
Multi-Leak Deep-Learning Side-Channel Analysis
Fanliang Hu1, Huanyu Wang2, Junnian Wang1*

1School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, China;
2School of EECS, KTH Royal Institute of Technology, Stockholm, Sweden;

Email: {fanliang, jnwang}@mail.hnust.edu.cn; huanyu@kth.se

Abstract—Deep Learning Side-Channel Attacks (DLSCAs)
have become a realistic threat to implementations of crypto-
graphic algorithms, such as Advanced Encryption Standard
(AES). By utilizing deep-learning models to analyze side-channel
measurements, the attacker is able to derive the secret key of the
cryptographic alrgorithm. However, when traces have multiple
leakage intervals for a specific attack point, the majority of
existing works train neural networks on these traces directly,
without a appropriate preprocess step for each leakage interval.
This degenerates the quality of profiling traces due to the noise
and non-primary components. In this paper, we first divide the
multi-leaky traces into leakage intervals and train models on
different intervals separately. Afterwards, we concatenate these
neural networks to build the final network, which is called
multi-input model. We test the proposed multi-input model on
traces captured from STM32F3 microcontroller implementations
of AES-128 and show a 2-fold improvement over the previous
single-input attacks.

Index Terms—AES, Deep learning, Multiple leakage, Multi-
input model, Side-channel attacks

I. INTRODUCTION

Side Channel Attacks (SCAs) [1] were proposed 20 years
ago, and have become a realistic concern recently with the help
of deep-learning techniques. By analysing the unintentional
physical leakage during the execution of the cryptographic
algorithms, SCAs are able to break ciphers that are assumed to
be mathematically secure. Once the secret key is extracted, the
ciphertext can be decrypted and the signature can be forged,
which is particularly threatening. Since Kocher introduced the
first attack which is based on time consumption traces in 1996
[1], many other types of leakages have been used. For example,
leakages via acoustic channels [2], power consumption [3],
electromagnetic (EM) emissions [4], [5], and photon emissions
[6] are now widely studied.

In most cases, a well-trained deep-learning [7] classifier
is able to use fewer side-channel measurements (traces) to
recover the secret key from an implementation of AES than the
traditional signal processing approaches. Since deep learning
models are good at extracting features from raw data, they can
help attackers to find correlations between physical measure-
ments and the internal state of the processed algorithm. Deep-
learning techniques start helping power analysis in 2013 [8], in
which a three-layer MLP network is trained to break a Smart
Card implementation of AES-128 which contains an 8-bit
microcontroller PIC16F84 [9]. Subsequently, many softwares
[5], [10]–[12] and hardwares [13]–[16] implementations of
AES have been broken by DLSCAs. In [17], Cagli et al.
evaluated the CNN network’s performance in datasets with

jitter based countermeasure. In [10], Huanyu et al. studied the
impact of how diversity of target chips affects side-channel
attacks. In [18], the influence of the depth of the neural
networks on DLSCAs were studied by visualising the heatmap.
These papers provide a strong evidence for the effectiveness of
deep learning techniques in the context of side channel attacks.

In most existing DLSCAs, neural networks are trained by
using the value at the attack point. Once the value at attack
point is recovered, the key can be derived. At the profiling
stage of DLSCAs, models are trained to learn a leakage
profile between side channel traces and the value at the attack
point (an attack point is an intermediate value which can be
used to describe the power consumed by the victim device
during the execution of a cryptographic algorithm). In software
implementations of AES, the attack point is usually set to the
output of the SubBytes operation of the first and last round
of AES, in which a lookup table called SBox is used. Most
existing deep learning side channel attacks train models on
traces which contain all leakage points directly or mainly
focus on the main leakage point. They ignored the fact that
leakage points appear in small trace segments grouply in some
cases. A dedicated model which makes use of all these leakage
intervals may potentially further increase the attack efficiency.
Therefore, we propose a multi-input model to explore the
benefit of using multiple leakage intervals collaboratively.

A. Our Contributions

In this paper, our main contributions are summarized below:
• We find that in software implementations of AES-128, a

chosen attack point can lead to multiple leakage intervals
in the traces.

• We propose a multi-input deep-learning model in which
multiple leakage intervals could be used collaboratively
to perform the attack. For the proposed model, we in-
vestigated the effect of different fusion techniques on the
multi-input model in terms of classification accuracy.

• We expenrimetally show that the proposed multi-input
model is capable of outperforming the coventional single-
input approach. The results on traces captured from
STM32F3 microcontroller implementations of AES-128
show a 2-fold improvement over the previous attack.
Three datasets are used for validation.

B. Paper Organization

The rest of the paper is organised as follows. Section II
discusses how a single attack point causes multiple leakage

intervals in traces for software implementations of AES and
introduces the multi-input model. Section III describes three
datasets used in our experiment and shows the results. Section
V concludes this paper.

II. MULTI-LEAKAGE AND MULTI-INPUT MODEL

In this section, we first explains why a specific attack point
can have multiple leakage intervals and uses different attacks
as examples. Afterwards, we show the network structure of
the proposed multi-input model.

A. Leakage Analysis

Power consumption of software implementations of AES is
mainly derived from the bit transitions in the CMOS cells.
Thus data processed in the device dominate its power dissi-
pation. As previous researchs of SCAs [19], [20], attackers
have commonly chosen the output of the SBox as the attack
point on software implementations of AES, based on the fact
that the non-linear output of the SBox has a higher level of
confusion.

However, in AES not only the output of the SBox that can be
used as an attack point, other phases of key-related intermedi-
ate values can also be used. Fig.1 shows the flow of AES-128
algorithm and some potential attack points which can be used
for the key recovery. AES-128 requires a total of 10 rounds
of encryption, each round consists of four basic steps, which
are SubBytes, ShiftRows, MixColumns and AddRoundKey. The
last round encryption doesn’t have MixColumns procedure. 1,
F leak represents the intermediate value which is related to
the plaintext and the initial key. L leak denotes the point
which is related to the ciphertext and 10th round key.

To locate the leakage intervals for a specific attack point
in traces, we utilize Correlation Power Analysis (CPA). In
general, CPA calculates the Pearson Correlation Coefficient
[21] between real traces and modeled power consumption. Af-
terwards, the attacker find the key value which correlates best
to the measured traces. Currently, there are three commonly
used power models: Identity (ID), Hamming weight (HW) and
Hamming distance (HD). For example, the ID model assumes
the power consumption is proportional to the value at the
attack point.

In Fig.1, we denote seven potential attack points for break-
ing software implementations of AES. F leak 1 represents
the AddRoundKey’s output before the first round of AES-128.

Next, we introduce the leakage function. A leakage function
is used to obtain the value related to an attack point based on
a specific power model to describe the leakage. In our case,
the power model is set to ID model. When F leak 1 is used
as the attack point, the leakage function VF leak 1 is denoted
as:

VF leak 1 = Pt⊕Key 0 (1)

where Pt represents the plaintext and Key 0 represents the
original key. We use Key i(i ∈ [1, 10]) to denote the ith round
key which is derived from Key 0 by using a Key Expansion
algorithm [22].

Fig. 1. The flow of AES-128 and some potential attack points (intermediate
values of F leak 4 and L leak 5 have keys of different subkeys, which
cannot be used by attackers and are only used for experimental analysis).

In Fig.1, F leak 2 represents the output of the SubBytes
in the first round of AES (the output of the SBox), and the
leakage function VF leak 2 for F leak 2 is expressed as:

VF leak 2 = SBox(Pt⊕Key 0) (2)

F leak 3 represents the output of the ShiftRows in the
first round of AES. The ShiftRows is a cyclic shift operation
performed on different rows. Keeping the first line unchanged;
the second line shifts one byte to the left; the third line shifts
two bytes to the left; the fourth line shifts three bytes to the
left. Thus the leakage function VF leak 3 for F leak 3 as a
point of attack is expressed as:

VF leak 3i =


VF leak 2i+0

i = 1, 5, 9, 13
VF leak 2i+4

i = 2, 6, 10, 14
VF leak 2i+8

i = 3, 7, 11, 15
VF leak 2i+12

i = 4, 8, 12, 16

(3)

where i denotes the ith byte, and i + n = i + n − 16
(n = 0, 4, 8, 12) when i+ n > 16.

F leak 4 represents the output of MixColumns in the
first round of AES. MixColumns is achieved by multiplying
matrices in a finite field GF(28) as follows, where α =
VF leak 3 denotes the middle state of the ShiftRows’s output
and β = VF leak 4 denotes the middle state of the Mix-
Columns’s output.

β1,r
β2,r
β3,r
β4,r

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



α1,r

α2,r

α3,r

α4,r

 (4)

In Equation (4), the first corner labels of α and β represent
the rows of the 4 × 4 matrix and the second corner labels
(r ∈ 1, 2, 3, 4) represent the columns of the matrix (α’s
left multiplication matrix is a fixed matrix of MixColumns).
Therefore, when 5th, 6th, 7th and 8th subkeys are used as
target subkeys, the leakage function VF leak 4 is expressed as:

VF leak 4i =


[2× α5]⊕ [3× α6]⊕ α7 ⊕ α8 i = 5
α5 ⊕ [2× α6]⊕ [3× α7]⊕ α8 i = 6
α5 ⊕ α6 ⊕ [2× α7]⊕ [3× α8] i = 7
[3× α5]⊕ α6 ⊕ α7 ⊕ [2× α8] i = 8

(5)

In Equation (5), a = VF leak 3 and i represents the ith byte.
’×’ denotes a multiplication operation in a finite field and ’⊕’
denotes the XOR operation.

In the last round of AES-128, the leakage function VL leak

is calculated in a similar way to the leakage function VF leak in
the first round. The leakage function for the last round VL leak

is represented by Equation (6-10).

VL leak 1 = Ct⊕Key 10 (6)

VL leak 2i =


VL leak 1i+0

i = 1, 5, 9, 13
VL leak 1i+12 i = 2, 6, 10, 14
VL leak 1i+8 i = 3, 7, 11, 15
VL leak 1i+5

i = 4, 8, 12, 16

(7)

VL leak 3 = SBox−1(VL leak 2) (8)

VL leak 4 = VL leak 3 ⊕Key 9 (9)

VL leak 5i =



[E × γ5]⊕ [B × γ6]⊕ [D × γ7]
⊕[9× γ8] i = 5

[9× γ5]⊕ [E × γ6]⊕ [B × γ7]
⊕[D × γ8] i = 6

[D × γ5]⊕ [9× γ6]⊕ [E × γ7]
⊕[B × γ8] i = 7

[B × γ5]⊕ [D × γ6]⊕ [9× γ7]
⊕[E × γ8] i = 8

(10)

In Equation (6-10), Ct is the ciphertext. Key 10 and 9th
represents the 10th and 9th round key, respectively. SBox−1

denotes the inverse of SBox. i denotes the ith byte. In
Equation (10), γ is used instead of VL leak 4. 9, B, D, E
are the values in the reverse column obfuscation in AES-128.

B. Label for Multi-input Model

The SCAs are usually divided analysis into non-profiled and
profiled analysis, with the profiled analysis divided into two
stages. The first stage is called profiling, in which a deep-
learning model is trained to learn a leakage profile between
traces and the secret. Afterwords, the second stage is called
attack stage, in which the attacker uses the trained model to
classify traces from victim device. To obtain a well-trained
model, profiling traces are required to be labeled properly. As
we mentioned before, there are three commonly used power
models: HW, HD and ID. HW and HD models are reasonable
estimations but suffer from the issue of class imbalance in
practice owing to Bernoulli Distribution [23]. The value model
(identity (ID) model) assumes the power consumed by the
device is propotional to the data processed at the attack point.
We use ID model in our experiment to distinguish different
power traces.

There is a correspondence between the attack point and the
leakage function (the leakage function are defined as label
in deep learning), and we can build a network model for
recovering the key according to each attack point. However,
in the process of this attack, the connection between different
attack points in the AES algorithm and the feature that each
attack point is correlated with the same key are not taken
into account. In order to combine information from multiple
attack points, we propose a multi-input model. Because each
attack point corresponds to a different leakage function (e.g.
the leakage function when the output of the AddRoundKey is
used as the attack point is different from the leakage function
of the SBox’s output), and because there is only one output in
the multi-input model, the leakage function VF leak of multiple
attack points need to be unified. The following describes the
way to unify the leak functions of different attack points and
the reason why multiple leakages can exist at one attack point.

The first round of AES is used as an example to investigate
the relationship between leakage functions at different attack
points. We use the leakage function of VF leak 2 instead
of the other leakage functions as label for the multi-input
model. By replacing VF leak 1 with VF leak 2, the one-to-
one non-linear transformation of SBox does not affect the
classification of the network model (e.g. after replacing all
the labels of cats with dogs and all the labels of dogs with
pigs in image classification, results show that the accuracy of
the network model training does not change). The ShiftRows’s
leakage function simply shifts VF leak 2 without changing it,
so VF leak 2 can be used instead of VF leak 3. The leakage
function VF leak 4 for one subkey in MixColumns is obtained
from four different subkeys of the VF leak 2 by the XOR
operation, and VF leak 2 is used as part of the MixColumns
leakage function, so VF leak 2 can be used instead of VF leak 4

(e.g. when the AddRoundKey is used as a specific attack point,
the Key can be used as the model’s label). The leakage
function for multiple attack points is unified as VF leak 2.
This is the first step in building a multi-input model, which is
described below.

Fig. 2. Single-input model structure.

C. Construction of Multi-input Model

The basic architecture used in this work is a CNN with
multiple input layers, as shown in Fig.3. The multiple inputs
are merged and connected to a Convolutional layer consisting
of 32 neurons. Then the extracted features are expanded by a
Flatten layer after passing through a three-strides MaxPooling
layer. Afterwards, two Dense layers are connected to the
Flatten layer and each dense layer contains 128 neurons. The
Output layer is also a dense layer but with 256 neurons for
prediction and the activation function is set to Softmax. The
Convolutional layer and Dense layers are activated by function
with Rectified Linear Units (ReLU). The single input model
does not contain a Merge layer and consists of a single input
layer connected to a Convolutional layer. The rest of the model
structure is the same as the multi-input model structure, as
shown in Fig.2.

Merge layer is an important aspect when building multi-
input models. It can be used to combine two different neural
networks which are trained for the same task but on different
datasets. Two fusion techniques are commonly used in existing
works, one is called early fusion and another one is late
fusion [24], [25]. Early fusion merges layers of different neural
networks at an early stage while late fusion merges layer lately.
Early fusion is the combination of multiple inputs which are
then connected to the first layer of the DNN. In the late fusion
architecture, features are first extracted from the input data of
individual channels. The specific information of the channels
is eventually merged and processed in further network model
layers responsible for the classification based on the extracted
features.

We find that the late-fusion model is less accurate than the
early-fusion model, as shown in VI. Therefore, in this paper we
only conduct experiments for the early fusion network model.

There are different types of methods to merge layers within
DNN architectures, which are listed below:

• Add: returns the element-wise sum of two inputs
• Subtract: returns element-wise subtracts two inputs

• Multiply: returns element-wise multiplication of in-
puts

• Average: returns element-wise average of the inputs
• Maximum: returns element-wise maximum of the inputs
• Minimum: returns element-wise minimum of the inputs
• Concatenate: returns concatenation of the inputs

D. Method for Multi-input Model

The following steps are required to complete the appli-
cation of the multiple input model to the multiple leakage
intervals. In the first step, a suitable attack point is selected
and the intermediate value function for that attack point is
derived by an energy model. In the second step, the index of
the leaky intervals on the traces for that intermediate value
function is found by finding the leaky interval. In the third
step, the leakage intervals are sliced and a traditional DL
model is trained for each leakage interval. In the fourth step,
the two leakage intervals corresponding to the models with
the strongest classification accuracy on the testing sets are
selected and used to explore which fusion method is optimal
for improving the classification accuracy of the multi-input
models. In the fifth step, all the leaked intervals are used
for training the multi-input network model using this fusion
method to obtain the optimal multi-input network model.

III. EXPERIMENTAL SETUP

In this section, we first introduce the datasets and the
evaluation metrics we used for the experiments. Afterwards,
we test the proposed multi-input model on traces captured
from a CW308T-STM32F3 board. Next, we further validate
the performance of our model on the STM32 implementation
of the 32bit AES-128 dataset and the AES GPU [26] public
dataset.

A. Datasets

In our experiments, we use three datasets in total. Power
traces in the first dataset are captured from a CW308T-
STM32F3 board implementation of TinyAES-128. The board
contains an Arm Cortex M4 microcontroller. The mode of
operation is set to Electronic CodeBook (ECB) mode. The
training set involves 50K traces represening the first round of
AES-128 and 50K traces for the last round. The testing set
contains 10K traces with random plaintexts and fixed keys for
both the first and last rounds respectively. Each power trace
contains 4, 000 sampling points as shown in Fig.4(a), (b).

The second dataset was captured with the same equipment
as the first dataset, implementing AES-128 for 32bit parallel
processing. The training set involves 50K traces and the test-
ing set involves 10K traces, generated from random plaintext
and fixed keys. Each power trace contains 1, 000 sampling
points as shown in Fig.4(c).

The third dataset is an NVIDIA GeForce GT620 graphics
card (GPU) connected to the host with a PCIe bus. The
AES parallel implementation (32 threads in a warp) and
trace acquisition details are stated in [26]. There are 34, 511
traces for profiling and 5, 000 traces for the attack. We call

Fig. 3. Multi-input model structure.

this homemade dataset AES GPU in brief. Each power trace
contains 15, 001 sampling points as shown in Fig.4(d).

B. Evaluation Metrics

The first metric used in our experiments to evaluate how the
trained model performs on the testing set is the classification
accuracy or sometimes called attack accuracy. The attack
accuracy is defined as the fraction of correct predictions when
using the trained model to classify traces from the testing set.
The formula of the attack accuracy is shown below:

acc(Xattack) =
|{Xcorrect ∈ Xattack}|

|Xattack|
(11)

In Equation (11), Xattack denotes the testing dataset.
Xcorrect is the set of power traces when the guessed keys
are all equal to the correct key.

However, when traces are noisy [27], it might be difficult
for the model to predict the key with a single traces. In
that case, partial guessing entropy (PGE) becomes a more
suitable evaluation criterion. PGE indicates the mean rank
of the real subkey sorted by the predicted probabilities of
all possible subkeys. During the attack stage, we use the
trained model to classify traces from the testing set and obtain
the probabilities of different keys for each trace. For trace
xi ∈ Xattack, the obtained probability matrix is denoted as
Pi = [pi,1, pi,2, ..., pi,255], where pi,j in Pi is the predicted
probability of k=j for trace xi. Where Pi is the correct Key
Rank, which is usually used as an evaluation criterion for
datasets with better signal-to-noise ratios, as the number of
traces used to recover the correct key for datasets with higher
signal-to-noise ratios is usually in the single digits, and using
the Key Rank provides a more intuitive evaluation of the

results. The lower the number of traces in the Key Rank, the
better the model.

Afterwards, we apply an element-wise multiplication for all
Pi to obtain a cumulative probability:

P =

m∏
i=1

Pi = [P0,P1, ...,P255] (12)

where m is the number of traces we used for classification.
Then, PGE can be represented as the averaged rank of real
key k∗ sorted by P.

IV. EXPERIMENTAL RESULT

A. TinyAES-128 implementation on a STM32F3
In the first experiment, the target is a STM32F3 implemen-

tation of TinyAES-128. During network training, we used the
Adam optimizer with a learning rate of 0.0005. The mini-batch
size is 256 and the maximum iteration epoch is 500.

1) First Round of AES: We use the ρ-test [28] as the
leakage detection method to find the Point of Interest (POI)
of each subkey for the attack point. The POI of the first round
of AES is shown in Fig.5. In our experiments, we randomly
choose the 5th subkey as an example for illustration and others
will be the same.

Fig.5 shows intervals divided by red lines as A, B, C, D
and E, representing the AddRoundKey operation before the
first round of AES, and the SubBytes, ShiftRows, MixColumns
and AddRoundKey operation of the first round. From Fig.5,
we can see that interval D still leaks information about the
attack point. However, when it comes to interval E, traces does
not contain any leakage. Since traces in interval E represent
AddRoundKey operation of the first round encryption of AES-
128 and the attack point related input for this procedure is the

(a)

(b)

(c)

(d)

Fig. 4. (a) Waveform of the first round traces of the STM32F3 implementation
of TintAES-128; (b) Waveform of the last round traces of the STM32F3
implementation of TintAES-128; (c) Waveform of the last round traces of
the STM32F3 implementation of 32bit AES-128; (d) Waveform of the last
round traces of the NVIDIA GeForce GT620 graphics card implementation
of TintAES-128.

Fig. 5. ρ-test results of the 5th, 6th, 7th and 8th subkey for the first round
traces of a STM32F3 implementation of TintAES-128.

TABLE I
LEAKAGE INTERVALS OF THE 5TH SUBKEY WHEN USING THE SBOX
OUTPUT IN THE FIRST ROUND OF AES AS THE ATTACK POINT AND

CLASSIFICATION ACCURACIES OF SINGLE-INPUT MODELS TRAINED ON
THE CORRESPONDING LEAKAGE INTERVAL.

Input section POI interval Accuracy
AddRoundKey (A) [315:375] 11.40%
SubBytes (B) [890:950] 48.27%
ShiftRows (C) [1690:1750] 0.85%
MixColumns (D) [2037:2097] 0.47%

output of MixColumns operation, this verifies the statement
that MixColumns procedure is side-channel resistant [22].

Next, we first train 4 conventional single-input Convolu-
tional Neural Network (CNN) models (the model structure
is shown in Fig.2) on traces with different POI intervals
separately. The ρ-test of the 5th subkey is illustrated by Fig.5,
divided by the red line dividing 4 leakage intervals. For each
CNN model, we train it on traces with a specific leakage
interval. Four leakage intervals for these 4 models are listed
in Table.I. Afterwards, we use these four models to classify
testing traces separately and the classification results are also
shown in Table.I.

From Table.I, we can find that all the leakage intervals can
contribute to bulid a leakage profile between traces and the
selected attack point. We consider the model to be effective
for the task when the classification accuracy on the testing sets
is higher than 1/256 ≈ 0.39%.

Afterwards, we train and test the propased multi-input
CNN models for different combination of leakage intervals.
In Table.I, we can find that leakage interval B achieves the
best classification result. So our 1-input models are trained
on traces with leakage interval B. For the 2-input model, we
use interval A and B as the two inputs since interval A has
the second best classification accuracy. By following this rule,
our 3-input model is made by using interval A, B and C as
the inputs. The 4-input model makes use of all listed leakage
intervals.

Since there are multiple fusion methods and not all of
them have an improvement in model classification accuracy,
we used the leakage interval A and B of the 5th subkey to
explore which fusion method is more effective in improving

TABLE II
CLASSIFICATION ACCURACY OF THE 2-INPUT (A&B) MODEL ON THE TESTING SETS AND THE NUMBER OF TRACES WITH KEY RANK ¡ 5 ON THE

TESTING SETS (A TOTAL OF 10K TRACES WERE USED AS THE TESTING SET)

Fusion Methods Add Subtract Multiply Average Maximum Minimum Concatenate (axis=1) Concatenate (axis=2)
Test Accuracy 44.26% 57.10% 36.61% 44.01% 53.06% 62.54% 81.60% 82.67%
Key Rank <5 7894 8670 7067 7840 8546 9012 9632 9880

TABLE III
LEAKAGE INTERVALS FOR THE 5TH ,6TH ,7TH AND 8TH SUBKEYS FOR THE LAST ROUND TRACES OF A STM32F3 IMPLEMENTATION OF TINTAES-128.

Leakage Interval 5th Subkey 6th Subkey 7th Subkey 8th Subkey
AddRoundKey (A),
SubBytes (B),
ShiftRows (C),
MixColumns (D)

[315:375]
[890:950]
[1690:1750]
[2037:2097]

[345:405]
[1070:1130]
[1585:1645]
[1770:1830]

[375:435]
[1240:1300]
[1645:1705]
[2595:2655]

[410:470]
[1415:1475]
[1670:1730]
[2310:2370]

TABLE IV
RESULTS OF CLASSIFICATION ACCURACIES ON TESTING SETS FOR SINGLE-INPUT AND MULTI-INPUT MODELS TRAINED USING 5TH, 6TH, 7TH AND 8TH

SUBKEYS FOR THE LAST ROUND TRACES OF A STM32F3 IMPLEMENTATION OF TINTAES-128.

Leakage Interval 5th Subkey 6th Subkey 7th Subkey 8th Subkey

1-input Model

A 11.40% 21.01% 23.10% 18.04%
B 48.27% 47.20% 53.77% 48.86%
C 0.85% 7.63% 1.93% 4.04%
D 0.47% 2.85% 1.32% 2.82%
A&B&C&D 79.21% 84.57% 77.62% 80.82%

2-input Model A&B (axis=1) 81.60% 83.27% 86.39% 81.11%
A&B (axis=2) 82.67% 83.73% 85.62% 82.06%

3-input Model A&B&C (axis=1) 78.14% 88.29% 86.69% 85.30%
A&B&C (axis=2) 82.51% 90.15% 86.71% 85.41%

4-input Model A&B&C&D (axis=1) 69.79% 83.79% 75.23% 69.48%
A&B&C&D (axis=2) 82.87% 91.69% 87.38% 85.64%

Fig. 6. Classification accuracy of 1-input and 2-input models on the validation
set of the 5th subkey.

the classification accuracy of the multi-input network model.
Fig.6 shows the classification accuracy of the 1-input model
and the 2-input model (model structure shown in Fig.3), on
the validation set. Table.II shows the classification accuracy
of the 2-input model on the test set and the Key Rank of
the different fusion methods. As can be seen from Table.II,
Concatenate Layer as the optimal fusion method, in the later
experiments we focus on using Concatenate Layer to merge
neural networks trained on different leakage intervals.

For the Concatenate Layer, there are two common settings
for fusing the inputs: axis = 1 for row-wise concatenation and

axis = 2 for column-wise concatenation. Note that axis = 0 is
the batch axis.

Afterwards, we test the trained 1-input and multi-input mod-
els on trace in the testing set. Table.IV shows the classification
accuracies of these models to recover 5th, 6th, 7th and 8th
subkeys of AES.

From Table.IV, we can find that the multi-input models
can always achieve a higher classification accuracies than the
single-input models. The last row of the 1-input in Table.IV
shows the classification accuracy on the testing sets for models
trained using the full leakage intervals containing the target
subkeys. This indicates that by utilizing multiple leakage
intervals of traces, it is capable of further improving the attack
efficiency of deep-learning models in side-channel attacks’
context. However, we can also see that leakage intervals A
and B, which represent AddRoundKey and SubBytes operations
separately, contribute the most to the multi-input model. For
leakage interval C and D, a well-trained model can also use
them to a fine-tune the classification accuracy. For the setting
of the Concatenate Layer, it seems better to use the column-
wise approach (axis = 2), as we can see from Table.IV.
Next, we show experiments on the last round of AES for the
proposed multi-input models.

2) Last Round of AES: The POI for the last round of AES
for the STM32F3 implementation of TinyAES-128 is shown
in Fig.7. In this section, the experiments are as the same as in

Fig. 7. ρ-test results of the 5th, 6th, 7th and 8th subkey for the last round
traces of a STM32F3 implementation of TintAES-128.

the first-round experiments. So we keep using 5th, 6th, 7th and
8th subkeys as the targets to show the classification results.

In this experiment, we also use the ρ-test as the leakage
detection approach. We plot the ρ-test results of all subkeys
for the last round of TinyAES-128 in Fig.7. The attack point
for the ρ-test of the traces is set to the SBox input of the
last round of AES. In Fig.7, we can divide traces to leakage
intervals as shown in Fig.7. Notice that compared to the ρ-test
results of the first-round traces, the last-round traces contain
two more leakage intervals which are denoted as interval F
and G, for the 9th round encryption of AES. This indicates
that these two operations in the 9th round of AES also contain
information related to the attack point. For traces representing
the last round of AES, there are only three leakage intervals: H,
I, J. This is because that the last round does note MixColumns.

Next, we train 5 conventional single-input CNN models (the
model strcture in shown in Fig.2) on the last-round traces
with different leakage intervals separately. Afterwards, we use
these 5 models to classify testing traces separately and the
classification results are shown in Table.VI.

Because the model trained on leakage interval F cannot
achieve a classification accuracy larger than 0.39% on the
testing set, this interval will will not be involved in the training
of the multi-input models. The conclusion that the multi-input
models a more efficient attack in the presence of multiple leaks
in traces is verified in the last round of AES.

From Table.IV and Table.VI, it is easy to draw the following
conclusions: For models trained using a single leaky interval
with a classification accuracy below 0.39%, the addition of
that leaky interval to the multi-input model does not improve
the classification accuracy of the multi-input model; For the
setting of the Concatenate layer, it seems better to use the
column-wise approach (axis = 2); The classification accuracy
using the multi-input model in the last round of AES-128 is
higher than using the multi-input model in the first round of
AES-128 because the leakage intervals exist in the 9th and
last round of AES-128 when the input to the SBox in the last
round of AES-128 is the attack point.

From Table.IV and Table.VI, it can be concluded that the
classification accuracies of the 4-input model is just lower
than that of the 2-input model when using the concatenation

axis=1 fusion method, and according to the experiments we
have done, the increase of the network training parameters is
not very effective in improving the classification accuracies. It
can be noted that the classification accuracies of the 4-input
model in Tables 4 and 6 of the paper decreases when using the
concatenation axis=1 fusion method compared to the 3-input
model, and does not decrease when using the concatenation
axis=2 fusion method for the 4-input model. The conclusion
is that when using the concatenation axis=1 fusion method,
multiple leaked intervals are connected to form a longer trace,
but each leaked interval contributes differently to the recovery
key (i.e. the classification accuracy of the model trained using
that leaked interval), and this connection leads to a decrease
in classification accuracies when some of the leaked intervals
contribute too little. For the concatenation axis=2 fusion
method, each leaked interval is concatenated on a channel, and
each leaked interval belongs to a different dimension, which
does not degrade the classification accuracies when passed
into the neural network for training, and as long as the leaked
interval contributes to the recovery key, then the classification
accuracy is reduced using The final classification accuracies
of the multi-input model is improved by adding the leaked
interval using the concatenation axis=2 fusion method. The
detailed parameters of the models are shown in VII.

Next, we show the results of implementing 32bit AES-128
in STM32 for the proposed multi-input model.

B. 32bit AES-128 implementation on a STM32F3 (AES 32bit)

We aim at the leakage operation of the last round 5th byte
register writing: v5 = SBox−1[c5 ⊕ k∗], where c5 is the 5th
ciphertext byte. We call this homemade dataset AES 32bit in
brief. During network training, we used the Adam optimizer
with a learning rate of 0.0005. The mini-batch size is 256 and
the maximum iteration epoch is 500.

We use the ρ-test as a leakage detection method to find the
leakage intervals corresponding to v5 in the traces, as shown
in Fig.8. In Fig.8, the leakage intervals are divided into A, B
and C using the green lines. The leakage interval A is indexed
as [320: 390], the leakage interval B is indexed as [470: 540]
and the leakage interval C is indexed as [760: 830]. Since it
has been shown in IV-A that the Concatenate layer as a Merge
layer can most effectively improve the classification accuracy
of the multi-input model, in the next experiments, only the
single-input model with the highest classification accuracy and
the multi-input model using the Concatenate layer are shown.
Fig.9, shows the classification accuracy on the validation set
for the single-input model and the multi-input model during
training. Fig.10 shows the Key Rank comparison between the
single-input, multi-input deep learning (DL) model and the
single-input, multi-input template attack (TA) on 10K test set
traces.

Because of the STM32 implementation of 32bit AES-
128, SubBytes and ShiftRows operations will not leak on the
traces, the multi-input model only improves the classification
accuracy by 19.65% over the single-input model on the test
set in the AES 32bit dataset.

TABLE V
LEAKAGE INTERVALS FOR THE 5TH ,6TH ,7TH AND 8TH SUBKEYS FOR THE LAST ROUND TRACES OF A STM32F3 IMPLEMENTATION OF TINTAES-128.

Leakage Interval 5th Subkey 6th Subkey 7th Subkey 8th Subkey
AddRoundKey (J),
ShiftRows (I),
SubBytes (H),
AddRoundKey (G),
MixColumns (F)

[3170:3230]
[2890:2950]
[2090:2150]
[1510:1570]
[520:580]

[3200:3260]
[2800:2860]
[2305:2365]
[1695:1755
[855:915]

[3230:3290]
[2835:2895]
[2520:2580]
[1875:1935]
[1190:1250]

[3260:3320]
[2880:2940]
[2580:2640]
[1450:1510]
[410:470]

TABLE VI
RESULTS OF CLASSIFICATION ACCURACIES ON TESTING SETS FOR SINGLE-INPUT AND MULTI-INPUT MODELS TRAINED USING 5TH, 6TH, 7TH AND 8TH

SUBKEYS FOR THE LAST ROUND TRACES OF A STM32F3 IMPLEMENTATION OF TINTAES-128.

Leakage Interval 5th Subkey 6th Subkey 7th Subkey 8th Subkey

1-input Model

J 14.73% 13.71% 23.22% 15.41%
I 0.39% 2.58% 2.48% 2.38%
H 45.32% 42.04% 48.59% 45.51%
G 14.27% 22.45% 10.58% 18.64%
F 0.37% 0.37% 0.33% 0.38%
J&I&H&G&F 84.76% 89.66% 87.21% 85.71%

2-input Model H&J (axis=1) 80.41% 88.70% 74.80% 71.49%
H&J (axis=2) 82.20% 88.97% 76.16% 83.10%

3-input Model H&J&G (axis=1) 94.71% 91.63% 92.90% 88.83%
H&J&G (axis=2) 95.17% 96.49% 94.75% 96.49%

4-input Model H&J&G&I (axis=1) 87.96% 94.02% 93.77% 89.47%
H&J&G&I (axis=2) 94.27% 97.38% 95.10% 96.57%

Fig. 8. ρ-test results for v5 (AES 32bit).

Fig. 9. Classification accuracy of single- and multi-input models on validation
sets (AES 32bit).

Fig. 10. Comparison of DLSCA and TA in a testing set with 10K traces Key
Rank (AES 32bit).

Finally, the results for the single-input, multi-input DL
model and the single-input, multi-input TA are shown in
Table.VII. It can be noted that the classification accuracy of the
multi-input model on the validation set is 1.75% higher than
that of the single-input model, due to the fact that a model
combining multiple inputs can learn more information related
to the intermediate values in the data. Although multiple inputs
are introduced into the template attack, they can effectively
increase the efficiency of the template attack. However, in
Table.VII, the multi-input deep learning model has 1399 more
traces with Key Rank¡5 on the testing set than the multi-
input template attack. This indicates that the multi-input deep
learning model is currently a more reasonable solution to the
problem of multiple leakage intervals.

Next, we show experiments on the AES GPU datasets for
the proposed multi-input models.

TABLE VII
NUMBER OF TRACES WITH KEY RANK ¡ 5 ON THE TESTING SET (10K)

FOR SINGLE-INPUT, MULTI-INPUT DL MODELS AND SINGLE-INPUT,
MULTI-INPUT TA (AES 32BIT).

Methods Single-DL Multi-DL Single-TA Multi-TA
Key Rank <5 7793 9192 7094 8520

Fig. 11. ρ-test results for v16 (AES GPU).

C. AES GPU

We aim at the leakage operation of the last round 16th byte
register writing: v16 = SBox−1[c16⊕k∗] where c16 is the 16th
ciphertext byte. During network training, we used the Adam
optimizer with a learning rate of 0.0001. The mini-batch size
is 256 and the maximum iteration epoch is 500.

We use the ρ-test as a leakage detection method to find
the leakage intervals corresponding to v16 in the traces, as
shown in Fig.11. For the intermediate value v16, there are
two discontinuous leakage intervals on the AES GPU dataset,
which we denote as leakage intervals A and B. The index
of leakage interval A is [13000: 13100] and the index of
leakage interval B is [13800: 13900]. Similarly, we show
only the single-input and multi-input models with the highest
classification accuracy on the validation set. The classification
accuracy of the single-input and multi-input models on the
validation set is shown in Fig.12. To further investigate the
effects of single and multiple inputs on DLSCA and TA, we
investigated the number of traces on the AES GPU dataset for
single-input and multiple-input DL models and single-input
and multiple-input TA on the testing set for Key Rank ¡ 5
respectively, and the results are shown in Fig.13.

Finally, the number of traces required to recover the target
subkey (PGE) on the AES GPU dataset is compared between
this work and other researches and the results are shown in
Table.VIII. The multi-input model requires only 14 traces in
the AES GPU dataset to recover the target subkey. This is 31
fewer traces than the most current state-of-the-art result for
this dataset (CDAE proposed by Yang et al.).

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a multi-input deep-learning model
for side-channel attacks, which is dedicated for the case where
multiple leakage intervals exist in traces. By utilizing these

Fig. 12. Classification accuracy of single- and multi-input models on
validation sets (AES GPU).

Fig. 13. Comparison of DLSCA and TA in a testing set with 5K traces Key
Rank (AES GPU).

leakages as separate inputs instead of using the entire trace
for profiling, the trained model can focus more on these
leakages. One well-known publicly available dataset and traces
captured from a STM32F3 implementation of AES are used
in our experiments. We show that the proposed multi-input
model achieves a 2-fold improvement over the previous single-
input attacks. Besides, we further compare different fusion
layers for connecting leakage intervals. The result shows that
concatenating leakage intervals in parallel outperforms other
approaches.

Future work includes testing the proposed multi-input model
on implementations of other cryptographic algorithms and
mounting similar attacks on devices supporting AES with
other countermeasures. Besides, we plan to further investigate
the multi-leakage phenomena by training new models on other
attack points. Certainly, the most important future work should
be designing countermeasures to against deep-learning based
side-channel attacks.

TABLE VIII
COMPARISON OF PGE RESULTS ON AES GPU DATASET.

Methods Accuracy DL-PGE TA-PGE
Original [26] - - 80
CDAE [27] - - 45
Single-input 1.64% 37 49
Multi-input 3.68% 14 23

VI. APPENDIX A. COMPARISON OF THE RESULTS OF THE
EARLY- AND LATE- FUSION MODELS

Fig. 14. Late-fusion multi-input model structure.

TABLE IX
COMPARISON OF CLASSIFICATION ACCURACIES BETWEEN EARLY- AND
LATE-FUSION MODELS FOR THE 2-INPUT (LEAKAGE INTERVALS A&B)
MODELS ON THE TESTING SETS OF THE FIRST ROUND OF THE STM32

IMPLEMENTATION OF THE AES-128 DATASET.

Early-fusion Late-fusion
Add 44.26% 36.81%
Subtract 57.10% 46.88%
Multiply 36.61% 39.81%
Average 44.01% 39.21%
Maximum 53.06% 42.73%
Minimum 62.54% 51.07%
Concatenate 82.67% 47.20%

VII. APPENDIX B. MODEL STRUCTURE AND MODEL
PARAMETERS (STM32F3 IMPLEMENTATION OF AES-128

DATASET)

TABLE X
1-INPUT MODEL STRUCTURE AND PARAMETERS.

Layer Type Output Shape Parameter #
Input Layer (None, 60, 1) 0
Conv1D (None, 54, 32) 256
Max Pooling (None,27, 32) 0
Flatten (None, 864) 0
Dense 1 (None, 128) 110720
Dense 2 (None, 128) 16512
Output (Dense) (None, 256) 33024
Total Parameters: 160,512

TABLE XI
2-INPUT MODEL STRUCTURE AND PARAMETERS (ADD). SUBTRACT,
MULTIPLY, AVERAGE, MAXIMUM AND MINIMUM HAVE THE SAME

PARAMETERS AS ADD.

Layer Type Output Shape Parameter #
Input Layer 1 (None, 60, 1) 0
Input Layer 2 (None, 60, 1) 0
Merge Layer (Add) (None, 60, 1) 0
Conv1D (None, 54, 32) 256
Max Pooling (None,27, 32) 0
Flatten (None, 864) 0
Dense 1 (None, 128) 110720
Dense 2 (None, 128) 16512
Output (Dense) (None, 256) 33024
Total Parameters: 160,512

TABLE XII
2-INPUT MODEL STRUCTURE AND PARAMETERS (CONCATENATE AXIS=1).

Layer Type Output Shape Parameter #
Input Layer 1 (None, 60, 1) 0
Input Layer 2 (None, 60, 1) 0
Merge Layer (con axis=1) (None, 120, 1) 0
Conv1D (None, 144, 32) 256
Max Pooling (None, 57, 32) 0
Flatten (None, 1824) 0
Dense 1 (None, 128) 233600
Dense 2 (None, 128) 16512
Output (Dense) (None, 256) 33024
Total Parameters: 283,392

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[2] A. Shamir and E. Tromer, “Acoustic cryptanalysis,” 2004.
[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual

international cryptology conference. Springer, 1999, pp. 388–397.
[4] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:

Concrete results,” in International workshop on cryptographic hardware
and embedded systems. Springer, 2001, pp. 251–261.

[5] R. Benadjila, E. Prouff and R. Strullu, et al. “Study of deep learning
techniques for side-channel analysis and introduction to ascad database,”
ANSSI, France & CEA, LETI, MINATEC Campus, France. Online
verfügbar unter https://eprint. iacr. org/2018/053. pdf, zuletzt geprüft
am, vol. 22, p. 2018, 2018.

[6] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P. Seifert,
“Simple photonic emission analysis of aes,” in International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 2012,
pp. 41–57.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[8] Z. Martinasek and V. Zeman, “Innovative method of the power analysis,”
Radioengineering, vol. 22, no. 2, pp. 586–594, 2013.

[9] T. Wilmshurst, Designing embedded systems with PIC microcontrollers:
principles and applications. Elsevier, 2006.

[10] H. Wang, M. Brisfors and S. Forsmark, et al. “How diversity affects
deep-learning side-channel attacks,” in 2019 IEEE Nordic Circuits and
Systems Conference (NORCAS): NORCHIP and International Sympo-
sium of System-on-Chip (SoC). IEEE, 2019, pp. 1–7.

[11] D. Das, A. Golder and J. Danial, et al. “X-deepsca: Cross-device deep
learning side channel attack,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

TABLE XIII
2-INPUT MODEL STRUCTURE AND PARAMETERS (CONCATENATE AXIS=2).

Layer Type Output Shape Parameter #
Input Layer 1 (None, 60, 1) 0
Input Layer 2 (None, 60, 1) 0
Merge Layer (con axis=2) (None, 60, 2) 0
Conv1D (None, 54, 32) 480
Max Pooling (None, 27, 32) 0
Flatten (None, 864) 0
Dense 1 (None, 128) 110720
Dense 2 (None, 128) 16512
Output (Dense) (None, 256) 33024
Total Parameters: 160,736

[12] H. Wang, S. Forsmark and M. Brisfors, et al. “Multi-source training
deep-learning side-channel attacks,” in 2020 IEEE 50th International
Symposium on Multiple-Valued Logic (ISMVL). IEEE, 2020, pp. 58–63.

[13] T. Kubota, K. Yoshida and M. Shiozaki, et al. “Deep learning side-
channel attack against hardware implementations of aes,” Microproces-
sors and Microsystems, p. 103383, 2021.

[14] H. Wang and E. Dubrova, “Tandem deep learning side-channel attack
against fpga implementation of aes.” IACR Cryptol. ePrint Arch., vol.
2020, p. 373, 2020.

[15] J. Kim, S. Picek and A. Heuser, et al. “Make some noise. unleashing the
power of convolutional neural networks for profiled side-channel anal-
ysis,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 148–179, 2019.

[16] L. Masure, C. Dumas, and E. Prouff, “A comprehensive study of deep
learning for side-channel analysis,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 348–375, 2020.

[17] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks
with data augmentation against jitter-based countermeasures,” in Interna-
tional Conference on Cryptographic Hardware and Embedded Systems.
Springer, 2017, pp. 45–68.

[18] D. Moonen, “Little or large?: The effects of network size on ai
explainability in side-channel attacks,” 2020.

[19] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in International Con-
ference on Security, Privacy, and Applied Cryptography Engineering.
Springer, 2016, pp. 3–26.

[20] L. Zhang, X. Xing and J. Fan, et al. “Multi-label deep learning based
side channel attack,” in 2019 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST). IEEE, 2019, pp. 1–6.

[21] J. Benesty, J. Chen and Y. Huang, et al. “Pearson correlation coefficient,”
in Noise reduction in speech processing. Springer, 2009, pp. 1–4.

[22] J. Daemen and V. Rijmen, “Reijndael: The advanced encryption stan-
dard.” Dr. Dobb’s Journal: Software Tools for the Professional Program-
mer, vol. 26, no. 3, pp. 137–139, 2001.

[23] S. Picek, A. Heuser and A. Jovic, et al. “The curse of class imbalance
and conflicting metrics with machine learning for side-channel evalua-
tions,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2019, no. 1, pp. 1–29, 2019.

[24] D. Feng, C. Haase-Schuetz and L. Rosenbaum, et al. “Deep multi-modal
object detection and semantic segmentation for autonomous driving:
Datasets, methods, and challenges,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 3, pp. 1341-1360, 2020.

[25] J. Xu and H. M. Heys, “Using deep learning to combine static and dy-
namic power analyses of cryptographic circuits,” International Journal
of Circuit Theory and Applications, vol. 47, no. 6, pp. 971–990, 2019.

[26] Y. Gao, H. Zhang and W. Cheng, et al. “Electro-magnetic analysis
of gpu-based aes implementation,” in Proceedings of the 55th Annual
Design Automation Conference, 2018, pp. 1–6.

[27] G. Yang, H. Li and J. Ming, et al. “Cdae: Towards empowering denoising
in side-channel analysis,” in International Conference on Information
and Communications Security. Springer, 2019, pp. 269–286.

[28] F. Durvaux and F.-X. Standaert, “From improved leakage detection to
the detection of points of interests in leakage traces,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2016, pp. 240–262.

