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Abstract. Release of unverified plaintexts (RUP) security is an impor-
tant target for robustness in AE schemes. It is also highly crucial for
lightweight (LW) implementations of online AE schemes on memory-
constrained devices. Surprisingly, very few online AEAD schemes come
with provable guarantees against RUP integrity and not one with any
well-defined RUP confidentiality.
In this work, we first propose a new strong security notion for online AE
schemes called OAE-RUP that captures security under blockwise pro-
cessing of both encryption (which includes nonce-misuse) and decryp-
tion (which includes RUP). Formally, OAE-RUP combines the standard
RUP integrity notion INT-RUP with a new RUP confidentiality notion
sOPRPF (strong Online PseudoRandom Permutation followed by a pseu-
dorandom Function). sOPRPF is based on the concept of “strong online
permutations” and can be seen as an extension of the well-known CCA3
notion (Abed et al., FSE 2014) that captures arbitrary-length inputs.
An OAE-RUP-secure scheme is resistant against nonce-misuse as well as
leakage of unverified plaintexts where the integrity remains unaffected,
and the confidentiality of any encrypted plaintext is preserved up to the
leakage of the longest prefix with the leaked plaintexts and the leakage
of the length of the longest prefix with the nonce-repeating ciphertexts.
We then prove the OAE-RUP security of the SAEF mode. SAEF is
a ForkAE mode (Asiacrypt 2019) that is optimized for authenticated
encryption of short messages and processes the message blocks sequen-
tially and in an online manner. At SAC 2020, it was shown that SAEF is
also an online nonce misuse-resistant AE (OAE), offering enhanced secu-
rity against adversaries that make blockwise adaptive encryption queries.
It has remained an open question if SAEF also resists attacks against
blockwise adaptive decryption adversaries or, more generally, when the
decrypted plaintext is released before verification (RUP).
Our proofs are conducted using the coefficients H technique, and they
show that, without any modifications, SAEF is OAE-RUP secure up to
the birthday bound, i.e., up to 2n/2 processed data blocks, where n is
the block size of the forkcipher.

∗ This is the full version of the original work published in SCN 2024.

https://orcid.org/0000-0003-0843-4885
https://orcid.org/0000-0003-0964-8711


2 AS Bhati, E Andreeva and D Vizár

Keywords: Authenticated encryption · forkcipher · lightweight cryptography ·

provable security · online · release of unverified plaintext · OAE-RUP

1 Introduction

Authenticated Encryption. An authenticated encryption (AE) scheme pro-
vides both confidentiality and authenticity for messages. Most AE schemes today
take two additional inputs besides the plaintext data: an associated data AD and
a nonce N . The associated data is some information, such as a packet header,
that is sent in the clear but needs to be authenticated, while the nonce is a
unique value that helps to avoid the need for either keeping a state or using a
random value. The formalization of nonce-based authenticated encryption with
associated data (AEAD) was introduced by Rogaway in 2002 [40].

The design and analysis of AEADs have recently received a lot of attention
from the research community, mainly motivated by the past CAESAR com-
petition (2014–2018) [14], the recent NIST lightweight cryptography standard-
ization process (2018–2023) [36] and the new NIST call for Accordion Cipher
(2023–) [37]. In all these, robust or strong security for AEADs has been a clear
target.

Nonce-misuse resistance and security against release of unverified plaintext
(RUP) are the two main notions that are recognized for strongly secure prac-
tical AEAD schemes. While nonce-misuse deals with protection against nonce
repetitions, RUP ensures a limited damage when unverified decryption is leaked.
More precisely, integrity preservation despite RUP was considered as critical for
defence in depth security [14], whereas some limited RUP confidentiality damage
was still acceptable.

A side advantage of RUP-secure schemes is their ability to serve as an ex-
tra security layer against implementation flaws. When an implementation fail to
verify a tag for a given ciphertext and leaks the unverified plaintext, RUP con-
fidentiality ensures that if the ciphertext is not valid i.e., it has been tampered
during transmission, the resulting decrypted plaintext will resemble meaningless
gibberish (with limited information leakage about the original plaintext) and
hence should be detectable.

Release of Unverified Plaintext (RUP). RUP security captures the sce-
nario where applications may require decrypting and releasing the data before
checking its authenticity due to memory limitations, real-time requirements, or
other factors. This exposes them to potential attacks that exploit the unveri-
fied data to break the confidentiality or integrity of the scheme. Video/audio
media streaming, voice-over IP and disk encryption are some examples of ap-
plications with real-time requirements where the data may need to be released
before the authentication tag is verified to improve the quality or speed of the
communication.

RUP security is more important for designing and analyzing AE schemes for
lightweight applications as they may have to trade-off some security for efficiency
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or functionality. Lightweight applications are common in resource-constrained
devices, such as IoT sensors, smart cards, RFID tags, etc. These devices often
use lightweight AE schemes designed to be efficient and simple but still secure
in situations where they have to release decrypted data before verifying its au-
thenticity due to constraints such as low latency, long messages, high speed,
etc.

The significance of RUP security extends beyond scenarios where plaintext
is directly exposed without verification. Even in systems where direct disclosure
is prohibited, attackers can exploit side channels to deduce properties of the
plaintext, as evidenced by the real-world attacks [2, 3, 17,42].

Therefore, it is essential to have formal models and proofs of RUP security
that capture this setting and practical schemes that achieve RUP security with-
out sacrificing performance or simplicity. The AEAD syntax and formal RUP se-
curity definitions were introduced by Andreeva et al. [5] in Asiacrypt 2014. First,
they defined the security notion of plaintext awareness PA in two variants, PA1
and PA2, and then proposed to combine PA1 with IND-CPA to achieve confi-
dentiality of an AE(AD) scheme. To achieve integrity of ciphertexts under RUP,
they used INT-CTXT in the RUP setting, also known as the INT-RUP notion.

In the same work of Asiacrypt 2014, it has also been concluded that AE
schemes with bijective encryption (excluding the tag) cannot be PA1 secure,
which makes PA1 a quite strong security notion. There are only a few AE(AD)
schemes that can achieve PA1 security, such as SIV [41], BTM [33], and HBS [34].
Almost all of these PA1 secure schemes require two passes over the plaintext
and thus are offline. This conflicts with one of the main goals of achieving online
(a.k.a. one-pass or blockwise processing) property under the RUP setting.

RUP security complements the conventional security models that assume
the data is always verified before release. It also poses new challenges and open
problems for researchers and practitioners of cryptography, as many existing
schemes are shown insecure [21,25,31] or inefficient [8,28,44] in the RUP setting.

RUP Security of Online AEs. Online, a.k.a. blockwise processing encryp-
tion and decryption, are considered important properties of an AE scheme for
lightweight applications where it is important to encrypt/decrypt the ciphertext
blocks quickly with constant latency (e.g., real-time streaming protocols or op-
tical transport networks (OTNs)), or where a constant memory implementation
is needed. These applications are common in consumer-grade IoT devices, which
have tight cost constraints and often make the devices leak parts of the unver-
ified plaintext when decrypting long messages. Hence, such applications would
benefit from a lightweight AEAD scheme with RUP security results.

In 2015, Abed et al. [1] considered an AE variation of the OPRP-CCA [11]
encryption security notion called CCA3 [26] as a weaker alternative to PA1.
CCA3 claims to achieve confidentiality of online AE schemes (but accepts only
block-aligned plaintexts, i.e., no support for incomplete final plaintext blocks)
in the RUP setting where the nonce can be reused, and leakage of the common
prefix is acceptable. CCA3 is a weaker notion than IND-CPA+PA1, which only
applies to block-aligned online AE schemes and guarantees confidentiality up
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to the leakage of the longest prefix. The state of the art does not answer the
following important question

How to define RUP confidentiality security together with nonce-misuse
resistance for online AEAD schemes that process arbitrary length

inputs?

The most common and simple approach for designing an online AE is the
feedback or CBC-style approach. Feedback was also one of the popular design
approaches in the NIST lightweight competition and was used in 8 out of 32
2nd round candidates, namely GIFT-COFB [9], HyENA [20], COMET [27],
mixFeed [22], Romulus-N [32], TinyJAMBU [43], SAEB [35] and SAEF [7].
Feedback-approach-based modes are very useful for applications with stringent
constraints on memory and hardware due to their small state size, making them
perfect targets for the RUP security analysis.

In [21], Chakraborti et al. showed a general impossibility result that any
blockcipher-based feedback AEAD mode with rate 1 is not INT-RUP secure,
which implies that rate-1 blockcipher modes GIFT-COFB, HyENA are not INT-
RUP secure. This leaves us to focus on feedback AEAD modes based on other
primitives or on blockcipher but with a rate lower than 1. Recently, in [24],
Dutta et al. studied the INT-RUP security of blockcipher based feedback AEAD
modes SAEB and TinyJAMBU and showed that SAEB in its current form is
not INT-RUP secure whereas TinyJAMBU (with rate 1/4 in its input size) is
INT-RUP secure.

SAEF ForkAE Mode. SAEF [6,7] is a forkcipher-based sequential and online
nonce-based AEAD mode optimized for processing short messages and, there-
fore, suitable for lightweight applications where the predominant message size
is just a few blocks. SAEF was originally proposed in Asiacrypt 2019 as part
of the ForkAE family of forkcipher modes, which was also a second-round can-
didate of the NIST lightweight competition. SAEF has been shown to achieve
confidentiality and authenticity against nonce-respecting adversaries up to the
birthday bound in [7]. Moreover, recently, in [4], SAEF was proven to be secure
when the nonces are repeated up to leakage of common plaintext prefix lengths
under an extended version of OAE [26] a.k.a. OAE1 in [30]. As shown and men-
tioned in [15,30], OAE1 secure schemes are prone to CPSS (chosen prefix secret
suffix) attacks, however, their level of confidentiality guarantee can be sufficient
in many applications, given that the higher-level security layer is carefully de-
signed to avoid CPSS attacks. A consequence of SAEF’s OAE1 security result is
that SAEF resists attacks by blockwise adaptive adversaries in encryption and
hence is suitable for lightweight encryption with low latency and low memory
requirements. The latter results prove the defence in depth resistance of SAEF
against nonce respecting and nonce repeating adversaries.

Despite its robustness features, it is not known if the SAEF mode resist
attacks by blockwise adaptive nonce-misusing adversaries in decryption

and thus if it is also suited for lightweight decryption with more
stringent low latency and low memory requirements.
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We note that the RUP security investigation of SAEF was also mentioned as
one of the open problems in [4].

Our Contributions. Our contribution to this work is two-fold.

1. RUP confidentiality notion for online AEs: We note that a revised online
AE confidentiality notion of CCA3 (named OAE) is defined in [26] to han-
dle plaintexts whose lengths are a multiple of the underlying blocksize n.
Hence, we first extend the formalism to arbitrary size messages to deal with
messages that are not necessarily n-bit aligned and then adapt the CCA3
notion accordingly into sOPRPF (short for strong Online PseudoRandom
Permutation followed by a pseudorandom Function). Our sOPRPF can also
be seen as a natural extension of the OPRPF [4] notion from chosen plaintext
attacks to chosen ciphertext attacks. Informally, sOPRPF security provides
confidentiality of plaintexts (up to the leakage of the longest common prefix)
against nonce-misusing adversaries that also observe unverified plaintexts.
We note that just OPRPF security is not sufficient here for the confiden-
tiality of plaintexts under decryption leakage as it does not capture chosen
ciphertext attacks, and the stronger IND-CPA+PA1 security has been shown
unachievable in [5] for any “online permutation” based online AE that allows
nonce repetitions. This makes sOPRPF the best choice available for online
AEs.
We then define a joint notion of RUP security for online AE schemes called
OAE-RUP as sOPRPF+INT-RUP and positively answer the first open ques-
tion highlighted above. OAE-RUP is a stronger notion that also implies
OAE [4] security. In simple words, an OAE-RUP-secure scheme is resistant
against nonce-misuse as well as leakage of unverified plaintexts where the in-
tegrity remains unaffected, and the confidentiality of any encrypted plaintext
is preserved up to the leakage of the longest prefix with the leaked plaintexts
and the leakage of the length of the longest prefix with the nonce-repeating
ciphertexts.

2. As our next contribution, we investigate the OAE-RUP security of SAEF and
positively answer the second open question highlighted above (and in [4]).
More concretely, we show that the SAEF mode is provably OAE-RUP secure
without requiring design modifications. The integrity of SAEF under RUP
remains intact, whereas the confidentiality is degraded but preserved up to
the leakage of the longest common prefix. We use coefficients H technique [38]
as the main tool for the analysis and prove that SAEF is OAE-RUP secure
up to 2n/2 blocks of processed data in total, where n is the block size of the
underlying forkcipher.

We highlight that syntax-wise, sOPRPF may not apply to all types of secure
online AE schemes. Therefore, we also define a weaker yet generalized version
of RUP confidentiality that is simple, intuitive, and applicable to all types of
online AE schemes called confidentiality resilience under RUP (CR-RUP) in
Appendix B. A CR-RUP-secure scheme preserves confidentiality (against nonce-
respecting adversaries) of messages that have no common prefix with any re-
leased unverified plaintext. CR-RUP can be seen analogous to the nonce misuse
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resilience [8] (NMR) notion of security. Being weaker, it still captures a mean-
ingful level of security. It says nothing about the security of plaintexts that are
directly subject to leakage but will imply that plaintexts that are not subject to
leakage and, with no common prefix to leaked plaintexts and unique nonces, are
fully secure.

We also study the relationships and differences among popular AEAD notions
to compare them with OAE-RUP and to argue its importance. We provide our
detailed comparison analysis in Section 3.

A study of CR-RUP and sOPRPF security of other existing INT-RUP secure
online AE schemes can be seen as an interesting problem for future research.
Taking the new security results of this work into account, we now summarize
the current provable security results of NIST LW candidates.

Table 1: Comparison of SAEF with NIST LW submissions with beyond nAE se-
curity claims. Here, white colored properties in the first column are unachievable
by any online AE scheme.

ESTATE [19], Spook [13] Oribatida [16], TinyJAMBU [43] SAEF
Romulus-M [32] LOCUS,LOTUS [18] [4, 7, This work]

One-pass Encryption ✗ ✓ ✓ ✓ ✓
NMR [8] ✓ ✓ ✗ ✓ ✓
OAE [4] ✗ ✗ ✗ ✗ ✓

MRAE [41] ✓ ✗ ✗ ✗ ✗

One-pass Decryption ✓ ✓ ✓ ✓ ✓
INT-RUP [5] ✓ ✗ ✓ ✓ ✓

sOPRPF [This work] ✗ ✗ ✗ ✗ ✓
IND-CPA+PA1 [5] ✓ ✗ ✗ ✗ ✗

Security comparison of SAEF with other NIST LW Candidates. Among
the 32 AE family candidates in the second round of the NIST lightweight com-
petition, only 8 AE modes (including SAEF) come with claims above the con-
ventional nAE security. We compare these modes concerning security properties
beyond nAE, a.k.a. defence in depth, in Table 1. We provide a detailed explana-
tion of Table 1 with revising all the properties and describing how the checkmarks
are derived in Appendix A.

2 Preliminaries

Strings. All strings are treated as binary strings. The set of strings of any length
is denoted by {0, 1}∗, while the set of strings of length n (where n is a positive
integer) is represented by {0, 1}n. We define {0, 1}≤n as

⋃n
i=0{0, 1}i. The set of

all permutations of {0, 1}n is represented by Perm(n), and the set of all functions
with domain {0, 1}m and range {0, 1}n is denoted by Func(m,n).

For a string X of ℓ bits, X[i] denotes the i-th bit of X for i = 0, . . . , ℓ − 1
(counting from left to right). We define X[i . . . j] = X[i]∥X[i + 1]∥ . . . ∥X[j] for
0 ≤ i < j < ℓ. The notation leftℓ(X) is used for the ℓ leftmost bits of X and
rightr(X) for the r rightmost bits of X, ensuring X = leftχ(X)∥right|X|−χ(X)
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for all 0 ≤ χ ≤ |X|. The notation (L,R) = lsplitn(X) represents splitting a
string X ∈ {0, 1}∗ into two parts such that L = leftmin(|X|,n)(X) and R =
right|X|−|L|(X). For n ≥ |X|, we have (X, ε) = lsplitn(X) where ε denotes the
empty string with length 0. Given an integer n > 0 and X ∈ {0, 1}∗, X∥10∗
denotes X∥10n−(|X| mod n)−1. We also define pad10(X) which returns X if |X| ≡
0 (mod n) and X∥10∗ otherwise.

String Partitioning. We fix an arbitrary integer n and refer to it as the block
size. For any string X, |X|n = ⌈|X|/n⌉ denotes the number of n-bit blocks

in X. The notation X1, . . . , Xx, X∗
n←− X indicates the partitioning of X into

n-bit blocks, with X = X1∥ . . . ∥Xx∥X∗ where |Xi| = n for i = 1, . . . , x and
0 < |X∗| ≤ n. Thus, x = |X|n − 1.

Blocks. The set of all n-bit strings (or blocks) is denoted by Bn, equivalent to
{0, 1}n. We define B∗

n as {ε} ∪
⋃∞

i=1 B
i
n. A string X is considered “n-aligned” if

X ∈ B∗
n. The notation Xi represents the i-th n-bit block of an n-aligned string

X. For two distinct n-aligned strings X,Y ∈ B∗
n with |X|n ≤ |Y |n without loss

of generality, llcpn(X,Y ) = max{1 ≤ i ≤ |X|n | Xj = Yj for 1 ≤ j ≤ i} denotes
the length of the longest common prefix (in n-bit blocks) of X and Y .

Miscellaneous. The notation X ←$ X signifies sampling an element X from a
finite set X under the uniform distribution. The falling factorial (p)q is defined
as p · (p − 1) · (p − 2) · · · (p − q + 1) with (p)0 = 1. A predicate P(x) is defined
such that P(x) = 1 if it is true for x, and P(x) = 0 if false for x. Lexicographic
comparison for integer tuples is used, e.g., (i′, j′) < (i, j) if i′ < i or i′ = i and
j′ < j. The symbol ⊥ denotes an undefined value or error. We consider A as
an adversary (algorithm) attempting to distinguish between world Ore (or game
Gre) and world Oid (or game Gid, respectively). The notation AOx (or AGx)
denotes the event where A, after interacting with world Ox (or playing game
Gx), returns x = id.

2.1 Syntax of AEAD under RUP setting

A nonce-based Authenticated Encryption with Associated Data (AEAD) scheme
under the RUP setting is defined by the tuple Π = (K, E ,D,V). The key space
K is a finite set. The encryption algorithm E : K × N × AD ×M → C deter-
ministically maps a secret key K, a nonce N , associated data A, and a message
M to a ciphertext C = E(K,N,A,M). Here, the domains for the nonce, as-
sociated data, and message are subsets of {0, 1}∗. The decryption algorithm
D : K×N ×AD× C →M is deterministic and maps a tuple (K,N,A,C) back
to the messageM ∈M. The verification algorithm V : K×N×AD×C → {⊤,⊥}
deterministically evaluates the tuple (K,N,A,C) and returns ⊤ for successful
authentication or ⊥ for an authentication failure.

For any message M ∈ M, the domain condition {0, 1}|M | ⊆ M ensures
that for any integer m, either all or none of the strings of length m are in M.
Furthermore, for all (K,N,A,M) ∈ K × N × AD ×M, the ciphertext length
is given by |E(K,N,A,M)| = |M |+ θ, where θ is a non-negative integer known
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as the stretch of Π. The final n bits of the stretch represents the n bits of
authentication tag whereas the rest θ−n bits represent the ciphertext expansion
due to the padding of the input. To ensure correctness, it is required that for all
(K,N,A,M) ∈ K × N × AD ×M, the decryption and verification algorithms
satisfy M = D(K,N,A, E(K,N,A,M)) and ⊤ = V(K,N,A, E(K,N,A,M)).

For notational convenience, we define EK(N,A,M) = E(K,N,A,M),
DK(N,A,C) = D(K,N,A,C), and VK(N,A,C) = V(K,N,A,C).

2.2 Security definitions under RUP setting

sOPRPF Confidentiality. To define the sOPRPF confidentiality notion, we
need to recall the definition of an online permutation (an ideal object that cap-
tures the online/blockwise processing of plaintext/ciphertext data). An online
permutation [11] π : B∗

n → B∗
n is a function that has the following properties

for some positive integer n : (i) π preserves the length of the input; i.e., for any
integer m ≥ 0, the function π applied to mn-bit inputs, written as π : Bm

n → Bm
n ,

is a permutation; (ii) π preserves blockwise prefix i.e., the number of common
blocks (with block size n) at the start of any two inputs is the same for their
corresponding outputs. More specifically, for each M,M ′ ∈ B∗

n, we have that
llcpn(M,M ′) = llcpn(π(M), π(M ′)).

We use OPerm(n) to denote the set of all online permutations. Each
π ∈ OPerm(n) can also be described as a collection (πM )M∈B∗n of permuta-
tions, such that for any M1∥M2∥ . . . ∥Mr ∈ Br

n we get π(M1∥M2∥ . . . ∥Mr) =
πε(M1)∥πM1(M2)∥ . . . ∥πM1∥...∥Mr−1

(Mr), where ε is the empty string. There is
a one-to-one correspondence between OPerm(n) and the set of all such permu-
tation collections. We use π ←$ OPerm(n) to denote random sampling of an
online permutation π = (πM )M∈B∗n from the set OPerm(n) and define it by uni-
form random sampling of underlying πε, πM1

, . . . , πM1∥...∥Mr−1
from Perm(n) on

demand to answer queries of the form M1∥M2∥ . . . ∥Mr (for more details on this
lazy sampling, we refer the reader to [4] and [11]).

We now define the sOPRPF confidentiality of an AEAD scheme Π with two
games, soprpf-realΠ and soprpf-idealΠ . In both games, the adversary A can
make any number of chosen plaintext and chosen ciphertext queries to the en-
cryption and decryption oracles, respectively.A can also use the same nonce more
than once. We assume that A does not make empty message/ciphertext queries
as there is no confidentiality to achieve in such a case. In the game soprpf-realΠ ,
the oracles use the encryption and decryption algorithms of Π with a ran-
domly picked secret key. On the other hand, in the game soprpf-idealΠ , the
encryption oracle returns a random online permutation of the input padded
with a random string as the tag, the decryption oracle first drops the tag and
then returns the (unverified) inverse online permutation of the remaining ci-
phertext, and the verification oracle first decrypts the ciphertext and then re-
generates and verifies the random string (as the tag) from it. More formally,
upon an encryption query with inputs (N,A,M) ∈ N × AD × M, the en-
cryption oracle returns PN,A(ML)∥πN,A,ML,⌊|MR|/n⌋(pad10(MR))∥fN,A,M where
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M = ML∥MR with ML being the longest prefix of M such that |ML| is divisible
by n and |MR| ≠ 0, PN,A ←$ OPerm(n) is a random online permutation for each
pair (N,A), πN,A,ML,⌊|MR|/n⌋ ←$ Perm(n) is a random permutation for each

quadruple (N,A,ML, ⌊|MR|/n⌋), and fN,A,M ←$ {0, 1}(|M | mod n) is a random
string for each triple (N,A,M). Similarly, upon a decryption query with inputs
(N,A,C), where C = CL∥CR∥CT with CL being the longest prefix of C such
that |CL| is divisible by n, |CR| = n and |CT | ≠ 0, the decryption oracle returns
P−1
N,A(CL)∥π−1

N,A,P−1
N,A(CL),⌊|CT |/n⌋(CR) where P

−1
N,A and π−1

N,A,P−1
N,A(CL),⌊|CT |/n⌋ are

the inverse permutations of PN,A and πN,A,P−1
N,A(CL),⌊|CT |/n⌋, respectively. The

soprpf advantage of an adversary A against Π = SAEF[F] is defined as

Advsoprpf
Π (A) = Pr[Asoprpf-realΠ ]− Pr[Asoprpf-idealΠ ] .

The notion of sOPRPF is a stronger notion than OPRPF [4] and a weaker
notion than IND-CPA+PA1 [5]. Roughly, it claims RUP confidentiality up to the
longest common prefix. We note that OPRPF is not sufficient for the confiden-
tiality of plaintexts with decryptional leakage (as it captures only CPA) and the
stronger IND-CPA+PA1 security is not achievable by any online scheme that is
based on the concept of “online permutation” and allows the nonce to be reused
over queries which makes sOPRPF the best option at hand.

INT-RUP Authenticity [5]. Traditional requirements for the integrity of an
AE scheme can be achieved by the INT-CTXT notion, where the adversary is
allowed to make encryption and decryption queries, but the decryption oracle al-
ways returns ⊥. However, under the RUP setting, where the adversary is allowed
to observe the unverified plaintext, the integrity requirements as in INT-CTXT
need to be modified. The following definition from the work of Andreeva et al. [5]
presents the targeted notion of integrity under the RUP setting.

Let us define two games, intrup-realΠ and intrup-idealΠ . In both games,
the adversary is given access to an encryption, a decryption, and a verification
oracle. In the game intrup-realΠ , all three oracles faithfully implement the
corresponding algorithms of Π using the same randomly sampled secret key.
Here the verification oracle returns ⊤ in case of a successful forgery, and ⊥
otherwise. In the game intrup-idealΠ , the encryption and decryption oracles
are same as in intrup-realΠ but the verification oracle always returns ⊥.

Definition 1 (INT-RUP Advantage). Let A be a computationally bounded
adversary with access to an encryption, a decryption, and a verification ora-
cle namely EK ,DK , and VK for Π for some K ←$ K. Let intrup-realΠ and
intrup-idealΠ be two games as defined above. The INT-RUP advantage of A
against Π is then defined as

Advintrup
Π (A) = Pr[Aintrup-realΠ ]− Pr[Aintrup-idealΠ ].

In other words, this advantage defines the probability that A forges, i.e., A comes
up with a new ciphertext-tag pair which is not an output from the queries of
encryption oracle EK , but when queried to verification oracle VK it results into⊤,
i.e., the forgery is a success.
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We note that the INT-RUP definition does not specify the adversary being
nonce-respecting or -misusing as the main goal here is to capture insecurities
from the release of unverified plaintexts. However, such a distinction is needed
to combine this notion with confidentiality against nonce-misusing adversaries.
We use INT-RUP(NR) and INT-RUP(NM) to represent the INT-RUP security
against nonce-respecting and nonce-misusing adversaries, respectively. For the
rest of the paper, we drop (NM) and use INT-RUP to denote the INT-RUP
security against nonce-misusing adversaries for simplicity.

We now define a new online AE security notion for RUP called OAE-RUP
as sOPRPF+INT-RUP.

Definition 2 (OAE-RUP Advantage). Let A be a computationally bounded
nonce-misusing adversary with access to an encryption, a decryption, and a veri-
fication oracle namely EK ,DK , and VK for Π for some K ←$ K. The OAE-RUP
advantage of A against Π is then defined as

AdvOAE-RUP
Π (A) = Advsoprpf

Π (A) +Advintrup
Π (A).

As by definition sOPRPF implies OPRPF4 and INT-RUP implies INT-
CTXT (under nonce-misuse), we have that OAE-RUP implies the OAE [4] secu-
rity for online AEs. In other words, OAE-RUP jointly covers both nonce-misuse
and RUP security of online AE schemes.

Informally, the OAE-RUP security of an AE schemeΠ says that under nonce-
misuse and leakage of unverified plaintexts, the integrity of Π remains intact
whereas the confidentiality is degraded but preserved up to the leakage of com-
mon message prefixes.

2.3 Forkcipher

We use the forkcipher definition from Andreeva et al. [39]. A forkcipher F is a
tweakable symmetric primitive that maps a key K, a tweak T , and an n-bit input
M to two n-bit ciphertexts C0 and C1, which are independent permutations of
M .

A forkcipher consists of two deterministic algorithms: 1) the encryption
algorithm F : {0, 1}k × T × {0, 1}n × {0, 1, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n
and the inversion algorithm F−1 : {0, 1}k × T × {0, 1}n × {0, 1} × {i, o, b} →
{0, 1}n ∪ {0, 1}n × {0, 1}n.

The encryption algorithm takesK, T ,M , and an output selector s. It outputs
C0 if s = 0, C1 if s = 1, or both C0 and C1 if s = b. Notations F(K,T,M, s) =

FK(T,M, s) = FT
K(M, s) = FT,s

K (M) are used interchangeably.
The inversion algorithm takes K, T , C, an input indicator b, and an output

selector s. It outputs M if s = i, the other ciphertext C ′ if s = o, or both M and

4 The existing definition of OPRPF in [4] models the last ciphertext block as an
output of a random function, however, we consider it here as a random permutation
(as invertibility is required to successfully decrypt a ciphertext for leakage).



OAE-RUP Security and its Application to SAEF 11

C ′ if s = b. Notations F−1(K,T,M, b, s) = F−1
K(T,M, b, s) = F−1T

K(M, b, s) =

F−1T,b,s
K (M) are used interchangeably.

A forkcipher F is correct if for any (K,T,M, β) with K ∈
{0, 1}k, T ∈ T , M ∈ {0, 1}n, and β ∈ {0, 1}, it satisfies:
(i) F−1(K,T,F(K,T,M, β), β, i) = M , (ii) F−1(K,T,F(K,T,M, β), β, o) =
F(K,T,M, β ⊕ 1), (iii) (F(K,T,M, 0),F(K,T,M, 1)) = F(K,T,M, b) and
(iv) (F−1(K,T,C, β, i),F−1(K,T,C, β, o)) = F−1(K,T,C, β, b).

We assume T = {0, 1}t for some t. Parameters k, n, and t refer to the key
size, block size, and tweak size of the forkcipher, respectively.

Forkcipher Security. The security of F is defined by the indistinguishability
between the real prtfp-realF and ideal prtfp-idealF worlds when an adversary
interacts using chosen ciphertext queries. In the real world, the forkcipher oracle
implements the actual F algorithm. In the ideal world, the oracle uses two inde-
pendent tweakable random permutations πT,0, πT,1 ←$ Perm(n) for each T ∈ T .
The adversary’s advantage is:

Advprtfp
F (A) = Pr[Aprtfp-realF ]− Pr[Aprtfp-idealF ].

2.4 Coefficients H Technique

The coefficients H is a simple but powerful proof technique by Patarin [38].
It is often used to prove the indistinguishability of a provided construction
from an idealized object for an information-theoretic adversary. Coefficients
H-based proofs use the concept of “transcripts”. A transcript is defined as a
complete record of the interaction of an adversary A with its oracles in the
indistinguishability experiment. For example, if (Mi, Ci) represents the input
and output of the ith query of A to its oracle and the total number of queries
made by A is q, then the corresponding transcript (denoted by τ) is defined
as τ = ⟨(M1, C1), . . . , (Mq, Cq)⟩. The goal of an adversary A is to distinguish
interactions in the real world Oreal from the ones in the ideal world Oideal.

We denote the distribution of transcripts in the real and the ideal world by
Θreal and Θideal, respectively. We call a transcript τ attainable if the probability
of achieving τ in the ideal world is non-zero. Further, w.l.o.g. we also assume
that A does not make any duplicate or prohibited queries. We can now state the
fundamental Lemma of the coefficients H technique.

Lemma 1 (Fundamental Lemma of the Coefficients H Technique [38]).
Assume that the set of attainable transcripts is partitioned into two disjoint sets
Tgood and Tbad. Also, assume there exist ϵ1, ϵ2 ≥ 0 such that for any transcript

τ ∈ Tgood, we have Pr[Θreal=τ ]
Pr[Θideal=τ ] ≥ 1− ϵ1, and Pr[Θideal ∈ Tbad] ≤ ϵ2. Then, for any

adversary A, it holds that

|Pr[AOreal ]− Pr[AOideal ]| ≤ ϵ1 + ϵ2.
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3 Relations Among AEAD Notions

In this section, we discuss the relationships and differences among popular AEAD
security notions. For comparison, we consider two key parameters that define a
security notion: the adversary’s capabilities and the security goals achieved.

For simplicity, we denote an AEAD security notion that achieves X-type se-
curity (i.e., confidentiality and integrity of the processed messages, and integrity
of the processed associated data) against Y -type adversaries as an (X,Y )-notion.
To ensure a fair comparison for input-order-sensitive notions such as OAE, we
assume that the AEAD schemes targeting any of these notions process inputs in
the ordered form (N,A,M), where N , A, and M represent the nonce, associated
data, and message, respectively.

We provide two tables, detailing the X and Y types, and a plot comparing
the strengths of popular AEAD notions in Fig. 1. Here the y-axis defines the
adversarial powers i.e., the Y types whereas the x-axis defines the achieved se-
curity goals i.e., the X types. A point on the plot is represented by a cell in the
big colored table consisting the AEAD notions that includes IND-CPA+INT-
CTXT [12], IND-CCA+INT-CTXT [12], nAE [40], NMR [8], AERUP [23], sub-
tleAE [10], RAEsim [29], OAE [26], OAE-RUP as well as some of their weaker
variants that claims security only for nonce-respecting (NR) queries and/or
queries that are not subject to decryptional leakage (NL).

Abbreviations. In Fig. 1, Y types varies from 1 to 12 and are defined by the
different combinations of powers that are given to the target adversaries. These
combinations consist four different powers - nonce-misuse (NM), blockwise adap-
tive input processing for encryption (BE), observing the unverified plaintexts and
therefore the leakage of prefixes (LP) and blockwise adaptive input processing
for decryption (BD).

Various combinations are defined here by allowing some of the powers and
restricting the others. For e.g., Y = 4 means that the target adversary is nonce-
misusing and blockwise adaptive for encryption, however, cannot observe any
decryptional leakage and cannot be blockwise adaptive for decryption.

Similarly, the X types varies from A to F and are defined by the different
combinations of achieved security goals for different category of encrypted mes-
sages. More specifically, there are four different categories of encrypted messages
- 1) messages that contain unique nonces and are not subject to leakage i.e.,
share no prefix with any leaked unverified plaintexts, 2) messages that contain
repeated nonces but are still not subject to leakage, 3) messages that contain
unique nonces but are subject to leakage and 4) messages that contain repeated
nonces and are also subject to leakage. These categories are represented (in the
same order) by the first column of the X types table in Fig. 1.

We consider four different types of well-defined security goals dubbed t1, t2, t3
and t4 that can be captured for the encrypted messages in various categories.
None of the four security goals compromise on integrity i.e., full integrity of all
encrypted messages in desired whereas the achieved confidentiality is different
for all of them defined as 1) t1 - confidentiality with only leakage of the length of
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Fig. 1: Relations among popular AEAD notions.

the plaintext, 2) t2 - confidentiality as t1 but with additional leakage of message
repetitions, 3) t3 - confidentiality as t2 but with additional leakage of the length
of common prefixes with other encrypted plaintexts and 4) t4 - confidentiality
as t3 but with additional leakage of the common prefixes with other decrypted
plaintexts. For e.g.,X = Cmeans that the AEAD notion captures security as full
integrity for all encrypted plaintexts, t1 confidentiality for encrypted plaintexts
that contain unique nonces and are not subject to leakage and t3 confidentiality
for encrypted plaintexts that contain repeated nonces but are still not subject to
leakage. It says nothing about the confidentiality of other categories of encrypted
plaintexts (if any).

We note that nonce-respecting and nonce-misusing are nonce-specific terms
that only apply to nonce-based AEAD notions. Therefore, in Fig. 1, we use “−”
in nonce-related categories to denote “not applicable” for randomized AEAD
security notions and we use Y and N to represent yes and no, respectively.

How to Read Fig. 1.With all the abbreviations defined, (X,Y )-notion can now
easily be understood. The position of an (X,Y )-notion in Fig. 1 is simply defined
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by the target adversary setting and the captured goals of it. Let us consider the
following example - RAEsim [29] is a robust authenticated encryption security
notion that by definition captures full integrity and confidentiality of encrypted
plaintexts with one degradation that the ciphertexts of repeated plaintexts are
same. This means when the nonce is unique, it achieves t1 confidentiality and
t2, otherwise. This makes X = F for RAEsim. Further, RAEsim, by definition,
resists against nonce-misuse and decryptional leakage but cannot be online and
therefore does not support blockwise encryption and decryption. This makes
Y = 7 which implies RAEsim an (7,F)-notion.

Colors, Gradient and Stars. The red colored cells represent impossible com-
binations to be captured by any AEAD notion due to contradictions between
the corresponding adversarial powers and achieved security goals. For e.g., the
cell corresponding to (1,F)-notion is red because the adversary is nonce-misusing
and blockwise adaptive yet the security goals claims t2 (i.e., confidentiality with
leakage of only input length and repetition) for nonce-misused and leaked-prefix
queries which is impossible as blockwise encryption additionally leaks repetitions
of common prefixes.

The gray colored cells represent senseless combinations to be captured by any
AEAD notion due to adversarial powers being incompatible/inconsistent with
the achieved security goals. For e.g., the cell corresponding to (2,C)-notion is
gray because the adversary is required to be nonce-respecting yet the security
claims includes t3 security for queries with nonce-misuse.

We call the remaining cells that are not red or gray as the sensible notions.
They are colored with a green gradient. The gradient shows the strength of
an AEAD notion where going from the lighter to the darker area implies the
strengthening of adversarial powers and/or achieved security goals.

The table shows that OAE-RUP and RAEsim are two of the strongest AEAD
security notions in their categories. Comparing with each other, RAEsim gives
adversaries less power but achieves stronger security goals when compared with
OAE-RUP.

We also note that as per the definition of the gradient, the rightmost notion
for a given Y -type in Fig. 1 is the strongest/best notion for that Y . The same
is denoted by a blue starred cell in every row.

Position of sOPRPF and CR-RUP. We highlight that OAE-RUP and OAE-
RUP (NR, NL) are the two best notions in their rows (i.e., under the target
adversary settings). OAE-RUP (NR, NL) is a weaker variant of OAE-RUP that
claims same security as OAE-RUP but only for the encrypted plaintexts that
contain unique nonces and are not subject to decryptional leakage. We recall that
OAE-RUP is defined as sOPRPF+INT-RUP and as per the definition of CR-
RUP (see Appendix B), OAE-RUP (NR,NL) can be defined as CR-RUP+INT-
RUP(NR).
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4 SAEF and its OAE-RUP Security

SAEF (Sequential AE from a Forkcipher) is a nonce-based AEAD scheme uti-
lizing a tweakable forkcipher F (as defined in Section 2.3) with T = {0, 1}t
for a positive t ≤ n. The scheme, denoted as SAEF[F] = (K, E ,D,V), has a
key space K = {0, 1}k, a nonce space N = {0, 1}t−4, and both the associated
data (AD) and message spaces as {0, 1}∗. The ciphertext expansion of SAEF is
n bits. The encryption, decryption, and verification algorithms are detailed in
Figure 3 whereas a pictorial diagram of SAEF’s encryption process is provided
in Figure 2. Unlike the earlier SAEF representation [7], which lacked explicit
separation of decryption and verification functionalities, our current syntax dis-
tinctly separates these functions without altering the input-output behavior of
the SAEF algorithm.

Fig. 2: The Encryption Algorithm of SAEF[F] Mode. The bit noM = 1 if and only if
|M | = 0. Here, the white hatching indicates that the output block is not computed. The
diagram shows the processing of Additional Data (AD) and message in four scenarios:
1) Top Left: AD length is a multiple of n. 2) Top Right: AD length is not a multiple of
n. 3) Bottom Left: Message length is a multiple of n. 4) Bottom Right: Message length
is not a multiple of n.

SAEF processes an encryption query in blocks of n bits (in order), with first
AD and then the message. It uses a single forkcipher call for each block. These
forkcipher calls are tweaked by composing: (1) either the nonce followed by a
1-bit (for the first F call of the query) or the string 0t−3, (2) a three-bit flag f .

This flag f is used to ensure proper domain separation for various
“types” of blocks in the encryption algorithm. The values of f from the set
{000, 010, 011, 110, 111, 001, 100, 101} are respectively used when processing non-
final AD block, the last n-bit long AD block, the last AD block of < n bits, the
last AD block of n bits to produce tag, the last AD block of < n bits to produce
tag, non-final message block, the last n-bit message block and the last message
block of < n bits.
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The left (or right, respectively) output block of every F call is used as a
chaining value to mask the input of the following F call in the case of AD
processing (or both the input and output of the following F call in the case of
message processing, respectively). The first F call of every query is not masked
but contains the nonce in the tweak. The tag for a query is defined as the
(possibly truncated) last “right” output block of F. In case of truncation, message
padding is used for partial integrity check of the ciphertext. For a decryption
(respectively verification) query, the processing of input blocks is similar to the
encryption, but now with the chaining values in the message processing part
are computed with the “inverse” F algorithm. These chaining values are used
(similarly to the encryption algorithm) to compute the corresponding plaintext
blocks (respectively to verify the final tag).

1: function E(K,N,A,M)

2: A1, . . . , Aa,A∗
n←− A

3: M1, . . . ,Mm,M∗
n←− M

4: noM ← 0
5: if |M| = 0 then noM ← 1
6: ∆ ← 0n; T ← N∥1
7: for i ← 1 to a do
8: T ← T∥000
9: ∆ ← F

T,0
K

(Ai ⊕∆)

10: T ← 0t−3

11: end for
12: if |A∗| = n then
13: T ← T∥noM∥10
14: ∆ ← F

T,0
K

(A∗ ⊕∆)

15: T ← N∥1
16: else if |A∗| > 0 then
17: T ← T∥noM∥11
18: ∆ ← F

T,0
K

((A∗∥10∗) ⊕
∆)

19: T ← N∥1
20: end if
21: for i ← 1 to m do
22: T ← T∥001
23: Ci,∆ ←

F
T,b
K

(Mi ⊕∆) ⊕ (∆, 0n)

24: T ← 0t−3

25: end for
26: if |M∗| = n then
27: T ← T∥100
28: else if |M∗| > 0 then
29: T ← T∥101
30: end if
31: if noM = 1 then
32: T ← ∆
33: return T
34: else
35: C∗, T ←

F
T,b
K

(pad10(M∗) ⊕∆) ⊕ (∆∥0n)

36: end if
37: return

C1∥ . . . ∥Cm∥C∗∥left|M∗|(T )

38: end function

1: function D(K,N,A,C)

2: A1, . . . , Aa,A∗
n←− A

3: C1, . . . , Cm,C∗, T
n←− C

4: noM ← 0
5: if |C| = n then noM ← 1
6: ∆ ← 0n; T ← N∥1
7: for i ← 1 to a do
8: T ← T∥000
9: ∆ ← F

T,0
K

(Ai ⊕∆)

10: T ← 0t−3

11: end for
12: if |A∗| = n then
13: T ← T∥noM∥10
14: ∆ ← F

T,0
K

(A∗ ⊕∆)

15: T ← N∥1
16: else if |A∗| > 0 then
17: T ← T∥noM∥11
18: ∆ ← F

T,0
K

((A∗∥10∗) ⊕
∆)

19: T ← N∥1
20: end if
21: for i ← 1 to m do
22: T ← T∥001
23: Mi,∆ ←

F−1T,0,b
K (Ci ⊕∆) ⊕ (∆, 0n)

24: T ← 0t−3

25: end for
26: if |T | = n then
27: T ← T∥100
28: else if |T | > 0 then
29: T ← T∥101
30: end if
31: if noM = 1 then
32: return ε
33:
34: else
35: M∗, T ′ ←

F−1T,0,b
K (C∗ ⊕∆) ⊕ (∆, 0n)

36: end if
37: return

M1∥ . . . ∥Mm∥left|T |(M∗)
38: end function

1: function V(K,N,A,C)

2: A1, . . . , Aa,A∗
n←− A

3: C1, . . . , Cm,C∗, T
n←− C

4: noM ← 0
5: if |C| = n then noM ← 1
6: ∆ ← 0n; T ← N∥1
7: for i ← 1 to a do
8: T ← T∥000
9: ∆ ← F

T,0
K

(Ai ⊕∆)

10: T ← 0t−3

11: end for
12: if |A∗| = n then
13: T ← T∥noM∥10
14: ∆ ← F

T,0
K

(A∗ ⊕∆)

15: T ← N∥1
16: else if |A∗| > 0 then
17: T ← T∥noM∥11
18: ∆ ← F

T,0
K

((A∗∥10∗) ⊕
∆)

19: T ← N∥1
20: end if
21: for i ← 1 to m do
22: T ← T∥001
23: Mi,∆ ←

F−1T,0,b
K (Ci ⊕∆) ⊕ (∆, 0n)

24: T ← 0t−3

25: end for
26: if |T | = n then
27: T ← T∥100
28: else if |T | > 0 then
29: T ← T∥101
30: end if
31: if noM = 1 ∧ C ̸= ∆ then
32: return ⊥
33:
34: else if noM = 0 then
35: M∗, T ′ ←

F−1T,0,b
K (C∗ ⊕∆) ⊕ (∆, 0n)

36: T ′ ← left|T |(T
′)

37: P ← rightn−|T |(M∗)
38: if T∥leftn−|T |(10

n) ̸=

T ′∥P then
39: return ⊥
40: end if
41: end if
42: return ⊤
43: end function

Fig. 3: The SAEF[F] AEAD scheme.
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Security of SAEF. In [4], Andreeva et al. proved that SAEF achieves OAE
confidentiality and integrity up to the birthday bound under Nonce-Misuse. How-
ever, there have been no investigations into the security of SAEF under the re-
lease of unverified plaintext (i.e., if the decrypted plaintext is released before the
tag verification). We state the formal claim about confidentiality and integrity
of SAEF under RUP in Theorem 1.

Theorem 1. Let F be a tweakable forkcipher with T = {0, 1}t. Then for any
nonce-misuse adversary A who makes at most qe encryption, at most qd decryp-
tion, and at most qv verification queries with qe + qd ≤ 2n−1 such that the total
number of forkcipher calls induced by all the queries is at most σ, we have

Advsoprpf
SAEF[F](A) ≤Advprtfp

F (B) + 3 · σ2

2n+1

Advintrup
SAEF[F](A) ≤Advprtfp

F (B) + σ2 + 4 · qdqv
2n

for some adversary B, making at most 2σ queries, and running in the time given
by the running time of A plus γ · σ for some “small” constant γ.

5 Proof of Theorem 1

Proof (Theorem 1). Replacing F. We first replace F with a pair of inde-

pendent random tweakable permutations π0 = (πT,0 ←$ Perm(n))T∈{0,1}t

and π1 = (πT,1 ←$ Perm(n))T∈{0,1}t and let SAEF[(π0, π1)] denote the
SAEF mode that uses π0, π1 instead of F, which yields for the integrity case,
Advintrup

SAEF[F](A) ≤ Advprtfp
F (B)+Advintrup

SAEF[(π0,π1)]
(A) and for the confidential-

ity case, Advsoprpf
SAEF[F](A) ≤ Advprtfp

F (B) +Advsoprpf
SAEF[(π0,π1)]

(A) .
Now, the adversary, in the integrity case is left to distinguish be-

tween the games intrup-realSAEF[(π0,π1)] (let say the “real-int world”) and
intrup-idealSAEF[(π0,π1)] (let say the “ideal-int world”) and for the confiden-
tiality case is left to distinguish between the games soprpf-realSAEF[(π0,π1)] (let
say the “real-conf world”) and soprpf-idealSAEF[(π0,π1)] (let say the “ideal-conf
world”).

Transcripts. Following the coefficients H technique [38], we describe the inter-
actions of A with its integrity (i.e., intrup) oracles in a transcript:

τ = ⟨(N i, Ai,M i, Ci)qei=1, (N̄
i, Āi, M̄ i, C̄i)

qd
i=1, (Ñ

i, Ãi, C̃i, bi)qvi=1⟩

and with its confidentiality (i.e., soprpf) oracles in a transcript:

τ = ⟨(N i, Ai,M i, Ci)qei=1, (N̄
i, Āi, M̄ i, C̄i)

qd
i=1⟩ .

For the i-th encryption query (N i, Ai,M i) with output Ci, SAEF pro-
cesses Ai,M i, and Ci in blocks Ai

1, . . . , A
i
ai , Ai

∗, M i
1, . . . ,M

i
mi ,M i

∗, and
Ci

1, . . . , C
i
mi , Ci

∗, T
i (as defined in the SAEF algorithms, Figure 3). Here, ai and

mi are the lengths of Ai and M i in n-bit blocks, respectively (ai = |Ai|n−1 and
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mi = |M i|n − 1). SAEF also uses internal chaining values as whitening masks,
denoted by ∆. The masks for processing Ai

1, . . . , A
i
ai , Ai

∗ are ∆i
1, . . . ,∆

i
ai+1, and

for M i
1, . . . ,M

i
mi ,M i

∗, they are ∆i
ai+2, . . . ,∆

i
ai+mi+2.

For the i-th decryption query (N̄ i, Āi, C̄i) with output M̄ i, SAEF pro-
cesses Āi, C̄i, and M̄ i in blocks Āi

1, . . . , Ā
i
āi , Āi

∗, C̄i
1, . . . , C̄

i
m̄i , C̄i

∗, T̄
i, and

M̄ i
1, . . . , M̄

i
m̄i , M̄ i

∗. Here, āi and m̄i are the lengths of Āi and C̄i in n-bit blocks
(āi = |Āi|n − 1 and m̄i = |C̄i|n − 2). The whitening masks for Āi

1, . . . , Ā
i
āi , Āi

∗
are ∆̄i

1, . . . , ∆̄
i
āi+1, and for C̄i

1, . . . , C̄
i
m̄i , C̄i

∗, they are ∆̄i
āi+2, . . . , ∆̄

i
āi+m̄i+2.

For the i-th verification query (Ñ i, Ãi, C̃i) with output bi ∈ {⊤,⊥}, SAEF
processes Ãi and C̃i in blocks Ãi

1, . . . , Ã
i
ãi , Ãi

∗ and C̃i
1, . . . , C̃

i
m̃i , C̃i

∗, T̃
i. Here,

ãi and m̃i are the lengths of Ãi and C̃i in n-bit blocks (ãi = |Ãi|n − 1 and
m̃i = |C̃i|n − 2). The whitening masks for Ãi

1, . . . , Ã
i
ãi , Ãi

∗ are ∆̃i
1, . . . , ∆̃

i
ãi+1,

and for C̃i
1, . . . , C̃

i
m̃i , C̃i

∗, they are ∆̃i
ãi+2, . . . , ∆̃

i
ãi+m̃i+2.

Additional Information. To simplify proof analysis, we provide the adversary
with encryption masks ∆i

j and decryption masks ∆̄i
j in both integrity and con-

fidentiality settings. Additionally, in the integrity setting, the adversary receives
the internally computed plaintexts M̃ i

j and verification masks ∆̃i
j , while in the

confidentiality setting, the adversary receives the tag bits normally discarded by
truncation, i.e., now |T i| = n for 1 ≤ i ≤ qe.

This additional information can only aid the adversary by increasing its ad-
vantage, thus can be considered here for upper bounding the adversarial advan-
tage in the targeted setting. We note that this additional information is provided
to the adversary (in the corresponding setting) when it has made all its queries
and only the final response is pending.

Block-Tuple Representation. To streamline notation and ease analysis, we
switch to a block-tuple representation by defining the i-th encryption query as
(Ti

j , ∆
i
j , X

i
j , Y

i
j )

ℓi

j=1, T
i, with ℓi = ai +mi + 2. The j-th quadruple in this tuple

represents the processing in the j-th forkcipher call, where Ti
j is the forkcipher

tweak, ∆i
j is the whitening mask, Xi

j is the associated data/plaintext block, and

Y i
j is the empty/ciphertext block. Specifically:

– For the first block, Ti
1 = N∥1∥F with F ∈ {0, 1}3 and ∆i

1 = 0n. For j > 1
we have Ti

j = 0t−3∥F with F ∈ {0, 1}3.
– If |A| > 0, for 1 ≤ j ≤ ai we have Xi

j = Ai
j , Y

i
j = ε, and F = 000. For

j = ai +1 we have Xi
j = pad10(Ai

∗), Y
i
j = ε, and F ∈ {0, 1}3 as in Figure 3.

– If |M | > 0, for ai+2 ≤ j < ℓi we have Xi
j = M i

j , Y
i
j = Ci

j , and F = 001. For

j = ℓi we have Xi
j = pad10(M i

∗), Y
i
j = Ci

∗, and F ∈ {0, 1}3 as in Figure 3.

– If A = M = ε we have j = ℓi = 1, Xi
j = pad10(ε), Y i

j = ε, and F = 111.

Similarly, the block-tuple representation for decryption queries is

(T̄
i
j , ∆̄

i
j , X̄

i
j , Ȳ

i
j )

ℓ̄i

j=1, T̄
i with ℓ̄i = m̄i + āi + 2, and for verification queries,

it is (T̃
i

j , ∆̃
i
j , X̃

i
j , Ỹ

i
j )

ℓ̃i

j=1, T̃
i, bi with ℓ̃i = m̃i+ ãi+2. We re-index the decryption

queries from qe + 1 to qe + qd and the verification queries from qe + qd + 1
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to qe + qd + qv. This re-indexing allows us to drop the bars and tildes from
variables, denoting them as (Ti

j , ∆
i
j , X

i
j , Y

i
j )

ℓi

j=1, T
i for qe + 1 ≤ i ≤ qe + qd and

(Ti
j , ∆

i
j , X

i
j , Y

i
j )

ℓi

j=1, T
i, bi for qe + qd + 1 ≤ i ≤ qe + qd + qv.

The transcript of A consists of all query-response tuples, uniquely defined
at the end of its interaction. This transcript remains invariant regardless of the
order of encryption, decryption, and verification queries, making the re-indexing
a valid step that simplifies notation in transcripts.

The block-tuple representation for SAEF mode was initially introduced in [4],
with an equivalence proof showing how to reconstruct the original representation.
We refer readers to [4, Appendix A] for the full proof of equivalence.

Blockwise Common Prefix of Queries. With the block-tuple notation, we
can simply define the length of the longest common prefix between the i-th and
i′-th query with ℓi ≤ ℓi

′
as

llcpn(i, i
′) = max{1 ≤ u ≤ ℓi | (Ti

j ,∆
i
j , X

i
j , Y

i
j ) = (Ti′

j ,∆
i′
j , X

i′
j , Y i′

j ) for 1 ≤ j ≤ u}.

This definition covers common blockwise prefixes between all types of query
pairs (e.g., between two encryption queries, an encryption and a decryption
query, a decryption and a verification query, etc.). Informally, llcpn(i, i

′) rep-
resents the number of internal chaining values ∆s that are equal between the
i-th and i′-th query. For instance, if the nonces N i and N i′ are different then
llcpn(i, i

′) = 0. If we have two queries with N i = N i′ but the i′
th

query has
AD Ai′ = Ai∥M i

1 i.e., equal to the AD of the ith query appended with its first
message block (and the rest of these messages have no common prefix), we will
still have llcpn(i, i

′) = ai + 1, due to the inclusion of tweak strings in the block
tuples.

We now define the length of the longest common blockwise prefix of a query
with all previous queries as llcpn(i) = max1≤i′<i llcpn(i, i

′). We also note that
for verification queries, all encryption and decryption queries are always taken
into account (as per the convention of query indexing).

Extended Transcripts. Using block-tuple notation, we redefine the extended
transcripts of A with its integrity oracles as follows:

τ =

〈((
Ti
j , ∆

i
j , X

i
j , Y

i
j

)ℓi
j=1

, T i

)qe+qd

i=1

,

((
Ti
j , ∆

i
j , X

i
j , Y

i
j

)ℓi
j=1

, T i, bi
)qe+qd+qv

i=qe+qd+1

〉

and with its confidentiality oracles, as follows:

τ =

〈((
Ti
j , ∆

i
j , X

i
j , Y

i
j

)ℓi
j=1

, T i

)qe+qd

i=1

〉
.

Note that the terms qe, qd, qv, a, and m are random variables and may vary
for different attainable transcripts. However, assuming the adversary can make
at most σ block queries, we have

∑qe+qd+qv
i=1 (ai +mi + 2) = σ for the integrity

setting and
∑qe+qd

i=1 (ai +mi + 2) = σ′ ≤ σ for the confidentiality setting.
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5.1 Integrity Analysis

Sampling of Additional Information. In the real-int world, all additional
information variables are computed by oracles that evaluate SAEF. In the ideal-
int world, the encryption and decryption oracles also evaluate SAEF, defining
the ∆i

j masks for 1 ≤ i ≤ qe+qd. However, the verification oracle in the ideal-int

world does not perform any computations, leaving ∆i
j for qe + qd + 1 ≤ i ≤

qe + qd + qv and M̃ i
j for 1 ≤ i ≤ qv undefined. Therefore, we need to define the

sampling of these variables.
We set ∆i

1 = 0n for qe + qd + 1 ≤ i ≤ qe + qd + qv and sample the remaining
∆i

j masks uniformly and independently at random, except when such a mask is
trivially defined due to a “common prefix” with a previous query. More formally,
for the i-th query with qe + qd + 1 ≤ i ≤ qe + qd + qv and 1 < j ≤ llcpn(i) + 1,
we let ∆i

j = ∆i′

j for the smallest i′ < i such that the i′-th query has llcpn(i) =

llcpn(i, i
′). For the remaining block-tuples with llcpn(i) + 1 < j ≤ ℓi, ∆i

j is
sampled uniformly at random. Once these masks are sampled, we use the SAEF
decryption algorithm with π0 and these masks to compute M̃ i

j .

Coefficients H. Let Θrein and Θidin represent the distribution of the transcript
in the real-int world and the ideal-int world, respectively. The proof relies on
the fundamental lemma of the coefficients H technique as defined in Lemma 1.
We represent the j-th block call of the i-th query in a transcript by the index
tuple (i, j). An attainable transcript τ is considered bad if any of the following
conditions occur:

BadT1 (Input Collision): There exists (i′, j′) < (i, j) such that 1 ≤ i ≤ qe + qd +
qv, llcpn(i) < j ≤ ℓi (not in the longest common prefix), and the (i, j) block

call has a tweak-input collision with the (i′, j′) block call, i.e., Ti
j = Ti′

j′ and

Xi
j ⊕∆i

j = Xi′

j′ ⊕∆i′

j′ .
BadT2 (Mask Collision): There exists (i′, j′) < (i, j) such that 1 ≤ i ≤ qe + qd +

qv, llcpn(i) < j < ℓi, and both block calls have the same tweaks Ti
j = Ti′

j′

and different inputs Xi
j⊕∆i

j ̸= Xi′

j′⊕∆i′

j′ , but the subsequent masks ∆i
j+1 =

∆i′

j′+1 collide.

BadT3 (Forgery): There exists qe + qd +1 ≤ i ≤ qe + qd + qv such that for j = ℓi

we have any of the following:
Case 1: The last bit of Ti

j is 0 and πTi
j ,1

(Xi
j ⊕∆i

j) = T i.

Case 2: The last bit of Ti
j is 1, rightn−|T i|(X

i
j) = 10n−|T i|−1 and

left|T i|(πTi
j ,1

(Xi
j ⊕∆i

j)) = T i.

Case 3: The last bit of Ti
j is 1, and there exists qe + 1 ≤ id ≤ qe + qd with

Tid
ℓid

= 1 and |T i| = |T id | such that rightn−|T id |(X
id
ℓid

) = 10n−|T id |−1 and

left|T i|(πTi
j ,1

(Xi
j ⊕∆i

j)) = T i.

We emphasize that Case 3 of BadT3 is not required in existing integrity anal-
yses [4,7] of SAEF but is necessary under the RUP setting, where an adversary
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can observe unverified plaintexts. In essence, it captures a scenario where an
adversary makes decryption queries with incomplete last blocks that only differ
in the last complete ciphertext blocks (C̄∗) to find an unverified padding match-
ing 10w−1 for some 1 ≤ w ≤ n − 1. Once found, the adversary uses the same
ciphertext with its tag part (of size n−w bits) replaced with random strings as
forgeries.

We define Tbad as the set of “bad” transcripts, a subset of attainable tran-
scripts for which the predicate BadT(τ) = (BadT1(τ)∨BadT2(τ)∨BadT3(τ)) = 1.
Conversely, Tgood represents the attainable transcripts not in Tbad, thus consid-
ered “good” transcripts.

Lemma 2. For Tbad above and qe + qd ≤ 2n−1, we have

Pr[Θidin ∈ Tbad] ≤
σ2

2n
+

4 · qdqv
2n

.

Lemma 3. Let τ ∈ Tgood, meaning τ is a good transcript. Then Pr[Θrein=τ ]
Pr[Θidin=τ ] ≥ 1.

With the well-defined bad events, both lemmas can be proved using standard
probability analysis. We defer the proof of Lemma 2 and 3 to Appendix C.
Combining the results of Lemma 2 and 3 (taking ϵ1 = 0) into Lemma 1, we

obtain the upper bound Advintrup
SAEF[(π0,π1)]

(A) ≤ σ2

2n +
4·qdqv
2n and thus the integrity

result of Theorem 1.

5.2 Confidentiality Analysis

Sampling of Additional Information. In the real-conf world, all additional
information variables are computed internally by the SAEF encryption and de-
cryption algorithms. However, in the ideal-conf world, these variables are not
defined, as outputs are directly computed by an online permutation (or its in-
verse), a random permutation (or its inverse), and a random function, with tags
being sampled directly to the desired length. Consequently, in the ideal-conf
world, we sample the masks uniformly at random while ensuring consistency
with SAEF’s prefix preservation, and each authentication tag is extended by
appending 0 to n− 1 uniform random bits as needed.

Formally, for each 1 ≤ i ≤ qe + qd, we set ∆i
j = ∆i′

j for 1 ≤ j ≤ llcpn(i) + 1,
where i′ is the smallest index less than i such that the i′-th query has llcpn(i) =
llcpn(i, i

′). For llcpn(i) + 1 < j ≤ ℓi, the mask ∆i
j is sampled uniformly at

random. This approach to sampling ∆ masks is not dependent on the sequential
indexing of queries, meaning it applies equally well to an adaptive adversary
with encryption and decryption queries in any order.

Coefficients H. Let Θreco and Θidco denote the distribution of the transcripts
in the real-conf world and the ideal-conf world, respectively.

The proof relies on the fundamental lemma of the coefficients H technique,
as defined in Lemma 1. We represent the j-th block call of the i-th query in a
transcript by the index tuple (i, j). We consider an attainable transcript τ to be
bad if any of the following conditions occur:
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BadT1 (Input Collision): There exists (i′, j′) < (i, j) such that 1 ≤ i ≤ qe + qd,
llcpn(i) < j ≤ ℓi, and the (i, j) block call has a tweak-input collision with

the (i′, j′) block call, i.e., Ti
j = Ti′

j′ and Xi
j ⊕∆i

j = Xi′

j′ ⊕∆i′

j′ .

BadT2 (Output Collision): There exists (i′, j′) < (i, j) such that 1 ≤ i ≤ qe+ qd,

llcpn(i) < j < ℓi, and both block calls have the same tweaks Ti
j = Ti′

j′ and

different inputs Xi
j ⊕∆i

j ̸= Xi′

j′ ⊕∆i′

j′ . However, one of the outputs collides,
i.e., one of the following is true:

I. j = llcpn(i) + 1 and (i) ∆i
j+1 = ∆i′

j′+1 if j < ℓi and j′ < ℓi
′
, or (ii) T i =

T i′ if 1 ≤ i ≤ qe, j = ℓi and j′ = ℓi
′
.

II. j > llcpn(i)+1 and (i) Y i
j ⊕∆i

j = Y i′

j′ ⊕∆i′

j′ if j > ai+1, or (ii) ∆i
j+1 =

∆i′

j′+1 if j < ℓi and j′ < ℓi
′
, or (iii) T i = T i′ if 1 ≤ i ≤ qe, j = ℓi and

j′ = ℓi
′
.

We define T ′
bad as the set of “bad” transcripts, a subset of attainable tran-

scripts where the predicate BadT′(τ) = (BadT′
1(τ) ∨ BadT′

2(τ)) is true. Con-
versely, T ′

good represents the attainable transcripts not in T ′
bad, thus considered

“good” transcripts.

Lemma 4. For T ′
bad as defined above,

Pr[Θidco ∈ T ′
bad] ≤

3 · σ2

2n+1
.

Lemma 5. Let τ ∈ T ′
good, meaning τ is a good transcript. Then, Pr[Θreco=τ ]

Pr[Θidco=τ ] ≥ 1 .

With the defined bad events, both lemmas can be proven using standard
probability analysis. The proofs are deferred to Appendix C. By combining
Lemmas 4 and 5 (with ϵ1 = 0) into Lemma 1, we derive the upper bound

Advsoprpf
SAEF[(π0,π1)]

(A) ≤ 3·σ2

2n+1 thus establishing the confidentiality result of The-
orem 1. ⊓⊔

6 Conclusion

We propose a RUP confidentiality notion for online AE schemes named sOPRPF
which can be seen as the strong version of OPRPF [4] where the adversary is
now allowed to see decryption of chosen ciphertexts as well. In terms of RUP
security, sOPRPF captures confidentiality for online AE schemes up to the leak-
age of common prefix with the released unverified plaintexts. We define a strong
AE security notion called OAE-RUP as sOPRPF+INT-RUP which is a stronger
notion than OAE [4] and is the best achievable option available for online AE
schemes jointly against nonce-misuse, blockwise adaptive and/or RUP adver-
saries. We also compare popular AEAD notions to OAE-RUP to highlight its
relevance.
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We prove that SAEF ensures OAE-RUP security provided the total data pro-
cessed with a single key is≪ 2n/2 blocks, where n is the block size of the under-
lying forkcipher. This means SAEF maintains reasonable security even when un-
verified plaintext is released. Specifically, SAEF’s integrity remains intact while
its confidentiality is preserved up to the longest common prefix. These security
properties are significant for lightweight cryptography applications, where con-
strained devices might (or are required to) leak portions of unverified plaintext
during decryption and could suffer from nonce repetitions.

We also propose confidentiality resilience under RUP (CR-RUP) as a gen-
eralized and intuitive notion of confidentiality for online AE schemes, similar to
nonce misuse resilience (NMR) [8]. Although weaker than sOPRPF, CR-RUP
ensures meaningful security by protecting plaintexts not directly subject to leak-
age.

Future research could explore the CR-RUP and sOPRPF security of other
existing INT-RUP secure online AE schemes.
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A Table 1: Full Details

In this section, we first revise the (security) properties as described in Table 1
and then explain how each checkmark entry is derived.

1. Online AE (OAE) Security [4]: Ensures the AE mode can be implemented
online with reasonable security, protecting against blockwise and nonce-misusing
adversaries.

2. Nonce-Misuse Resilience (NMR) Security [8]: Provides security even
when the nonce is repeated in other queries, safeguarding against specific nonce-
misusing adversaries.

3. Misuse-Resistant AE (MRAE) Security [41]: A stronger version of
NMR, ensuring security against nonce-misusing adversaries. MRAE is more ro-
bust than OAE and NMR but requires at least two passes over plaintext data,
making it unsuitable for online implementations.

4. Integrity under RUP (INT-RUP) [5]: Ensures integrity even when un-
verified plaintexts are released, protecting against adversaries seeing unverified
decrypted plaintexts.

5. Plaintext Awareness (PA) [5]: Combined with IND-CPA, it ensures con-
fidentiality even when unverified plaintexts are released. PA requires at least
two passes over plaintext data for encryption, making it incompatible with OAE
security (and online implementations).

6. sOPRPF Security 2.2: Ensures confidentiality (up to the longest common
prefix) even when unverified plaintexts are released and the nonce is repeated.
sOPRPF is weaker than PA but is suitable for online implementations. It is kept
separate from INT-RUP in Table 1 as some schemes only provide INT-RUP
security.

7. One-pass Encryption and Decryption: Ensures the mode requires only
one pass over the data, supporting online encryption and decryption. While
OAE-RUP implies single-pass encryption and decryption, the reverse is not al-
ways true.
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A.1 Results in Table 1

We now describe the results of Table 1. The MRAE security of ESTATE and
Romulus-M is proven in [19] and [32], respectively which by definition implies the
NMR security of them. Both of these modes require passing the message twice to
encrypt it, i.e., they do not support one-pass encryption and OAE security. We
note that for decryption, these modes only require passing the ciphertext once i.e.
they have one-pass decryption and are proven INT-RUP secure in [19] and [32],
respectively. We also note that in [32], Romulus-M is proven IND-CPA+PA1
using a general argument which says an SIV type MAC-then-Encrypt AEAD
mode with MAC as a PRF and encryption as a PA1 scheme is IND-CPA+PA1.
This implies that ESTATE which also follows the same composition idea with
CBC-style MAC part (shown to be a PRF in [19]) and OFB encryption (can be
similarly shown PA1 as CTR mode is shown in [5]) is also IND-CPA+PA1.

All the rest modes in Table 1 provide one-pass encryption and decryption and
hence are neither MRAE nor IND-CPA+PA1 secure. The INT-RUP security of
Oribatida, LOCUS/LOTUS, and TinyJAMBU is proven in [16], [18] and [24],
respectively. The NMR security of Spook and TinyJAMBU is proven in [13]
and [43], respectively and the OAE security of SAEF is proven in [4] which by
definition implies its NMR security. Finally, the sOPRPF+INT-RUP (or jointly
named as OAE-RUP) security of SAEF mode is proven in this work.

B CR-RUP Security: A Weaker Alternative to sOPRPF

We propose confidentiality resilience under release of unverified plaintext (CR-
RUP), a basic security notion that targets full confidentiality for “unleaked
plaintexts” i.e., plaintexts that are not subject to leakage, has unique nonces
and has no common prefixes with the leaked plaintexts. More concretely, let us
define two games, CR-RUP-realΠ and CR-RUP-idealΠ . In both games, the ad-
versary is given access to an encryption, a decryption, and a verification oracle.
In the game CR-RUP-realΠ , all three oracles faithfully implement the corre-
sponding algorithms of Π using the same randomly sampled secret key. In the
game CR-RUP-idealΠ , the decryption and verification oracles are the same as
in CR-RUP-realΠ but the encryption oracle is replaced with a uniform random
function f (with the same input and output signature as in the real world).

Now, under the RUP setting, where the adversary is allowed to observe the
unverified plaintext, the CR-RUP advantage can be defined as follows:

Definition 3 (CR-RUP Advantage). Let A be a computationally bounded
adversary with access to an encryption, a decryption, and a verification oracle
namely EK ,DK , and VK for Π for some K ←$ K. Let A is not allowed to use the
same nonce in both encryption and decryption queries, i.e., encryption responses
are prefix-free from decryption queries. Also, let A is not allowed to repeat a
nonce over encryption queries, i.e., A is nonce-respecting. Let CR-RUP-realΠ
and CR-RUP-idealΠ be two games as defined above. The CR-RUP advantage of
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A against Π is then defined as

AdvCR-RUP
Π (A) = Pr[ACR-RUP-realΠ ]− Pr[ACR-RUP-idealΠ ].

We note that CR-RUP by definition is a strictly stronger notion than IND-CPA
(under the nonce-respecting setting) and a strictly weaker notion than sOPRPF
as it only claims full confidentiality of plaintexts that contain unique nonces and
are not subject to decryption leakage. sOPRPF, on the other hand, additionally
claims confidentiality for plaintexts that contain repeated nonces and/or are
partially leaked under unverified decryption. More specifically, sOPRPF provides
confidentiality up to leaking the length of the common prefix for plaintexts that
share the same nonce and AD and up to leaking the common prefix for plaintexts
that share prefixes with leaked unverified plaintexts.

C Omitted Lemma Proofs

C.1 Proof of Lemma 2

Proof. BadT1. For any transcript in Tbad where BadT1 is set to 1, there exists
at least one pair of block indices (i′, j′) < (i, j) such that llcpn(i) < j ≤ ℓi and
∆i

j ⊕∆i′

j′ = Xi
j ⊕Xi′

j′ .

For all i′ < i and j = j′ = llcpn(i) + 1, we have ∆i
j = ∆i′

j′ but Xi
j ̸= Xi′

j′ ,
so the probability of the above equality occurring is 0. In contrast, for all i′ ≤ i
and j′ ̸= j or j ̸= llcpn(i) + 1, the probability that the two masks collide in
Θidin is 1/2n. Given that there are σ possible values of (i, j) in a transcript,
each with at most σ possible values of (i′, j′), we find that Pr[BadT1(Θidin) =

1] ≤ σ2

2 ·max
{
0, 1

2n

}
= σ2

2n+1 .

BadT2. Similarly, for any transcript in Tbad where BadT2 is set to 1, there exists
at least one pair (i′, j′) < (i, j) such that llcpn(i) < j < ℓi and ∆i

j+1⊕∆i′

j′+1 = 0.
From the definition of the predicate BadT2, we have j + 1 ̸= llcpn(i) + 1,

implying that the probability of ∆i
j+1 being equal to ∆i′

j′+1 is 1/2n. Given σ
possible values of (i, j) in a transcript, each with no more than σ possible values

of (i′, j′), we find that Pr[BadT2(Θidin) = 1] ≤ σ2

2n+1 .

BadT3. For any transcript in Tbad with BadT3 set to 1 and BadT1 set to 0, one
of the following can happen for Θidin:

1. For some i′ ≤ qe, j = ℓi and j′ = ℓi
′
, we have j = j′ = llcpn(i). Here,

∆i
j = ∆i′

j′ , X
i
j = Xi′

j′ , but T
i ̸= T i′ . Since T i′ is the correct tag for the given

ciphertext, T i ̸= T i′ yields a probability of 0.
2. For some i′ ≤ qe + qd, j = ℓi and j′ = ℓi

′
, we have j = j′ = llcpn(i) + 1.

Here, ∆i
j = ∆i′

j′ but Xi
j ̸= Xi′

j′ , and the probability of any of the three
conditions of BadT3 occurring for a given query is at most 4qd/2

n, assuming
qe + qd ≤ 2n−1. For the first condition, this holds as every tag is produced
with a tweak used at most once per encryption query, corresponding to a



OAE-RUP Security and its Application to SAEF 29

probability of 1/(2n − qe) ≤ 2/2n. For the second condition, the probability

of having the correct padding in the block Xi
j (at most 2|T

i|/(2n− qe− qd)),

and the correct truncated tag (at most 2n−|T i|/(2n − qe)) is at most 4/2n.
For the third condition, with qe + 1 ≤ id ≤ qe + qd such that |T i| = |T id |,
the probability of having the correct padding in the block Xid

ℓid
(at most

2|T
i|/(2n− qe− qd)), and the correct truncated tag for the verification query

(at most 2n−|T i|/(2n−qe)) is at most 4/2n. Since there are qd possible choices
for id, the total probability of the third condition is at most 4qd/2

n.

3. For all i′ ≤ qe + qd when j > llcpn(i, i
′) + 1. We know that ∆i

j is not in-
herited from an encryption or decryption query and is therefore sampled
uniformly in Θidin. The first condition of BadT3 thus occurs with a proba-
bility of 1/2n. For the second condition, the correct padding is found with

a probability of 1/2n−|T i|, and the correct tag is found with a probability

of at most 2n−|T i|/(2n − qe), yielding a probability of at most 2/2n. For the
third condition, with similar reasoning, the correct padding is found with a
probability of qd/2

n−|T i|, and the correct tag is found with a probability of

at most 2n−|T i|/(2n − qe), providing a probability of at most 2qd/2
n.

Since there are qv possible verification queries, we get Pr[BadT3(Θidin) =
1|BadT1(Θidin) = 0] ≤ qv · max

{
0, 4qd

2n , 2qd
2n

}
= 4·qdqv

2n . Using the union bound,

we find that Pr[Θidin ∈ Tbad] ≤ σ2

2n + 4·qdqv
2n . ⊓⊔

C.2 Proof of Lemma 3

Proof. A good transcript satisfies two properties: 1. (i) For each (i′, j′) < (i, j), if
(i, j) is not in the longest common prefix of the two queries, i.e., llcpn(i, i

′) < j <

ℓi and both π0 calls have the same tweaks (i.e., Ti
j = Ti′

j′), then both calls will
have different inputs and outputs. 2. (ii) For each verification query 1 ≤ i ≤ qv,
the transcript contains bi =⊥ in the verification result, meaning the conditions
for a successful verification are not met.

The probability of obtaining a good transcript τ in the real-int and the
ideal-int worlds can now be computed. Let τed and τv denote the encryption-
decryption and verification parts of a transcript τ , so that τ = ⟨τed, τv⟩. We
have Pr[Θrein = τ ] = Pr[Θrein,ed = τed] · Pr[Θrein,v = τv|Θrein,ed = τed] and
Pr[Θidin = τ ] = Pr[Θidin,ed = τed] · Pr[Θidin,v = τv|Θidin,ed = τed], leading to

Pr[Θrein,ed = τed] · Pr[Θrein,v = τv|Θrein,ed = τed]

Pr[Θidin,ed = τed] · Pr[Θidin,v = τv|Θidin,ed = τed]
=

Pr[Θrein,v = τv|Θrein,ed = τed]

Pr[Θidin,v = τv|Θidin,ed = τed]
.

This equality holds because the encryption and decryption oracles in both the
real-int and ideal-int worlds are identical, so Pr[Θrein,ed = τed] = Pr[Θidin,ed =
τed]. Denote by τv,∆ the event where all∆masks in the verification queries match
the values in the transcript. We have Pr[Θrein,v = τv|Θrein,ed = τed, Θrein,v,∆ =
τv,∆] = Pr[Θidin,v = τv|Θidin,ed = τed, Θidin,v,∆ = τv,∆] because both sides
of this equality correspond to mappings defined by random permutations with
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input-output pairs fixed from the encryption-decryption parts in both worlds.
Using this equality, we get

Pr[Θrein,v = τv|Θrein,ed = τed]

Pr[Θidin,v = τv|Θidin,ed = τed]
=

Pr[Θrein,v,∆ = τv,∆|Θrein,ed = τed]

Pr[Θidin,v,∆ = τv,∆|Θidin,ed = τed]
.

There are δ many ∆s in τ that are fixed due to internal common prefixes, so
δ =

∑qe+qd+qv
i=1 (llcpn(i) + 1) (the extra 1 represents ∆i

1, which is always fixed to
0). In the ideal-int world, since the ∆s for the remaining (σ − δ) unique block
calls are sampled uniformly and independently and all verification oracle results
are ⊥, we have

Pr[Θidin,v,∆ = τv,∆|Θidin,ed = τed] =
1

(2n)σ−δ
.

In the real-int world, these (σ−δ) ∆s are defined using the random tweakable
permutation (π0, π1) with at least g1 =

∑qe+qd+qv
i=1 (ai−1) block calls with tweak

0n and at least g2 =
∑qe+qd+qv

i=1 (mi−1) block calls with tweak 0n−1∥1. Therefore,

Pr[Θrein,v,∆ = τv,∆|Θrein,ed = τed] ≥
1

(2n)g1(2
n)g2(2

n)σ−δ−g1−g2
.

Note that this expression provides an upper bound on the probability because
more permutation calls can have tweak collisions (e.g., the first block calls of
queries with the same nonce). From these expressions, we obtain

Pr[Θrein = τ ]

Pr[Θidin = τ ]
≥ (2n)σ−δ

(2n)g1(2
n)g2(2

n)σ−δ−g1−g2
=

(2n)g1(2n)g2

(2n)g1(2
n)g2

≥ 1.

⊓⊔

C.3 Proof of Lemma 4

Proof. BadT′
1. For any transcript in T ′

bad where BadT′
1 is set to 1, there is at

least one pair (i, j) and (i′, j′) such that llcpn(i) < j ≤ ℓi, (i′, j′) < (i, j), and
∆i

j ⊕∆i′

j′ = Xi
j ⊕Xi′

j′ .

For all i′ < i and j = j′ = llcpn(i)+1, we have ∆i
j = ∆i′

j′ but X
i
j ̸= Xi′

j′ , thus
the probability of the equality above occurring is 0. This also addresses nonce
collisions: if N i = N i′ , then j = j′ = 1 and llcpn(i) = 0, implying ∆i

1 = ∆i′

1 = 0
and Xi

1 ̸= Xi′

1 . Conversely, for all i′ ≤ i and j′ ̸= j or j ̸= llcpn(i) + 1, the two
masks are sampled uniformly and independently in Θidco. Considering there are
at most σ′ ≤ σ possible values of (i, j) in a transcript, each with at most σ′ ≤ σ

possible values of (i′, j′), we get Pr[BadT′
1(Θidco) = 1] ≤ σ2

2 ·max
{
0, 1

2n

}
= σ2

2n+1 .

BadT′
2. Similarly, for any transcript in T ′

bad where BadT′
2 is set to 1, there is at

least one pair (i′, j′) < (i, j) such that llcpn(i) < j < ℓi and one of the following
is true:
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I. j = llcpn(i) + 1 and (∆i
j+1 = ∆i′

j′+1 or T i = T i′). (In this case, Y i
j +∆i

j ̸=
Y i′

j′ +∆i′

j′ as X
i
j ̸= Xi′

j′ implies Y i
j ̸= Y i′

j′ by the definition of llcpn(i).)

II. j > llcpn(i) + 1 and (Y i
j +∆i

j = Y i′

j′ +∆i′

j′ or ∆
i
j+1 = ∆i′

j′+1 or T i = T i′).

From the definition of the predicate BadT′
2, we know that j+1 ̸= llcpn(i)+1.

This means that ∆i
j+1 is uniformly and independently distributed from ∆i′

j′+1,
with a collision probability of 1/2n. Each tag, generated as n uniform bits inde-
pendent of all other tags, collides with a probability of 1/2n. For each j > llcpn(i),
∆i

j is uniformly and independently distributed from ∆i′

j′ , making the masked ci-
phertexts collide with a probability of 1/2n.

There are at most σ possible values of (i, j) in a transcript that can cause
a collision of masked ciphertexts, each with at most σ possible values of (i′, j′),
resulting in no more than σ2/2 pairs. Additionally, there are no more than
σ − qe − qd valid values of (i, j) for a ∆ collision, each with no more than
σ−qe−qd possible values of (i′, j′), yielding no more than (σ−qe−qd)

2/2 pairs.
Finally, there are qe tags that can collide with one another, resulting in no more

than q2e/2 pairs. Thus, we get Pr[BadT′
2(Θidco) = 1] ≤ 2·σ2

2n+1 .

Therefore, using the union bound, we obtain Pr[Θidco ∈ T ′
bad] ≤ 3·σ2

2n+1 . ⊓⊔

C.4 Proof of Lemma 5

Proof. A good transcript has the following property: for each (i′, j′) < (i, j), if
(i, j) is not in the longest common prefix of the two queries, i.e., llcpn(i, i

′) < j <

ℓi and both π0 (resp. π1) calls have the same tweaks (i.e., Ti
j = Ti′

j′), then both

blocks will have different inputs (i.e., Xi
j ⊕∆i

j ̸= Xi′

j′ ⊕ ∆i′

j′), different outputs

(i.e., Y i
j ⊕∆i

j ̸= Y i′

j′ ⊕∆i′

j′), and ∆i
j+1 ̸= ∆i′

j′+1. If 1 ≤ i ≤ qe, then the tags will

also be different (i.e., T i ̸= T i′ for any two encryption queries).

The probability of obtaining a good transcript τ in the real-conf and ideal-
conf worlds can now be computed. Let τ∆ denote the marginal event where all
∆ masks in the queries match the values in the transcript. With this notation,
we have

Pr[Θreco = τ |Θreco,∆ = τ∆] ≥ Pr[Θidco = τ |Θidco,∆ = τ∆].

This is true because, for fixed and unique (up to common prefix) input-output
pairs (excluding the tags), the left side of this inequality corresponds to map-
pings of a random permutation with an input size of n bits, while the right side
corresponds to mappings of a random online permutation with an input size of
at least n bits. For the tags (fixed and unique), the left side corresponds to a
random permutation, whereas the right side corresponds to a random function
with the same input size (n bits).

Consider that τ has δ′ fixed/predefined ∆s due to internal common prefixes.
We can then write δ′ =

∑qe+qd
i=1 (llcpn(i) + 1). Here the extra 1 accounts for ∆i

1,
which is fixed to 0.
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In the ideal-conf world, since the ∆s corresponding to these σ′ − δ′ unique
block calls are sampled uniformly and independently, we have

Pr[Θidco,∆ = τ∆] =
1

(2n)σ′−δ′
.

In the real-conf world, these σ′ − δ′ ∆s are not uniformly distributed but
are computed using the random tweakable permutation (π0, π1) with at least
g′1 =

∑qe+qd
i=1 (ai−1) block calls with tweak 0n and at least g′2 =

∑qe+qd
i=1 (mi−1)

block calls with tweak 0n−1∥1. Therefore,

Pr[Θreco,∆ = τ∆] ≥ 1

(2n)g′1(2
n)g′2(2

n)σ
′−δ′−g′1−g′2

.

Now, combining the above expressions, we get

Pr[Θreco = τ ]

Pr[Θidco = τ ]
≥ (2n)σ

′−δ′

(2n)g′1(2
n)g′2(2

n)σ
′−δ′−g′1−g′2

=
(2n)g

′
1(2n)g

′
2

(2n)g′1(2
n)g′2

≥ 1.

⊓⊔
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