 000 traces and U ranges from 100 up to 1000 traces,

34

with a step of 100 traces. As we can verify in Figures 17a and 17b, a small
CNN provides better generalization ability if compared to larger CNN, which
results are shown in Figures 17b and 17d. Besides that, we can clearly observed
in Figures 17a and 17c that the Lm metric is able to confirm the model’s gen-
eralization ability regardless the value of U . The 5-layer CNN shows much less
generalization ability than the 3-layer CNN, mainly due to overfitting issues.

(a) Lm(HWDD,ggge) for 3-layer CNN. (b) GGE for 3-layer CNN.

(c) Lm(HWDD,ggge) for 5-layer CNN. (d) GGE for 5-layer CNN.

Fig. 17: CHES CTF results: Lm(HWDD,ggge) and GGE with respect to differ-
ent number of profiling and attack traces.

Figure 18 shows the corresponding results for SGE calculations and its leak-
age fitting metric Lm(HWDD,gsge). This is an example where we can clearly
see the benefit of Lm metric to confirm that the model is actually providing gen-
eralization ability because SGE alone is unable to inform this. For the 3-layer
CNN scenario (Figures 18a and 18b), the evolution of SGE with respect to the
number of profiling traces indicates that more profiling traces does not improve
the generalization of the model. However, the reason for that is the small and
insufficient amount of maximum attack traces, U = Q = 1 000, used to compute
SGE. Moreover, this contradicts the model’s generalization ability as indicated
by GGE. In this case, Lm metric is a supplementary calculation to confirm the
misleading conclusion given by SGE. Furthermore, the poor generalization abil-
ity indicated by the 5-layer CNN through the SGE is also verified by computing
Lm(HWDD,gsge), as shown in Figure 18c, which can be confirmed by observing
Figure 17c where we see low correlation values for Lm(HWDD,ggge).

Figure 19 provides the relationship between Lm(HWDD,gsge) metric and
Lm(HWDD,ggge) metric for at different amounts of attack traces (U). For the

35

(a) Lm(HWDD,gsge) for 3-layer CNN. (b) SGE for 3-layer CNN.

(c) Lm(HWDD,gsge) for 5-layer CNN. (d) SGE for 5-layer CNN.

Fig. 18: CHES CTF results: Lm(HWDD,gsge) and SGE with respect to differ-
ent number of profiling and attack traces.

3-layer CNN case (Figure 19a), the correlation between these two metrics are
high enough (0.86) for U = 100 traces already, indicating that Lm(HWDD,gsge)
will be sufficient to indicate the model generalization ability already after the
processing of 100 attack traces. On the other hand, although correlation be-
tween Lm(HWDD,gsge) metric and Lm(HWDD metric is not very low (0.67
to 0.72), the reduced generalization ability of the 5-layer CNN can be confirmed
by the low values obtained from Lm for different amounts of attack traces. As
a conclusion, we can assume that even when the CNN model provides reduced
generalization ability, SGE together with Lm(HWDD,gsge) can be enough to
indicate this generalization, which prevents misleading conclusions about guess-
ing entropy on a limited amount of attacked traces.

36

(a) Results on 3-layer CNN on the CHES CTF dataset. From left to right: U = 100,
U = 5000 and U = 1 000.

(b) Results on 5-layer CNN on the CHES CTF dataset. From left to right: U = 100,
U = 5000 and U = 1 000.

Fig. 19: Correlation for Lm calculated with SGE and GGE for the CHES CTF
dataset with the Hamming weight leakage model.

37

	On the Attack Evaluation and the Generalization Ability in Profiling Side-channel Analysis
	Introduction
	Background
	Notation
	Supervised Learning
	Profiling Side-channel Analysis
	Evaluating the Attack Performance
	Datasets

	Related Works
	On Possible Guessing Entropy Behaviors
	On the Relationships between Guessed Keys and the Correct Key
	Leakage Distribution Difference Metric
	On the Relationships Between LDD and the Probability Density Function
	Correlation between LDD and the Key Guessing Vector g

	Experimental Evaluation
	Evaluating Leakage Fitting with Generalized Guessing Entropy and Simple Guessing Entropy
	General Observations

	Conclusions and Future Work
	Supplementary Material
	Measuring Leakage Fit for Different Noise Levels
	Measuring Leakage Fit for Different Number of Epochs and Profiling Model Complexities
	Evaluating Leakage Fitting with GGE and SGE - Results for CNNs

