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Abstract—Messengers have become an essential means of
interpersonal interaction. Yet untraceable private commu-
nication remains an elusive goal, as most messengers hide
content, but not communication patterns. The knowledge of
communication patterns can by itself reveal too much, as
happened, e. g., in the context of the Arab Spring. Sublim-
inal channels in cryptographic systems enable untraceable
private communication in plain sight. In this context, bulletin
boards in the form of blockchains are a natural object for
subliminal communication: accessing them is innocuous, as
they rely on distributed access for verification and extension.
At the same time, blockchain users generate hundreds of
thousands of transactions per day that are individually
signed and placed on the blockchain. Thus blockchains
may serve as innocuous repository for publicly accessible
cryptographic transactions where subliminal channels can
be placed. In this paper, we propose a public-key subliminal
channel using secret-recoverable splittable signature schemes
on blockchains and prove that our construction is unde-
tectable in the random oracle model under common cryp-
tographic assumptions. Our approach is applicable to any
secret-recoverable splittable signature scheme and introduces
a constant overhead of a single signature per message. Such
schemes are used by 98 of the top 100 cryptocurrencies.
We also analyze the applicability of our approach to the
Bitcoin, Monero, and RippleNet networks and present proof
of concept implementations for Bitcoin and RippleNet.

1. Introduction

The goal of steganography is to hide information
in unsuspicious documents to achieve secret communi-
cation without revealing the presence of this sensitive
information. This situation is called a steganographic (or
subliminal) channel – a covert channel in information
processing, storage, and data transmission. Modern digital
steganography was first made popular due to the prison-
ers’ problem by Simmons [63] and the investigation of
steganography [11], [26], [44] and closely related topics
such as kleptography [61], [74] and algorithm substitution
attacks (ASAs) [8]–[10] have recently become the subject
of intensive studies, both theoretical and empirical.

In the most basic setting, the task of the steganographic
encoder (Alice) is to hide a secret message in a document,
like e. g., a digital image, and to send it to the decoder
(Bob) via a public channel which is completely monitored
by an adversary (the warden). The goal of the encoder is
that no adversary can distinguish between normal docu-

ments and documents carrying hidden information. The
decoder should be able to reliably extract the hidden in-
formation from the altered documents. Note that the goals
of encryption, anonymity systems and steganography are
related, but different. Using encryption, no eavesdropper
that reads the ciphertext is able to obtain the content of the
underlying plaintext. Using anonymity systems, Alice and
Bob can hide their identities together with the plaintext.
In the steganographic setting, no eavesdroppper observing
the communication between Alice and Bob should be able
to detect the presence of the sensitive communication.

When comparing anonymity systems to subliminal
channels, anonymity systems usually achieve a higher
bandwidth. However, users of anonymity systems like
Tor [33] cannot create anonymity on their own but have to
rely on the system’s infrastructure that provides anonymity
for its users. Even though an attacker is not able to identify
the (content of the) messages sent over such a system,
they can still detect that an anonymity system is used
by analysing the metadata. This allows an attacker, if
capable, to block the usage of the anonymity system [70].
Steganography on the other hand can be deployed on
any existing benign channel that provides enough entropy.
This means that no additional infrastructure is necessary
and that the mere fact that steganography is used remains
undetectable. The importance of metadata has also been
acknowledged by the NSA. General Michael Hayden,
the former director of the NSA and the CIA, stressed
the importance of metadata by asserting “We kill people
based on metadata.” during a debate at Johns Hopkins
University [30].

While subliminal channels have been formally intro-
duced almost four decades ago, steganography has been
mainly studied in the context of multimedia applications.
Preventing subliminal communication in cryptographic
systems is an important issue in cryptographic research,
but there have not been as many works addressing this
problem [3], [17], [18], [23], [49]. On the other hand,
bulletin boards in the form of blockchain applications have
become much more prominent and nowadays generate
hundreds of thousands of transactions per day which are
individually signed and then stored in the blockchain.
This significantly increases the availability of hidden
transmissions embeddable in large publicly available data
through subliminal channels in cryptographic schemes.
The current systems Tithonus [58] and MoneyMorph [53]
use blockchains for steganography, but only implement
embeddings in the transaction scripts. In constrast, the
main focus of this paper concerns such channels in digital
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Bob analyzes the signatures and detects messages from Alice. Note that
Charlie’s identity is irrelevant for the chat and could be anyone, including
Alice or Bob.

signatures.
Recently, several other works propose also to imple-

ment covert channels in digital signature schemes, partic-
ularly in ECDSA and EdDSA which are commonly used
in blockchain applications. It has been shown that both of
them can be used for broadband subliminal communica-
tion [18], [43]. In [2], Ali et al. present several methods
for hidden data transmission; In particular, the authors
propose to reuse the randomness in ECDSA which allows
the extraction of the private signing key. Frkat et al. [39]
present an alternative construction, where the entire nonce
can be used to get a broadband subliminal channel.

In [40], Gao et al. propose a kleptography-based dig-
ital signature algorithm to allow a subliminal communi-
cation in the Bitcoin system. It uses ECDSA signatures
and the OP_RETURN field to store the secret data. A
drawback of this approach is that the distribution of the
embedded values in that field is different from the typical
distribution and might thus become detectable.

Unfortunately, most of the existing subliminal chan-
nels can either be detected by analyzing their special
patterns, they have low embedding rate, high time com-
plexity, or need a previously exchanged symmetric key.
Moreover, their provable security is open.
Our Contribution We propose a public-key stegano-
graphic algorithm using secret-recoverable splittable sig-
nature schemes. Our approach works on any bulletin board
featuring signed public messages. For simplicity, we focus
on blockchains, as these are by far the most commonly
used such boards. We describe and implement proof of
concepts of our method for the Bitcoin and RippleNet
networks, but our approach equally applies to 98 of the
top 100 cryptocurrencies which rely on secret-recoverable
splittable signature schemes like ECDSA or other variants
of Schnorr signatures.

In our scenario, Alice and Bob communicate sublim-
inally by embedding private messages in signatures of
public messages on the bulletin board, i.e., transactions on
a blockchain, which in turn transfer coins to a third non-
suspicious party (cf. Fig. 1). They exchange private mes-
sages without having to meet a priori to agree upon a key
or the third party. To this aim, additionally to the common
asymmetric signature key pairs in the wallets, both Alice
and Bob hold secret and public key pairs for the hidden
communication. To initiate the bidirectional channel, we

propose a new way of leaking the secret signing key
which is based on the following idea: In a non-interactive
key exchange, using their communication key pairs, Alice
and Bob share a secret which is exploited to derive the
random nonce(s) during the generation of a signature. The
secret-recoverability of the splittable signature schemes
allows the receiver to recover the secret signing key.
In subsequent signatures, the random nonce is replaced
by pseudo-random ciphertexts. With the knowledge of
the signing key, these ciphertexts can be extracted. We
prove that our subliminal channel is undetectable in the
random oracle model under the decisional Diffie-Hellman
assumption for secp256k1 and the assumption that AES
is a pseudo-random permutation. This is in contrast to
most previous approaches which came without a formal
security model or provable security analysis.

To the best of our knowledge, we present the first
asymmetric stegosystem for covert communication on
blockchain networks using signatures and thus prevents
the need for the deployment of a high number of sym-
metric keys in contrast to all previous approaches. Fur-
thermore, our approach is provably undetectable (under
common cryptographic assumptions) in a formal security
model similar to chosen-plaintext attacks. Finally, our
stegosystem is easily implementable, very efficient with
constant overhead, and separates the wallet keys from
the steganographic keys needed for communication, which
allows a user to use multiple, independent wallets. This
separation also allows for a bidirectional communication,
which was explicitly out-of-scope in previous works [39].

To obtain such a system, we needed to overcome sev-
eral challenges, including (a) the design of an efficient key
distribution for bidirectional (subliminal) communication,
(b) maintaining a provably secure solution with high-rate
embedding, and (c) complying to the “one transaction per
key” recommendation of UTXO blockchains.

Compared to previous solutions for steganography on
bulletin boards, we (a) can make use of any bulletin
board using splittable signature schemes, (b) have only a
constant overhead of at most one signature per message,
and (c) are able to reuse shared communication secrets
that are independent from the signing keys used for the
embedding. Finally, we (d) obtain an optimal embedding
rate, as the complete entropy contained in a signature is
used. Our global throughput is thus only limited by the
bandwidth of the underlying bulletin board.

Nevertheless, our approach still shares some weak-
nesses with previous works, as (a) the receiver learns
the secret signing key after completing the subliminal
communication, (b) to achieve the best security guarantee,
the receiver needs to scan the full bulletin board, and (c)
the bandwidth of even very high-throughput blockchains
is still very small compared to modern messengers.

The paper is organized as follows. Section 2 provides
the needed preliminaries. Next, in Section 3, we formally
define the security model and in Section 4 we provide
the description and theoretical analysis of our method.
Section 5 contains a discussion on aspects unique to each
blockchain. In Section 6 we discuss in more detail the
relevant, previous methods to hide messages in blockchain
transactions.
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2. Preliminaries

In our pseudocode, we write x∥y to describe the
concatenation of two strings x and y, write x := X to
assign the value X to the variable x, which is final and will
not change later on and write x← X to denote a non-final
assignment. Finally, we write x ←$ X for a randomized
assignment, where X is a probability distribution (maybe
realized by a probabilistic algorithm). We identify a finite
set X with the uniform distribution on X and thus also
write x←$ X for a random uniform assignment.
Provably Secure Steganography A complexity-theoretic
model for symmetric steganography was proposed by
Hopper, von Ahn, and Langford [44] and, independently,
by Katzenbeisser and Petitcolas [46]. The asymmetric
setting was first formalized by von Ahn and Hopper [67].
The main idea behind these models is that an attacker A
cannot distinguish between a probability distribution P ,
which produces unsuspicious documents, and a probability
distribution Q, which embeds sensitive information into
these documents. This concept of steganographic com-
munication has found applications in covert computation,
broadcasting, anonymous communication, or algorithm
substitution attacks, see e. g. [10], [27], [28], [35], [41],
[45], [68]. In this work, we also follow the above men-
tioned models. As we concentrate on developing stegano-
graphic techniques for signature schemes, we make the
definitions more explicit later on. Steganography is often
employed in very sensitive scenarios and we thus believe
a provable guarantee to be of uttermost importance.
Blockchain Transactions

Bitcoin is the first cryptocurrency based on a public
decentralized blockchain protocol. It was proposed in
2008 [54], first implemented in 2009, and has since then
seen an enormous growth. Several further blockchain-
based public ledgers have been proposed since the release
of Bitcoin.

Blockchains and ledgers like Bitcoin or Monero, rely
on the “unspent transaction output” (UTXO) model [32],
[54]. Transactions consist of a set of transaction inputs and
outputs. Each output has a value and can only be spent
once1 and as a whole in a future transaction input. The
value of an input defines the amount a user sends. The
value of an output defines the amount a user receives.
The difference2 between the input sum and the output
sum defines the transaction fee being payed to the miners.
Transaction outputs always belong to a wallet. Wallets
are not associated with an account balance but with a set
of transaction outputs that were not spent, i.e., used as
an input in another transaction, yet. However, a wallets
balance can be computed by summing up all UTXOs be-
longing to this wallet. Therefore, UTXOs can be pictured
as coins. They remain in owner’s wallet until the owner
decides to spend them in a transaction (and optionally
receive change).

Blockchains and ledgers like Ethereum and RippleNet
use the account model [24]. In this model, users posses

1. This is enforced by the blockchain protocol: Blockchain validators
reject transactions if they contain an input pointing to an output that
is not part of the corresponding wallet’s UTXO set and flag them as
“double-spending”.

2. The sum of inputs must be greater or equal the sum of outputs.
Otherwise, the blockchain protocol rejects the transaction.

accounts that are associated with an account balance,
much like ordinary bank accounts. Receiving a transaction
on an account increases the account’s value and sending
transactions from an account decreases its value. Transac-
tion fees are defined explicitly as part of the transaction.

Digital signatures are a fundamental building block
for all blockchains, due to their ability to guarantee the
authenticity of transactions. A cryptocurrency wallet or
account is associated with at least one public/private key
pair. The private key (also secret key or signing key),
denoted sk, is to be kept secret. In the UTXO model,
it is used to sign the transaction outputs and those inputs
that reference a corresponding wallet’s UTXO. If multiple
outputs of the same wallet are used as inputs in the
same transaction, each input is signed individually. In the
account model, sk is used to sign the transaction directly.
So here we usually have a single signature per transaction
and involved account. The verification key (also called
public key), denoted vk, is public knowledge and used to
verify signatures. The address, denoted A, of a wallet is
some representation of the verification key. The address is
used to receive transactions. Typically, a transaction also
contains a transaction script which can be evaluated to
obtain money sent in this transaction.
Signature Schemes In order to verify that a blockchain
transaction is valid, it needs to be signed by the sender
of the transaction. A signature scheme is a triple of
PPTMs SIG = (KGen,Sign,Vf) (key generation, sign-
ing and verification) such that Vf is deterministic. and
the algorithms have the following semantic: We say that
SIG is correct, if Vf(vk,msg, σ) = 1 for all key-pairs
(vk, sk) ∈ Supp(KGen()), all messages msg, and all
signatures σ ∈ Supp(Sign(sk,msg)).

A scheme is called a splittable signature scheme, as
defined in [69], if the Sign algorithm outputs signatures of
the form σ = (σR, σM ). The two components are gener-
ated by two sub-algorithms respectively: SignR(k) takes
some randomness k as input and outputs the randomness-
binding component σR and SignM (sk,msg, k) takes the
signing key sk, the message msg and the randomness
k as input and outputs the message-binding compo-
nent σM . A splittable signature scheme is called to be
secret-recoverable, if a PPT algorithm can recover the
signing key sk with high probability given a signature
σ = (σR, σM ), the corresponding message msg, the
verification key vk, and the randomness k used during
the computation of σ.

Arguably, the elliptic curve digital signature algorithm
(ECDSA) is the most widely used signature scheme. It
is proven secure in the generic group model [38] and
matches the definition of a splittable signature given
in [69]. We denote the randomness-binding signature com-
ponent by r and the message-binding component by s.
The private signing key sk and the nonce k used dur-
ing signing are the only unknowns in ECDSA. There-
fore, it is easy to compute either value if the other
becomes known. In particular, sk is easily computed as
sk = (s · k − h)r−1 mod n for some message hash h
and group order n if k is revealed [19], which means that
ECDSA is secret-recoverable.

Bitcoin recommends using a deterministic nonce gen-
eration algorithm instead of a pseudo random number gen-
erator (PRNG) to prevent nonce reuse or broken PRNGs,
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NonceGenRFC6979(H(msg), sk, cnt)

1 : h← HMAC(sk∥H(msg))

2 : for i = 1 . . . cnt : h← HMAC(h)

3 : return h

SignECDSAE,G,n(sk,msg)

1 : c← 0; h := H(msg)

2 : k ← NonceGenRFC6979(h, sk, c)

3 : (x, y) := k ·G; r := x mod n

4 : s := [k−1(h+ r · sk)] mod n

5 : if r = 0 or s = 0 :

6 : c← c+ 1; goto line 2
7 : return (r,min{s,−s})

Figure 2. ECDSA Signing algorithm as it is implemented in lib-
secp256k1. The message msg being signed is the transaction itself.

which would allow for wallet key recovery through, e. g.,
lattice attacks [19]. RFC6979 defines one possible way
for deterministic nonce generation. Figure 2 presents the
ECDSA signature generation algorithm SignECDSA as it
is implemented in libsecp256k1.

The Elliptic Curve Schnorr Digital Signature Scheme
(EC-SDSA), a splittable signature scheme, was first de-
scribed in [62]. As of today, several versions of this
scheme are standardized. We denote the randomness-
binding component of the signature with r and the
message-binding component with s. If the nonce k used to
compute (r, s) is known, the secret key can be computed
as sk = (k− s)e−1 mod n for some hash e related to the
signed message and group order n. Thus, the signatures
are secret-recoverable. EdDSA is a popular variant of the
Schnorr signature scheme and widely used in blockchains
as well. For EdDSA the nonce is chosen deterministically
by design [20]. The default curve is Curve25519 and
the default hash function is SHA512. EdDSA with this
configuration is called Ed25519. Most blockchains rely
either on ECDSA or on Ed25519. Only two of the top
100 cryptocurrencies, namely IOTA and Arweave, do not
use elliptic curve based signatures. The remaining 98 use
ECDSA or a Schnorr signature variant [34].

The cryptocurrency Monero does not only use EdDSA
for signing transactions, but additionally relies on ring
signatures over an elliptic curve E, e. g., secp256k1, to
hide the identity of the signer. The ring signature scheme
used by Monero is the Multilayer Linkable Spontaneous
Anonymous Group (MLSAG) signature scheme [47], [55].
In the following paragraph, we provide a detailed de-
scription of MLSAG and show that MLSAG is a secret-
recoverable splittable signature. At the end of Section 4.4,
we show an alternative way to embed messages into
MLSAG signatures with a very high rate.

MLSAG generalizes the bLSAG signature scheme [47]
to a set K = {vki,j} of g · h keys (i ∈ {1, 2, . . . , g} and
j ∈ {1, 2, . . . , h}) where the signer knows the h private
keys {skπ,j} corresponding to the subset {vkπ,j} for some
secret index i = π. The Sign algorithm for MLSAG is

SignMLSAGE,G,n(g, h, π,msg, {skπ,j}, {vki,j})

1 : for j ∈ {1, 2, . . . , h} :
2 : ṽkj ← skπ,jH(vkπ,j)

3 : αj ←$ {1, 2, . . . , n− 1}
4 : for i ∈ {1, 2, . . . , g}\{π} :
5 : ri,j ←$ {1, 2, . . . , n− 1}
6 : cπ+1 := H(msg, ([αjG], [αjH(vkπ,j)])1≤j≤h)

7 : for i = π + 1, π + 2, . . . , g, 1, 2, . . . , π − 1 :

8 : for j ∈ {1, 2, . . . , h} :
9 : ζi,j := ri,jG+ civki,j

10 : γi,j := ri,jH(vki,j) + ciṽkj
11 : ci+1 := H(msg, (ζi,j , γi,j)1≤j≤h)

12 : for j ∈ {1, 2, . . . , h} :
13 : rπ,j := αj − cπskπ,j (mod n)

14 : return (c1, ri,j)1≤i≤g,1≤j≤h, (ṽkj)1≤j≤h

Figure 3. Signing algorithm for MLSAG as described in [47].

given in Fig. 3. It starts by computing key images for all
public keys where the private key is known. Additionally,
random values αj and ri,j for all but the secret index
i = π are sampled. Then, cπ+1 is computed as the hash
of the message, the curve points αj · G and the scalars
αjH(vkπ,j). The remaining ci are computed depending
on the previous ci−1 in order. Here, ci is the hash of the
message, the curve points ζi,j and the scalars γi,j , which
can be computed without the knowledge of correspond-
ing private keys. Finally, the remaining values rπ,j are
computed. The resulting signature consist of the message-
binding value c1, the randomness-binding values ri,j and
the key images ṽkj . The scheme is secret-recoverable
because, given the random values αj , all secret keys can
be computed as skj = (αj − rπ,j)c

−1
π (mod n), since all

ri,j are given as part of the signature and all ci values are
either given in the signature (c1) or can be computed. As π
is not known, this step has to be done for all g possibilities
and the resulting private key has to be checked against
the corresponding public key to verify it. This is feasible
and requires as much computational effort as verifying the
signature.
ECDH The elliptic curve Diffie-Hellman (ECDH) pro-
tocol [22] allows Alice and Bob to exchange a secret
symmetric key k through a public channel. The library
libsecp256k1 has support for ECDH. We use libsecp256k1
in Section 4.4 which is why we want to point out an
important detail concerning the PoC: libsecp256k1 com-
putes k by hashing the compressed representation of P .
This is motivated by the potential malleability arising from
the fact that both points (Px, Py) and (Px,−Py) result in
the same shared secret [22, Sec. B.4.1]. The compressed
representation of P contains Px as well as the sign of
Py. So hashing the compressed representation of (Px, Py)
results in a different hash than hashing the compressed
representation of (Px,−Py).
Cryptographic Assumptions To show the security of
our chat, we need three cryptographic assumptions which
are given below. We start with recalling the following
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definition: Two probability distributions P and Q are
(t, ϵ, q)-indistinguishable, if every probabilistic algorithm
D with running time t and oracle access to either P or Q
that tries to distinguish them has only success probability
1/2 + ϵ, if D makes at most q queries to their oracle.
The (t, ϵ, q)-Decisional Diffie-Hellman assumption (DDH)
for a cyclic group G with generator g ∈ G and order
n says that the distributions (ga, gb, gab) and (ga, gb, gc)
are (t, ϵ, q)-indistinguishable if a, b, and c are chosen
uniformly at random from {1, . . . , n−1}. A family of per-
mutations {fk}k, indexed by a key k, is called a (t, ϵ, q)-
pseudorandom permutation (PRP), if the distributions of
fk (for a randomly chosen key k) and f⋆ (a completely
random permutation) are (t, ϵ, q)-indistinguishable. More
concretely, we will assume that AES is a pseudorandom
permutation. Finally, we will work in the random oracle
model (ROM) to model the used hash function H (in
our case SHA256) as a completely random oracle. Note
that the security of ECDSA, Schnorr, and ring signatures
already requires the random oracle model and also other
assumptions which are not as standard as DDH or the
hardness of AES [20], [21], [37], [38].

3. Our Model

Remember that in our setting, the goal is to transfer a
private (hidden) message textChat from Alice to Bob. To
protect against an attacker monitoring the communication,
we assume that Alice and Bob do not use a symmetric key
kChat, but work in a public-key setting. Hence, Alice has
a public key pkChatA and a secret key skChatA and Bob has a
pair pkChatB , skChatB consisting of a public and a secret key.
Furthermore, Alice controls several wallets with addresses
Ai and associated keys (ski, vki) for the signature scheme.
We do not assume that Bob has a wallet address himself,
i.e., we do not assume that Bob is a participant in the
blockchain network. We only require that Bob is able to
look at transactions on the blockchain. In the following,
we simply assume the existence of a third party, Charlie,
with address AC and keys (skC , pkC) that will receive
the transactions sent by Alice. We stress that there is no
need to trust Charlie, as he will not be able to detect the
presence of the embedded communication. In a concrete
application, Charlie might be a party which obtains many
transactions, such as a charity. We discuss the choice of
this third party and the resulting decisions more closely
in Section 5. To start the communication, Alice and Bob
exchange their public chat keys. This can be done via
a Public Key Infrastructure, during a personal meeting,
or via any other out-of-band communication channel that
ensures integrity and authenticity. Optionally, Alice and
Bob may also agree on the wallet address AC in advance
to reduce the computational costs for receiving messages.

The attacker (or warden) A aims to detect the presence
of this hidden communication of textChat (not necessarily
the content). In order to do so, we assume that they can
participate in the blockchain network, i.e., they see all
transactions sent over the network and can also send trans-
actions themselves. Furthermore, we assume that Alice
and Bob might be actively watched by A. We thus assume
that A has access to the public chat keys pkChatA and pkChatB

of Alice and Bob. Hence, A can actively send information
to Alice or Bob. In addition, to represent the fact that

A might have previous information about the messages
that Alice wants to send, we allow A to choose the
embedded message textChat, similar to a chosen-plaintext-
attack. Furthermore, we assume that the attacker is able
to observe the network traffic of both Alice and Bob
and thus has access to the public addresses Ai and the
verification keys vki of the wallets that Alice might use to
send messages, the public address AC of Charlie, and the
corresponding verification key vkC . As explained above,
the choice of Charlie, the receiving party, is discussed
in Section 5. As Bob only needs to observe transactions
received by Charlie, this choice basically also determines
Bob’s behavior and is thus also discussed there.

In contrast to Moneymorph [53] and Tithonus [59], we
will only embed information in the signature of arbitrary
transactions. As all transactions in a blockchain contain
such signatures, our theoretical model does not distinguish
the different kind of transactions used by Alice, i.e., we
assume in the following that the distribution of the transac-
tions issued by Alice are indistinguishable from real trans-
actions on the blockchain. As these distributions heavily
rely on the choice of the concrete blockchain, we discuss
these distributions and other important parameters such
as money spent per transaction, frequency of transactions,
etc. in more depth in Section 5. We stress here, that this is
a strictly weaker assumption than those present in previous
works, where a certain distribution (with sufficient min-
entropy) on certain fields of a transaction is also required
(see, e.g., [2], [65], [73]).

We give a formal security game involving this attacker
below. We assume that textChat is split into parts textChati
and each part textChati is sent from a wallet with key-pair
(ski, vki) for i = 1, . . . , ℓ. Moreover, we focus on the case
that each textChati can be embedded into a single signature.

3.1. Chat Scheme

Let SIG = (KGen,Sign,Vf) be an implementation of
a secret-recoverable splittable signature scheme and let
Chat = (KGenChat,SignChat,ExtChat) be a triple of
three PPTMs :

• The key generation algorithm KGenChat is used to
produce the chat key-pairs (pkChat, skChat).

• The signing algorithm SignChat is given a secret
signing key ski, a message msgi, the public chat key
pkChatB of Bob, the secret chat key skChatA of Alice, and
the hidden message textChati and produces a signature
σi for msgi.

• The extraction algorithm ExtChat is used by Bob to
extract a message textChat

′ from several signatures
σi. To do so, he is given public verification key vki,
the public chat key pkChatA of Alice, and the secret
chat key skChatB of Bob.

Throughout this work, we always assume that Chat
is correct, i.e., we require that ExtChat is able to re-
construct the original message textChat. Our proposed
protocol will also guarantee perfect correctness. Note that
some cryptocurrencies recommend to use an address for
as few transactions as possible to achieve pseudonymity.
Hence, sending many messages from the same address is
detectable and thus suspicious behavior.
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Security game Gℓ,SIG,Chat

G A
(pkChatA , skChatA )←$ KGenChat()

(pkChatB , skChatB )←$ KGenChat()

b←$ {0, 1}
for i = 1, . . . , ℓ : (ski, vki)←$ KGen()

pkChatA , pkChatB

(vk1, . . . , vkℓ)

. . . . . . . . . . . . . . . . . . . . . .for i = 1, . . . , ℓ . . . . . . . . . . . . . . . . . . . . . .

messages msg
(1)
i , msg

(2)
i

textChati

(1)
, textChati

(2)

if b = 0 : for j ∈ {1, 2} :

dataChat := (skChatA , pkChatB , textChati

(j)
, vki)

σ
(j)
i ←$ SignChatE,G,n(ski,msg

(j)
i , dataChat)

if b = 1 : for j ∈ {1, 2} :
σ
(j)
i ←$ SignE,G,n(ski,msg

(j)
i )

σ
(1)
i , σ

(2)
i

. . . . . . . . . . . . . . . . . . . . . . . . . end loop . . . . . . . . . . . . . . . . . . . . . . . . .

bit b′

if msg
(1)
i ̸= msg

(2)
i ∀ i = 1, . . . , ℓ : return [b = b′]

return 0

Figure 4. Security game to model undetectability. The attackerA chooses
messages to sign and a message to embed. Their goal is to detect whether
the signatures provided by challenger G contain an embedded message
or not.

3.2. Security Model

To guarantee security, an attacker against our embed-
ding strategy should not be able to distinguish between
ℓ independent users who each send q transactions from
their respective addresses Ai and Alice controlling the
users and sending signatures containing steganographic
material. We stress that Alice does not need to to use
all wallets at the same time, but rather might use them
in an iterative fashion. For the sake of simplicity of the
presentation, we will fix q to be two. The attacker will
also be able to choose the messages msg for which the
signatures should be created and the messages textChat

embedded into them. Note that in cryptocurrencies, each
transaction is unique. To model this fact, we require that
the messages queried by the attacker to be distinct.

Formally, this distinguishability game can be described
as shown in Fig. 4. Here, the challenger G generates two
message key pairs and ℓ signature key pairs, sends all
public keys to the attacker A, and generates a random
bit. For each signing key, A now provides G with two
cover messages and an embeddable message and G signs
both cover messages. Depending on the random bit, G
optionally embeds the embeddable message into the cover
messages during signing. Either way, the two signatures

are returned to A who now has to determine whether the
signatures contain the embeddable messages or not. Note
that each signature key pair (ski, vki) belongs to its own
wallet, but all of the wallets are controlled by Alice, who
has the chat key pair (pkChatA , skChatA ). We denote the i-th
address (associated with (ski, vki)) by Ai.

We say that a system Chat is (t, ϵ)-undetectable for
ℓ messages (with respect to SIG) if the probability that
Gℓ,SIG,Chat outputs 1 is at most 1/2+ ϵ for all attackers A
with running time t. Note that if Sign and SignChat are
indistinguishable, this is sufficient to argue for security in
our model.

In the context of cryptocurrencies, we also want to
protect against an embezzlement by Bob who follows the
protocol but wants to steal Alice’s coins. In this paper we
call such a party voracious Bob. We stress here, that this
does not mean that Bob will reveal the communication
between Alice and him to the attacker. Initially, he knows
pkChatB , skChatB , vki, and pkChatA , but neither skChatA nor any
ski. As Bob is aware that Alice wants to communicate
with him, there is no need to hide this fact. His goal is
rather to steal coins owned by Alice. A common way to
leak information via secret-recoverable signatures applied
in many of the previous works is to reveal the signing key
ski in order to to recover the randomness/nonces k used
in past transactions (which then include information about
textChat). By learning Alice’s signing key, Bob is enabled
to impersonate Alice by signing messages in her name. In
the context of cryptocurrencies, this allows Bob to obtain
all of Alice’s coins. To protect against such a voracious
Bob, we thus need to guarantee that Alice has spent all
of her coins before ski is revealed to Bob.

4. Subliminal Chat

We assume the following scenario: Alice sends a
hidden message textChat to Bob by transferring coins to
Charlie. Alice has ℓ wallets, where wallet i has key pair
(ski, vki) and address Ai. Additionally, Alice holds a key
pair (skChatA , pkChatA ) which we will call the “chat key
pair”. Charlie has a wallet with key pair (skC , vkC) and
address AC . Bob owns a chat key pair (skChatB , pkChatB ).
The wallet key pairs are produced by calling KGen and
the chat key pairs are the result of KGenChat. The scenario
is shown in Fig. 1.

4.1. A Naive Approach

The basic idea of our chat protocol is to embed the
hidden message textChat in the nonce of ECDSA sig-
natures. A similar approach was used in [39], but the
authors focus on ECDSA and only allow unidirectional
messaging. Our protocol allows for bidirectional commu-
nication and generalizes to secret-recoverable splittable
signature schemes. To create the bidirectional subliminal
channel, we propose a new way of leaking the secret
signing key: Perform a non-interactive key exchange using
the asymmetric key pairs generated by KGenChat, which
results in a shared secret used to derive a nonce during the
signing process to leak the secret signing key. We call this
new approach NonceGenBasic. The approach has several
benefits compared to a pre-shared nonce:
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• The nonce cannot be detected by binary analysis as
it can be computed on-the-fly.

• If a nonce still becomes public, only communication
between the two parties using it is endangered.

• The subliminal channel is independent of Alice’s and
Bob’s wallet addresses and keys. So, Alice and Bob
do not need to know each others addresses in advance
to communicate.

Obviously, using this naive approach is highly susceptible
to resulting in a nonce reuse during signature genera-
tion which would undermine the security of all signature
schemes presented and is also easily detectable for our
attacker A. We will overcome these issues in the follow-
ing section which concludes with an undetectability and
security proof for the final nonce generation function.

4.2. Theory

Alice and Bob need to exchange their public chat
keys in a way that ensures authenticity and integrity.
How to realize this in practice will be discussed later
and is out of scope of our theoretic model. Note that we
use a zero-round key exchange, and hence, there are no
transactions necessary for session key exchange (for more
discussion see Section 5). To send a message textChat of
b bytes to Bob, Alice splits textChat into ℓ = ⌈ b

32⌉ parts
textChat1 , . . . , textChatℓ . We assume the length of textChat

to be a multiple of 32 bytes. If this should not be the
case, we simply append null bytes to textChat. To em-
bed textChati , Alice then creates transactions tx

(1)
Ai,C

and
tx

(2)
Ai,C

. Whether the receiving addresses in the transac-
tions are equal or not does not impact the sending of the
message. But let Charlie’s address AC be the receiver in
all transactions for simplicity.

Alice signs all transactions from wallet Ai with
her signing key ski using the SignChat routine which
makes use of NonceGenChat (cf. Fig. 5). She em-
beds her secret message part textChati into the trans-
action tx

(1)
Ai,C

by passing it to the signing routine
via dataChat = (skChatA , pkChatB , textChati , vki). Per call,
NonceGenChat computes a shared secret kChati =
H(ECDH(skChatA , pkChatB )∥vki) and encrypts the current
message block textChati with it. The resulting ciphertext
is returned to be used as nonce by SignChat. We require
the cipher to produce pseudo-random ciphertexts (which
is stronger than indistinguishability of ciphertexts). This
is important to ensure that the ciphertext is suitable to
be used as a nonce for the signature scheme. Because
AES is believed to be a (t̃, ϵ̃, q̃)-pseudorandom permuta-
tion [16], AES-CBC produces (t, ϵ, q)-pseudorandom ci-
phertexts and is therefore suitable for our implementation
(where t̃, ϵ̃, and q̃ are close to t, ϵ, and q) [7]. More
concretely, this means that ciphertexts produced by AES-
CBC are (t, ϵ, q)-indistinguishable from uniform strings
(upon random choice of the symmetric AES-key and
adversarially chosen messages).

We concatenate the hash of the message to be signed
(tx(1)

Ai,C
in this case) with kChati and use the first 128 bits of

its hash as initialization vector. This ensures fresh nonces
for each signature even if textChat contains two equal 32
byte blocks.

NonceGenChat is a deterministic algorithm. However,
the nonce returned by NonceGenChat may lead to one
of the message- or randomness-binding components to be
zero. In this case, SignChat must request a different nonce
from NonceGenChat by incrementing the cnt variable
which leads to kChat being hashed cnt times before being
used. Note that the hashing of kChat is only implemented
to ensure the theoretic security of the signature scheme.
A nonce causing r or s being zero only occurs in two (or
l for the ring signatures) out of 2256 cases, i .e., it does
not occur in practice.

When signing the second transaction tx
(2)
Ai,C

, Alice
now chooses dataChat = (skChatA , pkChatB ,∅, vki) which
tells the nonce generation function to embed kChati instead
of a message. This way, the shared secret kChati itself is
used as nonce which allows Bob to later recover ski. Alice
has to ensure to leak ski only once per wallet. Otherwise,
a nonce reuse occurs which allows anyone monitoring the
blockchain to take over her wallet.

After all transactions and signatures are generated,
Alice publishes all transactions to the blockchain. In cases
where Bob is assumed to be voracious, Alice has to take
extra care when publishing tx

(2)
Ai,C

as it allows Bob to
recover the signing key ski for address Ai. Therefore, all
other transactions originating from Ai must be mined into
a block in the longest chain and only a transaction fee
should be left on Ai before publishing tx

(2)
Ai,C

.
Bob on the other end follows the extraction algorithm

depicted in Fig. 6 to receive textChati . He can compute
kChati from skChatB , pkChatA , and vki. Bob searches the
blockchain for a transaction (tx

(2)
Ai,C

, σ(2)), which in the
case of ECDSA and Schnorr can be identified by r as
r(2) is the x-coordinate of the point kChati · G. In theory,
an additional check for r being the x-coordinate of G
multiplied with a hashed kChati would be necessary. But
since kChati does not get hashed in practice (only with
probability 2−255), we discarded this test for simplicity.
Because Bob knows the nonce used for signing tx

(2)
Ai,C

, he
can compute ski from either (r(2), s(2)) or (r(2),−s(2)).
Decision for the correct ski is made by computing the
corresponding verification key and comparing it with vki.
This step is necessary in case the signature scheme in
use requires normalized signatures (which is the case for
libsecp256k1). For the ring signature scheme, Bob tries to
reconstruct the secret signing key and verifies the signing
key against the public key directly. Next, Bob searches the
blockchain for the other transaction (tx

(1)
Ai,C

, σ(1)). Since
Bob learned ski from (tx

(2)
Ai,C

, σ(2)), he can compute all
the nonces used for signing tx

(1)
Ai,C

and hence extract the
encrypted message which is either ctxChat from (r(1), s(1))
or ctx′Chat from (r(1),−s(1)). Only one of the two ci-
phertexts results in a meaningful plaintext when decrypted
with kChati , so Bob is able to recover textChati successfully.
In our PoC implementation we define “meaningful” as
“ASCII-printable”. This is no hard constraint as binary
data can be Base64-encoded before sending. Note that
most cryptocurrencies or corresponding services assign
a unique timestamp to all transactions. If Alice sends
message part textChati before textChati+1 , Bob can determine
the correct ordering of the parts by these timestamps.
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NonceGenChat(H(msg), dataChat, cnt)

1 : (skChatA , pkChatB , textChat, vki) := dataChat

2 : kChati ← H(ECDH(skChatA , pkChatB )∥vki)
3 : for j = 1 . . . cnt :

4 : kChati ← H(kChati )

5 : if textChat = ∅ :

6 : return kChati

7 : iv := H(H(msg)∥kChat)[0 : 128]

8 : ctxChat := AESEnc
CBC(text

Chat, kChati , iv)

9 : return ctxChat

SignChatE,G,n(ski,msg, dataChat)

1 : c← 0

2 : h := H(msg)

3 : k ← NonceGenChat(h, dataChat, c)

4 : (x, y) := k ·G
5 : r := x mod n

6 : s := [k−1(h+ r · ski)] mod n

7 : if r = 0 or s = 0 :

8 : c← c+ 1

9 : goto line 2
10 : return (r,min{s,−s})

Figure 5. Nonce generation algorithm that enables the user to efficiently
embed secret messages into the signatures in a provably undetectable
way. The message msg to be signed is the transaction itself. The
variable dataChat contains all additionally needed information for the
embedding. Here, SignChat is implemented as a drop-in replacement
for SignECDSA as an example.

We will now prove the security of our scheme for
the case of ECDSA implemented on curve secp256k1.
However, the proof is easily adjustable for other crypto-
graphically secure elliptic curves and the other signature
schemes discussed in Section 2.

Lemma 1. Under the assumption that the (t, ϵ, 2)-DDH
assumption is true for secp256k1 and AES is a (t, ϵ, 1)-
pseudorandom permutation, the output of the algorithm
NonceGenChat(H(tx), dataChat, cnt) and the uniform dis-
tribution on the set of integers {1, . . . , n− 1} are (t, 3ϵ+
11 · 2−127, 1)-indistinguishable for a distinguisher that
does not know dataChat. Here, n is the order of secp256k1.

Proof. Consider the different games presented in Fig. 7.
Here, G1 equals NonceGenChat, while G7 corresponds to
the choice of a random nonce.
G1 ≈ G2: As we assume the (t, ϵ, 2)-decisional Diffie-

Hellman assumption for secp256k1, no attacker can
distinguish the output of ECDH(skChatA , pkChatB ) from
a randomly chosen group element g of secp256k1.

G2 = G3: As we work in the random-oracle model and
the random element g is not known by the adver-
sary, the output kChati of H(g∥vki) is a uniformly
distributed string of length 256. Similarly, applying

ExtChatE,G,n(sk
Chat
B , pkChatA , AC)

TxC ← all (tx, σ) sending coins to AC ; i← 1

foreach (tx, σ) in TxC :

vki, k
Chat
i := hasAmsg(E,G, n, skChatB , pkChatA , tx, σ)

1 : get vki from tx

2 : (r, s) := σ

3 : kChati := H(ECDH(skChatB , pkChatA )∥vki)
4 : (x, y) := kChati ·G
5 : if r = x mod n : return vki, k

Chat
i

6 : return 0, 0

if vki = 0 or Vf(vki, tx, σ) = 0 : continue

ski ← recoverSk(E,G, n, kChati , vki, tx, σ)

1 : h := H(tx)

2 : (r, s) := σ

3 : ski ←

[
s · kChati − h

r

]
mod n

4 : if ski ·G = vki : return ski

5 : ski ←

[
(−s) · kChati − h

r

]
mod n

6 : if ski ·G = vki : return ski
7 : return 0

if ski = 0 : continue
TxA,C ← all (txA,C , σ) where txA,C ̸= tx

textChati ← recoverMsg(n, kChati , ski, TxA,C)

1 : foreach (tx, (r, s)) in TxA,C :

2 : h := H(tx)

3 : iv := H(h∥kChati )[0 : 128]

4 : ctxChat ←
[
ski · r + h

s

]
mod n

5 : tmp← AESDec
CBC(ctxChat, k

Chat
i , iv)

6 : if tmp is meaningful : return tmp

7 : ctxChat ←
[
ski · r + h

−s

]
mod n

8 : tmp← AESDec
CBC(ctxChat, k

Chat
i , iv)

9 : if tmp is meaningful : return tmp

10 : return 0

i← i+ 1

reconstruct textChat from (textChati )i=1,...,ℓ

Figure 6. Extraction algorithm used to recover messages that were
embedded into ECDSA signatures with the SignChat algorithm. First,
the extractor iterates through all transactions and determines whether
they contain embedded messages via hasAmsg. Then, the corresponding
signing keys are recovered via recoverSk and finally, recoverMsg
recovers the messages.

H on H(tx)∥kChati and shortening to the first 128 bits
gives a uniformly distributed string of length 128.

G3 = G4: Applying a random oracle H to a uniformly
random value results again in a uniformly random
value. We can thus ignore the for-loop.

G4 ≈ G5: As we assume that AES is a (t, ϵ, 1)-
pseudorandom permutation and AESEncCBC is called
with a secret key kChati and a randomly chosen ini-
tialization vector iv, the generated ciphertext ctxChat
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are (t, 2ϵ + 5 · 2−128, 1)-pseudorandom and thus in-
distinguishable from a uniformly sampled string of
length 256 [7, Theorem 17].

G5 = G6: The value of iv is not used in the algorithm
anymore. Furthermore, the only part of dataChat still
used is textChati . But textChati is used only in the
if-statement and in both cases (textChati = ∅ or
textChati ̸= ∅), the output is a uniformly random
string of length 256.

G6 ≈ G7: The probability that ctxChat is not in the interval
{1, . . . , n − 1} is at most 1 − n−1

2256 . As 2256 − n ≤
2129, this probability is bounded by 2−127, which is
negligible3.

Combining the security losses in G1 ≈ G2 (by the
DDH), in G4 ≈ G5 (by the PRP), and in G6 ≈
G7 (by the order of secp256k1), we can conclude
that NonceGenChat(H(tx), dataChat, cnt) is (t, 3ϵ + 11 ·
2−127, 1)-indistinguishable from the uniform distribution
on {0, 1}256.

The above lemma implies that the nonce generated by
our NonceGenChat algorithm looks like a random nonce.
But, in order to construct an undetectable chat system, we
must guarantee that the nonces are indistinguishable from
the deterministic nonces generated by NonceGenRFC6979
(cf. Fig. 2). Note that if every message is signed at most
once (which is true for cryptocurrencies), this holds, as
the distinguisher does not know the signing key ski.

Lemma 2. The outputs of the algorithm
NonceGenRFC6979 with parameters (H(msg), d, cnt) are
(t, 0, 1)-indistinguishable from the uniform distribution
on the set {1, . . . , n− 1} in the random oracle model for
every t. Here, n is the order of secp256k1.

Combining these two lemmata allows us to conclude
the undetectability of our chat client.

Theorem 1. Assuming the (t, ϵ, 2)-DDH assumption is
true for secp256k1, AES is a (t, ϵ, 1)-pseudorandom per-
mutation, and ECDSA is (t, ϵ, 2)-secure, then our client
Chat is (t, 4ϵ+11·2−127)-undetectable for ℓ ≤ t messages
(with respect to ECDSA) in the random oracle model.

Proof. Lemma 1 shows that under the given assump-
tions, random nonces and the generated nonces of
NonceGenChat(H(tx), dataChat, cnt) are (t, 3ϵ + 11 ·
2−127, 1)-indistinguishable and Lemma 2 shows that
this is in turn indistinguishable from the output of
NonceGenRFC6979(H(msg), d, cnt). Hence, the gener-
ated nonces are (t, 3ϵ + 11 · 2−127, 1)-indistinguishable
from real nonces. The (t, ϵ, 2)-security of ECDSA now
implies that an attacker cannot extract the nonces from the
signatures, as ECDSA is secret-recoverable. These nonces
are thus not known by an attacker and the remaining
part of SignChat are identical to ECDSA. Hence, Chat is
(t, 4ϵ+11 · 2−127)-undetectable for ℓ ≤ t messages (with
respect to ECDSA) in the random oracle model.

With the chat being provably undetectable, we do
not need to care for confidentiality of the chat messages
being sent. But an attacker may still try to attack the

3. Note that for secp256k1 n = 2256 −
432420386565659656852420866394968145599.

G1

1 : (skChatA , pkChatB , textChati , vki) := dataChat

2 : kChati ← H(ECDH(skChatA , pkChatB )∥vki)
3 : for i = 1 . . . cnt :

4 : kChati ← H(kChati )

5 : if textChati = ∅ : return kChati

6 : iv := H(H(tx)∥kChati )[0 : 128]

7 : return ctxChat ←$ AESEnc
CBC(text

Chat
i , kChati , iv)

G2

1 : (skChatA , pkChatB , textChati , vki) := dataChat

2 : g ←$ E; kChati ← H(g∥vki)
3 : for i = 1 . . . cnt :

4 : kChati ← H(kChati )

5 : if textChati = ∅ :

6 : return kChati

7 : iv := H(H(tx)∥kChati )[0 : 128]

8 : return ctxChat ←$ AESEnc
CBC(text

Chat
i , kChati , iv)

G3

1 : (skChatA , pkChatB , textChati , vki) := dataChat

2 : kChati ←$ {0, . . . , 2256 − 1}
3 : for i = 1 . . . cnt : kChati ← H(kChati )

4 : if textChati = ∅ : return kChati

5 : iv ←$ {0, . . . , 2128 − 1}
6 : return ctxChat ←$ AESEnc

CBC(text
Chat
i , kChati , iv)

G4

1 : (skChatA , pkChatB , textChati , vki) := dataChat

2 : kChati ←$ {0, . . . , 2256 − 1}
3 : if textChati = ∅ : return kChati

4 : iv ←$ {0, . . . , 2128 − 1}
5 : return ctxChat ←$ AESEnc

CBC(text
Chat
i , kChati , iv)

G5

1 : (skChatA , pkChatB , textChati , vki) := dataChat

2 : if textChati = ∅ :

3 : return kChati ←$ {0, . . . , 2256 − 1}
4 : iv ←$ {0, . . . , 2128 − 1}
5 : return ctxChat ←$ {0, . . . , 2256 − 1}
G6

1 : return ctxChat ←$ {0, . . . , 2256 − 1}
G7

1 : return ctxChat ←$ {1, . . . , n− 1}

Figure 7. Games used in the proof of Lemma 1.
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integrity of embedded messages by altering transactions
that are broadcast to the network in the hope of hitting
a transaction with an embedded message. This attack,
however, has to fail as altering a transaction renders the
transaction signature invalid. As a result, all blockchain
nodes will reject and not further broadcast the transaction.
Therefore, embedded messages that are tampered with
will automatically be filtered out by the network. Bob
still verifies the transaction signatures in cases where the
blockchain node forwarding the transaction to him cannot
be trusted. Message authenticity is guaranteed as only
Alice owns the key ski used for signing the embedding
transactions.

Last but not least, we want to stress that the commu-
nication flow between Alice and Bob is independent of
the flow of the bitcoins transferred during communication.
Alice can hide messages meant for Bob in any of her
transactions, no matter the recipient of the coins. As a
result, no metadata of the communication between Alice
and Bob is generated or observable by third parties. This is
possible because the peer-to-peer network structure is used
for transaction and therefore message distribution. Also,
Bob can receive messages without knowing the mailbox
address (AC in this case) by scanning all transactions in
new blocks for messages from Alice. So changing the
mailbox address while communicating is possible.

4.3. Considering multi-input transactions

So far we proposed and demonstrated a technique to
securely send subliminal messages via general transac-
tions. Our design, as well as other work like [39] require
an overhead of one signature, which trivially translates to
one transaction, to leak the signing key of the sender. Also,
our technique requires the sender to issue two transactions
from the same address. Since some currencies recom-
mend to use addresses only once, our “chat behavior”
might attract some attention. We can overcome both issues
with a feature of cryptocurrencies based on the UTXO
model like Bitcoin, Litecoin, Monero or Dash: multi-input
transactions. UTXO model based cryptocurrencies allow
(or even require) transactions to have multiple inputs (as
shown later, these transactions are quite common). Since
each input contains a signature, we can use this to send
arbitrarily long messages with just a single transaction. We
only require that one of the inputs is signed using kChat as
nonce. All other inputs are then signed using ciphertexts
as nonces.

This improvement cannot be applied to account-based
cryptocurrencies like Ethereum or RippleNet. Here, mul-
tiple transactions have to be used in order to transmit a
hidden message. But since sending multiple transactions
from the same account is common for account-based cryp-
tocurrencies, sending a message via multiple transactions
will not raise any suspicion.

4.4. PoC implementation

We implemented a proof of concept (PoC) of the
chat client for the Bitcoin blockchain in Python available
at https://github.com/UzL-ITS/act-natural. The program
relies on the Python framework bit4 to interact with the

4. https://github.com/ofek/bit

blockchain and manage keys. For key generation, signing,
and verification, bit relies on coincurve5 which is a Python
wrapper for the highly optimized libsecp256k1. The li-
brary libsecp256k1 is a good choice for our experiments
because of three reasons: First, it is part of the Bitcoin
reference implementation bitcoin-core. This implies that
all changes we do to the library are applicable to other
compliant libraries as well. Second, libsecp256k1 provides
a very handy API, allowing us to provide the signing
routine with a custom nonce generation function that can
be passed, besides the transaction hash and the private
key, arbitrary additional data. Instead of passing a custom
nonce generation function to the signing routine, one can
also easily exchange the default nonce generation function
with our handcrafted routine. Third, libsecp256k1 imple-
ments ECDH support. We only have to implement AES
and define the dataChat struct. Note that curve secp256k1
is also used by Ethereum, RippleNet, Litecoin, EOS, and
80 other top 100 cryptocurrencies [34]. We implement
AES following Intel’s reference implementation for AES-
NI as given in [42]. The code provides an efficient AES
implementation while keeping the code base small and
avoiding S-boxes or T-tables. We use the ECDH and
SHA256 implementations of libsecp256k1 to compute
kChat. We define dataChat in the main header file of
libsecp256k1 and modify coincurve and bit accordingly.

To demonstrate the PoC, we placed two transactions
txA→B and txB→A with embedded messages on the
Bitcoin Testnet3 blockchain. Here, we denote by txX→Y

the fact that a message is sent from X to Y in a transaction
sent from X to some third party. Both transactions send
bitcoins to an arbitrary letterbox while exchanging mes-
sages between Alice and Bob. The transaction txA→B has
two inputs embedding a 20 byte message from Alice to
Bob. The signature of the first input carries the encrypted
message while the signature for the second input is used
to leak skA to Bob. The transaction txB→A contains a 55
byte message from Bob to Alice. As the message exceeds
32 bytes, we need three inputs. The first two signatures
contain the message and the third signature leaks skB to
Alice. Both transactions transfer all remaining funds to a
new wallet.

Additionally, we implemented a PoC client on the Rip-
pleNet network (we refer to RippleNet as Ripple for the
remainder of the paper) in the same repository to show a
client for account based cryptocurrencies as well. It makes
use of the official library xrpl-py which in turn relies on
the ECPy package for the cryptographic primitives. We ex-
tended ECPy to support ECDH and use PyCryptodome’s
AES implementation to realize NonceGenChat. On the
Ripple network, account creation and deletion cost US $10
and US $2, respectively. The transaction fee for regular
transactions amounts to a fraction of a cent US. While
each account address is directly tied to a master keypair,
Ripple features regular keypairs that can be used for
signature generation and verification. In case the key gets
lost, the account holder can assign a new regular key. We
exploit this feature to send arbitrarily many message from
the same account without revealing the master key that
proves account ownership.

5. https://github.com/ofek/coincurve
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TABLE 1. BITCOIN POC BENCHMARKS. ALL VALUES ARE
AVERAGED OVER 1,000,000 RUNS ON AN INTEL CORE I5-7600 CPU.

Algorithm min (µs) avg (µs) max (µs)

AES-NI-CBC ENC (w/ KE) 0.0612 0.0631 0.0691
AES-NI-CBC DEC (w/ KE) 0.0611 0.0622 0.0639
SHA256 0.525 0.529 0.546
ECDH 49.2 50.2 51.9
NonceGenRFC6979 6.22 6.37 6.56
NonceGenChat 55.2 56.7 58.1
SignBTC 41.5 42.4 43.5
SignChat 90.9 92.9 93.9

4.5. Performance

We discuss the performance of our approach from
two perspectives: First, we analyse the observable la-
tency differences for common computations performed
by the bulletin board participants. As we will show, no
latency difference is observable which again supports the
undetectability of our approach. Second, we discuss the
capacity of modern blockchains and ledgers. Additionally,
we propose another embedding for linkable ring signature
that allows for an easy bandwidth extension.

Benchmarking the Bitcoin PoC shows that our ap-
proach is practical. The benchmarks we collected are
depicted in Table 1. We measured the performance for the
unmodified and the chat version of libsecp256k1. During
signing and embedding, the usage of AES or additional
hash operations do not add significant time penalties.
The main timing difference of about 50µs between the
libraries is caused by the new group operation due to the
offline key exchange. This latency is only observable by
the sender who is aware of using the steganography. The
signature verification is not modified by our approach, so
its latency is unchanged. These measurements show that
our approach does not alter the observable time needed to
verify a transaction or mine a new block as latency is only
added in the signature generation step which is performed
locally and offline by the sender.

Clearly, the data throughput is upper-bounded by the
capacity of the blockchain. Currently Bitcoin issues one
block with approx. 2.2k transactions every 10 minutes.
Assuming each transaction has 1.6 inputs (on average)
and each input carries 32 B of information, the upper
bound for data transfer of our approach in Bitcoin is
about 112.6 kB every ten minutes or 187.7 B per second.
Later ledgers like EOS, or Ripple already offer a much
higher capacity as they are capable of mining thousands of
transactions per second [12]. This allows for a throughput
of a least 1000 tx

s · 1
sig
tx · 32

byte
sig = 32KB/s. With english

words containing on average 4.79 letters [56] and a typical
text message containing 5.66 words [60], the average size
of a text message is 27.11 bytes. Therefore, the global
throughput today is >1,180 messages per second. These
calculations show that the capacity of current blockchains
and ledgers is not sufficient to replace modern messaging
services like Signal or WhatsApp but can be used for
highly confidential messages or to bootstrap, as, e.g.,
Tithonus [58]. We discuss the consequences of choosing
a blockchain in the next section in more details.

For linkable ring signatures, which are used by Mon-
ero, an even simpler approach for embedding messages

can be chosen that directly increases the bandwidth by
(g − 1) · h: Generating a signature involves (g − 1) · h
random values ri,j (i ̸= π). To embed information in such
a signature, one could compute a pseudorandom ciphertext
(e. g., via AES-CBC) and split this ciphertext into these
(g − 1) · h random values. Due to the pseudorandom
ciphertexts, these values look like random values, but Bob
can use the exchanged shared key to recover the embedded
information. The bandwidth per signature hereby increases
from 32 bytes to 32 · (g − 1) · h bytes per signature.

5. Practical considerations for a real imple-
mentation

Before using our proof-of-concept (PoC) in a practical
setting, some additional considerations should be taken
into account.

Exchanging public chat keys When Alice and Bob want
to communicate, they initially have to exchange each
others public chat keys pkChatA and pkChatB . To do so, they
can rely on a public key infrastructure (PKI) [36] as we do
not require the keys to be kept secret (we even assume that
pkChatA and pkChatB are known to the attacker). Any form
of communication that ensures authenticity and integrity
is suitable for this initial step as well. In cases where the
pure fact that Alice and Bob exchange some keys (no
matter the use case) is not to be known by an attacker,
however, more sophisticated methods as, e. g., proposed
in [48], [66] may be required.

Undetectability vs. performance Bob achieves highest
undetectability by downloading the complete blockchain
and searching it for new messages. While this might be
feasible for slower blockchains like Bitcoin with a new
blocks being mined every 8-15 minutes and containing
1500-2500 transactions each [14], [15], it quickly becomes
infeasible for faster blockchains even if only new transac-
tions have to be searched. On the other hand, Bob achieves
optimal performance if Alice sends all transactions to a
fixed mailbox address as Bob now only has to check
for new transactions sent to this particular address. Of
course, this comes at the cost of limited undetectability.
By using a private signaling protocol as described in
[51], Bob can achieve good performance while keeping
a maximum of undetectability. This comes at the cost of
additional infrastructure that is needed to implement the
protocol. A good tradeoff relying solely on the blockchain
can be achieved if the blockchain supports determinis-
tic wallets [31], [71]. In this case, Alice can generate
a sequence of wallets she owns, use them as mailbox
addresses and share the seed for generating the sequence
of corresponding wallet addresses with Bob. Sharing the
seed can be done through our chat system at the cost of
an initial higher cost or via out of band communication.
Alice may also use deterministic wallets as her sending
wallets rather than as the receiving wallets. This way,
Bob can monitor the next sending wallet for publishing
a transaction. As soon as Alice leaks the signing key
of the first sending wallet to Bob, Bob can compute all
future signing keys as well. This way, Alice can spare the
transaction leaking a signing key for all future messages,
effectively increasing the bandwidth. However, in this case
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Bob has to be trustworthy as otherwise he could steal
Alice’s funds.
Choice of the blockchain When implementing our ap-
proach in a real chat application, the choice of the under-
lying blockchain is important. If the application is only
meant to be used by a small amount of users and only for
critical but short messages, the Bitcoin blockchain might
be suitable although it only allows for a throughput of 187
bytes per second and requires varying transaction fees of 2
- 60 US dollar per transaction [13]. For applications with
many users, the chosen blockchain should be capable of
mining many transactions per second. For an example,
EOS and Ripple are capable of handling thousands [12]
and Ethereum 2.0 even promises 100.000 transactions
per second [25]. While, this will still not be enough to
handle services equivalent to WhatsApp which deals with
about 1.2M messages per second [64], a reasonable chat
application for those who really need it can be realized.
Besides the throughput, the transaction fee is important
as well. As messages are embedded into transactions, a
fee charged per transaction is also charged per message.
Therefore, blockchains with little or no transaction fees
allow cheaper messaging. Ripple, as an example, charges
a fraction of a US cent per payment transaction [13].
Multiple transactions vs. multi-input transactions

We analyzed all Bitcoin, Monero, and Ripple transac-
tions within the week February 07. - 13., 2022 for their
number of inputs and outputs and several other properties.
All details are given in Table 2 and Fig. 8 in the appendix.
We found that Bitcoin and Monero transactions consist of
3.7368 and 2.1017 inputs per transaction on average while
the median is one input for both blockchains. This metric
does not apply to Ripple as it is an account based network
instead of relying on the UTXO model. In general, it
became obvious that transactions with more inputs are
less likely to occur. A true chat client implementation
should take this distribution for the chosen blockchain into
account. This means that in practice, a balance between
sending messages in multi-input transactions and multiple
transactions should be chosen.
Dealing with a voracious receiver If Bob is assumed

to be voracious, Alice has to take extra care of her coins.
As soon as Alice publishes a transaction with a signature
that uses kChat as nonce, Bob can compute Alice’s private
signature key ski and therefore take control of the wallet.
Hence Bob is able to generate valid transactions for that
wallet and can thus spend any remaining funds. This may
even be true for the funds being transferred in the very
transaction that leaks ski to Bob if the blockchain uses
the UTXO model. This is because Bob may learn the
transaction before it is finally mined into a block. If Bob
computes ski and issues a new transaction spending the
same UTXOs again but raises the transaction fee, then
it is more likely that Bob’s new transaction gets mined
and Alice’s transaction is discarded. To overcome this
problem, only small funds should be transferred in the
transaction leaking ski and no funds should remain in
the wallet afterwards. This may be achieved by sending
a message using a multi-input transaction where no sig-
nature leaks ski and all but little coins are transferred to
a safe wallet. After the transaction is mined into a block,
Alice may publish the transaction spending the remaining

funds and leaking ski. Now Bob can read the message
contained in the previous transaction but has no motivation
to betray Alice. On the Ripple network, Alice does not
have to worry about her coins. She can simply assign a
new regular keypair to her account. As the assignment
is done via a signed transaction, Alice can leak the old
regular keypair in the very transaction that assigns the
new keypair. As a transaction is fixed after three seconds
and contains a sequence number, a voracious Bob can not
intercept this.

Forward secrecy and disappearing messages In cases
where a UTXO-based blockchain is used and Bob is
trustworthy, Alice and Bob can cooperate to achieve
forward secrecy and disappearing messages. To do so,
they can apply the cleaning scheme proposed in [73].
Here, Bob basically behaves just like in the voracious
case described above: After computing ski, Bob issues a
new transaction with a higher transaction fee that double-
spends the UTXOs Alice used for leaking ski. The higher
fee is important to increase the chance of Bob’s transaction
being mined into a block. This leads to the rejection of Al-
ice’s transaction because of double-spending. Therefore,
an attacker cannot read the messages on the blockchain
even though they might get hold of Alice’s or Bob’s
chat key pair in the future because they cannot get a
hold of ski anymore. Also, disappearing messages can be
realized by having Bob double-spend all UTXOs used in
transactions that Alice embeds messages in. In this case,
Alice and Bob have to be online at the same time as the
blockchain cannot be searched for new messages later on.
However, we have to note that this cleaning scheme is
not guaranteed to work as higher fees do not guarantee
but only increase the probability that the double-spending
transactions will be mined first. Furthermore, an attacker
might also look out for this kind of suspicious behaviour.

Avoiding traffic analysis While we assumed that the
attacker has complete knowledge about the wallets used
by Alice, there might be a situation where a traffic analysis
can still be used to obtain unwanted information not
covered by our model. In order to cover her tracks, Alice
could make use of mixing services to hide the concrete
wallets used by her. While the use of such services
definitely increases the amount of work needed for the
attacker, it does not completely prevent traffic analysis,
as shown, e. g., in [52], [75]. Our analysis of the Bitcoin,
Monero, and Ripple network shows that distributions of
different transaction properties vary between the networks.
In order to stay hidden, users of the chat client have to
ensure that they generate transactions that look normal.
Based on our observations we argue that it is easier to chat
unnoticed on the Monero blockchain as it already hides
some transaction metadata such as sender and receiver
addresses or the amount of transferred funds [72]. Also,
most transactions use the same type of ring signature and
many transactions have two transaction inputs. While Rip-
ple seems to be a good candidate when talking about trans-
action fees and throughput, a chat pattern might be easily
detectable by traffic analysis. This is because transactions
changing the regular keypair as well as transactions delet-
ing an account are used rather seldom. Account deletions
cost an extra fee of approx. 2 US dollar but changing the
regular keypair is as expensive as any payment transaction.
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TABLE 2. COMPARISON OF DIFFERENT STATISTICS FOR BITCOIN, MONERO, AND RIPPLE (FEB. 07 - 13, 2022).

Bitcoin Monero Ripple

Average Median Average Median Average Median

#Tx per addr & hour 0.007 0.006 0.003 0 0.241 0.0298
#Addr payed to per addr 3.052 1 hidden hidden 6.724 1
#Inputs per tx 3.737 1 2.102 1 account account
#Outputs per tx 3.332 2 2.408 2 account account
Value per tx 21.382 BTC 0.0145 BTC hidden hidden 30950.375 XRP 100 XRP
Tx final latencya 56.881 min 52.1167 min 19.815 min 19.05 min 0.066 min 0.017 min
a Bitcoin: 6 blocks, Monero: 10 blocks, Ripple: next ledger

With ECDSA being used in 93.28% of all transactions
and the knowledge that ECDSA is very vulnerable to
bias attacks [4], we assumed that this transaction type
would be used much more frequently. A problem of all
three networks is the very low number of transactions
per address and hour. The average Ripple account issues
0.241 transactions per hour. For Monero and Bitcoin, these
values are even lower. For the UTXO-based blockchains
Bitcoin and Monero, multiple addresses can be used to
achieve higher throughput while keeping the number of
transactions per address and hour low. In summary, users
unafraid of metadata analysis may benefit from the high
bandwidth and low transaction fees in the Ripple network.
Users seeking for maximum anonymity, however, should
rely on UTXO-model blockchains. From our point of
view, achieving anonymity is easiest with Monero as the
blockchain itself was designed with anonymity in mind.
This comes at the cost of higher fees and lower bandwidth.
With Monero, the bandwidth can be increased by exploit-
ing the random values of the multi-signature scheme at
the cost of even higher fees.

6. Related Work

Besides the works already mentioned in Section 1,
there have been several other studies with the goal to
build covert channels in blockchain systems. For example,
Basuki et al. [6] introduce a covert channel encoding
scheme based on smart contracts with a joint use of image
steganography. Abdulaziz et al. [1] create a decentralized
messaging application utilizing Whisper—the communi-
cation protocol of Ethereum—to send encrypted messages
both securely and anonymously. In [76], similarly as in
[1] and [50], the authors use Whisper which relies on
payload to store information useful for the realization
of covert communication. All of these papers rely on
specific properties of the underlying blockchain and are
therefore not easily transferable to other blockchains. We
circumvent this issue by embedding the messages in the
output of cryptographic signatures which are widely used
in blockchain systems.

Both MoneyMorph [53] and Tithonus [58] aim to
establish a steganographic covert channel via blockchains.
In contrast to our approach of embedding sensitive infor-
mation in the signature present in each transaction, they
embed information in the transaction scripts. As described
in [53, Appendix A, Undetectability], the distribution of
these transaction scripts might change very dynamically
and both approaches thus need to constantly monitor the
blockchain and adapt to possible changes. In contrast,

every transaction contains a cryptographic signature. The
distribution of those signatures are fully defined by the
mathematics of the underlying signature scheme. Hence,
we do not need a constant monitoring of the blockchain
in our solution. Furthermore, in both MoneyMorph and
Tithonus, the party receiving the transactions needs to take
active part in the communication, whereas our approach
allows to separate the recipient of the sensitive information
from the receiver of the transaction. For the most com-
mon script type, pay-to-pubkey-hash, MoneyMorph can
transfer 20 bytes of data per transaction. Note that these
20 bytes are bytes of the ciphertext and thus have a non-
negligible overhead compared to the plaintext. In contrast,
our approach transfers at least 16 bytes of plaintext per
transaction and thus achieves a very similar bandwidth.
The same is true for Tithonus. Finally, we note that
MoneyMorph always burns money (except when using the
very uncommon Pay2Multisig transaction) and thus has a
limited number of at most 1012 messages on Bitcoin. Max-
rate transactions introduced in [59] use a similar technique
as MoneyMorph and Tithonus to implement a provably
private and anonymous storage system. In contrast to our
chat system, the storage system is limited to unidirectional
communication as it proves the privacy and anonymity
properties for the receiver only. Note that our approach
is orthogonal to and directly compatible with both Mon-
eyMorph and Tithonus, as both approaches only embed
information in the transactions, while we embed into the
signatures. We can thus easily combine the approaches to
increase the bandwidth.

Ali et al. [2] propose to use rejection sampling to em-
bed messages in ECDSA signatures. Rejection sampling
samples random nonces k until a pair (r, s) is found such
that PRFkChat((r, s)) = textChat for some pseudorandom
function PRF. It is known that this approach is unde-
tectable (see e. g. [10], [44]), but has a very limited rate
logarithmic in the length of the nonce, i.e., at most 8 bits
for curves of order nearly 256. Partala [57] proposes a
blockchain-based covert channel in which a transaction
can carry one bit in the field of payments. While this
scheme again is provably undetectable, its embedding rate
is too low to be used in real applications. While Zhang
et al. [77] improve the method of [57] using the special
addresses generated by a Bitcoin address generator, the
embedding rate is still too low to realize a chat. In contrast,
our embedding scheme is provably secure while allowing
for a high embedding rate with a constant overhead.

Some works also use Bitcoin’s output script func-
tion OP_RETURN to directly embed messages in trans-
actions [2], [73] or to identify transactions that embed
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messages [65]. While Ali et al. [2] do not describe how
to encode messages for the script, Yin et al. [73] embed
Base64-encoded ciphertexts using a symmetric encryp-
tion scheme. With high probability, both methods are
detectable by statistical tests as they do not take the
distribution of real OP_RETURN payloads into account.
Therefore, these methods cannot be used in practice. Tian
et al. [65] do take the distribution into account when
generating identifiers for their transactions. As embedding
technique, they replace the private signing key of the
Bitcoin address with a ciphertext resulting from symmet-
rically encrypting textChat. To leak the private key d, they
reuse the nonce k that is involved in the signing process.
Leaking d through nonce reuse is also discussed by Ali
et al. [2] and Frkat et al. [39] who both embed messages
by replacing the nonce with a symmetrically computed
ciphertext of textChat. Reusing the nonce results in the
first part r of the signatures being equal which makes
this technique easily detectable by an adversary. Note that
there are in fact several parties constantly scanning the
blockchain for such weak signatures (see, e.g., [19]). In
addition to being detectable, an adversary can compute d
and therefore impersonate the owner of the corresponding
Bitcoin address. This is a major problem rendering this
technique impractical.

To avoid the reuse of the nonce k, Frkat et
al. [39] also propose a more involved method.
The sender first symmetrically encrypts the messages
textChat = textChat1 , . . . , textChatℓ using kChat into cipher-
texts c1, . . . , cℓ and uses these ciphertexts c1, . . . , cℓ as
nonces in the production of the signature. Finally, to
construct the signature ℓ + 1, it uses H(kChat) as nonce.
The extractor stores all of the observed signatures and,
since ECDSA is secret-recoverable, tries to recover the
private signing key d by using H(kChat) as described
above. For the signature ℓ+1, the extractor succeeds and
thus reveals d. Using d, the extractor is able to reconstruct
c1, . . . , cℓ and to decrypt them to the message textChat. As
the attacker A can not observe the internal randomness
used by the signing algorithm, all of the values c1, . . . , cℓ,
as well as H(kChat) are indistinguishable from random
nonces. This approach is the only one in the current
literature that offers a reasonable bandwidth and might be
secure. However, there are some drawbacks when using
it for implementing a chat. First of all, the security of the
embedding scheme remains unproven. Second, as Frkat
et al. design their stegosystem to be used by botnets,
communication is only possible in one direction while
the reverse direction is declared out of scope. One might
try to make the approach of Frkat et al. bi-directional
by using two uni-directional channels. If all clients are
provided with the same symmetric key, it is impossible
for the command and control server to verify the identity
of the sending client. Also, the private wallet key would
always be revealed not only to an individual but a group of
entities, which increases the chance of funds being stolen.
If all clients use an individual key, the command and con-
trol server must send messages to each client individually
which would increase the overhead linear to the number
of clients and reduce the already limited bandwidth of the
channel. In our chat scenario, this symmetric approach
would thus require O(n2) keys if the system is used by n

users and the provisioning of the symmetric keys remains
an open problem. Also, sender and receiver have to agree
on an initial symmetric key/nonce. In the context of bot-
nets, this value can be hard-coded into the bot software,
but for a chat application, this is rather unhandy. Each
embedded message then has to contain the symmetric
key that will be used as nonce k for encrypting the next
message. This effectively reduces the bandwidth of the
channel. In contrast, our approach addresses all of these
issues. We are provably undetectable while allowing for
bidirectional communication and efficient key distribution
without having to agree on a key beforehand.

Another recent line of research, which is related to our
work, deals with algorithm substitution attacks (ASA), and
particularly with ASAs against digital signature schemes
[5], [10], [29], [69]. Although the main focus of this paper
are subliminal channels in digital signatures, we note that
our approach can be used to realize an asymmetric ASA
against ECDSA as well as against any splittable signature
scheme (for a definition, see [69]). The resulting ASA
would look similar to the attack given recently by Wang
et al. [69], but has the advantage to embed arbitrary
messages, like, e.g., sensitive data of users, and not just
the signing key.

7. Conclusion

In this work, we presented a new method to hide data
in digital signatures and applied it to enable subliminal
bidirectional communication in blockchain transactions in
an asymmetric key scenario. We can hide messages in
arbitrary transactions, and can thus apply our technique
to arbitrary blockchains. The only requirement is the use
of a splittable signature scheme for the transactions, such
as the widely used ECDSA or EdDSA. Our subliminal
communication channel follows a public-key approach
and thus does not rely on hard-coded secrets as used
for prior unidirectional proposals. Unlike classic secure
messaging, where the content of messages is protected and
private, but communication patterns or connection graphs
are accessible to the operator of the messaging service,
our scheme hides both the content and the mere existence
of messages, thus leaving no metadata to be analyzed
by other parties. We have shown that the channel is
undetectable, meaning that both the content is secure and
there is no externally observable metadata. Furthermore,
the scheme features a low overhead of just one signature.
To show that the protocol is practical, we implemented
a PoC chat client for the Bitcoin blockchain and Ripple
ledger.
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Figure 8. Distribution plots of different properties of Bitcoin, Monero and Ripple transactions (Feb. 07 - 13, 2022).
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