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Abstract. Key Transparency (KT) systems allow end-to-end encrypted service providers (messaging,
calls, etc.) to maintain an auditable directory of their users’ public keys, producing proofs that all
participants have a consistent view of those keys, and allowing each user to check updates to their
own keys. KT has lately received a lot of attention, in particular its privacy preserving variants,
which also ensure that users and auditors do not learn anything beyond what is necessary to use the
service and keep the service provider accountable.

Abstractly, the problem of building such systems reduces to constructing so-called append-only
Zero-Knowledge Sets (aZKS). Unfortunately, existing aZKS (and KT) solutions do not allow to ad-
equately restore the privacy guarantees after a server compromise, a form of Post-Compromise Se-
curity (PCS), while maintaining the auditability properties. In this work we address this concern
through the formalization of an extension of aZKS called Rotatable ZKS (RZKS). In addition to pro-
viding PCS, our notion of RZKS has several other attractive features, such as a stronger (extractable)
soundness notion, and the ability for a communication party with out-of-date data to efficiently
“catch up” to the current epoch while ensuring that the server did not erase any of the past data.

Of independent interest, we also introduce a new primitive called a Rotatable Verifiable Random
Function (VRF), and show how to build RZKS in a modular fashion from a rotatable VRF, ordered
accumulator, and append-only vector commitment schemes.

Keywords: Key Transparency, Zero-Knowledge Sets, Verifiable Random Functions, Post-Compromise
Security.

1 Introduction

End-to-end encrypted communication systems (E2EE), including encrypted chat services (such as
WhatsApp [49], Signal [42], Keybase [23], iMessage [2]) and encrypted calls (Zoom [7], Webex [48],
Teams [35]), are becoming increasingly common in today’s world. E2EE systems require each user to
publish a public key, and use the corresponding secret key along with their communication partners’
public keys to compute a shared secret which can be used to secure the communication. To enable this,
service providers (such as Apple, Zoom, Meta, Microsoft, etc.) need to maintain a directory that maps
each user to their public keys, a Public Key Infrastructure (PKI) analogous to the one in place to secure
the web. The end-to-end guarantees depend on the authenticity of these public keys, as otherwise a ma-
licious service provider (or one who is hacked or compelled to act maliciously) can replace an honest
user’s identity public key with another public key whose secret key is known to the provider, and thus
implement a meddler-in-the-middle (MitM) attack without the communicating users ever noticing.

KEY TRANSPARENCY. To mitigate this issue, many E2EE communication systems provide users with
“security codes”, i.e. digests of the communication partners’ identity public keys rendered as lists of
digits or words, or QR codes. To detect potential meddler-in-the-middle attacks, the communicating
users are expected to manually check these codes, either by reading them aloud (in calls), scanning
them with their phone apps, or otherwise sharing them out-of-band. It is well understood that this has
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severe usability challenges [3, 20, 21, 47]. Key Transparency (KT)4 systems augment these checks with a
fully automated solution that improves both usability and security.

KT systems enable service providers to maintain an auditable directory that maps each user’s iden-
tifier (such as a username, phone number or email address) to their identity public keys (analogously to
how Certificate Transparency [28] allows to monitor PKI certificates). Providers compute and advertise
a short (signed) “commitment” com to the whole directory, and update it (creating a new epoch) when-
ever users join the directory or update their keys. When users query a particular label label (a key in
the map, such as a username), they get the corresponding value val (i.e. public key) and a proof π that
this (label, val) pair is consistent with com.5 Clients are then encouraged to periodically monitor the di-
rectory to make sure their own identifier maps to the correct keys, thus detecting any attempt to MitM
their communications.

Assuming cryptographic soundness of such proofs, to ensure that all clients receive the same answer
when they query for the same label, it is enough to ensure they all have the same commitment com. To
achieve this, KT relies on clients gossiping the commitment [32], or on public and untamperable ledgers
such as blockchains [24]. While the implementation of such gossiping schemes is not part of the design
(and definition) of KT, and they have seen little practical deployment6 [16, 31], improvements in this
respect seem feasible, and even the potential for users to independently check might deter the server
from misbehaving.

AUDITING. Although the basic functionality already goes a long way towards holding the server ac-
countable for providing incorrect keys to users, clients would incur a high burden if they had to check
the server’s consistency at every epoch, especially clients whose keys do not change often as the direc-
tory evolves. To mitigate that, most KT systems provide additional auditing functionality, where more
resourceful parties (called auditors) can continuously check that certain properties of the directory are
maintained across updates (such as the fact that old keys are never erased, and newer ones are simply
appended). Technically, when updating the old commitment com to directory D with a newer commit-
ment com’ to D′, the server can issue a certain proof πS asserting that D ⊆ D′ (and, ideally, revealing
nothing more beyond |D′ \ D|). While any user can be an auditor, in practice it is envisioned that
relatively few external auditors would continuously monitor the server in this way, and most clients
would rely on that assurance. This also justifies relatively large update proofs (with size proportional to
|D′ \D|). Such KT systems are called auditable. In addition to keeping the server honest, auditable KTs
might ease the need of clients to check their keys at every epoch, if trusted auditors exist. For example,
if a client checked earlier that their keys were correct w.r.t. some (audited) old value com’, and later got
the current value of com from a trusted auditor, they can be sure their keys are still correct w.r.t. com,
thus eliminating the need to ask the server to prove this fact again.

To the best of our knowledge, Keybase [27] is the first deployment of an auditable public key direc-
tory; they published the first KT digest on April 2014 [26]. Keybase was created as a more user-friendly
and secure replacement for PGP, so their KT favors full transparency and auditability over privacy
guarantees. For example, Keybase publicly advertises [25] how many devices each user has the Key-
base client app installed on, and how often their keys change (i.e., the app is reinstalled). While this is
an acceptable tradeoff for many, this privacy leakage can also be a concern, as surfaced in [29], which
studied the privacy concerns of using Keybase for US journalists and lawyers. There could be other
important business reasons for requiring privacy as well. A business might not want to use a KT sys-
tem if doing so means revealing to the world how much churn the company has. If the KT system is
used to authenticate group membership as well, revealing which groups a user is part of could leak
the organizational structure of the business and facilitate social engineering attacks. In fact, Google and
Zoom advocate for adding privacy to KT systems [7,19]. In addition to being privacy-conscious (which
is a good practice anyway), these industry leaders are also concerned about current and future laws
and regulations, such as GDPR. Indeed, once a major system is in play, it is extremely hard to change
it when a new privacy law/regulation comes into effect. For example, creating a publicly visible and
immutable trail of a user’s encryption key changes in a Key Transparency directory would likely cause

4 KT is known under various names in the literature, such as auditable registries, verifiable key directories, auditable
directories etc. For the purpose of this manuscript, we will stick to using KT.

5 Additionally, if no (label, val) pair exists for a given label, the proof π becomes an absence proof for this label.
6 While Keybase posts its KT digests to a blockchain, official Keybase clients do not check them.
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a GDPR violation. Similarly, if a user asks the provider to delete their account and all traces, doing so
would be very hard without privacy built-in.

PRIVACY-PRESERVING KT. Motivated by these and other considerations, new KT schemes were de-
veloped with privacy. Broadly speaking, privacy can be divided in two categories: content-privacy and
metadata-privacy. Content-privacy hides public keys and usernames from unauthorized parties (e.g., au-
ditors and other users who wouldn’t otherwise be able to query for those usernames). KT systems sup-
porting content privacy include [22, 31, 44–46]. Metadata-privacy also hides information such as when
each user first registered in the KT, when and how often their keys change, correlations between multi-
ple updates, etc. on top of content-privacy. We denote metadata-hiding KT schemes as privacy-preserving
KT (ppKT) [8,19,32]. In ppKT, both external auditors and users should learn as little as possible beyond
the data they are actively querying. For example, KT commitments and proofs for a certain user identi-
fier should not reveal information about other users’ keys and how often they are changing. Similarly,
auditors should enforce that no data is ever deleted from the directory, while learning as little as the
total number of keys being updated.

Unlike KT systems without any privacy, in which the key directory data structure can be built en-
tirely on symmetric key primitives like Merkle Trees [11], practical KT systems (with either content-
privacy or metadata-privacy) achieve privacy through asymmetric primitives such as Verifiable Ran-
dom Functions (VRFs) [34].7 Ignoring some important details, given a (label, val) pair, the server hold-
ing the VRF’s secret key will use a pseudorandom label y = VRF(label) in place of the original label.
Then: (a) pseudorandomness of y ensures that no information about the original label is leaked; (b)
verifiability of y ensures that it can be convincingly opened to the original label; and (c) uniqueness of
y = VRF(label) ensures that each label can be used only once.8

KEY ROTATION AND POST COMPROMISE SECURITY. With the growing popularity and user-base of
E2EE communication systems, ppKT is very close to real-world, large-scale deployments [7, 15, 19].
However, as with any real world system, a ppKT system will likely get compromised at some point, so
there should be a robust plan to recover from such a compromise, should it happen. One subtle obser-
vation in this regard is that current ppKT systems all require the server to maintain a secret key sk (e.g.,
the secret key to the VRF, as explained above), in addition to simply storing the users’ data. Thus, recov-
ering from such compromise necessitates updating the secret/public keys of the server, which is called
key rotation. In addition, even if no evidence of actual compromise is ever found, periodically rotating
secret keys is considered an industry best practice and sometimes mandated by regulations [38, 40].
For ppKT, rotating the key would ideally ensure that compromise of the server would only violate the
privacy of past records (which is unavoidable, as the server stores this data anyway), but not of future
records.9 In other words, the primary goal of key rotation is to achieve what is known as post compromise
security (PCS): the privacy of ppKT systems should be seamlessly restored in case of (possibly silent)
key compromise. This is the main question we address in this work:

How easy is it to add PCS to a ppKT, while maintaining high efficiency?

A NAIVE SOLUTION. To see why this question is non-trivial, let us look at a naive attempt to add key
rotation to any existing ppKT, such as SEEMless [8]. The first idea is to simply pick a fresh key pair
(skt, pkt) for a ppKT with every rotation number t, and basically view the final database D as a dis-
joint union of t smaller databases D1, . . . , Dt, where Di corresponds to the key pair (ski, pki). On the
surface, this seems to maintain the efficiency of the base ppKT, since the server can figure out which
“mini-database” Di contains a given record (id, pkid) and provide a proof only for this value of i. Un-
fortunately, this does not work, as the server also needs to provide (i − 1) absence proofs that id does
not belong to any of the previous databases D1, . . . , Di−1. Otherwise, the server could insert (id, pkid)
in database i, (id, pk′id) in database i′, and provide different clients with different answers to the same

7 Informally, a VRF [34] is similar to a standard pseudorandom function (PRF), except the secret key owner is also
committed to the entire function in advance, and can selectively open some of its outputs in a verifiable manner.

8 Property (c) is why VRF is needed, and regular commitments to label do not work.
9 The effect of compromise on authenticity/auditability is rather minimal anyway, as the key used to sign the com-

mitments would typically be authenticated using the web PKI, and thus can be revoked upon compromise using
existing techniques. Moreover, learning the secret server state doesn’t help break the binding of the commitment
to the entire set of current records in the directory.
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query, even if a good base ppKT is used. And in the case of id not belonging to the entire database D,
the server must provide t such absence proofs. Given that clients might need to lookup many iden-
tifiers at once and that providers will have to handle a large volume of queries simultaneously, this
multiplicative slowdown is unacceptable for practical use.

A better approach — and indeed the approach we take in this work — is to transfer the entire
database D when switching from skt−1 to skt, thereby initializing Dt = Dt−1, and then growing Dt

when new data items are appended. This ensures that the efficiency of key lookup, the most frequent
and important operation in ppKT, is indeed inherited from the base ppKT to which we are adding
PCS, because it is always done w.r.t. the latest public key pkt. Of course, now the server also needs to
prove that it honestly initialized Dt = Dt−1, so that the users or auditors performing this (potentially
expensive, but rare) check are convinced that no data was added, removed, or modified. Moreover, this
check should be done in a privacy-preserving way, so that auditors learn as little as possible about the
database D = Dt−1 = Dt at this moment, beyond the fact that it was correctly “copied” during key
rotation.

Unfortunately, none of the existing ppKT systems appear friendly to such (key) rotation proofs, while
generic zero-knowledge proofs would be prohibitively inefficient given large database sizes in typical
ppKT systems. As our main technical contribution, we overcome this difficulty by designing a special-
ized, but still highly efficient, ppKT system which supports efficient key rotation, and hence provides
PCS against (possibly silent) server compromises.

1.1 Our Contributions

Before our concrete solution, we list our contributions from the modeling and definitions perspective.

MODELING AND DEFINITIONS. First, much like earlier works on ppKT [8, 19, 32] we abstract the prim-
itive that we need. Our primitive, which we term Rotatable Zero Knowledge Set (RZKS), is a natural
extension of the so-called append-only zero-knowledge set (aZKS) from [8].

At a high level, aZKS is a primitive where a prover can incrementally commit to a dictionary D,
and later prove (in zero-knowledge) a statement of the form that a certain (label, val) pair belongs to the
dictionary, or that a certain label does not belong to the dictionary (for any val). Moreover, there is at
most one val for any label, and this val cannot be modified once it is assigned. To model the incremental
nature of aZKS, the prover can also prove the “append-only” property to the auditors, such that two
commitments com and com′ correspond to two dictionaries D and D′, where D is a subset of D′, in
almost10 zero-knowledge.

Our RZKS notion extends aZKS in several ways. First, and most importantly from the perspective of
PCS, we allow a new algorithm for key rotation. Syntax-wise, it is the same as the append algorithm of
aZKS: given a (possibly empty) set S of fresh {(label, val)}-pairs to be appended to the current database,
we update the commitment com to D to a new commitment com′ to D′ = D ∪ S, and output a proof πR
that this operation was done “consistently”. However, unlike the regular append operation given by
proof πS , the proof size and time for the rotation operation is allowed to be proportional to the entire
database D′, as opposed to the number of appended elements |S|. What we gain though is the PCS
property: unlike with the regular append, compromising the server’s state (including D) before the
rotation does not help the attacker learn any new information about newly appended elements S, or
any elements appended in the future (including those by the standard append operation). (As a bonus,
it also wipes out the minimal leakage of regular append mentioned in Footnote 10.)

Second, and of independent interest, we extend the aZKS functionality to support what we call
extension proofs. Such proofs allow a party to verify that a given newer commitment comt′ commits
to a given older commitment comt (and, therefore, also implies that both comt′ and comt commit to
the same sequence com1, com2, . . . , comt−1), for any t′ > t (as opposed to the append-only proofs in
aZKS only supporting t′ = t + 1). Here, t and t′ are the total number of appends and rotations that
were performed to produce the dictionary corresponding to each commitment. These extension proofs
are extremely efficient (only logarithmic in the number of epochs t′), as they can be instantiated using
Merkle Tree append-only proofs [8, 45].

10 According to a well-defined leakage profile. For [8], the only such leakage reveals if a label known to be missing
in D is later inserted in D′, which seems acceptable for the main application to KT.
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Note that, by themselves, extension proofs do not prove that the database has evolved consistently
(for example, it is possible that Dt 6⊆ Dt′ ). However, auditors still check that each successive epoch
correctly performs append or rotation operations. As a result, extension proofs allow users to confirm
that the commitments they receive are authentic and represent a consistently evolving database by oc-
casionally verifying commitments with a trusted auditor, instead of verifying every commitment they
receive, which would be a frequent and expensive operation. Concretely, suppose a user receives a se-
ries of commitments comt1 , . . . , comtn from the server, possibly over a long period of time, along with
extension proofs from each comti to the next comti+1

(which the user verifies). Then, by verifying just
comtn with an auditor, blockchain, or other gossiping mechanism, the user can guarantee the consis-
tency of every previous comti they received with those other sources’ views. Furthermore, if the user
trusts that the source they are verifying against has also verified that the database evolved consistently
at each epoch, they can infer that each Dti ⊆ Dti+1 . This also allows auditors and other clients to only
gossip about the latest commitment com′ and forget any previous commitments. If an older commit-
ment comold is ever needed, the server can always provide comold and the extension proof from comold

to com′.
Third, each query also explicitly indicates the epoch at which the queried pair was added to the

RZKS directory, which can be verified without any increase in the proof size (obtaining this information
in an aZKS would require multiple proofs). We believe that this information can be helpful in practical
applications, as older records/keys are often considered more trustworthy than newer ones (the owner
has had more time to react to a compromise), and quickly comparing the age of two records can be
helpful for more complex applications of RZKS beyond standard KT11. Moreover, while previous ppKT
do not allow to determine this efficiently, they do not hide this information either.

Finally, our notion of RZKS strengthens the soundness definition of aZKS presented in [8]. Namely,
the latter mandates that an adversary cannot produce valid proofs of conflicting statements (for exam-
ple, proving that the same key maps to different values, possibly in different epochs). Instead, we notice
that the soundness of the SEEMless construction of [8] is proven in the Random Oracle model anyway,
where we can achieve much stronger forms of soundness. Indeed, our RZKS notion demands a very
strong form of extractability-based soundness. Roughly, we require the existence of an extractor, which,
given any malicious commitment com produced by the attacker (and its random oracle queries), can
extract the entire database D for which the attacker can later produce verifying membership proofs. We
believe this stronger property makes it easier to reason about the security of applications of RZKS.

RZKS CONSTRUCTION. Finally, we show how to build an efficient RZKS system. Our starting point is
the aZKS construction from SEEMless [8]. SEEMless uses — in a black-box way — a verifiable random
function (VRF) [34] and cryptographic hash function to build their aZKS, and recommends the specific
DDH-based VRF from the upcoming VRF standard [18].

Recall, a VRF allows the secret key owner (e.g., server) to compactly commit to an entire random-
looking function f , but in a way that allows them to convincingly open individual function outputs
f(x), without compromising the randomness of yet unopened outputs f(x′) for x′ 6= x. In the aZKS
construction of [8], when appending a (x = label, v = val) pair to D, the server uses the VRF output
f(x) to decide where to put a commitment to v in some Merkle Tree T that it builds. If this place is
occupied, the server knows that D already contains some v′ associated with label x, and can reject the
request. Otherwise, it inserts some commitment to v into the Merkle Tree T , and uses the new root of
T as the modified commitment value com′ to D′ = D ∪ {(x, v)}. Intuitively, the use of VRF ensures
privacy, as it hides information about the labels that would otherwise be leaked by Merkle proofs of
“neighboring” labels. On the other hand, VRF uniqueness and verifiability properties ensure that the
server cannot cheat.

One can now consider how to extend the scheme above to support key rotation, provided that the
underlying VRF can support what we call VRF rotation proofs. Intuitively, a RZKS rotation proof will
switch the VRF key from f1 to f2, rebuild the Merkle Tree T1 into T2 using the same commitments
to each of the values, and openly reveal the one-to-one correspondence between leaves of T1 and T2
associated with all keys x present in the original database D before the rotation. However, recall that
the value x itself should be hidden from auditors verifying consistency of key rotation, which leads to

11 For example, Keybase uses its KT dictionary to also store other statements signed by a user’s device, such as
when a user wants to add another user to a group: knowing that the statement was signed before the key that
signed it is revoked/rotated is important for the security of the system.
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the following problem we solve in this work. We need to design a VRF with a fast zero-knowledge proof
showing that two VRF outputs y1 and y2 under two independent keys f1 and f2 correspond to the same
secret input x: y1 = f1(x) and y2 = f2(x). We call this novel type of VRFs rotatable. We discuss them
next, and defer the rest of the details of our final RZKS construction to Section 5.2, simply highlighting
here its modularity: it is built from any rotatable VRF, commitments and other generic building blocks
instantiable from Merkle Trees.12

ROTATABLE VRFS. Unfortunately, supporting an efficient ZK proof mentioned above is not sufficient
for the type of rotatable VRFs we need for RZKS. To achieve PCS for RZKS, our VRF also needs to satisfy
a novel type of “non-committing property”: upon compromise, the attacker learns of a compact secret
key sk for the VRF, which suddenly explains a lot of VRF outputs {y} that the attacker saw prior to
the corruption (but did not know the corresponding inputs {x}). More concretely, we use a simulation-
based rotatable VRF definition, extending the earlier “simulatable VRF” notion of [10] to handle rota-
tions. Under this notion, the simulator must in particular “win” in the following game (which is the
most challenging part of our definition explaining the heart of the problem). The simulator must com-
mit to a VRF public key pk, get a bunch of random strings {y} as various VRF outputs of unknown inputs
{x}, answer random oracle queries from the attacker, then learn the hidden set {x}, and finally produce
a secret key sk that correctly explains that f(x) = y for all matching (x, y) pairs of the corresponding
sets {x} and {y}.

This problem seems to relate to the area of non-committing encryption (NCE) [6, 37], where one
compact secret is supposed to open many previously committed ciphertexts in a certain way. As with
non-committing encryption [37], building standard model “non-committing” VRF is impossible, as one
short secret key sk cannot “explain away” arbitrarily many random looking outputs y. On the other
hand, given that several NCE schemes exist in the random oracle model (e.g., [5]), one might hope that
the same simple ideas13 will work in our VRF setting as well. Unfortunately, this does not appear to be
the case, due to the inherently algebraic structure of VRF proofs. To understand this inherent tension,
let us consider the concrete efficient VRF (from the VRF standard [18]) recommended by the authors of
SEEMless. In this VRF, the secret key sk for the VRF is a random exponent α, the public key pk = gα

(for public generator g), and the VRF value y = f(x) = H(F (pk, x)α), where F is a random oracle and
H is an “extractor” meant to map a random group element to a random bit-string. (The proof π that
y = f(x) is the value z = F (pk, x)α and the standard Fiat-Shamir variant of the Σ-protocol for the DDH
tuple (g, pk, F (pk, x), z) [13].)

When rotating the key pair (α, gα) to a fresh key pair (β, gβ), first we need to ensure that there exists
an efficient ZK proof showing that two random values y and y′ satisfy the relation y = H(F (gα, x)α)
and y′ = H(F (gβ , x)β). As the first obstacle, this seems hard due the outside extractor H . Fortunately,
this problem is trivially solved by getting rid of the “outer extractor” H , and thinking of the VRF as
outputting a group element (rather than bit-string) y = F (pk, x)α. Indeed, the standard VRF proof
in [18, 39] shows that the above VRF is already secure. The next problem comes from the fact that the
old VRF f and the new VRF f ′ have different public keys gα and gβ hashed inside the “inner random
oracle” F . Once again, it turns out that the VRF proof just needs some domain separation, and goes
through if we redefine the output y = F (salt, x)α, where salt is some unpredictable value which does
not need to change with any rotation.14

This already gives us the ability to construct (at least “syntactically”) the required ZK proof of rota-
tion when moving from sk = α to sk′ = β. Indeed, for any unknown x, if y = F (x)α and y′ = F (x)β , the
server can simply prove that the tuple (gα, gβ , y, y′) is a proper DDH tuple (using witness w = β/α).15

As we said, though, we also need to provide the PCS property mentioned above. And this appears hope-
less at first glance. Indeed, the public key pk = gα commits to α information-theoretically. Moreover,
when programming the random oracle query F (x), the simulator does not know yet which random
output y corresponds to x. Hence, the simulator has no chance to correctly program F (x) = y1/α. For
regular (“non-rotatable”) VRFs, we would try to fake the Fiat-Shamir proofs for correctness. In fact,

12 Namely, so called ordered accumulators, and append-only vector commitment schemes. See Section 5.1.
13 Namely, to a posteriori program random oracle in a manner depending on the strings y, on appropriate inputs

involving the secret key sk.
14 For simplicity of exposition, we omit salt from our description, but recommend that each application uses a

fresh salt.
15 Our final ZK proof will aggregate many such individual input rotation proofs into one compact proof.
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this would extend to rotatable VRFs without the PCS property (i.e., without corruptions of α); but, of
course, this is not very interesting from the application perspective. In the case of corruptions, however,
the simulator is committed to the secret key α, and will be caught cheating with certainty.

OUR SOLUTION: GGM ANALYSIS. Interestingly, the difficulty of completing the simulation-based PCS
proof for our tweaked construction y = F (x)α does not seem to translate to an explicit attack on the
resulting rotatable VRF. Rather, we cannot build a sufficiently adaptive simulator to prevent the type
of attack in the previous paragraph. So we ask the question if the construction might be actually be
secure, despite the natural proof breaking down. Somewhat surprisingly, we give supporting evidence
that this is the indeed the case, by providing such a security analysis in the generic group model (GGM)
of Shoup [41].16

Recall that in Shoup’s GGM, all group elements have random bit-string representations, and the
group operation ? also has a random multiplication table ?(a, b) (subject to associativity of multipli-
cation). As such, most security assumptions in standard groups (e.g., DDH) will hold in the GGM
unconditionally. But now the simulator can commit to the public key pk = gα without committing to
α information-theoretically. Intuitively, since the attacker does not know value α before the compromise,
and has a bounded number of multiplication queries to explore, the simulator can simply choose a ran-
dom value of α as the secret key, and will have enough freedom to “mess” with the multiplication table
?(a, b) to simultaneously satisfy many equations of the form yi = F (xi)

α (as well as pk = gα). However,
the formal proof of this statement is rather subtle, and forms one of the main technical novelties of this
work. For example, the group laws mandate certain relationships that the attacker can always satisfy,
so the simulator has to be extremely careful not to “overplay its hand” and program the multiplication
table too aggressively. We present the full simulation proof in Section 4.4, and hope that our GGM proof
technique will find applications for analyzing other “non-committing” algebraic primitives.

INTERPRETATION OF OUR RESULT. On a philosophical point, we suggest that the value of our GGM
security proof should be understood in light of the fact that ROM-based proofs seem to be inherently
stuck, at least for the natural rotatable VRF that we consider. Aside from the obvious consideration that
we focused on finding a practical solution to a natural problem for which we could not find an explicit
attack, we note that the requirements in our definition of rotatable VRFs are quite strong. Basically, the
simulator has to answer all ideal queries without knowing any of the input/output behavior of the VRF,
and then must produce a single secret key consistent with not only these ideal queries, but also all fake
proofs (including rotation). From this perspective, we feel that it is quite surprising that we managed
to overcome these difficulties at all, even relying on the GGM. The GGM proof can also be considered
a sanity check that our scheme is likely to be secure under weaker models/assumptions, provided one
correspondingly weakens our extremely demanding simulation security definition.

More generally, while the ROM model is obviously preferred to the GGM, practitioners do not mind
relying on the GGM, provided it solves an interesting problem. Indeed, we can point to several exam-
ples of interesting primitives where standard analyses appear to be stuck, and the GGM provided mean-
ingful answers to these questions. Most notably, Signal leverages in production a protocol which can
only be proven secure in the GGM model to achieve group privacy [12, 43]. Other important examples
include optimal structure-preserving signature schemes [1] and state-restoration soundness analysis of
Bulletproofs [17].

2 Notation and Preliminaries

We use square brackets [a1, a2, . . . , an] to denote ordered lists of objects, and curly brackets {a, b, c, . . . }
for sets. We represent maps D = {(a, b), (c, d), . . . } as sets of label-value pairs. If D is a set of pairs, we
denote withD(·) = {a, c, . . . } the set of the first components of each pair (the domain of the correspond-
ing map), and with D(·) = {b, d, . . . } the set of the second components (the range of the map). When
clear from context, we slightly abuse notation and write a ∈ D (instead of a ∈ D(·)) if there is a pair
(a, ·) in the set, and (when unique) we denote the corresponding value with D[a]. Similarly, we use C[i]
to denote the i-th element of list C (1-indexed), and last(C) to denote its last element.

16 We stress that we only use GGM for the ZK property of our construction. Our stronger extractability-based
soundness is still proven in the random oracle model, and does not require the GGM.
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We denote with λ the security parameter. Given two security games I and R, each parameterized
by an algorithm A (the adversary), we define the advantage of A in distinguishing the two exper-
iments as

∣∣Pr[IA = 1]− Pr[RA = 1]
∣∣. In each figure defining a security experiment, we denote with

AO...(a1, . . . , an) an execution of algorithm A on input a1, . . . , an with access to all the oracles defined
in that figure.

We use the following conventions to describe algorithms. When a hash function takes more than
one input (or a pair), we assume that there is a well defined way to serialize and deserialize such a
tuple into a bitstring. Given a boolean b, we use ensure b as shorthand for “if not b, return 0”. We use
“parse a as (a1, . . . , an)” to denote that an algorithm tries to unpack a tuple of objects, and if the tuple
does not have the appropriate length the algorithm returns a dummy output/error. In a security game,
we use “assert b” to denote that if b is false, the experiment is immediately terminated with a special
return value ⊥; during an oracle call, we use “require b” to indicate that if b is false the oracle call by
the adversary is interrupted without output, and any effects on the state of this call are reverted.

In Appendix A, we recall the Diffie-Hellman assumption, and briefly discuss the Random Oracle
Model and Generic Group Model assumptions that our work depends on.

3 Rotatable Zero Knowledge Set

In this section, we formally define Rotatable Zero Knowledge Sets (RZKS). The primitive Zero-Knowledge
Set was introduced in [9, 33] and extended to append-only ZKS (aZKS) in [8]. We extend the notion of
aZKS from SEEMless to add new properties as well as strengthen the soundness guarantees in our new
primitive: RZKS.

Definition 1 A Rotatable Zero Knowledge Set (RZKS) consists of a tuple of algorithms Z = (Z.GenPP,
Z.Init, Z.Update, Z.PCSUpdate, Z.VerifyUpd, Z.Query, Z.Verify, Z.ProveExt, Z.VerExt) defined as fol-
lows:

. pp ← Z.GenPP(1λ): This algorithm takes the security parameter and produces public parameter pp
for the scheme. All other algorithms take these pp as input implicitly, even when not explicitly
specified.

. (com, st) ← Z.Init(pp): This algorithm takes as input the public parameters, and produces a commit-
ment com to an empty datastore D0 = {} and an initial server/prover state st. A datastore D will be
a collection of (labeli, vali, t) tuples, where t is an integer indicating that the tuple has been added
to the datastore as part of the t-th Update or PCSUpdate operation (we call this an epoch). Labels
will be unique across the datastore (it can be thought of as a map). Each server state st will contain
a datastore and a digest, which we will refer to as D(st) and com(st). Similarly, each commitment
will include the epoch t(com) of the datastore to which it is referring. (Alternatively, these can be
thought of as deterministic functions which are part of the scheme.)

. (com′, st′, πS)← Z.Update(pp, st, S), (com′, st′, πS)← Z.PCSUpdate(pp, st, S): Both algorithms take in
the public parameters, the current state of the prover st, and a list S = {(label1, val1), (label2, val2), . . . ,
(labeln, valn)} of new (label, value) pairs to insert (the labels must be unique and not already part of
D(st)). The algorithm outputs an updated commitment to the datastore, an updated internal state
st′, and a proof πS that the update has been done correctly. Intuitively, com′ is a commitment to the
updated datastore D(st′) at epoch t(st′) = t(st) + 1, which extends D(st) by also mapping each
labeli in S to the pair (vali, t(st

′)). As we will see, Update and PCSUpdate have different tradeoffs
between their efficiency and the privacy guarantees they offer.

. 0/1 ← Z.VerifyUpd(pp, comt−1, comt, πS): This deterministic algorithm takes in two commitments to
the datastore output at successive invocations of Update, and verifies the above proof.

. (π, val, t)← Z.Query(pp, st, u, label): This algorithm takes as input a state st, an epoch u ≤ t(st), and a
label. If a tuple (label, val, t) ∈ D(st) and t ≤ u, it returns val, t and a proof π. Else, it returns val = ⊥,
t = ⊥ and a non-membership proof π. In both cases, proofs are meant to be verified against the
commitment comu output during the u-th update.

. 1/0 ← Z.Verify(pp, com, label, val, t, π): This deterministic algorithm takes a (label, val, t) tuple, and
verifies the proof π with respect to the commitment com. If val = ⊥ and t = ⊥, this is considered a
proof that label is not part of the data structure at epoch t(com).
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. πE ← Z.ProveExt(pp, st, t0, t1): This algorithm takes the state of the prover and two epochs t0, t1, and
returns a proof πE that the datastore after the t1-th update is an extension of the datastore after the
t0-th update. Proofs are meant to be verified against the commitments comt0 and comt1 output by
Update during the t0-th and t1-th update.

. 1/0← Z.VerExt(pp, comt0 , comt1 , πE): This deterministic algorithm takes two datastore commitments
and a proof (generated by ProveExt) and verifies it.

We require a RZKS to satisfy the following security properties:

Completeness We will say that an RZKS satisfies completeness if for all PPT adversaries A, the probabil-
ity that the game described in Figure 1 outputs 0 is negligible in λ.

Intuitively, all updates and queries should behave as expected by their descriptions in the defini-
tion. Furthermore, all proofs produced by various updating or querying algorithms should verify when
properly queried to the corresponding verification algorithms. More formally, an adversary only breaks
completeness if it is able to construct a sequence of queries such that one of the assertions in Figure 1
fails. For example, the assertion D(st′) = D(st) ∪ {(labeli, vali, t + 1)}i∈[j] in Update(S) will only fail if
the elements added in S are not correctly added to the state of the datastore. Similarly, in Query(label, u)
we assert that P.Verify(comu, label, val

′, t′, π) succeeds, where (val′, t′, π) are those produced by the cor-
responding call to P.Query.

P-Completeness(A):

pp′ ← P.GenPP(1λ)

(com′, st′)← P.Init(pp′)

assert com(st′) = com′ and t(com′) = 0 and D(st′) = {}
com0 ← com′, st← st′, t← 0, pp← pp′

AO...(pp, com0)

return 1

Oracles Update(S) and PCSUpdate(S):

parse S as (label1, val1), . . . , (labelj , valj)
require label1, . . . , labelj are distinct and do not already appear in D(st)

(com′, st′, π)← P.Update(st, S) // resp. P.PCSUpdate(st, S)
assert com(st′) = com′, t(com′) = t+ 1 and D(st′) = D(st) ∪ {(labeli, vali, t+ 1)}i∈[j]
assert y ← P.VerifyUpd(comt, com

′, π); y = 1

comt+1 ← com′, st← st′, t← t+ 1

Oracle Query(label, u):

require 0 ≤ u ≤ t
(π, val′, t′)← P.Query(st, u, label)

If label ∈ D(st), (valD, uD)← D(st)[label] and uD ≤ u:
assert (val′, t′) = (valD, uD)

Else
assert (val′, t′) = (⊥,⊥)

assert y ← P.Verify(comu, label, val
′, t′, π); y = 1

Oracle ProveExt(t0, t1): // RZKS only

require 0 ≤ t0 ≤ t1 ≤ t
πE ← P.ProveExt(st, t0, t1)

assert y ← P.VerExt(comt0 , comt1 , πE); y = 1

Oracle ProveAll(t′): // OA only

π ← P.ProveAll(st, t′)

assert y ← P.VerAll(comt′ ,D(st)≤t′ , π); y = 1

Fig. 1: Completeness for RZKS and OA (an Ordered Accumulator, defined in Section 5.1) primitives (denoted with
P). Some of the oracles are only applicable to one primitive. In this experiment, the adversary can read all the
game’s state and the oracle’s intermediate variables, such as comi∀i, st, y. The experiment returns 1 unless one of
the assertions is triggered. These checks enforce that the data structure is updated consistently, that the outputs of
query reflect the state of the data structure, and that honestly generated proofs pass verification as intended.
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Soundness We will say that an RZKS satisfies soundness if there exists an extractor Extract such that for
all PPT adversaries A, the advantage of A in distinguishing the two experiments described in Figure 2
is negligible in λ. Note that all the algorithms executed in the experiment get implicit access to the Ideal
oracle, as they might need to make, e.g., random oracle calls.

The extractor Extract is required to provide various functionalities based on its first input:

– pp′, st ← Extract(Init): Samples public parameters indistinguishable from honestly generated
public parameters such that extraction will be possible. Also generates an initial state.

– Dcom ← Extract(Extr, st, com): Takes in the internal state and a commitment to the datastore. Out-
puts the set of (label, val, i) committed to.

– Ccom ← Extract(ExtrC, st, com): Takes in the internal state and a commitment to the datastore.
Outputs the set of previous commitments, indexed by epoch.

– out, st ← Extract(Ideal, st, in): Simulates the behavior of some ideal functionality (for example a
random oracle or generic group). Takes in any input and produces an output indistinguishable from
the output the ideal functionality would have on that input.

One small subtlety of the definition here is that we do not allow the extractor to update its state
outside of Ideal calls. The only advantage that the extractor gets over an honest party is its control
over the ideal functionality. This allows for easier composition, since a larger primitive utilizing RZKS
will not need to simulate extractor state.

An adversary breaks soundness if it either distinguishes answers to Ideal queries in the real game
from those produced by the extractor, or if it causes some assertion to be false in the ideal game. Each
assertion in the ideal game captures some way in which the extractor could be caught in an inconsistent
state. For example, let us consider the assertion D[com][label] = (val∗, i∗) in CheckVerD. This will be
false if the adversary can provide a proof that (label, val∗, i∗) is in the datastore with digest com, but the
extractor expects this datastore to either not contain label or to contain (label, val, i) for some different
(val, i).

Our soundness definition strengthens the traditional one by providing extractability. aZKS sound-
ness already guarantees that a (malicious) prover is unable to produce two verifying proofs for two
different values for the same label with respect to an aZKS commitment it has already produced. How-
ever, that definition does not guarantee that the malicious prover knew the entire collection of (label,
value) pairs at the time it produced the commitment. Extractability requires that by mandating that the
entire datastore can be extracted from the commitment, except with negligible probability.

We also explicitly guarantee consistency among the RZKS commitments produced over epochs. In-
formally, consistency guarantees that each commitment to an epoch also binds the server to all previous
commitments (i.e. these can be extracted from the former). In particular, when the client swaps a com-
mitment coma with a more recent one comb by verifying an extension proof, and then checks with an
auditor that comb is legitimate, the client can be sure that any auditor who checked all consecutive audit
proofs up to comb must also have checked the same coma for epoch a. This is modeled in the security
game by the assertions in the ExtractC, CheckVerUpdC, and CheckVerExt oracles.

Zero Knowledge We will say that an RZKS is zero knowledge for leakage functionL = (LUpdate, LPCSUpdate,
LQuery, LProveExt, LLeakState) if there exists a simulator S such that every PPT malicious client algorithmA
has negligible advantage in distinguishing the two experiments of Figure 3.

The stateful simulator S is required to provide various functionalities:

– com′, pp′ ← S(Init): Samples public parameters and an initial commitment indistinguishable from
honest public parameters such that it will be possible to simulate proofs.

– (com′, π) ← S((PCS)Update, l): Takes in some leakage l about an Update (or, analogously,
PCSUpdate) query on input S, i.e. in the experiment l ← LUpdate(S) (or l ← LPCSUpdate(S)). Out-
puts a commitment com′ indistinguishable from a commitment to the previous datastore with the
elements of S appended. Furthermore simulates a proof π that the update was done correctly.

– (π, val′, t′)← S(Query, l): Takes in leakage l ← LQuery(u, label) about the entry indexed by (u, label)
in the datastore. Outputs val′, t′which would have been returned by an honest query. Also simulates
a proof π that D[label] = (val′, t′), or an absence proof if label 6∈ D.
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P-Sound-IDEAL(A):

pp′, st← Extract(Init)

D← {}, C ← [ ], pp← pp′

b← AIdeal(·),...(pp)
return b

Oracle ExtractD(com):

Dcom ← Extract(Extr, st, com)

If com ∈ D assert D[com] = Dcom

D[com]← Dcom

assert ∀ (label, val, i) ∈ D[com] : 0 < i ≤ t(com)

Oracle ExtractC(com): // RZKS only

Ccom ← Extract(ExtrC, st, com)

If com ∈ C assert C[com] = Ccom

C[com]← Ccom

assert |C[com]| = t(com) and last(C[com]) = com

Oracle CheckVerD(com, label, val∗, i∗, π):

require P.Verify(pp, com, label, val∗, i∗, π) = 1 and com ∈ D

If val∗ = ⊥ or i∗ = ⊥:
assert label 6∈ D[com] ∧ val∗ = i∗ = ⊥

Else assert D[com][label] = (val∗, i∗)

Oracle CheckVerUpdD(coma, comb, π):

require P.VerifyUpd(pp, coma, comb, π) = 1 and
coma, comb ∈ D

assert D[coma] ⊆ D[comb], and
t(comb) = t(coma) + 1, and
∀(label, val, t) ∈ D[comb] \ D[coma] :

t = t(comb), and
(t(coma) 6= 0 or D[coma] = {})

Oracle CheckVerUpdC(coma, comb, π): // RZKS only

require P.VerifyUpd(pp, coma, comb, π) = 1 and
coma, comb ∈ C

assert t(comb) = t(coma) + 1, and
∀ j ≤ t(coma) : C[coma][j] = C[comb][j]

Oracle CheckVerExt(coma, comb, π): // RZKS only

require P.VerExt(pp, coma, comb, π) = 1 and
coma, comb ∈ C

assert ∀ j ≤ t(coma) : C[coma][j] = C[comb][j]

Oracle CheckVerAll(com, S, π): // OA only

require P.VerAll(pp, com, S, π) = 1 and com ∈ D

assert D[com] = S

Oracle Ideal(in):

out, st← Extract(Ideal, st, in)

return out

Fig. 2: Soundness for RZKS and OA (both denoted by P). In the ideal world, the map D stores, for each commit-
ment com, the datastore that the Extract algorithm output for that commitment. In addition the map C stores, for
each commitment, the (ordered) list of commitments to previous epochs. When the adversary provides proofs, we
require that the proofs are consistent with such data structures. In the real world (not pictured), the public pa-
rameters are generated as pp ← P.GenPP(1λ), and all the oracles do nothing and return no output, except for the
Ideal oracle, which implements the ideal objects (such as random oracles) that we abstract to prove security of the
primitives (and that are controlled by the extractor in the ideal world). In both cases, P’s algorithms implicitly get
access to the Ideal oracle as needed.

– π ← S(ProveExt, l): Takes in partial information l ← LProveExt(t0, t1) from a ProveExt query the
between epochs t0 and t1. Outputs an extension proof that the commitment provided at epoch t1
binds to the one at epoch t0.

– st ← S(Leak, l): Takes in partial information l ← LLeakState() about the datastore and outputs a
simulated state consistent with the information given.

– out ← S(Ideal, in): Simulates the behavior of some ideal functionality. Takes in any input and
produces an output indistinguishable from the output the ideal functionality would have on that
input.

Note that the particular leakage given will be construction specific, but should be designed to be as
minimal as possible. Our choice of leakage will be described in detail in Section 5.3. In the experiment,
the only information the simulator has access to is the output of the leakage function, as well as the
queries made to the Ideal oracle. The simulator’s ability to control the ideal oracle is crucial for security
proofs to go through.

Informally, zero knowledge here means that the proofs generated by any sequence of honest calls to
RZKS algorithms can be simulated given access to minimal information about the queries made. The ad-
versary breaks zero knowledge if it is able to generate a sequence of queries such that it can distinguish
the output of the simulator from honestly generated outputs and proofs. For example, if the simulator
is unable to simulate query proofs, then an adversary could succeed by calling the Update({label, val})
oracle for some (label, val), then the (π, val, 1) ← Query(label, 1) oracle, and running RZKS.Verify on π.
Since the simulator can’t simulate query proofs, π generated in the ideal world will not verify and so
will be distinguished from π generated in the real world.
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Post-compromise security is modelled by allowing for LeakState calls, which reveal the state in its
entirety. When the adversary queries this oracle, the simulator is required to output a state that appears
consistent with whatever proofs it has revealed before. Healing from compromise is modelled by having
a dedicated leakage function for PCSUpdate (different from Update). Note that since all the leakage
functions share state, calling LeakState or PCSUpdate might affect the leakage of other future queries.

RZKS-ZK-REAL(A):

pp′ ← Z.GenPP(1λ)
(com′, pp′, st′)← Z.Init(pp′)
st← st′, t← 0, pp← pp′

b← AUpdate(·),...(com′, pp)

return b

Update(S): // analogous for PCSUpdate

parse S as (label1, val1), . . . , (labelj , valj)
require label1, . . . , labelj are distinct and do not already appear in
D(st)

(com′, st′, π)← Z.Update(st, S)
st← st′, t← t+ 1

return (com′, π)

Query(label, u):

require 0 ≤ u ≤ t
(π, val′, t′)← Z.Query(pp, st, u, label)

return (π, val′, t′)

ProveExt(t0, t1):

require 0 ≤ t0 ≤ t1 ≤ t
π ← Z.ProveExt(pp, st, t0, t1)
return π

LeakState():

return st

Ideal(in):

return Ideal(in)

RZKS-ZK-IDEAL(A):

com′, pp′ ← S(Init)
t← 0

b← AUpdate(·),...(com′, pp′)

return b

Update(S): // analogous for PCSUpdate

parse S as (label1, val1), . . . , (labelj , valj)
require label1, . . . , labelj are distinct and do not already appear in
any of the S1, . . . , St
(com′, π)← S(Update, LUpdate(S))

t← t+ 1, St ← S

return (com′, π)

Query(label, u):

require 0 ≤ u ≤ t
(π, val′, t′)← S(Query, LQuery(u, label))

return (π, val′, t′)

ProveExt(t0, t1):

require 0 ≤ t0 ≤ t1 ≤ t
π ← S(ProveExt, LProveExt(t0, t1))

return π

LeakState():

return S(Leak, LLeakState())

Ideal(in):

return S(Ideal, in)

Fig. 3: Zero Knowledge (with leakage) security experiments for RZKS. S is a stateful algorithm (whose state we
omit to simplify the notation). The leakage functions LUpdate, LQuery, . . . also share state among each other.

3.1 Application to Key Transparency

Recall that in an aZKS, the value associated with each label cannot be updated: the prover can only
add new (label, value) pairs to the directory. In SEEMless [8], the server uses aZKS to commit to its
public key directory by setting the label to (userID || version number) and value to the public key
of the user corresponding to that ID. Every update to the underlying public key directory becomes a
new label addition to the aZKS. The server collects a batch of these additions and periodically updates
the directory, creating a new epoch and publishing a new aZKS commitment. Clients must hold on to
all previous commitments until they have double-checked them with the auditors (to ensure that the
server is not violating the append-only property and that every client is seeing the same commitments).
If clients want to retain the ability to hold the server accountable even if auditors are temporarily offline,
or if they wish to do the audit themselves in the future, they need to hold on to all the commitments
indefinitely, which is inefficient. To solve this problem, SEEMless suggests building a hashchain over
all the aZKS commitments, so that the client only needs to remember the tail. This is an improvement,
but to skip between two distant commitments, the client has to download all the epochs in between;
moreover, the security guarantees deriving from this are not formalized. In contrast, we propose a more
efficient solution and formalize its security: we add the ProveExt and VerExt algorithms, which allow
the server to directly prove that any given datastore commitment stems from another.
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Thus, our advantage over SEEMless lies both in the fact that we give the ability to heal from server
state compromise and that we allow the client to only keep the very latest commitment, and to efficiently
update to the next one without losing the ability to hold the server accountable later.

4 Rotatable Verifiable Random Functions

In this section, we introduce the notion of a Rotatable Verifiable Random Function, a key component
of our RZKS construction. Verifiable Random Functions (VRFs), introduced in [36], are the asymmetric
analogues of Pseudorandom Functions: the secret key is necessary to compute the (random-looking)
function on any input, as well as a proof that the computation was performed correctly, which can be
checked against the corresponding public key. We extend VRFs by adding “rotation” algorithms, which
generate a new VRF key pair alongside zero-knowledge proofs that outputs of the new and old VRF on
the same (hidden) input are associated. In addition, our rotatable VRFs also satisfy stricter soundness
properties.

Definition 2 A Rotatable Verifiable Random Function is a tuple of algorithms VRF = (GenPP, KeyGen,
Query, Verify, Rotate, VerRotate) defined as follows:

. pp ← VRF.GenPP(1λ): This algorithm takes the security parameter and produces public parameter
pp for the scheme. All other algorithms take these pp as input, even when not explicitly specified.

. (sk, pk) ← VRF.KeyGen(pp): The key generation algorithm takes in the global pp and outputs the
public key pk and secret key sk.

. (y, π) ← VRF.Query(pp, sk, x): The query algorithm takes in pp, the secret key sk and input x, and
outputs the evaluation y of the VRF defined by sk on input x, as well as a proof π. We denote with
VRF.Eval(sk, x) the first output y of the Query algorithm (i.e. Eval does not return a proof).

. 1/0 ← VRF.Verify(pp, pk, x, y, π): This deterministic function verifies the proof π that y is the output
of the VRF defined by pk on input x.

. sk′, pk′, π ← VRF.Rotate(pp, sk,X): Given a secret key17 and a list of inputsX , this algorithm outputs
an updated secret key, an updated public key, and a proof π that the set of VRF output pairs P =
{(VRF.Eval(sk, x), VRF.Eval(sk′, x))}x∈X satisfies the relationship that each pair corresponds to the
same input x (without leaking information about X beyond its size).

. 0/1← VRF.VerRotate(pp, pk, pk′, P, π): Given two public keys pk, pk′ and list of P pairs (y, y′), this de-
terministic algorithm checks the proof π that each pair consists of the output of the VRFs identified
by pk, pk′ on the same input x.

For correctness, we require that for all λ, n ∈ N, all sets of inputs X1, . . . , Xn, and all inputs x:

Pr[pp←VRF.GenPP(1λ); sk0, pk0 ← VRF.KeyGen(pp);

ski, pki, πi ← VRF.Rotate(ski−1, Xi) for i = 1, . . . , n;

y, π ← VRF.Query(skn, x) : VRF.Verify(pkn, x, y, π) = 1] = 1.

Moreover, for all λ, n > 0 and all sets of inputs X1, . . . , Xn:

Pr[pp← VRF.GenPP(1λ); sk0, pk0 ← VRF.KeyGen(pp);

ski, pki, πi ← VRF.Rotate(ski−1, Xi) for i = 1, . . . , n : VRF.VerRotate(pkn,

{(VRF.Eval(skn−1, x),VRF.Eval(skn, x))}x∈Xn , πn) = 1] = 1.

4.1 Rotatable VRF Security

Informally, VRFs satisfy two properties. Uniqueness mandates that for any public key and input x, there
is only one y which can be proven to be output by the function on input x. Pseudorandomness guarantees
that, for an honestly generated key pair sk, pk and given oracle access to the query oracle on arbitrary
inputs, it is hard to distinguish the output of the function on any other (not yet queried) input from a
uniformly random value.

We augment the uniqueness and pseudorandomness requirements into soundness and zero-
knowledge respectively.
17 Given that the old key sk and new key are independent from one another, we could have equivalently defined
Rotate as taking any two secret keys as input.
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Soundness (strengthened uniqueness) We will say that a VRF satisfies soundness if there exists an Extrac-
tor such that for all PPT adversariesA, the advantage ofA in distinguishing the experiments of Figure 4
is negligible.

The extractor Extract is required to provide three functionalities based on its first input:

– pp, st← Extract(Init): Samples public parameters indistinguishable from honestly generated pub-
lic parameters such that extraction will be possible. Also generates an initial state.

– x ← Extract(Extr, st, pk, y): Takes in an adversarially chosen public key pk and output y of the
function. Outputs the only input x for which the adversary can produce an accepting proof.

– out, st ← Extract(Ideal, st, in): Simulates the behavior of some ideal functionality (for example a
random oracle or generic group). Takes in any input and produces an output indistinguishable from
the output the ideal functionality would have on that input.

As with RZKS, we do not allow the extractor to update its state outside Ideal calls.
In the ideal experiment, the table T keeps track of the outputs of the extractor. An assertion is trig-

gered (and the adversary can trivially win) if the extractor gives different answers to the same query
over time, if the same answer is returned for multiple inputs under the same public key, or if the ad-
versary produces an accepting proof for an input different than what the extractor had predicted (these
requirements together capture uniqueness). Moreover, the game also enforces that proofs of rotation
are consistent with the extractor’s output and the equality condition is respected. In the real experi-
ment, assertions are never triggered, so indistinguishability ensures that public parameters, as well as
the answers to ideal queries, give the adversary the same view.

Zero Knowledge (strengthened pseudorandomness) We will say that a VRF satisfies zero-knowledge if there
exists a simulator such that for all PPT adversaries A, the advantage of A in distinguishing the experi-
ments of Figure 5 is negligible.

The stateful simulator S is required to provide various functionalities:

– pp, pk0 ← S(Init): Samples public parameters and an initial public key such that it will be possible
to simulate proofs.

– y ← S(Corrupted-Eval, i, x): Takes in a corrupted generation i and input x, and outputs the eval-
uation of the VRF on i and x. If this is called, the adversary has already obtained the corresponding
secret key for generation i, so the simulator is forced to output a value consistent with what the
adversary could compute itself.

– π ← S(Explain, i, label, y): Takes in a generation, input, and output. Outputs a simulated proof
that the output of the oracle Eval(i, x) = y.

– pkicur , πR ← S(Rotate, P ): Takes in a set P of pairs (y, y′). Samples a new public key pkicur and
outputs a simulated proof that for each (y, y′) ∈ P there exists an x such that Eval(icur−1, x) = y and
Eval(icur, x) = y′.

– skicrpt+1, . . . , skicur ← S(Corrupt, D): Takes in all queries made to Eval. Outputs a collection of secret
keys consistent with output of all oracle queries made so far.

– out ← S(Ideal, in): Simulates the behavior of some ideal functionality. Takes in any input and
produces an output indistinguishable from the output the ideal functionality would have on that
input.

We combine pseudorandomness with a zero knowledge requirement by requiring that in each gen-
eration a simulator can sample public parameters such that it can simulate proofs that the VRF is con-
sistent with a new truly random function. Furthermore, the simulator must be able to simulate rotation
proofs that the outputs of two random functions stem from the same input. We model post compromise
security by requiring that the simulator also be able to sample secret keys consistent with all previous
queries. Since it is impossible to sample a secret key consistent with all future queries for a truly random
function, after corruption we give the simulator the ability to control the function associated with that
epoch. Note that the major difficulty in demonstrating zero knowledge is that the simulator must sim-
ulate queries to the ideal oracle without knowing what inputs are asked of the truly random function.
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We remark that our definition of zero knowledge is heavily inspired by the notion of a simulatable
VRF, introduced in [10]. Simulatable VRFs require that there exists a simulator that can sample sim-
ulated public parameters such that for any public key pk, input x in the domain, and y in the range
of the VRF, it is possible to simulate a proof π that y is the output of the function on input x (i.e.
Verify(pp, pk, x, y, π) = 1). The simulated parameters, outputs and proofs should be indistinguishable
from honestly generated ones. Our definition of zero knowledge extends this notion by accounting for
rotation proofs and corruptions. Our soundness notion is also stronger as we require extractability.

VRF-Sound-IDEAL(A):

T ← [ ]; pp, st← Extract(Init)

b← AO...(pp)
return b

Oracle Extract(pk, y):

x← Extract(Extr, st, pk, y)

If (pk, y) ∈ T assert T [pk, y] = x

assert x = ⊥ ∨ ∀y′ 6= y : T [pk, y′] 6= x

T [pk, y]← x

Oracle CheckExtraction(pk, y, x, π):

require VRF.Verify(pk, x, y, π) = 1 ∧ (pk, y) ∈ T
assert T [pk, y] = x

Oracle CheckVerRotate(pk1, pk2, P, π):

require VRF.VerRotate(pk1, pk2, P, π) = 1 ∧
∀(u1, u2) ∈ P : (pk1, u1) ∈ T ∧ (pk2, u2) ∈ T

assert ∀(u1, u2) ∈ P : T [pk1, u1] = T [pk2, u2]

Oracle Ideal(in):

out, st← Extract(Ideal, st, in)

return out

Fig. 4: Soundness for VRF. In the real world (not pictured), the public parameters are generated as pp ←
VRF.GenPP(1λ), and the oracles do not do anything, except for the Ideal one which implements the necessary
ideal objects according to their specification.

4.2 Rotatable VRF Construction

Our rotatable Verifiable Random Function VRF = (GenPP, KeyGen, Query, Verify, Rotate, VerRotate) is
instantiated in Figure 6. In summary, let G be a group of (exponential) prime order p with generator
g and identity element 1 ← g0 (we use multiplicative notation), and let F (·) be a hash function that
maps arbitrary-length bitstrings onto G \ {1}. Then for a given input x, secret key sk ∈ Z∗p, and public
key pk = gsk, the VRF output is y = F (x)sk. To prove this, Query simply produces a Fiat-Shamir zero-
knowledge proof that (g, F (x), pk = gsk, y = F (x)sk) is a DDH tuple.

Given secret key sk = α0 · · · · · αi and public key gα0·····αi , Rotate samples αi+1 from Z∗p. It then
sets sk′ = α0 · · · · · αi+1 and stores pk′ = pkαi+1 = gα0·····αi+1 = gsk

′
. Then, it outputs a “batch”

Fiat-Shamir zero-knowledge proof that (pk, y, pk′, y′) is a DDH tuple, where y and y′ are random linear
combinations of VRF.Eval(sk, x) and VRF.Eval(sk′, x) for x ∈ X , respectively. In Figure 6, the coefficients
for the random linear combination are denoted by au.

4.3 Rotatable VRF Soundness Proof

Soundness of extraction stems directly from soundness of the underlying Fiat-Shamir proof that (g, F (x),
pk = gsk, y = F (x)sk) is a DDH tuple. To show soundness of rotation, again we use the fact that the
underlying Fiat-Shamir proof that (pk, y, pk′, y′) is a DDH tuple is sound. The only subtlety is to show
that batching the rotation proofs in the manner we do works. That is, we need to show that if (y, y′) are
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VRF-ZK-REAL(A):

pp← VRF.GenPP(1λ)

sk0, pk0 ← VRF.KeyGen(pp)

icur ← 0, icrpt ← −1
b← AO...(pp, pk0)
return b

Oracle Eval(i, x):

require 0 ≤ i ≤ icur
y ← VRF.Eval(ski, x)

return y

Oracle Prove(i, x):

require 0 ≤ i ≤ icur
y, π ← VRF.Query(ski, x)

return y, π

Oracle Rotate(X):

skicur+1, pkicur+1, πR ← VRF.Rotate(skicur , X)

icur ← icur + 1

return pkicur , πR

Oracle Corrupt():

K ← (skicrpt+1, . . . , skicur )

icrpt ← icur
returnK

Oracle Ideal(in):

return Ideal(in)

VRF-ZK-IDEAL(A):

pp, pk0 ← S(Init)
icur ← 0, icrpt ← −1, D = {0 : {}}
b← AO...(pp, pk0)
return b

Oracle Eval(i, x):

require 0 ≤ i ≤ icur
If i ≤ icrpt:

return S(Corrupted-Eval, i, x)
If x 6∈ D[i]:

y
$← Y ;D[i][x]← y

returnD[i][x]

Oracle Prove(i, x):

require 0 ≤ i ≤ icur
π ← S(Explain, i, x, Eval(i, x))
return Eval(i, x), π

Oracle Rotate(X):

icur ← icur + 1

P ← {(Eval(icur − 1, x), Eval(icur, x)) | x ∈ X}
pkicur , πR ← S(Rotate, P )

return pkicur , πR

Oracle Corrupt():

K ← S(Corrupt, D)

icrpt ← icur
returnK

Oracle Ideal(in):

return S(Ideal, in)

Fig. 5: Zero Knowledge experiments for the Rotatable VRF.

a random linear combination of {(VRF.Eval(sk, x), VRF.Eval(sk′, x))}x∈X , then if y′ = yα (with α such
that pk′ = pkα), with all but negligible probability we also have VRF.Eval(sk′, x) = VRF.Eval(sk, x)α for
all x ∈ X .

Taking the contrapositive, we just need to show that if there is any (y0, y
′
0) in

{(VRF.Eval(sk, x),VRF.Eval(sk′, x))}x∈X such that y′0 6= yα0 , then the probability that a random
linear combination (y, y′) satisfies y′ = yα must be negligible. Indeed, substituting in y′ = yα the two
linear combinations, we have that since y′0 6= yα0 , then y′0y

−α
1 is a generator of G, and therefore there is

only one value for the randomly sampled coefficient of (y0, y′0) that would make the equation true. The
probability that this value is sampled from an exponential size space is negligible.

Theorem 1 If F and F ′ are modeled as random oracles, then there exists a simulator Extract such that for any
efficient adversary A,

|Pr[VRF-Sound-REAL(A)→ 1]− Pr[VRF-Sound-IDEAL(A)→ 1]| ≤ negl(λ).

Proof of theorem We need to define an extractor Extract and show that it makes the ideal experiment
indistinguishable from the real one for any PPT adversary A.

Extract’s state consists of a table T which tracks the one maintained by the game, as well as a tables
D andD′ used to implement random oracles F and F ′ respectively. In particular, tableD′ ⊂ {0, 1}∗×Zp
is used to directly store the (uniformly sampled) answers to F ′ queries (whose range is Zp), while table
D ⊂ {0, 1}∗ × Zp will store the discrete logarithms of the answers to F queries. Since our extractor
won’t ever store two tuples (x, r), (x′, r′) in D such that x = x′ or r = r′ (i.e. we are simulating F as
an injective function), then if (x, r) ∈ D, we denote Dx := r and Dr := x. We also define D(·) to be the
projection of D onto {0, 1}∗, and we define D(·) to be the projection of D onto Zp.

Extract works as follows:
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. pp← VRF.GenPP(1λ):
– p← prime exponential in λ
– G← group of order p
– g ← generator ofG
– Sample hash function F : {0, 1}∗ → G \ {1}
– Sample hash function F ′ : {0, 1}∗ → Zp
– return pp← (p,G, g, F, F ′)

. (sk, pk)← VRF.KeyGen(pp):
– parse pp as (p,G, g, F, F ′)

– α0
$← Z∗p

– sk ← α0

– pk ← gα0

– return (sk, pk)

. (y, π)← VRF.Query(pp, sk, x):
– parse pp as (p,G, g, F, F ′)
– y ← F (x)sk //VRF.Eval stops here and just returns y

– r
$← Zp

– c← F ′(g, F (x), gsk, F (x)sk, gr, F (x)r)

– z ← r − c · sk
– π ← (gr, F (x)r, z)

– return (y, π)

. 1/0← VRF.Verify(pp, pk, x, y, π):
– parse pp as (p,G, g, F, F ′)
– ensure pk 6= g0

– parse π as (h1, h2, z)

– c← F ′(g, F (x), pk, y, h1, h2)

– ensure h1 = gz · pkc

– ensure h2 = F (x)z · yc

– return 1

. sk′, pk′, π ← VRF.Rotate(pp, sk,X):
– parse pp as (p,G, g, F, F ′)

– α
$← Z∗p

– sk′ ← sk · α
– pk ← gsk; pk′ ← gsk

′

– P ← {(VRF.Eval(sk, x),VRF.Eval(sk′, x))}x∈X
– For each (u, u′) ∈ P :
• au ← F ′(u, u′, pk, pk′, P )

– y ←
∏

(u,u′)∈P u
au

– y′ ←
∏

(u,u′)∈P (u′)au

– r
$← Zp

– c← F ′(pk, y, pk′, y′, pkr, yr)

– z ← r − cα
– π ← (pkr, yr, z)

– return (sk′, pk′, π)

. 0/1← VRF.VerRotate(pp, pk, pk′, P, π):
– parse pp as (p,G, g, F, F ′)
– ensure pk, pk′ 6= g0

– For each (u, u′) ∈ P :
• au ← F ′(u, u′, pk, pk′, P )

– y ←
∏

(u,u′)∈P u
au

– y′ ←
∏

(u,u′)∈P (u′)au

– parse π as (h1, h2, z)

– c← F ′(pk, y, pk′, y′, h1, h2)

– ensure h1 = pkz · (pk′)c

– ensure h2 = yz · (y′)c

– return 1

Fig. 6: Our Rotatable VRF construction.

– Ideal queries for F ′(x) are answered implementing the random oracle honestly, i.e. sampling out-
puts at random the first time they are queried and storing them in table D′ so that repeated queries
get the same answers.

– To answer Ideal queries for F (x):
• If x ∈ D(·), r ← Dx, return gr

• r $← Zp
• assert r 6∈ D(·), and for all ((pk, y), x) ∈ T such that pk 6= g0: pkr 6= y
• Store (x, r) in D
• return gr and the updated state

– To answer Extr queries for pk, y:
• If there exists (x, r) ∈ D such that pkr = y and pk 6= g0, add ((pk, y), x) to T and return x.
• Else add ((pk, y),⊥) to T and return ⊥

Claim: For any PPT adversary A, if at any point during an execution of VRF-Sound-IDEAL(A) with
Extract (or any of the hybrids Hyb0, . . . , Hyb4) there exist ((pk, y), x′) ∈ T and (x, r) ∈ D such that
pkr = y and pk 6= g0, then x = x′ (i.e. T [pk, y] = x).

Proof of claim: Let ((pk, y), x′) ∈ T and (x, r) ∈ D such that pkr = y and pk 6= g0. Since ((pk, y), x′) ∈
T , then at some point Oracle Extract(pk, y) was called. Note that after this call, ((pk, y), x′) ∈ T . By the

definition of F , for every call to F after this point, if F stores a new pair (x′, r′) in D, it must be the
case that pkr

′
6= y (as pk 6= g0). Thus, it must be the case that (x, r) ∈ D before Oracle Extract(pk, y)

was ever called. By construction, when Extract(Extr, st, pk, y) is called inside of Oracle Extract(pk, y),
it must return x. Therefore, T [pk, y] = x.

We then proceed by a sequence of hybrids, starting with Hyb0 = VRF-Sound-IDEAL(A) and ending
with VRF-Sound-REAL(A), and show that the advantage of any adversary in distinguishing a pair of
consecutive hybrids is negligible.
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– Hyb0. Defined as VRF-Sound-IDEAL(A) with Extract as defined above.
– Hyb1. Defined as Hyb0, but we add an extra require statement to Oracle CheckExtraction(pk, y, x, π),

so that it behaves as follows:
• require VRF.Verify(pk, x, y, π) = 1 ∧ (pk, y) ∈ T
• require (g, F (x), pk, y) is a DDH-tuple.
• assert T [pk, y] = x

Lemma 1. |Pr[Hyb1→ 1]− Pr[Hyb0→ 1]| ≤ negl(λ).

Proof: Due to the soundness of the Fiat-Shamir DH proof, there is at most a negligible probability
that VRF.Verify succeeds for (x, y) when (g, F (x), pk, y) is not a DDH tuple. In more detail, assume
(g, F (x), pk, y) is not a DDH tuple. VRF.Verify computes c ← F ′(g, F (x), pk, y, h1, h2) and ensures
that h1 = gz · pkc and h2 = F (x)z · yc. Given that g and F (x) are generators in G (G is a cyclic
group, so all non identity elements are generators), we can take the discrete logarithms of the two
equations above, using bases g and F (x) respectively, to obtain z = logg h1 − c logg pk and z =
logF (x) h2 − c logF (x) y, and therefore

c =
logg h1 − logF (x) h2

logg pk − logF (x) y

Given that (g, F (x), pk, y) is not a DDH tuple, then logg pk − logF (x) y 6= 0 and therefore there is a
single value of c satisfying this equation. However, c is sampled uniformly at random as the result
of a random oracle query which fixes all other values in the equations above, so the probability that
a valid c is sampled by an adversary making qF ′ queries to the oracle for F ′ is at most qF ′/p. QED.

– Hyb2. Defined as Hyb1, but we replace Oracle CheckExtraction(pk, y, x, π) with the real version,
which does nothing.

Lemma 2. Pr[Hyb2→ 1] = Pr[Hyb1→ 1].

Proof: Let L be the claim “(pk, y) ∈ T and (g, F (x), pk, y) is a DDH-tuple”. If we show that L ⇒
T [pk, y] = x, then we are done (as the assertion will never be triggered). Note that (g, F (x), pk, y) is
a DDH-tuple if and only if there exists some r ∈ Zp such that F (x) = gr and y = pkr. Thus, L ⇒
there exists some (x, r) ∈ D such that pkr = y. Due to the claim, since L ⇒ (pk, y) ∈ T , we have
L⇒ T [pk, y] = x. QED.

– Hyb3. Defined as Hyb2, but we modify Oracle CheckVerRotate(pk1, pk2, P, π) by adding an extra
require statement, so that it behaves as follows:
• require VRF.VerRotate(pk1, pk2, P, π) = 1 ∧ ∀(u1, u2) ∈ P : (pk1, u1) ∈ T ∧ (pk2, u2) ∈ T
• require ∀(u1, u2) ∈ P : (pk1, u1, pk2, u2) is a DDH-tuple.
• assert ∀(u1, u2) ∈ P : T [pk1, u1] = T [pk2, u2]

Lemma 3. |Pr[Hyb3→ 1]− Pr[Hyb2→ 1]| ≤ negl(λ).

Proof:
This is slightly more involved than the argument for CheckExtraction, since we also need to show
that batching DDH tuple proofs in the way we want works. Note that any adversary distinguishing
between Hyb2 and Hyb3 must by necessity find some pk1, pk2, P, π such that VerRotate(pk1, pk2, P, π) =
1 but for some u1, u2, (pk1, u1, pk2, u2) is not a DDH tuple.
Recall that VerRotate first checks pk1, pk2 6= g0. It then samples au1

← F ′(u1, u2, pk1, pk2, P ) for each
(u1, u2) ∈ P and sets y1, y2 to be the linear combinations

y1 ←
∏

(u1,u2)∈P

u
au1
1

and
y2 ←

∏
(u1,u2)∈P

u
au1
2 .

18



It finally checks that π is a proof that (pk1, y1, pk2, y2) is a DDH tuple. Observe that when pk1, pk2 6=
g0, we can write pk2 = pkα1 for some α.
In order for an adversary to succeed with non-negligible probability, it must find (pk1, pk

α
1 , P, π)

such that either there exists some (v1, v2) ∈ P such that v2 6= vα1 , but still yα1 = y2, or π is a false
proof that (pk1, y1, pk

α
1 , y2) is a DDH-tuple. Analogously as in Lemma 1, since the adversary is

efficient and interacts with efficient oracles, the probability that it can succeed at the latter task is
negligible in λ. Thus, it remains to be shown that the probability that any adversary can succeed at
the first task is negligible.
In this case, substituting for y1 and y2 in yα1 = y2 we have:(

v
av1
1 ·

∏
(u1,u2)∈P\{(v1,v2)}

u
au1
1

)α
= v

av1
2 ·

∏
(u1,u2)∈P\{(v1,v2)}

u
au1
2

(vα1 v
−1
2 )av1 =

∏
(u1,u2)∈P\{(v1,v2)}

(
u2u
−α
1

)au1
If vα1 6= v2, then vα1 v

−1
2 is a generator of G, and therefore there is a single value of av1 which makes

the equation true (when all the others are kept fixed). Given that a exponents are chosen uniformly
at random by the random oracle once all the other values of the equation have been fixed, and the
adversary makes a polynomial number of such queries, the probability that it succeeds in finding
an appropriate av1 is negligible.
QED.

– Hyb4. Defined as Hyb3, but we replace Oracle CheckVerRotate(pk1, pk2, P, π) with the real version,
which does nothing.

Lemma 4. Pr[Hyb4→ 1] = Pr[Hyb3→ 1].

Proof: Let Ly1,y2 be the claim “(pk1, y1) ∈ T , (pk2, y2) ∈ T , and (pk1, y1, pk2, y2) is a DDH-tuple”.
We will begin by showing Ly1,y2 ⇒ T [pk1, y1] = T [pk2, y2]. First, note that if T [pk1, y1] = x for
some x 6= ⊥, then by construction of Extract there must be some r ∈ Zp such that (x, r) ∈ D and
pkr1 = y1. But then since (pk1, y1, pk2, y2) is a DDH-tuple, we have pkr2 = y2. But note that then we
have (x, r) ∈ D, pkr2 = y2, and (pk2, y2) ∈ T , so by the claim T [pk2, y2] = x. Thus,

Ly1,y2 ∧ T [pk1, y1] = x⇒ T [pk2, y2] = x.

Similarly, we can show
Ly1,y2 ∧ T [pk2, y2] = x⇒ T [pk1, y1] = x.

Thus, if Ly1,y2 holds and one of T [pk1, y1] or T [pk2, y2] is defined, then the other is also defined, and
they are equal. If T [pk1, y1] = ⊥ and T [pk2, y2] = ⊥ then they are also equal. Therefore, Ly1,y2 ⇒
T [pk1, y1] = T [pk2, y2].
Thus, for all (y1, y2) ∈ P , if the require statements hold, then (pk1, y1) ∈ T ∧ (pk2, y2) ∈ T ⇒
T [pk1, y1] = T [pk2, y2]. Therefore, in Hyb3 the assert statement will never fail, and so Hyb4 = Hyb3.
QED.

– Hyb5. Defined as Hyb4, but we remove the assertions from Oracle Extract (while still executing the
extractor).

Lemma 5. Pr[Hyb5→ 1] = Pr[Hyb4→ 1].

Proof: First, note that by construction the extractor always returns the same answer to the same
query, so the first assertion cannot be triggered. For the second one, consider the case where x 6= ⊥.
Note that T [pk, y] = x only if for some r, pkr = y and (x, r) ∈ D. Thus, if T [pk, y′] = x for some
y′, then (x, r′) ∈ D such that pkr

′
= y′. But since D does not allow duplicates, r = r′, and so

pkr = y′ = y. Therefore, there will never be a collision, and so the second assert statement will
never be triggered. QED.

– Hyb6. Defined as Hyb5, but we remove the assertion from the random oracle F . That is, we replace
F with the following:
• If x ∈ D(·), r ← Dx, return gr.
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• r $← Zp.
• Store (x, r) in D.
• return gr and the updated state.

Lemma 6. |Pr[Hyb6→ 1]− Pr[Hyb5→ 1]| ≤ negl(λ).

Proof: To prove indistinguishability, it is enough to show that the assertion is only triggered with
negligible probability. Since for every pair (pk, y) ∈ T there is at most one r′ such that pkr

′
= y, the

number of values of r that would be rejected is at most |D(·)| + |T |. Thus, the probability that any

given query to F fails is ≤ |D
(·)|+|T |
p = negl(λ) since the numerator is polynomially bounded. QED.

– Hyb7. Defined as Hyb6, but we replace F with a standard random oracle, and replace Oracle Extract

with the real version, which does nothing. Note that at this point we are fully in the real world, so
Hyb7 = VRF-Sound-REAL(A).

Lemma 7. Pr[Hyb7→ 1] = Pr[Hyb6→ 1].

Proof: Since g is a generator for G, the function f : Zp → G defined by f(r) = gr is a bijection.

Thus, sampling r $← Zp and returning gr is identically distributed to sampling y $← G. Furthermore,
since the database D is never used, no longer storing this discrete log will have no impact on the
game. Calling the extractor on Extract queries also has no longer any impact on the adversary’s
view. Thus, Hyb7 and Hyb6 are identically distributed. QED.

Since Hyb0 = VRF-Sound-IDEAL(A), Hyb6 = VRF-Sound-REAL(A), we conclude that

|Pr[VRF-Sound-REAL(A)→ 1]− Pr[VRF-Sound-IDEAL(A)→ 1]| ≤ negl(λ).

QED.

4.4 Rotatable VRF Zero Knowledge Proof

Since our construction generates zero-knowledge proofs in Prove and Rotate, one would hope that sim-
ulating these proofs would be enough to prove zero-knowledge of the construction. In fact, if there were
no Corrupt oracle, then simply programming the random oracle F ′ would be enough to simulate these
proofs and achieve zero-knowledge. However, once an adversary has called Corrupt and obtained some
secret key ski, it can then easily distinguish previously outputted Eval(i, x) from the true VRF output
F (x)ski by simply calculating F (x)ski itself and comparing the two.

This intuition extends to arbitrary simulation strategies. Consider for example an adversary who
asks for F (x) and F (x′), y ← Eval(i, x), y′ ← Eval(i, x′) in this order, for two distinct x, x′ and some
i. At the time of the F queries, the uniformly random outputs of the VRF have not yet been sampled,
and so the simulator’s output cannot depend on them. Once the adversary calls the Corrupt oracle,
the simulator can produce a value for ski only if logF (x)(y) = logF (x′)(y

′), which only happens with
negligible probability. While this specific problem could be solved by adding an additional hash at the
end of the VRF computation, i.e. defining VRF.Eval(sk, x) = H(F (x)sk) as in [18] and treating H as a
programmable random oracle, similar issues arise when considering our efficient rotation proofs, which
would force the game to reveal preimages for the hash before the corruption happens (and so before
the simulator knows what algebraic relations should exists between the outputs of F and the group
elements revealed in rotation proofs).

To solve this problem, we need to treat G as a generic group. This allows the simulator to hold off
on sampling ski until Corrupt is called. Until this point, the simulator will treat pki as an arbitrary group
element, but it will keep track of all algebraic relationships between unknown arbitrary group elements.
Then, when Corrupt is called, the simulator will have access to a list of all group elements h such that
the adversary expects h = gf(ski) for some function f of ski. At this point, the simulator will choose ski
uniformly at random, and can program the generic group such that gf(ski) = h for all such f .

Theorem 2 If the group G is modeled as a generic group, and F, F ′ are modeled as random oracles, then there
exists a simulator S such that for any efficient A,

|Pr[VRF-ZK-REAL(A)→ 1]− Pr[VRF-ZK-IDEAL(A)→ 1]| ≤ negl(λ).
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Proof. We want to prove that, for the VRF construction we defined, there exists a simulator which
makes the real VRF ZK game indistinguishable from the ideal one for any poly-time adversary. We will
be operating under the model where G is a generic group and F, F ′ are random oracles. We will do this
by showing a sequence of hybrids, where we will start with VRF-ZK-REAL(A). In the last hybrid, we
will explicitly define the simulator S.

LetA be any PPT adversary. We will define qO to be a bound on the queries made byA to the oracle
O. For example, qRotate is a bound on the queries made by A to the Rotate oracle. We will write the
generic group G = (S, τ, ?, EXP, g = τ(1)), where S is the set of strings representing group elements,
τ is the bijection mapping Zp to S, ? and EXP are the group operation and exponentiation oracles
(accessible to the adversary through Ideal oracle queries), and g is the group generator (see Section A.3
for details).

– Hyb0. This is defined as VRF-ZK-REAL(A).
– Hyb1. Defined as the previous hybrid, but with the random oracles F, F ′ acting lazily. That is, each

random oracle internally stores a table of queried values. When a fresh query x is made to a random
oracle, it samples y uniformly from the appropriate range and stores (x, y) in its table. When x is
queried again, the random oracle returns y from its table. We also define qF and qF ′ to be upper
bounds on the sizes of the tables used to implement F and F ′ in all the hybrids of this proof. Note
that we can bound these quantities based on the number of queries the adversary makes (not just to
the Ideal oracle for F and F ′, but also the other ones), which is polynomial in the security parameter
(as A is PPT).

Lemma 8. Pr[Hyb1→ 1] = Pr[Hyb0→ 1].

Proof: Since the output of this random oracle is identically distributed to the output of a true ran-
dom oracle, Hyb1 ≡ Hyb0. QED.

– Hyb2. Defined as the previous hybrid, but with the generic group acting lazily, and F avoiding
collisions as detailed below. Instead of being represented by a random bijection τ , G will internally
store a table T ⊂ Zp[[qT ]]×S. That is, T stores a table mapping polynomials over at most qT variables
to group elements s ∈ S. Here qT is an upper bound on the number or rows of table T in any of
the hybrids (as for qF in Hyb1, this is polynomially bounded). We will define how T is generated so
that it has no collisions in either index (i.e. it models an injective function). If (P, h) ∈ T , we denote
TP := h and Th := P , and due to the no-collision requirement these are uniquely defined. We will
use P ∈ T(·) to denote ∃ h such that (P, h) ∈ T , and we will use h ∈ T (·) to denote ∃ P such that

(P, h) ∈ T . At initialization, we sample g $← S and insert (1, g) into T .
In this hybrid, we implement ?(g1, g2, b)→ h as follows:
• If g1 /∈ T (·), create a new variable B1 and add (B1, g1) to T .
• If g2 /∈ T (·), create a new variable B2 and add (B2, g2) to T .
• P1 ← T g1 .
• P2 ← T g2 .
• If P1 + b · P2 ∈ T(·), return TP1+b·P2 .

• h $← S \ T (·).
• Set TP1+b·P2

= h (i.e. add (P1 + b · P2, h) to T ).
• return h.

We further implement EXP (h, r)→ h′ as follows:
• If h /∈ T (·), create a new variable B and add (B, h) to T .
• P ← Th.
• If r · P ∈ T(·), return Tr·P .

• h′ $← S \ T (·).
• Set Tr·P = h′.
• return h′.

Moreover, when answering oracle queries for F , we avoid collisions with itself and with T . That is,

when evaluatingF on a fresh value x, instead of sampling y $← S,F will sample y $← S\(T (·)∪TF (·))
where TF is the table ofF . It will then add (x, y) to TF , and (By, y) to T using a fresh formal variable
By .

21



Lemma 9. |Pr[Hyb2→ 1]− Pr[Hyb1→ 1]| ≤ q2T
p + qF

qT+qF
p .

Proof: Consider the situation where at the end of the game, all random variablesBi in T are sampled
uniformly at random from Zp, and all polynomials in T are replaced with their evaluation on the
Bi’s. LetBADT be the event where this situation induces a collision in T . That is,BADT is the event
where for some (p1, g1), (p2, g2) ∈ T , p1(B1, . . . , Bq) = p2(B1, . . . , Bq). Also, let BADF be the event
that in Hyb1, when answering a new query for F , the game samples an element which is already
part of TF (·) or T (·). Note that if BADT does not occur, then the table of T at the end of the game is
identically distributed to the list of queried input-output pairs to τ in Hyb1. Thus, if neither BADT

nor BADF occur, A’s view is identical in Hyb2 and Hyb1. We can bound the probability that either
event occurs with the sum of the probabilities that each occurs independently.
First, note that the probability that F ever collides with T or TF in Hyb2 is Pr[BADF ] ≤ qF qT+qFp by

the union bound. Then, we show that Pr[BADT ] ≤ q2T
p . Note that the manipulations of polynomials

in ? and EXP will never cause the degree to exceed 1. ? may create a new polynomial of degree
1, and then adds two polynomials together. EXP may create a new polynomial of degree 1, and
then multiplies a polynomial by a scalar. Hence, by the Schwartz-Zippel lemma, the probability
that a given pair of polynomials in T collide when evaluated is ≤ 1

p . Thus, by the union bound,

Pr[BADT ] ≤ q2T
p . QED.

– Hyb3. Defined as the previous hybrid, but we replace the honestly computed Fiat-Shamir DH proof
in Prove with a simulated one. We also replace calls to VRF.Eval (for example, those executed inside
VRF.Query or VRF.Rotate as part of Prove or Rotate queries) with calls to the Eval oracle (which itself
still calls VRF.Eval). For example, we replace (y, π) ← VRF.Query(pp, ski, x) as part of Prove oracle
queries with the following:
• parse pp as (p,G, g, F, F ′)
• y ← Eval(i, x)

• z $← Zp
• c $← Zp
• Program c = F ′(g, F (x), pki, y, g

z · pkci , F (x)z · yc)
// i.e., add ((g, . . . , F (x)z · yc), c) to TF ′ and fail if it creates a conflict.

• π ← (gz · pkci , F (x)z · yc, z)
• return (y, π)

Lemma 10. |Pr[Hyb3→ 1]− Pr[Hyb2→ 1]| ≤ qF ′ ·qProve
p .

Proof: Replacing VRF.Eval calls with the Eval oracle is just a syntactic difference and doesn’t change
A’s view, as at this point Eval itself calls VRF.Eval (and returns F (x)ski ), but this will make the
exposition easier. Other than that, this hybrid is just replacing the Fiat-Shamir DH proof with a
standard simulation, which doesn’t affect A’s view either.
We sketch the proof here for completeness. Both in Hyb2 and Hyb3, (z, r, c) have a uniformly random
distribution subject to the constraint that r = z + c · ski (where r is the discrete log of the first proof
element). In Hyb2, we sample r and c and set z accordingly, while in Hyb3 we sample z and c and
implicitly set the distribution on r. Indeed,

gz · pkci = gr−c·ski · gc·ski = gr

and
F (x)z · yc = F (x)r−c·ski · F (x)c·ski = F (x)r.

Thus, as long as we do not fail in programming c, π is distributed identically under Hyb2 and Hyb3.
As long as the query to F ′ is always novel in Hyb3, programming succeeds and the output of Prove
is identically distributed to Hyb2. Since z is uniformly random and multiplication by any group
element is a permutation, gz · pkci is uniformly random. The probability that programming fails in
any one particular iteration is bounded by the probability that gz · pkci was queried to F ′ before,
which is ≤ qF ′

p . Therefore, by the union bound, the advantage of any attacker in distinguishing
Hyb2 and Hyb3 is ≤ qF ′ ·qProve

p . QED.
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– Hyb4. Defined as the previous hybrid, but where we simulate the Fiat-Shamir DH proof in Rotate,
similarly to what we did in the previous hybrid for VRF.Query. In more detail, we replace (pkicur , πR)←
Rotate(X) oracle queries with the following (expanding out VRF.Rotate inside):
• icur ← icur + 1
• parse pp as (p,G, g, F, F ′)
• skicur

$← Z∗p
• pkicur ← gskicur

• P ← {(Eval(icur − 1, x),Eval(icur, x))}x∈X
• For each (u, u′) ∈ P :

* au ← F ′(u, u′, pk, pk′, P )
• y ←

∏
(u,u′)∈P u

au

• y′ ←
∏

(u,u′)∈P (u
′)au

• z $← Zp
• c $← Zp
• Program c = F ′(pkicur−1, y, pkicur , y

′, pkzicur−1 · pk
c
icur , y

z · y′c)
• πX ← (pkzicur−1 · pk

c
icur , y

z · y′c, z)
• return (pkicur , πX)

Lemma 11. |Pr[Hyb4→ 1]− Pr[Hyb3→ 1]| ≤ qF ′ ·qRotate
p .

Proof: The argument here is the same as for the previous hybrid, since we are again replacing the
Fiat-Shamir proof with a simulated one. We only need to check that the algebra works out. Set
r = z + c · α, with α = skicur/skicur−1. Then we have

pkzicur−1 · (pkicur)
c = pkr−c·αicur−1 · (pk

α
icur−1)

c = pkricur−1

and
yz · y′c = yr−c·α · (yα)c = yr,

which is the same as in the construction. Note again that pkzicur−1 · (pkicur)
c is uniformly random, and

so programming fails only with probability ≤ qF ′ ·qRotate
p . QED.

– Hyb5. Defined as the previous hybrid, but we now replace all sk’s in T with formal variables. We
do this by adding a new oracle to the generic group, the random public key oracle pk ← RPK():

• Sample pk $← S \ T (·).
• Create a new variable A, and store (A, pk) in T .
• return pk

We then replace all places where pk appears with the random public key oracle. In particular, we
replace VRF.KeyGen with the following:
• parse pp as (p,G, g, F, F ′)
• pk ← RPK()
• return pk

Similarly, when handling Rotate oracle queries, we replace the instructions skicur
$← Z∗p, pkicur ←

gskicur with pkicur ← RPK().
We also replace our reference to ski in Eval(i, x) with the polynomial indexing pki:
• Bx ← TF (x) // If x is not in TF yet, make an oracle query for F (x) and update TF and T as

defined in Hyb2.
• Ai ← T pki .
• If Ai ·Bx ∈ T(·), return TAi·Bx
• Sample vi,x

$← S \ T (·). Store (Ai ·Bx, vi,x) in T .
• return vi,x

Note that now the only place sk is used is inside Corrupt. Thus, we replace Corrupt with the follow-
ing:
• For k = icrpt + 1, . . . , icur:

* skk
$← Z∗p
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* Ak ← the new formal variable introduced when calling RPK to obtain pkk.
* Replace all instances of Ak in T with skk, and simplify all polynomials. If this causes colli-

sions, fail.
• return skicrpt , . . . , skicur , and set icrpt ← icur.

Lemma 12. |Pr[Hyb5→ 1]− Pr[Hyb4→ 1]| ≤ q2T
p−1 .

Proof:
Note that the only times RPK is called is when creating a new public key. Thus, this process adds in
a new formal variable Ai for each public key pki and no other new formal variables. Consider the
situation where at the end of the game, each Ai in T (which hasn’t yet been replaced with an ski
value during a corrupt query) is sampled uniformly at random from Z∗p, and all polynomials in T
are replaced with their partial evaluation on the Ai’s. Note that if no collisions in T are induced by
Corrupt or by this final sampling, at the end of the game T is identically distributed to T in Hyb4.
Furthermore, each oracle in this game returns the corresponding value in T it would have returned
in Hyb4. Thus, let BAD be the event where a collision is induced in T by some call to Corrupt or by
this end-of-game replacement. It is clear that the advantage of any adversary distinguishing Hyb4
and Hyb5 is bounded by Pr(BAD).
Now, for each pair of (distinct) rows i, j in T , with associated polynomials Pi, Pj , it holds that re-
placing theAi variables with ski causes a collision if and only if (partially) evaluating Pi,j ← Pi−Pj
on the A variables results in the 0 polynomial. Moreover, this collision can only happen during the
very first Corrupt call after both rows i and j are inserted in T , or during the end-of-game replace-
ment of the A variables if no further Corrupt calls happen after both rows are inserted in T . Indeed,
obviously at least one of the rows did not exist during earlier Corrupt calls, and for subsequent calls
all the A variables in rows i and j would have already been replaced with scalars, so further Corrupt
calls do not influence these rows any longer. (Note that the further replacement of other variables
not introduced with RPK calls can still cause collisions, but that is addressed in a previous hybrid).
Note that by construction the Pi,j polynomials have degree at most 2, and the monomials of degree 2
are always the product of anA variable (introduced when calling the RPK oracle) times aB variable
(introduced when sampling the output of F ).
By Schwartz-Zippel, the probability that evaluating each Pi,j on theA variables (randomly sampled
from Z∗p) results in the 0 polynomial is bounded by 1/(p−1). In more detail, imagine evaluating Pi,j
on all the A variables except for an arbitrary Ak which appears in Pi,j . (If Pi,j doesn’t contain any A
variables, no collisions are possible, so the probability is 0.) This results in a polynomial of degree at
most 1 in Ak, i.e. of the form u(B1, . . . )Ak + v(B1, . . . ) where u and v are polynomials of degree at
most 1 in the B variables. If u and v are linearly dependent, there is at most one value for Ak in Z∗p
that makes the polynomial go to 0, else none. Therefore, the probability of a collision between rows
i and j when substituting the A variables can be bounded by 1/(p− 1).
By the union bound, Pr(BAD) ≤ q2T

p−1 .
QED.

– Hyb6. Defined as the previous hybrid, but instead of letting Eval look at the index of pk in T to
use as the secret key, we have Eval use a dummy variable instead. We add a database D to Eval to
track repeat queries, and for queries to corrupted secret keys, we answer honestly. In this hybrid,
Eval(i, x) oracle queries are answered as follows:
• If i ≤ icrpt, return F (x)ski (by making a random oracle query to F and a call to EXP , updating
T and TF , and returning the result).

• If (i, x) ∈ D, return D[i][x].
• Bx ← TF (x) // If x is not in TF yet, make an oracle query for F (x) and update TF and T as

defined in Hyb2.
• Let yi,x be a new variable.

• Sample vi,x
$← S \ T (·). Store (yi,x, vi,x) in T .

• D[i][x]← vi,x.
• return vi,x.

At the beginning of Corrupt, we now replace the dummy variables from Eval with the polynomials
indexing the corresponding public keys:
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• For each (i, x) ∈ D, with icrpt + 1 ≤ i ≤ icur:
* vi,x ← D[i][x]

* yi,x ← T vi,x

* Bx ← TF (x) // If x is not in TF yet, make an oracle query for F (x) and update TF and T
as defined in Hyb2.

* Ai ← T pki .
* pi,x ← Ai ·Bx
* Replace all instances of yi,x in T with pi,x and simplify.
* Continue executing Corrupt as defined in Hyb5.

Lemma 13. Pr[Hyb6→ 1] = Pr[Hyb5→ 1].

Proof: Note that pi,x is identical to the polynomial representing Eval(i, x) in T in the previous hybrid.
Thus, this hybrid simply involves replacing pi,x with a formal variable until Corrupt is called. Let
BAD be the event that this new addition to Corrupt ever induces a collision in T . Note that if BAD
does not occur, after the replacement in the beginning of Corrupt, T is identically distributed in Hyb5
and Hyb6, as are the previous outputs of Eval queries. Thus, we just need to show that Pr(BAD) =
negl(λ). In fact, we will show that Pr(BAD) = 0.
As before, we denote the new formal variable introduced when calling RPK to obtain pki as Ai.
All other formal variables (besides the variables of the form yi,x) are associated with some group
element m, and we will denote such a variable as Bm. Note that the only multiplications of poly-
nomials happen in the computation of pi,x during a Corrupt query, where an Ai and a Bx formal
variables are multiplied together (Bx ← TF (x) is a single formal variable by construction, as it is
generated fresh without collisions when we query F for x). Therefore, any term in any polynomial
of T not containing an Ai will have degree at most 1.
Note that since we do not create formal variables yi,x for i ≤ icrpt, and since all such formal variables
have been replaced by a product of a B variable times a scalar by the end of the previous corrupt
query (we first substitute yi,x withAiBx and then replaceAi with a scalar as detailed in the previous
hybrid), all replacements yi,x → pi,x will involve i > icrpt. But note that for i > icrpt, any two
polynomials pi,x and pi′,x′ for (i, x) 6= (i′, x′) will be distinct, as they would have a different Bx, Bx′
factors if x 6= x′, and a different Aj variable if x = x′ but i 6= i′.
Let P be a polynomial in T before corruption. Due to the arguments in the previous description,
we can denote P = PA + PB + Py where PA is the terms of P containing only Ai formal variables,
PB is the terms of P containing only Bx formal variables, and Py is the terms of P containing only
yi,x formal variables. Denote P̃ to be P after the replacement yi,x → pi,x and simplification. Clearly
P̃ = PA+PB+P̃y . Since each term in P̃y comes from a single replacement yi,x → pi,x, and since each
pi,x is a distinct product of formal variables, there is a one-to-one correspondence between terms of
P̃y and Py . But the terms in P̃y contain bothAis and aBx, and thus will not collide in terms of formal
variables with any terms in PA or PB . Thus, there is a one-to-one correspondence between terms of
P̃ and terms of P . Therefore, if Q is another polynomial in T before collision, P̃ = Q̃ implies that
P = Q. Thus, replacement of yi,x → pi,x will not result in any collisions, and so Pr(BAD) = 0. QED.

– Hyb7. Defined as in the previous hybrid, but we set Eval to be the Eval of the ideal game, with
S(Corrupted-Eval, i, x) implemented as returning F (x)ski . In particular Eval(i, x) might sample
a value vi,x that already appears in T , and does not insert vi,x in T immediately, which means the
experiment could sample the same vi,x again when handling other G queries. To handle that, if
during a Corrupt query we enforce that if for any vi,x ← D[i][x] it holds that vi,x ∈ T (·) and T vi,x is
not a single formal variable, the experiment fails.

Lemma 14. |Pr[Hyb7→ 1]− Pr[Hyb6→ 1]| ≤ q2T
p .

Proof: The only difference between the two hybrids is that in Hyb6, for i > icrpt, Eval(i, x) immedi-
ately samples Bx, yi,x, vi,x, vx and adds (x, vx) to TF (i.e. F (x) = vx), and (Bx, vx) and (yi,x, vi,x)
to T (if they do not exist). Instead, in Hyb7, the creation of all these values is delayed until either
the F oracle is queried for x, or one of vx or vi,x is passed as input to the generic group oracles, or
Corrupt is called. Note that in all cases (as long as the vi,x sampled by Eval(i, x) does not collide with
an element of T or with the output of other queries to Eval), the new entries added for these values
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will be indexed by a pure formal variable, just as in the previous hybrid, so this delayed sampling
has no effect on the adversary’s view.
The only thing left to quantify is the probability that the vi,x sampled by Eval collides with an
element of T , either one already in T when vi,x is sampled, or one sampled after as a result of a ?,
EXP or F query. The probability that one such collision occurs at any point during Hyb7 is ≤ q2T

p

(note that qT upper bounds |T | in Hyb6, which also takes into account all the vi,x sampled during
Eval queries which in Hyb7 do not immediately result in new entries to T ). QED.

– Hyb8. The ideal experiment, with S defined as in Figure 7.

Lemma 15. Pr[Hyb8→ 1] = Pr[Hyb7→ 1].

Upon inspection, we observe that Hyb8 is functionally identical to Hyb7.

Putting together all the hybrids, we see that

|Pr[Hyb8→ 1]− Pr[Hyb0→ 1]| ≤ 2q2T + q2F + qF qT + qF ′(qProve + qRotate)

p
+

q2T
p− 1

.

But note that p is exponential in λ and any PPT adversary can make at most a polynomial number of
queries, which implies qProve and qRotate are polynomial in λ. Similarly, we can bound qF ′ with qIdeal +
qProve + qRotate, as TF ′ grows either as a result of direct random oracle queries for F ′, or due to the
programming in Prove and Rotate. An analogous polynomial bound can be derived for qT . Thus,

|Pr[VRF-ZK-REAL(A)→ 1]− Pr[VRF-ZK-IDEAL(A)→ 1]| ≤ negl(λ).

QED.

5 RZKS-Construction

5.1 Relevant Primitives

In order to construct RZKS, we rely on a number of building blocks aside from Rotatable VRFs. Security
definitions and constructions are included in Appendices C to E, but we include the syntax and a short
description here for ease of reference.

Simulatable Commitments. A commitment is a scheme which allows a prover to publish a commit-
ment to any given value such that the prover may later publish a proof that the commitment was indeed
generated from the initial value. Furthermore, the simulatability requirement states that the commit-
ment reveals no information about the committed value. A full definition and construction is included
in Appendix E.

Definition 3 (Simulatable Commitments) A Simulatable Commitment Scheme C consists of 3 algo-
rithms (C.Init,C.Commit,C.Verify) defined as follows:

. pp← C.GenPP(1λ): On input the security parameter, GenPP outputs public parameters pp.

. com, aux ← C.Commit(pp,m): Using the global parameters pp, the (randomized) commit algorithm
produces commitment com to message m, and decommitment information aux.

. 1/0 ← C.Verify(pp, com,m, aux): This deterministic algorithm checks whether com is a valid commit-
ment to message m, given the decommitment aux.

Ordered Accumulator (OA). An ordered accumulator is a scheme which allows a prover to commit
to a sequence of label/value pairs. Furthermore, an ordered accumulator allows the prover to verifi-
ably append label/value pairs to a previously committed sequence to generate a new commitment. The
prover can later provide proofs that a given label/value pair is in the committed sequence or that a
given label is not included in the committed sequence. A construction is given in Appendix C. Com-
pleteness and soundness are defined analogously to RZKS in Figures 1 and 2 respectively.

26



. pp, pk0 ← S(Init):
– TF, TF ′, T ← {}, {}, {}
– icrpt ← −1, icur ← 0

– p← prime exponential in λ
– S ← set of (at least) p strings. // Exponential size, but can have

small description.

– Sample g $← S, add (1, g) to T
– pk0 ← RPK()

– pp ← (p, g, S) // We don’t explicitly give out G,F, F ′ as they
are replaced by oracles.

– return pp, pk0

. π ← S(Explain, i, x, y):

– z
$← Zp

– c
$← Zp

– Program c = F ′(g, F (x), pki, y, g
z · pkci , F (x)z · yc)

– π ← (gz · pkci , F (x)z · yc, z)
– return π

. pk, π ← S(Rotate, P ):
– icur ← icur + 1

– pkicur = RPK()

– For each (u, u′) ∈ P :
• au ← F ′(u, pkicur−1, pkicur , P )

– y ←
∏

(u,u′)∈P u
au

– y′ ←
∏

(u,u′)∈P u
′au

– z
$← Zp

– c
$← Zp

– Program c = F ′(pkicur−1, y, pkicur , y
′, pkzicur−1 · pk

c
icur

, yz ·
(y′)c)

– π ← (pkzicur−1 · pk
c
icur

, yz · (y′)c, z)
– return (pkicur , π)

. skicrpt+1, . . . , skicur ← S(Corrupt, D):
– For each (i, x) ∈ D(·), with icrpt + 1 ≤ i ≤ icur :
• vi,x ← D[i][x]

• yi,x ← index of vi,x in T . If not present, create a new formal
variable and set it as the index. If not a single formal variable,
fail.

• Bx ← TF (x). // i.e. q ← S(F, x);Bx ← T q .
• Ai ← Tpki .
• pi,x ← Ai · Bx
• Replace all instances of yi,x in T with pi,x and simplify.

– For k = icrpt + 1, . . . , icur :

• skk
$← Z∗p.

• Ak ← Tpkk

• Replace all instances of Ak in T with skk , and simplify all
polynomials. If this causes collisions, fail.

– return sk0, . . . , skicur , and set icrpt ← icur .

. y ← S(Corrupted-Eval, i, x):
– return F (x)ski // i.e., S(EXP,S(F, x), ski)

. h← S(?, g1, g2, b):
– If g1 /∈ T (·), create a new variableB1 and add (B1, g1) to T .
– If g2 /∈ T (·), create a new variableB2 and add (B2, g2) to T .
– P1 ← T g1 .
– P2 ← T g2 .
– If P1 + b · P2 ∈ T(·), return TP1+b·P2

.

– h
$← S \ T (·).

– Add (P1 + b · P2, h) to T .
– return h.

. h′ ← S(EXP, h, r):
– If h /∈ T (·), create a new variableB and add (B, h) to T .
– P ← Th.
– If r · P ∈ T(·), return Tr·P .

– h′
$← S \ T (·).

– Add (r · P, h′) to T .
– return h′.

. y ← S(F, x):
– If x ∈ TF , return TFx
– y

$← S \ (T (·) ∪ TF (·))

– Add (x, y) to TF
– Add (Bx, y) to T , whereBx is a new variable.
– return y

. y ← S(F ′, x):
– If x ∈ TF ′, return TF ′x
– y

$← Zp
– Add (x, y) to TF ′

– return y

. pk ← RPK(): // Subroutine, not exposed as an oracle

– Sample pk $← S \ T (·).
– Create a new variableA, and store (A, pk) in T .
– return pk

Fig. 7: The full VRF simulator for Theorem 2. Note that S has to implement two random oracles F, F ′ and two
different oracles ?,EXP for the generic group when answering Ideal queries: for simplicity, we write S(F, x)
instead of S(Ideal, (F, x)) and analogously for F ′, EXP and ?. Moreover, we abuse notation, and we write a · b
(with a, b ∈ S) instead of S(?, a, b, 1) and az (with z ∈ Zp) to mean S(EXP, a, z). The state of the simulator consists
of tables TF, TF ′, T which are used to implement the three ideal objects, as well as vectors of all the αi, ski and pki
values, and counters icrpt and icur which track those of the experiment.
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Definition 4 An Ordered Accumulator is a tuple of algorithms OA = (GenPP, Init, Update, VerifyUpd,
Query, Verify, ProveAll, VerAll) defined as follows:

. GenPP, Init, Update, VerifyUpd, Query, Verify are defined analogously to the RZKS in Definition 1.

. π ← OA.ProveAll(pp, st, u): This algorithm outputs π which can be verified against the commitment
comu output by the u-th call to Update. It proves the set of label value pairs included in the datastore
up to epoch u.

. 1/0← OA.VerAll(pp, comu, P, π): This deterministic algorithm takes a digest comu, a setP of (label, val, t)
pairs, and a proof. It checks that P is the set of all pairs that comu commits to.

Append-Only Vector Commitments (AVC). An append-only vector commitment can be used to com-
mit to a list of values, extend the list without recomputing the commitment from scratch, prove what
the value is at a specific position in the list, and prove that two commitments have been obtained by
extending the same list.

We briefly discuss the syntax of this primitive here, and defer the security definitions and construc-
tion to Appendix D.1.

Definition 5 An Append-only Vector Commitment is a tuple of algorithms AVC =
(GenPP, Init,Update,ProveExt,VerExt,Query,Verify) defined as follows:

. pp← AVC.GenPP(1λ): This algorithm takes the security parameter and produces public parameter pp
for the scheme. All other algorithms take these pp as input, even when not explicitly specified.

. (com, st) ← AVC.Init(pp): This algorithm produces an initial commitment com to an empty list D0 =
{}, and an initial server/prover state st. Each server state st will contain a list and a digest, which we
will refer to as D(st) and com(st). Similarly, each commitment will include an integer t(com) (also
called an epoch for consistency with other primitives) representing the size of the list it commits to.
(Alternatively, these can be thought of as deterministic functions which are part of the scheme.)

. (com′, st′, πS)← AVC.Update(pp, st, val): This algorithm takes in the current state of the prover st, and
a value val. The algorithm outputs an updated commitment to the datastore, an updated internal
state st′, and proof π (to be verified with VerExt) that the update has been done correctly. Intuitively,
com′ is a commitment to the list D(st′) = D(st)||val of size t(com′) = t(com(st)) + 1.

. π ← AVC.ProveExt(pp, st, t′, t): Given the prover’s state st and two integers, the algorithm produces
a proof that the list committed to by comt (output at the t-th invocation of Update) extends the one
committed to by comt′ .

. 0/1← AVC.VerExt(pp, com′, com, π): This deterministic algorithm takes in two digests and proves that
the list committed to by com extends the one committed to by com′. The proofs can be produced by
either Update or ProveExt.

. (π, val) ← AVC.Query(pp, st, u, t′): This algorithm takes as input a state st and epochs u and t′ such
that u ≤ t′ ≤ t(st). It returns val = D(st)[u] and a membership proof π to be verified against the
commitment comt′ output by Update during the t′-th update.

. 0/1 ← AVC.Verify(pp, com, u, val, π): This deterministic algorithm checks the proof π (produced by
Query) that val is the is the u-th element of the list committed by com.

5.2 RZKS Construction

We describe our RZKS construction in Figure 8. The RZKS commits to a set of (label, val) pairs by storing
in an ordered accumulator (tlbl, tval) pairs, where a given tlbl is the VRF output18 for a given label, and
a given tval is the commitment to a given val. Elements are added to the OA in batches, where the i-th
update to the OA produces a digest at the i-th epoch. At each epoch, the OA digest and VRF public
key are stored in the corresponding index of the AVC. The resulting AVC digest is returned as the RZKS
digest.

Updating the RZKS produces an append-only proof, which contains the append-only proofs for the
underlying OA and AVC. To verify the presence of a (label, val), inclusion/exclusion proofs include the

18 The Rotatable VRF presented in this work outputs group elements, while the ordered accumulator takes as input
bit-strings, so we implicitly assume that these group elements have a unique bit-string representation.
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VRF proof, commitment opening, OA digest, a proof that the label/value pair is consistent with that
digest, and a proof that the digest is at the expected index of the vector that the AVC digest commits to.

The AVC data structure allows the RZKS to support the ProveExt and VerExt algorithms, in which
the server proves that a recent RZKS digest commits to an older one that the verifier currently holds
(therefore, the client can forget the old digest without losing the ability to hold the server accountable
later).

The RZKS construction is similar to the append-only ZKS described in SEEMless [8], but i) each leaf
also contains the epoch number at which such leaf was inserted, and ii) it uses a rotatable VRF instead
of a standard one. To perform a rotation, the prover rotates the VRF key and builds a brand new ordered
accumulator using the same commitments as the old one, but uses the new VRF outputs as labels. The
audit proof for such a rotation involves the VRF rotation proof for all the pre-existing labels, plus an
append-only proof for any new labels that were added.

Finally, we summarize the state that the RZKS maintains (note that some values in the state are
redundant for the sake of readability). It maintains D, a map of all the (label, val) pairs in the RZKS, and
epno, the latest epoch number. It also contains stOA and stAVC, the underlying state of the OA and AVC,
respectively. It stores comepno, which is the latest value stored at the epno-th position in the AVC (recall
that it contains the latest OA digest and VRF public key). And, the RZKS state stores KVRF, a map of the
VRF keypair for each VRF keypair generation; G, a map of the corresponding VRF generation for each
epoch number; and g, the latest VRF keypair generation number.

5.3 RZKS Protocol Security

Theorem 3 The scheme described in Figure 8 satisfies completeness according to Definition 1.

This is easy to see by inspection.

Theorem 4 Let OA be an Ordered Accumulator, C be a Commitment scheme, VRF be a VRF, and AVC be an
Append-only Vector Commitment, all satisfying their respective definitions of soundness w.r.t. their own idealized
objects. Then the RZKS construction of Figure 8 satisfies soundness, w.r.t. the set of all such idealized objects.

Proof Sketch: To prove soundness, we define an RZKS extractor that trivially combines those for the
underlying building blocks. It extracts a dictionary from an RZKS digest by feeding the output of each
extractor as input to the next, and answers Ideal oracle queries for a primitive’s ideal object by running
the appropriate extractor. Given this extractor, we make a hybrid argument: we first need to add extra
assertions to the ideal RZKS game enforcing that the individual components of an RZKS proof match
the output of the corresponding extractors (indistinguishability can be proven based on the soundness
of those primitives). This prevents an adversary from submitting proofs for the same tuples that the
combined extractor outputs, but that disagree with the internal extractors. After that, we can start re-
moving the individual extractors and honestly implementing the corresponding ideal objects (relying
a second time on the same soundness properties of the underlying primitives) to get to the real game.
The full proof is in Appendix F.

Last, we prove that the RZKS construction satisfies zero-knowledge with leakage. The leakage function
provides the simulator, for Update queries, with the number of elements that are being added to the data
structure, as well as the labels (but not values) of any added pair that the adversary has queried since
the last PCSUpdate (and was given absence proofs for). PCSUpdate queries only include the number
of added pairs. When the adversary calls the Query oracle, the simulator is given the queried label, as
well as the epoch it was added at (if the label is in the RZKS) and value (if it was added no later than
the queried epoch). On LeakState queries, the simulator is given the full contents of the data structure,
and subsequent Update queries until the next PCSUpdate also reveal all the added labels (but not the
values). Finally, ProveExt queries just reveal the queried epochs. A formal definition follows:

Leakage L.
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. pp← RZKS.GenPP(1λ):
– ppVRF ← VRF.GenPP(1λ)

– ppOA ← OA.GenPP(1λ)

– ppC ← C.GenPP(1λ)

– ppAVC ← AVC.GenPP(1λ)

– return pp← (ppVRF, ppOA, ppC, ppAVC)

. (com, st)← RZKS.Init(pp):
– parse pp as (ppVRF, ppOA, ppC, ppAVC)

– epno← 0, g← 0,KVRF ← {}, D← {}, stOA ← {},G← {}
– sk0, pk0 ← VRF.KeyGen(ppVRF);

KVRF[g]← (sk0, pk0),G[epno]← g

– (st′, com0
OA)← OA.Init(ppOA);

com0
INT ← (com0

OA, pk0); stOA[g]← st′

– (stAVC, _)← AVC.Init(ppAVC);
com1, stAVC, π

0 ← AVC.Update(stAVC, com
0
INT)

– st← (KVRF,D, com
1, epno, g,G, stOA, stAVC)

– return com1, st

. (com, st′, π)← RZKS.Update(st, Supdate):
(com, st′, π)← RZKS.PCSUpdate(st, Supdate):
// bullets with � only apply to PCSUpdate

– parse st as (KVRF,D, com, epno, g,G, stOA, stAVC);
set epno← epno + 1

– parse Supdate as (label1, val1), . . . , (labeln, valn)
– ensure label1, . . . , labeln are distinct and 6∈ D

� L← {label | (label, (. . . )) ∈ D}
� skg+1, pkg+1, πVRF ← VRF.Rotate(KVRF[g], L)

� KVRF[g + 1]← (skg+1, pkg+1)

� g← g + 1

� For g′ ∈ {g, g − 1}:
• {tlblg

′
j }j∈L ←{VRF.Eval(KVRF[g

′].sk, j)}j∈L
� πg−1

OA ← OA.ProveAll(stOA[g − 1], epno− 1)

� st′, _← OA.Init(ppOA); For i ∈ [epno− 1] :

• SOA ← {(tlblgj , tvalj) | (j, (·, i, tvalj , ·)) ∈ D}
• st′, com′OA, _← OA.Update(st′, SOA)

� stOA[g]← st′, comepno−1
OA ← com′OA

� πg
OA ← OA.ProveAll(stOA[g], epno− 1)

– SOA ← {}; For each (labeli, vali) ∈ Supdate:
• tlbli ← VRF.Eval(KVRF[g].sk, labeli)

• tvali, auxi ← C.Commit(vali)

• SOA ← SOA ∪ {(tlbli, tvali)}
• D← D ∪ {(labeli, (val, epno, tvali, auxi))}

– stOA[g], com
epno
OA , πOA←OA.Update(stOA[g], SOA);

comepno
INT ← (comepno

OA ,KVRF[g].pk); G[epno]← g; π′ ← πOA

– com, stAVC, πAVC ← AVC.Update(stAVC, com
epno
INT )

– _, πepno
AVC ← AVC.Query(stAVC, t(com), t(com))

– comepno−1
INT , πepno−1

AVC ←
AVC.Query(stAVC, t(com)− 1, t(com)− 1)

� π′ ← (πOA, π
g−1
OA , πg

OA, πVRF, com
epno−1
OA ,

{(tlblg−1
j , tlblgj , tvalj , epnoj)}j∈L)

– π ← (π′, πAVC, com
epno
INT , com

epno−1
INT , πepno

AVC , π
epno−1
AVC )

– st← (KVRF,D, com, epno, g,G, stOA, stAVC)

– return (com, st, π)

. 0/1← RZKS.VerifyUpd(comt0 , comt1 , π):
– parse π as (π′, πAVC, com

t1
INT, com

t0
INT, π

t1
AVC, π

t0
AVC)

– parse com
t0
INT as (comt0OA, pkt0 )

– parse com
t1
INT as (comt1OA, pkt1 )

– ensure OA.t(com
t0
OA) + 2 = AVC.t(comt0 ) + 1 =

AVC.t(comt1 ) = OA.t(com
t1
OA) + 1

– ensure AVC.VerExt(comt0 , comt1 , πAVC) = 1

– For t ∈ {t0, t1}:
• ensure AVC.Verify(comt, AVC.t(comt), comtINT, π

t
AVC) = 1

– If pkt0 = pkt1 :

• parse π′ as πOA; set com′OA ← com
t0
OA

Else:
• parse π′ as (πOA, π

g−1
OA , πg

OA, πVRF, com
′
OA,

{(tlblg−1
j , tlblgj , tvalj , epnoj)}j∈L)

• ensure VRF.VerRotate(pkt0 , pkt1 ,

{(tlblg−1
j , tlblgj)}j∈L, πVRF) = 1

• ensure OA.VerAll(com
t0
OA, {(tlbl

g−1
j , tvalj ,

epnoj)}j∈L, π
g−1
OA ) = 1

• ensure OA.VerAll(com′OA, {(tlbl
g
j , tvalj ,

epnoj)}j∈L, π
g
OA) = 1

– ensure OA.VerifyUpd(com′OA, com
t1
OA, πOA) = 1

– return 1

. (π, val, t)← RZKS.Query(st, u, label):
– parse st as (KVRF,D, com, epno, g,G, stOA, stAVC)

– ensure u ≤ epno

– (tlbl, πVRF)← VRF.Query(KVRF[G[u]].sk, label)

– If label ∈ D and D[label].epnolabel ≤ u :

• (val, epnolabel, tval, aux)← D[label]

Else:
• (val, epnolabel, tval, aux)← (⊥,⊥,⊥,⊥)

– πOA, _← OA.Query(stOA[G[u]], u, tlbl)

– πAVC, comINT ← AVC.Query(stAVC, u, u)

– π ← (πAVC, πOA, πVRF, tlbl, tval, aux, comINT)

– return π, val, epnolabel

. 0/1← RZKS.Verify(com, label, val, t, π):
– parse π as (πAVC, πOA, πVRF, tlbl, tval, aux, comINT)

– parse comINT as (comOA, pk)

– ensure VRF.Verify(pk, label, tlbl, πVRF) = 1

– ensure AVC.t(com) = OA.t(comOA) + 1

– If t = ⊥ ∨ val = ⊥ ∨ tval = ⊥
Then ensure val = tval = t = ⊥
Else ensure C.Verify(val, tval, aux) = 1

– ensure OA.Verify(comOA, tlbl, tval, t, πOA) = 1

– ensure AVC.Verify(com,AVC.t(com), comINT, πAVC) = 1

– return 1

. (π, val, t)← RZKS.ProveExt(st, t0, t1):
– parse st as (KVRF,D, com, epno, g,G, stOA, stAVC)

– return AVC.ProveExt(stAVC, t0, t1)

. 0/1← RZKS.VerExt(comt0 , comt1 , π):
– return AVC.VerExt(comt0 , comt1 , π)

Fig. 8: Our RZKS construction. We implicitly assume that the public parameters output by GenPP are input to all
other algorithms, parsed into their components and input to the VRF, OA and C, AVC algorithms as appropriate (as
shown in Init). Moreover, since the OA commitment to the empty datastore ends up as the first element of the AVC,
in this construction we define RZKS.t(com) as AVC.t(com)− 1.
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– The shared state consists of a set of labels X , a datastore D, a counter t for the current epoch (ini-
tialized to 0), a counter g for the current generation (i.e. the number of PCSUpdate operations per-
formed, also starting at 0), a map G that matches each epoch to the respective generation, and a
boolean leaked (initially false).

– LQuery(label, u): If ∃(label, val, t′) ∈ D such that t′ ≤ u, the function returns (label, val, t′, u). If
∃(label, val, t′) ∈ D such that G[t′] = G[u], the function returns (label,⊥, t′, u). Otherwise, it returns
(label,⊥,⊥, u) and, if G[u] = g, adds label to X .

– LUpdate(S): Parse S = {(labeli, vali)}. If S contains any duplicate label, or any label which appears
in D, this function returns ⊥. Else, it increments t, sets G[t] ← g, and adds the pairs from S to the
datastore D at epoch t. If leaked, it returns the labels in S. Else, it returns |S| and the set of labels
from S which are also in X .

– LPCSUpdate(S): Parse S = {(labeli, vali)}. If S contains any duplicate label, or any label which appears
in D, this function returns ⊥. Else, it increments t, adds the pairs from S to the datastore D at epoch
t, and updates X ← {}, leaked← false, and g ← g + 1, G[t]← g. It returns |S|.

– LLeakState(S): Set leaked← true. return D.
– LProveExt(t0, t1): return (t0, t1).

Theorem 5 Let VRF be a rotatable VRF in some idealized model, C be a simulatable commitments scheme in
some idealized model, and AVC be any Append-only Vector Commitment. Then, our Z construction satisfies
zero-knowledge with leakage L as above in the idealized models used by the underlying protocols.

Proof Sketch: The proof is structured as a hybrid argument. Starting from the real game, one can first
substitute Commitments and (Rotatable) VRF outputs and proofs with random strings or those pro-
duced by the respective simulators, and then notice that, at this point, the information provided by
the leakage function L is sufficient to produce these simulated values without relying on the full input
to the oracle calls. For example, when an Update oracle query happens (for a non compromised key),
the simulator receives the number of pairs that the adversary wants to add to the RZKS, and can itself
generate enough random strings (to use as VRF outputs) and simulated commitments to add to the
OA, and then adds the new OA commitment to the AVC. Upon corruption or queries, the simulator
learns the actual values corresponding to these queries, and can simulate commitment openings and
VRF proofs accordingly, and provide honestly generated OA and AVC proofs. A full proof is deferred
to Appendix G.

5.4 Instantiation and Complexity

When instantiating each of the building blocks as constructed in the appendices, we obtain a concrete
RZKS construction. Table 1 reports the computational complexity and proof length for each such build-
ing block, as well as for the entire RZKS scheme.

The table uses the following notation:

– n is the size of the OA and RZKS datastores (i.e. the number of label/value pairs they contain), as
well as the size of the set X given as input for VRF.Rotate and VRF.VerRotate.

– s is the number of pairs being added to the directory during an update
– e is the number of epochs in the RZKS, and the size of the AVC
– The size of a bitstring representation of an epoch number is given as dlog ee
– LG is the size of the bitstring representation of a group element (and without loss of generality, a

group exponent as well)
– LL is the size of an OA label
– LV is the size of an OA value
– LH is the size of a hash
– Laux is the size of entropy needed for the commitment scheme

Further, the values in the table reflect the following assumptions, including some additional opti-
mizations that (for simplicity of exposition) are not reflected in the pseudocode of the algorithms as
presented in the rest of this work:

– VRF.Rotate reuses the hash computation from VRF.Eval across the algorithm
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– The server state includes a database that stores all the Merkle tree nodes throughout the updates for
the OA and AVC, indexed by their position in the tree, and the epoch at which they were inserted.
We assume that updating the index and querying for a specific node given its position can be done
in constant time (in particular, GetCover does not perform any hashing).

– Binary trees for the OA and AVC are balanced. In particular, we assume that the depth of any leaf
that is being queried is bounded by dlog ne and dlog ee respectively. This is justified in the OA case
because we only insert labels that are the output of an RVRF, and therefore distributed close to
uniformly random19.

– The number of hashes in the tree covers that are part of OA.Update’s proof can be bounded by first
considering a sibling path for each new leaf, and then subtracting one for each leaf after the first.
This is because each subsequent sibling path must intersect a previous one below the root, and thus
the intermediate nodes closer to the root can be omitted.

– The public key for the RVRF gsk is cached by the server and doesn’t need to be recomputed every
time.

– When some algorithm ignores the proof output from another, we skip the proof calculation.
– When describing the time complexity, we assume that strings can be processed in constant time

(even if their length might depend on the security parameter).
– RZKS.PCSUpdate rebuilds the tree from scratch in a single pass rather than incrementally perform-

ing OA.Update operations for every epoch. Similarly, the proof does not include OA.Update proofs
for each of the new entries, as the verifier can rebuild the tree from scratch in RZKS.VerifyUpd.

– Proofs output by RZKS.Update and RZKS.PCSUpdate include two AVC.Query proofs for the last val-
ues in two consecutive epochs (i.e. proofs πepno−1

AVC , πepno
AVC for values comepno−1

INT , comepno
INT ). In this special

case, the proof for the later epoch can actually be computed given the proof and value for the earlier
epoch, and is therefore omitted.

– In RZKS.PCSUpdate when computing VRF.Rotate, we do not need to compute the old labels as
they are in the database, and the new labels can be cached from the VRF.Eval evaluations, so these
computations can be skipped.

– In RZKS.VerifyUpd, the AVC.VerExt and AVC.Query calls compute exactly the same hashes, so they
only have to be performed once.

– In RZKS.Query, the label and commitment are omitted from the proof as they can be computed by
the verifier.
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Hashes (upper bound) Exponentiations Proof length (upper bound) Time complexity
VRF.Eval 1 1 O(1)
VRF.Query 2 3 3LG O(1)
VRF.Verify 2 4 O(1)
VRF.Rotate 2n+ 1 4n+ 3 3LG O(n)
VRF.VerRotate n+ 1 2n+ 4 O(n)
C.Commit 1 0 Laux O(1)
C.Verify 1 0 O(1)

OA.Update s(dlog (n+ s)e+ 1) 0
s(LL + LV ) + (s(dlog (n+ s)e −
1) + 1)LH

O(s log (n+ s))

OA.VerifyUpd 2s dlog (n+ s)e 0 O(s log (n+ s))
OA.Query 0 0 dlogneLH O(logn)
OA.Verify dlogne+ 1 0 O(logn)
OA.ProveAll no-op
OA.VerAll 2n− 1 0 O(n)
AVC.Update dlog (e+ 1)e+ 1 0 (dlog ee+ 1)LH O(log e)
AVC.ProveExt 0 0 (dlog ee+ 1)LH O(log e)
AVC.VerExt 2 dlog ee 0 O(log e)
AVC.Query 0 0 dlog eeLH O(log e)
AVC.Verify dlog ee+ 1 O(log e)

RZKS.Update
s dlog (n+ s)e + 3s +
dlog (e+ 1)e+ 1

s
(s + 1)LG + (s dlog (n+ s)e +
dlog ee+ 1)LH

O(s log (n+ s) + log e)

RZKS.PCSUpdate 3n+ 4s+ dlog (e+ 1)e+ 1 3n+ s+ 3
(n + s + dlog ee)LH + (2n + s +
3)LG + (n+ 1) dlog ee O(n+ s+ log e)

RZKS.VerifyUpd
(for Update) 2s dlog (n+ s)e+2 dlog ee+2 O(s log (n+ s) + log e)

RZKS.VerifyUpd
(for PCSUpdate) 5n+ 2s+ 2 dlog ee+ 1 2n+ 4 O(n+ s+ log e)

RZKS.Query 2 3
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A Additional Preliminaries

A.1 Decisional Diffie-Hellman Assumption

The decisional Diffie-Hellman (DDH) assumption on a group G of order p states that given a generator g

and ga, gb for a, b $← Zp, gab is indistinguishable from uniform. Formally,

Assumption 1 There exists a family of groups Gλ of order p(λ) with generator g such that for any efficient
adversary A, ∣∣∣∣∣ Pr

a,b
$←Zp

[A(ga, gb, gab)→ 1]− Pr
a,b,c

$←Zp
[A(ga, gb, gc)→ 1]

∣∣∣∣∣ ≤ negl(λ).
We also define DDH tuples, which correspond to the tuple (g, ga, gb, gab). Formally,

Definition 6 A DDH tuple is a 4-tuple (g, h, g′, h′) such that there exists α ∈ Zp such that g′ = gα and
h′ = hα.

A.2 Random Oracle Model

In the Random Oracle Model (ROM), introduced by Bellare and Rogaway [4], we treat some hash func-
tion H : {0, 1}∗ → S as a truly random function. We also allow “programming” the random oracle.
That is, in our proofs for soundness and zero-knowledge for our cryptographic primitives, we model
the hash function as being wrapped in an oracle. In the real game, the oracle will pass inputs directly
to H , but in the ideal game, we will send oracle queries to H through the simulator, which can answer
as it wishes. Note that by indistinguishability, we will require that the simulator’s outputs to random
oracle queries be computationally indistinguishable from a true random oracle.

A.3 Generic Group Model

In Shoup’s Generic Group Model (GGM) [41], we treat some group G of order p as having group el-
ements uniformly distributed along some set of bit-strings S. Formally, G is modelled as some truly-
random bijective function τ : Zp → S, where the element of G associated to x ∈ Zp is τ(x). Intu-
itively, for a generator g of G, τ(x) represents gx. G also provides oracle access to an addition oracle,
? : S × S × {−1, 1} → S defined by ?(g1, g2, b) = τ(τ−1(g1) + b · τ−1(g2)) (denoted g1gb2).

In addition to the standard GGM, we add an additional exponentiation oracle EXP : S × Zp → S
to G, defined by EXP (g, r) = τ(τ−1(g) · r) (denoted gr). Note that this can efficiently be implemented
by repeated squaring, but we add this oracle to model the fact that in some group implementations
exponentiation is implemented in a more efficient manner. Assuming that τ is a bijection allows us to
handle ? queries on elements of S not coming from τ .

As a simplification, instead of G providing τ as an oracle, we have G simply provide g = τ(1). Any
algorithm interacting with G can then calculate τ(x) = EXP (g, x) by using the EXP oracle.

We also allow “programming” the generic group similar to programming the random oracle. In the
real games, queries to ? and EXP will be forwarded to an honestly implemented generic group, but in
the ideal game they will instead be forwarded to the simulator.

We consider Shoup’s generic group model over Maurer’s [30] for two reasons. First, Maurer’s model
does not allow us to treat random bit-strings as elements of the generic group, which is required for our
definition. Even if this problem was solved through clever modeling, a recent result by Zhandry [50]
shows that when both models apply, security in Shoup’s model implies security in Maurer’s for single-
stage games (as all of our security games are).

B Merkle Trees and Covering Sets

Our Ordered Accumulator and Append-only Vector Commitment constructions are both implemented
using Merkle trees. Merkle trees can be used to store both vectors (as with AVCs) as well as dictionaries
of label/value pairs (as with OAs). Merkle trees can be represented by a compact commitment, and
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they admit logarithmic-size proofs of inclusion and exclusion of a label/value pair with respect to the
commitment.

For our constructions, a Merkle Tree is a binary tree where each node is associated with a unique
bitstring label and a hash value. All leaf labels in the same tree are bitstrings with the same length l.
Leaf nodes (which have no descendants) each store either an element of the vector (for AVCs, the ith
element is stored in a leaf with label the l-bit representation of i) or a label-value pair (where the leaf
label corresponds to the pair label). Given a hash function H (which we model as a random oracle),
the hash value of a leaf node is computed as H(Leaf, label, val), while the hash value for an inner node
is computed recursively as H(Internal, label, valleft, valright). In addition, we require that the parent of
each leaf node have two children, and that for each node with label x, its left child’s label begins with
x||0 and its right child’s label begins with x||1. In the OA, nodes that are not parents of leaf nodes may
have only one child; in this case, valleft or valright will be ⊥.

We will use the root node’s hash as a commitment to the whole data structure. Proofs consist of a list
of node labels and their hashes which allows us to recompute the root hash while proving that specific
leaves are included or excluded in the data structure. An adversary that can produce two different trees
with the same commitment would be able to break the collision resistance of the hash function, and in
the random oracle model, we extract these commitments to reconstruct such a data structure.

Covering Sets In order to represent consistency and inclusion proofs for the OA and AVC, we introduce
the notion of a covering set. This definition is inspired by that in [31], but we generalize beyond history
trees so it applies to both our OA and AVC constructions.

Given a Merkle Tree, a covering set S is a subset of the tree nodes such that no node in S is a descen-
dant of another node in S. We define cover(S) as the set of leaf nodes in the tree that are descendants of
some node in S, and define range(S) as the set of all l-bit-strings ` such that there exists a node s ∈ S
whose label is a prefix of `. A set of covering sets is mergeable if the union of the subsets is also a covering
set.

Given a Merkle Tree and a mergeable set of covering sets that collectively cover all the leaves in
the tree, we can reconstruct the root hash from the hashes of the nodes in the covering set as follows.
Algorithm MergeToRootHash takes as input the label and hash of each node in each covering set, and
is able to compute the label for each node’s parent due to the constraints imposed on the Merkle Tree
structure, as discussed in Appendices C and D.1 regarding the OA and AVC constructions, respectively.
The algorithm returns the hash of the root node.

. h← MergeToRootHash(covers) :
– Let U =

⋃
covers

– If U = {}, return“”
– While U contains more than one element:
• Select a node A = (lA, vA) in U for which lA has maximum length in U .
• Consider A’s parent P and sibling B. Let lA, vA, lB , vB be the labels and values of A and B.

Note that B may not exist in the Merkle Tree and thus it might be that vB = ⊥.
• Compute vP = H(Internal, lA, vA, lB , vB).
• Remove A and B (if it exists) from U and add (P, vP ).

– parse U as {(lR, vR)} and return vR

Note that in the while loop, if P has two children, the child other than A must also be in U . If it
weren’t, some descendant of that child must be in U for all the leaves of the subtree of that child to be
covered, but this contradicts our selection of A such that lA has maximum length.

Additionally, each iteration of the while loop maintains the invariant that U is a covering set that
covers all of the leaves of the tree. Finally, note that the algorithm always terminates because the sum of
the lengths of the labels of all nodes in U is a non-negative quantity that decreases at each loop iteration.
The number of nodes in the tree is an upper bound on the number of steps the algorithm takes.

To construct our OA and AVC (and their security proofs), we make frequent use of an algorithm
GetCover(n, I) that, given a node n and an interval I , computes a covering set S such that

1. S contains only n or descendants of n
2. range(S) ⊆ I
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3. cover(S) is exactly the set of descendants of n whose labels are in I .

Given two values L,R ∈ {0, 1}l∪{−∞,∞} (the set of all l-bit-strings extended with a minimum and
maximum element), we define the open interval (L,R) to be the set of l-bit-strings s such that L < s < R
in lexicographic ordering, and define the closed interval [L,R] to be the set of l-bit-strings s such that
L ≤ s ≤ R.

. h← GetCover(n, I) :
– If range(n) ⊆ I , return {n}
– If range(n) ∩ I = {}, return {}
– If n has a left child nl, set Cl = GetCover(nl, I), else Cl = {}
– If n has a right child nr, set Cr = GetCover(nr, I), else Cr = {}
– return Cl ∪ Cr

For efficiency reasons, we are interested in bounding the size of each cover.

Lemma 16. GetCover(n, I) returns at most 2d nodes, where d is the height of the subtree rooted at n.

Proof: To prove the lemma, it is enough to show that GetCover(n, I) returns at most 2 nodes at each
depth. Assume that the interval is of the form [L,R] (the case for open intervals is analogous). Given
a bitstring `, denote by `i the i-bit prefix of `, defined as 0i if ` = −∞ and 1i if ` = ∞. Assume by
contradiction GetCover(n, [L,R]) returns more than two nodes at the same depth. Let d be the smallest
depth for which this occurs, and let A1, . . . , An be the n ≥ 3 nodes at depth d, ordered lexicographically
by label.

Note that the algorithm provides an in-order traversal of the tree, deciding whether to visit a node’s
children depending on the parent’s label. In particular, no two nodesAi, Ai+1 returned by the algorithm
can be siblings, as otherwise the algorithm would have returned the parent instead of recursing into the
children, as the range of the parent is equal to the union of the range of its children. Additionally,
∀i, Ai 6= n, since n is the only node at that depth. Consider A1, A2, A3’s parents P1, P2, P3, which there-
fore must be in the subtree rooted at n. Since range(A1), range(A2), range(A3) ⊆ [L,R], it must be that
Ld ≤ A1 < A2 < A3 ≤ Rd, which implies that Ld−1 ≤ P1 < P2 < P3 ≤ Rd−1. Thus, range(P2) ⊆ [L,R],
and when the algorithm executed GetCover(P2, [L,R]), it would have returned P2 instead of recursing
into its children, contradicting that A2 is part of the output of the algorithm, and proving the lemma.
QED.

C Ordered Accumulator (OA)

We construct the Ordered Accumulator as a Merkle Tree, where each leaf’s parent has exactly two
children, and each non-leaf nodeN (except the root) has a parent whose label is equal toN ’s label with-
out the last bit. Moreover, each label/value pair will be stored in the leaf of the tree with the same label
(recall we require all labels to be strings of the same length), and with the leaf value being a tuple of
the value and the epoch when the pair was added to the tree. This construction is inspired by the com-
pressed Patricia trie described in SEEMless [8], but we instead keep (do not compress) internal nodes
whose only child is not a leaf, in order to support a simpler and more database-friendly implementation.

Note that, given a set of label/value/epoch tuples, there exists only one Merkle tree that is consistent
with the above constraints and contains exactly these tuples: starting from a complete binary tree, one
can first iteratively remove all leaf nodes which do not correspond to one of the tuples above, and then
iteratively remove all leaf parents that only have one child, connecting the leaf to the removed parent’s
parent. Similarly, given a cover set S which covers all the leaves in a given tree, all the ancestors of
the nodes in S are fully determined. Therefore, the MergeToRootHash algorithm does not need to be
explicitly given the full tree, but just the labels and hash values for the nodes that are in the cover, as
the rest of the tree can be inferred according to the above rules.

We define the commitment to an Ordered Accumulator to be a pair (t, h) where t is the epoch number
(the number of times the accumulator has been updated), and h is the current root hash value.

We give the construction for the Ordered Accumulator in Figure 9. The state of an ordered accu-
mulator st consists of a map D(st) of (label, val, t) tuples that are part of the data structure, as well as
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a representation of the nodes in the Merkle Tree (which could alternatively be recomputed on the fly
based on the datastore). For simplicity, in the pseudocode of Figure 9, we only store the root hash ex-
plicitly (which also includes the current epoch). Note that OA.ProveAll does not have any output in our
construction, as OA.VerAll can deterministically recompute the Merkle Tree root from its other inputs.

C.1 Ordered Accumulator Soundness

Theorem 6 If H is modeled as a random oracle, the ordered accumulator described in Figure 9 satisfies sound-
ness.

We need to show that there exists an extractor such that no adversary can distinguish between the
ideal and real worlds with better than negligible probability. The extractor works as follows:

– The extractor’s state consists of a set of pairs H (used to record answers to random oracle queries)
and a set C that stores values that we do not want the random oracle to ever sample.

– Extract(Ideal, st, in):
• If (in, out) ∈ H for some out, return (out, st)
• If in is of the form (Internal, label, valleft, valright), then add valleft, valright to C in st
• Sample out from {0, 1}λ \ C
• Add out to C and (in, out) to H in st.
• return (out, st)

– Extract(Extr, st, com):
• parse com as (t, h). If t = 0, return {}
• return ExtractFromHash(st, h, “”, t)

– ExtractFromHash(st, h, s, t):
• Let (in, out) be the only pair in H (part of st) such that out = h (by construction, there is at most

one). If no such pair exists, or h = ⊥, return {}
• If in can be parsed as (Leaf, label, (e, v)), e ≤ t, and s is a prefix of label, return {(label, (v, e))}
• If in can be parsed as (Internal, label, valleft, valright) and s is a prefix of label, return

ExtractFromHash(st, valleft, label||0, t) ∪ ExtractFromHash(st, valright, label||1, t)
• return {}

Note that the random oracle map H is, by construction, injective, since for any two distinct pairs
(in, out), (in′, out′) in H , we have in 6= in′ and out 6= out′. Moreover, every tuple returned by
ExtractFromHash(st, h, s, t) has a distinct label that is in the leaf range of the node with label s.

To argue that the ideal and real games are indistinguishable, we use a hybrid argument. Consider
the following sequence of games.

– Hyb0: Ideal
– Hyb1: Like previous, but every time the adversary makes an ExtractD(com) oracle query where

com = (t, h), the extractor adds h to C in st.
– Hyb2: Like previous, but we skip all the assertions on the various oracle calls which are not part of

the real game. Importantly, Ideal queries for the random oracle are still answered at random with
a λ-bit-string not in C.

– Hyb3: Real

An adversary distinguishing real and ideal worlds would also be able to distinguish between two
consecutive games with better than negligible probability.

First, note that Hyb0 ≈ Hyb1 and Hyb2 ≈ Hyb3. The only difference between the games in each
pair is that answers to Ideal queries are sampled uniformly at random from {0, 1}λ \ C, where the
set C is slightly different in each case (and empty in Hyb3). The only way the adversary can notice this
difference is if a value that would belong to C in Hyb1 (respectively, Hyb2) is actually sampled in Hyb0
(respectively, Hyb3). Given that for each Ideal query we add at most 3 elements to C and for each
Extract query at most 1, the size of C is linear in the number of queries of the adversary, and thus the
probability of sampling one of the elements of C from a space of exponential size is negligible in the
security parameter.

Second, Hyb1 ≈ Hyb2. To prove this, it is enough to show that each assertion is triggered in Hyb2
with at most negligible probability. We do so after introducing some notation and two auxiliary lemmas.
Given a cover set S (each node represented as pair (label, h) containing its label and hash value), denote
by ExtractAll(st, S, t) =

⋃
(label,h)∈S

ExtractFromHash(st, h, label, t) for any st, t.
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. pp← OA.GenPP(1λ):
– Sample hash functionH : {0, 1}∗ → {0, 1}λ

– return pp← (H,λ)

. (com, st)← OA.Init(pp):
– D← {}, t← 0

– com← (t, “”)

– st← (D, com)

– return (com, st)

. (com′, st′, πs)← OA.Update(pp, st, S = {(label1, val1), . . .}):
– parse st as (D, com), com as (t, h)
– For each (label, val) ∈ S:
• ensure label 6∈ D

• D[label]← (val, t+ 1)

• Add the corresponding leaf to the Merkle Tree
– Recompute the hash rootHash of the root root of the tree (including the new leaves)
– com′ ← (t+ 1, rootHash)

– Sort S by label as label1, . . . , labeln
– C ← GetCover(root, (−∞, label1)) ∪ GetCover(root, (label1, label2)) . . .

GetCover(root, (labeln−1, labeln)) ∪ GetCover(root, (labeln,+∞)) [that is, C is a cover of all nodes not in S]
– π ← (S,C)

– st← (D, com′)

– return (com′, st, π)

. 0/1← OA.VerifyUpd(pp, com0, com1, πS):
– parse com0 as (t0, h0), com1 as (t1, h1) and πS as (S,C)

– ensure t0 + 1 = t1
– If t0 = 0, ensure h0 = “” and C = {}
– ensureMergeToRootHash(C) = h0

– If S = {(label1, val1), . . .}, let S′ be the set of leaf nodes, each having label labeli and hashH(Leaf, labeli, (vali, t1))

– ensureMergeToRootHash(S′ ∪ C) = h1

– return 1

. (π, val, t)← OA.Query(pp, st, u, label):
– parse st as (D, com), com as (t, h)
– ensure u ≤ t
– If label ∈ D, let (val, epno)← D[label] if epno ≤ u. Else, let (val, epno)← (⊥,⊥).
– Compute the root node rootu of the Merkle Tree including only the labels with associated epochs epno ≤ u
– π ← (GetCover(rootu, (−∞, label)) ∪ GetCover(rootu, (label,+∞))

– return (π, val, epno)

. 0/1← OA.Verify(pp, comu, label, val, i, π):
– parse comu as (u, hashu) and π as C
– If val = ⊥ or i = ⊥:
• ensure val = i = ⊥
• ensure label /∈ range(C)

• ensureMergeToRootHash(C) = hashu
• return 1

– Else:
• Let L be the node with label label and hash valueH(Leaf, label, (val, i))

• ensure i ≤ u
• ensureMergeToRootHash(C ∪ {L}) = hashu
• return 1

. π ← OA.ProveAll(pp, st, u):
– return {}

. 0/1← OA.VerAll(pp, comu, i, P, π):
– parse comu as (u, hashu) and P as a collection {(label, val, i)}j
– Construct a set of leaves S′ containing a leaf with label label and a hash H(Leaf, label, (val, i)) for each tuple

(label, val, i) ∈ P
– ensure each label is P is unique
– ensure all tuples in P have epoch i ≤ u
– ensureMergeToRootHash(S′) = hashu
– return 1

Fig. 9: OA construction.
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Lemma 17. For any adversaryA, letD ← ExtractFromHash(st, h, label, t) andD′ ← ExtractFromHash(st′, h,
label, t′) be the outputs of two calls with the same (label, h) input performed by the game during an execution of
Hyb2 in response to queries by A. We have that if t = t′ then D = D′, and if t < t′, then D ⊆ D′ and D′ \D
contains (label, (val, t′′)) with t < t′′ ≤ t′.

Proof: First, let’s consider the case t = t′. The only way the extractor would return a different output
to the same query is if, during the first Extract query, one of the lookups into table H for some value
was not found, and it was later added toH before the second query, or if a different pair for the same out
was added. This cannot happen because every time a new tuple is added to H , we sample out such that
it does not collide with any of the values ExtractFromHash would potentially seek (i.e., the value h ∈ com,
the value out itself, and the values valleft, valright for all previous random oracle queries performed by
the adversary). Similarly, in the case t < t′, the extractor performs exactly the same lookup calls and
obtains the same results from table H , but might choose to discard some leaf tuples with epoch t′′ such
that t < t′′ ≤ t′ in the first but not in the second call. QED.

Lemma 18. For any execution of Hyb2, and any cover set S, if h = MergeToRootHash(S), then
ExtractFromHash(st, h, “”, t) = ExtractFromAll(st, S, t).

Proof: To prove this, it is sufficient to notice that MergeToRootHash computes the hash of the root
of the Merkle Tree by maintaining a set U and replacing each node (or pair of nodes) with their par-
ent, computing the parent’s hash through the function H . On the other hand, ExtractFromHash uses the
same (injective) function H to visit the tree starting from the root node and then considering its chil-
dren. Given that the two algorithms both consider the same root node and use the same hash function
H to define the edges of the tree (and that H has no collisions and does not introduce new edges for ex-
isting nodes with a given hash across the execution of the experiment), it follows that ExtractFromHash
will eventually consider all nodes in the cover S, and thus return the union of the outputs obtained by
visiting them, which proves our result. QED.

Using these helper lemmas, we will now prove that Hyb1 ≈ Hyb2.

– Query ExtractD(com). The assertion that D[com] = Dcom is always true due to Lemma 17. By con-
struction, the assertion on the epoch is never triggered by our extractor (tuples whose epochs are
too large are dropped).

– Query CheckVerD(com, label, val∗, i∗, π). In the case where val∗ = ⊥, since OA.Verify returns 1, it must
be the case that i∗ = ⊥. In addition, MergeToRootHash(C) must return hroot, where com = (t, hroot),
and C is a cover set consisting of the nodes in the set π. By Lemma 18, this implies that the output
of Extract(Extr, com) equals ExtractAll(st, C, t). But since none of the nodes in C has a label label′

that is the prefix of label, the set won’t contain a tuple for label either, and thus label 6∈ D[com]
and the assertion isn’t triggered. Similarly, if label 6= ⊥, then the set C would contain a leaf node
whose hash is h = H(Leaf, label, (val∗, i∗)) and thus ExtractFromHash(st, h, label′, t′) would return
(label, (val∗, i∗)) as a tuple, and thus D[com][label] = (val∗, i∗), and the assertion won’t be triggered.

– Query CheckVerUpdD(com0, com1, π). Since OA.VerifyUpd(pp, com0, com1, π) = 1, it must be that
t(com0) = t(com1) + 1, and by construction if t(com0) = 0, then D[com0] = {}. Let com0 =
(t0, h0), com1 = (t1, h1), π = (R,S). Since MergeToRootHash(R) = h0 and MergeToRootHash(R ∪ S) =
h1, we have that by Lemma 18, Extract(Extr, com0) = ExtractAll(st, R, t0) and Extract(Extr, com1) =
ExtractAll(st, R ∪ S, t0 + 1) = ExtractAll(st, R, t0 + 1) ∪ ExtractAll(st, S, t0 + 1). Therefore, by Lemma
17, we have that ExtractAll(st, R, t0) ⊂ ExtractAll(st, R, t0 +1) and therefore D[com0] ⊆ D[com1] and
that their difference only contains labels with t+1 as the associated epochs. Therefore, no assertions
are triggered for these queries.

– Query CheckVerAll(com, S, π). Let S′ be the list of leaf nodes each containing one of the tuples in S.
Again, since VerifyAll returns 1 and by Lemma 18, Extract(Extr, com) = ExtractAll(st, S′, t(com)).
But S′ only contains leaf nodes whose epochs are smaller than t[com], therefore for each leaf node
N ,
ExtractFromHash(st, N, t(com)) returns exactly the corresponding tuple, and thus D[com] equals ex-
actly the set of leaves in S.
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D Append-only Vector Commitment - Definition

Definition 7 An Append-only Vector Commitment is a tuple of algorithms AVC = (GenPP, Init, Update,
ProveExt, VerExt, Query,Verify).

AVC-Completeness(A):

pp′ ← AVC.GenPP(1λ)

(com′, st′)← AVC.Init(pp)

assert com(st′) = com′ and t(com′) = 0 and D(st0) = {}
com0 ← com′, st← st′, t← 0

AO...(com0)

return 1

Oracle Update(val):

(com′, st′, π)← AVC.Update(st, val)

assert com(st′) = com′, t(com′) = t+ 1 and D(st′) = D(st)||val
assert y ← AVC.VerExt(comt, com

′, π); y = 1

comt+1 ← com′, st← st′, t← t+ 1

Oracle Query(u, t′):

require 0 ≤ u ≤ t′ ≤ t
(π, val′)← AVC.Query(st, u, t′)

assert D(st)[u] = val′

assert y ← AVC.Verify(comt′ , u, val, π); y = 1

Oracle ProveExt(t0, t1):

require 0 ≤ t0 ≤ t1 ≤ t
πE ← AVC.ProveExt(st, t0, t1)

assert y ← AVC.VerExt(comt0 , comt1 , πE); y = 1

Fig. 10: Completeness for AVC. The scheme satisfies completeness if for any adversary A, the output of the experi-
ment is 1 with all but negligible probability.

Completeness We will say that an AVC satisfies completeness if for all PPT adversariesA, the probability
that the game described in Figure 10 doesn’t return 1 is negligible in λ.

Soundness We will say that an AVC satisfies soundness if there exists an extractor Extract such that for
all PPT adversariesA, the advantage ofA in distinguishing the two experiments described in Figure 11
is negligible in λ. Note that all the algorithms executed in the experiment get implicit access to the Ideal
oracle, as they might need to make, e.g., random oracle calls.

D.1 Append-only Vector Commitment (AVC)

We construct the AVC using a History Tree, also known as a Merkle Mountain Range (as defined
in [14,31]), as the underlying data structure, which we recall here for completeness. A History Tree with
N > 1 leaves (which can be used to store a vector of N values) is a Merkle Tree in which the left subtree
(the one rooted at the left child of the root) is a perfect tree with 2i leaves for i = dlog(N)e − 1, and
the right subtree is a history tree with N − 2i leaves. A History Tree with 1 leaf is exactly 1 leaf node.
When adding a new leaf, if the right subtree becomes “full” at size 2i, then it is incorporated into the
left subtree, such that the root of the tree is the root of the new left subtree, and the new right subtree
only contains the new leaf. Let M be the upper bound on the length of a given AVC, then we define
l = dlog(M)e to be the length of bitstring labels.

As in the OA case, the number of leaves in a History Tree fully determines its shape, i.e. the label
(and hash) of the parent of each node. We define the i-th leaf’s label in the tree (0-indexed) to be the l-bit
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AVC-Sound-IDEAL(A):

pp′, st← Extract(Init)

L← [ ], C ← [ ], st← ⊥, pp← pp′

b← AIdeal(·),...(pp)
return b

Oracle Extract(com):

Lcom, Ccom ← Extract(Extr, st, com)

If com ∈ C:
assert C[com] = Ccom ∧ L[com] = Lcom

C[com]← Ccom, L[com]← Lcom

assert |C[com]| = |L[com]| = t(com)

and last(C[com]) = com

Oracle CheckVer(com, u, val∗, π):

require AVC.Verify(pp, com, u, val∗, π) = 1 and com ∈ L
assert L[com][u] = val∗

Oracle CheckVerExt(com0, com1, π):

require Z.VerExt(pp, com0, com1, π) = 1

and com0, com1 ∈ D
assert ∀ j ≤ t(com0) :

C[com0][j] = C[com1][j] ∧ L[com0][j] = L[com1][j]

Oracle Ideal(in):

out, st← Extract(Ideal, st, in)

return out

Fig. 11: Soundness for AVC. The extractor, on input com, returns a list Lcom of size t(com) as well as a list Ccom

which contains at position i the AVC digest corresponding to the sublist containing the first i elements of Lcom. In
the real experiment (not pictured), the public parameters are generated as pp ← Z.GenPP(1λ), and all oracles do
nothing except for the Ideal one, which implements the ideal objects according to the specification. The scheme
satisfies soundness if all PPT adversaries have negligible advantage in distinguishing these two games.

big endian representation of i (and use it to store the i+ 1-th element of the vector, as for convenience,
the vector is 1-indexed). All non-leaf nodes have two children, and we define the label of an inner node
to be the longest common prefix of its children’s labels. Note that this means that, unlike in the OA case,
the root of a History Tree might not have the empty string as the label, and instead have a sequence of
0 bits.

We give a formal construction of our AVC in Figure 12. The state of an AVC st consists of a vector
D(st) of values that are part of the data structure (the i-th value is indicated with D(st)[i], with i being 1-
indexed), and a representation of the nodes in the Merkle Tree (which could alternatively be recomputed
on the fly based on the list D(st)). For simplicity, in the pseudocode of Figure 12, we only store the root
hash explicitly.

D.2 Append-only Vector Commitment Soundness

Theorem 7 If H is modelled as a random oracle, the append-only vector commitment described in Figure 12
satisfies Soundness.

Proof. The proof is similar to the one of the OA theorem. We need to show that there exists an extrac-
tor Extract such that no adversary can distinguish between the games in Figure 11 with better than
negligible probability. The extractor works as follows:

– The extractor’s state consists of a set of pairs H (used to record answers to random oracle queries),
and a set C that stores values that we do not want the random oracle to ever sample.

– To handle Extract(Ideal, st, com):
• If (in, out) in H for some out, return (out, st).
• If in is of the form (Internal, label, leftHash, rightHash), then add leftHash, rightHash to C in st
• Sample out from {0, 1}λ \ C.
• Add out to C and (in, out) to H in st. return (out, st)

– To handle Extract(Extr, st, com):
• parse com as (t, hash). If t = 0, return {}. Let rootLabel be the label of the root node of a history

tree with λ-bit leaf labels and t leaves.
• D,S ← ExtractFromHash(st, hash, rootLabel, t).
• Let P be a vector of size t with all entries initialized to ⊥.
• For i = 1, . . . , t:
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. pp← AVC.GenPP(1λ):
– Sample hash functionH : {0, 1}∗ → {0, 1}λ

– return pp← (H,λ)

. (com, st)← AVC.Init(pp):
– D← []

– com← (0, “”)

– st← (D, com)

– return (com, st)

. (com′, st′, πs)← AVC.Update(pp, st, val):
– parse st as (D, com)

– D← D||val
– Compute the root node root of the Merkle Tree who has elements of D in its leaf nodes, and its hash value

rootHash

– com′ ← (|D|, rootHash)
– π ← (GetCover(root, [1, t]),GetCover(root, [t+ 1, t+ 1]))

– st← (D, com′)

– return (com′, st, π)

. π ← AVC.ProveExt(pp, st, t′, t):
– parse st as (D, com)

– ensure t′ < t ≤ |D|
– Let roott be the root of the Merkle Tree built from the first t elements of D
– π ← (GetCover(roott,

[
1, t′

]
),GetCover(roott,

[
t′ + 1, t

]
))

– return π

. 0/1← AVC.VerExt(pp, com′, com, π):
– parse π as (P ′, P ), com′ as (t′, hash′) and com as (t, hash)
– ensure range(P ′) =

[
1, t′

]
and range(P ′ ∪ P ) = [1, t]

– ensureMergeToRootHash(P ′) = hash′

– ensureMergeToRootHash(P ′ ∪ P ) = hash

– return 1

. (π, val)← AVC.Query(pp, st, u, t′):
– parse st as (D, com)

– ensure u ≤ t′ ≤ |D|
– val← D[u]

– Let roott′ be the root node of the Merkle Tree built from the first t′ elements of D
– π ← (GetCover(roott′ , [1, u− 1]) ∪ GetCover(roott′ ,

[
u+ 1, t′

]
))

– return (π, val)

. 0/1← AVC.Verify(pp, comt′ , u, val, π):
– parse comt′ as (t′, hasht′ )
– parse π as C
– Let L be a leaf node with label u and a hashH(Leaf, u, val)

– ensure range(C ∪ {L}) =
[
1, t′

]
– ensureMergeToRootHash(C ∪ {L}) = hasht′

– return 1

Fig. 12: AVC construction.
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* If the set of nodes in S contains a cover set C such that range(C) = [1, i], then compute
hashi ← MergeToRootHash(C) and set P [i]← (i, hashi)

• return D,P

We define the helper function:

. D, S ← ExtractFromHash(st, hash, s, t):
– If hash = ⊥, return {}, {}
– Let (in, out) be the only pair in H (part of st) such that out = hash (by construction, there is at

most one). If no such pair exists, return {}, {(s, hash)}.
– If in can be parsed as (Leaf, label, val), label = s, and s is the label of a leaf node in a history tree

with λ-bit labels and t leaves, then return {(s, val)}, {(s, hash)}
– If in can be parsed as (Internal, label, leftHash, rightHash), and label = s then:
• Let leftLabel, rightLabel be the labels of the left and right children of the node with label label

in a history tree with λ-bit labels and t leaves
• DL, SL ← ExtractFromHash(st, leftHash, leftLabel, t)
• DR, SR ← ExtractFromHash(st, rightHash, rightLabel, t)
• return DL ∪DR, SL ∪ SR ∪ {(s, hash)}

– return {}, {(s, hash)}

To prove that the real game is indistinguishable from the ideal one with this extractor, one can use a
hybrid argument similar to the one of Theorem 6. QED.

E Random Oracle Commitments

We require that our commitments satisfy a simulatability property in order to achieve zero-knowledge
in the final protocol. This definition is a simplification of the one in [9].

Definition 8 (Simulatable Commitments) A Simulatable Commitment Scheme C consists of 3 algo-
rithms (C.Init,C.Commit,C.Verify).

The algorithms must satisfy the following properties:
Correctness: For all security parameters λ ∈ N and for all m,

Pr[pp← C.Init(1λ); com, aux← C.Commit(pp,m) :

C.Verify(pp, com,m, aux) = 1] = 1

Simulatability: For all security parameters λ ∈ N there exists a simulator S such that for all PPT
adversaries A, the advantage of A in distinguishing the games of Figure 13 is negligible.

Extractability: For all security parameters λ ∈ N there exists an extractor Extract such that for all
PPT adversaries A, the advantage of A in distinguishing the games of Figure 14 is negligible.

In Figure 15, we recall the folklore construction of Random Oracle based commitments. In the following,
we prove that it satisfies our security definitions.

Theorem 8 If H is modelled as a random oracle, the commitment scheme RoComm described in Figure 15
satisfies Simulatability.

Proof. We need to show that there exists a (stateful) simulator S such that no adversary can distinguish
between C-Sim-IDEAL and C-Sim-REAL with better than negligible probability.

In the real world, the Ideal oracle implements H by sampling a new uniformly random λ-bit output
for each new input, and storing it in a table which we still call H (with a slight abuse of notation) so
that the same query is always given the same output.

We prove the theorem through a hybrid argument. Consider the following sequence of games:

– Hyb0. Defined as C-Sim-REAL(A).
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C-Sim-REAL(A):

pp← C.Init(1λ), D← {}
b← A...(pp)
return b

Oracle Commit(m):

com, aux← C.CommitIdeal(·)(pp,m)

D[com]← (m, aux)

return com

Oracle Open(com):

require com ∈ D

return D[com]

Oracle Ideal(in):

return Ideal(in)

C-Sim-IDEAL(A):

pp← S(Init), D ← {}
b← A...(pp)
return b

Oracle Commit(m):

com← S(Commit)
D[com]← m

return com

Oracle Open(com):

require com ∈ D

return S(Open, com,D[com])

Oracle Ideal(in):

return S(Ideal, in)

Fig. 13: Games for Commitment Simulatability. S is a stateful algorithm.

C-Extr-IDEAL(A):

pp, st← Extract(Init),D← {}
b← AIdeal(),...(pp)
return b

Oracle Extract(com):

m← Extract(Extract, st, com)

If com ∈ D, assertD[com] = m

D[com]← m

Oracle CheckVer(com,m, aux):

require com ∈ D

require C.VerifyIdeal(·)(pp, com,m, aux) = 1

assert D[com] = m

Oracle Ideal(in):

out, st← Extract(Ideal, st, in)

return out

Fig. 14: Commitment Extractability Game. In the real world (not pictured), the public parameters are generated as
pp ← C.Init(1λ) and the oracles do not do anything, except for Ideal, which implements the ideal objects (such as
random oracles) the scheme requires.

. pp← C.Init(1λ):
– Sample hash functionH : {0, 1}∗ → {0, 1}λ

– return (λ,H)

. c, aux← C.Commit(pp,m):

– aux
$← {0, 1}λ; c← H(m, aux)

– return c, aux

. 0/1← C.Verify(pp, c,m, aux):

– returnH(m, aux)
?
= c

Fig. 15: Random Oracle Commitment Scheme construction.
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– Hyb1. Defined as the previous hybrid, except that the random functionH is replaced with a random
injective function: to answer Ideal queries, the game repeats the sampling whenever it obtains a
value which had already been returned before for a different input.

– Hyb2. Defined as the previous hybrid, but the game samples aux values (as part of executing C.Commit
for a Commit query) uniformly at random, but excluding values aux′ such that there exists m, com
where H((m, aux′)) = com.

– Hyb3. Defined as the previous hybrid, but the game returns ERROR if the adversary makes an Ideal
query for a pair (m, aux) such that aux was sampled by the Commit oracle during a query for m, but
the resulting commitment was never input to the Open oracle.

– Hyb4. Defined as the previous hybrid, but instead of sampling the values aux during Commit queries,
they are sampled during Open queries.

– Hyb5. Defined as C-Sim-IDEAL(A), with the following simulator S:

• It keeps a table H of tuples (in, out), intended to map arbitrary-length in, to λ-length out. We
refer to the set of the first elements in of each tuple in H as H.in, and the second elements as
H.out.

• S(Ideal, in) :
* If there exists out: (in, out) ∈ H , return out.

* out
$← {0, 1}λ \H.out. Add (in, out) to H

* return out

• S(Commit) :

* com
$← {0, 1}λ \H.out

* return com

• S(Open, com,m) :

* aux
$← {0, 1}λ \AUX , where AUX = {aux′ : ((m, aux′), out) ∈ H}

* Add ((m, aux), com) to H
* return (m, aux)

Hyb0 ≈ Hyb1. The adversary has the same view unless during an execution of Hyb0 there is a collision
in the random oracle. This happens with at most negligible probability.

Hyb1 ≈ Hyb2. The two games are identical unless during an execution of Hyb1 the game samples a
value aux such that ((m, aux), out) ∈ H for somem, out. Since there are polynomially many such values,
and the sampling space is exponential, a collision happens with at most negligible probability.

Hyb2 ≈ Hyb3. The games are identical unless the adversary makes a query that returns ERROR. Note
that there are only polynomially many values aux that would cause such a query, but they are informa-
tion theoretically hidden from the adversary, who can only guess them with negligible probability.

Hyb3 ≈ Hyb4. Given that the values aux are information theoretically hidden from the adversary, the
view of the adversary has the same distribution in the two games conditioned on the fact that there are
no queries that return ERROR in Hyb3. But since Hyb3 ≈ Hyb2, this happens with at most negligible
probability.

Hyb4 ≈ Hyb5. The output of the two games is identical, as they execute the same instructions to an-
swer all queries, but in Hyb5 the code is organized differently by grouping some instructions into the
simulator.

QED.

Theorem 9 If H is modelled as a random oracle, the commitment scheme RoComm described in Figure 15
satisfies Extractability.
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Proof. We need to show that there exists an extractor such that for all PPT adversaries the distinguishing
advantage is negligible.

In the real world, the Ideal oracle implements H by sampling a new uniformly random λ-bit output
for each new input, and storing it in a table H (part of its state) so that the same query is always given
the same output.

The extractor works as follows:

– It keeps a table H as part of its state, and uses it to handle Ideal queries as in the real world.
– To answer Extract queries on input com, the extractor checks if there exists (m, aux) such that
((m, aux), com) ∈ H . If so, it returns m (or the lexicographically first such m if more than one tuple
exists), otherwise it returns a special symbol ⊥ (not part of the message space).

First of all, we note that the distribution of the answers to ideal queries has the same distribution
in both games. Therefore, to prove the theorem it is enough to argue that the assertions that are part of
Extract and Open queries are triggered with at most negligible probability.

First consider the assertion that is part of Extract oracle queries. This is triggered if the extractor
returns two different outputs when queried on the same input. For this to happen, there must either
be a collision in the random oracle (two inputs mapping to the same output), or the adversary needs
to make an Extract query for a value com, and such value needs to be sampled as the output of a
subsequent Ideal query. Since the space of random oracle output is exponential and the adversary makes
at most polynomially many queries, either event can happen with at most negligible probability.

A similar argument can be made for the assertion during CheckVer queries: if the assertion is trig-
gered, it has to be that C.Verify(pp, com, aux,m′) = 1 (and therefore ((m′, aux), com) ∈ H) where m′ 6=
D[com]. There are two possibilities:

– D[com] = ⊥. This occurs when, at the time the Extract(com) query was made, com was not part
of H . The probability of one such com being sampled at random as part of a subsequent query is
negligible.

– D[com] 6= ⊥. In this case, there are two tuples in H mapping to the same output com, which again
can happen with at most negligible probability as we argued above.

QED.

F Proof of Theorem 4

Proof. Let C.Extract,OA.Extract,VRF.Extract,AVC.Extract be extractors from the soundness definitions
of the various primitives. We can construct an extractor RZKS.Extract for the RZKS soundness game as
follows:
RZKS.Extract :

– Internally run an instance of each of the above extractors, each with their own independent state.
Set RZKS.st = (OA.st,VRF.st,C.st,AVC.st).

– To handle Extract(Ideal, st, in):
• Determine to which primitive P the input in is referring. Each primitive implements their own

independent ideal objects (such as domain separated random oracles).
• out,P.st′ ← P.Extract(Ideal,P.st, in) where P.st is parsed from st.
• Update st with P.st′; return (out, st)

– To handle Extract(ExtrC, st, com):
• parse RZKS.st as (OA.st,VRF.st,C.st,AVC.st)
• L,C ← AVC.Extract(Extr,AVC.st, com)
• return C

– To handle Extract(ExtrD, st, com):
• parse RZKS.st as (OA.st,VRF.st,C.st,AVC.st)
• L,C ← AVC.Extract(Extr,AVC.st, com)
• parse last(L) as (comOA, pk)
• DOA ← OA.Extract(ExtrD,OA.st, comOA)
• Dcom = {}; For each (tlbl, tval, t) ∈ DOA:
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* label← VRF.Extract(VRF.st, pk, tlbl)

* val← C.Extract(C.st, tval)

* If label 6= ⊥, val 6= ⊥, and label 6∈ Dcom and 1 ≤ t ≤ RZKS.t(com), then Dcom[label]← (val, t)
• return Dcom

We want to prove that for all adversaries, the two RZKS-Sound games instantiated with RZKS.Extract
are computationally indistinguishable for any adversary A. To do so, let’s consider a sequence of hy-
brids:

– Hyb0. This is defined as RZKS-Sound-IDEAL(A).
– Hyb1. Defined as Hyb0, but the extractor keeps additional maps DOA, DC, DVRF, LAVC, CAVC to track

the outputs of each sub-extractor call to make sure it is consistent across multiple calls (we stress
that in Hyb0 the extractor is not allowed to update its state during ExtrD queries). More in de-
tail, every time the extractor (while handling an ExtrD or ExtrC query) makes a call Lcom, Ccom ←
AVC.Extract(ExtrC,AVC.st, com), it checks if com ∈ CAVC and, if so, it asserts CAVC[com] = Ccom

and LAVC[com] = Lcom; otherwise it sets CAVC[com] ← Ccom and LAVC[com] ← Lcom. Then, while
handling an ExtrD query, every time the extractor makes a call E ← OA.Extract(ExtrD,OA.st,
comOA), it checks if comOA ∈ DOA and, if so, it asserts DOA[comOA] = E; otherwise it sets
DOA[comOA] ← E. Analogously, outputs of C.Extract(C.st, tval) are stored in DC[tval] and outputs
of VRF.Extract(VRF.st, pk, tlbl) in DVRF[pk][tlbl] (with assertions being triggered if different values
are already in those maps).

– Hyb2. Defined as the previous hybrid, except:
• During ExtractD(com) queries, the game also enforces that every time a new tuple (tlbl, label)

is added to DVRF[pk] by the extractor (for some pk), that there is no other tlbl′ 6= tlbl such that
DVRF[pk][tlbl

′] = label.
• During CheckVerD(com, label, val∗, i∗, π) queries, the game also parses π as (πAVC, πOA, πV RF ,
tlbl∗, tval∗, aux, comINT) and comINT as (comOA, pk). Then, it checks if tlbl∗ ∈ DVRF[pk] and, if
not, it computes DVRF[pk][tlbl

∗] ← VRF.Extract(Extr, stVRF, pk, tlbl
∗) (and asserts that there

are no other tlbl′ mapping to the same label for the same pk as above). Then it asserts that
DVRF[pk][tlbl

∗] = label.
• During CheckVerUpdD(coma, comb, π), the game also parses π as (π′, πAVC, comt1

INT, com
t0
INT, π

t1
AVC,

πt0AVC), com
i
INT as (comi

OA, pki) for i ∈ {t0, t1}. Then, if pkt0 = pkt1 , it proceeds as in Hyb1. Oth-
erwise, it parses π′ as (πOA, π

g−1
OA , πg

OA, πVRF, com
′
OA, {(tlbl

g−1
j , tlblgj , tvalj , epnoj)}j∈L) and asserts

that for all j ∈ L, DVRF[pkt0 ][tlbl
g−1
j ] = DVRF[pkt1 ][tlbl

g
j ].

– Hyb3. Defined as the previous hybrid, except:
• During CheckVerD(com, label, val∗, i∗, π) queries, the game also parses comOA from π (as in the

previous hybrid). It asserts that if tval∗ = ⊥ or i∗ = ⊥, then tlbl∗ 6∈ DOA[comOA], and otherwise
that DOA[comOA][tlbl

∗] = (tval∗, i∗).
• During CheckVerUpdD(coma, comb, π) queries, the game also parses (comi

OA, pki) for i ∈ {t0, t1}
as in the previous hybrid and asserts that, if pkt0 = pkt1 , that:

* DOA[com
t0
OA] ⊆ DOA[com

t1
OA]

* ∀(tlbl, tval, t) ∈ DOA[com
t1
OA] \DOA[com

t1
OA] : t = RZKS.t(comb)

* either RZKS.t(coma) 6= 0 or DOA[com
t0
OA] = {}.

Otherwise, if pkt0 6= pkt1 , the game parses π′ as (πOA, π
g−1
OA , πg

OA, πVRF, com
′
OA, {(tlbl

g−1
j , tlblgj , tvalj ,

epnoj)}j∈L) and asserts that:
1. |DOA[com

t0
OA]| = |DOA[com

′
OA]| = |L| and ∀j ∈ L,DOA[com

t0
OA][tlbl

g−1
j ] = DOA[com

′
OA][tlbl

g
j ] =

(tvalj , epnoj)

2. DOA[com
′
OA] ⊆ DOA[com

t1
OA]

3. ∀(tlbl, tval, t) ∈ DOA[com
t1
OA] \ DOA[com

′
OA] : t = t(comb), and that either t(com′OA) 6= 0 or

DOA[com
′
OA] = {}.

– Hyb4. Defined as the previous hybrid, but
1. During CheckVerD oracle queries, the game also asserts that comINT = last(LAVC[com]).
2. During CheckVerUpdD queries, the game also asserts that last(LAVC[com

a]) = comt0
INT and that

LAVC[com
b] = LAVC[com

a]||comt1
INT.

3. During CheckVerUpdC queries and CheckVerExt queries, the game also asserts that ∀j ≤ t(coma),
LAVC[com

a][j] = LAVC[com
b][j]
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– Hyb5. Defined as the previous hybrid, except:
• RZKS.Extract does not leverage C.Extract any more. In particular, Ideal queries for objects re-

lated to C by A are answered with a “real” implementation of such objects (i.e., random oracles
queries are answered using a uniformly random function). ExtrD queries are handled by skip-
ping the call to C.Extract (and therefore the val 6= ⊥ condition in the following if statement) and
instead setting Dcom[label] ← (tval, t). The game also does not keep track of DC any more and
doesn’t enforce the related assertions.

• CheckVerD queries are handled as in the previous hybrid, except that rather than asserting that
D[com][label] = (val∗, i∗), the game asserts D[com][label] = (tval∗, i∗).

• CheckVerUpdD queries still assert that D[coma] ⊆ D[comb] (where D[com] now maps labels to
pairs of commitments and periods) and DOA[com

t1
OA] ⊆ DOA[com

t0
OA] (where DOA[com

t0
OA] maps

VRF outputs to pairs of commitments and periods).
– Hyb6. Defined as the previous hybrid, except:
• RZKS.Extract does not leverage VRF.Extract any more. In particular, Ideal queries for objects

related to C and VRF by A are answered with a “real” implementation of such objects (i.e.,
random oracles queries are answered using a uniformly random function). ExtrD queries are
handled by skipping the call to VRF.Extract (and C.Extract) as well as the test for label ∈ D, and
instead setting Dcom[tlbl] ← (tval, t). The game also does not keep track of DVRF any more and
thus does not enforce the new assertions introduced in Hyb2.

• CheckVerD queries are handled as in the previous hybrid, except that rather than asserting that
D[com][label] = (tval∗, i∗), the game asserts D[com][tlbl∗] = (tval∗, i∗). Similarly in the if state-
ment leading up to and including the check that D[com][label] = (tval∗, i∗), all references to label
are replaced by tlbl∗.

• CheckVerUpdD queries are handled as in the previous hybrid (but now D[com] is the same as
DOA[comOA] as described above).

– Hyb7. Defined as the previous hybrid, except:
• RZKS.Extract does not leverage OA.Extract any more. In particular, Ideal queries for objects

related to OA, C and VRF by A are answered with a “real” implementation of such objects
(i.e., random oracles queries are answered using a uniformly random function). ExtractD
queries are handled by only calling AVC.Extract and returning Dcom = {} (skipping all the
calls to OA.Extract, C.Extract, VRF.Extract). In the game, we still set D[com] ← Dcom, so that
“require com ∈ D” constraints can be enforced, but assertions related to the values in D are
skipped. ExtractC queries are handled as in the previous hybrid.

• CheckVerD queries are handled by requiring com ∈ D (which implies com ∈ C) and running
RZKS.Verify as in the previous hybrid, and then only asserting last(L[com]) = comINT (as intro-
duced in Hyb4). The assertions on D are skipped. Similarly, CheckVerUpdD queries are handled
as in the previous hybrid, but skipping the assertions involving D.

– Hyb8. This is defined as RZKS-Sound-REAL(A).

Any adversary distinguishing the first from the last game with non-negligible advantage must also
have non-negligible advantage in distinguishing a couple of consecutive hybrids.

Hyb0 ≈ Hyb1. Assume by contradiction that there exists A that can distinguish Hyb0 from Hyb1. By
construction, A needs to trigger one of the new assertions in Hyb1 with better than negligible proba-
bility. We can leverage A to build an adversary B that breaks the soundness of one of the underlying
primitives. We show the proof in the case where the adversary triggers the assertion related to DVRF,
which we reduce to the soundness of the VRF (the others are analogous). In particular, we will describe
an adversary B that, when executed in VRF-Sound-IDEAL, simulates for A an execution of Hyb1. We
will show that ifA triggers one of the assertions about DVRF introduced in Hyb1, then B also triggers an
assertion in VRF-Sound-IDEAL with at least the same probability. Since the advantage of B in the VRF
soundness game is no smaller than the probability of triggering this assertion, we can conclude that this
can only happen with negligible probability.
B runs A, simulating for it an execution of Hyb1, with the following modifications:

– B internally runs a copy of OA.Extract, C.Extract, AVC.Extract and uses them to handle A’s queries.
It does not enforce any assertions, and does not keep track of any additional state beyond those of
the three extractors (i.e. it doesn’t store D, C, LAVC, CAVC, Dc, DVRF, DOA).
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– Queries to the Ideal oracle for objects related to VRF are forwarded by B to its own challenger, while
queries for the other objects are answered by running the appropriate extractor, updating its state
and returning its output.

– ExtractD oracle queries are handled by following the same steps that RZKS.Extract would follow,
except that B replaces the call on input pk, tlbl to VRF.Extract with an Extract oracle query to its own
challenger, and does not call C.Extract or compute Dcom or check any of the subsequent assertions.

– All other oracle queries (CheckVerD, CheckVerUpdD, CheckVerUpdC, ExtractC, CheckVerExt) are han-
dled by simply returning without performing any action.

– When A halts, B halts with the same output.

Note that when B is executed in VRF-Sound-IDEAL,A’s view up until the point where the game halts
has the same distribution as in an execution of Hyb1. Indeed, all ideal Extract(Ideal, . . . ) oracle queries
(the only ones which return an output toA) are answered by the appropriate extractors, either simulated
by B in the C or OA case, or executed by B’s challenger in the case of VRF. Each extractor’s state also has
the same distribution (since they answer the same Ideal queries, while other queries do not change the
extractors’ states), and so their outputs are distributed equally too. Note that it is possible that, since we
are removing some assertions compared to Hyb1,Amight trigger an assertion there that is not enforced
in B’s simulation, and thus the game would be halted earlier in that case. However, we only focus
on those executions where these assertions aren’t triggered. Conversely, VRF-Sound-IDEAL enforces an
additional assertion on Extract queries which is not checked in Hyb1 (i.e. “assert x = ⊥ ∨ ∀y′ 6= y :
T [pk, y′] 6= x”), but triggering this assertion would only increase B’s advantage in the VRF soundness
game.

Now, suppose A triggers the new assertion related to DVRF in Hyb1 during an ExtractD query. Note
that B’s challenger keeps a table T which is identical to DVRF by construction, and enforces the same
assertions on that table as in Hyb1. Therefore, if A causes the assertion to be triggered in Hyb1, then
VRF-Sound-IDEAL will also trigger an assertion.

Hyb1 ≈ Hyb2. Assume by contradiction that there exists A that can distinguish Hyb1 from Hyb2. By
construction,A needs to trigger one of the new assertions in Hyb2 with better than negligible probability.
We can leverage A to build an adversary B that breaks the soundness of the VRF. To do so, it is enough
to construct an adversary B that leverages A such that, if A triggers the new assertions in Hyb2, then B
also triggers an assertion in VRF-Sound-IDEAL with at least the same probability. As in the previous case,
B’s advantage in the VRF game bounds the probability that this assertion is triggered, which implies
the latter must also be negligible.
B runs A, simulating for it an execution of Hyb2, with the following modifications:

– B internally runs a copy of OA.Extract, C.Extract, AVC.Extract and uses them to handle A’s queries.
It does not enforce any assertions (beyond the ones its challenger might trigger), and only keeps as
internal state a set D which keeps track of which commitments have been submitted to ExtractD. In
particular, it doesn’t keep track of C, LAVC, CAVC, Dc, DVRF, DOA.

– Queries to the Ideal oracle for objects related to VRF are forwarded by B to its own challenger, while
queries for the other objects are answered by running the appropriate extractor, updating its state
and returning its output.

– ExtractD oracle queries are handled by following the same steps that RZKS.Extract would follow,
except that B replaces the call on input pk, tlbl to VRF.Extract with an Extract oracle query to its own
challenger, and does not call C.Extract or compute Dcom or keep track of LAVC, CAVC, DC, . . . (but
adds comtoD).

– CheckVerD oracle queries are handled by B as in Hyb2 (without the assertions), except that the
VRF.Extract extractor call is substituted for an Extract oracle call to B’s own challenger, and in ad-
dition B makes a CheckExtraction(pk, tlbl∗, label, πVRF) oracle query before returning.

– CheckVerUpdD oracle queries are handled as in Hyb2 by B itself (without the assertions), but in
addition if pkt0 6= pkt1 then B makes an extra CheckVerRotate(pkt0 , pkt1 , {(tlbl

g−1
j , tlblgj )}j∈L, πVRF)

oracle query to its own challenger.
– All other oracle queries (CheckVerUpdC, ExtractC, CheckVerExt) are handled by simply returning

without performing any action.
– When A halts, B halts with the same output.
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Note that, as in the argument that Hyb0 ≈ Hyb1, when B is executed in VRF-Sound-IDEAL, A’s view
up until the point where the game halts has the same distribution as in an execution of Hyb2.

Moreover, supposeA triggers the new assertion in Hyb2 for ExtractD queries, i.e. there exists a tlbl′ 6=
tlbl : DVRF[pk][tlbl

′] = label. Whenever a tuple (pk, tlbl, label) is added to DVRF in Hyb2, B makes an
oracle query that causes the same record to be added to its challenger’s T table. Therefore, if A causes
the assertion to be triggered in Hyb2, then VRF-Sound-IDEAL will also trigger an assertion. The same
reasoning can be applied to the new assertion in CheckVerD and CheckVerUpdD.

Hyb2 ≈ Hyb3. The reasoning is similar to that of the previous hybrid, but here we leverage the security
of the OA. Assume by contradiction that there exists A that can distinguish Hyb2 from Hyb3. By con-
struction, A needs to trigger one of the new assertion in Hyb3 with better than negligible probability,
and we can use A to build an adversary B that triggers an assertion in OA-Sound-IDEAL.
B runs A, simulating for it an execution of Hyb2, with the following modifications:

– B internally runs a copy of VRF.Extract, C.Extract, AVC.Extract and uses them to handleA’s queries.
It does not enforce any assertions (beyond the ones its challenger might trigger), and only keeps as
internal state a set D which keeps track of which commitments have been submitted to ExtractD. In
particular, it doesn’t keep track of C, LAVC, CAVC, Dc, DVRF, DOA.

– Queries to the Ideal oracle for objects related to OA are forwarded by B to its own challenger, while
queries for the other objects are answered by running the appropriate extractor and returning its
output.

– ExtractD oracle queries are handled by B running L,C ← AVC.Extract(ExtrC, AVC.st, com), parsing
last(L) as (comOA, pk), making a query for comOA to its own ExtractD oracle and then returning. In
particular, the VRF and C extractors are not called.

– CheckVerD oracle queries are handled by B by running the required Verify algorithm, parsing π
as (πAVC, πOA, πV RF , tlbl

∗, tval∗, aux, comINT) and extracting comOA, pk from comINT as before, then
making a CheckVerD oracle query on input (comOA, tlbl

∗, tval∗, i∗, πOA) to B’s own oracle, and then
returning its output.

– CheckVerUpdD oracle queries are handled by first running VerifyUpd, and parsing π as
(π′, πAVC, com

t1
INT, com

t0
INT, π

t1
AVC, π

t0
AVC), comi

INT as (comi
OA, pki) for i ∈ {t0, t1}. Then, if pkt0 =

pkt1 , B makes an oracle call CheckVerUpdD(comt0
OA, comt1

OA, π
′). Otherwise, if pkt0 6= pkt1 , it

parses π′ as (πOA, π
g−1
OA , πg

OA, πVRF, com
′
OA, {(tlbl

g−1
j , tlblgj , tvalj , epnoj)}j∈L) and makes four oracle

calls ExtractD(com′OA), CheckVerAll(com
i
OA, {(tlbl

i
j , tvalj , epnoj)}j∈L), πiOA) for i ∈ {g − 1, g}, and

CheckVerUpdD(com′OA, com
t1
OA, πOA) to its own challenger.

– All other oracle queries (CheckVerUpdC, ExtractC, CheckVerExt) are handled by simply returning
without performing any action.

– When A halts, B halts with the same output.

Note that, as before, when B is executed in OA-Sound-IDEAL, A’s view up until the point where the
game halts has the same distribution as in an execution of Hyb3.

Moreover, supposeA triggers one of the new assertions in Hyb3. Note that whenever a value comOA

is added to DOA in Hyb3 (through calling the extractor as a result of on an ExtractD query), B makes a
corresponding query to it’s challenger, therefore the challenger’s own D table matches DOA. So when
the new assertion is triggered, say during a CheckVerD query, the corresponding CheckVerD query that
Bmakes to its challenger would therefore result in the same condition being checked, and thus the same
assertion being thrown. In the case of a CheckVerUpdD query, the reasoning is similar.

Hyb3 ≈ Hyb4. The proof is analogous to the ones of Hyb1 ≈ Hyb2 and Hyb2 ≈ Hyb3, but in this
case we reduce to the soundness of the AVC. Note that, in this proof, the OA Extractor won’t be called
when answering ExtractD queries, similarly to how we skip the C and VRF extractors in the previous
arguments. In addition, B will keep track of the set C of commitments that have been submitted to
ExtractC queries (in addition to the set D of the previous proof).

Hyb4 ≈ Hyb5. Assume by contradiction that there exists A that can distinguish Hyb4 from Hyb5. We
can leverage A to build an adversary B that breaks the extractability of the commitment scheme. B
runs A, simulating for it an execution of either Hyb4 or Hyb5. B internally runs a copy of OA.Extract,
VRF.Extract, AVC.Extract and uses them to handle A’s Ideal queries. B answers A’s queries as follows:
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– Queries to the Ideal oracle for objects related to C are forwarded by B to its own challenger, while
queries for the other objects are answered by running the appropriate extractor and returning its
output.

– ExtractD oracle queries are handled by following the same steps that Hyb4 would follow, except
that B replaces the call to C.Extract with an Extract oracle query to its own challenger, and (if the
call returns with no output, implying that the game is not aborted by an exception thrown by the C
game) setting Dcom[label] ← (tval, t) (as opposed to Dcom[label] ← (val, t) where val is the output of
the C extractor which B does not have access to). B also does not keep track of the DC table.

– CheckVerD oracle queries are handled by B as in Hyb4, except that in the case where val∗ 6= ⊥ and
i∗ 6= ⊥, B replaces the assertion D[com][label] = (val∗, i∗) with D[com][label] = (tval∗, i∗), where tval∗

is the value from the proof provided byA. In addition, Bmakes a CheckVer(tval∗, val∗, aux) query to
its own oracle before returning.

– CheckVerUpdD oracle queries are handled by B itself simulating Hyb4. We stress that the tuples in D
as checked by B are of the form (label, tval, t) instead of (label, val, t).

– When A halts, B halts with the same output. If B detects that any of the assertions it checks would
fail, it aborts the game with the same error.

When B is executed in C-Sound-IDEAL, A’s view up until the point where the game halts has the
same distribution as in an execution of Hyb4 as in the previous cases.

Moreover,A triggers an assertion in Hyb4 if and only if an assertion is also triggered in C-Sound-IDEAL:

– The conditions asserted during an ExtractD query in Hyb4 are:
1. ∀ (label, val, i) ∈ D[com] : 0 < i ≤ t(com).

This assertion is never triggered since by construction the extractor’s output always satisfies it.
2. If com ∈ D assert D[com] = Dcom, and similar statements for DVRF, CAVC, LAVC, DOA, DC.

Assertions on DVRF, DOA, DAVC are checked by B directly during its simulation. While B does
not keep track of DC directly, by construction B’s challenger keeps an equivalent table in its
state and would test for exactly the same conditions. B also checks D[com] = Dcom, but in the
simulated gameD maps digests and labels to commitments and epochs (rather than digests and
labels to values and epochs as in Hyb4). This is not a problem because, as if this assertion fails
one of the other assertions we discussed would have failed first.

3. For every tuple (tlbl, label) added to DVRF[pk] by the extractor, that there is no other tlbl′ 6= tlbl :
DVRF[pk][tlbl

′] = label.
This assertion is also checked by B in its simulation.

– The conditions asserted during CheckVerD oracle calls in Hyb4 are:
1. last(LAVC[com]) = comINT

2. If tval∗ = ⊥ or i∗ = ⊥, then tlbl∗ 6∈ DOA[comOA], and otherwise
DOA[comOA][tlbl

∗] = (tval∗, i∗)
3. DVRF[pk][tlbl

∗] = label
4. That there is no other tlbl′ 6= tlbl∗ : DVRF[pk][tlbl

′] = label
5. If val∗ = ⊥ or i∗ = ⊥ then label 6∈ D[com], else D[com][label] = (val∗, i∗)
B checks the first four conditions in the simulation as well, so those assertions are triggered analo-
gously. Assume the first four conditions aren’t triggered in Hyb4 or C-Sound-IDEAL, we claim that
condition 5 is not triggered either. For condition 5, assume by contradiction that val∗ = ⊥ or i∗ = ⊥
but label ∈ D[com]. Since verification succeeds, it must be tval∗ = i∗ = ⊥. Let (tlbl′, tval′, i′) be
the triple considered by the extractor when label was added to Dcom. Since the first four assertions
aren’t triggered, it must be that tlbl′ = tlbl∗. But since i∗ = ⊥, due to the second assertion it must
be that tlbl′ = tlbl∗ /∈ DOA[comOA], but this is not possible since it contradicts label being added to
Dcom when (tlbl′, tval′, i) is considered. In the case where val∗ 6= ⊥ and i∗ 6= ⊥ but label 6∈ D[com],
then since the first three assertions aren’t triggered it must be last(LAVC[com]) = comINT (where
comINT = (comOA, pk)), DVRF[pk][tlbl

∗] = label, and DOA[comOA][tlbl
∗] = (tval∗, i∗). Therefore the

only reason for label 6∈ D[com] is if C.Extract returned⊥, but in this case B’s challenger would throw
an assertion. A similar reasoning would apply in the case where val∗ 6= ⊥ and i∗ 6= ⊥, label ∈ D[com]
but D[com][label] 6= (val∗, i∗).
Conversely, one can check that if A triggers an assertion during a simulated CheckVerD oracle call
in C-Sound-IDEAL, an assertion is also raised in Hyb3.
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– If an assertion is triggered in CheckVerUpdD in Hyb4, it must be due to one of the following being
violated:
1. last(LAVC[com

a]) = comt0
INT and LAVC[com

b] = LAVC[com
a]||comt1

INT (introduced in Hyb4)
2. All assertions for CheckVerUpdD introduced in Hyb3: if pkt0 = pkt1 , the game asserts
• DOA[com

t0
OA] ⊆ DOA[com

t1
OA]

• ∀(tlbl, tval, t) ∈ DOA[com
t1
OA] \DOA[com

t1
OA] : t = RZKS.t(comb)

• either RZKS.t(coma) 6= 0 or DOA[com
t0
OA] = {}.

Otherwise, if pkt0 6= pkt1 , the game asserts
• |DOA[com

t0
OA]| = |DOA[com

′
OA]| = |L| and ∀j ∈ L,DOA[com

t0
OA][tlbl

g−1
j ] = DOA[com

′
OA][tlbl

g
j ] =

(tvalj , epnoj)

• DOA[com
′
OA] ⊆ DOA[com

t1
OA]

• ∀(tlbl, tval, t) ∈ DOA[com
t1
OA] \ DOA[com

′
OA] : t = t(comb), and that either t(com′OA) 6= 0 or

DOA[com
′
OA] = {}.

3. t(comb) = t(coma) + 1

4. D[coma] ⊆ D[comb]

5. ∀(label, val, t) ∈ D[comb] \ D[coma] : t = t(comb)

6. (t(coma) 6= 0 or D[coma] = {})
The first three bullet points are also checked by B in C-Sound-IDEAL, so the assertions would also be
triggered in the simulation. Assuming that those are not triggered, let’s prove that condition 4 won’t
be triggered either. Let (label, val, t) ∈ D[coma]. Consider the (tlbl, tval, t) processed by the extractor
when adding label to D[coma]: that tuple is by construction part of DOA[com

t0
OA]. Let’s assume that

pkt0 = pkt1 (the other case is similar). Because we assumed assertion 2 isn’t triggered, it must also
be (tlbl, tval, t) ∈ DOA[com

t1
OA], and therefore (label, val, t) ∈ D[comb] (as, because of the assertions in-

troduced in Hyb1, repeated queries to the extractor on the same input will receive the same output),
which proves that the assertion is true. The other assertions can be analyzed analogously.

– Other oracle queries by A can be perfectly simulated by B as in Hyb4, as they do not depend on the
output of the C Extractor.

In short we have
Pr[Hyb4(A) = 1] = Pr[C-Sound-IDEAL(B) = 1].

Analogously as in the previous hybrids, we can prove that when B is executed in C-Sound-REAL,A’s
view up until the point where the game is halted has the same distribution as in an execution of Hyb5.
Moreover, by inspection (analogously as above) one can check that wheneverA triggers an assertion in
Hyb5, the same assertion is also triggered in C-Sound-REAL(B) and vice versa. Therefore

Pr[Hyb5(A) = 1] = Pr[C-Sound-REAL(B) = 1].

This implies thatA’s advantage in distinguishing the two hybrids can be bounded by B’s advantage
in the commitment soundness game, which is negligible.

Hyb5 ≈ Hyb6. The proof is analogous to the one above, but here we reduce to the soundness of the
VRF. The adversary B runs A, simulating for it an execution of either Hyb5 or Hyb6. B internally runs
a copy of OA.Extract, AVC.Extract and a real copy of C’s Ideal object, and uses them to handle A’s Ideal
queries. B answers A’s queries as follows:

– Queries to the Ideal oracle for objects related to VRF are forwarded by B to its own challenger;
queries for OA and AVC objects are answered using OA.Extract, and queries for C objects using a
real implementation of such objects.

– ExtractD oracle queries are handled by following the same steps that Hyb5 would follow, except that
B replaces the call to VRF.Extract with an Extract oracle query to its own challenger, and (if the call
returns with no output, implying that the game is not aborted by an exception thrown by the VRF
game) setting Dcom[tlbl]← (tval, t) (as opposed to Dcom[label]← (tval, t) where label is the output of
the VRF extractor which B does not have access to). B also does not keep track of the DVRF table.
Note that the C.Extract is not used in this game.
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– CheckVerD oracle queries are handled by B as in Hyb5, except that in the case where val∗ 6= ⊥ and
i∗ 6= ⊥, B replaces the assertion D[com][label] = (tval∗, i∗) with D[com][tlbl∗] = (tval∗, i∗), where tlbl∗

is the value from the proof provided byA. In addition,Bmakes a CheckExtraction(pk, tlbl∗, label, aux)
query to its own oracle before returning.

– CheckVerUpdD oracle queries are handled by B itself simulating Hyb5. We stress that the tuples in D
as checked by B are of the form (tlbl, tval, t) instead of (label, val, t).

– All other queries are handled by B by simulating Hyb5.
– When A halts, B halts with the same output. If B detects that any of the assertions it checks would

fail, it aborts the game with the same error.

A similar analysis as the previous case shows that A’s advantage in distinguishing Hyb5 and Hyb6
can be bounded by B’s advantage in the VRF game.

Hyb6 ≈ Hyb7. An adversary A who distinguishes Hyb6 from Hyb7 can be used to break the soundness
of the OA. The adversary B in this case runs the real version of C and VRF’s ideal objects, but leverages
AVC.Extract. It handles all queries similarly to the adversary Bwe described above to argue that Hyb2 ≈
Hyb3, except that here Ideal oracle for objects related to C and VRF objects using a real implementation
of such objects (OA related objects are still handled by relaying the query to B’s challenger, and the AVC
objects by calling the AVC extractor).

The argument that A’s advantage in distinguishing Hyb6 and Hyb7 can be bounded by B’s advan-
tage in the OA game is analogous to the previous cases.

Hyb7 ≈ Hyb8. An adversary A who distinguishes Hyb7 from Hyb8 can be used to break the soundness
of the AVC. The adversary B in this case runs the real version of C, VRF and OA’s ideal objects and works
as follows:

– Queries to the Ideal oracle for objects related to AVC are forwarded by B to its own challenger;
queries for other objects are answered using a real implementation of such objects.

– ExtractD and ExtractC oracle queries are handled by making an Extract call to B’s own oracle (if the
call returns with no output, implying that the game is not aborted by an exception thrown by the
AVC game) simply returning.

– ChackVerD oracle queries are handled by B by running the verification algorithm and making a
CheckVer(com,AVC.t(com), comINT, πAVC) query to its own oracle (the last two values obtained by
parsing π) and simply returning.

– CheckVerUpdD oracle queries are handled by B itself by running the verification algorithm and mak-
ing three oracle queries CheckVerExt(coma, comb, πAVC), CheckVer(coma,AVC.t(coma), comt0

INT, π
t0
AVC),

and CheckVer(comb,AVC.t(comb), comt1
INT, π

t1
AVC) to its own oracle and then returning.

– CheckVerUpdC and CheckVerExt queries are handled by running the verification algorithm and mak-
ing a CheckVerExt(coma, comb, πAVC) oracle query.

– When A halts, B halts with the same output. If B detects that any of the assertions it checks would
fail, it aborts the game with the same error.

The argument that A’s advantage in distinguishing Hyb7 and Hyb8 can be bounded by B’s advan-
tage in the OA game is analogous to the previous cases.

QED.

G Proof of Theorem 5

Proof. We want to show that there exists some simulator S such that for any efficient adversary A,

|Pr[RZKS-ZK-REAL(A)→ 1]− Pr[RZKS-ZK-IDEAL(A)→ 1]|

is negligible in the security parameter. We will show this by a series of hybrids, where the first hybrid
will be RZKS-ZK-REAL and the last hybrid will be RZKS-ZK-IDEAL. In the last hybrid, we will explicitly
define the simulator S. We will denote the range of VRF as YVRF.

– Hyb0: Defined as RZKS-ZK-REAL.
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– Hyb1: Defined as the previous hybrid, but we replace the commitments computed by the server (and
their openings) with simulated ones. That is, if SC is the simulator whose existence is guaranteed
by the fact that C satisfies simulatability game, then
• Queries to ideal objects related to C are replaced by the versions simulated by SC.
• In RZKS.GenPP, we replace C.GenPP(1λ) with SC(Init).
• In RZKS.Update and RZKS.PCSUpdate, we replace tvali, auxi ← C.Commit(vali) with tvali ←
SC(Commit) and setting auxi ← ⊥ in the state. We will replace it with a simulated value just
before returning it to the adversary.

• In RZKS.Query, after assigning (val, epnolabel, tval, aux) ← D[label], we replace aux (which was
set to ⊥ during Update or PCSUpdate) by running val, aux′ ← SC(Open, tval, val) and setting
aux← aux′.

• During oracle calls to LeakState, we modify the table D which is part of the state by replacing
values of aux with the output of SC(Open, ·, ·) analogously as in Query calls.

Lemma 19. |Pr[Hyb1→ 1]− Pr[Hyb0→ 1]| ≤ negl(λ).

Proof: Assume by contradiction that there exists A that can distinguish Hyb0 from Hyb1. We will
leverageA to build an adversary B that breaks the simulatability of the commitment scheme. B runs
A, simulating for it an execution of Hyb0 with the following changes:
• Queries to the Ideal oracle for objects related to C are forwarded by B to its own challenger.
• In RZKS.GenPP, instead of running C.GenPP(1λ), B uses the pp returned by its own challenger.
• In RZKS.Update and RZKS.PCSUpdate, we replace C.Commit with a Commit call to B’s chal-

lenger.
• In RZKS.Query, after assigning (val, epnolabel, tval, aux) ← D[label], we replace aux by running
val′, aux′ ← Open(tval) and setting aux← aux′.

• When LeakState is called, for each label ∈ D, we replace aux in (val, epnolabel, tval, aux)← D[label]
analogously to RZKS.Query.

It is easy to see that B simulates Hyb0 for A when its challenger is the real game, and B simulates
Hyb1 if its challenger is the ideal game.

– Hyb2: Defined as the previous hybrid, but we replace the VRF outputs with random values (for
non-compromised keys) or simulated ones (for compromised keys), and all proofs with simulated
ones. That is, if SVRF is the simulator from the zero-knowledge game for VRF, then
• Queries to ideal objects related to VRF are answered by SVRF.
• At the beginning of the game, in RZKS.GenPP, we replace ppVRF ← VRF.GenPP(1λ) with the

value obtained by ppVRF, pk0 ← SVRF(Init). pk0 is used in the subsequent RZKS.Init call (in-
stead of calling VRF.KeyGen). Note that sk0 is not defined in the modified RZKS.Init, and thus
we replace KVRF[g] ← (sk0, pk0) with KVRF[g] ← (⊥, pk0). LeakState fills in all secret key values
right before returning the state to the adversary. This hybrid also initializes gcor ← −1 and a
table DVRF that maps pairs (g, label) of a generation and RZKS label to the corresponding (sim-
ulated) VRF output.

• Define the following helper function Eval′(g, labeli):
* If g ≤ gcor, return SVRF(Corrupted-Eval, g, labeli)

* If labeli /∈ DVRF[g]: DVRF[g][labeli]
$← YVRF

* return DVRF[g][labeli]
• In RZKS.Query, we replace (πVRF, tlbl)← VRF.Query(pp,KVRF[G[u]].sk, label) with:

* tlbl← Eval′(G[u], label);
* πVRF ← SVRF(Explain,G[u], label, tlbl).

• In RZKS.Update and RZKS.PCSUpdate, we replace VRF.Eval(KVRF[g].sk, labeli) with Eval′(g, labeli).
• In RZKS.PCSUpdate, we replace VRF.Rotate(KVRF[g], L) as well as the setting of KVRF with the

following:

* For each j ∈ L, set (tlblgj , tlbl
g+1
j )← (Eval′(g, j),Eval′(g + 1, j)).

* pkg+1, πVRF ← SVRF(Rotate, {(tlbl
g
j , tlbl

g+1
j )}j∈L).

* KVRF[g + 1]← (⊥, pkg+1), g← g + 1.
• ProveExt queries are handled as in the previous hybrid.
• When LeakState is called, perform the following:
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* skgcor+1, . . . , skg ← SVRF(Corrupt, DVRF).
* For j = gcor + 1, . . . , g, set skj in KVRF[j]← (skj , pkj), keeping the pkj value the same.
* gcor ← g.

Lemma 20. |Pr[Hyb2→ 1]− Pr[Hyb1→ 1]| ≤ negl(λ).

Proof: Assume by contradiction that there exists A that can distinguish Hyb2 from Hyb1. We will
leverage A to build an adversary B that breaks the simulatability of the VRF scheme. B runs A,
simulating for it an execution of Hyb2 with the following changes:
• B receives as input ppVRF, pk0 from its challenger, and uses these values instead of running
SVRF(Init) as defined in Hyb2.

• Queries to the Ideal oracle for objects related to VRF are forwarded by B to its own challenger.
• We replace all calls to Eval′ in Update and PCSUpdate oracle queries with Eval calls to B’s chal-

lenger. In Query oracle calls, (πVRF, tlbl) are computed by making a Prove query to B’s challenger.
• In RZKS.PCSUpdate, we replace the new algorithm for rotation with the following:

* pkg+1, πVRF ← Rotate(L).
* KVRF[g + 1]← pkg+1, g← g + 1.

where Rotate(L) is a call to B’s challenger.
• In LeakState(), we replace the call to S(Corrupt, DVRF) with a Corrupt call to B’s challenger.

It is easy to see that B perfectly simulates Hyb2 for A when executed in VRF-ZK-IDEAL, and Hyb1
when executed in VRF-ZK-REAL: the only salient difference in the latter is that the VRF secret keys
are stored by B’s challenger until LeakState is called, and the state is patched just in time before A
gets to see it. Therefore A’s advantage in distinguishing the two hybrids is bounded by B’s advan-
tage in the breaking the VRF Zero Knowledge property, which we assume to be negligible.

– Hyb3: Defined as RZKS-ZK-IDEAL, with the following simulator S:
. S’s state includes the following:
• States for SC and SVRF.
• A simulated RZKS state st = (KVRF,D, com, epno, g,G, stOA, stAVC).
• A separate datastore D′ to store entries inserted into the data structure for which the labels

have not been revealed to the simulator. D′ will be indexed by YVRF.
• A map P which takes any VRF output to its rotation in a specified generation.

. S(Init):
• ppVRF, pk0 ← SVRF(Init)
• ppC ← SC(Init)
• ppOA ← OA.GenPP(1λ)
• ppAVC ← AVC.GenPP(1λ)
• pp← (ppVRF, ppOA, ppC, ppAVC)
• epno← 0, g← 0,KVRF ← {}, D← {},
stOA ← {},G← {}

• P ← {}, D′ ← {}
• KVRF[g]← (⊥, pk0),G[epno]← g
• (st′, com0

OA)← OA.Init(ppOA); com0
INT ← (com0

OA, pk0); stOA[g]← st′

• (stAVC, _)← AVC.Init(ppAVC);
• com1, stAVC, π

0 ← AVC.Update(stAVC, com
0
INT)

• st← (KVRF,D, com
1, epno, g,G, stOA, stAVC)

• return com1, st
. S((PCS)Update, Sleak): // bullets with � only apply to PCSUpdate
• parse Sleak as s, label1, . . . , labeln. (If leaked = true and we are doing Update, then s = 0. If

we are doing PCSUpdate, then n = 0.)
• parse st as (KVRF,D, com, epno, g,G, stOA, stAVC); set epno← epno+ 1.
� L← {label | (label, (. . . )) ∈ D}.
� L′ ← {tlbl | (tlbl, (. . . )) ∈ D′}.
� For each j ∈ L, set (tlblgj , tlbl

g+1
j ) ← (Eval′(g, j),Eval′(g + 1, j)), where Eval′ is defined as in

Hyb2.
� For each j′ ∈ L′, set P [j′][g + 1]

$← YVRF.
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� R← {(tlblgj , tlbl
g+1
j )}j∈L ∪ {P [j′][g], P [j′][g + 1]}j′∈L′ .

� pkg+1, πVRF ← SVRF(Rotate, R).
� KVRF[g + 1]← pkg+1, g← g + 1.
� πg−1

OA ← OA.ProveAll(stOA[g − 1], epno− 1)
� st′, _← OA.Init(ppOA);

for i ∈ [epno− 1] :
SOA ← {(tlblgj , tvalj) | (j, (i, tvalj , ·)) ∈ D} ∪ {(P [tlbl][g], tvaltlbl) |

(tlbl, (i, tvaltlbl, ·)) ∈ D′}
st′, com′, _← OA.Update(st′, SOA)

stOA[g]← st′, comepno−1
OA ← com′

� π2
OA ← OA.ProveAll(stOA[g], epno− 1)

• SOA ← {}
• For each i = 1, . . . , n:

* tlbli ← Eval′(g, labeli)

* tvali ← SC(Commit)
* SOA ← SOA ∪ {(tlbli, tvali)}
* D← D ∪ {(labeli, (⊥, epno, tvali,⊥))}

• For each i = 1, . . . , s− n:

* tlbli
$← YVRF

* P [tlbli][g]← tlbli

* tvali ← SC(Commit)
* SOA ← SOA ∪ {(tlbli, tvali)}
* D′ ← D′ ∪ {(tlbli, (epno, tvali))}

• stOA[g], com
OA
epno, πOA ← OA.Update(stOA[g], SOA);

• Continue simulating the Update or PCSUpdate algorithm as in Fig 8, starting from right after
the call to OA.Update (keeping the final RZKS state internal, and returning the commitment
and proof).

. S(Query, (label, val, t, u)):
• parse st as (KVRF,D, com, epno, g,G, stOA, stAVC)
• require u ≤ epno
• If label /∈ D and t 6= ⊥:

* Choose and remove from D′ a record (tlbl, (t′, tval)) such that t = t′

* D← D ∪ {(label, (⊥, t, tval,⊥))}
* For i = G[t], . . . , g:

· DVRF[i][label] = P [tlbl][i]
• tlbl← Eval′(G[u], label)
• πVRF ← SVRF(Explain,G[u], label, tlbl)
• If label ∈ D and t ≤ u :

(_, epnolabel, tval, _)← D[label]
_, aux← SC(Open, tval, val)
D[label]← (val, t, tval, aux)

else
(epnolabel, tval, aux)← (⊥,⊥,⊥)

• πOA, _← OA.Query(stOA[G[u]], tlbl, u)
• πAVC, comINT ← AVC.Query(stAVC, u)
• π ← (πAVC, πOA, πVRF, tlbl, tval, aux, comINT)
• return π, val, epnolabel

. S(Leak,Dleak):
• parse st as (KVRF,D, com, epno, g,G, stOA, stAVC)
• For each (label, val, t) ∈ Dleak:

* If label /∈ D:
· Choose and remove from D′ a record (tlbl, (t′, tval)) such that t = t′

· D← D ∪ {(label, (⊥, t, tval,⊥))}
· For i = G[t], . . . , g: DVRF[i][label] = P [tlbl][i]

* (_, _, tval, _)← D[label]
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* _, aux← SC(Open, tval, val)
* D[label]← (val, t, tval, aux)

• skgcor+1, . . . , skg ← S(Corrupt, DVRF).
• For j = gcor + 1, . . . , g, set KVRF[j]← (skj , pkj).
• gcor ← g.
• return (KVRF,D, com, epno, g, stOA, stAVC)

. S(ProveExt, (t0, t1)):
• parse st as (KVRF,D, com, epno, g,G, stOA, stAVC)
• return AVC.ProveExt(stAVC, t0, t1)

Lemma 21. |Pr[Hyb2→ 1]− Pr[Hyb1→ 1]| ≤ negl(λ).

Proof: Intuitively, this hybrid acts exactly the same as the previous game, with two major differences
(highlighted in orange). These differences exist in order to be able to have the simulator only rely
on the information given by the leakage functions, as opposed to the full oracle query inputs from
the adversary. In particular, in the previous hybrid the simulator requires access to all inserted
(label, val) pairs to process updates, whereas here the simulator only knows the number of (label, val)
pairs inserted save when a pair is queried or leaked. However, notice that in Hyb2 the simulator
already does not take advantage of this information to produce its outputs, and therefore these
changes are mostly syntactic.
More in detail, we will assume for simplicity that there are no collisions when sampling uniformly
from YVRF (as those occur with at most negligible probability since YVRF is of exponential size and
we sample polynomially many values), and we will show that Hyb3 is identically distributed to
Hyb2 when this is the case.
When handling Update queries (with leaked = false), the simulator will only learn the number s
of labels are being added to the datastore, and any labels label1, . . . , labeln that had been queried
since the last PCSUpdate query and were not in the database, but are being added now. To simulate
the update, the simulator picks s − n values at random from YVRF as the output of the VRF on
the unknown labels, and uses the same tlbl from DVRF for labels that were queries before. Then
it simulates enough commitments (without using the committed values, as in Hyb2), and adds all
the relevant pairs, each marked with the current epoch, to a table D′ (mapping VRF outputs and
epoch numbers to simulated commitments) and to the ordered accumulator. Note that since in Hyb2
the random VRF outputs and commitments are not simulated using the label or val input by the
adversary, data used to update the order accumulator (and therefore the output of this query) have
the same distribution as in Hyb2 (conditioned on no YVRF collisions, as detailed above). In case of a
PCSUpdate query (again with leaked = false), the simulator selects new random outputs from YVRF
for all the elements already in the datastore, and invokes the simulator to obtain a rotation proof.
It stores the relationship between all the VRF outputs for the same (unknown) label at different
generations using table P , and once the label becomes known later (as a result of Query or LeakState
calls), it uses P to populate DVRF. (Note that the fact that we sample from YVRF without collisions
ensures that P is never overwritten in Hyb3, which ensures that the view matches Hyb2.) Then the
simulator handles additions to the datastore as in Update queries above.
The cases where leaked = true give the simulator more leakage, but are otherwise analogous.
To handle Query oracle calls, the simulator always receives the label, and the epoch u at which the
query is being made. To simulate the output of this query, the simulator would include a simulated
VRF output and proof on input label for the appropriate generation G[u], a commitment opening
(only for inclusion proofs), and the appropriate OA and AVC proofs. The simulator keeps track of
all the VRF outputs returned to the adversary (or added to the OA) in DVRF, so that these outputs
are always consistent across multiple calls. If the label was inserted to the datastore at a genera-
tion G[t] ≤ G[u], the simulator can use one of the tuples (tlbl′, t, tval) stored in D′ and assign it to
label, using P [tlbl′] to update DVRF for G[t] and all subsequent generations. Note that the view pro-
duced in this way has the same distribution as if the label was associated with tlbl′ during Update
or PCSUpdate, as in Hyb2. Otherwise, the simulator simply picks the output of the VRF at random,
updatesDVRF accordingly and produces an honest absence proof for the OA. The simulator can thus
return the simulated VRF proof, the simulated commitment opening (in case of an inclusion proof),
plus the honestly generated OA and AVC proofs.
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ProveExt oracle calls are generated as in Hyb2.
Finally, for LeakState proofs, the simulator receives all the labels and values which are part of the
datastore, and can use them to fill in the simulated honest state, using each entry from D′ to add a
simulated record toD (as is done for Query calls), and the values to generate consistent commitment
openings on unqueried labels. The VRF simulator can be used (by making a Corrupt call on input
DVRF) to produce secret keys which are consistent with all the proofs being given out. Again, this
simulated state has the same distribution as in Hyb2.
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