
Efficient Zero-Knowledge Arguments
in Discrete Logarithm Setting:

Sublogarithmic Proof or Sublinear Verifier

Sungwook Kim1[0000−0003−4789−3347], Hyeonbum Lee2[0000−0003−0435−4394], and
Jae Hong Seo2?[0000−0003−0547−5702]

1 Department of Information Security, Seoul Women’s University, Republic of Korea
kim.sungwook@swu.ac.kr

2 Department of Mathematics & Research Institute for Natural Sciences,
Hanyang University, Seoul 04763, Republic of Korea

{leehb3706, jaehongseo}@hanyang.ac.kr

October 1, 2022

Abstract. We propose three interactive zero-knowledge arguments for
arithmetic circuit of size N in the common random string model, which
can be converted to be non-interactive by Fiat-Shamir heuristics in the
random oracle model. First argument features O(

√
logN) communica-

tion and round complexities and O(N) computational complexity for the
verifier. Second argument features O(logN) communication and O(

√
N)

computational complexity for the verifier. Third argument featuresO(logN)
communication and O(

√
N logN) computational complexity for the ver-

ifier. Contrary to first and second arguments, the third argument is free
of reliance on pairing-friendly elliptic curves. The soundness of three
arguments is proven under the standard discrete logarithm and/or the
double pairing assumption, which is at least as reliable as the decisional
Diffie-Hellman assumption.

Keywords: zero-knowledge argument · circuit satisfiability · trustless setup

1 Introduction

A zero-knowledge (ZK) argument is a protocol between two parties, the prover
and the verifier, such that the prover can convince the verifier that a particular
statement is true without revealing anything else about the statement itself. ZK
arguments have been used in numerous applications such as verifiable outsourced
computation, anonymous credentials, and cryptocurrencies.

Our goal is to build an efficient ZK argument for arithmetic circuit (AC)
in the common random string model that is sound under well-established stan-
dard assumptions, such as the discrete logarithm (DL) assumption: Compared

? corresponding author

2 Kim et al.

to q-type strong assumptions such as q-DLOG [45, 32], the standard assump-
tions will provide strong security guarantees as well as a good efficiency with
smaller group size due to Cheon’s attack on q-type assumptions [24]. To this
end, we propose three inner-product (IP) arguments with the same properties
(standard assumption, common random string model), where an IP argument is
a proof system that convinces the verifier of an inner-product relation between
committed integer vectors. Then, we can apply well-established reductions from
IP argument to ZK argument for AC [15, 20, 53, 21].

The first sublinear ZK argument for AC solely based on the hardness of the
DL problem is due to Groth [34] and improved by Seo [51]. These works fea-
ture constant round complexity as well. Groth [36] gives a ZK argument with a
cubic root communication complexity using pairing-based two-tiered homomor-
phic commitment scheme whose binding property is based on the double pairing
(DPair) assumption [1]. The first logarithmic ZK argument for AC solely from
the DL assumption is due to Bootle, Cerulli, Chaidos, Groth, and Petit [15] and
improved by Bünz, Bootle, Boneh, Poelstra, Wuille, and Maxwell [20], which is
called Bulletproofs. Hoffmann, Klooß, and Rupp [40] revisited and improved Bul-
letproofs by showing that it can cover systems of quadratic equations, of which
rank-1 constraint systems is a special case. These logarithmic ZK argument sys-
tems [15, 20, 40] have linear verifiers. Other DL-based ZK argument systems with
different asymptotic performance, in particular sublinear verifier, have been pro-
posed. e.g., Hyrax [53] and Spartan [52]. Recently, Bünz, Maller, Mishra, Tyagi,
and Vesely [22] achieved a logarithmic ZK argument with a sublinear verifier
under the DPair assumption.

Focusing on specific languages, there are more researches achieving logarith-
mic communication complexity [5, 38] prior to Bulletproofs. Logarithmic com-
munication complexity in these works is attained with relatively large round
complexity, compared to [34, 51].

Relying on the non-standard but reliable assumptions, there exists a ZK
argument system with better asymptotic performance due to Bünz, Fisch, and
Szepieniec [21] that achieve logarithmic communications and logarithmic verifier
simultaneously, but it relies on a rather stronger assumption such as the strong
RSA assumption and the adaptive root assumption. A lot of important research
for succinct non-interactive argument (SNARG) [35, 44, 12, 33, 13, 47, 8, 11, 38,
37, 45, 32, 55, 25] have been proposed on the top of bilinear groups, where an ar-
gument consists of a constant number of group elements. However, the soundness
of these works relies on non-falsifiable knowledge extractor assumptions and/or
the structured reference string (SRS) that requires a trusted setup, which is not
required in the aforementioned DL-based protocols. There is another important
line of works [7, 9, 26, 57] for SNARG without using pairings, but based on in-
teractive oracle proofs [10]. These works are strong candidates for post-quantum
ZK arguments and simultaneously minimizing communication cost and verifier
computation. However, their communication cost is proportional to log2N for
the circuit size N , which is larger than that of the DL based approach [15, 20].

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 3

1.1 Our Results.

We propose three IP arguments between two integer vectors of length N in
the common random string model. We refer to [15, 20, 53, 21] or Section 6 for
a constant round reduction from ZK arguments for AC of size N with fan-in 2
gates to IP arguments. We summarize our results as follows.

1. We propose the first IP argument with sublogarithmic communication. We
prove its soundness under the DL assumption and the DPair assumption.

2. We present the first IP argument with O(logN) communication and O(
√
N)

verifier computation such that its soundness is based on the DL assumption.
3. We introduce a novel method to achieve the IP argument with a similar per-

formance to the second argument, especially without the reliance of pairings.

We provide a comparison for transparent ZK arguments in Table 13. Note that
there are more efficient arguments in the DL setting [11, 43, 45, 32, 25, 28] if we
rely on a trusted setup or non-standard, non-falsifiable assumptions.

Our starting point is Bünz et al.’s Bulletproofs IP argument (BP-IP) [20]
that features O(logN) communication and O(N) computation in the common
random string model and is sound under the DL assumption. For shorter proofs
or faster verification, we first generalize BP-IP in two different ways. A pictorial
overview of our approach is given in Fig. 1.

Sublogarithmic Communications. BP-IP consists of logN recursive steps such
that the prover sends two group elements per each round. The goal of each
recursive step is to halve the length of witness. Our first generalization of BP-
IP reduces the length of witness one 2n-th per each recursive round if N is
a power of 2n for any positive integer n. If need be, one can easily pad the
inputs to ensure that the requirement for the format of N holds, like in BP-IP.
Then, the recursive steps are finished in log2nN rounds and the prover sends
2n(2n − 1) group elements in each round, so that the overall communication
cost is O((log2nN) × n2), which becomes minimal when n = 1. That is, this
generalization has no advantage over BP-IP in terms of communications.

Nevertheless, we observe that the commit-and-prove approach can reduce
transmission overhead; the prover can commit to 2n(2n − 1) group elements
instead of sending them all, and then proves that the openings satisfy what the
verifier should have checked with the openings. To this end, we use a pairing-
based commitment scheme to group elements (e.g., AFGHO [1]). This process of
committing and proving can be achieved using a multi-exponentiation argument
(e.g., [22]). Unfortunately, this näıve commit-and-prove approach ends up with
asymptotically the same proof size as BP-IP since we must prove several multi-
exponentiation arguments for every round. We call this protocol Protocol1.

To further reduce the communication cost, we aggregate multiple multi-
exponentiation arguments. Although there are well-known aggregating tech-
niques for multiple arguments with homomorphic commitment scheme (e.g.,

3 We often use a terminology ‘transparent’ in the meaning of ’without trusted setup’.

4 Kim et al.

Scheme Communication P’s comp. V’s comp. Assump.

Groth [34] & Seo [51] O(
√
N)G1 O(N)τ1 O(N)τ1 DL

Groth [36] O(3
√
N)G1 O(N)τ1 O(3

√
N)τ1 DPair

BP [15, 20] & HKR [40] O(logN)G1 O(N)τ1 O(N)τ1 DL

Hyrax [53] O(
√
w + d logN)G1 O(N logN)τ1 O(

√
w + d logN)τ1 DL

Spartan DL [52] O(
√
N)G1 O(N)τ1 O(

√
N)τ1 DL

BMMTV [22] O(logN)Gt O(N)τ1 O(
√
N)τ2 DPair

Supersonic [21] O(logN)GU O(N logN)u O(logN)u UOGroup

Spartan CL [52] O(log2N)GU O(N logN)u O(log2N)u UOGroup

Ligero [2] O(
√
N)H O(N logN)h O(N)h CR hash

STARK [7] O(log2N)H O(N log2N)h O(log2N)h CR hash

Aurora [9] O(log2N)H O(N logN)h O(N)h CR hash

Fractal [26] O(log2N)H O(N logN)h O(log2N)h CR hash

Virgo [57] O(d logN)H O(N logN)h O(d logN)h CR hash

BCGGHJ [16] O(
√
N)H O(N)m O(N)m CR hash

BCL [17] polylog(N)H O(N)m polylog(N)m CR hash

Our IP arguments + Section 6

Protocol2 (Section 3.2) O(
√

logN)Gt O(N2
√
logN)τ1 O(N)τ1 DL†&DPair

Protocol3 (Section 4.3) O(logN)Gt O(N)τ1 O(
√
N)τ2 DL†

Protocol4 (Section 5.3) O(logN)Gq O(N)τp O(
√
N logN)τq DL

Table 1. Comparison for transparent ZK arguments
N : circuit size, d: circuit depth, w: input size, (G1,G2,Gt): bilinear groups, (Gp,Gq):
elliptic curve groups of order p and q, GU : group of unknown order, H: hash function,
m, p, h, τi, u: operation of field, pairing, hash, Gi, GU ,
UOGroup: unknown-order group (strong RSA & adaptive root assumptions), CR hash:
collision-resistant hashes, DL†: DL assumption over pairing-friendly elliptic curves
All arguments in the table are public coin (Definition 4), so that they achieve non-
interactivity in the random oracle model using the Fiat-Shamir heuristic [29].

aggregating range proofs [20], linear combinations of protocols [40]), these ag-
gregating techniques are not well applicable to the case including ours such that
bases and exponents are distinct for multiple arguments. We try to reduce mul-
tiple relations to a single relation by multiplying all relations and then employ
a recursive proof technique like BP-IP. However, we find that this strategy does
not work well. The detailed explanation about the difficulty we faced is given in
Section 3.2. Instead, we devise a novel aggregating technique using newly pro-
posed augmented aggregated multi-exponentiation argument aAggMEA and prod-
uct argument ProdMEA. The final protocol, called Protocol2, using aAggMEA and
ProdMEA achieves sublogarithmic communication overhead.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 5

Protocol2Protocol1

Protocol3

Protocol4

O((log2 n)(log2nN)) O(log2nN + log2 n)

1stGBP

O(n2 log2nN)

BP[20]

O(log2N)

2ndGBP

CG[1]

MEA[22]

New CG

ProdMEA
→aAggMEA

AggMEC

O(
√
N)

O(
√
N logN)

Without Pairings

With Pairings

Each arrow links between the underlying and the advanced protocols. The big-O
notation under each protocol indicates communication complexity, except for Pro-
tocol3 and Protocol4 that indicate verifier’s computational complexity. The oval
nodes indicate known results; BP: Bulletproofs [15, 20], MEA: multi-exponentiation
argument [22], CG: Commitment to group elements [1]. The rectangle nodes indicate
the proposed protocols; New CG: Commitment to Elliptic Curve Points, 1stGBP
& 2stGBP: generalizations of Bulletproofs, aAggMEA & AggMEC: aggregations of
multi-exponentiations & multi-elliptic curve operations. Protocol1: an intermediate
protocol. Protocol2: Sublogarithmic IP argument, Protocol3 & Protocol4: Sublinear
Verifier IP arguments. N is the dimension of witness vectors. n is a positive integer
parameter for 1stGBP, where n = 1 implies the original Bulletproofs.

Fig. 1. Overview of Our Approach toward Sublogarithmic Proofs or Sublinear Verifier

Sublinear Verifier. The soundness of BP-IP is based on the discrete logarithm
relation assumption (DLR), which is equivalent to the DL assumption, such
that no adversary can find non-trivial relation among uniformly chosen group
elements. We observe that the uniform condition in sampling group elements
is not necessary in the soundness proof of BP-IP, but the hardness of find-
ing non-trivial relation among the CRS is sufficient. From this observation, we
first generalize the DLR assumption by removing the uniform condition and
then propose and prove that a new assumption with non-uniform distribution
holds. More precisely, we combine this generalization with the AFGHO commit-
ments; Let e : G1 × G2 → Gt be a bilinear map, where G1 and G2 are source
groups and Gt is the target group. g1, . . . , g√N ∈ G1 and H1, . . . ,H√N ∈ G2

are uniformly chosen. We prove that no adversary can find a non-trivial vector

(a11, . . . , a√N
√
N) ∈ ZNp satisfying

∏√N
i,j=1 e(gi, Hj)

aij if the DL assumptions in
the source groups hold. That is, e(gi, Hj)’s are not uniformly distributed but
hard to find non-trivial relation among them. Therefore, if we set e(gi, Hj)’s as

the CRS of BP-IP, then the actual CRS becomes gi’s and Hj ’s of 2
√
N size while

keeping the soundness proof under the DL assumption in the source group.

Nevertheless, a näıve approach using the above idea will keep linear verifier
computation in N since we still keep the same verification process as that of

6 Kim et al.

BP-IP. We introduce a trick to track verifier’s computation with O(
√
N) com-

putation. For example, in the first recursive step of BP-IP, the verifier should
update the public parameter g1, . . . , gN to gx1g

x−1

N/2+1, . . . , g
x
N/2g

x−1

N for a chal-

lenge integer x, which requires O(N) computation. In our setting, the public

parameter e(g1, H1), . . . , e(g√N , H
√
N) can be halved to e(gx1g

x−1
√
N/2+1

, Hi), . . . ,

e(gx√
N/2

gx
−1
√
N
, Hi) for all i = 1, . . . ,

√
N . Therefore, the verifier can track this

computation by computing only gxi g
x−1
√
N/2+i

for i = 1, . . . ,
√
N , which require

O(
√
N) exponentiations in G1. Note that this trick does not increase the prover’s

overhead, so that we sacrifice neither the other complexities nor assumptions to
achieve sublinear verifier. The resulting protocol with sublinear verifier is called
Protocol3.

Sublinear Verifier without Pairings. The core of the above second generaliza-
tion of BP-IP is to employ two-tiered homomorphic commitment scheme: Ped-
ersen commitment scheme to integers in the 1st layer + pairing-based AFGHO
commitment scheme to group elements in the 2nd layer. We propose another
IP argument with sublinear verifier, particularly not relying on pairing-friendly
elliptic curves. To circumvent the use of AGFHO scheme, we propose a new two-
tiered commitment scheme built on a usual elliptic curve with a mild condition.
Although the proposed two-tiered commitment scheme is not homomorphic, we
emphasize that it has a similar-but-weakened property, friendly to proving homo-
morphic operations of the underlying mathematical structure, particularly the
group law of elliptic curve over finite fields. Second, we show that this weakened
property is sufficient to construct an IP argument protocol with sublinear veri-
fier. After replacing pairing-based two-tiered homomorphic commitment scheme
with the new commitment scheme, the prover performs the verifier computation,
proves the integrity of the computation, and sends the verifier the computation
along with a proof. In order to raise efficiency of this approach, we also bring in
the aggregation technique used for the protocol with sublogarithmic communi-
cations. The resulting protocol without pairings is called Protocol4.

1.2 Related Works.

Argument for Algebraic Relations. Groth [34] proposed a sublinear ZK argu-
ment for linear algebra relations. In particular, he proposed an argument for
bilinear maps such as inner-products and then showed that many linear alge-
bra relations, such as trace, can be reduced to that argument for bilinear maps.
Bootle et al. reduced communication overhead of IP argument to be logarithmic
in the dimension of witness [15, 20]. There are proposals for other algebraic re-
lations. For example, Groth and Sahai [39] proposed a non-interactive ZK proof
system for pairing-based relations, such as pairing-product, without relying on
NP reduction. Lai, Malavolta, and Ronge proposed a logarithmic argument for
pairing-based relations [42] and Bünz, Maller, Mishra, Vesely [22] further im-
proved it.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 7

Polynomial Commitment Scheme. Kate, Zaverucha and Goldberg introduced
polynomial commitment scheme such that a committer first commits to a poly-
nomial f(X), and then later opens f(x) at some point x (mostly chosen by a
verifier) and convinces a verifier of correctness of f(x). Polynomial commitments
play an important building block not only for constructing ZK arguments for
arithmetic circuits [36, 53, 45, 32, 55, 19, 25, 52, 57] but also for constructing many
other crypto primitives such as verifiable secret sharing [41, 4], anonymous cre-
dentials [23, 31], and proofs of storage and replication [56].

Although Kate et al.’s polynomial commitment scheme achieves succinct
opening and verification cost, it requires structured reference string that requires
a trusted setup. Polynomial commitment schemes without a trusted setup can be
achieved through a transparent IP argument [15, 20, 53, 19]. Another approach is
using unknown order group [21, 3]. They provide logarithm verification cost and
logarithm/constant proof size. However, they rely on strong assumptions like
adaptive root assumption [54] or generic group model and they require superlin-
ear proving cost. Bünz, Fisch and Szepieniec formalize a framework of compiling
polynomial IOP to ZK argument using polynomial commitment scheme [21].

Organization. After providing necessary definitions in the next section, we
present our first generalization of BP-IP and then reduce its communication
overhead by using the aggregation technique in Section 3. We present another
generalization that achieves sublinear CRS size and verifier computation in Sec-
tion 4 (with Pairings) and Section 5 (without Pairings). In Section 6, we extend
our IP arguments to ZK arguments for AC.

2 Definitions

Argument System for Relation R. Let K be the common reference string
(CRS) generator that takes the security parameter as input and outputs the CRS
σ. In this paper, the CRS consists of randomly generated group elements, so that
indeed we are in the common random string model, where an argument consists
of two interactive PPT algorithms (P,V) such that P and V are called the
prover and the verifier, respectively. The transcript produced by an interaction
between P and V on inputs x and y is denoted by tr ← 〈P(x),V(y)〉. Since we
are in the common random string model, for the sake of simplicity, we omit the
process of running K and assume the CRS is given as common input to both P
and V. At the end of transcript, the verifier V outputs b, which is denoted by
〈P(x),V(y)〉 = b, where b = 1 if V accepts and b = 0 if V rejects.

Let R be a polynomial time verifiable ternary relation consisting of tuples of
the CRS σ, a statement x, and a witness w. We define a CRS-dependent language
Lσ as the set of statements x that have a witness w such that (σ, x, w) ∈ R.
That is, Lσ = { x | ∃ w satisfying (σ, x, w) ∈ R }. For a ternary relation R, we
use the format {(common input; witness) : R} to denote the relation R using
specific common input and witness.

8 Kim et al.

Argument of Knowledge. The argument of knowledge means the argument
system satisfying the completeness and the soundness with extractability.

Definition 1. Let K be the CRS generator and (P,V) be an argument. We
say that the argument (P,V) has perfect completeness if for all non-uniform
polynomial-time interactive adversaries A,

Pr

[
〈P(σ, x, w),V(σ, x)〉 = 1
∨ (σ, x, w) /∈ R

∣∣∣∣ σ ← K(1λ);
(x,w)← A(σ)

]
= 1.

Definition 2. Let K be the CRS generator and (P,V) be an argument. We say
that the argument (P,V) has witness-extended emulation if for every determin-
istic polynomial prover P∗ there exists an expected polynomial time emulator
E such that for all non-uniform polynomial time interactive adversaries A, the
following inequality holds.∣∣∣∣∣∣∣∣∣∣∣∣

Pr

[
A(tr) = 1

∣∣∣ σ ← K(1λ); (x, s)← A(σ);
tr ← 〈P∗(σ, x, s),V(σ, x)〉

]

−Pr

 A(tr) = 1 ∧
if tr is accepting,
then (σ, x, w) ∈ R

∣∣∣∣∣∣ σ ← K(1λ); (x, s)← A(σ);

(tr, w)← E〈P
∗(σ,x,s),V(σ,x)〉(σ, x)



∣∣∣∣∣∣∣∣∣∣∣∣
< negl(λ),

E has access to the oracle 〈P∗(σ, x, s),V(σ, x)〉 that permits rewinding P∗ to a
specific round and rerunning V using fresh randomness.

In Definition 2, the value s can be regarded to be the state of P∗, including
the randomness. Therefore, whenever P∗ can make a convincing argument when
in state s, E can extract a witness. Therefore, we call such an argument (P,V)
satisfying Definition 1 and Definition 2 argument of knowledge and the argument
is formalized in Definition 3.

Definition 3. The argument (P,V) is called an argument of knowledge for re-
lation R if the argument has (perfect) completeness and (computational) witness-
extended emulation.

Transparent and Non-interactive Argument in the Random Oracle
Model. A protocol in the common random string model can be converted into
a protocol without a trusted setup in the random oracle model [6]; if K outputs
random group elements of an elliptic curve group G of prime order, then the
CRS can be replaced with hash values of a small random seed, where the hash
function mapping from {0, 1}∗ to G is modeled as a random oracle as in [14].

Any public coin interactive argument protocol defined in Definition 4 can be
converted into a non-interactive one by applying the Fiat-Shamir heuristic [29]
in the random oracle model; all V’s challenges can be replaced with hash values
of the transcript up to that point.

Definition 4. An argument (P,V) is called public coin if all V’s challenges are
chosen uniformly at random and independently of P’s messages.

All interactive arguments proposed in this paper can be converted to transparent
non-interactive arguments in the random oracle model.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 9

Assumptions Let G be a group generator such that G takes 1λ as input and
outputs (p,G, g), where λ is the security parameter, G is the description of a
group of order p, and g is a generator of G, which is used to sample an element
of G with uniform distribution. Let negl(λ) be a negligible function in λ.

Definition 5 (Discrete Logarithm (DL) Assumption). We say that the
group generator G satisfies the discrete logarithm assumption if for all non-
uniform polynomial-time adversaries A, the following inequality holds.

Pr
[
ga = h

∣∣∣ (p,G, g)← G(1λ), h
$←G; a← A(p, g, h,G)

]
< negl(λ).

Definition 6 (Discrete Logarithm Relation (DLR) Assumption). We
say that the group generator G satisfies the discrete logarithm relation assumption
if for all non-uniform polynomial-time adversaries A, the following inequality
holds.

Pr
[
a 6= 0 ∧ ga = 1G

∣∣∣ (p,G, g)← G(1λ), g
$← Gn;a← A(p,G, g, g)

]
< negl(λ),

where 1G is the identity of G.

Although the equivalence between DLR and DL assumptions is well-known,
to be self-contained, we provide the complete reductions in the Supplementary
Material A.1.

Let Gb be an asymmetric bilinear group generator such that Gb takes 1λ as
input and outputs (p, g,H,G1,G2,Gt, e), where G1,G2,Gt are the descriptions
of distinct cyclic groups of order p of length λ, g and H are generators of G1,G2,
respectively, and e is a non-degenerate bilinear map from G1 ×G2 to Gt.
Definition 7 (Double Pairing Assumption). We say that the asymmetric
bilinear group generator Gb satisfies the double pairing assumption if for all non-
uniform polynomial-time adversaries A, the following inequality holds.

Pr

 e(g′, G) = e(g′′, Ga)
∧ (g′, g′′) 6= (1G1 , 1G1)

∣∣∣∣∣∣∣
(p, g,H,G1,G2,Gt, e)← Gb(1λ),

G
$←G2, a

$←Zp;
(g′, g′′)← A((G,Ga), (p, g,H,G1,G2,Gt, e))

 < negl(λ)

Abe et al. [1] proved that the double pairing assumption is as reliable as the
decisional Diffie-Hellman assumption in G2.

Groups, Vectors, and Operations. We introduce some notations for succinct
description of protocols. [m] denotes a set of continuous integers from 1 to m,
{1, . . . ,m}. For elements in groups G1 and G2 obtained by Gb, we separately use
lower case letters for G1 and upper case letters for G2. A vector is denoted by a
bold letter, e,g., g = (g1, ..., gm) ∈ Gm1 and a = (a1, ..., am) ∈ Zmp . For a vector

a ∈ Zmp , its separation to the left half vector a1 ∈ Zm/2p and the right half vector

a−1 ∈ Zm/2p is denoted by a = a1‖a−1. Equivalently, the notation ‖ is used
when sticking two vectors a1 and a−1 to a and can be sequentially used when
sticking several vectors.4 We use several vector operations denoted as follows.

4 Note that we use the indices (1,−1) instead of (1, 2) since it harmonizes well with
the usage of the challenges in Bulletproofs and our generalization of Bulletproofs.

10 Kim et al.

Component-wise Operations. The component-wise multiplication between sev-
eral vectors is denoted by ◦ e.g., for gk = (gk,1, . . . , gk,n) ∈ Gni , i ∈ {1, 2, t}, and
k ∈ [m], ◦k∈[m]gk = (

∏
k∈[m] gk,1 . . . ,

∏
k∈[m] gk,n). If k = 2, we simply denote it

by g1 ◦ g2.

Bilinear Functions & Scalar-Vector Operations.

1. The standard inner-product in Znp is denoted by 〈 , 〉 and it satisfies the
following bilinearity. 〈

∑
k∈[m] ak,

∑
j∈[n] bj〉 =

∑
k∈[m]

∑
j∈[n]〈ak, bj〉 ∈ Zp.

2. For g = (g1, . . . , gn) ∈ Gni , i ∈ {1, 2, t} and a = (a1, . . . , an) ∈ Znp , the
multi-exponentiation is denoted by ga :=

∏
k∈[n] g

ak
k ∈ Gi and it satisfies

the following bilinearity. (◦k∈[m]gk)
∑

j∈[`] zj =
∏
k∈[m]

∏
j∈[`] g

zj

k ∈ Gi.
3. For g = (g1, . . . , gn) ∈ Gn1 ,H = (H1, . . . ,Hn) ∈ Gn2 , the inner-pairing prod-

uct is denoted by E(g,H) :=
∏
k∈[n] e(gk, Hk) ∈ Gt and it satisfies the fol-

lowing bilinearity. E(◦k∈[m]gk, ◦j∈[`]Hj) =
∏
k∈[m]

∏
j∈[`] E(gk,Hj) ∈ Gt.

4. For c ∈ Zp and a ∈ Zmp , the scalar multiplication is denoted by c · a :=
(c · a1, . . . , c · an) ∈ Zmp .

5. For c ∈ Zp and g ∈ Gmi , i ∈ {1, 2, t} the scalar exponentiation is denoted by
gc := (gc1, . . . , g

c
m) ∈ Gmi .

6. For c ∈ Zmp and g ∈ Gi, i ∈ {1, 2, t} the vector exponentiation is denoted by
gc := (gc1 , . . . , gcm) ∈ Gmi .

3 Sublogarithmic Proofs via Generalization of BP-IP

In this section, we present our first generalization of BP-IP for the following IP
relation RIP and then reduce its communication cost using the newly proposed
aggregation technique.

RIP =
{

(g,h ∈ GN , u, P ∈ G;a, b) : P = gahbu〈a,b〉 ∈ G
}

(1)

where G is an arbitrary cyclic group of order p satisfying the DL assumption,
and g,h, and u are uniformly selected common inputs.

The BP-IP consists of logN recursive steps that halves the size of witness
and the parameters. In each recursive round of BP-IP, each vector in the CRS
and a witness are split into two equal-length subvectors. We generalize BP-IP by
splitting a vector of length N into 2n subvectors of length N/2n in each round,
where n = 1 implies the original BP-IP. Similar to BP-IP, we assume N is a
power of 2n for the sake of simplicity. Let N̂ = N

2n and the prover begins with
parsing the witness a, b and the parameter g,h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

e.g., let a = a1‖a−1 be a witness and x be a challenge, and then a is updated to∑
i=±1 aix

i, a witness for the next recursive round.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 11

Let In = {±1,±3, . . . ,±(2n−1)} be a 2n-size index set. In each recursive round
of BP-IP, the prover computes and sends two group elements L and R. In our
generalization, instead of L and R, P calculates vi,j = g

aj

i hbi
j u
〈ajbi〉 ∈ G for

all distinct i, j ∈ In, and then sends {vi,j} i,j∈In
i6=j

to V. Note that if n = 1, then

v1,−1 and v−1,1 are equal to L and R in BP-IP, respectively. V chooses x
$←Z∗p

and returns it to P. Finally, both P and V compute

ĝ = ◦i∈Ingx
−i

i ∈ GN̂ , ĥ = ◦i∈Inh
xi

i ∈ GN̂ , and P̂ = P ·
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G

and P additionally computes a witness for the next round argument

â =
∑
i∈In

aix
i ∈ ZN̂p and b̂ =

∑
i∈In

bix
−i ∈ ZN̂p .

We can verify that this process is a reduction to a one 2n-th length IP argument
by checking (ĝ, ĥ, u, P̂ ; â, b̂) satisfies the relation RIP. The concrete descriptions
of BP-IP and the above generalized BP-IP and their proofs for the perfect com-
pleteness and the soundness are relegated to the Supplementary Material A.2
and B.

Efficiency Analysis The prover repeats the (N > 1) case log2nN times and
then runs the (N = 1) case. For each (N > 1) case, P sends vi,j ’s of size
2n(2n − 1) and two integers in the (N = 1) case, so that the communication
overhead sent by P is 2n(2n − 1) log2nN group elements and 2 integers. The

verifier updates ĝ, ĥ and P̂ that cost O(N + n2 log2nN) group exponentiation.
For sufficiently small n <

√
N , it becomes O(N). The prover should compute vi,j

for all i, j for each round, so that the prover’s computation overhead is O(Nn2).
The overall complexities are minimized when n has the smallest positive integer
(that is, n = 1), which is identical to the BP-IP protocol.

3.1 Proof Size Reduction using Multi-Exponentiation Argument

We improve our generalization of BP-IP by using the pairing-based homomorphic
commitment scheme to group elements [1]. We first slightly extend our target
relation by adding the commitment key of [1] into the common random string
in our argument as follows.{

(g,h ∈ GN1 , u ∈ G1,F 1, . . . ,Fm ∈ G2n(2n−1)
2 ,H ∈ Gm2 , P ∈ G1;a, b)

: P = gahbu〈a,b〉 ∈ G1

}
(2)

where g,h,u,F k, and H are the common random string. Here, F k and H are
not necessary to define the relation P = gahbu〈a,b〉. However, our IP protocols
will use them to run a subprotocol for multi-exponentiation arguments given in
the following subsections.

12 Kim et al.

The generalized BP-IP with n > 1 carries larger communication overhead
than that of BP-IP. In order to reduce the communication cost in each round,
we can use a commitment to group elements. That is, the prover sends a com-
mitment to group elements vi,j ’s instead of sending all vi,j ’s. This approach will
reduce communication cost in each round. Then, however, the verifier cannot di-
rectly compute the update P̂ of P ,

∏
i,j∈In
i6=j

vx
j−i

i,j , by himself, and thus the prover

sends it along with its proof of validity, which is exactly a multi-exponentiation
argument proving the following relation.{

(F ∈ GN2 , z ∈ ZNp , P ∈ Gt, q ∈ G1;v ∈ GN1) : P = E(v,F) ∧ q = vz
}
, (3)

where F is the common random string such that their discrete logarithm relation
is unknown to both P and V and z is an arbitrary public vector.

We will omit the detailed description for the multi-exponentiation argument
for the relation in (3), but provide an intuitive idea for it. In fact, BP-IP ar-
gument can be naturally extended to this proof system due to the resemblance
between the standard IP and the inner-pairing product. More precisely, the addi-
tive homomorphic binding commitment to an integer vector (e.g., ga) is changed
with the multiplicative homomorphic commitment to a group element vector
(e.g., E(v,F)) and the standard IP between two integer vectors (e.g., 〈a, b〉)
can be substituted with multi-exponentiation (e.g., vz).5 This type of extension
is well formalized by Bünz, Maller, Mishra, Tyagi, and Vesely [22] in terms of
two-tiered homomorphic commitment scheme [36]. The multi-exponentiation ar-
gument in [22] costs the same complexities as those of BP-IP; O(logN) commu-
nication overhead and O(N) computational costs for the prover and the verifier.

For our purpose, we can use the commitment scheme to group elements [36]
and the multi-exponentiation argument in [22] so that we can construct a proto-
col with shorter communications, denoted by Protocol1. We provide full descrip-
tion of our generalized BP-IP with Multi-Exponentiation Argument, denoted by
Protocol1 in Fig. 2. In the protocol, we add the state information for the prover
and the verifier, denoted by stP and stV , respectively. Both stP and stV are ini-
tialized as empty lists and used to stack the inputs of the multi-exponentiation
argument for each recursive round. At the final stage, the prover and the verifier
can run several multi-exponentiation argument protocols in parallel.

Efficiency Analysis Although this approach reduces communication over-
heads, compared to the generalized BP-IP, it is not quite beneficial for our
purpose. More precisely, the communication overhead O(n2 log2nN) of the gen-
eralized BP-IP is reduced to O((log n) · (log2nN)) since the communication
overhead per round O(n2) is reduced to its logarithm O(log n) by the multi-
exponentiation argument. Although the communication overhead is reduced to
O((log n)·(log2nN)) compared with the generalized BP-IP (n > 1), the resulting

5 The BP-IP is about two witness vectors a and b and it can be easily modified with
one witness vector a and a public b. e.g., [53]. Our multi-exponentiation argument
corresponds to this variant.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 13

Protocol1(g,h, u,F k for k ∈ [m], P ∈ G1, stV ;a, b, stP), where m = log2nN

If N = 1:
Step 1: P sends V a and b.
Step 2: V proceeds the next step if P = gahbua·b holds.

Otherwise, V outputs Reject.
Step 3: If stP is empty, then V outputs Accept.

Otherwise, let (uk, vk,xk;vk) be the k-th row in stP .
Step 4: P and V run MEA(F k,xk, uk, vk;vk) for k ∈ [m].

Else (N > 1): Let N̂ = N
2n

and parse a, b, g, and h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Step 1: P calculates for all distinct i 6= j ∈ In = {±1,±3, . . . ,±(2n− 1)},

vi,j = g
aj

i h
bi
j u
〈aj ,bi〉 ∈ G1

sets v = (vi,j) ∈ G2n(2n−1)
1 in the lexicographic order and sends V E(v,Fm).

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: P computes v = vx =
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G1, where x is the vector

consisting of xj−i, and then sends it to V.
Step 4: Both P and V compute

ĝ = ◦i∈Ing
x−i

i ∈ GN̂1 , ĥ = ◦i∈Inh
xi

i ∈ GN̂1 and P̂ = P · v ∈ G1.

Additionally, P computes â =
∑
i∈In aix

i ∈ ZN̂p and b̂ =
∑
i∈In bix

−i ∈ ZN̂p .
Step 5: V updates stV by adding a tuple (E(v,Fm), v,x) into the bottom. P

updates stP by adding a tuple (E(v,Fm), v,x;v) into the bottom. Both P
and V run Protocol1(ĝ, ĥ, u,F k for k ∈ [m− 1], P̂ , stV ; â, b̂, stP).

Fig. 2. Protocol1

complexity is equal to O(logN), which is asymptotically the same as the com-
munication overhead of BP-IP. Therefore, this protocol is no better than BP-IP,
at least in terms of communication complexity. Nevertheless, this protocol is a
good basis for our sublogarithmic protocol presented in the next subsection.

3.2 Sublogarithmic Protocol from Aggregated Multi-Exponentiation
Arguments

We build a protocol, denoted by Protocol2, for sublogarithmic transparent IP
arguments on the basis of Protocol1 described in the previous subsection. To this
end, we develop an aggregation technique to prove multiple multi-exponentiation

14 Kim et al.

arguments at once, which proves the following aggregated relation.

RAggMEA =


(
F k ∈ G2n(2n−1)

2 , zk ∈ Z2n(2n−1)
p , Pk ∈ Gt, qk ∈ G1

;vk ∈ G2n(2n−1)
1 for k ∈ [m]

)
:
∧
k∈[m]

(
Pk = E(vk,F k) ∧ qk = vzk

k

)


Failed näıve approach: linear combination. One may try to employ a ran-
dom linear combination technique, which is widely used to aggregate multiple
relations using homomorphic commitment schemes. For example, it is called lin-
ear combination of protocols in [40]. To this end, one may also try to use one
F instead of distinct F k’s for every pairing equation and employ homomorphic
property of pairings and multi-exponentiations to apply a random linear com-
bination technique. Unfortunately, however, the relation RAggMEA consists of
two distinct types of equations Pk and qk containing distinct zk’s, so that such
a random linear combination technique is not directly applicable to RAggMEA

even with one F .
Why we use distinct F k’s? Our basic strategy for aggregation is to merge
multiple equations into a single equation by product. Later, we will present a
reduction for it (Theorem 2). To this end, it is necessary to use distinct F k’s
for each equation since it prevents the prover from changing opening vectors
between committed vectors in the product.
A difficulty when we use several Fk’s. As we mentioned, we use different
F k’s for each commitment Pk. In this case, it is not easy to efficiently prove that
the equation that Pk = E(vk,F k) holds. The CRS contains all F k’s, and thus,
in order to prove Pk = E(vk,F k), we have to prove that only one F k is used
and the others are not used in the equation. Proving unusedness of the other
F j for j 6= k with high performance is rather challenging. Let us consider the
following simplified aggregation relation to clarify this difficulty.

R2agg =
{

(F k, Pk;vk,j for k ∈ [2]) : ∧k∈[2]Pk = E(vk,F k)
}

In order to merge two equations into a single equation by product, we might
construct a reduction as follows; The verifier chooses a challenge y, both the
players set F̃ 1 = F 1, F̃ 2 = F y

2, and P̃ = P1P
y
2 , and then run a product argument

convincing that the knowledge of ṽk satisfying

P̃ = E(ṽ1, F̃ 1)E(ṽ2, F̃ 2). (4)

Here, one may expect that an equality Eq. (4) guarantees two equalities in R2agg

by a random challenge y. Unfortunately, this is not true since fake P ′k passing
the protocol can be created by E(vk1,F 1)E(vk2,F 2) for k = 1, 2. That is, this
reduction failed to show the unusedness of F 2 in P1 and F 1 in P2.
Our solution: augmented aggregate multi-exponentiation argument.
Although the above approach is failed to prove the unusedness of F 2 in P1 and
F 1 in P2, it can be still used to prove that Pk’s are of the form E(v1,F 1)E(v2,F 2)
for some witness v1 and v2. Therefore, instead of devising a protocol for the un-
usedness, we keep using the above approach of reducing to a product equation

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 15

but change the target relation; we add redundant relations so that the final re-
lation contains our target relation, multiple multi-exponentiations. That is, by
adding some redundant values, we can further generalize the relation RAggMEA

and obtained the following relation RaAggMEA for augmented aggregation of
multi-exponentiations.
(
F k ∈ G2n(2n−1)

2 , zk ∈ Z2n(2n−1)
p , Hk ∈ G2, Pk ∈ Gt, qk ∈ G1

;vk,j ∈ G2n(2n−1) for k, j ∈ [m]

)
:
∧
k∈[m]

(
Pk =

∏
j∈[m] E(vk,j ,F j) ∧ qk = vzk

k,k ∧ (v
zj

k,j = 1G1 for j 6= k)
)
(5)

Here, Pk is a commitment to vk,j ’s and qk is a multi-exponentiation of the
committed value vk,k and a public vector z. In particular, Pk is defined by
using all F k’s to avoid the difficulty of proving unusedness. Although there are
redundant vk,j ’s in Pk (j 6= k), the above relation is sufficient to guarantee qk
is a multi-exponentiation of a committed value vk,k. In addition, Hk’s are not
necessary in the above relation, but we will use Hk’s in the product argument,
where we reduce from the augmented aggregation multi-exponentiation protocol.

The full description of Protocol2 using aAggMEA is given in Fig. 3.

Theorem 1. The IP argument in Fig. 3 has perfect completeness and computa-
tional witness-extended-emulation under the discrete logarithm relation assump-
tion in G1 and the double pairing assumption.

The proof is provided in the Supplementary Material C.1.

Efficiency Analysis A main difference between Protocol1 and Protocol2 is the
aggregating process for log2nN multi-exponentiation arguments; Our proposal
for aAggMEA in the next subsection has logarithmic communication overhead
in the size of witness. For each round of Protocol2, 2n(2n − 1) group elements
are committed and thus total log2nN × 2n(2n− 1) group elements are commit-
ted. Therefore, the overall communication overhead is O(log2nN) for the main
recursive rounds and O(log(log2nN × 2n(2n − 1))) = O(log n + log(log2nN))
for aAggMEA. That is, O(log n+ log2nN). If n satisfies O(log2nN) = O(log n),
then the communication complexity becomes O(log n+ log2nN) = O(

√
logN).

As for the computational overhead, compared to generalized BP-IP, only a
run of aAggMEA protocol is imposed. Our proposal for the aAggMEA protocol is
an extended variant of BP-IP, so that its computational complexity is still linear
in the length of witness vector that is O(n2 log2nN). Therefore, for sufficiently
small n <

√
N , this does not affect on the overall complexity, so that the total

prover’s computational overhead is O(Nn2) and the verifier’s computational
overhead is O(N + n2 log2nN) that are equal to those of general BP-IP.6

6 Note that when the communication complexity is evaluated, we set n = 2
√

logN that

is much smaller than
√
N = 2

1
2
logN , and thus our estimation for computational cost

makes sense.

16 Kim et al.

Protocol2(g,h, u,F k for k ∈ [m],H, P ∈ G1, stV ;a, b, stP), where m = log2nN

If N = 1:
Step 1: P sends V a and b.
Step 2: V proceeds the next step if P = gahbua·b holds.

Otherwise, V outputs Reject.
Step 3: If stP is empty, then V outputs Accept.

Otherwise, let (uk, vk,xk;vk) be the k-th row in stP and

vk,j =

{
1G1 if j 6= k
vk if j = k

Step 4: P and V run aAggMEA(F k,xk, Hk, uk, vk;vk,j for k, j ∈ [m]).

Else (N > 1): Let N̂ = N
2n

and parse a, b, g, and h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Step 1: P calculates for all distinct i, j ∈ In = {±1,±3, . . . ,±(2n− 1)},

vi,j = g
aj

i h
bi
j u
〈aj ,bi〉 ∈ G1

sets v = (vi,j) ∈ G2n(2n−1)
1 in the lexicographic order and sends V E(v,Fm).

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: P computes v = vx =
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G1, where x is the vector

consisting of xj−i, and then send v to V.
Step 4: Both P and V compute

ĝ = ◦i∈Ing
x−i

i ∈ GN̂1 , ĥ = ◦i∈Inh
xi

i ∈ GN̂1 , and P̂ = P · v ∈ G1.

In addition, P computes

â =
∑
i∈In

aix
i ∈ ZN̂p and b̂ =

∑
i∈In

bix
−i ∈ ZN̂p .

Step 5: V updates stV by adding a tuple (E(v,Fm), v,x) into the bottom. P
updates stP by adding a tuple (E(v,Fm), v,x;v) into the bottom. Both P
and V run Protocol2(ĝ, ĥ, u,F k for k ∈ [m− 1],H, P̂ , stV ; â, b̂, stP).

Fig. 3. Protocol2: Sublogarithmic IP Argument

3.3 Aggregating Multi-Exponentiation Argument

In this section, we propose an augmented aggregation of multi-exponentiation
arguments aAggMEA for the relation in Eq. (5). Vectors in Eq. (5) are of dimen-
sion 2n(2n− 1). For the sake of simplicity, we set the dimension of vectors N
in this section and, by introducing dummy components, we can without loss of
generality assume that N is a power of 2. The proposed protocol consists of two
parts.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 17

aAggMEA(F k ∈ GN2 ,zk ∈ ZNp , Hk ∈ G2, Pk ∈ Gt, qk ∈ G1;vk,j ∈ GN1 for k, j ∈ [m])

Step 1: V chooses and sends y
$←Zp to P.

Step 2: Both P and V set

z̃k = yk−1zk, F̃ k = F y
k−1

k , H̃k = Hym

k , and P̃ =
∏
k∈[m]

(
P y

k−1

k · e(qy
k−1

k , H̃k)
)
,

and P additionally sets ṽk = ◦j∈[m]v
yj−k

j,k .

Step 3: P and V run ProdMEA(F̃ k, z̃k, H̃k, P̃ ; ṽk for k ∈ [m])

Fig. 4. Reduction from aAggMEA to ProdMEA

First, the aAggMEA is reduced to a proof system, denoted by ProdMEA, for
the following relation RPMEA for a product of multi-exponentiation.

RPMEA =

{
(F k ∈ GN2 , zk ∈ ZNp , Hk ∈ G2, P ∈ Gt;vk ∈ GN1 for k ∈ [m])
: P =

∏
k∈[m] E(vk,F k)e(vzk

k , Hk)

}
The reduction is provided in Fig. 4 and its security property is given in the

following theorem.

Theorem 2. The aAggMEA protocol in Fig. 4 has perfect completeness and
computational witness-extended-emulation if the ProdMEA protocol used in Fig. 4
has perfect completeness and computational witness-extended-emulation and the
double pairing assumption holds.

The proof is relegated to the Supplementary Material C.2.
Second part of aAggMEA is to run ProdMEA. The idea for the construc-

tion of ProdMEA is to use the resemblance between RPMEA and RIP ; RIP
is the relation about the inner-product between integer vectors, that is, a sum
of component-wise products. RPMEA is the relation about a product of ex-
ponentiation between a vector of group element (v1, . . . ,vm) and an integer
vector (z1, . . . ,zm). In particular, P is a product of

∏
k∈[m] E(vk,F k) a com-

mitment to (v1, . . . ,vm), and
∏
k∈[m] e(v

zk

k , Hk) a commitment to the product

of component-wise exponentiation between (v1, . . . ,vm) and (z1, . . . ,zm). The
homomorphic property of commitment to group elements enables us to construct
ProdMEA similarly to BP-IP using the homomorphic Pedersen commitment to
integers. We provide the construction and the detailed explanation of the pro-
tocol ProdMEA in the Supplementary Material C.3.

The computational costs of ProdMEA for the prover and the verifier are linear
and the communication cost is logarithmic in the size of witness, like BP-IP. The
reduction from aAggMEA to ProdMEA requires a constant communication cost
and linear computational costs for both prover and verifier in the size of witness.
Therefore, aAggMEA requires linear computational complexity and logarithmic
communication complexity in the size of witness.

18 Kim et al.

4 Sublinear Verifier via Second Generalization

In this section, we propose an IP argument with logarithmic communication and
sublinear verifier computation, solely based on the DL assumption.

4.1 Matrices and Operations

For succinct exposition, we additionally define notations using matrices. Similar
to a vector, a matrix is denoted by a bold letter and a vector is considered a row
matrix. For a matrix a ∈ Zm×np , its separation to the upper half matrix a1 ∈
Zm/2×np and the lower half matrix a−1 ∈ Zm/2×np is denoted by a = Ja1‖a−1K.
We define three matrix operations as follows.

Inner-Product. For a, b ∈ Zm×np , the inner-product between a and b is defined
as 〈a, b〉 :=

∑
r∈[m],s∈[n] ar,sbr,s ∈ Zp.

Multi-Exponentiation. For g ∈ Gm×ni , i ∈ {1, 2, t} and a ∈ Zm×np , the multi-

exponentiation is defined as ga :=
∏
r∈[m],s∈[n] g

ar,s
r,s ∈ Gi.

Outer-Pairing Product. For g ∈ Gm1 and H ∈ Gn2 , the outer-pairing product7 is
defined as

g ⊗H :=

 e(g1, H1) . . . e(g1, Hn)
...

. . .
...

e(gm, H1) . . . e(gm, Hn)

 ∈ Gm×nt .

Note that we set the output of the outer-pairing product to be a matrix instead
of a vector, unlike an usual vector-representation of a tensor product since the
matrix-representation is useful when separating it into two parts.

4.2 General Discrete Logarithm Relation Assumption

We restate the DLR assumption in terms of problem instance sampler to gener-
alize it. Let GDLRsp be a sampler that takes the security parameter λ as input
and outputs (p, g1, . . . , gn,G), where G is a group G of λ-bit prime-order p and
g1, . . . , gn are generators of G.

Definition 8 (General Discrete Logarithm Relation Assumption). Let
GDLRsp be a sampler. We say that GDLRsp satisfies the general discrete loga-
rithm relation (GDLR) assumption if all non-uniform polynomial-time adver-
saries A, the following inequality holds.

Pr

[
a 6= 0 ∧ ga = 1G

∣∣∣∣(p, g ∈ Gn,G)← GDLRsp(1λ)
a← A(p, g,G)

]
< negl(λ),

where 1G is the identity of G and negl(λ) is a negligible function in λ.
7 Note that this operation is also called “projecting bilinear map” in the context of

converting composite-order bilinear groups to prime-order bilinear groups [30].

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 19

Definition 9. For a fixed integer N , the sampler GDLRspRand is defined as
follows.

GDLRspRand(1
λ) : Choose a group G of λ-bit prime-order p; g

$←GN ;
Output (p, g,G).

Theorem 3. GDLRspRand satisfies the GDLR assumption if the DL assumption
holds for the same underlying group G.

The soundness theorem of BP-IP holds under the GDLR assumption; it uses
only the fact that no adversary can find a non-trivial relation, regardless of the
distribution of generators g. We restate the soundness theorem of BP-IP below.

Theorem 4 ([20]). The BP-IP has perfect completeness and computational
witness-extended-emulation under the GDLR assumption.

We propose another sampler that satisfies the GDLR assumption.

Definition 10. For m,n ∈ N, the sampler GDLRspBM is defined as follows.

GDLRspBM (1λ) : (p, g,H,G1,G2,Gt, e)← G(1λ); g
$←Gm1 ;H

$←Gn2 , u
$←Gt;

Output (p, g ⊗H, u,Gt).

Theorem 5. GDLRspBM satisfies the GDLR assumption if the DL assumption
holds on G1 and G2.

Proof. Suppose that there exists a non-uniform polynomial-time adversary A
breaking the GDLR assumption with non-negligible probability. That is, with
non-negligible probability, A outputs a matrix a ∈ Zm×np and an integer c ∈ Zp
such that (g⊗H)auc = 1Gt and a, c are not all zeros, where 1Gt is the identity
of Gt. We separate the adversarial types according to the output distribution.
Let ai ∈ Znp be the i-th row vector of a for i ∈ [m].

– (Type 1) c 6= 0
– (Type 2) Not Type-1. ∀i ∈ [m], Hai = 1G2

.
– (Type 3) Neither Type-1 or Type-2.

It is straightforward that A should be at least one of the above 3 types. For each
adversary, we show how to break one of the DL assumption on G1, G2, and Gt.8

Type-1 adversary. Given a DL instance ht ∈ Gt, we construct a simulator finding

Dloge(g,H)ht. First, choose x and z
$←Znp and set g = gx, H = Hz, and u = ht.

Then, the distribution of (g,H, u) is identical to the real GDLR instance. The
type-1 adversary outputs a and c such that c 6= 0 and a 6= 0. From the necessary
condition for a and c, we know the following equality holds.

〈x⊗ z,a〉+ c ·Dloge(g,H)ht = 0 (mod p)

Since we know all components except for Dloge(g,H)ht and c 6= 0, we can find
Dloge(g,H)ht by solving the above modular equation.

8 Note that the DL assumption on G1 implies the DL assumption on Gt by the MOV
attack [46].

20 Kim et al.

Type-2 adversary. This type of adversary can be used as an attacker breaking
the GDLR assumption on G2 with a sampler GDLRspRand. Theorem 3 guar-
antees that there is no type-2 adversary breaking the GDLR assumption with
GDLRspBM under the DL assumption on G2.

Type-3 adversary. Given a DL instance ĝ ∈ G1, we construct a simulator finding

DLg ĝ. First, choose an index k
$←[m], integer vectors x = (x1, . . . , xm)

$←Zmp ,

z
$←Znp , and w

$←Zp, and set g = (gx1 , . . . , gxk−1 , ĝ, gxk+1 , . . . , gxm), H = Hz,
and u = e(g,H)w. Then, the distribution of (g,H, u) is identical to the real
GDLR instance. Let x̂ = (x1, . . . , xk−1, Dlogg ĝ, xk+1, . . . , xm). Then, g = gx̂.

The type-3 adversary outputs a and c such that c = 0 and Hai 6= 1G2 for
some i ∈ [n]. From the necessary condition for a and c, we know the following
equality holds.

〈x̂⊗ z,a〉+ c · w = x1〈z,a1〉+ · · ·+ (Dlogg ĝ)〈z,ak〉+ · · ·+ xm〈z,am〉+ c · w
= 0 (mod p)

Since the index k is completely hidden from the viewpoint of A, i = k with
non-negligible 1/m probability. If i = k, then 〈z,ak〉 6= 0, so that we can recover
(Dlogg ĝ) by solving the above modular equation, since we know all components
except for Dlogg ĝ. ut

4.3 Another Generalization of BP-IP with Sublinear Verifier

In BP-IP, most of the common input for P and V are uniformly selected group
elements, which is the common random string. What we expect from these group
elements is that their discrete logarithms are unknown, so that the DLR assump-
tion holds. The DL assumption implies the GDLR assumption with uniform
sampler and this assumption is the root of the soundness of BP-IP. We can gen-
eralize BP-IP while keeping the soundness proof by using an arbitrary sampler
satisfying the GDLR assumption, instead of GDLRspRand to create the CRS.

Sublinear Common Inputs. We uniformly generate g,h ∈ Gm1 and H ∈ Gn2 and
use g⊗H and h⊗H ∈ Gm×nt instead of the CRS in BP-IP. That is, we construct
a proof system for the following relation.{

(g,h ∈ Gm1 ,H ∈ Gn2 , u, P ∈ Gt; a, b ∈ Zm×np)

: P = (g ⊗H)a(h⊗H)bu〈a,b〉 ∈ Gt

}
(6)

Note that this modification does not require the structured reference string since
g ⊗H and h⊗H are publicly computable from the common random string g,
h and H. Furthermore, the proof system is still sound since, like the CRS in
BP-IP, g⊗H and h⊗H hold the GDLR assumption under the DL assumption
on G1 and G2 by Theorem 5.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 21

Sublinear Verification. If we set m = n =
√
N , the above modification can

reduce the CRS size to be a square root of BP-IP. Nevertheless, computing
g ⊗ H requires linear computation in N so that the verification cost is still
linear in N . We arrange the order of witness a and b in each round, and thus we
can go through the process without exactly computing g ⊗H and h ⊗H. We
explain how to avoid a full computation of g ⊗H and h ⊗H. Without loss of
generality, we assume that m and n are powers of 2.9 If m > 1, then let m̂ = m

2
and parse a, b ∈ Zm×np , g,h ∈ Gm1 to

a = Ja1‖a−1K b = Jb1‖b−1K, g = g1‖g−1, and h = h1‖h−1.

Then, the bases g ⊗H ∈ Gm×nt and h ⊗H ∈ Gm×nt are able to be implicitly
parsed to Jg1 ⊗H‖g−1 ⊗HK and Jh1 ⊗H‖h−1 ⊗HK, respectively. Let g̃i =

gi ⊗H ∈ Gm̂×nt and h̃i = hi ⊗H ∈ Gm̂×nt for i ∈ {1,−1}. Next, P calculates

L = g̃a1
−1 h̃

b−1

1 u〈a1,b−1〉 and R = g̃
a−1

1 h̃
b1

−1 u〈a−1,b1〉 ∈ Gt
and sends them to V. This computation of P is equivalent to BP-IP with CRS

g ⊗H and h ⊗H. V returns a random challenge x
$←Z∗p to P. Finally, both P

and V compute

ĝ = gx
−1

1 ◦ gx−1 ∈ Gm̂1 , ĥ = hx1 ◦ h
x−1

−1 ∈ Gm̂1 , and P̂ = Lx
2

P Rx
−2

∈ Gt

and P additionally computes â = a1x+a−1x
−1 and b̂ = b1x

−1 +b−1x ∈ Zm̂×np .

Then, P̂ is well computed since L and R are equivalent to those in BP-IP. In

BP-IP, however, g̃x
−1

1 ◦ g̃x−1 and h̃
x

1 ◦ h̃
x−1

−1 should be computed as the new bases

for the next round argument with witness â and b̂. Instead, in Protocol3, we use

the equality ĝ⊗H = g̃x
−1

1 ◦ g̃x−1 and ĥ⊗H = h̃
x

1 ◦ h̃
x−1

−1 such that ĝ and ĥ are

the bases for the next argument with â and b̂. Therefore, both P and V can run
the protocol with (ĝ, ĥ,H, u, P̂ ; â, b̂). If m = 1, the CRS is of the form e(g,H)
and e(h,H), which is uniform in Gt, so that we can directly run BP-IP over Gt.
We present the full description of our protocol, denoted by Protocol3, in Fig. 5.
The number of rounds and the communication cost in Protocol3 are the same
as those of BP-IP over Gt. The verification cost is O(

√
N) when setting m = n.

Note that a näıve verification in the (m = 1) case requires O(
√
N) expensive

pairing computation for calculating e(g,H) and e(h,H), but using a similar
trick in the case (m > 1), the verifier can update H only instead of e(g,H) and
e(h,H) and then perform constant pairing operations only at the final stage.

Linear Prover and Logarithmic Communication. In terms of the prover’s com-
putation and communication overheads, Protocol3 is asymptotically the same as
BP-IP since we can consider Protocol3 as BP-IP with CRS g ⊗H and h ⊗H.
That is, O(N) and O(log2N) for computation and communication, respectively.

9 If needed, we can appropriately pad zeros in the vectors since zeros do not affect the
result of inner-product.

22 Kim et al.

Protocol3(g,h ∈ Gm1 ,H ∈ Gn2 , u, P ;a, b)

If m = 1: P and V run BPIP(e(g,H), e(h,H), u, P ;a, b).
Else (m > 1): Let m̂ = m

2
. Parse a, b, g, and h to

a = Ja1‖a−1K b = Jb1‖b−1K, g = g1‖g−1, and h = h1‖h−1.

Step 1: P calculates

L = (g−1 ⊗H)a1 (h1 ⊗H)b−1u〈a1,b−1〉 ∈ Gt

and R = (g1 ⊗H)a−1(h−1 ⊗H)b1 u〈a−1,b1〉 ∈ Gt
and sends them to V.

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: Both P and V compute

ĝ = gx
−1

1 ◦ gx−1 ∈ Gm̂1 , ĥ = hx1 ◦ hx
−1

−1 ∈ Gm̂1 , and P̂ = Lx
2

P Rx
−2

∈ Gt.

Additionally, P computes â = a1x+ a−1x
−1 and b̂ = b1x

−1 + b−1x ∈ Zm̂p .
Step 4: Both P and V run the protocol with (ĝ, ĥ,H, u, P̂ ; â, b̂).

Fig. 5. Protocol3: Another Generalization of BP-IP

Theorem 6. The argument presented in Fig. 5 for the relation (6) has perfect
completeness and computational witness-extended-emulation under the GDLR
assumption with the sampler GDLRspBM .

Proof. Although the verification cost in Protocol3 is reduced compared with BP-
IP, both players’ computation in Protocol3 is equivalent to that of BP-IP with
the CRS g⊗H and h⊗H. Therefore, the proof of this theorem should be exactly
the same as the proof of BP-IP in the Supplementary Material A.2, except that
the GDLR assumption is guaranteed by Theorem 5 instead of Theorem 3. ut

4.4 Practical verification of Protocol 3

When it comes to asymptotic complexity, Protocol3 is definitely better than
BP-IP. However, for practical performance, we need to consider the computa-
tion time of group operations which depends on the choice of elliptic curves.
Actually, BP-IP and Protocol3 are built on different elliptic curves. Current im-
plementations of BP-IP use two curves, i.e., secp256k1 and ed25519 curves. The
dalek project has reported that the use of ed25519 provides approximately 2x
speepup [27]. However, Protocol3 cannot use ed25519 because it requires pairing
operations. Therefore, we take ed25519 for BP-IP and BLS12-381 for Protocol3
in the below estimation.

We consider a typical parameter setting N = 220 in 128-bits security which
both secp256k1 and ed25519 curves provide. BP-IP requires 2× 220 group oper-
ations for verification. Protocol3 requires 2 × 210 G1 operations and 2 × 210 G2

operations for verification. According to the implementation results from [50],

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 23

the execution times of operations in G1 and G2 of BLS12-381 are roughly 5× and
10× slower than that of ed25519, respectively. Thus, we expect that Protocol3’s
verifier is significantly faster (approximately 70×) than that of BP-IP.

5 Sublinear Verifier without Pairing

We propose another IP argument with sublinear verifier, particularly without
pairings. The crucial ingredient for Protocol3 is pairing-based homomorphic com-
mitments to group elements [1], which is employed as the second layer scheme
of the two-tiered commitment scheme. For example, L in Step 1 of Protocol3
contains a factor (g−1 ⊗H)a1 , which can be considered as a vector of homo-
morphic commitments to ga1

−1 ∈ Gn1 , where ga1
−1 is a vector of the first layer

commitments to columns of a1 and g−1 ∈ Gm1 and H ∈ Gn2 are the com-
mitment keys of first and second layer schemes, respectively. When the verifier
checks P̂ = Lx

2

P Rx
−2 ∈ Gt in Step 3 of Protocol3, the homomorphic prop-

erty of the second layer scheme guarantees a vector of linear group equations

(ga1
−1)x

2 · (gahb) · (hb−1

1)x
−2 ∈ Gn1 holds, where (ga1

−1), (gahb), and (h
b−1

1) are
second layer openings of L,R, and P . Since the first layer scheme is homomor-
phic, these n equations in Gn1 similarly guarantee that mn linear equations hold.

In order to circumvent the necessity of using the pairing-based primitive, we
propose a new two-tiered commitment scheme such that the first layer scheme
is still Pedersen commitment scheme mapping from integers to group elements
and the second layer scheme for committing to group elements is replaced with
the new one. We show that although the new second layer scheme is not homo-
morphic in group operations, it facilitates efficient proving group operations.

Indeed the integrity of homomorphic operation is sufficient to build an ar-
gument system. For example, if the prover computes L and R in Step 1 by
using the new two-tiered commitments, the verifier cannot compute P̂ by herself
in Step 3, so that the prover should send P̂ along with its integrity proof. As
mentioned above, the relation for the integrity proof is exactly a vector of linear
group equations between the second layer openings. Since the new commitment
scheme facilitates proving this type of relation, the new argument system still
has the benefit of sublinear verifier.

Unfortunately, this approach increases the proof size due to additional in-
tegrity proofs for each round. Finally, we bring in the aggregation technique
used for the sublogarithmic proofs in Section 3, so that we can simultaneously
attain both logarithmic proof size and sublinear verifier.

Notation. We use a pair of elliptic curve groups, denoted by (Gp,Gq), of distinct
prime order p and q such that Gp := E(Zq). In order to avoid confusion, we
use lower case letters to denote elements in Gp and upper case letters to denote
elements in Gq. For example, g ∈ Gp and G ∈ Gq. In our protocol, we repeatedly
use parallel multi-exponentiations with the same base g ∈ Gmp . For example,
given an integer matrix a ∈ Zm×np , we often compute gai for i ∈ [n], that are
n multi-exponentiations, where ai is the i-th column of a. This computation is

compactly denoted by
−→
ga := (ga1 , . . . , gan).

24 Kim et al.

5.1 Projective Presentation for Elliptic Curve Group

Affine coordinates are the conventional way of expressing elliptic curve points.
However, there is no complete addition formula in affine coordinates, i.e., affine
coordinates require special addition formulas for exceptional cases such as dou-
bling and operations with the point at infinity or the inverse point. In our con-
struction, it is desirable to have an arithmetic circuit which correctly computes
the operation between any two points in the elliptic curve group. Thus, we make
use of complete addition formulas for prime order elliptic curves in projective
coordinates, which have been proposed by Renes et al. [48] based on the work
of Bosma and Lenstra [18].

Let E(Zq) with q ≥ 5 be a prime order elliptic curve group given by the short
Weierstrass equation in two-dimensional projective space P2(Zq), i.e.,

{(X,Y, Z) ∈ Z3
q|Y 2Z = X3 + aXZ2 + bZ3}.

Two points (X1, Y1, Z1) and (X2, Y2, Z2) are equal in P2(Zq) if and only if
(X2, Y2, Z2) = (λX1, λY1, λZ1) for some λ ∈ Z∗q . The point at infinity is equal
to (0, 1, 0). Because E(Zq) has prime order, there is no Zq-rational point of or-
der 2. In this setting, for any two pair of points (X1, Y1, Z1) and (X2, Y2, Z2),
Bosma and Lenstra gave the complete formulas to compute (X3, Y3, Z3) =
(X1, Y1, Z1) + (X2, Y2, Z2) where X3, Y3, and Z3 are expressed as polynomials
in X1, Y1, Z1, X2, Y2, and Z2. Later, Renes et al. presented the algorithm [48,
Algorithm 1] for the optimized version of Bosma and Lenstra’ addition formula.
The algorithm covers both doubling and addition operations without exceptional
cases using 12 multiplications, 5 multiplications by constant, and 23 additions
over Zq. Thus, we consider the arithmetic circuit from this formula for group op-
erations of E(Zq) in our construction. For the convenience of readers, we provide
the algorithm given by Renes et al. in the Supplementary Material D.1.

5.2 Two-Tiered Commitment Scheme and Proof for Second Layer

We introduce a two-tiered commitment scheme for handing columns of a matrix
a ∈ Zm×np . The first layer commitment is for committing to a vector in Zmp .
The second layer commitment is for committing to the multiple, say n, first
layer commitments. Therefore, the final two-tiered commitment scheme is for
committing to a matrix a ∈ Zm×np .

We begin with a pair of elliptic curve groups (Gp = E(Zq),Gq) of respective
order p and q such that the discrete logarithm assumption holds in both Gp
and Gq. Note that there are efficient methods to generate such a pair of prime
order elliptic curves (Gp = E(Zq),Gq) of given primes p and q whose sizes are
both 2λ for the security parameter λ [49]. In the first layer, we use the Pedersen
commitment scheme with commitment key g ∈ Gmp to commit to columns of

a.10 That is, the commitment is
−→
ga ∈ Gnp , which is an n-tuple of Pedersen

10 More precisely, we use a slightly modified Pedersen commitment scheme in the sense
that (1) opening is not an integer but a vector and (2) the random element is always
set to be zero since the hiding property is not required.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 25

commitments to columns of a. Since it consists of elliptic curve group elements,
it can be represented by n sequences of 3-element tuples (Xi, Yi, Zi)

n
i=1 ∈ Z3n

q ,

where (Xi, Yi, Zi) is the projective representation of the i-th component of
−→
ga.

For the second layer, we again use the Pedersen commitment with a different

commitment key G = (G1, . . . , G3n) ∈ G3n
q so that the commitment to

−→
ga =

(Xi, Yi, Zi)
n
i=1 is defined as

∏n
i=1G

Xi
3i−2G

Yi
3i−1G

Zi
3i , denoted by Com(

−→
ga; G).

Note that we often consider
−→
ga as an element in Z3n

q since we always use the
projective representation for Gp = E(Zq) throughout the paper. The binding
property of the proposed commitment scheme holds under the discrete logarithm
assumption in Gp and Gq.

Proving for Relation between Second Layer Opening. The second layer

opening is
−→
ga ∈ Gnp , a vector of group elements, which can be considered as

a vector of Z3n
q . As aforementioned in the first part of this section, we should

prove a relation among the second layer openings that consist of a vector of
group operations. As shown in Section 5.1, the group law of E(Zq) can be repre-
sented by an arithmetic circuit over Zq of constant size. Therefore, we eventually
need a proof system for arithmetic circuits over Zq such that the input of the
circuit is given as commitments. In fact, the bulletproofs for arithmetic circuit
(BP-AC) [20] allows to take Pedersen commitments as input. However, BP-AC
uses the ordinary Pedersen commitment to an integer, so that it is not directly
applicable with the generalized Pedersen commitment to a vector of integers. We
generalize BP-AC for handling the general Pedersen commitments and provide
the protocol, denoted by Comp.BPAC , and the security and efficiency analysis
in the Supplementary Material D.6. If we prove O(`) group operations, then the
circuit size is O(` ·n), so that both the computational cost for the prover and the
verifier are O(` ·n) and the cost for round and communication is O(log n+log `).

In fact, the new commitment scheme can take any sequence of 3-integer
tuples (Xi, Yi, Zi) ∈ Z3

q as input. Although we normally take (Xi, Yi, Zi) from
Gp = E(Zq), to prevent abnormal usages, we need a proof that (Xi, Yi, Zi) ∈ Z3

q

is on the elliptic curve, equivalently, it satisfies Y 2Z = Z3 + aXZ2 + bZ3 for
some a, b ∈ Zq. Since the relation for the membership proof consists of low degree
polynomials, it can be performed by Comp.BPAC whose cost is cheaper than that
for elliptic curve operations.

5.3 Sublinear Verifier from New Two-tiered Commitment Scheme

We propose a new IP argument with the sublinear verifier, denoted by Protocol4,
that proves the following IP relation.

Rm,nIP =

{
(g,h ∈ Gmp ,F ∈ G6n

q , P ∈ Gq, c ∈ Zp;a, b ∈ Zm×np) :

P = Com(
−→
ga ‖

−→
hb;F) ∧ c = 〈a, b〉,

}
(7)

where 〈a, b〉 is the Frobenius inner product between matrices a and b. Simi-
larly to Protocol3, Protocol4 consists of two parts, the row-reduction and the

26 Kim et al.

column-reduction. The row-reduction part is denoted by Protocol4.Row and re-
duces from the relation Rm,nIP to R1,n

IP . The column-reduction part is denoted by

Protocol4.Col and reduces from the relation R1,n
IP to R1,1

IP .

Let ` = logm. For each (`+1−k)-th row-reduction11 round in Protocol4.Row
the prover sends the verifier a commitment Sk by using the new commitment
scheme in Section 5.2. However, contrary to Protocol3, the verifier cannot com-
pute a valid instance Pk for the next round by himself, due to lack of homomor-
phic property. Instead, the prover sends a new instance for the next round along
with a proof for its integrity. For the column-relation R1,n

IP , both the prover and
the verifier can similarly perform a column-reduction protocol Protocol4.Col and
the corresponding integrity proof at the final step of the protocol. In a nutshell,
Protocol4 resembles Protocol3 except that Protocol4 uses a different commit-
ment scheme and additionally requires the integrity proof. The full description
of Protocol4.Row is provided in figure 10 in the Supplementary Material D.2.

In general, this commit-first-and-prove-later approach indeed ends up with
low efficiency if the relation is not algebraic (e.g., non-polynomial relations) or
we do not use homomorphic commitment scheme (e.g., collision-resistant hash
functions). Our new two-tiered commitment scheme helps to circumvent such
efficiency degradation since it is friendly to proving homomorphic operations and
the prover’s computation in Protocol4 exactly consists of elliptic curve operations
that can be represented by polynomials as we already investigated in Section 5.1.

Although the new two-tiered commitment scheme contributes for the sub-
linear verifier, the näıve approach for the integrity proof increases the proof
size O(log(N)2), which is larger than O(logN) of Protocol3, where N = mn.
Therefore, we bring in another technique to make the proof size compact. We
apply the aggregation techniques as in Section 3.3 such that the integrity of
the prover’s computation in all reduction rounds is relegated to the final round
and then proven in aggregate. More concretely, the integrity proof should guar-
antee that the openings pk+1 ∈ G2n

p , lk‖rk ∈ G4n, and pk ∈ G2n
p of Pk+1,

Sk, and Pk satisfies pk = lx
2

k ◦ pk+1 ◦ rx
−2

k , which is essentially equivalent

to the relation between openings of P̂ = Lx
2

PRx
−2

in Step 3 of Protocol3.
The formal relation for the aggregated integrity proof is given in Eq. (8) (for
Protocol4.row) and Eq. (9) (for Protocol4.col), where xk is a challenge chosen by
the verifier and the others are the common random strings. Using the protocol for
RAggMEC.Row (RAggMEC.Col, resp.), denoted by AggMEC.Row (AggMEC.Col, resp.),

11 Notice that we use a subscript k in reverse order from k = ` to k = 1. That is,
Protocol4.Row reduces an instance from Pk+1 to Pk.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 27

Protocol4.Row (Protocol4.Col, resp.) reduces from the relationRm,nIP (R1,n
IP , resp.)

to the relation R1,n
IP (R1,1

IP , resp.).

RAggMEC.Row =



([
(Sk,F k, Sk, Pk, xk)
(· ,F `+1, · , P`+1, ·)

]
;

[
(lk, rk,pk)
(·, ·,p`+1)

]
for k ∈ [`]

)
:

∧`+1
j=1

(
Pj = Com(pj ;F j)

)
∧`k=1

(
Sk = Com(lk ‖ rk;Sk) ∧ pk = l

x2
k

k ◦ pk+1 ◦ r
x−2
k

k

)
∧`k=1lk, rk ∈ G2n

p ∧ p`+1 ∈ G2n
p


(8)

where
(
(Sk,F k, Sk, Pk, xk); (lk, rk,pk)

)
∈
(
(G12n

q ×G6n
q ×Gq×Gq×Zp)×(Z6n

q ×
Z6n
q × Z6n

q)
)
.

RAggMEC.Col =



([
(Dk, Pk, xk)
(D`+1, P`+1, ·)

]
;

[
(pk) for k ∈ [`]
(p`+1)

])
:

∧`+1
j=1

(
Pj = Com(pj ;Dj)

)
∧ p`+1 ∈ G2`+1

p

∧`k=1

(
pk = (p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖ p3,k+1)x

−1
k

)
where pk+1 = p1,k+1 ‖ p2,k+1 ‖ p3,k+1 ‖ p4,k+1


(9)

where
(
(Dk, Pk, xk); (pk)

)
∈
(
(G3·2k

q ×Gq × Zp)× (Z3·2k
q)

)
.

The concrete descriptions of the four protocols Protocol4.Row, Protocol4.Col,
AggMEC.Row, and AggMEC.Col and the proofs for proving argument systems
are given in the full Supplementary Material D.

We remark that RAggMEC.Row and RAggMEC.Col contain the group membership
relations of the openings, which are marked with the block boxes. As for the
group membership proof, it is sufficient to prove only memberships of lk, rk for
k ∈ [`] and p`+1 since pk for k ∈ [`] are defined as a result of the group operations
among lk, rk for k ∈ [`] and p`+1.

Efficiency Analysis We analyze the efficiency of Protocol4 at a high level.
The detailed analysis is given in the Supplementary Material D.7. Below, we
denote group operations in a group G by G-operations. The efficiency of Pro-
tocol4 is basically equivalent to that of Protocol3 except for using a different
commitment scheme and the most computational cost of V shifts to the column
reduction part (Protocol4.Col). In the row-reduction part (Protocol4.Row), the
computation cost for P is dominated by O(mn log p) Gp-operations for comput-
ing two-tiered commitments with N = mn integers, the computation cost for
V is O(m log p) Gp-operations, and P and V communicate with O(logm) Gq-
elements. The complexity of the column-reduction part is dominated by proving
the following relations, which can be represented by small-degree polynomials,
by running the arithmetic circuit argument Comp.BPAC given in Section 5.2:

lk
x2
k ◦ pk+1 ◦ rkx

−2
k − pk = 0 for k ∈ [`] (10)

(p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖ p3,k+1)x
−1
k − pk = 0 ∈ G2k

p for k ∈ [`]. (11)

28 Kim et al.

Arithmetic circuits for computing Eq.(10) and Eq.(11) consist of O(n` log p) and
O(2` log p) Gp-operations, respectively. Finally, Comp.BPAC for the above arith-
metic circuits cost O((n` + 2`) log p log q) Gq-operations for each P and V and
transmissions of O(log n+`+log log p) Gq-elements. Setting `← logm, P’s com-
putation complexity is O(mn log p) Gp-operations, V’s computation complexity
is O(m log p) Gp-operations and O(n logm log p log q) Gq-operations, and the
communication complexity is O(log n+ logm+ log log p) Gq-elements.

6 Extensions

6.1 Transparent Polynomial Commitment Scheme

Informally, using the polynomial commitment scheme (PCS), a committer first
commits to a polynomial f(X), and then later opens f(x) at some point x
(mostly chosen by a verifier) and convinces a verifier of correctness of f(x).
Due to space constraint, we provide the definition of the PCS, a way to use the
proposed IP arguments as PCS, and a comparison table in the Supplementary
Material E.2.

6.2 Zero-Knowledge Argument for Arithmetic Circuits

There is a well-established approach toward the argument for arithmetic cir-
cuits via polynomial commitment scheme; an IP argument is firstly reduced to
polynomial commitment schemes as in 6.1 and then combined with polynomial
IOPs [21]. This reduction increases constant times the complexity, where linear
preprocessing is required for the verifier. Therefore, the final argument for the
arithmetic circuit of size N has the same complexity as those of our IP arguments
between vectors of length N , where the online verifier’s complexity is unchanged,
but the offline verifier’s complexity is linear in N .

The perfect special honest verifier zero-knowledge (SHVZK) means that given
the challenge values, it is possible to simulate the whole transcript even without
knowing the witness. If the polynomial commitment scheme is hiding and the
proof of evaluation is SHVZK, then the resulting argument for arithmetic circuit
is SHVZK as well. Although the proposed IP protocols do not have these prop-
erties yet, there is a simple method to add ZK into IP arguments [53, 21]. For
example, we can extend commitment schemes used in the paper to have hiding
factors like the original Pedersen commitment scheme.

There is another approach for converting from an IP argument without
SHVZK to the SHVZK argument for arithmetic circuit [15, 20]. We can apply
this reduction to our IP arguments. We provide the details in the Supplementary
Material E.2.

7 Discussion on Best of Two Generalizations

It would be interesting to devise a technique for combining two generalizations.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 29

First, we find that näıve combining Protocol2 and Protocol3 is difficult be-
cause each of them uses a bilinear map for a different purpose. In Protocol2, the
bilinear map is used in the first step for compressing multiple group elements by
sending a commitment instead of multiple group elements. In the first step of
Protocol3, the P sends L and R to the verifier, where L and R are elements in
Gt. We can generalize Protocol3 like Protocol1, but we cannot put L and R into
a homomorphic commitment scheme directly since L and R are already in the
target group of the bilinear map.

Although Protocol4 does not use the bilinear map, combining Protocol2 and
Protocol4 will be challenging as well. Since both protocols use two-tier commit-
ment schemes, we may need three-tier commitment scheme such as C3 ◦C2 ◦C1,
where C3 is pairing-based AFGHO scheme, C2 is a commitment to elliptic curve
point, and C1 is Pedersen commitment scheme. Protocol4 requires to prove small-
degree polynomial relations over C1 and C2 supports an efficient protocol for it.
C3 may support to prove a small-degree polynomial relation over C2. However,
since C1 is an opening of an opening of C3, the small-degree polynomial relation
over C1 might be represented as a complicated relation over C2 of higher-degree.
We leave achieving the best of both generalizations as an open problem.

30 Kim et al.

Supplementary Material

A Bulletproofs [20]

Bulletproofs is a transparent argument of knowledge under discrete logarithm
relation assumption. In this section, we review the protocol descriptions of Bul-
letproofs.

A.1 Discrete Logarithm Relation Assumption

To be self-contained, we provide the proof of equivalence between the discrete
logarithm assumption (Definition 5) and the discrete logarithm relation assump-
tion (Definition 6).

Theorem 7. The DLR assumption holds in prime order group G for polynomi-
ally bounded n if and only if the DL assumption holds in the same group.

Proof. (⇒) Assume that there exists a PPT adversary ADL who breaks the DL
assumption on cyclic group G of order p. By using ADL, we construct a reduction
that breaks the DLR assumption. Given a DLR instance g ∈ Gn, the reduction
sends (g1, g2 · · · gn−1) to ADL and receives α such that gα1 = g2 · · · gn−1 from
ADL. Finally, the reduction outputs (−α, 1, . . . , 1) as a solution to the DLR
instance.

Since g−α1 g2 · · · gn−1 = g−α1 gα1 is the identity of G, the reduction always wins
if and only ADL successfully breaks the DL assumption.

(⇐) Assume that there exists a PPT adversary ADRL who breaks the DLR
assumption on cyclic group G of order p. Given a DL instance (g, ga) ∈ G,
we construct a reduction using ADRL as a subroutine. The reduction chooses a

random vector (r1, . . . , rn)
$←Znp and a random integer k

$←[n], sets g = (gr1 , . . . ,
(ga)rk , . . . , grn), and sends to ADRL. Due to the random exponents ri’s, g looks
uniformly distributed from ADRL’s viewpoint. Thus, A successfully outputs x =
(x1, . . . , xk, . . . , xn) ∈ Znp such that gx = 1G and xi’s are not all zero integers
with non-negligible probability. For a successful reduction, we expect that the k-
th element ak 6= 0. Since the position k is completely hidden from A’s viewpoint,
the probability of xk = 0 is at most 1/n. Then, the reduction outputs the discrete
log − 1

xkrk

∑n
i=1∧i 6=k xiri as an answer to the DL problem. Since gx = 1G and

xk 6= 0 hold, we know that the following should hold as well.

(gr1 , . . . , (ga)rk , . . . , grn)(x1,...,xk,...,xn) = (ga)xkrk ·
n∏

i=1∧i 6=k

gxiri = 1G

Thus, the above equality guarantees the correctness of the reduction’s output.
ut

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 31

A.2 Inner-Product Argument (without Zero-Knowledge)

We review Bulletproofs inner-product argument, which is denoted by BPIP and
given in Fig. 6, for the relation in Eq. (1).

BPIP(g,h ∈ GN , u, P ∈ G;a, b ∈ ZNp)

If N = 1:
Step 1: P sends V a and b.
Step 2: V outputs Accepts if and only if P = gahbua·b holds.

Else (N > 1): Let N̂ = N
2

and parse a, b, g, and h to

a = a1‖a−1, b = b1‖b−1, g = g1‖g−1, and h = h1‖h−1.

Step 1: P calculates

L = ga1
−1h

b−1
1 u〈a1,b−1〉 ∈ G and R = g

a−1
1 hb1

−1u
〈a−1,b1〉 ∈ G,

and then sends L,R to V.

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: Both P and V compute

ĝ = gx
−1

1 ◦ gx−1 ∈ GN̂ , ĥ = hx1 ◦ hx
−1

−1 ∈ GN̂ , and P̂ = Lx
2

P Rx
−2

∈ G.

Additionally, P computes

â = a1x+ a−1x
−1 ∈ ZN̂p and b̂ = b1x

−1 + b−1x ∈ ZN̂p .
Step 4: Both P and V run BPIP(ĝ, ĥ, u, P̂ ; â, b̂).

Fig. 6. Bulletproofs (Inner-Product Argument)

The main idea of BP-IP is recursive reduction from an argument for N -length
witness to an argument for (N̂ = N

2)-length witness. For the sake of simplicity,
we assume that N is a power of 2 and one can pad the input if need be. First, the
prover parses a, b, g, and h to two vectors of N̂ -length, respectively, as follows.

a = a1‖a−1, b = b1‖b−1, g = g1‖g−1, and h = h1‖h−1
P begins by computing and sending V

L = ga1
−1h

b−1

1 u〈a1,b−1〉 ∈ G and R = g
a−1

1 hb1
−1u

〈a−1,b1〉 ∈ G.

V chooses a random challenge x
$←Z∗p and returns it to P. Next, both P and V

compute a common input for the next step argument

ĝ = gx
−1

1 ◦ gx−1 ∈ GN̂ , ĥ = hx1 ◦ hx
−1

−1 ∈ GN̂ and P̂ = Lx
2

P Rx
−2

∈ G

and P additionally computes a witness for the next step argument

â = a1x+ a−1x
−1 ∈ ZN̂p and b̂ = b1x

−1 + b−1x ∈ ZN̂p .

32 Kim et al.

One can easily check that the updated P̂ is equal to the followings.

Lx
2

P Rx
−2

=(ga1
−1h

b−1

1 u〈a1,b−1〉)x
2

(gahbu〈a,b〉)(g
a−1

1 hb1
−1u

〈a−1,b1〉)x
−2

=g
a1+x

−2a−1

1 g
x2a1+a−1

−1 · hx
2b−1+b1

1 h
b−1+x

−2b1

−1 · ux
2〈a1,b−1〉+〈a,b〉+x−2〈a−1,b1〉

=(gx
−1

1 ◦ gx−1)xa1+x
−1a−1 · (hx1 ◦ h

x−1

−1)x
−1b1+xb−1 · u〈xa1+x

−1a−1,x
−1b1+xb−1〉

=ĝâ · ĥ
b̂
· u〈â,b̂〉

Thus, P̂ satisfies again an inner-product relation ĝâ ·ĥ
b̂
·u〈â,b̂〉 with a half-length

witness â and b̂. Next, both P and V run BPIP(ĝ, ĥ, u, P̂ ; â, b̂) together. The full
description of BP-IP is provided in Fig. 8.

Theorem 8 ([20]). The inner-product argument of Bulletproofs (given in Fig. 6)
has perfect completeness and computational witness-extended-emulation under
the discrete logarithm relation assumption.

In the above recursive step, P sends only two group elements in G and the
length of witness vectors becomes a half in the next round. Thus, it requires
O(logN) group elements during O(logN) rounds. The verifier computes ĝ and

ĥ that require O(N) exponentiation for each round, but these computations can
be optimized to be a single multi-exponentiation of N -length for all rounds.

A.3 Zero-Knowledge Arguments for Arithmetic Circuits

Bulletproofs presents another zero-knowledge argument protocol that is for ar-
bitrary arithmetic circuits. More precisely. this protocol proves the following
relation and the detailed description of the protocol is given in Fig. 7.

(
g,h ∈ GN ,V ∈ GM , g, h ∈ G,WL,WR,WO ∈ ZQ×Np ,W V ∈ ZQ×Mp ,
c ∈ ZQp ; aL,aR,aO ∈ ZNp ,v,γ ∈ ZMp

)
: Vj = gvjhγj∀j ∈ [1,m] ∧ aL ◦ aR = aO
∧ WL · aL +WR · aR +WO · aO = W V · v + c



Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 33

BPAC(g,h,V , g, h,WL,WR,WO,W V , c;aL,aR,aO,v,γ)

Step 1: P computes α, β, ρ
$←Zp, AI = hαgaLhaR ∈ G, AO = hβgaO ∈ G,

sL, sR
$←ZNp , S = hρgsLhsR ∈ G

and send AI , AO, and S to V.

Step 2: V chooses y, z
$←Z∗p and returns it to P.

Step 3: Both P and V set

yN := (1, y, y2, . . . , yN−1) ∈ ZNp , zQ+1 := (z, z2, . . . , zQ) ∈ ZQp ,

δ(y, z) := 〈y−N ◦ (zQ+1 ·WR),zQ+1 ·WL〉,

h′i := hy
−i+1

i , ∀i ∈ [N] and h′ := (h′1, . . . , h
′
N).

Additionally, P computes

l(X) := aL ·X + aO ·X2 + y−N ◦ (zQ+1 ·WR) ·X + sL ·X3 ∈ ZNp [X],

r(X) := yN ◦ aR ·X − yN + zQ+1 · (WL ·X +WO) + yN ◦ sR ·X3 ∈ ZNp [X],

t(X) := 〈l(X), r(X)〉 =
∑
i∈[6]

ti ·Xi ∈ Zp[X],

w := WL · aL +WR · aR +WO · aO,

t2 := 〈aL,aR ◦ yN 〉 − 〈aO,yN 〉+ 〈zQ+1,w〉+ δ(y, z) ∈ Zp,

τi
$←Zp ∀i ∈ {1, 3, 4, 5, 6}, Ti := gtihτi ∀i ∈ {1, 3, 4, 5, 6},

and send Ti for i ∈ {1, 3, 4, 5, 6} to V.

Step 4: V chooses x
$←Z∗p and returns it to P.

Step 5: P computes

l := l(x) ∈ ZNp , r := r(x) ∈ ZNp , t̂ := 〈l, r〉 ∈ Zp,

τx :=

6∑
i=1,i 6=2

τi · xi + x2 · 〈zQ+1,W V · γ〉 ∈ Zp, µ := α · x+ β · x2 + ρ · x3 ∈ Zp

and send τx, µ, t̂ to V.

Step 6: V send a random challenge w
$←Z∗p to P.

Step 7: V checks the following equation.

gt̂hτx
?
= gx

2·(δ(y,z)+〈zQ+1,c〉) · V x2·(zQ+1·WV) · T x1 ·
6∏
i=3

T x
i

i

If the equation holds, both P and V run BPIP(g,h′, gw, P · h−µ · gw·t̂; l, r) where

P = AxI ·Ax
2

O · gy
−N◦(zQ+1·WR) · h′−yN+zQ+1(WO+xWL) · Sx

3

Fig. 7. Bulletproofs (Arithmetic Circuit Argument)

34 Kim et al.

GBPIP(g,h ∈ GN , u, P ∈ G;a, b ∈ ZNp)
If N = 1:

Step 1: P sends V a and b.
Step 2: V outputs Accepts if and only if P = gahbua·b holds.

Else (N > 1):

Let N̂ = N
2n

and parse a, b, g, and h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Step 1: P calculates for all distinct i, j ∈ In = {±1,±3, . . . ,±(2n− 1)},

vi,j = g
aj

i h
bi
j u
〈ajbi〉 ∈ G,

and then sends {vi,j} i,j∈In
i6=j

to V.

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: Both P and V compute

ĝ = ◦i∈Ing
x−i

i ∈ GN̂ , ĥ = ◦i∈Inh
xi

i ∈ GN̂ and P̂ = P
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G.

Additionally, P computes â =
∑
i∈In aix

i ∈ ZN̂p and b̂ =
∑
i∈In bix

−i ∈ ZN̂p .
Step 4: Both P and V run GBPIP(ĝ, ĥ, u, P̂ ; â, b̂).

Fig. 8. Our First Generalization of BP-IP

B Our First Generalization of BP-IP

The concrete description of the generalized BP-IP is given in Fig. 8.

We provide a sketch of the soundness proof. After receiving vi,j ’s, we rewind

P∗ 4n − 1 times and obtain 4n − 1 challenge-witness tuples (xk, âk, b̂k) for
k ∈ [4n − 1]. Then, we know that the extracted witness satisfies the following
equality for all k ∈ [4n− 1].

P
∏
s∈Jn

(∏
i,j∈In
j−i=s

vi,j
)xs

k = P
∏

i,j∈In
i6=j

v
xj−i
k
i,j = P̂ =

(
◦i∈In g

x−i
k
i

)âk
(
◦j∈In h

xj
k
j

)b̂ku〈âk,b̂k〉

=
(∏
i∈In

g
x−i
k âk

i h
xi
kb̂k

i

)
u〈âk,b̂k〉 (12)

where Jn := {±2,±4,±6, . . . ,±(4n−4),±(4n−2)} of size 4n−2. Assuming that
all x2i ’s are distinct, one can prove that the (4n− 1)× (4n− 1) matrix M with

(k, j)-entry x−4n+2j
k is invertible, where M ’s k-th row is a vector of exponents

used in the left-hand side of Eq. (12). Thus, we can use M−1 to find exponents

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 35

{aP,r, bP,r}r∈In , cP and {as,r, bs,r}r∈In , cs for s ∈ JN satisfying

P =
(∏
r∈In

gaP,r
r hbP,r

r

)
ucP ∈ G,

(∏
i,j∈In
j−i=s

vi,j
)

=
(∏
r∈In

gas,r
r hbs,r

r

)
ucs ∈ G.

Therefore, we successfully extract the exponents with bases gr and hr for r ∈ In,
which are the witness vectors a and b, respectively. Of course, we must show
that the exponent cP should be equal to 〈a, b〉. To this end, we can use more
rewinding to extract a tuple satisfying Eq. (12) and obtain the following theorem.

Theorem 9. The inner-product argument in Fig. 8 has perfect completeness
and computational witness-extended-emulation under the discrete logarithm re-
lation assumption.

The complete proof of Theorem 9 is given in the next subsection.

B.1 Proof of Theorem 9

Proof. (completeness) For the recursive step, we observe that

P = gahbu〈a,b〉 =
∏
i∈In

gai
i hbi

i u
〈ai,bi〉, and thus

P̂ =
(∏
i∈In

gai
i hbi

i u
〈ai,bi〉

)
·
(∏

i,j∈In
i6=j

(
g
aj

i hbi
j u
〈aj ,bi〉

)xj−i)
=
∏
i,j∈In

(
g
aj

i hbi
j u
〈aj ,bi〉

)xj−i

=
(
◦i∈In gx

−i

i

)∑
j∈In ajx

j

·
(
◦j∈In hx

j

j

)∑
i∈In bix

−i

· u〈
∑

j∈In ajx
j ,
∑

i∈In bix
−i〉

= ĝâ · ĥ
b̂
· u〈â,b̂〉. (13)

Therefore, (ĝ, ĥ, u, P̂ ; â, b̂) satisfies the IP relation in Eq. (1), and thus an ar-

gument of N -length is reduced to the same argument of N̂ -length. Eq (13)
guarantees the completeness of the protocol. For N = 1, it is straightforward
since the prover provides a witness (a, b) and the verifier checks the relation.

(witness-extended emulation) In order to show the computational witness-extended
emulation, we construct an expected polynomial time extractor χ whose goal is
to extract the witness by using a polynomially bounded tree of accepting tran-
scripts. If then, similar to BP-IP, we can apply the following general forking
lemma.

Theorem 10 (General Forking Lemma [15]). Let (K,P,V) be a (2k + 1)-
move, public coin interactive protocol with µ challenges x1, . . . , xµ in sequence.
Let ni ≥ 1 for 1 ≤ i ≤ µ. Consider an (n1, . . . , nk)-tree of accepting transcripts
with challenges in the following tree format. The tree has depth µ and

∏µ
i=1 ni

leaves. The root of the tree is labeled with the statement. Each node of depth i < µ
has exactly ni children, each labeled with a distinct value of the i-th challenge
xi.

36 Kim et al.

Let χ be a witness extraction algorithm that succeeds with probability 1 −
neg(λ) for some negligible function neg(λ) in extracting a witness from an
(n1, . . . , nk)-tree of accepting transcripts in probabilistic polynomial time. As-

sume that
∏k
i=1 ni is bounded above by a polynomial in the security parameter

λ. Then, (K,P,V) has witness-extended emulation.

The case (N = 1) is straightforward since the prover sends the witness and
then the verifier can directly check the correctness. Let us focus on the case
(N > 1). We prove that for each recursive step that on input (g,h, u, P), we can
efficiently extract from the prover a witness (a, b) under the discrete logarithm
relation assumption whose instance is the CRS (g,h, u). First, the extractor runs
the prover to get vi,j for i 6= j ∈ In. At this point, the extractor rewinds the
prover 12n− 5 times and feeds 12n− 5 non-zero challenges xk such that all x2k
are distinct. Then, the extractor obtains 12n − 5 pairs âk and b̂k such that for
each k ∈ [12n− 5]

P
∏
s∈Jn

(∏
i,j∈In
j−i=s

vi,j
)xs

k = P
∏

i,j∈In
i6=j

v
xj−i
k
i,j = P̂

=
(
◦i∈In g

x−i
k
i

)âk
(
◦j∈In h

xj
k
j

)b̂ku〈âk,b̂k〉

=
(∏
i∈In

g
x−i
k âk

i h
xi
kb̂k

i

)
u〈âk,b̂k〉 (14)

where Jn := {±2,±4,±6, . . . ,±(4n − 4),±(4n − 2)} of size 4n − 2. We know
that squares of the first 4n−1 challenges, x21, . . . , x

2
4n−1, are distinct, so that the

following matrix M ∈ Z(4n−1)×(4n−1)
p is invertible since it is a product of two

invertible matrices, where one of which is a diagonal matrix and the other is a
Vandermonde matrix with distinct rows.

M =


x−4n+2
1 x−4n+4

1 · · · 1 · · · x4n−41 x4n−21

x−4n+2
2 x−4n+4

2 · · · 1 · · · x4n−42 x4n−22
...

... · · · 1 · · ·
...

...
x−4n+2
4n−1 x−4n+4

4n−1 · · · 1 · · · x4n−44n−1 x
4n−2
4n−1



=


x−4n+2
1 0 · · · 0

0 x−4n+2
2 · · · 0

...
...

. . . 0
0 0 · · · x−4n+2

4n−1

 ·


1 x21 · · · x4n−21 · · · x8n−61 x8n−41

1 x22 · · · x4n−22 · · · x8n−62 x8n−42
...

...
. . .

. . .
. . .

...
...

1 x24n−1 · · · x4n−24n−1 · · · x
8n−6
4n−1 x

8n−4
4n−1

 .

The extractor knows all the exponents xj−ik , x−ik , xjk, âk, and b̂k in Eq. (14).
There are 4n−1 distinct powers of x2k in the left-hand side in Eq. (14). Thus, by
using the inverse matrix of M and the elementary linear algebra in the public
exponents of the first 4n − 1 equalities in Eq. (14), we can find the exponents

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 37

{aP,r, bP,r}r∈In , cP and {as,r, bs,r}r∈In , cs for s ∈ JN satisfying

P =
(∏
r∈In

gaP,r
r hbP,r

r

)
ucP ∈ G, (15)

(∏
i,j∈In
j−i=s

vi,j
)

=
(∏
r∈In

gas,r
r hbs,r

r

)
ucs ∈ G. (16)

Next, we prove that the extracted exponents {aP,r}r∈In , {bP,r}r∈In , cP satisfy
the desired relation cP =

∑
r∈In〈aP,r, bP,r〉 = 〈aP , bP 〉, where aP and bP are

concatenations of aP,r’s and bP,r’s, respectively. Putting Eq. (15) and Eq. (16)
into Eq. (14), we have for each k ∈ [12n− 5],(∏

r∈In

gaP,r
r hbP,r

r

)
ucP ·

∏
s∈Jn

(∏
r∈In

gas,r
r hbs,r

r

)xs
kucsx

s
k

=
(∏
r∈In

g
x−r
k âk
r hx

r
kb̂k
r

)
u〈âk,b̂k〉.

This can be rewritten as(∏
r∈In

g
aP,r+

∑
s∈Jn

xs
kas,r

r h
bP,r+

∑
s∈Jn

xs
kbs,r

r

)
ucP+

∑
s∈Jn

csx
s
k

=
(∏
r∈In

g
x−r
k âk
r hx

r
kb̂k
r

)
u〈âk,b̂k〉 for k ∈ [12n− 5].

By the discrete logarithm relation assumption, the above equality implies that
for k ∈ [12n− 5] and r ∈ In

gr exponents : aP,r +
∑
s∈Jn as,rx

s
k = âkx

−r
k (17)

hr exponents : bP,r +
∑
s∈Jn bs,rx

s
k = b̂kx

r
k (18)

u exponents : cP +
∑
s∈Jn csx

s
k = 〈âk, b̂k〉. (19)

If we find exponents satisfying Eq. (14), Eq. (15) and Eq. (16), but not one of the
above Eq. (17), Eq. (18) and Eq. (19), it directly implies a non-trivial relation
between the CRS and so we break the discrete logarithm relation assumption in
G1.

As an intermediate step toward the relation cP =
∑
r∈In〈aP,r, bP,r〉, we find a

relation between aP,r and âk and a relation between bP,r and b̂k since such rela-
tions can be combined with Eq. (19) to find the relation cP =

∑
r∈In〈aP,r, bP,r〉.

From Eq. (17) and Eq. (18), we can remove âk and b̂k and deduce that for each
k ∈ [12n− 5] and any r, r′ ∈ In,

aP,rx
r
k +

∑
s∈Jn

as,rx
s+r
k − aP,r′x

r′

k −
∑
s∈Jn

as,r′x
s+r′

k = 0 (20)

bP,rx
−r
k +

∑
s∈Jn

bs,rx
s−r
k − bP,r′x

−r′
k −

∑
s∈Jn

bs,r′x
s−r′
k = 0. (21)

38 Kim et al.

In both Eq. (20) and Eq. (21), degrees of xk range between 6n− 3 and −6n+ 3
according to r ∈ In and s ∈ Jn. That is, the number of distinct integers in
the range is 12n − 5 that is equal to the number of distinct challenges xk for
k ∈ [12n−5]. That implies that the following polynomial equations in the variable
X hold for any r, r′ ∈ In.

aP,rX
r +

∑
s∈Jn

as,rX
s+r − aP,r′X

r′ −
∑
s∈Jn

as,r′X
s+r′ = 0

and bP,rX
−r +

∑
s∈Jn

bs,rX
s−r − bP,r′X

−r′ −
∑
s∈Jn

bs,r′X
s−r′ = 0.

This can be rewritten as

aP,rX
r +

∑
s∈Jn

as,rX
s+r is the same polynomial for all r ∈ In. (22)

bP,rX
−r +

∑
s∈Jn

bs,rX
s−r is the same polynomial for all r ∈ In. (23)

The only way to hold the above two equations is that

1. The polynomial in Eq. (22) is
∑
s∈In aP,sX

s, regardless of r.
2. The polynomial in Eq. (23) is

∑
s∈In bP,sX

−s, regardless of r.

Fix an r ∈ In, say r = 2n− 1. Then, putting the above result into Eq. (22) and
Eq. (23), we have

aP,2n−1X
2n−1 +

∑
s∈Jn

as,2n−1X
s+2n−1 =

∑
s∈In

aP,sX
s

bP,2n−1X
−2n+1 +

∑
s∈Jn

bs,2n−1X
s−2n+1 =

∑
s∈In

bP,sX
−s

Combining the above result with Eq. (17) and Eq. (18), we have for k ∈ [12n−5]

aP,2n−1x
2n−1
k +

∑
s∈Jn

as,2n−1x
s+2n−1
k = âk =

∑
s∈In

aP,sx
s
k

bP,2n−1x
−2n+1
k +

∑
s∈Jn

bs,2n−1x
s−2n+1
k = b̂k =

∑
s∈In

bP,sx
−s
k .

Thus, we obtain the relations âk =
∑
s∈In aP,sx

s
k and b̂k =

∑
s∈In bP,sx

−s
k

for k ∈ [12n − 5], which is the intermediate step toward the desired relation
cP =

∑
r∈In〈aP,r, bP,r〉.

As aforementioned, we combine these relations with Eq. (19) and obtain that
for k ∈ [12n− 5]

cP +
∑
s∈Jn

csx
s
k = 〈

∑
s∈In

aP,sx
s
k,
∑
s∈In

bP,sx
−s
k 〉 =

∑
s,s′∈In

〈aP,s, bP,s′〉xs−s
′

k

=
∑

s,s′∈In
s′ 6=s

〈aP,s, bP,s′〉xs−s
′

k +
∑
s∈In

〈aP,s, bP,s〉

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 39

Since this relation holds for all x1, . . . , x12n−5, it must be that

cP =
∑
s∈In

〈aP,s, bP,s〉 = 〈aP , bP 〉.

Therefore, we construct the extractor that outputs aP , bP and cP satisfying
the above inner-product relation. The extractor rewinds 12n− 5 times for each
recursive step. Thus, it uses (12n−5)log2nN transcripts in total and thus runs in
expected polynomial time in N and λ. Then, by the general forking lemma, we
conclude that the argument has computational witness-extended emulation. ut

C Sublogarithmic Protocol from Aggregated
Multi-Exponentiation Arguments

C.1 Protocol2: Proof of Theorem 1

Proof. (Completeness) For N > 1, the protocol resembles the generalization of
the BP-IP in Fig. 8. It is sufficient to show that for the case (N = 1), the correctly
generated state information stP successfully passes the augmented aggregation
of multi-exponentiation argument protocols. For k ∈ [m], uk = E(vk,F k) and
vk = vxk

k , where xk is the challenge vector used in the k-th recursive stage. Since
the prover sets vk,j = 1G1

for j 6= k and vk,k = vk for k ∈ [m], we have

uk =
∏
j∈[m]

E(vk,j ,F j) ∧ vk = vxk

k,k ∧ (v
xj

k,j = 1G1 for j 6= k),

which is the relation in Eq. (5). Therefore, it will correctly pass values to the
aAggMEA protocol.

(Witness-Extended-Emulation) Due to the general forking lemma, it is sufficient
to construct an extractor χ that extracts a witness from a suitable tree of ac-
cepting transcripts in probabilistic polynomial time.

We begin with (12n− 5, . . . , 12n− 5︸ ︷︷ ︸
log2nN

, 2m, 7, . . . , 7︸ ︷︷ ︸
log(2n(2n−1) log2nN)

)-tree of accept-

ing transcriptions. Note that the number of all challenges in the tree is (12n −
5)log2nN · 2m · 7log(2n(2n−1) log2nN) that is bounded above by a polynomial in N
and λ, so that we can apply the general forking lemma.

If N = 1 and stP is empty, then it is straightforward since the verifier receives
a witness a and b satisfying P = gahbuab and check the validity for any accepting
transcript in the tree. If N = 1 but stP is non-empty, then we use the fact that
the lower position subtree of (1+log(2n(2n−1) log2nN)-depth is (2m, 7, . . . , 7)-
tree of accepting transcripts for aAggMEA. aAggMEA has the witness-extended
emulation under the DPair assumption by Theorem 2 and Theorem 12. Using
the (2m, 7, . . . , 7)-tree of accepting transcripts, the extractor can extract vk,j
satisfying∧

k∈[m]

(
uk =

∏
j∈[m]

E(vk,j ,F j) ∧ vk = vxk

k,k ∧ (v
xj

k,j = 1G1
for j 6= k)

)
, (24)

40 Kim et al.

for each accepting transcript in the upper position (12n− 5, . . . , 12n− 5︸ ︷︷ ︸
log2nN

)-subtree

of the main tree. Note that for j 6= k, vk,j may not equal to 1G1 unlike the original
protocol. However, what we need from Eq. (24) is only the relation vk = vxk

k,k

such that vk,k is committed by the prover before receiving xk.
All the remaining process is equivalent to the proof of Theorem 9; the format

of the upper position subtree of accepting transcripts is exactly the same as
that required in the proof of generalized BP-IP in Theorem 9. Furthermore, for
each upper position accepting transcript, we have shown that the extractor can
extract the vk,k, which is used in the computation of P̂ = P · vk in the k-th
recursive round. Thus, what the extractor has for each accepting transcript for
this protocol is exactly the same as that of the extractor for the generalized
BP-IP protocol, so that we can employ the extractor in the proof of Theorem 9
under the discrete logarithm relation assumption in G1.

As we aforementioned, we use (12n− 5, . . . , 12n− 5︸ ︷︷ ︸
log2nN

, 2m, 7, . . . , 7︸ ︷︷ ︸
log(2n(2n−1) log2nN)

)-

tree of accepting transcriptions, which has leaves of polynomially bounded size
in N and λ. Therefore, we can apply the general forking lemma. ut

C.2 aAggMEA: Proof of Theorem 2

We begin with providing the definition of the q-double pairing assumption, which
will be used in the proof for the witness-extended emulation of the scheme.

Definition 11 (q-Double Pairing Assumption). Let G be an asymmetric
bilinear group generator. We say that G satisfies the q-Double Pairing assumption
in G2 if all non-uniform polynomial-time adversaries A, the following inequality
holds.

Pr

 g 6= 1G1

∧
E(g,F) = 1Gt

∣∣∣∣∣∣
(p, g,H,G1,G2,Gt, e)← G(1λ);

F
$←Gq2;

g ← A(p,F , g,H,G1,G2,Gt, e)

 < negl(λ),

where 1Gt
is the identity of Gt and negl(λ) is a negligible function in λ.

Theorem 11. The q-double pairing assumption holds in G2 for polynomially
bounded q if the double pairing is assumed hard.

Proof. Assume that there exists a PPT adversaryA who breaks the q-double par-
ing assumption for polynomial-size q. Given a double pairing instance (G,Ga) ∈
G2

2, we construct a reduction using A as a subroutine. The reduction chooses a

random vector (r1, . . . , rq)
$←Zqp and a random integer k

$←[q], sets F = (Gr1 , . . . ,
(Ga)rk , . . . , Grq), and sends to A. Due to the random exponents ri’s, F looks
uniformly distributed from A’s viewpoint. Thus, A successfully outputs g =
(g1, . . . , gk, . . . , gq) such that E(g,F) = 1Gt and g 6= 1G1 with non-negligible
probability. For a successful reduction, we expect that the k-th element gk is

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 41

not equal to the identity. Since the position k is completely hidden from the
adversarial point of view, the probability of gk = 1G1

is at most 1/q. Then,
the reduction outputs a pair (grkk ,

∏
i∈[q]∧i 6=k g

−ri
i) as an answer to the double

pairing problem.
Since E(g,F) = 1Gt

and gk 6= 1G1
hold, we know that the following should

holds as well.

E((gr11 , . . . , g
rk
k , . . . , g

rq
q), (G, . . . , Ga, . . . , G)) = e(grkk , G

a)·e
(∏
i∈[q]∧i6=k

grii , G
)

= 1Gt

Thus, the above equality guarantees the correctness of the reduction’s output.
ut

Now we are ready to prove Theorem 2 about the protocol for the following
relation.{

(F k, zk, Hk ∈ G2, Pk, qk;vk,j for k, j ∈ [m])

:
∧
k∈[m]

(
Pk =

∏
j∈[m] E(vk,jF j) ∧ qk = vzk

k,k ∧ (v
zj

k,j = 1G1
for j 6= k)

)}

(Completeness) When setting F̃ k, z̃k, H̃k, P̃ , and ṽk as in the protocol descrip-
tion, we have

P̃

=
∏
k∈[m]

(
P y

k−1

k · e(qy
k−1

k , Hym

k)
)

=
∏
k∈[m]

((∏
j∈[m]

E(vk,jF j)
)yk−1

· e((vzk

k,k)y
k−1

, Hym

k)
)

=
(∏
j∈[m]

E(◦k∈[m]v
yk−1

k,j ,F j)
)
·
(∏
k∈[m]

e(vy
k−1zk

k,k , Hym

k)
)

=
∏
k∈[m]

E(◦j∈[m]v
yj−1

j,k ,F k) · e(vy
k−1zk

k,k , Hym

k) // Change index j with index k

=
∏
k∈[m]

E(◦j∈[m]v
yj−k

j,k ,F yk−1

k) · e(vy
k−1zk

k,k , Hym

k)

=
∏
k∈[m]

E(ṽk, F̃ k) · e
(
(◦j∈[m]v

yj−k

j,k)y
k−1zk , H̃k) // Use the relation vzk

j,k = 1G1

for j 6= k

=
∏
k∈[m]

E(ṽk, F̃ k) · e(ṽz̃k

k , H̃k)

Thus, we know that F̃ k, z̃k, H̃k, P̃ , and ṽk satisfy the relation in Eq. (6). Thus,
if ProdMEA has the completeness, aAggMEA has also the completeness.

(Witness-Extended-Emulation) Due to the general forking lemma, it is sufficient
to construct an extractor χ that extracts a witness from a suitable tree of ac-
cepting transcripts in probabilistic polynomial time.

42 Kim et al.

Suppose that ProdMEA has witness-extended emulation and the double pair-
ing assumption holds. Thus, we can employ the extractor for ProdMEA and the
q-double pairing assumption holds in G2. The extractor rewinds the prover in
the reduction by feeding 2m distinct challenges yi for i ∈ [2m] and obtains the

witness ṽ
(i)
k for k ∈ [m] and i ∈ [2m] satisfying ProdMEA argument. That is, for

i ∈ [2m] we have

∏
k∈[m]

(
P
yk−1
i

k e(qk, Hk)y
m+k−1
i

)
= P̃i

=
∏
j∈[m]

E((ṽ
(i)
j)y

j−1
i ,F j)e((ṽ

(i)
j)y

m+j−1
i zj , Hj). (25)

All exponents in the above equation are powers of yi. Let M be an 2m× 2m
Vandermonde matrix with i-th row (1, yi, . . . , y

2m−1
i). Let ak = (ak,1, . . . , ak,2m)

be the k-th row of M−1 for k ∈ [2m]. Then, using elementary linear algebra in
the exponent of Eq. (25), the extractor can compute wk,j ∈ GN1 and νk,j ∈ G1

for k, j ∈ [m] such that

Pk =

m∏
i=1

P̃
ak,i

i =
∏
j∈[m]

E(wk,j ,F j)e(νk,j , Hj). (26)

Notice that the extracted witnesses ṽ
(i)
k from extractor for ProdMEA may depend

on a choice of yi. Therefore, when we change from Eq. (25) to Eq. (26), we
cannot not sure unusedness of (F j , Hj) for Pk for distinct j and k, and thus we
considered Pk as a products of (F j , Hj) with (wk,j , νk,j) for all j ∈ [m].

Next, we show that the extracted wk,j and νk,j satisfy the desired relations
νk,j = 1G1 for all k, j ∈ [m], qk = wzk

k,k for all k ∈ [m], and wzk
k,j = 1G1 for j 6= k.

When we put the above equality into Eq. (25), we have∏
k∈[m]

((∏
j∈[m]

E(wk,j ,F j)
yk−1
i e(νk,j , Hj)

yk−1
i

)
· e(qk, Hk)y

m+k−1
i

)
=
∏
j∈[m]

(
E(ṽ

(i)y
j−1
i

j ,F j)e((ṽ
(i)
j)y

m+j−1
i zj , Hj)

)
.

By the q-double pairing assumption, we can separate the above equation as
follows. For each i ∈ [2m] and j ∈ [m], we have

F j correspondence : ◦k∈[m]w
yk−1
i

k,j = (ṽ
(i)
j)y

j−1
i (27)

Hj correspondence :
(∏

k∈[m] ν
yk−1
i

k,j

)
· qy

m+j−1
i
j = (ṽ

(i)
j)y

m+j−1
i zj (28)

Combining Eq. (27) and Eq. (28), we can remove ṽi,j ’s and obtain the followings.(∏
k∈[m]

ν
yk−1
i

k,j

)
· qy

m+j−1
i
j =

∏
k∈[m]

w
ym+k−1
i zj

k,j (29)

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 43

We observe that all the values except yi in the above equation is fixed before
choosing the challenge yi, the degree of yi’s vary between 0 and 2m − 1, and
the above equation holds for each challenge yi. Since the number of distinct
challenges is larger than the maximum degree of yi, the only way to hold Eq. (29)
is that

Left-Hand Side Right-Hand Side

For k ∈ [m], yk−1i correspondence: νk,j = 1G1

ym+j−1
i correspondence: qj = w

zj

j,j

For k 6= j, ym+k−1
i correspondence: 1G1 = w

zj

k,j .

Thus, putting the above result into Eq. (26), the extractor eventually has wk,j

for k ∈ [m] satisfying

qk = wzk

k,k ∧ Pk =
∏
j∈[m]

E(wk,j ,F j) ∧ (w
zj

k,j = 1G1 for all j 6= k).

ut

C.3 ProdMEA Protocol

We propose a ProdMEA protocol for the relationRPMEA. The ProdMEA protocol
recursively reduces from an argument for N -length witness to an argument for
N̂ = N

2 -length witness. First, parse F k, zk, and vk to two vectors of N̂ -length,
respectively, as follows.

F k = F k,1‖F k,−1, zk = zk,1‖zk,−1, and vk = vk,1‖vk,−1

P begins with computing and sending V for k ∈ [m]

L =
∏
k∈[m]

E(vk,1,F k,−1)e(v
zk,−1

k,1 , Hk) ∈ Gt

and R =
∏
k∈[m]

E(vk,−1,F k,1)e(v
zk,1

k,−1, Hk) ∈ Gt.

V chooses a random challenge x
$←Z∗p and returns it to P. Next, both P and V

compute a common input for the next step argument as follows. For k ∈ [m],

F̂ k = F x−1

k,1 ◦ F x
k,−1 ∈ GN̂2 , ẑk = zk,1x

−1 +zk,−1x ∈ ZN̂p , P̂ = Lx
2

P Rx
−2

∈ Gt

and P computes a half-dimension witness for the next step argument for k ∈ [m],

v̂k = vxk,1 ◦ vx
−1

k,−1 ∈ GN̂1 .

44 Kim et al.

One can easily check that P̂ equals the followings.

P̂ =
(∏
k∈[m]

E(vk,1,F k,−1)e(v
zk,−1

k,1 , Hk)
)x2

·
∏
k∈[m]

E(vk,F k)e(vzk

k , Hk)

·
(∏
k∈[m]

E(vk,−1,F k,1)e(v
zk,1

k,−1, Hk)
)x−2

=
∏
k∈[m]

E(vxk,1,F
x
k,−1)E(vk,F k)E(vx

−1

k,−1,F
x−1

k,1)e(v
zk,−1x

2

k,1 · vzk

k · v
zk,1x

−2

k,−1 , Hk)

=
∏
k∈[m]

E(vxk,1 ◦ vx
−1

k,−1,F
x
k,−1 ◦ F

x−1

k,1)e((vxk,1 ◦ vx
−1

k,−1)zk,1x
−1+zk,−1x, Hk)

=
∏
k∈[m]

E(v̂k, F̂ k)e(v̂ẑk

k , Hk).

Thus, P̂ satisfies again a ProdMEA relation with half-length witness v̂k’s, so that
both P and V run ProdMEA(F̂ k, ẑk, Hk, P̂ ; v̂k) together. The full description of
ProdMEA is provided in Fig. 9.

We briefly provide a sketch of the soundness proof. That is, given a successful
prover P∗, we extract a witness vk. The extractor runs P∗ and receives L and
R. By rewinding P∗ three times and feeding P∗ three challenges xi for i ∈ [3]

such that x2i 6= x2j for i 6= j, the extractor obtains v̂
(i)
k ’s for i ∈ [3] and k ∈ [m]

satisfying the following.

Lx
2
iPRx

−2
i =

∏
k∈[m]

E(v̂
(i)
k , F̂ k)e(v̂

(i)
k

ẑk , Hk)

=
∏
k∈[m]

E(v̂
(i)
k ,F

x−1
i

k,1 ◦ F
xi

k,−1)e(v̂
(i)
k

zk,1x
−1
i +zk,−1xi , Hk)

=
∏
i∈[m]

E(v̂
(i)
k
x−1
i ,F k,1)E(v̂

(i)
k
xi ,F k,−1)e(v̂

(i)
k

zk,1x
−1
i +zk,−1xi , Hk) (30)

Since x2i ’s are distinct, the matrix

x−21 1 x21
x−22 1 x22
x−23 1 x23

 is invertible. Therefore, by using

the elementary linear algebra in the exponent, we can obtain gP,k,1, gP,k,−1 and
gP,k,H for k ∈ [m] satisfying

P =
∏
k∈[m]

E(gP,k,1,F k,1)E(gP,k,−1,F k,−1)e(gP,k,H , Hk).

Therefore, we extract a witness vk = gP,k,1‖gP,k,−1 for k ∈ [m]. Of course,
we have to show that gP,k,H = vzk

k for k ∈ [m]. To this end, we can use more
rewinding to extract a tuple satisfying Eq. (30) and obtain the following theorem.

Theorem 12. The ProdMEA protocol in Fig. 9 has perfect completeness and
computational witness-extended-emulation under the double pairing assumption.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 45

ProdMEA(F k ∈ GN2 ,zk ∈ ZNp , Hk ∈ G2, P ∈ Gt for k ∈ [m];vk ∈ GN1 for k ∈ [m])

If N = 1:
Step 1: P sends v1, . . . , vm to V.
Step 2: V outputs Accepts if and only if P =

∏
k∈[m] e(vk, Fk)e(v

zk
k , Hk) holds.

Else (N > 1):

Let N̂ = N
2

and for k ∈ [m] parse F k, zk and vk to
F k = F k,1‖F k,−1, zk = zk,1‖zk,−1, and vk = vk,1‖vk,−1, respectively.

Step 1:P computes for k ∈ [m]

L =
∏
k∈[m]

E(vk,1,F k,−1)e(v
zk,−1

k,1 , Hk) ∈ Gt

and R =
∏
k∈[m]

E(vk,−1,F k,1)e(v
zk,1

k,−1, Hk) ∈ Gt.

Then, P sends L and R to V.

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: Both P and V compute

F̂ k = F x
−1

k,1 ◦ F xk,−1 ∈ GN̂2 , ẑk = zk,1x
−1 + zk,−1x ∈ ZN̂p ,

and P̂ = Lx
2

P Rx
−2

∈ Gt.
Additionally, P computes for k ∈ [m], v̂k = vxk,1 ◦ vx

−1

k,−1 ∈ GN̂1 .
Step 4: Both P and V run ProdMEA(F̂ k, ẑk, Hk, P̂ ; v̂k).

Fig. 9. ProdMEA protocol

Proof. (Completeness) If N = 1, it is easy to check the completeness of the
scheme in Fig. 9. For N > 1, we have P =

∏
k∈[m] E(vk,F k)e(vzk

k , Hk) and so

P̂ =
(∏
k∈[m]

E(vk,1,F k,−1)e(v
zk,−1

k,1 , Hk)
)x2

·
∏
k∈[m]

E(vk,F k)e(vzk

k , Hk)

·
(∏
k∈[m]

E(vk,−1,F k,1)e(v
zk,1

k,−1, Hk)
)x−2

=
∏
k∈[m]

E(vxk,1,F
x
k,−1)E(vk,F k)E(vx

−1

k,−1,F
x−1

k,1)e(v
zk,−1x

2

k,1 · vzk

k · v
zk,1x

−2

k,−1 , Hk)

=
∏
k∈[m]

E(vxk,1 ◦ vx
−1

k,−1,F
x
k,−1 ◦ F

x−1

k,1)e((vxk,1 ◦ vx
−1

k,−1)zk,1x
−1+zk,−1x, Hk)

=
∏
k∈[m]

E(v̂k, F̂ k)e(v̂ẑk

k , Hk).

Therefore, the completeness is satisfied.

46 Kim et al.

(Witness-Extended Emulation) The double pairing assumption implies the q-
double pairing assumption in G2 by Theorem 11, so that from now we assume
that the q-double pairing assumption holds in G2. In order to show the compu-
tational witness-extended emulation, we construct an expected polynomial time
extractor χ whose goal is to extract the witness by using a poly(λ)-bounded tree
of accepting transcripts. If then, we can apply the general forking lemma.

The case (N = 1) is straightforward since the prover sends the witness and
the verifier can directly check the correctness. Let us focus on the case (N > 1).
We prove that for each recursive step that on input (F k, zk, Hk, P) for k ∈ [m],
we can efficiently extract from the prover a witness vk for k ∈ [m] under the
q-double pairing assumption for the CRS F k’s and Hk’s. First, the extractor
runs the prover to get L and R. At this point, the extractor rewinds the prover
7 times and feeds 7 non-zero challenges xi such that x2i 6= x2j for all j 6= i. Then,

the extractor obtains 7 tuples (xi, v̂
(i)
1 , . . . , v̂(i)

m) such that for i ∈ [7]

Lx
2
iPRx

−2
i

=
∏
k∈[m]

E(v̂
(i)
k , F̂ k)e(v̂

(i)
k

ẑk , Hk)

=
∏
k∈[m]

E(v̂
(i)
k ,F

x−1
i

k,1 ◦ F
xi

k,−1)e(v̂
(i)
k

(zk,1x
−1
i +zk,−1xi), Hk)

=
∏
i∈[m]

E(v̂
(i)
k
x−1
i ,F k,1)E(v̂

(i)
k
xi ,F k,−1)e(v̂

(i)
k

(zk,1x
−1
i +zk,−1xi), Hk) (31)

We know that squares of the first 3 challenges x21, x
2
2, x

2
3 are distinct, so that the

following matrix M ∈ Z3×3
p is invertible since it is a product of two invertible

matrices, where one of which is a diagonal matrix and the other is a Vandermonde
matrix.

M =

x−21 1 x21
x−22 1 x22
x−23 1 x23

 =

x−21 0 0
0 x−22 0
0 0 x−23

 ·
1 x21 x

4
1

1 x21 x
4
2

1 x21 x
4
3

 .
By using the inverse matrix of M and the elementary linear algebra in the public
exponents of the first 3 equalities for i = 1, 2, 3 in Eq. (31), we can find tu-
ples group element vectors (gP,k,1, gP,k,−1, gP,k,H), (gL,k,1, gL,k,−1, gL,k,H), and
(gR,k,1, gR,k,−1, gR,k,H) satisfying

P =
∏
k∈[m]

E(gP,k,1,F k,1)E(gP,k,−1,F k,−1)e(gP,k,H , HK) (32)

L =
∏
k∈[m]

E(gL,k,1,F k,1)E(gL,k,−1,F k,−1)e(gL,k,H , HK) (33)

R =
∏
k∈[m]

E(gR,k,1,F k,1)E(gR,k,−1,F k,−1)e(gR,k,H , HK). (34)

Next, we prove that the extracted group elements gP,k,1, gP,k,−1, gP,k,H satisfy
the desired relation gP,k,H = gzk

P,k, where gP,k is the concatenation of gP,k,1 and

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 47

gP,k,−1 for k ∈ [m]. Putting Eq. (32), Eq. (33) and Eq. (34) into Eq. (31), we
have for each i ∈ [7],∏

k∈[m]

E(g
x2
i

L,k,1 ◦ gP,k,1 ◦ g
x−2
i

R,k,1,F k,1) ·E(g
x2
i

L,k,−1 ◦ gP,k,−1 ◦ g
x−2
i

R,k,−1,F k,−1)

·e(gx
2
i

L,k,H · gP,k,H · g
x−2
i

R,k,H , Hk)

=
∏
k∈[m]

E(v̂
(i)
k
x−1
i ,F k,1)E(v̂

(i)
k
xi ,F k,−1)e(v̂

(i)
k

(zk,1x
−1
i +zk,−1xi), Hk)

By the q-double pairing assumption, the above equality implies that for i ∈ [7]
and k ∈ [m]

F k,1 correspondence : g
x2
i

L,k,1 ◦ gP,k,1 ◦ g
x−2
i

R,k,1 = v̂
(i)
k
x−1
i (35)

F k,−1 correspondence : g
x2
i

L,k,−1 ◦ gP,k,−1 ◦ g
x−2
i

R,k,−1 = v̂
(i)
k
xi (36)

Hk correspondence : g
x2
i

L,k,H · gP,k,H · g
x−2
i

R,k,H = v̂
(i)
k

zk,1x
−1
i +zk,−1xi(37)

If we find exponents satisfying Eq. (31), Eq. (32), Eq. (33) and Eq. (34), but not
one of the above Eq. (35), Eq. (36) and Eq. (37), it directly implies a non-trivial
relation between the generators F k’s and Hk’s and so we break the q-double
pairing assumption.

As an intermediate step toward the relation gP,k,H = gzk

P,k, we find a relation

between gP,k and v̂
(i)
k for k ∈ [m] since such the relation can be combined with

Eq. (37) to find the desired relation gP,k,H = gzk

P,k. From Eq. (35) and Eq. (36),
we can deduce that for each i ∈ [7] and k ∈ [m],

g
x3
i

L,k,1 ◦ g
xi

P,k,1 ◦ g
x−1
i

R,k,1 = gxi

L,k,−1 ◦ g
x−1
i

P,k,−1 ◦ g
x−3
i

R,k,−1 ∈ GN1 . (38)

Eq. (38) can be interpreted that seven xi’s are solutions of m × N equations.
That is, for each equation, we have 7 solutions. Since the degree of xi in each
equation varies between -3 and 3, each equation should hold for all x ∈ Zp. The
only way to hold the above bunch of equations is that for k ∈ [m]

gL,k,1 = 1G1 , gP,k,1 = gL,k,−1, gR,k,1 = gP,k,−1, gR,k,−1 = 1G1 .

Putting the above result into Eq. (35), for i ∈ [7] and k ∈ [m] we have

gP,k,1 ◦ g
x−2
i

P,k,−1 = v̂
(i)
k
x−1
i .

Thus, we obtain the relation v̂
(i)
k = gxi

P,k,1 ◦ g
x−1
i

P,k,−1 for i ∈ [7], which is the
intermediate step toward the desired relation gP,k,H = gzk

P,k.

48 Kim et al.

As aforementioned, we combine these relations with Eq. (37) and obtain that
for i ∈ [7] and k ∈ [m]

(gL,k,H)x
2
i · gP,k,H · (gR,k,H)x

−2
i = v̂

(i)
k

(zk,1x
−1
i +zk,−1xi)

=
(
gxi

P,k,1 ◦ g
x−1
i

P,k,−1
)zk,1x

−1
i +zk,−1xi

= g
zk,1

P,k,1 · g
zk,−1x

2
i

P,k,1 · gzk,1x
−2
i

P,k,−1 · g
zk,−1

P,k,−1

= (gP,k,1)zk,−1x
2
i · gzk

P,k · (gP,k,−1)zk,1x
−2
i .

Since this relation holds for all i ∈ [7], it must be that

gP,k,H = gzk

P,k for k ∈ [m].

Therefore, we construct the extractor that outputs gP,k and gP,k,H satisfying
the above desired relation. The extractor rewinds 7 times for each recursive step.
Thus, it uses 7log2N transcripts in total and thus runs in expected polynomial
time in N and λ. Then, by the general forking lemma, we conclude that the
argument has computational witness-extended emulation. ut

Tradeoff between Rounds and Communications If N = 1, the prover
sends v1, . . . , vm to the verifier and the verifier checks if P =

∏
k∈[m] e(vk, Fk)e(vzkk , Hk)

holds. This procedure requires to transmit m group elements in G1. When run-
ning additional rounds, we can reduce this transmission cost to be logarithmic
in m.

If m = 1, the prover sends v1 ∈ G1 to the verifier. If m > 1, for the sake of
simplicity, we assume that m is a power of 2. The prover and the verifier compute
and set Bk := Fk ·Hzk

k ∈ G2. Let ṽ = (v1, . . . , vm) and B = (B1, . . . , Bm). Next,
both the prover and the verifier run the protocol for the relation P = E(ṽ,B)
where P and B are common inputs and ṽ is a witness. For example, both can
run the single multi-exponentiation argument protocol (Fig. 9 with no product)
with zero coefficient vector z = 0, which requires the prover to send 2 logm
group elements in Gt and one group element in G1.

Efficiency Basic Protocol. The prover sends two group elements in Gt for each
recursive stage and m group elements in G1 at the final stage. Overall, the
protocol runs O(logN) rounds and the prover sends 2 logN group elements in Gt
and m group elements in G1. For the i-th recursive stage, prover’s computational
cost is dominated by O(mN2i−1) bilinear map computation. Overall, the prover
computes O(mN) bilinear maps. The verifier’s computational cost is O(N +m)
since the final stage requires O(m) operations for verification and the verifier’s
work in each recursive stage is exactly the same as that of BP-IP so that it can
be batched and reduced to a single multi-exponentiation of length N .

Protocol with Low Communication Cost. At the final stage of this version, the
protocol runs a single multi-exponentiation argument protocol instead of directly

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 49

sending the witness. It will pose additional logm rounds but O(logm) communi-
cation cost instead of m. Overall, the protocol uses O(logN +logm) rounds and
the prover sends O(logN + logm) group elements in Gt and one group element
in G1. Both the prover and the verifier’s asymptotic computational costs are un-
changed; that is, O(mN) bilinear maps and O(N + m) group/field operations,
respectively.

D Sublinear Verifier without Pairing

D.1 Complete Addition Formula for Prime Order Elliptic Curve

We provide the complete addition formula for a prime order elliptic curve group
given by the short Weierstrass equation in two-dimensional projective space [48].

Given two points (X1, Y1, Z1), (X2, Y2, Z2) ∈ {(X,Y, Z) ∈ Z3
q|Y 2Z = X3 +

aXZ2 + bZ3}, (X3, Y3, Z3) = (X1, Y1, Z1) + (X2, Y2, Z2) can be computed as
follows:

X3 = (X1Y2 +X2Y1)(Y1Y2 − a(X1Z2 +X2Z1)− 3bZ1Z2)

− (Y1Z2 + Y2Z1)(aX1X2 + 3b(X1Z2 +X2Z1)− a2Z1Z2),

Y3 = (3X1X2 + aZ1Z2)(aX1X2 + 3b(X1Z2 +X2Z1)− a2Z1Z2)

+ (Y1Y2 + a(X1Z2 +X2Z1) + 3bZ1Z2)(Y1Y2 − a(X1Z2 +X2Z1)− 3bZ1Z2),

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + a(X1Z2 +X2Z1) + 3bZ1Z2)

+ (X1Y2 +X2Y1)(3X1X2 + aZ1Z2).

Algorithm 1 computes the above formulas using 12 multiplications, 5 multipli-
cations by constant, and 23 additions over Zq [48, Algorithm 1].

D.2 Protocol4.Row

We provide a full description of Protocol4.Row in Fig. 10. In a nutshell, the protocol
Protocol4.Row consist of the following process. First, the prover and the verifier run
row-reduction Protocol4.Row recursively until m = 1. After the row-reduction, the
prover and the verifier run two subprotocols Protocol4.Col and AggMEC.Row which are
described in Fig. 11 and Fig. 12 respectively. We denote ppcol and pp1 to the public
parameters to run the subprotocols Protocol4.Col and AggMEC.Row respectively. Note
that ppcol contain the public parameters pp2 for AggMEC.Col.

Theorem 13. Assume that both proof systems AggMEC.Row and Protocol4.Col have
perfect completeness and computational witness-extended-emulation respectively. Then,
Protocol4.Row has perfect completeness and computational witness-extended-emulation
under the discrete logarithm relation assumption.

Proof. The protocol Protocol4.Row separates into two cases Case 1(m = 1) and
Case 2(m > 1) according to m. For the sake of simplicity, we assume that m is
power of 2.

50 Kim et al.

Algorithm 1 Complete, projective point addition for arbitrary prime order
short Weierstrass curves
Require: P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2), E(Zq) : Y 2Z = X3 + aXZ2 + bZ3,

and b3 = 3 · b.
Ensure: (X3, Y3, Z3) = P1 + P2.

1: t0 ← X1 ·X2

2: t1 ← Y1 · Y2

3: t2 ← Z1 · Z2

4: t3 ← X1 + Y1

5: t4 ← X2 + Y2

6: t3 ← t3 · t4
7: t4 ← t0 + t1
8: t3 ← t3 − t4
9: t4 ← X1 + Z1

10: t5 ← X2 + Z2

11: t4 ← t4 · t5
12: t5 ← t0 + t2
13: t4 ← t4 − t5
14: t5 ← Y1 + Z1

15: X3 ← Y2 + Z2

16: t5 ← t5 ·X3

17: X3 ← t1 + t2
18: t5 ← t5 −X3

19: Z3 ← a · t4
20: X3 ← b3 · t2
21: Z3 ← X3 + Z3

22: X3 ← t1 − Z3

23: Z3 ← t1 + Z3

24: Y3 ← X3 · Z3

25: t1 ← t0 + t0
26: t1 ← t1 + t0
27: t2 ← a · t2
28: t4 ← b3 · t4

29: t1 ← t1 + t2
30: t2 ← t0 − t2
31: t2 ← a · t2
32: t4 ← t4 + t2
33: t0 ← t1 · t4
34: Y3 ← Y3 + t0
35: t0 ← t5 · t4
36: X3 ← t3 ·X3

37: X3 ← X3 − t0
38: t0 ← t3 · t1
39: Z3 ← t5 · Z3

40: Z3 ← Z3 + t0

(Completeness) In Case 1, the prover and the verifier perform two subprotocols
Protocol4.Col and AggMEC.Row. Protocol4.Col is a proof system for the relation R1,n

IP ,
and thus its perfect completeness guarantees that the verifier accepts any correctly gen-
erated proof. In addition, we have to check the correctness of the input of AggMEC.Row.
We consider it after proving the perfect completeness of Case 2 since such inputs are
related to the steps in the Case 2.

Case 2 is the reduction step of Protocol4.Row. For the completeness of this case,
we show that Protocol4.Row correctly reduce a valid instance for the relation Rm,nIP to

a valid instance of the relation Rm/2,nIP . Assume that a statement (g,h,F `+1, P, c) is
in a language Lm,n associated with the relation Rm,nIP such that there exists a witness
pair (a, b) ∈ Zm×np × Zm×np satisfying the following equations.

P = Com(
−→
ga ‖

−→
hb;F `+1) (39)

c = 〈a, b〉 (40)

The prover’s computation for the reduction step guarantees that P` and ĉ satisfy the
following equations.

P` =Com(p`;F `)

=Com(lx
2

◦ p`+1 ◦ r
x−2

;F `) Step 4 in Fig.10

=Com((
−−−→
g−1

a1 ‖
−−−→
h1

b−1)x
2

◦ (
−→
ga ‖

−→
hb) ◦ (

−−−→
g1

a−1 ‖
−−−→
h−1

b1)x
−2

;F `) Step 1, Step 2 in Fig.10

=Com(

−−−−−−−−−−−−−−−−−−→
(gx−1

1 ◦ gx−1)
xa1+x

−1a−1 ‖
−−−−−−−−−−−−−−−−−→
(hx1 ◦ hx

−1

−1)
x−1b1+xb−1

;F `) By homomorphic property

=Com(
−→
ĝâ ‖

−→
ĥ

b̂
;F `) (41)

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 51

Protocol4.Row(g,h,F `+1, (Sk,F k)`k=1, pp1, ppcol, P, c, stV ;a, b, stp)

where ` = logm and pp1 = (G,H,K, U) ∈ GO(n)
q ×GO(n)

q ×G18`n+6n
q ×Gq,

ppcol = ((Dk)lognk=1 , pp2) where Dk ∈ G3·2k
q

If (m = 1):
Step 1 : If stP is empty, then follow the Step 2.

Otherwise, both P and V run AggMEC.Row(pp1, stV ; stP)
Step 2 : Both P and V run Protocol4.Col(g, h,F 1, ppcol, P, c;a, b)

Else (m > 1): Let m̂ = m
2

. Parse a, b, g, and h to

a = Ja1‖a−1K b = Jb1‖b−1K, g = g1‖g−1, and h = h1‖h−1.

Step 1 : P computes p`+1 =
−→
ga ‖

−→
hb ∈ G2n

p . If the lists stP and stV are empty,
then P and V add a tuple (· , · ,p`+1) on stP and (· ,F `+1, · , P, ·) on
stV respectively.

Step 2: P calculates

l =
−−−→
g−1

a1 ‖
−−−→
h1

b−1 ∈ G2n
p , r =

−−−→
g1

a−1 ‖
−−−→
h−1

b1 ∈ G2n
p

cL = 〈a1, b−1〉 ∈ Zp, cR = 〈a−1, b1〉 ∈ Zp, S` = Com(l ‖ r;S`) ∈ Gq
and sends cL, cR and S` to V.

Step 3: V chooses x
$←Z∗p and returns it to P.

Step 4: P computes
p` = lx

2

◦ p`+1 ◦ r
x−2

∈ G2n
p

P` = Com(p`;F `) ∈ Gq
and sends P` to V

Step 5: Both P and V compute

ĝ = gx
−1

1 ◦ gx−1 ∈ Gm̂p , ĥ = hx1 ◦ hx
−1

−1 ∈ Gm̂p , ĉ = x2cL + c+ x−2cR ∈ Zp

In addition, P computes

â = a1x+ a−1x
−1 ∈ Zm̂×np and b̂ = b1x

−1 + b−1x ∈ Zm̂×np .

Step 6: V updates stV by adding a tuple (S`,F `, S`, P`, x) into the top row. P
updates stP by adding a tuple (l, r,p`) into the top row. Both P and V run
the protocol

Protocol4.Row(ĝ, ĥ,F `, (Sk,F k)`−1
k=1, pp1, ppcol, P`, ĉ, stV ; â, b̂, stP)

Fig. 10. Protocol4.Row

ĉ =x2cL + c+ x−2cR

=x2〈a1,a−1〉+ 〈a1, b1〉+ 〈a−1, b−1〉+ x−2〈a−1, b1〉 By Eq.(40) & Step 2 in Fig.10

=〈xa1 + x−1a−1, x
−1b1 + xb−1〉

=〈â, b̂〉 (42)

52 Kim et al.

From the resemblance between pairs of equations (Eq. (39), Eq. (40)) and (Eq. (41),

Eq. (42)), we know that the tuple (ĝ, ĥ,F `, P`, ĉ) belongs to the language Lm/2,n

associated with the relation Rm/2,nIP with a witness (â, b̂) ∈ Zm/2×np ×Zm/2×np . In other
words, each recursion step satisfies perfect completeness. By ` times recursion, we
converts an instance for the relation Rm,nIP to a instance for the relation R1,n

IP perfectly.

Finally, we check the acceptance of AggMEC.Row verifier. From ` times recursion,
the lists stP and stV must be formed ` + 1 rows. By P computation in Step 2 and
Step 4 in Fig.10, the k-th tuples of stP satisfies the following equation.

Pk = Com(pk;F k), Sk = Com(lk ‖ rk;Sk), pk = l
x2k
k ◦ pk+1 ◦ r

x−2
k
k for k ∈ [`]

The ` + 1-th row (F `+1, P`+1;p`+1) satisfies P`+1 = Com(p`+1;F `+1) from Step 1

in Fig.10. Then, the instance

[
(Sk,F k, Sk, Pk, xk)
(· ,F `+1, · , P`+1, ·)

]
satisfies the conditions in the

relation RAggMEC.Row. By the perfect completeness of AggMEC.Row, the acceptance of
AggMEC.Row verifier is guaranteed.

(Witness-Extended Emulation) For the computational witness-extended emulation, we
construct an expected polynomial time extractor χ whose goal is to extract a witness by
using a polynomially bounded tree of accepting transcripts. To construct the extractor
χ, we use two extractors E1 and Ecol, which are given by the hypothesis, that extract
a witness of RAggMEC.Row and R1,n

IP , respectively. By the general forking lemma, it is
sufficient to construct an extractor χ that extracts a witness from a suitable tree of
accepting transcripts in probabilistic polynomial time. We begin with (7, . . . , 7︸ ︷︷ ︸

log2m

)-tree of

accepting transcripts. Since the number of challenges in the tree (7log2m) is bounded
above by a polynomial in N = mn and security parameter λ, we can apply the general
forking lemma.

In Case 1, if stP is empty, it means the protocol has never run Case 2, so that
the proof system proves the relation R1,n

IP that is exactly the goal of Protocol4.Col.
Therefore, Ecol is sufficient for χ. If stP is non-empty, then χ runs two extractor Ecol and
E1 for all leaf nodes of the tree of accepting transcripts. Note that the tree of accepting
transcripts is polynomially bounded and both Ecol and E1 are expected polynomial
time, so that χ spends polynomially bounded operations in this step. By Theorem 14
and Theorem 15, Ecol and E1 extract a witness (a, b) of R1,n

IP and a witness (l, r,p) of
RAggMEC.Row, respectively. We would like to emphasize that E1 has run for all accepting
transcripts, so that from now we can assume that for each accepting transcript, χ knows
a tuple (l, r, p̂,p) satisfying the following equations, regardless of the challenges.

P = Com(p;F `+1) (43)

P̂ = Com(p̂;F `) (44)

p̂ = lx
2

◦ p ◦ rx
−2

(45)

Next, we show that for Case 2, χ can extract a witness (a, b) of each recursive

round by using the previous round witness (â, b̂) that can be extracted by either the
previous round extractor of Case 2 or the extractor of Case 1.

The extractor χ runs the prover until Step 2 to get cL, cR, and S`. At this point
of time, χ rewinds the prover with 7 distinct challenges x1, . . . , x7 and obtains tuples

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 53

(âi, b̂i) for i ∈ [7] that satisfy the following equations.

P̂i = Com(
−→
ĝâi ‖

−→
ĥ

b̂i
;F `) (46)

ĉi = 〈âi, b̂i〉 (47)

P̂i is contained in stV , so that, by discrete logarithm relation on Gq, the openings

of Eq. (44) and Eq. (46) must be identical for all i ∈ [7]. That is, p̂ =
−→
ĝâi ‖

−→
ĥ

b̂i
.

Combining this equation with Eq. (45), we have

lx
2
i ◦ p ◦ rx

−2
i = p̂i =

−→
ĝâi ‖

−→
ĥ

b̂i

=

−−−−−−−−−−→
(g
x−1
i

1 ◦ gxi−1)
âi

‖
−−−−−−−−−−→
(hxi1 ◦ h

x−1
i
−1)

b̂i

(48)

where all the exponents are known to the extractor.
The right-hand side of Eq.(48) consists of a vector of products of the CRS g and

h whose discrete logarithm relation is unknown. The left-hand side of Eq.(48) has
exponents (x2i , 1, x

−2
i). Hence, similarly to the proof of the original BP-IP, for three

challenges x1, x2 and x3 the extractor computes the inverse matrix of a 3×3 matrix with
rows (x2i , 1, x

−2
i)3i=1. Then, by using it, χ finds exponent matrices at,s, bt,s ∈ Zm/2×np

for t ∈ {l, p, r} and s ∈ {1,−1} that satisfies the following equations .

l =
−−−→
g1

al,1 ◦
−−−−−→
g−1

al,−1 ‖
−−−→
h1

bl,1 ◦
−−−−−→
h−1

bl,−1 ∈ G2n
p

p =
−−−→
g1

ap,1 ◦
−−−−−−→
g−1

ap,−1 ‖
−−−→
h1

bp,1 ◦
−−−−−−→
h−1

bp,−1 ∈ G2n
p

r =
−−−→
g1

ar,1 ◦
−−−−−−→
g−1

ar,−1 ‖
−−−→
h1

br,1 ◦
−−−−−−→
h−1

br,−1 ∈ G2n
p (49)

Putting Eq.(49) into Eq.(48), by the discrete logarithm relation assumption on Gp, the
exponents of the bases g1, g−1,h1, and h−1 satisfy the following equations for each
i ∈ [7].

g1 exponents : x2ial,1 + ap,1 + x−2
i ar,1 = x−1

i âi (50)

g−1 exponents : x2ial,−1 + ap,−1 + x−2
i ar,−1 = xiâi (51)

h1 exponents : x2i bl,1 + bp,1 + x−2
i br,1 = xib̂i (52)

h−1 exponents : x2i bl,−1 + bp,−1 + x−2
i br,−1 = x−1

i b̂i (53)

Combining Eq.(50) and (51), we get the following Eq.(54). Similarly, combining Eq.(52)
and (53), we get the following Eq.(55).

x3ial,1 + xiap,1 + x−1
i ar,1 = xial,−1 + x−1

i ap,−1 + x−3
i ar,−1 (54)

xibl,1 + x−1
i bp,1 + x−3

i br,1 = x3i bl,−1 + xibp,−1 + x−1
i br,−1 (55)

for i ∈ [7]. In both Eq.(54) and Eq.(55), degrees of xi range between −3 and 3. Then,
we can construct two polynomials A(X) and B(X) with 7 roots x1, · · · , x7.

A(X) =al,1X
6 + (ap,1 − al,−1)X4 + (ar,1 − ap,−1)X2 − ar,−1 = 0 (56)

B(X) =bl,−1X
6 + (bp,−1 − bl,1)X4 + (br,−1 − bp,1)X2 − br,1 = 0 (57)

54 Kim et al.

From the facts that the degree of A(X) and B(X) is at most 6 and A(X) and B(X)
have 7 distinct roots, the polynomials A(X) and B(X) must be zero polynomial, so
that we have

ap,1 = al,−1, ap,−1 = ar,1, al,1 = ar,−1 = 0 (58)

bp,1 = br,−1, bp,−1 = bl,1, bl,−1 = br,1 = 0 (59)

Now we claim that the desired matrices ap = ap,1 ‖ ap,−1 and bp = bp,1 ‖ bp,−1

are a witness of the instance (g,h,F `+1, P, c) of the relation Rm,nIP . That is, we show

that P = Com(
−−→
gap ‖

−−→
hbp ;F `+1) ∧ c = 〈ap, bp〉 holds. The first constraint is rather

straightforward; from Eq.(43), we get

P = Com(
−−−→
g1

ap,1 ◦
−−−−−−→
g−1

ap,−1 ‖
−−−→
h1

bp,1 ◦
−−−−−−→
h−1

bp,−1 ;F `+1) = Com(
−−→
gap ‖

−−→
hbp ;F `+1). (60)

To check the inner product relation c = 〈ap, bp〉, we consider the equation

c+ x2i cL + x−2
i cR

=〈âi, b̂i〉

=〈xiap,1 + x−1
i ap,−1, x

−1
i bp,1 + xibp,−1〉

=〈ap,1, bp,1〉+ 〈ap,−1, bp,−1〉+ x2i 〈ap,1, bp,−1〉+ x−2
i 〈ap,−1, bp,1〉 (61)

for all challenges xi. Since x21, x22 and x23 are distinct, a Vandermonde matrix M ∈ Z3×3
p

is invertible.

M =

x−2
1 1 x21
x−2
2 1 x22
x−2
3 1 x23

 (62)

Using the matrix M , we can rewrite Eq.(61) to the following equation.

M

cRc
cL

 = M

 〈ap,−1, bp,1〉
〈ap,1, bp,1〉+ 〈ap,−1, bp,−1〉

〈ap,1, bp,−1〉

 (63)

Since M is invertible, the equation c = 〈ap,1, bp,1〉 + 〈ap,−1, bp,−1〉 = 〈ap, bp〉. holds.
Therefore, we conclude that the desired witness (ap, bp) is a witness of the instance
(g,h,F `+1, P, c) for relation Rm,nIP .

For each recursion, the extractor χ extracts a witness in at most polynomial
time. Therefore, we conclude that the protocol Protocol4.Row provides computational
witness-extended-emulation by the general forking lemma. ut

D.3 Protocol4.Col

In this section, we describe Protocol4.Col, which is an argument of knowledge for the
relation R1,n

IP . In the similar way in Protocol4.Row, Protocol4.Col consist of recursive
reduction and run a subprotocol AggMEC.Col. We denote pp2 to the public parameters
for AggMEC.Col.

Theorem 14. Assume that a proof system AggMEC.Col has perfect completeness and
computational witness-extended-emulation. Then, Protocol4.Col has perfect complete-
ness and computational witness-extended-emulation under the discrete logarithm rela-
tion assumption.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 55

Protocol4.Col(g, h,D`+1, (Dk)`k=1, pp2, P, c, stV ;a, b, stP)

where ` = log n and pp2 = (G,H,K, U) ∈ GO(n)
q ×GO(n)

q ×G3·(2`+2−2)
q ×Gq

If n = 1:
Step 1: If stP is empty, then follow the Step 2.

Otherwise, both P and V run AggMEC.Col(pp2, stV ; stP)
Step 2: P sends a and b and then V checks the following equations

c
?
= a · b, P

?
= com(ga ‖ hb;D1)

Else (n > 1): Let n̂ = n
2

. Parse a, b to

a = a1‖a−1 , b = b1‖b−1

Step 1: P computes p`+1 = ga ‖ hb ∈ G2n
p . If the lists stP and stV are empty,

then P and V add a tuple (p`+1) on stP and (D`+1, P, ·) on stV respectively.

Additionally, P parses p`+1 to 4 vectors p1,`+1,p2,`+1,p3,`+1,p4,`+1 ∈ Gn̂.

p`+1 = p1,`+1 ‖ p2,`+1 ‖ p3,`+1 ‖ p4,`+1

Step 2: P calculates

cL = 〈a1, b−1〉 ∈ Zp, cR = 〈a−1, b1〉 ∈ Zp

and sends cL, cR to V.

Step 3: V chooses x
$←Z∗p and returns it to P.

Step 4: P computes

p` = (p1,`+1 ‖ p4,`+1)x ◦ (p2,`+1 ‖ p3,`+1)x
−1

∈ G2n̂
p

P` = Com(p`;D`) ∈ Gq

and sends P` to V
Step 5: Both P and V compute

ĉ = x2cL + c+ x−2cR ∈ Zp

In addition, P computes â = a1x+a−1x
−1 ∈ Zn̂p and b̂ = b1x

−1+b−1x ∈ Zn̂p
Step 6: V updates stV by adding a tuple (D`, P`, x) into the top row. P updates
stP by adding a tuple (p`) into the top row. Both P and V run the protocol

Protocol4.Col(g, h,D`, (Dk)`−1
k=1, pp2, P`, ĉ, stV ; â, b̂, stP)

Fig. 11. Protocol4.Col

Proof. The Protocol4.Col separates into two cases Case 1(n = 1) and Case 2(n > 1)
according to n. For the sake of simplicity, we assume that n is power of 2.

56 Kim et al.

(Completeness) In Case 1, the prover and the verifier perform a subprotocol AggMEC.Col.
After running the subprotocol AggMEC.Col, the prover sends witness a and b to the
verifier and then the verifier checks the relation R1,1

IP directly. From this fact, the cor-
rectness of a witness (a, b) is guaranteed for relation R1,1

IP . In addition, we have to check
the correctness of the input of AggMEC.Col. We consider it after proving the perfect
completeness of Case 2 since such inputs are related to the steps in the Case 2.

Case 2 is the reduction step of Protocol4.Col. For the completeness of this case,
we show that Protocol4.Col correctly reduce a valid instance for the relation R1,n

IP to a

valid instance of the relation R1,n/2
IP . Assume that a statement (g, h,D`+1, P, c) is in a

language L1,n associated with the relation R1,n
IP such that there exists a witness pair

(a, b) ∈ Z1×n
p × Z1×n

p satisfying the following equations.

P =Com(ga ‖ hb;D`+1) (64)

c =〈a, b〉 (65)

The prover’s computation for the reduction step guarantees that P` and ĉ satisfy the
following equations.

P` =Com(p`;D`)

=Com((p1,`+1 ‖ p4,`+1)x ◦ (p2,`+1 ‖ p3,`+1)x
−1

;D`)

=Com((ga1 ‖ hb−1)x ◦ (ga−1 ‖ hb1)x
−1

;D`)

=Com(gxa1+x
−1a−1 ‖ hx

−1b1+xb−1 ;D`) By homomorphic property

=Com(gâ ‖ hb̂;D`) (66)

ĉ =x2cL + c+ x−2cR

=x2〈a1,a−1〉+ 〈a1, b1〉+ 〈a−1, b−1〉+ x−2〈a−1, b1〉 By Eq.(65) & Step 1 in Fig.11

=〈xa1 + x−1a−1, x
−1b1 + xb−1〉

=〈â, b̂〉 (67)

From the resemblance between pairs of equations (Eq.(64), Eq.(65)) and (Eq.(66),
Eq.(67)), we know that the tuple (g, h,D`, P`, ĉ) belongs to the language L1,n/2 asso-

ciated with the relation R1,n/2
IP with a witness (â, b̂) ∈ Z1×n/2

p ×Z1×n/2
p . In other wods,

each recursion step satisfies perfect completeness. By ` times recursion, we converts an
instance for the relation R1,n

IP to an instance for the relation R1,1
IP perfectly.

Finally, we check the acceptance of AggMEC.Col verifier. From ` times recursion,
the lists stP and stV must be formed ` + 1 rows. By P computation in Step 2 and
Step 4 in Fig.11, the k-th tuples of stP satisfies the following equation.

Pk = Com(pk,Dk), pk = (p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖ p3,k+1)x
−1
k for k ∈ [`] (68)

The `+ 1-th row (F , P`,p`) satisfies P`+1 = Com(p`+1;D`+1) from Step 1 in Fig.11.

Then, the instance

[
(Dk, Pk, xk) for k ∈ [`]
(D`+1, P`+1, ·)

]
satisfies the conditions in the relation

RAggMEC.Col. By the perfect completeness of AggMEC.Col, acceptance of AggMEC.Col
verifier is guaranteed.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 57

(Witness-Extended-Emulation) For the computational witness-extended emulation, we
construct an expected polynomial time extractor χ whose goal is to extract the wit-
ness by using a polynomially bounded tree of accepting transcripts. To construct the
extractor χ, we use a extractor E2, which extract a witness by using transcript of
AggMEC.Col. From hypothesis, an polynomial time extractor E2 are given.

Due to the general forking lemma, it is sufficient to construct an extractor χ that
extracts a witness from a suitable tree of accepting transcripts in probabilistic polyno-
mial time.

We begin with (3, . . . , 3︸ ︷︷ ︸
log2 n

)-tree of accepting transcripts. Since the number of chal-

lenges in the tree (3logn) is bounded above by a polynomial in n and security parameter
λ, we can apply the general forking lemma.

In Case 1, if stP is empty, it means the protocol has never run Case 2, so that the
proof system proves the relation R1,1

IP . Since the prover sends the witness (a, b) to the
verifier, the extractor χ get a witness from the prover directly. If stP is non-empty, then
χ run a extractor E2 for all leaf nodes of the tree of accepting transcripts. Note that the
tree of accepting transcripts is polynomially bounded and E2 is expected polynomial
time, so that χ spends polynomially bounded operations in this step. By Theorem 16,
E2 extract a witness (p̂,p) of RAggMEC.Col. We would like to emphasize that E2 has run
for all accepting transcripts, so that from now we can assume that for each accepting
transcript, χ knows a tuple (p̂,p) satisfying the following equations, regardless of the
challenges.

P = Com(p;D`+1) (69)

P̂ = Com(p̂;D`) (70)

p̂ = (p1 ‖ p4)x ◦ (p2 ‖ p3)x
−1

(71)

Next, we show that for Case 2, χ can extract a witness (a, b) of each recursive

round by using the previous round witness (â, b̂) that can be extracted by either the
previous round extractor of Case 2 or the extractor of Case 1.

The extractor χ runs the prover until Step 2 to get cL and cR. At this point
of time, χ rewinds the prover with 3 distinct challenges x1, x2, x3 and obtains tuples
(âi, b̂i) for i ∈ [3] that satisfy the following equations.

P̂i = Com(gâi ‖ hb̂i ;D`) (72)

ĉi = 〈âi, b̂i〉 (73)

P̂i is contained in stV , so that, by the discrete logarithm relation on Gq, the openings of

Eq.(70) and Eq.(72) must be identical for all i ∈ [3]. That is, p̂ = gâi ‖ hb̂i . Combining
this equation with Eq.(71), we have

(p1 ‖ p4)xi ◦ (p2 ‖ p3)x
−1
i = p̂i = gâi ‖ hb̂i (74)

where all the exponents are known to the extractor.
The right-hand side of Eq.(74) consists of a vector of products of the CRS g and h

whose discrete log is unknown. The left-hand side of Eq.(74) has exponents (xi, x
−1
i).

Hence, similar to the proof of the original BP-IP, for two challenges x1 and x2, the
extractor computes the inverse matrix of a 2× 2 matrix with row (xi, x

−1
i)2i=1. Then,

58 Kim et al.

by using it, χ finds exponent vectors a∗1,a
∗
−1, b

∗
1, b
∗
−1 ∈ Zn/2p satisfying the following

equations.

ga
∗
1 = p1, ga

∗
−1 = p2

hb∗1 = p3, hb∗−1 = p4 (75)

Putting Eq.(75) into Eq.(74), by the discrete logarithm relation assumption on Gp, the
exponents of the bases g and h satisfy the following relation.

g exponents : âi = xia
∗
1 + x−1

i a
∗
−1 (76)

h exponents : b̂i = x−1
i b

∗
1 + xib

∗
−1 (77)

From given two challenge-witness pair (x1, (â1, b̂1)) and (x2, (â2, b̂2)), the extractor χ
computes a∗1, a∗−1, b∗1 and b∗−1.

Now we claim that the desired vectors a∗ = a∗1 ‖ a∗−1 and b∗ = b∗1 ‖ b∗−1 are
a witness of the instance (g, h,D`+1, P) of the relation R1,n

IP . That is, we show that

P = Com(ga
∗
‖ hb∗ ;D`+1)∧ c = 〈a∗, b∗〉 holds. The first constraint is rather straight-

forward; from Eq.(69), we get

P = Com(p1 ‖ p2 ‖ p3 ‖ p4;D`+1) = Com(ga
∗
‖ hb∗ ;D`+1) (78)

To check the inner product relation c = 〈a∗, b∗〉, we consider the equation.

c+ x2i cL + x−2
i cR = ĉ =〈âi, b̂i〉

=〈xia∗1 + x−1
i a

∗
−1, x

−1
i b

∗
1 + xib

∗
−1〉

=〈a∗1, b∗1〉+ 〈a∗−1, b
∗
−1〉+ x2i 〈a∗1, b∗−1〉+ x−2

i 〈a
∗
−1, b

∗
1〉 (79)

In the similar way in Eq.(61), the equation c = 〈a∗1, b∗1〉+ 〈a∗−1, b
∗
−1〉 = 〈a∗, b∗〉 holds.

Therefore, we conclude that the desired witness (a∗, b∗) is a witness of the instance
(g, h,D`+1, P) for relation R1,n

IP .

For each recursion, the extractor χ extracts a witness in at most polynomial time.
Therefore, we conclude that the protocol Protocol4.Col provides computational witness-
extended-emulation by the general forking lemma. ut

D.4 AggMEC.Row

In this section, we focus on AggMEC.Row, the argument of knowledge for the relation
RAggMEC.Row. We provide a full description of AggMEC.Row in Fig.12.

Uniform Random String Public inputs of the protocol AggMEC.Row consist of

a uniform random string (G,H,K, U) ∈ GO(n)
q ×GO(n)

q ×G18n logm+6n
q ×Gq and lists

of instance (Sk,F k, Sk, Pk, xk). The G and H are used in a subprotocol Comp.BPAC .
In a nutshell, G and H are commitment keys for left/right wires and output wires of
arithmetic circuit C respectively. K and U are used in inner product arguments, which
guarantee knowledge of the input wires aV and its inner product. Note that the URS
(G,H,K, U) is corresponding to pp1 in Protocol4.Row.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 59

Two Inner Product Arguments To aggregate proofs, both the prover and the
verifier aggregate each instance F k, Sk and Pk with challenge w. Additionally, the
prover aggregates lk, rk,pk to aV . For guarantee the knowledge of aV , the prover
sends a commitment C before receiving the challenge w (Step 1 in Fig.12). And the
prover and the verifier run two inner product arguments (Step 5). The two arguments
guarantee that 〈a1,u ◦ w〉 = 〈a2 ◦ w,u〉 for C = F a1

base, V = F a2◦w
base with random u

and v. In other words, the message aV of a commitment C is identical to the witness
aV of Comp.BPAC

Theorem 15. Let Comp.BPAC have perfect completeness and computational witness-
extended-emulation. Then, the protocol AggMEC.Row has perfect completeness and
computational witness-extended-emulation under the general discrete logarithm relation
assumption.

Proof. (Completeness) In order to show the completeness, we employ the perfect com-
pleteness of Comp.BPAC , so that it is sufficient to show the input of Comp.BPAC is
well constructed. That is, we show that the three constraints in Comp.BPAC holds: (1)
V = Com(aV ;Fw

base), (2) aL◦aR = aO, (3)WL ·aL+WR ·aR+WO ·aO = W V ·aV +c

We begin with assuming that an instance

[
(Sk,F k, Sk, Pk, xk) for k ∈ [`]
(· ,F `+1, · , P`+1, ·)

]
has a

witness

[
(lk, rk,pk) for k ∈ [`]
(· , · ,p`+1)

]
for the relation RAggMEC.Row.

In Step 3, V is defined as

V =

(∏̀
k=1

Sw
k−1

k

)
·

(
`+1∏
j=1

Pw
`+j−1

j

)

=
∏̀
k=1

Com(lk ‖ rk;Sw
k−1

k)

`+1∏
j=1

Com(pj ;F
w`+j−1

j).

Since aV is defined as l1 ‖ r1 ‖ l2 ‖ r2 ‖ · · · ‖ l` ‖ r` ‖ p1 ‖ · · · ‖ p`+1 ∈ Z18`n+6n
q , the

above equation is equal to Com(aV ;Fw
base). Then, the first constraint (1) holds.

By the definition of the Hadamard-product relation set in the protocol, the con-
straints (2) and (3) hold if the circuit C, which takes aV as input, outputs zeros. Since

(lk, rk,pk,pk+1)’s are a witness of RAggMEC.Row, the equality lk
x2k ◦ pk+1 ◦ rkx

−2
k = pk

holds. Therefore, the circuit C’s output lk
x2k ◦ pk+1 ◦ rkx

−2
k − pk should be equal to a

zero vector. This completes the perfect completeness proof.

(Witness-Extended-Emulation) For the computational witness-extended emulation for
AggMEC.Row, we construct a polynomial time extractor χ whose goal is to extract
the witness by using polynomially many accepting transcripts. By the hypothesis, the
extractor χ can employ a witness-extended-emulation E for Comp.BPAC .

χ begins with running the prover to get C. Then, χ rewinds the prover 2`+1 times
and feeds 2`+ 1 distinct challenges wi for i ∈ [2`+ 1]. Then χ runs E to obtain 2`+ 1

tuples (a
(i)
L ,a

(i)
R ,a

(i)
O ,a

(i)
V). We claim that a

(i)
V is identical regardless of wi. Indeed, C

is committed before the time of rewinding and thus its opening is unique under the
discrete logarithm relation assumption. Then the final argument system in Step 3
proving the equality between the opening of C and the opening of V guarantees that

60 Kim et al.

AggMEC.Row(G,H,K, U,

[
(Sk,F k, Sk, Pk, xk)
(· ,F `+1, · , P`+1, ·)

]
;

[
(lk, rk,pk)
(· , · ,p`+1)

]
for k ∈ [`])

Let C be a fan-in 2 arithmetic circuit over Zq that takes (lk ‖ pk+1 ‖ rk) ∈ Z18n
q for

k ∈ [`] as input and outputs lk
x2k ◦pk+1◦rkx

−2
k −pk ∈ Z6n

q and Y 2Z−X3−aX−b ∈ Zq
for all components (X,Y, Z) ∈ Z3

q of the vectors (lk, rk,p`+1) for all k.
Let aL,aR, and aO be vectors indicating values of left input wires, right input

wires, and output wires of all multiplicative gates in C respectively, except that the
final output wires, which are all set as zeros.

Let aV be l1 ‖ r1 ‖ l2 ‖ r2 ‖ · · · ‖ l` ‖ r` ‖ p1 ‖ · · · ‖ p`+1 ∈ Z18`n+6n
q .

Let (WL,WR,WO,W V , c;aL,aR,aO,aV) be an Hadamard-product relation
such that aL ◦ aR = aO and WL · aL + WR · aR + WO · aO = W V · aV + c
are equations expressing the relations among wires in C.

Step 1: P sends C = F aV
base, a commitment to aV , where

F base := S1 ‖ · · · ‖ S` ‖ F 1 ‖ · · · ‖ F `+1 ∈ G18`n+6n
q .

Step 2: V chooses u,w
$←Z∗q and sends it to P

Step 3: Let u,w ∈ Z18`n+6n
q be vectors consisting of powers of w satisfying

Fw
base = S1 ‖ · · · ‖ Sw

`−1

` ‖ Fw
`

1 ‖ · · · ‖ Fw
2`

`+1 ∈ G18`n+6n
q .

u = (1, u, u2, · · · , u18`n+6n−1)

P sends t := 〈aV ,u ◦w〉 to V.

Step 4: V chooses s
$←Z∗q and sends it to P

Step 5 : P and V set

V =

(∏̀
k=1

Sw
k−1

k

)
·

(
`+1∏
j=1

Pw
`+j−1

j

)
∈ Gq

and run

Comp.BPAC(G,H,Fw
base,K, U, V,WL,WR,WO,W V , c;aL,aR,aO,aV)

BPIP(F base,K, Us,Ku◦w · Us·t · Cs
2

;aV ,u ◦w)

BPIP(Fw
base,K, Us,Ku · Us·t · V s

2

;aV ◦w,u)

Fig. 12. AggMEC.Row

a
(i)
V = a

(j)
V holds for i 6= j. Thus, for the sake of simplicity, we simply use aV to denote

a
(i)
V regardless of w challenges.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 61

We know that aV passes the protocol Comp.BPAC , so that the following equations
hold.

aV = l1 ‖ r1 ‖ · · · ‖ l` ‖ r` ‖ p1 ‖ · · · ‖ p`+1 (80)

pk = lk
x2k ◦ pk+1 ◦ rk

x−2
k for k ∈ [`] (81)

To complete the proof, we show that the extracted values (lk, rk,pj) for k ∈ [`], j ∈
[`+ 1]) are a witness of RAggMEC.Row. One constraint is already satisfied by Eq.(81). We
consider two remained constraints of RAggMEC.Row such that Pj and Sk are commitment
to pj for j ∈ [`+ 1] and lk‖rk for k ∈ [`], respectively.

V is defined as not only a product of Sk’s and Pj ’s in Step 3, but also a commitment
to aV with the commitment key Fw

base. Thus, we have the following equality.(∏̀
k=1

S
wk−1

i
k

)
·

(
`+1∏
j=1

P
w

`+j−1
i

j

)
= V = Com(aV ;Fw

base)

=
∏̀
k=1

Com(lk ‖ rk;S
wk−1

i
k)

`+1∏
j=1

Com(pj ;F
w

`+j−1
i

j)

=
∏̀
k=1

Com(lk ‖ rk;Sk)w
k−1
i

`+1∏
j=1

Com(pj ;F j)
w

`+j−1
i (82)

From 2` + 1 equations with distinct wi’s, we can separate Eq.(82) into the following
desired 2`+ 1 equations.

Sk =Com(lk ‖ rk;Sk) for k ∈ [`] (83)

Pj =Com(pj ;F j) for j ∈ [`+ 1] (84)

Then (lk, rk,pj for k ∈ [`], j ∈ [` + 1]) is a witness for the relation RAggMEC.Row.
The extractor χ extracts a witness from 2` + 1 transcripts with 2` + 1 times running
of polynomial time extractor E . Therefore the protocol AggMEC.Row provides compu-
tational witness-extended emulation. ut

D.5 AggMEC.Col

In this section, we focus on AggMEC.Col, the argument of knowledge for the relation
RAggMEC.Col. We provide a full description of AggMEC.Col in Fig.13. In the similar
way in AggMEC.Row, AggMEC.Col requires uniform random string (G,H,K, U) ∈
GO(n)
q × GO(n)

q × G6·(2`+1−1
q × Gq. Note that the URS (G,H,K, U) is corresponding

to pp2 in Protocol4.Col.

Theorem 16. Let Comp.BPAC have perfect completeness and computational witness-
extended-emulation. Then, the protocol AggMEC.Col has perfect completeness and com-
putational witness-extended-emulation under the general discrete logarithm relation as-
sumption.

Proof. (Completeness) In order to show the completeness, we employ the perfect com-
pleteness of Comp.BPAC, so that it is sufficient to show the input of Comp.BPAC is
well constructed. That is, we show that the three constraints in Comp.BPAC holds: (1)
V = Com(aV ;Dw

base), (2) aL◦aR = aO, (3)WL ·aL+WR ·aR+WO ·aO = W V ·aV +c

62 Kim et al.

AggMEC.Col(G,H,K, U,

[
(Dk, Pk, xk)
(D`+1, P`+1, ·)

]
;

[
(pk)
(p`+1)

]
for k ∈ [`])

Let C be a fan-in 2 arithmetic circuit over Zq that takes (pk+1) ∈ Z3·2k+1

q for

k ∈ [`] as input and outputs (p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖ p3,k+1)x
−1
k − pk ∈ Z3·2k

q

and Y 2Z − X3 − aX − b ∈ Zq for all components (X,Y, Z) ∈ Z3
q of the vectors

(lk, rk,p`+1) for all k.
Let aL,aR, and aO be vectors indicating values of left input wires, right input

wires, and output wires of all multiplicative gates in C respectively, except that the
final output wires, which are all set as zeros.

Let aV be p1 ‖ · · · ‖ p`+1 ∈ Z6·(2`+1−1)
q .

Let (WL,WR,WO,W V , c;aL,aR,aO,aV) be an Hadamard-product relation
such that aL ◦ aR = aO and WL · aL + WR · aR + WO · aO = W V · aV + c
are equations expressing the relations among wires in C.

Step 1: P sends C = DaV
base, a commitment to aV , where

Dbase := D1 ‖ · · · ‖D`+1 ∈ G6·(2`+1−1)
q .

Step 2: V chooses u,w
$←Z∗q and sends it to P

Step 3: Let u,w ∈ Z6·(2`+1−1)
q be vectors consisting of powers of w satisfying

Dw
base = D1 ‖ · · · ‖Dw`

`+1 ∈ G6·(2`+1−1)
q .

u = (1, u, u2, · · · , u6·(2`+1−1))

P sends t := 〈aV ,u ◦w〉 to V.

Step 4: V chooses s
$←Z∗q and sends it to P

Step 5 : P and V set

V =

(
`+1∏
k=1

Pw
k−1

k

)
∈ Gq

and run

Comp.BPAC(G,H,Dw
base,K, U, V,WL,WR,WO,W V , c;aL,aR,aO,aV)

BPIP(Dbase,K, Us,Ku◦w · Us·t · Cs
2

;aV ,u ◦w)

BPIP(Dw
base,K, Us,Ku · Us·t · V s

2

;aV ◦w,u)

Fig. 13. AggMEC.Col

Assume that an instance

[
(Dk, Pk, xk) for k ∈ [`]
(D`+1, P`+1, ·)

]
has a witness

[
(pk) for k ∈ [`]
(p`+1)

]
for the relation RAggMEC.Col.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 63

In Step 3, V is defined as

V =

(
`+1∏
k=1

Pw
k−1

k

)
=

`+1∏
k=1

Com(pk;Dwk−1

k)

Since aV is defined as p1 ‖ · · · ‖ p`+1 ∈ Z6·(2`+1−1)
q , the above equation is equal to

Com(aV ;Dw
base). Then, the first constraint (1) holds.

By the definition of the Hadamard-product relation set in the protocol, the con-
straints (2) and (3) hold if the circuit C, which takes aV as input, outputs zeros. Since
(pk,pk+1)’s are a witness of RAggMEC.Col, the equality (p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖
p3,k+1)x

−1
k = pk holds. Therefore, the circuit C’s output (p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖

p3,k+1)x
−1
k −pk should be equal to a zero-vector. This completes the perfect complete-

ness proof.

(Witness-Extended-Emulation) For the computational witness-extended emulation for
AggMEC.Col, we construct a polynomial time extractor χ whose goal is to extract
the witness by using polynomially many accepting transcripts. By the hypothesis, the
extractor χ can employ a witness-extended-emulation E for Comp.BPAC .

χ begins with running the prover to get C. Then, χ rewinds the prover `+ 1 times
and feeds ` + 1 distinct challenges wi for i ∈ [` + 1]. Then χ runs E to obtain ` + 1

tuples (a
(i)
L ,a

(i)
R ,a

(i)
O ,a

(i)
V). In the same way in proof of Theorem D.4, a

(i)
V is identical

regardless of wi. Thus, we simply use aV to denote a
(i)
V regardless of w challenges.

We know that aV passes the protocol Comp.BPAC , so that the following equations
hold.

aV = p1 ‖ · · · ‖ p`+1 (85)

pk = (p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖ p3,k+1)x
−1
k for k ∈ [`] (86)

To complete the proof, we show that the extracted values (pk) for k ∈ [` + 1] are a
witness of RAggMEC.Row. One constraint is already satisfied by Eq.(86). We consider two
remained constraints of RAggMEC.Col such that Pk are commitment to pk for k ∈ [`+ 1].

V is defined as not only a product of Sk’s and Pj ’s in Step 3, but also a commitment
to aV with the commitment key Dw

base. Thus, we have the following equality.(
`+1∏
k=1

P
wk−1

i
k

)
= V = Com(aV ;Dw

base)

=

`+1∏
k=1

Com(pk;D
wk−1

i
k)

=

`+1∏
k=1

Com(pk;Dk)w
k−1
i (87)

From ` + 1 equations with distinct wi’s, we can separate Eq.(87) into the following
desired `+ 1 equations.

Pk = Com(pk;Dk) for k ∈ [`+ 1] (88)

Then (pk for k ∈ [` + 1]) is a witness for the relation RAggMEC.Col. The extractor
χ extracts a witness from ` + 1 transcripts with ` + 1 times running of polynomial
time extractor E . Therefore, the protocol AggMEC.Col provides computational witness-
extended emulation. ut

64 Kim et al.

D.6 Comp.BPAC

The commitment scheme is often used in proof systems for committing to elements of
the witness. For example, Bünz et al.’s proof system for arithmetic circuits [20] allows
inputs to be Pedersen commitments to elements of the witness. In particular, it uses the
original Pedersen commitment scheme (without hiding property) to an integer. Using
the homomorphic property of Pedersen commitment, the verifier can perform some
verification process using the separated committed integers. However, the separated
committed integers derive the linear size of commitments in the number of committed
integers.

In this section, we propose an argument for arithmetic circuits, which allows inputs
to be a generalized Pedersen commitment, denoted by V := F aV ∈ Gq, to a vector
of elements of the witness aV ∈ ZMq , where Gq is a group of order q and F ∈ GMq is
the commitment key. It enables to design a much shorter proof since it compresses a
vector of commitments to an integer in [20] into a commitment to a vector of integers.
Instead, the verifier in our protocol cannot publicly perform homomorphic operation
over the committed values, so that this verification should be proven by an additional
subprotocol, which is not significant compared to the original task.

Using the reduction from the arithmetic circuit to Hadamard-product relation
in [20], the following relation is sufficient for the proof systems for the arithmetic
circuit with additional input V := F aV ∈ Gq.

RAC =


(
G,H ∈ GNq ,F ,K ∈ GMq , U, V ∈ Gq,WL,WR,WO ∈ ZQ×Nq ,
W V ∈ ZQ×Mq , c ∈ ZQq ;aL,aR,aO ∈ ZNq ,aV ∈ ZMq

)
:

V = F aV ∧ aL ◦ aR = ao
∧WL · aL +WR · aR +WO · aO = W V · aV + c

 (89)

We build a proof system for the relation RAC on the basis of the inner-product ar-
gument BPIP of the Bulletproofs [20]. The proposed protocol, called Comp.BPAC , is a
reduction to BPIP and described in Fig.14.

Efficiency Analysis We discuss the efficiency of Comp.BPAC . In this section, we
neglect the field operations in Zq in complexity analysis. And we assume that the circuit
size N is larger than the circuit input length M .

First, we consider the computational complexity. In Step 1, P performs O(N log q)
Gq-operations for AI and AO. And both P and V perform O(N log q) Gq-operations
for H ′ and P in Step 3 and Step 7 respectively. Finally, both P and V update BPIP

instances Uw, P ·Uw·t̂,Fw
2

, V w
2

·KzQ+1·WV ·Uw·v which are required O(N log q) Gq-
operations. After reduction, P and V run two BPIP protocols, which requireO((N log q+
M log q) Gq-operations in total. Since N is larger than M , we conclude total P/V
computation complexity is O(N log q) Gq-operations.

Let consider the proof size. In the reduction process, P sends four Zq-elements
(v, t1, t3, t̂) to the verifier. After reduction, P and V run two BPIP. Each BPIP(G,H ′, Uw,

P · Uw·t̂; l, r) and BPIP(Fw
2

,K, Uw, V w
2

·KzQ+1·WV · Uw·v;aV ,z
Q+1 ·W V) require

logN Gq-elements and logM Gq-elements, respectively. Then, total proof size is bound
O(logN) Gq-elements.

Theorem 17. The Comp.BPAC has perfect completeness and computational witness-
extended-emulation under the discrete logarithm relation assumption.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 65

Proof. Since BPIP has perfect completeness and computational witness-extended em-
ulation under the discrete logarithm relation assumption (Thereom 4), we prove only
the reduction step in Comp.BPAC for perfect completeness and computational witness-
extended emulation.

(Completeness) In the last step, both the prover and the verifier run two inner-
product arguments BPIP. Hence, it is sufficient to show that the inputs of two inner-
product arguments are well calculated. That is, (G,H ′, U, P · Uw·t̂; l, r) ∈ RIP and

(Fw
2

,K, Uw, V w
2

·KzQ+1·WV ·Uw·v;aV ,z
Q+1 ·W V) ∈ RIP. The first inclusion rela-

tion is rather straightforward from the calculation in Step 3. For the second inclusion
relation, one can check P ·Uwt̂ is a valid Pedersen commitment to a vector (l, r, 〈l, r〉)
with the commitment key (G,H ′, Uw) from the following equalities.

Gl ·H ′r =GaL·x+aO·x2+y−N◦(zQ+1·WR)·x ·H ′y
N◦aR·x−yN+zQ+1·(WL·x+WO)

=(GaLH ′y
N◦aR)x · (GaO)x

2

·H ′−yN+zQ+1·(WL·x+WO) ·Gy−N◦(zQ+1·WR)·x

=AxI ·Ax
2

O ·H ′−yN+zQ+1·(xWL+WO) ·Gy−N◦(zQ+1·WR)x

=P

〈l, r〉 =t1x+ t2x
2 + t3x

3

=t1x+ (〈aL,aR ◦ yN 〉 − 〈aO,yN 〉+ 〈zQ+1,w〉+ δ(y, z))x2 + t3x
3

=t1x+ (〈zQ+1,W V · aV + c〉+ δ(y, z)+)x2 + t3x
3

=t1x+ (v + 〈zQ+1 ·W V , c〉+ δ(y, z))x2 + t3x
3

=t̂

(Witness-Extended-Emulation) By the general forking lemma, it is sufficient to con-
struct an expected polynomial time extractor χ that extracts the witness by using
a polynomially bounded tree of accepting transcripts. By Theorem 4, two subproto-
cols for the inner-product have the computational witness-extended emulation under
the discrete logarithm relation assumption. Thus, the extractor χ can employ BPIP

extractor E at most polynomial time.

For each challenge, the extractor begins with running two subprotocol’s extractors
to obtain l, r, aV , and aW satisfying the condition

P · Uw·t̂ = GlH ′rUw·〈l,r〉 (90)

of the first inner-product relation and the condition

V w
2

·KzQ+1·WV · Uw·v = (Fw
2

)aV KaWUw·〈aV ,aW 〉 (91)

of the second inner-product relation. From the above two equations, we claim that
t̂ = 〈l, r〉 and v = 〈aV ,aW 〉. If for a different challenge w′, we can compute a different
pair (l′, r′), then we have

P = GlHy−N◦rUw·(〈l,r〉−t̂) = Gl′Hy−N◦r′Uw
′·(〈l′,r′〉−t̂)

that yields a non-trivial solution of the discrete logarithm relation problem. Thus, under
the discrete logarithm relation assumption, we can set l and r obtained by the extractor

66 Kim et al.

is independent from the choice of the challenge w. Since P is publicly computable by
the equation in Step 7, we have

GlH ′rUw〈l,r〉 = AxI ·Ax
2

O ·H ′−yN+zQ+1·(xWL+WO) ·Gy−N◦(zQ+1·WR)x · Uwt̂

Using two challenges w, the above equation separates into

GlH ′r = AxI ·Ax
2

O ·H ′−yN+zQ+1·(xWL+WO) ·Gy−N◦(zQ+1·WR)x (92)

U 〈l,r〉 = U t̂ (93)

The equation Eq. (93), we obtain a desired result t̂ = 〈l, r〉. Applying a similar
argument with three challenges to Eq. (91), we can obtain another desired result
v = 〈aV ,aW 〉, V = F aV , and aW = zQ+1 ·W V , which can be re-written as

V = F aV (94)

v = 〈aV ,zQ+1 ·W V 〉. (95)

Until now we have extracted only a witness aV using w challenges. Next, we use
x, y, z challenges to extract the other witness aL, aR, and aO and to show all the
witness satisfy the remained desired constraints. The upper equation Eq. (92) consists
of a product of G,H ′, AI and AO. Using two challenges x1 and x2 such that (xi, x

2
i)

are linearly independent, we can find aL,aR,aO,L, and aO,R that satisfy the following
equations.

AI = GaL ·HaR

AO = GaO,L ·HaO,R

The discrete logarithm relation assumption guarantees the uniqueness of the above
representations, particularly regardless of the challenges. Combining the above equa-
tions with (92), we obtain the following equalities under the discrete logarithm relation
assumption.

l = aL · x+ aO,L · x2 + y−N ◦ (zQ+1 ·WR)x (96)

r = yN ◦ aR · x+ yN ◦ aO,R · x2 − yN + zQ+1 · (xWL +WO) (97)

In particular, the above equalities hold regardless of the challenges. From Eq. (93),
Eq. (95) and the equation in Step 6, we know that

〈l, r〉 = t̂ = t1x+
(
δ(y, z) + v + 〈zQ+1, c〉

)
x2 + t3x

3

= t1x+
(
δ(y, z) + 〈aV ,zQ+1 ·W V 〉+ 〈zQ+1, c〉

)
x2 + t3x

3, (98)

where all coefficients in x, x2, and x3 are chosen or defined before the selection of
the challenge x. Thus, for each (y, z) challenge pair, we consider three polynomials
l(X), r(X), t(X) of degree at most 4 whose evaluation at x is the value in Eq. (96),
Eq. (97), Eq. (98), respectively. In particular, we consider evaluations for 4 distinct x
challenges. Then, all coefficients are uniquely defined since we have 4 points of polyno-
mials of degree at most 4. (In fact, all the other values except x is predefined regardless
of x, and thus we know all coefficients already.)

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 67

Computing the inner product between l(X) and r(X), the coefficient in X2 is

〈aL + y−N ◦ (zQ+1 ·WR),yN ◦ aR + zQ+1 ·WL〉+ 〈aO,L,−yN + zQ+1 ·WO〉

=〈y−N ◦ (zQ+1 ·WR),zQ+1 ·WL〉+ 〈aL,yN ◦ aR〉 − 〈aO,L,yN 〉

+ 〈aL,zQ+1 ·WL〉+ 〈y−N ◦ (zQ+1 ·WR),yN ◦ aR〉+ 〈aO,L,zQ+1 ·WO〉

=δ(y, z) + 〈aL,yN ◦ aR〉 − 〈aO,L,yN 〉+ 〈zQ+1,WLaL +WRaR +WOaO,L〉.

Considering the above equation with the coefficient in X2 of t(X), we have

〈aO,L − aL ◦ aR,yN 〉 = 〈zQ+1,WLaL +WRaR +WOaO,L −W V aV − c〉.

The above equality holds for any challenges y and z. Fixing a z (and so zQ+1), 〈aO,L−
aL◦aR,yN 〉 is a constant regardless of yN . Thus, considering n+1 different y challenges
(and so yni for i ∈ [n + 1]), we know that aO,L − aL ◦ aR is orthogonal to n linearly
independent vectors yni − ynn+1 for i ∈ [n], so that we have

aO,L − aL ◦ aR = 0. (99)

Similarly, using Q+ 1 different z challenges, we obtain the following equation.

WL · aL +WR · aR +WO · aO,L −W V · aV − c = 0 (100)

The three equations Eq. (94), Eq. (99), and Eq. (100) are exactly the constraints
in the relation RAC . Therefore, the extracted tuple (aL,aR,aO,L,aV) is a witness of
the relation RAC . ut

68 Kim et al.

Comp.BPAC(G,H,F ,K, U, V,WL,WR,WO,W V , c;aL,aR,aO,aV)

Step 1: P computes

AI = GaLHaR ∈ Gq, AO = GaO ∈ Gq

and sends AI , AO to V.

Step 2: V chooses y, z
$←Z∗q and returns it to P.

Step 3: Both P and V compute

yN := (1, y, y2, . . . , yN−1) ∈ ZNq , zQ+1 := (z, z2, . . . , zQ) ∈ ZQq ,

δ(y, z) := 〈y−N ◦ (zQ+1 ·WR),zQ+1 ·WL〉,

H ′i := Hy−i+1

i , ∀i ∈ [N] and H ′ := (H ′1, . . . , H
′
N).

Additionally, P computes

l(X) := aL ·X + aO ·X2 + y−N ◦ (zQ+1 ·WR) ·X ∈ ZNq [X],

r(X) := yN ◦ aR ·X − yN + zQ+1 · (WL ·X +WO) ∈ ZNq [X],

t(X) := 〈l(X), r(X)〉 =
∑
i∈[3]

ti ·Xi ∈ Zq[X],

w := WL · aL +WR · aR +WO · aO ∈ ZQq ,

t2 := 〈aL,aR ◦ yN 〉 − 〈aO,yN 〉+ 〈zQ+1,w〉+ δ(y, z) ∈ Zq,

v := 〈zQ+1 ·W V ,aV 〉 ∈ Zq

and sends v and ti for i ∈ {1, 3} to V.

Step 4: V chooses x
$←Z∗q and returns it to P.

Step 5: P computes

l := l(x) ∈ ZNq , r := r(x) ∈ ZNq , t̂ := 〈l, r〉 ∈ Zq

and sends t̂ to V.
Step 6: V checks the following equation.

t̂ = t1x+
(
δ(y, z) + v + 〈zQ+1, c〉

)
x2 + t3x

3

If the equation holds, V chooses w
$←Z∗q and returns it to P.

Step 7: Both P and V compute

P = AxI ·Ax
2

O ·H ′−yN+zQ+1·(xWL+WO) ·Gy−N◦(zQ+1·WR)x ∈ Gq

Step 8: Both P and V run two protocols BPIP(G,H ′, Uw, P · Uw·t̂; l, r) and

BPIP(Fw
2

,K, Uw, V w
2

·KzQ+1·WV · Uw·v;aV ,z
Q+1 ·W V)

Fig. 14. Comp.BPAC : A Generalization of Bulletproofs-AC For Compact Input

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 69

D.7 Efficiency Analysis

We are interested in the efficiency of Protocol4.Row (Fig. 10). To do this, we present
complexities for AggMEC.Row (Fig. 12), AggMEC.Col (Fig. 13), and Protocol4.Col
(Fig. 11) in advance. Below, we denote group operations and elements in a group G by
G-operations and elements, respectively. We also note that because the number of field
operations (elements) in Zp is negligible compared to those in Gq for all protocols, we
neglect them in complexity analysis.

First, we discuss the efficiency of AggMEC.Row. In Step 1, P performs O(n` log q)
Gq-operations. Both P and V performO(n` log q) Gq-operations in Step 3 andO(` log q)

Gq-operations in Step 5. An arithmetic circuit to compute lk
x2k ◦ pk+1 ◦ rkx

−2
k − pk ∈

G2n
p for k ∈ [`] consists of O(n` log p) Gp-operations. Because a single Gp-operation re-

quires 12 multiplication gates over Zq, the circuit consists of O(n` log p) multiplication
gates. In Step 5, P and V invoke Comp.BPAC for N ← O(n` log p) and M ← O(n`),
which requires O(n` log p log q) Gq-operations for each P and V. In addition, P and
V invoke BPIP twice for N ← O(n`), which requires O(n` log q) Gq-operations for
each P and V. Thus, the total computation complexity of both P and V equals to
O(n` log p log q) Gq-operations. The communication complexity is dominated by that
of Comp.BPAC , i.e., O(logn+ log `+ log log p) Gq-elements.

The efficiency of AggMEC.Col can be analyzed similarly with AggMEC.Row. An

arithmetic circuit to compute (p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖ p3,k+1)x
−1
k −pk ∈ G2k

p for

k ∈ [`] consists of O(2` log p) multiplication gates over Zq. Step 5 executes Comp.BPAC
for N ← O(2` log p) and M ← O(2`) and BPIP for N ← O(2`) twice. The total
computation complexity of both P and V becomes O(2` log p log q) Gq-operations. The
communication complexity equals to O(`+ log log p) Gq-elements.

We proceed to Protocol4.Col. First, we analyze the reduction part. For each n > 1, P
performs O(n log p) Gp-operations in Step 1 and O(n log p) Gp-operations, O(n log q)
Gq-operations in Step 4. Because n is cut in half at each iteration, P still performs
O(n log p) Gp-operations and O(n log q) Gq-operations across all iterations. The com-
munication complexity is dominated by O(logn) Gq-elements from Step 4. When
n = 1, computation and communication complexities are dominated by the execution
of AggMEC.Col with `← logn. Thus, the total computation complexity of P consists
of O(n log p) Gp-operations and O(n log p log q) Gq-operations. The total computation
complexity of V is O(n log p log q) Gq-operations. The communication complexity is
O(logn+ log log p) Gq-elements.

Finally, we analyze the efficiency of Protocol4.Row. In the reduction part (m > 1),
the computation cost for P is dominated by O(mn log p) Gp-operations (Step 1 and
Step 2) and O(n logm log q) Gq-operations (Step 2 and Step 4). The computa-
tion cost for V is O(m log p) Gp-operations from Step 5. P and V communicate with
O(logm) Gq-elements from Step 4. When m = 1, the complexities are determined
by AggMEC.Row with ` ← logm and Protocol4.Col. Therefore, the total computa-
tion complexity of P consists of O(mn log p) Gp-operations and O(n logm log p log q)
Gq-operations. The total computation complexity of V consists of O(m log p) Gp-
operations and O(n logm log p log q) Gq-operations. The total communication complex-
ity is O(logn+ logm+ log log p) Gq-elements.

70 Kim et al.

E Extensions

E.1 Transparent Polynomial Commitment Scheme

Definition 12 (Commitment Scheme). A commitment scheme for a message space
M is a pair of algorithms (Setup,Com) such that

– Setup(1λ)→ ck: takes a security parameter λ and outputs a commitment key ck.

– Com(ck,M) → c: takes a commitment key and a message M ∈ M and outputs a
commitment c.

We say that a commitment scheme C = (Setup,Com) for a message spaceM is binding
if for all polynomial time adversaries A the following probability is negligible in λ

Pr

[
M0,M1 ∈M ∧M0 6= M1

∧ Com(ck,M0) = Com(ck,M1)

∣∣∣∣ Setup(1λ)→ ck;
A(ck)→ (M0,M1)

]
We say that a commitment scheme C = (Setup,Com) for a message space M is hiding
if for all polynomial time adversaries A the following probability is negligible in λ∣∣∣∣∣Pr

[
b = b̂

∣∣∣∣∣ Setup(1λ)→ ck;A(ck)→ (M0,M1, st);

{0, 1} $→ b;Com(ck,Mb)→ c;A(ck, st)→ b̂

]
− 1

2

∣∣∣∣∣
Definition 13 (Extractable Polynomial Commitment Scheme). A polynomial
commitment scheme consists of a 5-tuple of algorithms (Setup,Com,Eval.Setup,Eval.Prove,
Eval.Verify) such that

– Setup(F, d) → ck: takes a polynomial-coefficient field and a maximum degree as
input and outputs a commitment key ck.

– Com(ck, f(X))→ c: takes a commitment key ck and a polynomial f(X) ∈ F[X] of
maximum degree d as input and outputs a commitment c.

– (Eval.Setup,Eval.Prove,Eval.Verify): is a (CRS generator, prover, verifier)-tuple of
an interactive argument of knowledge with respect to the relation{

(ck, c, x, z; f(X) ∈ F) : Com(ck, f(X))→ c ∧ deg(f(X)) ≤ d ∧ f(x) = z
}
,

where Setup(F, d)→ ck.

We say that a polynomial commitment PC = (Setup,Com,Eval.Setup,Eval.Prove,Eval.Verify)
is extractable if (Setup,Com) is a binding commitment scheme and if (Eval.Setup,
Eval.Prove,Eval.Verify) has witness-extended emulation.

The inner-product argument with the Pedersen commitment scheme such as BP-
IP can be naturally considered a transparent polynomial commitment scheme and
is already used in many prior works (e.g., [53, 19, 22]). For example, a polynomial
f(X) =

∑
i∈[N] aiX

i−1 ∈ Zp[X] can be represented by a vector a = (a1, . . . , aN) of

its coefficients. Then, the prover can commit to a using Pedersen commitment (that
is, ga, where g is the commitment key.) and prove an evaluation at any point x by
proving an inner-product relation between a and the vector (1, x, x2, . . . , xN−1).

In Table 2, we present a comparison for asymptotic complexities of polynomial
commitment schemes.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 71

Scheme CRS size
Commit Opening P’s computation V’s

Assump.
size proof size Commit Open computation

Groth [36] O(
3√
N)G2 O(

3√
N)Gt O(3

√
N)G1 O(N)τ1 O(

2
3
√
N)τ1 O(

3√
N)τ1 DPair

BP [20] O(N)G1 O(1)G1 O(logN)G1 O(N)τ1 DL

Hyrax [53] O(
√
N)G1 O(logN)G1 O(N)τ1 O(

√
N)τ1 DL

BFS [21] O(N)GU O(1)GU O(logN)GU O(N)u O(N log2N)u O(log2N)u UO

Virgo [57] O(1) O(1)H O((logN)2)H O(N log2N)h O((log2N)2)h CR hash

BMMV [22] O(
√
N)G2 O(1)Gt O(logN)Gt O(N)τ1 O(

√
N)τ1 O(

√
N)τ2 DPair

Protocol2 O(N)G1 O(1)G1 O(
√
logN)Gt O(N)τ1 O(N2

√
log N)τ1 O(N)τ1 DL&DPair

Protocol3 O(
√
N)G2 O(1)Gt O(logN)Gt O(N)τ1 O(N)τ1 O(

√
N)τ2 DL

Protocol4 O(
√
N)Gq O(1)Gq O(logN)Gq O(N)τp O(N)τp O(

√
N logN)τq DL

(G1,G2,Gt): bilinear groups, (Gp,Gq): elliptic curve groups of order p and q, GU : group of unknown
order, H: hash function,
τi: group operations in Gi, u: group operation in GU , p: pairing operation, h: hash operation,
N : degree of polynomial, DL: discrete logarithm assumption, DPair: double pairing assumption,
UO: strong RSA assumption and adaptive root assumption in unknown order groups, CR hash:
collision-resistant hashes

Table 2. Transparent polynomial commitment schemes

E.2 Zero-Knowledge Argument for Arithmetic Circuits

Definition 14 (Perfect Special Honest Verifier Zero-Knowledge). A public
coin argument (K,P,V) is perfect special honest verifier zero-knowledge (SHVZK) for
R if there exists probabilistic polynomial time simulator S such that for all pairs of
interactive adversaries A = (A1,A2),

Pr

[
A2(tr) = 1
∧(σ, x, w) ∈ R

∣∣∣∣ σ ← K(1λ); (x,w, ρ)← A1(σ); tr ← 〈P(σ, x, w),V(σ, x; ρ)〉
]

= Pr

[
A2(tr) = 1
∧(σ, x, w) ∈ R

∣∣∣∣∣σ ← K(1λ); (x,w, ρ)← A1(σ); tr ← S(x, ρ)

]
,

where ρ is the public coin randomness used by V.

In the above definition, the adversary A1 chooses a tuple of the statement, witness, and
the source of randomness used by V, but A2 cannot distinguish between the honestly
generated transcript by P and the simulated transcript by S.

Bootle et al. [15] presents a conversion from an arbitrary arithmetic circuit with N
multiplication fan-in two gates into a certain relation containing a Hadamard product
with linear constraints. Bünz et al. [20] slightly generalizes the relation to include
committed values as inputs to the arithmetic circuit, so that the converted relation
contains the committed values as well. The formal description of these relations in [15,
20] is given as follows.

(
g,h ∈ GN ,V ∈ GM , g, h ∈ G,WL,WR,WO ∈ ZQ×Np ,W V ∈ ZQ×Mp ,
c ∈ ZQp ; aL,aR,aO ∈ ZNp ,v,γ ∈ ZMp

)
: Vj = gvjhγj∀j ∈ [1,m] ∧ aL ◦ aR = aO
∧ WLa

>
L +WRa

>
R +WOa

>
O = W V v

> + c>

 (101)

72 Kim et al.

where W V ∈ ZQ×Mp is of rank M .
BP-AC is a zero-knowledge argument for Eq. (101), and in particular, Bünz et

al. [20] proved the following theorem.

Theorem 18 (Theorem 5 in [20]). There exists an efficient arithmetic circuit pro-
tocol for the relation in Eq. (101) using the argument for the inner-product relation in
Eq. (1). In particular, the arithmetic circuit protocol has perfect completeness, SHVZK
and computational witness-extended emulation if the discrete logarithm relation as-
sumption holds and the underlying inner-product argument has perfect completeness
and computational witness-extended emulation.

We provide BP-AC in Fig. 7 for the self-containedness. In the reduction phase of BP-
AC, the prover sends only 8 group elements and 3 field elements to the verifier for
constant rounds, so that the overall communication overhead is asymptotically the
same as that of the underlying inner-product argument.

Our sublogarithmic proof system Protocol2 can be combined with BP-AC by re-
placing BP-IP. In fact, the language in Eq. (2) differs from the relation (1) on the CRS
only and the relation is equivalent. Therefore, we can still employ Theorem 18 taking
Protocol2 as the underlying inner-product argument. Similarly, we can employ Theo-
rem 18 with taking Protocol3 and Protocol4 as the underlying inner-product argument.

Acknowledgement

We thank Taechan Kim for discussion on complete addition formulas for elliptic curves.
This work was supported in part by the Institute of Information and Communica-
tions Technology Planning and Evaluation (IITP) grant funded by the Korea Govern-
ment (MSIT) (A Study on Cryptographic Primitives for SNARK, 50%) under Grant
20210007270012002, and in part by the National Research Foundation of Korea (NRF)
grant funded by the Korean Government (MSIT), 50%, under Grant 2020R1C1C1A0100696812.

References

1. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-
preserving signatures and commitments to group elements. Journal of Cryptology,
29(2):363–421, 2016.

2. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In ACM CCS 2017, pages 2087–2104.
ACM, 2017.

3. A. Arun, C. Ganesh, S. V. Lokam, T. Mopuri, and S. Sridhar. Dew: Transpar-
ent constant-sized zksnarks. Cryptology ePrint Archive, Report 2022/419, 2022.
https://eprint.iacr.org/2022/419.pdf.

4. M. Backes, A. Datta, and A. Kate. Asynchronous computational vss with reduced
communication complexity. In CT-RSA 2013, volume 7779 of LNCS, pages 259–
276. Springer, 2013.

5. S. Bayer and J. Groth. Zero-knowledge argument for polynomial evaluation with
application to blacklists. In EUROCRYPT 2013, volume 7881 of LNCS, pages
646–663. Springer, 2013.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 73

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 1993, pages 62–73. ACM, 1993.

7. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046, 2018. https://eprint.iacr.org/2018/046.

8. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for c:
Verifying program executions succinctly and in zero knowledge. In CRYPTO 2013,
volume 8043 of Lecture Notes in Computer Science, pages 90–108. Springer, 2013.

9. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
Aurora: Transparent succinct arguments for r1cs. In EUROCRYPT 2019, volume
11476 of LNCS, pages 103–128. Springer, 2019.

10. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In TCC 2016,
volume 9986 of LNCS, pages 31–60. Springer, 2016.

11. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive
zero knowledge for a von Neumann architecture. In USENIX Security 2014, pages
781–796, 2014.

12. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
ITCS 2012, pages 326–349. Springer, 2012.

13. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and
bootstrapping for snarks and proof-carrying data. In Symposium on Theory of
Computing Conference, STOC 2013, pages 111–120. ACM, 2013.

14. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing.
Journal of Cryptology, 17(4):297–319, 2004.

15. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT
2016, volume 9666 of LNCS, pages 327–357. Springer, 2016.

16. J. Bootle, A. Cerulli, E. Ghadafi, J. Groth, M. Hajiabadi, and S. K. Jakobsen.
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In ASI-
ACRYPT 2017, volume 10626 of LNCS, pages 336–365. Springer, 2017.

17. J. Bootle, A. Chiesa, and S. Liu. Zero-knowledge IOPs with linear-time prover
and polylogarithmic-time verifier. In EUROCRYPT 2022, volume 13276 of LNCS,
pages 275–304. Springer, 2022.

18. W. Bosma and H. W. Lenstra. Complete systems of two addition laws for elliptic
curves. Journal of Number Theory, 53:229–240, 1995.

19. S. Bowe, J. Grigg, and D. Hopwood. Recursive proof composition with-
out a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019.
https://eprint.iacr.org/2019/1021.

20. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bullet-
proofs: Short proofs for confidential transactions and more. In IEEE Symposium
on Security and Privacy 2018, pages 315–334. IEEE Computer Society, 2018.

21. B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from dark compilers. In
EUROCRYPT 2020, volume 12105 of LNCS, pages 677–706. Springer, 2020.

22. B. Bünz, M. Maller, P. Mishra, N. Tyagi, and P. Vesely. Proofs for inner pairing
products and applications. In ASIACRYPT 2021, volume 13092 of LNCS, pages
65–97. Springer, 2021.

23. J. Camenisch, M. Dubovitskaya, K. Haralambiev, and M. Kohlweiss. Composable
and modular anonymous credentials: Definitions and practical constructions. In
ASIACRYPT 2015, volume 9453 of LNCS, pages 262–288. Springer, 2015.

24. J. H. Cheon. Discrete logarithm problems with auxiliary inputs. Journal of Cryp-
tology, 23(3):457–476, 2010.

74 Kim et al.

25. A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. Marlin: Prepro-
cessing zksnarks with universal and updatable srs. In EUROCRYPT 2020, volume
12105 of LNCS, pages 738–768. Springer, 2020.

26. A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and transparent
recursive proofs from holography. In EUROCRYPT 2020, volume 12105 of LNCS,
pages 769–793. Springer, 2020.

27. dalek cryptography:Bulletproofs. https://github.com/dalek-
cryptography/bulletproofs, 2018.

28. V. Daza, C. Ràfols, and A. Zacharakis. Updateable inner product argument with
logarithmic verifier and applications. In PKC 2020, volume 12110 of LNCS, pages
527–557. Springer, 2020.

29. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO 1986, volume 263 of LNCS, pages 186–194.
Springer, 1987.

30. D. M. Freeman. Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In EUROCRYPT 2010, volume 6110 of LNCS,
pages 44–61. Springer, 2010.

31. G. Fuchsbauer, C. Hanser, and D. Slamanig. Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Journal of Cryptol-
ogy, 32(2):498–546, 2019.

32. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.pdf.

33. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct nizks without pcps. In EUROCRYPT 2013, volume 7881 of LNCS, pages
626–645. Springer, 2013.

34. J. Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO
2009, volume 5677 of LNCS, pages 192–208. Springer, 2009.

35. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, 2010.

36. J. Groth. Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In ASIACRYPT 2011, volume 7073 of LNCS, pages 431–448. Springer,
2011.

37. J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT
2016, volume 9666 of LNCS, pages 305–326. Springer, 2016.

38. J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and
spend a coin. In EUROCRYPT 2015, volume 9057 of LNCS, pages 253–280, 2015.

39. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In SIAM Journal on Computing, volume 41(5), page 1193–1232, 2012.

40. M. Hoffmann, M. Klooß, and A. Rupp. Efficient zero-knowledge arguments in the
discrete log setting, revisited. In ACM CCS 2019, pages 2093–2110, 2019.

41. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polyno-
mials and their applications. In ASIACRYPT 2010, volume 6477 of LNCS, pages
177–194. Springer, 2010.

42. R. W. F. Lai, G. Malavolta, and V. Ronge. Succinct arguments for bilinear group
arithmetic: Practical structure-preserving cryptography. In ACM CCS 2019, pages
2057–2074, 2019.

43. libsnark. https://github.com/scipr-lab/libsnark, 2017.
44. H. Lipmaa. Progression-free sets and sublinear pairing-based noninteractive zero-

knowledge arguments. In TCC 2012, volume 7194 of LNCS, pages 169–189.
Springer, 2012.

Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 75

45. M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge
snarks from linear-size universal and updatable structured reference strings. In
ACM CCS 2019, pages 2111–2128. Association for Computing Machinery, 2019.

46. A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Transactions on information Theory, 39(5):1639–
1646, 1993.

47. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE Symposium on Security and Privacy 2013, pages
238–252. IEEE, 2013.

48. J. Renes, C. Costello, and L. Batina. Complete addition formulas for prime order
elliptic curves. In EUROCRYPT 2016, volume 9665 of LNCS, pages 403–428.
Springer, 2016.

49. E. Savas, T. A. Schmidt, and Ç. K. Koç. Generating elliptic curves of prime order.
In Cryptographic Hardware and Embedded Systems - CHES 2001, volume 2162 of
LNCS, pages 142–158. Springer, 2001.

50. M. Scott. On the deployment of curve based cryptography for the in-
ternet of things. Cryptology ePrint Archive, Report 2020/514, 2020.
https://eprint.iacr.org/2020/514.

51. J. H. Seo. Round-efficient sub-linear zero-knowledge arguments for linear algebra.
In PKC 2011, volume 6571 of LNCS, pages 387–402. Springer, 2011.

52. S. Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup.
In CRYPTO 2020, volume 12172 of LNCS, pages 704–737. Springer, 2020.

53. R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. Doubly-efficient
zkSNARKs without trusted setup. In IEEE Symposium on Security and Privacy
2018, pages 926–943. IEEE, 2018.

54. B. Wesolowski. Efficient verifiable delay functions. Journal of Cryptology,
33(4):2113–2147, 2020.

55. T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra: Succinct zero-
knowledge proofs with optimal prover computation. In CRYPTO 2019, volume
11694 of LNCS, pages 733–764. Springer, 2019.

56. J. Xu, A. Yang, J. Zhou, and D. S. Wong. Lightweight delegatable proofs of storage.
In ESORICS 2016, volume 9878 of LNCS, pages 324–343. Springer, 2016.

57. J. Zhang, T. Xie, Y. Zhang, and D. Song. Transparent polynomial delegation and
its applications to zero knowledge proof. In IEEE Symposium on Security and
Privacy 2020, pages 859–876. IEEE, 2019.

