
Refined Strategy for Solving LWE in Two-step
Mode

Wenwen Xia1,2,4
⋆⋆

, Leizhang Wang3
⋆⋆

, Geng Wang1,2
⋆

, Dawu Gu1
⋆

, and
Baocang Wang3

⋆

1 School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong
University, Shanghai, 200240, China

{xww_summer, wanggxx, dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China

3 State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an,
710071, China

4 School of Cyber Engineering, Xidian University, Xi’an, 710071, China
lzwang_2@stu.xidian.edu.cn, bcwang@xidian.edu.cn

Abstract. Learning with Errors (LWE) and its variants are widely used
in constructing lattice-based cryptographic schemes, including the NIST
standards Kyber and Dilithium. A refined estimation of LWE hardness is
crucial for their security. Currently, the primal attack is considered the
fastest method to solve LWE in practice. This method reduces the LWE
problem to a unique Shortest Vector Problem (uSVP) and combines lat-
tice reduction algorithms with a single SVP call, such as enumeration
or sieve. However, finding the most time-efficient strategy for combining
these algorithms remains a challenge. The Kyber designers highlighted
this issue as open problem Q7: “A refined (progressive) lattice reduction
strategy, along with a precise analysis of gains from reduction prepro-
cessing plus a single SVP call in large dimensions, is still missing.”
In this paper, we address this problem with a Strategy Search algo-
rithm, named PSSearch, to solve both uSVP and LWE. PSSearch uses
progressive BKZ as the lattice reduction and sieving as the SVP oracle.
Compared to the heuristic strategy in G6K (Albrechet et al., Eurocrypt
2019), our algorithm offers the following advantages: (1) We design a
pruning tree search algorithm, PSSearch, to find the minimum time-cost
strategy in the Two-step mode and prove its correctness, showing that
the fastest approach in the Two-step mode to solve uSVP and LWE can
be achieved in a reasonable time-frame; (2) we propose the first tight
simulation for BKZ that can jump by J > 1 blocks, which allows us to
choose more flexible jump values to improve reduction efficiency. (3) We
propose a refined dimension estimation method for the SVP oracle.
We tested the accuracy of our new simulation algorithm and the effi-
ciency of our new strategy through experiments. Furthermore, we ap-
plied the strategies generated by PSSearch to solve the TU Darmstadt
LWE Challenges with (n, α) ∈{(80, 0.005), (40, 0.035), (90, 0.005), (50,

⋆ Corresponding author.
⋆⋆ Wenwen Xia and Leizhang Wang are the co-first authors of this work.

https://orcid.org/0009-0001-3433-6165
https://orcid.org/0000-0001-9831-4937
https://orcid.org/0000-0003-1000-7903
https://orcid.org/0000-0002-0504-9538
https://orcid.org/0000-0002-2554-4464

0.025), (55, 0.020), (40, 0.040)} using the G6K framework, achieving im-
provements of 7.2 to 23.4 times over the heuristic strategy used in G6K.
By combining the minimum time-cost strategy selection with the refined
Two-step estimator for LWE (Xia et al., PKC 2024), we re-estimate the
hardness of NIST standards Kyber and Dilithium, and assess the impact
of the strategy. Specifically, the security levels of NIST standards de-
crease by 3.4 to 4.6 bits, rather than 2 to 8 bits indicated in the Kyber
documentation. This results in a decrease of 1.1 to 1.3 bits compared to
the refined Two-step estimation using a trivial strategy.

Keywords: Lattice Cryptanalysis· Progressive Reduction Strategy·
G6K · PnJBKZ Simulator· Concrete Hardness Estimation.

1 Introduction

Learning with Errors (LWE) [1] plays an crucial role in lattice-based cryptogra-
phy, as the security of many lattice-based cryptographic schemes [2–5] depends
on the hardness of LWE or its variants [1,6–8], including the NIST post-quantum
standards Kyber and Dilithium [8,9]. Therefore, to provide concrete security lev-
els for these schemes, a tight estimation of LWE hardness is necessary. This re-
quires identifying the most efficient algorithm for solving LWE and determining
its precise complexity.

Among the various methods for solving LWE, the primal attack [10] is cur-
rently considered the most efficient in practice. The primal attack uses Kannan’s
embedding technique [11] to transform LWE into the unique Shortest Vector
Problem (uSVP) on a specific lattice, which has a unique shortest vector. After
certain level of reduction on the lattice, the projection of the unique shortest
vector becomes the shortest vector on a projected sublattice, we can recover it
by first finding the shortest vector on the sublattice using an SVP oracle and
then using Babai’s lifting [12] to lift it onto the full-dimensional lattice. This
approach was first suggested in [13], verified by [14], and has since been used in
many LWE estimators, such as [15].

The choice of lattice reduction and SVP solving algorithms is crucial in the
LWE primal attack. In the literature, cryptanalysts commonly use BKZ [16] as
the lattice reduction algorithm, which has a tunable parameter β called block-
size, allowing a balance between time cost and reduction effectiveness, and use
either enumeration or lattice sieving as the SVP oracle. While efficiency could
be further improved by developing better algorithms for lattice reduction or
SVP solver, designing these fundamental algorithms seems to be extremely hard.
However, even with improvements to these algorithms, optimization is still pos-
sible by selecting more effective solving strategy. Here, “strategies” refers to the
different ways of calling the fundamental algorithms with various parameters.

All LWE solving algorithms and estimators use specific strategies, though
some are presented implicitly. In BKZ 2.0 [17] and ADPS16 [18], several tours
of BKZ with a fixed blocksize are called iteratively until a short vector is found,
with no additional SVP call after the BKZ procedure. This approach was later

2

improved by a progressive strategy, where the blocksize is increased by each
BKZ tour. Aono et al. introduced the Improved Progressive BKZ (ProBKZ) [19],
which includes an explicit strategy selection algorithm that outputs the sequence
of blocksizes for BKZ tours. They also added an individual SVP call after BKZ,
but this SVP call is made on the full-dimensional lattice basis using enumeration.
All of these algorithms use the enumeration as the SVP oracle, which has since
been outperformed by the lattice sieve in higher dimensions.

In the LWE estimator designed by Albrecht et al. [15], the sieve is used as
the SVP call. They presented two different modes for estimating the complexity
of the LWE primal attack: one mode involves progressive BKZ with blocksize
increment of 1 for each tour, while the other is a Two-step mode that combines
progressive BKZ with a final sieving call, where the dimension is chosen to
balance the cost between the two steps. The concept of “Two-step” is illustrated
in Fig. 1. In 2019, Albrecht et al. designed a lattice solving framework called G6K
[20], which implements various sieving algorithms [18,21–25] and uses individual
techniques [26,27] to accelerate lattice sieving. They also implemented an LWE
solving algorithm in G6K, where each BKZ tour is followed by a conditional sieve,
triggered heuristically. However, there is no guarantee that the sieving will yield
a solution for LWE, as the dimension estimation method in ADPS16 [18] has a
non-negligible failure probability for solving LWE.

Fig. 1: Two-step Mode

We can see that all these strategies are heuristic, with no guarantees of op-
timality. In the Kyber document [8], the designers posed an open problem Q7:
“A refined (progressive) lattice reduction strategy, along with a precise analysis
of the benefits from reduction preprocessing combined with a single SVP call in
large dimensions is still missing.” The designers anticipate that by optimizing the
strategy for BKZ blocksizes and final SVP dimension, the security estimation
for Kyber could potentially be decreased by 2 to 8 bits.

In this paper, we solve this open problem by presenting an minimum time-cost
strategy for uSVP and LWE in the primal attack. First, we note that all possible
solving strategies form a strategy space with a finite number of elements, meaning
the minimum time-cost strategy can be found by searching over the strategy
space. However, three main issues must be solved: (1) Provide a formal definition
for the strategy space, ensuring it includes all reasonable strategies that succeed
with high probability. (2) Since the strategy space is exponentially large, we must
find a way to reduce the complexity of the strategy search algorithm so that the
minimum time-cost strategy can be found within a reasonable time frame. (3)
To ensure the search algorithm functions effectively, we need to offer a precise
time cost estimation for each strategy within the strategy space.

3

1.1 Our Contribution

We summarize our contributions in this work as follows:
1. We define the strategy space in a Two-step mode, which contains all Two-

step strategies with a high success probability.
2. We design a tree search algorithm for the strategy space with pruning,

named Pruning Strategy Search (PSSearch). We prove that PSSearch can output
the minimum time-cost Two-step strategy for solving LWE within the strategy
space. As a result, PSSearch can be used to accelerate LWE solver and provide
tight estimations for LWE-based cryptographic schemes.

3. We implement PSSearch using the most efficient lattice reduction and SVP
algorithms available to date, namely PnJBKZ and Pump in G6K. Specifically, we
design a simulator for PnJBKZ that can simulate behaviors for jump>1, enabling
the search for more flexible and efficient reduction strategies. Additionally, we
propose a refined dimension estimation method for the SVP oracle, taking into
account the distribution of the LWE noise vector.

In particular, using the minimum time-cost Two-step strategy for solving
LWE generated by PSSearch, we successfully cracked six previously unsolved
TU Damstadt LWE Challenges1, achieving a speedup of 23.4 times compared
to the previously most efficient LWE solver, G6K [28]. For details, see Figs. 2,
6, and Table 4. In the reduction step, the time cost needed to achieve the same
basis quality is 4 to 36.4 times faster than the trivial reduction strategy. For more
details, see Fig. 7. The executable code of TwoStepSolver based on PSSearch, is
publicly available on GitHub2.

Fig. 2: LWE Challenges and the Algorithms to Solve it

Our new hardness estimation for the NIST standards Kyber and Dilithium
shows that, when using the minimum time-cost strategy, the security levels are
1 https://www.latticechallenge.org/lwe_challenge/challenge.php
2 https://github.com/Summwer/pro-pnj-bkz

4

https://www.latticechallenge.org/lwe_challenge/challenge.php
https://github.com/Summwer/pro-pnj-bkz

decreased by 3.4 to 4.6 bits, rather than 2 to 8 bits indicated in the Kyber
documentation. This confirms the open problem Q7 in the Kyber document.
Compared to the trivial strategy used in the “Refined Two-step Mode LWE
Estimator” [29], the security levels decrease by 1.1 to 1.3 bits. For details, see
Table 5.

1.2 Related Works

Lattice Solving Algorithms. BKZ [16] is the most popular lattice reduction algo-
rithm for solving LWE. It combines the LLL [30] algorithm with an SVP solver
to balance the time cost and the success probability using blocksize β. Many
cryptanalysts have improved the BKZ algorithm, such as through the extreme
pruning [31] to speed up enumeration, BKZ 2.0 [17] based on [31], approximate
enumeration oracle [32], and progressive reduction parameters optimization in
BKZ, like Improved Progressive BKZ (ProBKZ) [19]. [14] demonstrated that the
unique shortest vector is recovered by first finding its projection in a projected
sublattice, then lifting it to the full lattice and verifying the BKZ successful
condition for solving LWE as described in [33].

In 2019, Albrecht et al. [20] designed the General Sieve Kernel (G6K) and
implemented the progressive sieve [27], named Pump, which selectively employs
various sieving algorithms: the Gauss sieve [21, 22], the NV sieve [34], the k-
list sieve [23, 24] or the BGJ1 sieve [25]. Pump utilizes the progressive sieve
and dimension-for-free (d4f) technique [26] for acceleration. Specifically, Pump
is both a progressive sieve and insertion algorithm that sieves on the projected
sublattice and can insert more than one vector into the lattice basis.

Ducas et al. [28] further improved G6K with GPU acceleration (named G6K-
GPU-Tensor) and implemented the fastest sieving algorithm, BDGL16 [18], in
both G6K and G6K-GPU-Tensor. G6K offers an algorithm to solve LWE, con-
ditionally calling Pump to find short vectors on the projected sublattice, which
are then lifted into the full lattice basis after running several tours of PnJBKZ.
PnJBKZ uses Pump as its SVP oracle, ensuring that even when the SVP oracle
is called with a jump value, the skipped lattice basis vectors are still reduced by
Pump. PnJBKZ solves TU Darmstadt LWE Challenges 400 times faster than
the previous records.1

Lattice Reduction Simulators. The first BKZ simulator, refer to the BKZ 2.0
simulator, was proposed in [17] and uses the Gaussian heuristic to predict BKZ-
β. In 2016, Aono et al. introduced a new BKZ simulator in [19] as part of their
proposal for Progressive BKZ, aimed at predicting a fully BKZ-β-reduced basis.
In 2017, Yu and Ducas [35] conducted extensive experiments to evaluate the
practical behavior of BKZ. They provided a detailed study of the distribution
of Gram-Schmidt vector lengths for BKZ-reduced bases and more accurately
quantified the “head concavity” phenomenon based on their observations.

In 2018, Bai, Stehle, and Wen [36] proposed an even more accurate BKZ
simulator by considering the distribution of short vectors in random lattices.
1 https://github.com/WvanWoerden/G6K-GPU-Tensor/blob/main/lwe_challenge.py

5

https://github.com/WvanWoerden/G6K-GPU-Tensor/blob/main/lwe_challenge.py

The simulator developed by Bai et al. [36] can predict the “head concavity”
phenomenon in the Gram-Schmidt norm curves after BKZ-β reduction with high
accuracy. However, since the simulator proposed by Bai et al. [36] accounts for
the distribution of random lattice vectors, it is a randomized algorithm, meaning
its predictions are stochastic rather than deterministic. The prediction results
will only converge after running BKZ-β with the same fixed blocksize β for a
sufficiently large number of reduction tours.

In practice, to achieve higher reduction efficiency, it is often impractical to run
a large number of tours with the same blocksize β. In many heuristic progressive
reduction strategies [17,20,28,37], only one tour of BKZ reduction is run for each
blocksize β. Additionally, the randomized simulator cannot accurately estimate
the concrete security strength of cryptographic schemes when only one tour of
BKZ reduction is run for each progressive blocksize β and the estimation results
do not converge. Therefore, we do not base our construction of the PnJBKZ
simulator on the aforementioned BKZ 2.0 simulator variants.

Roadmap. The paper is organized as Fig. 3. Sec. 2 presents the notations
and preliminaries. We first formalize the definitions of the strategy space for
solving LWE and give a Simplified Strategy Search (SSearch) method in Section
3. The SSearch method is determined based on a given reduction simulator,
named ReductionSim, for lattice reduction algorithm R, a dimension estimation
method named SVPDimEst for the SVP oracle C and a time-cost model. Next,
in Sec. 4, we present a pruning version of SSearch (PSSearch) and prove its
correctness in outputting the minimum time cost strategy for solving LWE. In
Sec. 5, we propose a PnJBKZ simulator for instancing PSSearch with the lattice
reduction algorithm PnJBKZ.

Finally, we give the experiments in Sec. 6 as follows, (1) accuracy verification
of PnJBKZ simulator; (2) a compare the time cost of the LWE solver imple-
mented in G6K GPU version with our Two-step LWE solver using the strategy
generated by PSSearch and the practical time-cost model proposed in Sec. 2.6;
(3) the optimized strategy for solving the LWE Challenge; (4) verification of the
simulation accuracy of MinTwoStepSolver; (5) details of the new LWE records;
and (6) a re-estimate NIST schemes Kyber and Dilithium based on PSSearch
and gate count model [38].

Fig. 3: Roadmap

6

2 Preliminaries

We denote vectors by lower-case bold letters, e.g. a,b, c, ..., and matrices by
upper-case bold letters, e.g. A,B,C, For a matrix B = (b0, · · · ,bd−1), we
refer to bi as its (i + 1)-th column vector. The Euclidean norm of a vector
v ∈ Rm is denoted by ∥v∥. We use ⟨·, ·⟩ to denote inner products and · for
matrix-vector products. By abuse of notation, we treat vectors as either row or
column vectors depending on the context, so such that both v ·A and A · v are
meaningful. We denote 0m×d as the m× d all-zero matrix. If the dimensions are
clear from the context, we may omit the subscripts. |B| denotes the absolute
value of the determinant of the matrix B. A := [[a0, ..., an−1]] represents an
ordered list of size ♯A = n with A[i] = ai. Additionally, we have [[a0, ..., an−1]] ∪
[[an]] = [[a0, ..., an−1, an]]. We define [a, b] := {a, a+ 1, ..., b− 1} and [d] = [0, d].

2.1 Lattices

Let L be a d-dimensional lattice in Rm and its basis be B ∈ Rm×d, we denote
B[i,j] := (bi, · · · ,bj−1). We can also denote the lattice generated by basis B as
L(B). Let B∗ = (b∗

0, . . . ,b
∗
d−1) be the Gram-Schmidt orthogonalization of B, in

which b∗
i = bi −

∑i−1
j=0 µi,jb

∗
j , µi,j = ⟨bi,b

∗
j ⟩
/
∥b∗

j∥2, ∀i ∈ [d]. Denote by li the
logarithm of the Gram-Schmidt norm, i.e. li = ln(∥b∗

i ∥), for i ∈ {0, · · · , d− 1}.
Let rr(B) = (l0, · · · , ld−1), abbreviated as rr, rr[i,j] = (li, · · · , lj−1). For i ∈ [d],
we denote by πi the orthogonal projection onto (b0, ...,bi−1)

⊥. For 0 ≤ j ≤
k ≤ d − 1, we denote by Bπ[j,k] the local projected block (πj(bj), πj(bj+1),
..., πj(bk−1)), and by Lπ[j,k] the lattice spanned by Bπ[j,k].

The volume of a lattice L, denotedVol(L), is defined asVol(L)=|B|=
∏d−1

i=0 ∥b∗
i ∥.

We write λi(L) for Minkowski’s successive minima. The Gaussian Heuristic pre-
dicts that λ1(L) ≈ GH(B) =

√
d

2πe |B|
1/d.

2.2 Lattice Reduction

Definition 1 (Size-reduced). The Gram-Schmidt coefficients of a d-dimension
lattice basis B are denoted by µi,j for any 0 ≤ j < i ≤ d − 1. The basis B is
considered size-reduced if the following condition holds: For 0 ≤ j < i ≤ d− 1 :
|µi,j | ≤ 1/2.

Definition 2 (Hermite-Korkine-Zolotarev and Block-Korkine-Zolotarev
reductions [39]). The basis B of a d-dimensional lattice L is HKZ-reduced if B
is size-reduced and ∥b∗

i ∥=λ1(Lπ[i,d]) for all i < d. A d-dimensional lattice L is
BKZ-β-reduced if B is size-reduced and ∥b∗

i ∥ =λ1(Lπ[i,min{i+β,d}]) for all i < d.

In this paper, when we refer to the property of HKZ reduction with respect to a
blocksize β, we mean that the HKZ reduced property holds for a β-sized block,
i.e. Bπ[j,j+β].

7

Definition 3 (Root Hermite Factor). For a basis B of d-dimensional lattice,
the root Hermite factor is defined as δ(B) =

(
∥b0∥/|B|1/d

)1/d. For larger block-
size of BKZ, it follows the asymptotic formula δ(β)2(β−1) = β

2πe (βπ)
1/β [40].

δ(B) can be used to measure the current quality of the lattice basis B. A higher
lattice basis quality of B corresponds to a smaller value of δ(B).

Heuristic 1 (Geometric Series Assumption [20]) Let B be a lattice basis
after the lattice reduction, then ∥b∗

i ∥ ≈ α · ∥b∗
i−1∥, 0 < α < 1.

By Combining the GSA with the root Hermite factor (Definition 3) and noting
that Vol(L) =

∏d−1
i=0 ∥b∗

i ∥, we infer that α = δ−
2d

d−1 ≈ δ−2. Let s be the slope
value of the logarithm of GS norms li, ∀i ∈ {0, . . . , d−1}, s ≈ lnα and δ ≈ e−

s
2 .

Even if the GSA does not strictly hold, we can still estimate the slope s using
least squares fitting on ln∥b∗

i ∥. In earlier works, such as [20], s serves as a measure
of the basis quality: the lattice basis quality improves as s approaches 0.

2.3 Lattice Sieving Algorithms and Progressive Sieve

Lattice sieving algorithms are used to solve the Shortest Vector Problem (SVP)
by iteratively combining vectors to find shorter ones. The first practical lattice
sieve, the NV sieve, used a database of N0 = O(20.2075d) vectors and ran in
O(20.415d) time [34]. Later improvements, focusing on nearest neighbor search
techniques, reduced the time complexity to O(20.292d) [25, 41, 42]. Rather than
checking all pairs, a bucketing strategy was introduced, where close vectors are
more likely to fall into the same bucket. This reduces the number of pairs that
need to be checked. To further reduce memory usage, triplets of vectors can be
considered, leading to a time-memory trade-off. The current best triple sieve (de-
noted as hk3-sieve) minimizes memory to O(20.1887d) and has a time complexity
of O(20.3588d) [24].

Progressive sieve [27] is a variant of lattice sieving that performs sieving
as the dimension increases, rather than directly sieving on a full-dimensional
lattice at once. The original right-progressive sieve extends the sieving process
from B[0,n] to B[0,n+1], gradually increasing the dimension n. In contrast, the
left-progressive sieve [20, 28] first performs sieving in the projected sublattice
basis Bπ[d−n,d], then lifts the vectors using Babai’s nearest plane algorithm [12]
to Bπ[d−n−1,d] before continuing the sieving process. In this paper, the term
“progressive sieve” refers specifically to the left-progressive variant. It repeats
this process until the short vectors are lifted onto the full-dimensional lattice.

2.4 Technologies in G6K

G6K [20] is an abstract machine designed to run sieve and reduction algorithms,
built by generalizing and extending the previous sieving algorithms. G6K-GPU-
Tensor [28], a state-of-the-art SVP solver, improves the efficiency of G6K through

8

GPU implementations. It holds many records in the TU Darmstadt SVP Chal-
lenges, outperforming prior records by at least 400 times.
Dimension for Free (d4f) Technique. D4f technology [26] can provide sub-
exponential time speedup and a reduction in memory for sieving algorithms.
[26] provides two theoretical d4f estimations for solving the β-dimension SVP:
d4f(β) = β ln(4/3)/ ln(β/2π) and d4f(β) = β ln(4/3)/ ln(β/2πe), while in the
implementation of G6K [20], a more relaxed value, referred to as the “optimistic
d4f,” is used. β<40, d4fop(β) = 0; 40 ≤ β ≤ 75, d4fop(β) = ⌊β − 40/2⌋;
β>75, d4fop(β) = ⌊11.5 + 0.075β⌋.

However, the d4f estimations in G6K are only related to β, which is con-
sidered an overestimate. [43] proposed a refined d4f value estimation function
based on the quality of the current lattice basis and proved its correctness under
the GSA. This function shows that d4fδ = lnδ

√
4/3 ≈ − ln (4/3)

/
s. Here, s

represents the slope value of the logarithm of the Gram-Schmidt norms. More
details about d4fslope (s) can be found in Eq. (5) in [43].
Pump in G6K. Albrecht et al. proposed a sieving style algorithm, Pump,
in [20], which combines Progressive Sieve [27] with the d4f technique [26] and
a novel insertion trick. The Pump algorithm takes four input parameters: the
lattice basis B, the left insertion bound κ, the insertion upper bound dsvp and
the d4f value d4f(dsvp). Here, κ+dsvp=d and the upper bound of sieve dimension
is dsvp − d4f(dsvp). The Pump will insert up to dsvp − d4f(dsvp) short vectors
into the basis index from κ to d, choosing the shortest vectors from the sieved
set on the projected sublattice Lπ[d−dsvp+i,d] for i from κ to d. In this way, it
performs a partial HKZ reduction and outputs a nearly HKZ-reduced basis, as
described in the G6K paper [20].
PnJBKZ in G6K. PnJBKZ (Pump and Jump BKZ) is a BKZ-type reduction
algorithm that uses Pump as its SVP oracle. By calling Pump instead of previous
SVP oracles, PnJBKZ can insert multiple vectors into the lattice basis during
each block processing step. This allows PnJBKZ to perform lattice reduction
with an adjustable jump, which is no less than 1. Specifically, running a PnJBKZ
with blocksize β and jump=J means that after executing an SVP call on a
certain B[i,i+β], the next SVP call will be executed on B[i+J,i+β+J] rather than
B[i+1,i+β+1].

2.5 Primal Attack and SVP Dimension Estimation in Search Step

For a standard LWE instance (A,b) ∈ Zm×n
q × Zm

q , where the error vector e
has standard deviation σ, we assume that each element in e follows a discrete
Gaussian distribution D0,σ and that m > n. The primal attack [44] transforms
LWE into a uSVP by constructing a special embedding lattice basis B using
Kannan’s embedding technique [11], where B =

(
Ā b
0 1

)
. Here, Ā is a basis for

the q-ary lattice spanned by the columns of A. Then t = (e, 1) is an unique
shortest vector in B and it is also the target vector of the uSVP.

In the search step of the Two-step method for solving LWE, an individual
SVP oracle is invoked after lattice reduction to find the target solution for LWE.

9

Meanwhile, given a lattice basis B that has been reduced by using a lattice re-
duction algorithm, one can estimate the dimension of the SVP that needs to be
solved in the search step to ultimately solve the LWE problem. By considering
the norm of target vector t of LWE and its expected value, one can determine the
minimum dsvp ∈ [1, d] such that σ

√
dsvp < GH

(
Bπ[d−dsvp,d]

)
. According to the

success conditions for solving LWE [33], as verified by [10], the minimum dimen-
sion of the SVP that must be solved in search step to solve LWE is dsvp. Most
efficient LWE solvers, such as those described in [20, 28], utilize this estimation
in their implementations.

In this paper, we build upon the probabilistic model using BKZ simulation
proposed in [45]. Specifically, we adapt the BKZ-based estimator to fit the SVP
model, as detailed in Section 4.3, resulting in a more tailored dimension esti-
mation for the SVP oracle. We use SVPDimEst(rr, σ) to denote the dimension
estimation method for determining the required SVP dimension in the search
step when solving LWE. This estimator takes as input the Gram-Schmidt norms
rr of the lattice basis B generated by the primal attack.

2.6 SVP Time-Cost Model and Reduction Time-Cost Model
Accurate time-cost models for sieving and enumeration algorithms are critical
to the effectiveness of our strategy search algorithm. If enumeration is used as
the SVP oracle in the lattice reduction algorithm, we can apply the time-cost
model proposed in [46, 47]. However, if sieving is the SVP-solving algorithm in
the lattice reduction process, the time-cost model becomes more complex. In this
paper, we primarily focus on the time cost of the progressive sieve, specifically
Pump with hk3-sieve, as it is currently the most efficient practical method for
solving high-dimensional SVP.

Let TPump(β) represent the time cost of a β-dimensional progressive sieve
Pump (with pump-down active). We can compute the theoretical time cost
TPump(β) by summing the costs of all the sieving subroutines: TPump(β) =

2
∑β

j=β0
Tsieve(j) ≤ 2c·(β+1)+o(β−β0+1)/(1 − 2c) ≈ 2c·β+c1 , where β0 is the di-

mension of the initial sieving in Pump (with β0 = 30 in G6K and β0 = 50 in
G6K-GPU-Tensor), Tsieve(j) is the cost of a j-dimensional sieve, and c and c1
are the coefficients related to the time cost of the sieve.

For practical time cost, we note that Pump implementation in G6K-GPU-
Tensor (resp. G6K) incurs additional overhead, requiring an extra time cost of
O(β) times of memory cost to generate DualHash (resp. SimHash) values. These
hash values are used to find the nearest neighbors of each vector. Thus, while
the theoretical time cost of Pump is O(2cβ) and its space cost is O(2c2β), the
actual time complexity is O(2cβ +β ·2c2β). By setting c = 0.367 and c2 = 0.2075
according to Fig. 7 in [28], we construct a practical time-cost model for Pump as
TPump(β) = a1·2cβ+c1+a2·2c2β+c3 . The coefficients for this model are determined
through curve fitting, as shown in Fig. 12. More details on the practical Pump
cost model can be found in Appendix B.2.

The time complexity model for lattice basis reduction algorithms, such as
BKZ, is given by TBKZ(β) = (d−β)TSVP(β). For PnJBKZ, this can be expressed

10

as TBKZ(β, J) = (d−β)/J ·TPump(β). However, experimental results have shown
that this theoretical model diverges significantly from the actual time complexity
model, as the time cost of the Pump increases with the index. Therefore, we
present a more accurate and practical time complexity model for PnJBKZ, which
is detailed in Appendix B.2.

3 Strategy Space and the Strategy Search Algorithm

In this section, we first formalize the definitions related to the strategy space
in Sec. 3, then propose a Simplified Strategy Search method (SSearch) in Sec.
3.2, which is designed to search the minimum time-cost strategy in the Two-step
mode.

3.1 Strategy Space

Before introducing the strategy space, it is important to first clarify the definition
of lattice reduction algorithms. Most lattice reduction algorithms are designed
as combinations of multiple SVP solver calls, with the primary goal of improving
the quality of the lattice basis. This is achieved by replacing each lattice vector
bi with a shorter vector for i ∈ [d]. Thus, we give a general definition of the
lattice reduction algorithm as follows:

Definition 4 (Generic Reduction (R(B, ξ) or R-ξ)). Reduce the lattice basis
B using a blocksize list ξ = [[(κ0, β0), · · · , (κn−1, βn−1)]], where κi, n ∈ [d − 1],
and βi ∈ [1, d − κi + 1]. For i ∈ [n], define β′

i = min{βi, d − κi}, and then
iteratively apply the following two operations:

1. Find the shortest vector v by running a β′
i-dimensional SVP call on the

projected sublattice basis B[κi,κi+β′
i]

.
2. Insert v into the position κi of the lattice B by calling an LLL reduction on

(b0, · · · ,bκi−1,v,bκi
, · · · ,bd−1).

We present the initialization R-ξ for the most commonly used lattice reduction
algorithms in practice, as shown in Table 1. Each specific reduction algorithm is
associated with particular parameters, which can be described by defining the
form of ξ.

Table 1: The form of ξ in Generic Reduction initialization

Reduction
Algorithm

Reduction
Parameter Each κi and βi in ξ = [[(κ0, β0), · · · , (κn−1, βn−1)]]

BKZ [16] β n = d− 2, κi = i, βi = min{β, d− i}, i ∈ [d− 1]

PnJBKZ [20] (β, J) n = d− 2, κi = i, βi = min{β − (i mod J), d− i}, i ∈ [d− 1]

HKZ [11,48] - n = d− 2, κi = i, βi = d− i, i ∈ [d− 1]

11

Lattice Basis Quality. There are various ways to characterize the quality of a
lattice basis. In the context of BKZ reduction, where the GSA holds, the quality
of the reduced basis can be described by the slope of (ln(∥b∗

0∥), ..., ln(∥b∗
d−1∥)).

However, when evaluating the quality of a lattice basis after a tour of PnJBKZ
or another reduction algorithm, the GSA may no longer holds. In this paper,
we provide a general definition of lattice basis quality that encompasses the
reductions described in Def. 4.

Definition 5 (Generic Basis Quality). For a lattice basis B, let (|B[0,1]| =
∥b∗

0∥, |B[0,2]|=∥b∗
0∥ · ∥b∗

1∥, ..., |B[0,d−1]| =
∏d−2

i=0 ∥b∗
i ∥) be the lattice basis quality

of B.
Moreover, for two different bases C and D of the same lattice, we say that

D has the same or better lattice basis quality than C if |C[0,k+1]| ≥ |D[0,k+1]| for
all k ∈ [d− 1]. This is denoted as D ≥Q C or rr(D) ≥Q rr(C).

If we set n = d − 2 and κi = i for ξ in the generic reduction R-ξ, then
the Gram-Schmidt norms of the lattice basis after lattice reduction R-ξ can
be simulated using the Gaussian Heuristic. In this case, the following property
holds:

Property 1 (Property of the Generic Reduction) Assume Gaussian Heuris-
tic holds. For a generic reduction tour R-ξ, where ξ = [[(0, β0), (1, β1), · · · ,
(d− 2, βd−2)]], then the following 2 properties hold:

1. Let B′ = R-ξ(B) be the reduced basis after a tour of R-ξ, B′ ≥Q B.
2. Given two lattice bases C and D, and C′ (resp. D′) is the lattice basis after

a tour reduction of R-ξ on C (resp. D). If D ≥Q C, then D′ ≥Q C′ .

Proof. Item 1. (Proof by induction.) Suppose the Gram-Schmidt norms of B
(resp. B′) are (l0, · · · , ld−1) (resp. (l′0, · · · , l′d−1)). For each i, the Gram-Schmidt
norm after R-ξ can be simulated as GH(B[i,i+β′]), where β′ = min{βi, d− i}.

If k=0, |B′
π[0,1]|=l′0 ≈ min{GH(Bπ[0,β0]), l0} ≤ l0 obviously. Assume |B′

π[0,n]| ≤

|Bπ[0,n]| holds while k = n. When k = n+ 1, if ln <
√

β′

2πe ·
(

|Bπ[0,n+β′]|
|B′

π[0,n]
|

)1/β′

, it
implies that the norm of short vector found in Bπ[n,n+β′] is greater than ln, the
norm of vector in the current lattice basis. In this case, ln will not be replaced,
and ln = l′n.

Otherwise, l′n =
√

β′

2πe ·
(
|B′

π[n,n+β′]|
)1/β′

. Since the reduction on Bπ[n,n+β′]

does not affect the volume of the projected sublattice basisBπ[0,n+β′], |Bπ[0,n+β′]| =

|B′
π[0,n+β′]|, we have l′n = min{ln,

√
β′

2πe ·
(

|Bπ[0,n+β′]|
|B′

π[0,n]
|

)1/β′

}.

12

We depart it into two cases: (1) l′n = ln, then |B′
π[0,n+1]| = |B

′
π[0,n]| · ln ≤

|Bπ[0,n+1]|; (2) l′n =
√

β′

2πe ·
(

|Bπ[0,n+β′]|
|B′

π[0,n]
|

)1/β′

≤ ln, then

|B′
π[0,n+1]| =|B′

π[0,n]| ·
√

β′

2πe
·

(
|Bπ[0,n+β′]|
|B′

π[0,n]|

)1/β′

≤ |Bπ[0,n]| ·
√

β′

2πe
·
(
|Bπ[0,n+β′]|
|Bπ[0,n]|

)1/β′

=|Bπ[0,n]| ·
√

β′

2πe
· |Bπ[n,n+β′]|1/β

′
≤ |Bπ[0,n+1]|,

(1)
where β′ = min{βn, d− n}. Thus, B′ ≥Q B.

Item 2. (Proof by induction.) Suppose the Gram-Schmidt norms of C and D
are x = (x0, · · · , xd−1) and y = (y0, · · · , yd−1). |Cπ[0,k+1]| ≥ |Dπ[0,k+1]| yields∏k

i=0 xi ≥
∏k

i=0 yi, for all k ∈ [d]. Suppose the output Gram-Schmidt norms of
lattice basis C and D after a tour of Reduction R-ξ are x′ = (x′

0, · · · , x′
d−1) and

y′ = (y′0, · · · , y′d−1). If k = 0,

|C′
π[0,1]| = x′

0 =

√
β0

2πe

(
β0−1∏
i=0

xi

) 1
β0

≥
√

β0

2πe

(
β0−1∏
i=0

yi

) 1
β0

= y′
0 = |D′

π[0,1]|

Assume |C′
π[0,n]| ≥ |D

′
π[0,n]| holds while k=n. When k=n+1, since |Cπ[0,n+β′]| =

|C′
π[0,n+β′]| and |Dπ[0,n+β′]| = |D′

π[0,n+β′]|, we have

|C′
π[0,n+1]| =|C′

π[0,n]| · x′
n = |C′

π[0,n]| ·
√

β′

2πe

(
|Cπ[0,n+β′]|
|C′

π[0,n]|

)1/β′

≥|D′
π[0,n]| ·

√
β′

2πe

(
|Dπ[0,n+β′]|
|D′

π[0,n]|

)1/β′

= |D′
π[0,n+1]|,

(2)

where β′ = min{βn, d− n}. Thus, D′ ≥Q C′. ⊓⊔

Then, we formally define the strategy space in the Two-step mode to solve the
LWE problem.

Definition 6 (Strategy Space). Given a lattice basis B of an uSVP instance.
Suppose there exists a lattice reduction algorithm R that has an adjustable pa-
rameter ξ, along with an SVP oracle C. Let S(R, C) denote the corresponding
strategy space. Each Two-step strategy (S = [[ξ0, · · · , ξi, · · ·]], dsvp) ∈ S can find
the unique shortest vector of the lattice L(B) through the following Two-step
procedure:

1. Reduction Step: Iteratively call the reduction method R with parameter ξi ∈ S
on the lattice basis B, where each R-ξi improves the quality of the basis. The
output is the reduced lattice basis B′ after all reductions.

2. Search step: Find the unique shortest vector by calling a dsvp-dimensional
SVP oracle on B′

[d−dsvp,d]
to obtain the projection of the target vector, then

lift it to the full-dimensional lattice.

13

BKZ is the most commonly used lattice reduction algorithm, while PnJBKZ
(Sec. 2.4) with hk3-sieve is currently the most efficient lattice reduction algorithm
in practice. We can choose either BKZ or PnJBKZ as the reduction algorithm
R, and use lattice enumeration or (progressive) lattice sieve as the SVP oracle
in the search step.

Progressive Reduction. In 2020, Li and Nguyen [49] presented the first rig-
orous dynamic analysis of BKZ, followed by Wang’s [50] dynamic analysis of
PnJBKZ in 2024. These studies, along with others [49–51], have established
that lattice reduction algorithms, such as BKZ [16] or its variant PnJBKZ [20],
and slide reduction [37], when applied with a fixed reduction parameter, will
eventually converge to a specific reduced lattice basis after a polynomial num-
ber of iterations. For a well-reduced lattice basis, further application of the same
lattice reduction algorithm R (e.g. BKZ or PnJBKZ) with identical or weaker
parameters becomes ineffective, as it no longer significantly improves the ba-
sis quality. Therefore, to achieve a higher reduction quality, it is essential to
dynamically adapt the reduction parameters, enforcing progressively stronger
reductions. This adaptive approach is commonly referred to as the progressive
reduction strategy.

A valid reduction strategy to improve the quality of the lattice basis is finite,
which implies that the strategy space S finite, as stated in Theorem 1 and proven
in Appendix C.1.

Theorem 1. If a lattice basis B reduced by repeatedly calling a fixed R-ξ con-
verges to a fully-reduced basis after a finite number of calls, then S is a finite
set.

3.2 Strategy Search Algorithm

Before introducing the strategy search algorithm, we present a time-cost model
for each strategy in solving the uSVP problem, as our goal is to find the strategy
with the minimum time cost. Given a time-cost model T = (TR, TC) and a
Two-step strategy (S, dsvp), let the time cost of the entire reduction step be
TRs(S) =

∑
ξ∈S TR(ξ), and the time cost of search step be TC(dsvp). Then, the

total time cost of the strategy (S, dsvp) for solving the uSVP problem is given
by Ttotal(S, dsvp) = TRs(S) + TC(dsvp).

According to Theorem 1, the strategy space S for solving an uSVP instance
is finite. There exists a strategy (Smin, d

(min)
svp) such that Ttotal(Smin, d

(min)
svp) =

min{Ttotal(S, dsvp) : (S, dsvp) ∈ S}. We now formalize the Q7 in Kyber [8] as a
combinatorial optimization problem:

Definition 7 (The Problem of Searching a Refined Strategy for Solv-
ing LWE). Given an LWE instance (A,b), it can be transform into an uSVP
instance by using a primal attack. Consider an arbitrary lattice reduction al-
gorithm R, an SVP oracle C, and their corresponding time-cost model T . The
objective is to identify a refined Two-step strategy (S, dsvp) ∈ S(R, C) that mini-
mizes the total time cost for solving the LWE instance.

14

Let TwoStepSolver (Alg. 1) be a Two-step strategy algorithm for solving
LWE. It employs the lattice reduction algorithm R and the SVP oracle C to
solve LWE based on the input Two-step strategy (S, dsvp). This approach first
applies a series of reductions and, at the appropriate point, calls an SVP oracle
to search for the target vector.

In this paper, we propose an algorithm named Strategy Search(SSearch) to
identify a strategy (Smin, d

(min)
svp) ∈ S that minimizes time cost of solving an

arbitrary LWE instance, given reduction algorithm R and SVP oracle C.
Since the time cost of the reduction algorithm increases exponentially with

respect to the reduction parameter ξ, exhaustively executing all possible strate-
gies to identify the optimized reduction strategy is computationally infeasible.
To accurately estimate the reduction effect for each strategy, we introduce two
key components: ReductionSim, a polynomial-time simulator of the reduction
algorithmR, and SVPDimEst, a dimension estimation method for the SVP oracle.

ReductionSim can be initialized as one of the simulators: the BKZ simulator
[17] or the PnJBKZ simulator proposed in Sec.5, depending on the reduction
algorithm R used, such as BKZ or PnJBKZ. The PnJBKZ simulator in Sec.5 is
the first polynomial-time simulator for PnJBKZ. Given the initial Gram-Schmidt
norms rr0 and a reduction strategy S, ReductionSim(rr0, S) predicts how the
Gram-Schmidt norms changes after iteratively calling R-ξ reduction for ξ ∈ S
with input rr0. If S contains a single reduction strategy ξ, we can also re-write
ReductionSim(rr0, S) as ReductionSim(rr0, ξ).

input : LWE instance (A,b) ∈ Zm×n
q × Zm

q , a lattice reduction algorithm R,
an SVP oracle C, a Two-step strategy (S, dsvp) ∈ S(R, C);

output: The unique shortest vector t;
1 Function TwoStepSolver((A,b), R, C, (S, dsvp)):
2 Construct lattice basis B using primal attack to solve LWE instance

(A,b);
3 B = LLL(B);
4 for ξ ∈ S do
5 B← R(B, ξ);
6 πd−dsvp(t) ← run an SVP oracle C on Bπ[d−dsvp:d];
7 t ∈ L ← Lift πd−dsvp(t) by Babai’s Nearest Plane Algorithm [12];
8 return t;

Algorithm 1: Two-step Solver

Condition 1 Given a lattice reduction algorithm R and an SVP oracle C, we
have:
1. A reduction simulator named ReductionSim that can predict the reduction

effect of R accurately in polynomial time cost;
2. A dimension estimation method denoted as SVPDimEst (e.g. Sec. 2.5) that

can estimate the dimension for the SVP oracle C in the search step;
3. The time-cost model T for R and C.

We denote the actual GS values as li
′′ (actual GS values output from R)

and the simulated GS values as Sim(li
′′). Then, In Condition 1, the phrase

15

“ReductionSim can accurately predict the reduction effect of R”, means that
∀i ∈ [0, d] : li

′′/Sim(li
′′) falls within the range [0.95, 1.05].

If Condition 1 is satisfied, SSearch can find the minimum time cost strategy
(Smin, d

(min)
svp). Then, we present a simplified version of SSearch as Alg. 2. The

algorithm aims to (1) enumerate all possible lattice reduction strategies and
estimate the dimension of the SVP oracle, and (2) compute the total time cost
of each LWE solving strategy, ultimately outputting the strategy (Smin, d

(min)
svp)

with the lowest time cost.
Since S is finite, as proved in Theorem 1, and the time cost of each strategy

(S, dsvp) is fixed, enumerating all possible reduction strategies S allows us to
identify a strategy with minimum time cost. Thus, Corollary 1 holds naturally.

Corollary 1. If Condition 1 is satisfied, Simplified SSearch outputs a strategy
of Two-step Solver with minimum time cost for solving a given LWE instance.

input : LWE instance (A,b, σ) ∈ Zm×n
q × Zm

q × R+, a simulator
ReductionSim for R, an SVP dimension estimation method
SVPDimEst for C, a time-cost model T ;

output: (Smin, d
(min)
svp);

1 Function SimplifiedSSearch((A,b, σ), ReductionSim, SVPDimEst, T):
2 rr0 ← The Gram-Schmidt norms of a lattice basis B from LWE instance

(A,b) by the primal attack;
3 (TR, TC)← T ; dsvp ← SVPDimEst(rr0, σ);
4 Tmin ← TC(dsvp); (Smin, d

(min)
svp)← ([[]], dsvp);

5 for each possible non-empty reduction strategy S do
6 rr←ReductionSim(rr0,S); dsvp ← SVPDimEst(rr, σ);
7 Ttotal(S, dsvp)← TRs(S) + TC(dsvp);
8 if Ttotal < Tmin then
9 (Smin, d

(min)
svp)← (S, dsvp); Tmin ← Ttotal;

10 return (Smin, d
(min)
svp);
Algorithm 2: Simplied SSearch

When TwoStepSolver employs the minimum time-cost Two-step strategy
(Smin, d

(min)
svp) determined by the SSearch algorithm, we name this algorithm

MinTwoStepSolver, we demonstrate its high efficiency in solving LWE in Sec. 6.

4 Pruning SSearch

Although the Simplified SSearch algorithm can output the minimum time-cost
strategy, the strategy space is vast, making it challenging to quickly find the
minimum time-cost strategy. To address this, we propose the Pruning SSearch
method (PSSearch, Alg. 3), which reduces the complexity of searching the entire
strategy space by pruning strategies that will not evolve into the final solution.
In Sec. 4.2, we provide a formal correctness proof for our algorithm.

16

4.1 Main Algorithm

In PSSearch, we search for the strategy with the minimum time cost by traversing
a strategy tree in a breadth-first manner. The strategy tree is defined as follows,
Definition 8 (Strategy Tree W). A Strategy Tree W consists of

1. The root node ofW is root = ([[]], d
(0)
svp), where d

(0)
svp is calculated by SVPDimEst.

2. The i-th level node is in the form (Si = [[ξ1, ..., ξi]], d
(i)
svp), which consists of a

reduction strategy with length i, and d
(i)
svp = SVPDimEst(ReductionSim(rr0, Si), σ).

3. For any i-th level strategy (Si, dsvp), its child node is (Si+1 = Si∪[[ξi+1]], d
(i+1)
svp),

where ξi+1 is any reduction parameter that can further improve the basis
quality.

Now, we describe the procedure of the PSSearch algorithm. Fig. 4 presents
an example of a strategy tree and the pruning process for each strategy node.

Fig. 4: Illustrative Example of PSSearch. “≥TRs” indicates that the reduction time
cost of the strategy on the left side is greater than that of the strategy on the right
side, i.e., TRs(Sleft) ≥ TRs(Sright). Each box displays a reduction strategy S.

At the beginning, PSSearch generates an empty strategy list BS, where ♯BS
denotes the size of BS. Each element in BS is a pair (S, dsvp). Let rr0 be the
sequence of Gram-Schmidt norms for the input lattice basis B. We start by
adding a strategy (S0 = [[]], d

(0)
svp) with no reduction to the list BS, corresponding

to the root node of W, denoted as root. d(0)svp = SVPDimEst(rr0, σ). The time

17

cost of this strategy is as follows: Ttotal(S0, d
(0)
svp) = TRs(S0) + TC(d

(0)
svp) = 0 +

TC(d
(0)
svp) = TC(d

(0)
svp).

Then, access the strategies in BS in order and determine whether to add a
child strategy node to BS based on a specific pruning rule, continuing until no
child nodes remain to be searched. For example, consider all possible strategies
of size 1, which are the child nodes of root, i.e. ([[ξ]], dsvp) for different values of ξ.
After searching all the nodes are searched, the strategy with the minimum time
cost in BS is output. The strategies in the list BS are organized such that the
time cost of the reduction step TRs(S) increases, while the quality of the lattice
basis improves (which implies that the time cost of the search step TC(dsvp)
decreases, as stated in Lemma 1).

The pruning strategy is not based solely on the total time cost, as there may
exist a descendant node with a lower total time cost. Instead, both the time cost
and the quality of the basis after the reduction step are compared between nodes.
If a node has both a higher time cost and worse basis quality than another, it
cannot evolve into a strategy with the lowest total time cost (as stated in item
2 of Property 1) and therefore can be discarded.

In other words, for each newly proposed strategy (S′, d′svp) awaiting addi-
tion, we compare it against each current strategy (S, dsvp) ∈ BS and apply the
following rules to decide whether to preserve or discard it.

Additionally, if the goal is to output the strategy with the minimum time
overhead while considering memory constraints, we need to modify the condi-
tions in lines 6 and 13 to preserve the small blocks strategy, even if its reduction
time cost is higher than that of another strategy. Under memory limitations, the
strategy with the lowest time overhead will be selected as the output.

Rule 1 (Pruning strategies in W) Pruning strategies in W consists of

1. If there exists a (S, dsvp) ∈ BS that has both lower reduction time cost
and better basis quality than which of (S′, d′svp), i.e. TRs(S) < TRs(S

′) and
ReductionSim(rr0, S) ≥Q ReductionSim(rr0, S′), then don’t add (S′, d′svp).

2. Otherwise, add (S′, d′svp) and remove all strategies in BS that have both a
higher reduction time cost and worse basis quality than (S′, d′svp).

18

input : LWE instance (A,b, σ) ∈ Zm×n
q × Zm

q × R+, a simulator
ReductionSim for R, an SVP dimension estimation method for C, a
time-cost model T ;

output: (Smin, d
(min)
svp);

1 Function PSSearch((A,b, σ), ReductionSim, SVPDimEst, T):
2 rr0 ← The Gram-Schmidt norms of a lattice basis B from LWE instance

(A,b) by the primal attack;
3 (TR, TC)← T ; k ← 0; dsvp ← SVPDimEst(rr0, σ); BS ← [[([[]], dsvp)]];
4 while k < ♯BS do
5 (S1, dsvp)← BS[k];
6 for ∀ξ′ s.t. ReductionSim(rr0, S1 ∪ [[ξ′]]) ≥Q ReductionSim(rr0, S1) do
7 S′ ← S1 ∪ [[ξ′]]; rr′ ← ReductionSim(rr0, S′);
8 d′svp ← SVPDimEst(rr′, σ);
9 if ∃ (S, dsvp) ∈ BS s.t. TRs(S′) ≥ TRs(S) and

ReductionSim(rr0, S′) ≤Q ReductionSim(rr0, S) then
10 continue;
11 else
12 BS← BS ∪ [[(S′, d′svp)]];
13 for ∀(S, dsvp) ∈ BS s.t.TRs(S′) ≤

TRs(S) and ReductionSim(rr0, S′) ≥Q ReductionSim(rr0, S)
do

14 Remove (S, dsvp) from BS;

15 k ← k + 1;

16 Find the strategy (Smin, d
(min)
svp) ∈ BS s.t.

Ttotal(Smin, d
(min)
svp) = min(S,dsvp)∈BS Ttotal(S, dsvp);

17 return (Smin, d
(min)
svp) ;
Algorithm 3: Pruning SSearch

4.2 Correctness Proof of Pruning SSearch

To ensure that PSSearch (Alg. 3) can still find the strategy with the shortest
time cost in the pruned state, we provide Theorem 2 to prove its correctness.

Theorem 2. Given the strategy space S as Def. 6, and SVPDimEst as described
in Sec. 2.5, if Condition 1 is satisfied, TC(x) is a monotonically increasing
function with respect to x, and the Gram-Schmidt norms after a reduction R can
be predicted by the Gaussian Heuristic, then the Alg. 3 (PSSearch) will return the
reduction strategy in S that minimizes time cost to solve a given LWE instance.

Before proving Theorem 2, we present Lemma 1, which supports Theorem
2 by proving that for two different lattice bases with the same dimension, the
inequality between their dimension estimation values obtained from SVPDimEst
remains unchanged after performing the same lattice basis reduction.

Lemma 1. Suppose the Gaussian Heuristic holds. Given an SVPDimEst de-
scribed as described in Sec. 2.5, and two arbitrary bases D ̸= C for the same
d-dimensional lattice generated from an LWE instance with standard deviation

19

σ by the primal attack, assume that D ≥Q C. Let C′ (resp. D′) be the Gram-
Schmidt norms of the lattice basis after calling a tour of R-ξ on C (resp. D).
Then, it holds that SVPDimEst(rr(C′), σ) ≥ SVPDimEst(rr(D′), σ).

The proof of Lemma 1 follows a similar approach to that of Property 1, and
thus, we omit the details for brevity. For the full proof, refer to the Appendix
C. Now, we prove Theorem 2 as follows:

Proof. (Proof of Theorem 2.) Let rr0 be the Gram-Schmidt norms of a randomly
chosen lattice basis. Suppose the strategy in S with the minimum time cost is
(S = [[ξ0, ..., ξz−1]], dsvp). We denote the sub-strategy [[ξ0, ..., ξi]] of S by Si and
define d

(i)
svp := SVPDimEst(ReductionSim(rr0, Si), σ) for 0 ≤ i ≤ z.

For all 1 ≤ i ≤ z, TC(d
(i−1)
svp) > TC(d

(i)
svp). Otherwise, removing ξi from Si

would result in a strategy that solves an LWE instance in less time.
From the description of PSSearch, two cases might arise: (1) S is included

in the final strategy set BS, or (2) there exists a sub-strategy Si of S that has
been removed from BS, in which case S will no longer appear in BS. Since S has
the minimum time cost among all strategies in BS, it must be the final output
strategy, satisfying the first case. We now prove that the second case cannot
occur.

If (Si, d
(i)
svp) is removed from BS, then there must exist another strategy

(S′, d′svp) such that ReductionSim(rr0, S′) ≥Q ReductionSim(rr0, Si), and the re-
duction time cost satisfies TRs(Si)≥ TRs(S

′). Now, consider a new strategy S∗ :=
S′ ∪ [[ξi+1, ..., ξz−1]]. This implies that TRs(S) ≥ TRs(S

∗). Let d∗svp=SVPDimEst
(ReductionSim(rr0, S∗), σ). From Lemma 1 and the increasing property of TC ,
it deduces that TC(dsvp) ≥ TC(d

∗
svp). Since TRs(Si) ≥ TRs(S

∗), this leads to a
contradiction, as it implies that S is not the strategy with the minimum total
time cost. ⊓⊔

4.3 A Refined SVP Dimension Estimation Method

We have introduced the classical SVPDimEst method in Sec. 2.5. However, esti-
mating the projected norm of the target vector as ∥πd−dsvp

(t)∥=σ
√

dsvp carries
a failure probability in the last SVP call when solving LWE. This is because t
follows a specific distribution (typically discrete Gaussian), and there is a possi-
bility that ∥πd−dsvp(t)∥ > GH(Bπ[d−dsvp]) ≥ σ

√
dsvp.

To address this issue, we propose SVPDimEst (Alg. 5) for estimating the
sieving dimension to solve general LWE problems with arbitrary target vector
distributions. Our estimation builds based on the probabilistic model used in
BKZ-simulation of [45]. Specifically, we adapt and refine this estimator to suit
the SVP oracle, allowing us to estimate the required dimension for a single SVP
call. The key difference is in the underlying model: while previous works relied on
the BKZ simulator for estimation, our approach tailors the estimation process
specifically for the SVP oracle. This adaptation ensures a more accurate and
practical dimension estimation for the SVP oracle in this context. Similarly to
Lemma 2, a detailed description is provided in Appendix B.1. It retains the same
properties as stated in Lemma 1.

20

5 The Design of PnJBKZ Simulator

PnJBKZ [20], when combined with hk3-sieve, is considered the most efficient
lattice reduction algorithm in practice. However, PnJBKZ currently lacks a
polynomial-time accurate simulator. Since ReductionSim, as mentioned in Con-
dition 1, is an essential part of both SSearch and PSSearch, we must develop an
accurate simulator for PnJBKZ, especially when jump>1. Only then will we be
able to generate optimized reduction strategies for PnJBKZ using PSSearch.

The rigorous dynamic analysis proposed in [49, 50] analyzes the reduction
effect, which only converges after running numerous tours of a fixed blocksize
BKZ-β or PnJBKZ-(β, J) reduction. However, in practice, a polynomial-time
PnJBKZ-(β, J) simulator is needed to predict the practical reduction effects of
PnJBKZ-(β, J) with a more flexible number of tours. This is because, during
most progressive reduction processes, the number of BKZ-β reduction tours is
often relatively small [17, 19,20,37].

Meanwhile, the classical BKZ simulator is unable to predict the performance
of PnJBKZ when jump>1. Fig. 5 shows that a PnJBKZ reduction strategy with
jump>1 can significantly improve the efficiency of reduction. Specifically, the
progressive reduction strategy with jump=9 is four times faster than the strategy
with jump=1 in achieving the same slope of −0.019. To optimize strategies for
PnJBKZ, selecting the appropriate (β, J) is critical. Therefore, it is essential
to develop a polynomial-time PnJBKZ simulator that accurately predicts the
performance of PnJBKZ reduction.

Fig. 5: Speedup in Reduction Efficiency via the Jump Strategy.The test conducted on a
252-dimensional lattice basis. The walltime and slope values are averaged over 5 instances for each
test. Each instance was run on machine C (2 GPUs and 32 threads). The points are labeled by β.

21

5.1 The PnJBKZ Simulator Construction.

Before presenting the detailed construction of the PnJBKZ simulator, we first
briefly review the main idea behind the BKZ 2.0 simulator proposed in [17],
which uses the Gaussian Heuristic (GH) to predict BKZ-β reduced lattice basis.

Let L(B(i)) denote the lattice basis after the reduction of the first i blocks,
and L(B(0)) as the initial lattice basis. ∀i ∈ [d], define li = ln(∥b∗

i ∥), l′i =

ln(∥b∗′

i ∥), and l′′i = ln(∥b∗′′

i ∥) as the logarithmic norms of the i-th Gram-Schmidt
basis vectors reduced by one tour of BKZ-β and PnJBKZ(β, J), respectively.

The BKZ 2.0 simulator first calculates Sim(l′0) = ln
(
GH(L(B(0)

π[0,β])
)
≈

1
2 ln (β/2πe)+ 1

β ln
(
Vol(L(B(0)

π[0,β]))
)
under the GH. Then, it calculates Sim(l′1) :=

ln
(
GH(L(B(1)

π[1,β+1]))
)
≈ 1

2 ln (β/2πe) + 1
β

(
ln Vol(L(B(0)

π[0,β+1]))− Sim(l′0)
)
, us-

ing GH and the previously calculated value of Sim(l′0).
Since inserting the new b0 alters the norms of the Gram-Schmidt (GS) vec-

tors, for ∀i ∈ {1, ..., d − 1}, li changes to some unknown values. Although l0
changes to l′0 after inserting the new b0, the reduction on L(B(0)

π[0,β]) does not
affect the volume of the projected sublattice basis L(B(0)

π[0,β+1]). Therefore, we
have Vol(L(B(1)

π[0,β+1]))= Vol(L(B(0)

π[0,β+1])).
Thus, as Vol(L(B(0)

π[1,β+1])) =
∏β

i=1∥b
∗
i ∥, after the insert of new b0 it will change

to Vol(L(B(1)

π[1,β+1])) =
(∏β

i=0∥b
∗
i ∥
) /
∥b∗′

0 ∥. Here, Sim(l′0) is a simulated approxi-
mate value of l′0 by GH. Iteratively calculating all remaining unknown Sim(l′i) :=

ln
(
GH(L(B(i)

π[i,i+β]))
)
≈ 1

2
ln (β/2πe) + 1

β

(
ln Vol(L(B(0)

π[0,i+β]))−
∑i−1

j=0 Sim(l′j)
)
, for

∀i ∈ [d− β]. For ∀i ∈ {d− β, ..., d− 1}, Sim(l′i), it gradually decrease the block-
size to 2. Then such a simulator can predict the value of each l′i in B∗′ which is
reduced by one tour of BKZ-β.

However, the BKZ 2.0 simulator [17] and its variants cannot simulate the
behavior of PnJBKZ when jump>1. Let jump=J and L(B(i)) represent the lattice
basis after the final vector has been inserted into the i-th position of the GS
vectors. Also, let L(B(0)) denote the initial lattice basis. Observe that when J>1,
each time a new vector b∗

i is inserted into the first position of B(i)
π[i,k], the norms

of the J−1 GS vectors b∗
i+1, ...,b

∗
i+J−1, will change and remain unknown. These

unknown norms prevent the BKZ 2.0 simulator from accurately predicting the
norm of the first GS vector in the next block. This, in turn, makes it impossible
to predict the norms of subsequent vectors through iterative calculations.

To solve the problem we mentioned above, our idea is to use the properties of
HKZ-reduced lattice bases to estimate these unknown norms between adjacent
blocks when J>1. We first present an idealized version of the Pump algorithm,
denoted as Pump′. This version satisfies the property that a projected sublattice
basis Bπ[i,i+β] after the reduction by Pump′(Bπ[i,i+β], i, β, f), strictly satisfies
the property of an HKZ-reduced basis for all i ∈ [d−β], where the dimension of
the entire lattice basis B is d.

22

Next, we construct a PnJBKZ simulator for PnJBKZ using Pump′. Let l′′i
represent the logarithm of each Gram-Schmidt norm after a PnJBKZ(β, J) tour.
Our PnJBKZ simulator is denoted as PnJBKZSim, which simulates the change of
a lattice basis B after reduction by PnJBKZ. Under GH, we simulate each l′′i as
Sim(l′′i) = ln

(
GH

(
L(B(i)

π[i,k])
))

, where i ∈ [d−β] and k = min{i−(i mod J)+β, d}.

The key challenge lies in calculating the volume of L(B(i)
π[i,k]). Similar to

the BKZ reduction process, during each block reduction in PnJBKZ, the basis
matrix of the projected sublattice undergoes a unimodular transformation. So
the volume of the projected sublattice remains unchanged, i.e. Vol(L(B(i)

π[0,k])) =

Vol(L(B(0)
π[0,k])). Suppose Sim(l′′j) is known, ∀j ∈ [i], we calculate ln

(
L(B(i)

π[i,k])
)

:= ln
(
Vol

(
L(B(0)

π[0,k])
))
− ln

(
Vol

(
L(B(i)

π[0,i])
))

=
∑k−1

j=0 lj −
∑i−1

j=0 Sim(l′′j),
where i ∈ [d], and k = min{i− (i mod J)+ β, d}. Under GH, for i ∈ [d], we can
iteratively compute Sim(l′′i) :=

1

2
ln

(
k − i

2πe

)
+

1

k − i

(
k−1∑
j=0

lj −
i−1∑
j=0

Sim(l′′j)

)
, k =

{
i − (i mod J) + β, i ∈ [d − β]

d, i ∈ [d] \ [d − β]
(3)

In other words, we only need to input the initial Gram-Schmidt norms li =
ln (∥b∗

i ∥), where i ∈ [d] of the lattice basis. Without performing the PnJBKZ
reduction, we can simulate l′′i using Eq. (3), which describes the change of the
GS norms for a lattice basis after each tour of the PnJBKZ(β, J) reduction5.
Here, l′′i are the actual GS vector norms after a tour of PnJBKZ(β, J) reduction.
A detailed description of the PnJBKZ simulator is provided in Alg. 4.

5 When i ≡ 1(mod J), the index i of GH
(
L
(
B

(i)

π[i,i+β−(i modJ)]

))
in our simulator is the same

as that of GH
(
L
(
B

(i)

π[i,i+β]

))
in the BKZ-2.0 simulator. The form of calculation is the same

in both simulators, but the simulated volumes of projected sublattice differ between them. Be-
cause in BKZ 2.0 simulator [17] Vol(L′

(
B

(i)

π[i,i+β]

)
)=

∏i+β−1
j=0 ∥b∗

j ∥
/∏i−1

j=0∥b
∗′
j ∥ and it calcu-

lates ∥b∗′
j ∥ by ∥b∗′

j ∥:=GH
(
L′

(
B

(i)

π[j,j+β]

))
, while in PnJBKZ simulator Vol(L′′

(
B

(i)

π[i,i+β]

)
)=∏i+β−1

j=0 ∥b∗
j ∥

/∏i−1
j=0∥b

∗′′
j ∥ and ln(∥b∗′′

j ∥) obtained from Eq. (3). Consequently, when i ≡

1(mod J), the calculation of GH
(
L
(
B

(i)

π[i,i+β]

))
differs between the two simulators.

23

input : rr, blocksize β ∈ {45, · · · , d}, jump J and number of tours t.
output: A prediction for the logarithms of the Gram-Schmidt norms

l′′i = ln (∥b′′∗
i ∥) after t tours PnJBKZ-β reduction with jump is J .

1 Function PnJBKZSim(rr, β, J , t):
2 for i← 0 to 44 do
3 ri ← average ln (∥b∗

i ∥) of a HKZ reduced random unit-volume
45-dimensional lattice;

4 for i← 45 to β do
5 ci ← ln

(
Vi (1)

−1/i
)
= ln

(
Γ (i/2+1)1/i

π1/2

)
;

6 for j ← 0 to t− 1 do
7 flag ← true; //flag to store whether L[k,d] has changed
8 for k ← 0 to d− β − 1 do
9 β′ ← min (β, d− k); //Dimension of local block

10 h← min (k − (k mod J) + β − 1, d− 1);
11 ln (V)←

∑h
i=0 li −

∑k−1
i=0 l′′i ; //Let

∑−1
i=0 l

′′
i = 0

12 if flag = True then
13 if ln (V) / (β′ − (k mod J)) + cβ′−(k mod J) < lk then
14 l′′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);
15 flag← False;
16 else
17 l′′k ← ln (V) / (β′ − (k mod J)) + cβ′−(k mod J);

18 for k ← d− β to d− 46 do
19 β′ ← d− k; h← d− 1; ln (V)←

∑h
i=0 li −

∑k−1
i=0 l′′i ;

20 if flag = True then
21 if ln (V) /β′ + cβ′ < lk then
22 l′′k ← ln (V) /β′ + cβ′ ; flag← false;
23 else
24 l′′k ← ln (V) /β′ + cβ′ ;

25 ln (V)←
∑h

i=0 li −
∑k−1

i=0 l′′i ;
26 for k ← d− 45 to d− 1 do
27 l′′k ←

ln(V)
45

+ rk+45−d;
28 for k ← 0 to d− 1 do
29 lk ← l′′k ;

30 return (l0, · · · , ld−1);
Algorithm 4: PnJBKZ Simulator

5.1.1 Consider the impact of LLL reduction in PnJBKZ. Similar to
the classical BKZ simulator [17], the original version of the PnJBKZ simulator
overlooked the impact of LLL reduction on the lattice basis after each Pump step.
In practice, however, LLL reduction is applied after each Pump step during a
PnJBKZ-(β, J) tour. This LLL reduction leads to a smooth decrease in the GS
norms, as observed experimentally. To improve the prediction accuracy of the

24

PnJBKZ simulator, we incorporated the Size-reduced and Lovász conditions of
the LLL-reduced basis into the original PnJBKZ Simulator.

5.2 Upper bound of Jump in PnJBKZ simulator
This section shows that using Pump′ to simulate the actual Pump is reasonable
when the Jump value in PnJBKZ is below a specific upper bound.

To predict the reduction effect of PnJBKZ, which uses Pump′ as its SVP
oracle, we set the upper bound of jump value J to be β. Specifically, the lat-
tice basis B[i,i+β] reduced by a β-dimensional Pump′ is HKZ reduced, meaning
∥b∗

i ∥ = λ1

(
Lπ[i,k]

)
, i < d, k = min{i + β − (i mod J), d}. When J ≤ β, the

PnJBKZ simulator uses Sim(l′′i) = ln
(
GH

(
L(B(i)

π[i,k])
))

to predict λ1

(
Lπ[i,k]

)
,

and GH ensures that PnJBKZ simulator is accurate.
However, when J>β, there will always be J − β>0 vectors at the beginning

of each block whose norms remain unknown, rendering the PnJBKZ simulator
unusable in such cases. Additionally, the verification experiment results pre-
sented in Appendix D.1.1 demonstrate the accuracy of the PnJBKZ simulator
in predicting the reduction effect of the PnJBKZ, which uses the ideal version of
Pump′. This verification of the ideal scenario serves to confirm the correctness
of the fundamental theory behind our construction of the PnJBKZ simulator.

In practice, the d4f technique [26] is commonly used to accelerate the sieve
in each Pump step of PnJBKZ. During the Pump-up stage, the Pump performs
a (β − d4f(β))-dimensional progressive sieve, and can thus perform at most
(β−d4f(β)) embeddings during the Pump-down stage. Consequently, the output
basis of each β-dimensional Pump will inevitably include d4f(β)-dimensional GS
vectors that do not satisfy the HKZ-reduced basis properties. Thus, the upper
bound of Jump value should be smaller than β − d4f(β).

Finally, when predicting the reduction effect of PnJBKZ used in practice,
which uses Heuristic optimistic d4f value d4fop(β) for each Pump, we set the
upper bound of jump J to be d4fslope(s) = − ln(4/3)/s. As demonstrated in Ap-
pendix D.1.2, the actual d4f depends on the current lattice basis quality, rather
than relying on a fixed Heuristic optimistic d4f value used in the implementation
of G6K. Further discussions and numerous experiments verifying the accuracy
of the PnJBKZ simulator in predicting PnJBKZ with the optimistic d4f value
can be found in Appendix D.1.2, D.1.3 and D.1.4.

6 Experiments and Application to LWE
Since PnJBKZ with hk3-sieve (resp. Pump using hk3-sieve and pump-down) is
recognized as the most efficient practical lattice reduction algorithm (resp. SVP
oracle) currently, we use PnJBKZ (resp. Pump) for the TwoStepSolver. This
section demonstrates the efficiency of the MinTwoStepSolver in solving LWE
instances in practice. Additionally, we discuss its efficiency in solving SVP in
Appendix E. The MinTwoStepSolver algorithm is defined as:

MinTwoStepSolver = TwoStepSolver + PSSearch + T .

25

This algorithm combines TwoStepSolver with a strategy generated by the
PSSearch, all under a specific time-cost model T , to effectively solve LWE. Sec.
6.1 presents verification experiments for the PnJBKZ simulator, which is a key
component of PSSearch. In Sec. 6.2, we apply the MinTwoStepSolver to solve
LWE instances and compare it with G6K-GPU-Tensor. Sec. 6.3 introduces the
optimized solving strategies generated by PSSearch, which are used in Sec. 6.2 for
solving the TU Darmstadt LWE Challenges. Additionally, a simulation accuracy
test is provided in Sec. 6.4. Furthermore, Sec. 6.5 highlights new records achieved
in solving the TU Darmstadt LWE Challenges. Finally, Sec. 6.6 offers a refined
security estimation of LWE in NIST schemes based on PSSearch.

6.1 Verification experiments of PnJBKZ Simulator
Appendix D.1.1 shows the accuracy of the PnJBKZ simulator in predicting the
reduction effect of PnJBKZ, when PnJBKZ uses the ideal version of Pump′.
Additionally, to ensure that the PnJBKZ simulator accurately predicts the Pn-
JBKZ reduction effect when using the optimistic d4f value, we apply a more
refined d4f value estimation, as proposed in [43]. This refined estimation is used
to adjust the optimistic d4f settings during the simulation of PnJBKZ reduction.
For further details, see Appendix D.1.2.

The experimental results in Appendix D.1.3 show that for various reduc-
tion parameters, such as blocksize, jump, and tours, most ratios li

′′/Sim(li
′′)

fall within the range [0.95, 1.05]. Ratios outside this range still fall within [0.90,
1.10], as shown in Figs. 17, 18. In comparison, when the CN11 simulator is used
to simulate the classic BKZ, most ratios also fall within [0.95, 1.05]. However,
some extreme ratios of the CN11 simulator exceed this range, with the largest
ratio reaching 1.15 and the smallest falling below 0.85. This indicates that the
prediction accuracy of PnJBKZ simulator for PnJBKZ reductions using d4f tech-
nology is at least as good as the classic BKZ simulator [17] for predicting BKZ
reductions. For more details on predicting PnJBKZ with the d4f technique, see
Appendix D.1.2 and D.1.3.

More importantly, the primary purpose of constructing the polynomial-time
PnJBKZ simulator is to search a more efficient reduction strategy for solving
LWE in practice. The key feature of the simulator is that, given a reduction
strategy that uses Jump, it can accurately predict the basis quality during the
reduction process. Our experiments, detailed in Table 3 and Appendix D.1.5,
show that for the LWE challenge lattice basis with various reduction parame-
ters (e.g. different blocksizes and jump sizes), the predicted slope values from
PnJBKZ simulator closely match those obtained from actual reductions. The
prediction error of the lattice basis slope does not exceed 0.03%. Therefore, the
PnJBKZ simulator we have constructed is sufficiently effective for its intended
purpose. Additional results of the verification experiments with different reduc-
tion parameters on various lattice bases can be found in Appendix D.1.3 and
D.1.4 and as well as in a GitHub link3.
3 https://github.com/Summwer/pro-pnj-bkz/tree/merge-enumbs-and-practical-

cost-model/simulator-test

26

https://github.com/Summwer/pro-pnj-bkz/tree/merge-enumbs-and-practical-cost-model/simulator-test
https://github.com/Summwer/pro-pnj-bkz/tree/merge-enumbs-and-practical-cost-model/simulator-test

6.2 Efficiency of MinTwoStepSolver for solving LWE

We use the Blocksize and Jump Strategy Selection Algorithm(BSSA, Appendix
B.3) for comparison in experiments. BSSA, derived from ProBKZ [19], replaces
the BKZ and enumeration algorithms with PnJBKZ and Pump, which still uses
the shortest path algorithm to search for optimized reduction strategies.

(a) LWE Challenges: Time. (b) LWE Challenges: Memory.

(c) LWE (α = 0.010): Time. (d) LWE (α = 0.010): Memory.

§ The experiment used the “dd” float type and pump/down=True, under an identical benchmarking
condition (machine C). “default G6K” refers to the implementation of “lwe_challenge.py” in
G6K-GPU-Tensor. TwoStepSolver + PSSearch(·) (resp. TwoStepSolver + BSSA(·)) represents
the cost of running TwoStepSolver with strategies from PSSearch (resp. BSSA). Jmax denotes
the maximum jump value in the strategy. “Set J=1 in S” means generating a strategy S with
jump=1.

Fig. 6: Comparison of Different LWE-solving Algorithms under same benchmark. §

From the result of Fig. 6 and Table 4, we observe that using the strategy
selected by PSSearch (resp. BSSA) significantly decreased the walltime cost by

27

about 7.2∼23.4 (5.2∼10.2) times compared to that of the default LWE solv-
ing strategy in G6K, when all LWE solvers use the same float type “dd” for
calculations. The log files corresponding to Fig. 6 can be found in the folders
lwechal-test and lwe-instance-test. These results can also be reproduced by
running the test code implement_lwechal_forall.sh and implement_lwe_ins
tance_forall.sh in source code2.

Additionally, Fig. 7 demonstrates that, during the reduction step, the opti-
mized reduction strategy found by using the PSSearch can be 4 to 36.7 times
faster than the trivial progressive reduction strategy, while achieving the same
or better lattice basis quality.

Fig. 7: Speedup in Reduction Step via the optimized strategy generated from
PSSearch.Test on LWE challenge (n=60,α = 0.010), which constructs a 222-dimensional lattice
basis by using the primal attack. The points are labeled by the reduction parameters (β,J,tours).

All experimental results, except those in Table 4, were obtained using 32
threads and 2 GPUs on a workstation with an Intel Xeon 5128 (16 cores, 32
threads)@2.3 GHz, 1.48 TB of RAM, and two NVIDIA RTX 3090 GPUs, referred
to as machine C. For more details on the LWE solving efficiency comparison
experiments, see Appendix D.2.1. For more information about BSSA, refer to
Appendix B.3.

6.3 Optimized strategy generated by MinTwoStepSolver

We use PSSearch (Alg. 3) with the practical cost model mentioned in Appendix
B.2 to select the blocksize and jump strategy for solving some instances of TU
Darmstadt LWE Challenges, and test it on machine C.

28

Table 2: Blocksize and Jump strategy generated by PSSearch (threads = 10).

(n, α) Strategy (β, jump) SSearchGen/s
(40,0.025) [(77, 8), (81, 10), (102, 11), (102, 11)] 17.544
(40,0.030) [(56, 8), (80, 10), (81, 10), (102, 11), (114, 11), (119, 11)] 72.042
(45,0.020) [(70, 8), (80, 10), (102, 11), (102, 11) (103, 11)] 32.604
(50,0.015) [(56, 8), (66, 9), (80, 10), (81, 10), (102, 11), (102, 11)] 52.558

The selected strategies from PSSearch are listed in Table 2, which also shows
that the time cost of generating the reduction strategy by PSSearch is accept-
able. We provide the open source code of PSSearch in the folder “strategy_gen”
from source code2. We successfully solved the TU Darmstadt LWE Challenge in-
stances with (n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}
by the selected strategies in Appendix D.3.

6.4 Simulated Accuracy of MinTwoStepSolver for LWE

To show the accuracy of the reduction estimation and time-cost model, we com-
pare the predicted quality of the lattice basis and walltime with the results from
actual experiments at each middle node during the reduction step. Table 3 and
Appendix D.1.5 illustrate that both the quality of the actual lattice basis and
the actual walltime of each tour of PnJBKZ(β, J) are close to our prediction.5

Table 3: Quality and log2(T) during re-
duction of LWE (n, α) = (40, 0.030).

(β, J)
Simulation Practical

Slope log2(T) Slope log2(T)
(56, 8) −0.0285 6.0 −0.0277 6.2
(80, 10) −0.0250 6.3 −0.0245 6.5
(81, 10) −0.0232 6.3 −0.0231 6.6
(102, 11) −0.0210 7.5 −0.0212 7.8
(114, 11) −0.0196 9.1 −0.0198 9.2
(119, 11) −0.0190 10.0 −0.0191 10.1

Table 4: Actual running time and RAM
cost for LWE Challenges.

(n,α) Machine CPU
threads

T
(h)

RAM
(GB)

(80,0.005) C 32 2.78 7.3
(40,0.035) C 32 50.4 326
(40,0.035)a C 32 1180 283
(50,0.025) A 128 592 184
(55,0.020) A 128 611 890
(90,0.005) B 64 370 332
(40,0.040) A 128 683 1120

a Use the default LWE solving strategy in G6K-
GPU-Tensor [28].

6.5 New LWE Records

Based on MinTwoStepSolver, we solved six LWE instances in TU Darmstadt
LWE Challenge website1. See Fig. 2 and Appendix D.2.2 for more details.
6.6 Security Estimation for NIST schemes

We re-estimate the hardness of the LWE-based NIST schemes [52] to estimate the
influence of the optimized solving strategy found by PSSearch. Under the RAM
5 The data in Table 3 is extracted from a test in Fig. 6 for comparing the quality and walltime

between our simulations and actual experiments. For more results please see Appendix D.1.5.

29

model, the estimated security bit of LWE in NIST schemes [52] is reduced by
3.4∼4.6 bit compared to the estimation generated by Leaky-LWE-Estimator6 in
[45] under gate-count model, which adopts the improved list-decoding technique
proposed in [38]. The estimated results are listed in Table 5. Our new concrete
hardness estimation of LWE7 answers Q7 in Section 5.3 of Kyber [8] and narrows
the security estimation error interval. For more details, refer to the citation [29].

6.7 The Acceleration Effect of the Optimized Strategy

In practice, because of the advantages of multi-threading, the parameter c in the
practical sieve time-cost model with β ≤ 124 is lower than the theoretical value.
Define the ratio r as

r :=
TPnJBKZ(β, 1)

TPnJBKZ(β +∆β, J)
=

J

1− ∆β
d−β · 2c·∆β

> 1.

As shown in the inequality above, since r becomes larger if c decreases, the strat-
egy generated from PSSearch accelerates the efficiency in solving LWE Challenge
significantly. For more details, see Figs. 6, 7 and Table 4.

Fig. 8: Acceleration effect of the optimized strategy. LWE challenge instances with
dimension and error rate parameters (n,α).

Fig. 8 shows that, (1) The black and blue lines indicate that as the LWE
hardness parameters (dimension n, error rate α) become sufficiently large, the
acceleration effect of multi-threading gradually diminishes;
6 https://github.com/lducas/leaky-LWE-Estimator
7 https://github.com/Summwer/lwe-estimator-with-PnJBKZ.git

30

https://github.com/lducas/leaky-LWE-Estimator
https://github.com/Summwer/lwe-estimator-with-PnJBKZ.git

(2) The blue lines also indicate that as α increases, the LWE instance ap-
proaches an SVP instance, then the acceleration effect of the optimized strategy
diminishes. This is because most of the time cost becomes concentrated in the
sieving process of the search step. Thus, in practice, the acceleration effect of
the optimized strategy weakens while the LWE parameters increase.

However, even when the advantages of multi-threading diminish, the opti-
mized strategy still provides acceleration in solving LWE. In an asymptotic sense
(theoretical time-cost model), there is still an improvement of 3.4 to 4.6 bits for
the NIST standard schemes. Three groups of security parameters (highlighted
in Table 5) fail to meet the required security level for the designed standards set
by NIST. Compared to the trivial Two-step solving strategy proposed in [29],
the security levels decrease by 1.1 to 1.3 bits. See Table 5.

Table 5: Refined Security Estimation results for NIST schemes.♮

log2 G/log2(gates) log2 B/log2(bits)
∆ log2 G

NIST Required [53] Previous Two-step Previous Two-step
S0 Sop S0 Sop S0 Sop

Kyber512 143 146 142.6 141.4 94.0 99.1 98.1 3.4 4.6
Kyber768 207 208.9 205.5 204.3 138.7 144.0 143.2 3.4 4.6
Kyber1024 272 281.1 277.7 276.5 189.8 195.4 194.3 3.3 4.4

Dilithium-II 146 152.9 150.8 149.5 98.0 104.3 103.3 2.1 3.4
Dilithium-III 207 210.2 207.9 206.7 138.8 145.3 144.3 2.3 3.5
Dilithium-V 272 279.2 277.0 275.7 187.52 194.1 193.0 2.2 3.5

♮ “Previous” is the security estimation in the statement of Kyber and Dilithium.
“S0 = {(βi = i + 2, Ji = 1) | i = 1, ..., β}” is a trivial progressive BKZ+Pump
in Two-step mode to estimate security as [29] stated. “Sop” is a progressive Pn-
JBKZ+Pump with the optimized strategy selected by PSSearch in Two-step mode
to estimate security. ∆ log2 G is the difference between “Previous” and “Two-step”
under the RAM model in strategy S0 and Sop in the logarithm of gate count with
base 2. The gate count of all estimations in this Table uses the same improved
list-decoding technique proposed by MATZOV [38].

References

1. O. Regev, “On lattices, learning with errors, random linear codes, and cryptogra-
phy,” Journal of the ACM, vol. 56, pp. 34:1–34:40, Sept. 2009.

2. L. Ducas, V. Lyubashevsky, and T. Prest, “Efficient identity-based encryption
over ntru lattices,” in Advances in Cryptology – ASIACRYPT 2014 (P. Sarkar and
T. Iwata, eds.), (Berlin, Heidelberg), pp. 22–41, Springer Berlin Heidelberg, 2014.

3. X. Boyen, “Attribute-based functional encryption on lattices,” in Theory of Cryp-
tography (A. Sahai, ed.), (Berlin, Heidelberg), pp. 122–142, Springer Berlin Hei-
delberg, 2013.

4. J. M. B. Mera, A. Karmakar, T. Marc, and A. Soleimanian, “Efficient lattice-
based inner-product functional encryption,” in Public-Key Cryptography – PKC

31

2022 (G. Hanaoka, J. Shikata, and Y. Watanabe, eds.), (Cham), pp. 163–193,
Springer International Publishing, 2022.

5. J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arith-
metic of approximate numbers,” in Advances in Cryptology – ASIACRYPT 2017
(T. Takagi and T. Peyrin, eds.), (Cham), pp. 409–437, Springer International Pub-
lishing, 2017.

6. V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and Learning with
Errors over Rings,” in Advances in Cryptology – EUROCRYPT 2010 (H. Gilbert,
ed.), (Berlin, Heidelberg), pp. 1–23, Springer, 2010.

7. S. Bai and S. D. Galbraith, “An Improved Compression Technique for Signatures
Based on Learning with Errors,” in Topics in Cryptology – CT-RSA 2014 (J. Be-
naloh, ed.), (Cham), pp. 28–47, Springer International Publishing, 2014.

8. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, Kyber. NIST PQC project, 2021.

9. Bai, Shi, L. Ducas, E. Kiltz, Lepoint, Tancrède, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, Dilithium. NIST PQC project, 2021.

10. M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, “Revisiting the expected
cost of solving usvp and applications to lwe,” in Advances in Cryptology – ASI-
ACRYPT 2017 (T. Takagi and T. Peyrin, eds.), (Cham), pp. 297–322, Springer
International Publishing, 2017.

11. R. Kannan, “Improved algorithms for integer programming and related lattice
problems,” in Proceedings of the fifteenth annual ACM symposium on Theory of
computing, STOC ’83, (New York, NY, USA), pp. 193–206, Association for Com-
puting Machinery, Dec. 1983.

12. L. Babai, “On Lovász’ lattice reduction and the nearest lattice point problem,”
Combinatorica, vol. 6, pp. 1–13, Mar. 1986.

13. M. Liu and P. Q. Nguyen, “Solving BDD by Enumeration: An Update,” in Topics in
Cryptology – CT-RSA 2013 (E. Dawson, ed.), Lecture Notes in Computer Science,
(Berlin, Heidelberg), pp. 293–309, Springer, 2013.

14. M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, “Revisiting the Expected
Cost of Solving uSVP and Applications to LWE,” in Advances in Cryptology –
ASIACRYPT 2017 (T. Takagi and T. Peyrin, eds.), vol. 10624, (Cham), pp. 297–
322, Springer International Publishing, 2017.

15. M. R. Albrecht, C. Yun, and H. Hunt, “lattice-estimator.” https://github.com/
malb/lattice-estimator.

16. C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems,” in Fundamentals of Computation Theory
(L. Budach, ed.), (Berlin, Heidelberg), pp. 68–85, Springer, 1991.

17. Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better Lattice Security Estimates,” in
Advances in Cryptology – ASIACRYPT 2011 (D. H. Lee and X. Wang, eds.),
(Berlin, Heidelberg), pp. 1–20, Springer, 2011.

18. A. Becker, L. Ducas, N. Gama, and T. Laarhoven, “New directions in nearest neigh-
bor searching with applications to lattice sieving,” in Proceedings of the twenty-
seventh annual ACM-SIAM symposium on Discrete algorithms, SODA ’16, (USA),
pp. 10–24, Society for Industrial and Applied Mathematics, Jan. 2016.

19. Y. Aono, Y. Wang, T. Hayashi, and T. Takagi, “Improved Progressive BKZ Al-
gorithms and Their Precise Cost Estimation by Sharp Simulator,” in Advances
in Cryptology – EUROCRYPT 2016 (M. Fischlin and J.-S. Coron, eds.), (Berlin,
Heidelberg), pp. 789–819, Springer Berlin Heidelberg, 2016.

32

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator

20. M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and
M. Stevens, “The General Sieve Kernel and New Records in Lattice Reduction,”
in Advances in Cryptology – EUROCRYPT 2019 (Y. Ishai and V. Rijmen, eds.),
(Cham), pp. 717–746, Springer International Publishing, 2019.

21. D. Micciancio and P. Voulgaris, “Faster exponential time algorithms for the short-
est vector problem,” in Proceedings of the 2010 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), Proceedings, pp. 1468–1480, Society for Industrial
and Applied Mathematics, Jan. 2010.

22. R. Fitzpatrick, C. Bischof, J. Buchmann, Ö. Dagdelen, F. Göpfert, A. Mariano,
and B.-Y. Yang, “Tuning gausssieve for speed,” in Progress in Cryptology - LATIN-
CRYPT 2014 (D. F. Aranha and A. Menezes, eds.), (Cham), pp. 288–305, Springer
International Publishing, 2015.

23. G. Herold and E. Kirshanova, “Improved Algorithms for the Approximate k-List
Problem in Euclidean Norm,” in Public-Key Cryptography – PKC 2017 (S. Fehr,
ed.), (Berlin, Heidelberg), pp. 16–40, Springer, 2017.

24. G. Herold, E. Kirshanova, and T. Laarhoven, “Speed-Ups and Time–Memory
Trade-Offs for Tuple Lattice Sieving,” in Public-Key Cryptography – PKC 2018,
pp. 407–436, Springer, Cham, Mar. 2018.

25. A. Becker, N. Gama, and A. Joux, “Speeding-up lattice sieving without increasing
the memory, using sub-quadratic nearest neighbor search.” https://eprint.iacr.
org/2015/522, 2015.

26. L. Ducas, “Shortest Vector from Lattice Sieving: A Few Dimensions for Free,” in
Advances in Cryptology – EUROCRYPT 2018 (J. B. Nielsen and V. Rijmen, eds.),
(Cham), pp. 125–145, Springer International Publishing, 2018.

27. T. Laarhoven and A. Mariano, “Progressive Lattice Sieving,” in Post-Quantum
Cryptography (T. Lange and R. Steinwandt, eds.), (Cham), pp. 292–311, Springer
International Publishing, 2018.

28. L. Ducas, M. Stevens, and W. van Woerden, “Advanced Lattice Sieving on GPUs,
with Tensor Cores,” in Advances in Cryptology – EUROCRYPT 2021 (A. Canteaut
and F.-X. Standaert, eds.), (Cham), pp. 249–279, Springer International Publish-
ing, 2021.

29. W. Xia, L. Wang, G. Wang, D. Gu, and B. Wang, “A Refined Hardness Estimation
of LWE in Two-Step Mode,” in Public-Key Cryptography – PKC 2024 (Q. Tang
and V. Teague, eds.), (Cham), pp. 3–35, Springer Nature Switzerland, 2024.

30. A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials with rational
coefficients,” Mathematische Annalen, vol. 261, pp. 515–534, Dec. 1982.

31. N. Gama, P. Q. Nguyen, and O. Regev, “Lattice Enumeration Using Extreme Prun-
ing,” in Advances in Cryptology – EUROCRYPT 2010 (H. Gilbert, ed.), vol. 6110,
pp. 257–278, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

32. M. R. Albrecht, S. Bai, J. Li, and J. Rowell, “Lattice Reduction with Approximate
Enumeration Oracles,” in Advances in Cryptology – CRYPTO 2021 (T. Malkin and
C. Peikert, eds.), (Cham), pp. 732–759, Springer International Publishing, 2021.

33. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum key
Exchange—A new hope,” in 25th USENIX Security Symposium (USENIX Security
16), (Austin, TX), pp. 327–343, USENIX Association, Aug. 2016.

34. P. Q. Nguyen and T. Vidick, “Sieve algorithms for the shortest vector problem are
practical,” Journal of Mathematical Cryptology, vol. 2, Jan. 2008.

35. Y. Yu and L. Ducas, “Second order statistical behavior of lll and bkz,” in Selected
Areas in Cryptography – SAC 2017 (C. Adams and J. Camenisch, eds.), (Cham),
pp. 3–22, Springer International Publishing, 2018.

33

https://eprint.iacr.org/2015/522
https://eprint.iacr.org/2015/522

36. S. Bai, D. Stehlé, and W. Wen, “Measuring, Simulating and Exploiting the Head
Concavity Phenomenon in BKZ,” in Advances in Cryptology – ASIACRYPT 2018
(T. Peyrin and S. Galbraith, eds.), (Cham), pp. 369–404, Springer International
Publishing, 2018.

37. N. Gama and P. Q. Nguyen, “Predicting lattice reduction,” in Advances in Cryptol-
ogy – EUROCRYPT 2008 (N. Smart, ed.), (Berlin, Heidelberg), pp. 31–51, Springer
Berlin Heidelberg, 2008.

38. MATZOV, “Report on the Security of LWE: Improved Dual Lattice Attack.”
https://doi.org/10.5281/zenodo.6412487, Apr. 2022.

39. P. Q. Nguyen, “Hermite’s Constant and Lattice Algorithms,” in The LLL Algorithm
(P. Q. Nguyen and B. Vallée, eds.), pp. 19–69, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. Series Title: Information Security and Cryptography.

40. Y. Chen, Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. PhD Thesis, 2013.

41. T. Laarhoven, “Sieving for Shortest Vectors in Lattices Using Angular Locality-
Sensitive Hashing,” in Advances in Cryptology – CRYPTO 2015 (R. Gennaro and
M. Robshaw, eds.), (Berlin, Heidelberg), pp. 3–22, Springer, 2015.

42. Z. Zhao, J. Ding, and B.-Y. Yang, “BGJ15 revisited: Sieving with streamed memory
access.” Cryptology ePrint Archive, Paper 2024/739, 2024.

43. L. Wang, Y. Wang, and B. Wang, “A trade-off svp-solving strategy based on a
sharper pnj-bkz simulator,” in Proceedings of the 2023 ACM Asia Conference on
Computer and Communications Security, ASIA CCS ’23, (New York, NY, USA),
p. 664–677, Association for Computing Machinery, 2023.

44. M. R. Albrecht, R. Fitzpatrick, and F. Göpfert, “On the efficacy of solving lwe by
reduction to unique-svp,” in Information Security and Cryptology – ICISC 2013
(H.-S. Lee and D.-G. Han, eds.), (Cham), pp. 293–310, Springer International
Publishing, 2014.

45. D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi, “LWE with Side Information:
Attacks and Concrete Security Estimation,” in Advances in Cryptology – CRYPTO
2020: 40th Annual International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17–21, 2020, Proceedings, Part II, (Berlin, Heidelberg),
pp. 329–358, Springer-Verlag, Aug. 2020.

46. M. R. Albrecht, S. Bai, P.-A. Fouque, P. Kirchner, D. Stehlé,
and W. Wen, “Faster enumeration-based lattice reduction:
Root hermite factork1/(2k) time kk/8+o(k),” in Advances in Cryptology –
CRYPTO 2020 (D. Micciancio and T. Ristenpart, eds.), (Cham), pp. 186–212,
Springer International Publishing, 2020.

47. M. R. Albrecht, S. Bai, J. Li, and J. Rowell, “Lattice reduction with approximate
enumeration oracles,” in Advances in Cryptology – CRYPTO 2021 (T. Malkin and
C. Peikert, eds.), (Cham), pp. 732–759, Springer International Publishing, 2021.

48. P. Q. Nguyen and B. Valle, The LLL Algorithm: Survey and Applications. Springer
Publishing Company, Incorporated, 1st ed., 2009.

49. J. Li and P. Q. Nguyen, “A complete analysis of the bkz lattice reduction algo-
rithm.” https://eprint.iacr.org/2020/1237, 2020.

50. L. Wang, “Analyzing pump and jump bkz algorithm using dynamical systems,” in
Post-Quantum Cryptography (M.-J. Saarinen and D. Smith-Tone, eds.), (Cham),
pp. 406–432, Springer Nature Switzerland, 2024.

51. J. Li and M. Walter, “Improving convergence and practicality of slide-type reduc-
tions,” Information and Computation, vol. 291, p. 105012, 2023.

34

https://doi.org/10.5281/zenodo.6412487
https://eprint.iacr.org/2020/1237

52. I. T. L. C. S. R. CENTER, “Post-quantum cryptography pqc selected algo-
rithms 2022.” https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022, 2022.

53. “National Institute of Standards and Technology, Submission require ments and
evaluation criteria for the post-quantum cryptography standardization process.”
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf, 2016. [Online].

54. A. Leon-Garcia, Probability, statistics, and random processes for electrical engi-
neering. Upper Saddle River, NJ: Pearson/Prentice Hall, 3. ed ed., 2008.

55. E. W. Postlethwaite and F. Virdia, “On the Success Probability of Solving Unique
SVP via BKZ,” in Public-Key Cryptography – PKC 2021 (J. A. Garay, ed.),
vol. 12710, (Cham), pp. 68–98, Springer International Publishing, 2021.

56. V. Lyubashevsky and D. Micciancio, “On Bounded Distance Decoding, Unique
Shortest Vectors, and the Minimum Distance Problem,” in Advances in Cryptol-
ogy - CRYPTO 2009 (S. Halevi, ed.), vol. 5677, pp. 577–594, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009.

57. M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of Learning
with Errors,” Journal of Mathematical Cryptology, vol. 9, Jan. 2015.

58. C. Peikert, “A Decade of Lattice Cryptography,” Found. Trends Theor. Comput.
Sci., vol. 10, pp. 283–424, Mar. 2016. Place: Hanover, MA, USA Publisher: Now
Publishers Inc.

59. K. Xagawa, “Cryptography with Lattices.” https://xagawa.net/pdf/
2010Thesis.pdf, 2010.

60. M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer, “Revisiting the Expected
Cost of Solving uSVP and Applications to LWE,” in Advances in Cryptology –
ASIACRYPT 2017 (T. Takagi and T. Peyrin, eds.), (Cham), pp. 297–322, Springer
International Publishing, 2017.

35

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://xagawa.net/pdf/2010Thesis.pdf
https://xagawa.net/pdf/2010Thesis.pdf

A Basic Definitions

In this section, we provide detailed definitions of the various basic concepts used
in this paper.

Definition 9 (The Gaussian Distribution [54]). Let σ, µ ∈ R be the stan-
dard deviation and the mean value respectively, a continuous Gaussian Distribu-
tion denoted as N(µ, σ2). Its probabilistic density function ρN(µ,σ2) = e−

(x−u)2

2σ2/
σ
√
2π.

Definition 10 (The discrete Gaussian Distribution [55]). Let σ, µ ∈ R
be the standard deviation and the mean value respectively, a discrete Gaussian
Distribution denoted as Dµ,σ. If µ = 0, then denote Dσ = D0,σ. Its proba-
bility mass function is fD(µ,σ) : Z → [0, 1], x → fN(µ,σ)(x)/fN(µ,σ2(Z), where
fN(µ,σ)(Z) =

∑
x∈Z fN(µ,σ)(x).

Definition 11 (Chi-Squared Distribution [54]). Given n random variables
Xi ∼ N(0, 1), the random variables X2

0 + · · ·+X2
n−1 follows a chi-squared distri-

bution χ2
n over R∗ of mean n and variance 2n with probabilistic density function

ρχ2
n
(x) = x

n
2 −1e−

x
2 /2

n
2 Γ (n/2). Given n random variables Yi ∼ N(0, σ2), the

random variables Y 2
0 + · · ·+Y 2

n−1 follows a scaled chi-squared distribution σ2 ·χ2
n

over R∗ of mean nσ2 and variance 2nσ2.

A.1 Lattice Hard Problems

Definition 12 (unique Shortest Vector Problem(uSVPγ) [56]). Given an
arbitrary basis B on lattice L = L(B), L satisfies the condition γλ1(B) < λ2(B)
(γ > 1, λ2(B) is norm of the second shortest vector which is linearly independent
to the shortest vector), find the shortest non-zero vector v s.t. ∥v∥ = λ1(B).

Definition 13. (LWEm,n,q,Dσ
Distribution [57–59]) Given some samples m ∈

Z, a secret vector dimension n ∈ Z, a modulo q ∈ Z , a probability distribution
Dσ. Uniformly sample a matrix A ∈ Zm×n

q and sample a secret vector s ∈ Zn
q

from a specific distribution, randomly sample a relatively small noise vector
e ∈ Zm

q from Gaussian distribution Dσ whose standard deviation is σ. The
Learning with Errors (LWE) distribution Ψ is constructed by the pair (A,b =
As+ e) ∈ (Zm×n

q ,Zm
q) sampled as above.

Definition 14 (Search LWEm,n,q,Dσ
problem [57–59]). Given a pair (A,b)

sampled from LWEm,n,q,Dσ distribution Ψ compute the pair (s, e).

B Detailed Description of Algorithms

In this section, we provide a detailed description of some algorithms. First, Sec-
tion B.1 will give a detailed description of the Refined SVPDimEst algorithm.
Then, we will present the practical time-cost models for Pump and PnJBKZ in

36

Section B.2. Additionally, Section B.3 will describe the reduction strategy selec-
tion algorithm, called Blocksize and Jump Strategy Selection based on ProBKZ
(BSSA). Finally, Section B.4 will illustrate the impact of optimizing the number
of LWE samples when solving LWE.

B.1 Detailed Description of the Refined SVPDimEst

In this part, we provide a detailed description of the Refined SVPDimEst. Firstly
the noise vector e ∈ Zqm of LWE follows a discrete Gaussian distribution D0, σ
with standard deviation σ. Thus, the probability distribution of the squared
norm of the target vector in a β-dimensional sublattice follows σ2 · χ2

β .
The idea of treating the norm of the projected target vector on the sublattice

as a random variable, rather than as an expected value, was first proposed in [45]
for estimating the blocksize of each BKZ. We adapt this approach to the SVP
call dimension by replacing the simulated Gram-Schmidt norms of BKZ with
the Gaussian Heuristic value of the projected sublattice.

input : rr, σ;
output: dsvp;

1 Function SVPDimEst(rr,σ):
2 for dsvp ← dstart to d do
3 Psuc(dsvp) ← Pr

[
x← σ2 · χ2

dsvp : x ≤
(
GH(rr[d−dsvp:d])

)2];
4 if Psuc(dsvp) ≥ 0.999 then
5 return dsvp;

Algorithm 5: Dimension Estimation for the SVP call on solving LWE.
In Alg. 5, set TC(dsvp) as the estimated expected cost of the final SVP call.

Considering the progressive SVP call, we calculate failure and success probabil-
ities. The success probability of a β-dimensional progressive SVP call denoted
as Psuc(β) computed by line 3 in Alg. 5. The event Eβ means finding the tar-
get vector precisely at β-dimensional during a progressive SVP call with success
probability Pr(Eβ)=Psuc(β) − Psuc(β − 1) and let Pr(Eβ0−1)=0. The expected
time cost of Eβ is

∑β
i=β0

TSVP(i) · Pr(Eβ). Iterating β from β0 to dsvp, then

TC(dsvp) =

dsvp∑
β=β0

[

β∑
i=β0

TSVP(i) · (Psuc(β)− Psuc(β − 1))] =

dsvp∑
β=β0

TSVP(β) · Psuc(β),

(4)
where Psuc(dsvp) ≥0.999.

Fig. 9 shows that even if σ
√
dsvp ≤ GH(Bπ[d−dsvp]), ∥πd−dsvp

(t)∥ is pos-
sibly larger than GH(Bπ[d−dsvp]), i.e. estimating the upper bound of Pump
by the expected value is over-optimistic. The red line shows that the norm
of projected vector of our estimated dimension value satisfies the condition
∥πd−dsvp

(t)∥ ≤ GH(Bπ[d−dsvp]) by testing 100 trials of LWE instances. Because
∥e∥2 is a randomly positive variable following chi-squared distribution rather
than a fixed value. It is more reasonable to consider a high success probability

37

(≥0.999) for recovering the target vector with a new estimated dimension in Alg.
5 to solve LWE problem.

(a) α = 0.010 (b) α = 0.015

Fig. 9: The failure probability of the estimated dimension for last SVP call. For each
(n, α), 100 randomly LWE instances are generated. The black line shows SVPDimEst introduced in
Sec. 2.5 has a non-negligible probability s.t. ∥πd−dsvp (t)∥>GH(Bπ[d−dsvp,d]) ≥ σ

√
dsvp. The red

line shows that using the estimated dimension computed by Alg. 5 in our work, the condition
∥πd−dsvp (t)∥ ≤ GH(Bπ[d−dsvp,d]) can always be satisfied.

Lemma 2 illustrates that, when using the chi-squared distribution to esti-
mate the dimension of the SVP (SVPDimEst) needed to recover the target vector
in LWE, a higher-quality lattice basis enables recovering the target vector by
solving the SVP in a smaller dimension.

Lemma 2. Under the Gaussian Heuristic, given an SVPDimEst as described in
Alg. 5, consider two arbitrary lattice bases C ̸= D for the same d-dimensional
lattice, generated from an LWE instance with standard deviation σ by the pri-
mal attack. Assume that D ≥Q C and that TSVP(dsvp) is a monotonically in-
creasing function with respect to dsvp. Let C′ (resp. D′) be the lattice basis
after calling a tour of R-ξ on C (resp. D), then TC(SVPDimEst(rr(C′), σ)) ≥
TC(SVPDimEst(rr(D′), σ)).

Proof. From Property 1 and the condition |Cπ[0,k]| ≥ |Dπ[0,k]|, it follows that
|C′

π[0,k]| ≥ |D
′
π[0,k]|, ∀k ∈ [1, d]. Since |C| = |D|, it follows that GH(C′

π[k,d]) ≤
GH(D′

π[k,d]), ∀k ∈ [d].
Considering that the norm of the LWE target vector projection follows a β-

dimensional chi-squared distribution with deviation σ as Alg. 5 shown and based
on the definition of chi-squared distribution, P (Y) := Pr

[
x← σ2 · χ2

dsvp
: x ≤ Y

]
is an increasing function of Y . So, it follows that ∀β ∈ [1, d], P

(
GH

(
C′

[d−β,d]

)2
)

≤ P

(
GH

(
D′

[d−β,d]

)2
)

and there exists a minimum dsvp s.t. P

(
GH

(
C′

[d−dsvp,d]

)2
)

38

≤ 0.999 ≤ P

(
GH

(
D′

[d−dsvp,d]

)2
)

. Since TSVP(dsvp) is monotonically increasing with
respect to dsvp, and from Eq. (4), it follows that TC(SVPDimEst (rr(C), σ)) ≥
TC(SVPDimEst (rr(D), σ)). ⊓⊔

We can still prove the correctness of PSSearch by using an adaptive version
of Theorem 2 (denoted as Theorem 3). This is done by replacing the SVPDimEst
method in Sec. 2.5 with Alg. 5 and proving Theorem 3 using Lemma 2, instead
of Lemma 1.

Theorem 3. Given the strategy space S (as defined in Def. 6) and SVPDimEst
(as specified in Alg. 5), if Condition 1 holds, and TSVP(dsvp) is monotonically
increasing with respect to dsvp, then Alg. 3 (PSSearch) returns the reduction
strategy from S that minimizes the time cost for solving the given LWE instance.

B.2 Practical Time-Cost model of Pump and PnJBKZ

In this section, we present the practical time-cost model for the Pump and
PnJBKZ algorithms. An accurate time-cost model is a crucial component for
determining the optimal reduction strategy that selects the progressive blocksize
and jump size, minimizing the expected time cost in solving LWE.

The asymptotic complexity of the sieving does not match the actual cost well
in the low dimensions (for dimensions ≤ 128) 6. The multi-threading technology
used in Pump helps balance some of the time cost increases as the dimension
of sieving grows. Therefore, we construct a practical time-cost model by using
the experimental method to test the running time of the Pump (described in
Appendix B.2.1) on different lattice bases, to find the optimized reduction pa-
rameters of solving TU Darmstadt LWE challenges with a shorter time cost.

Although the time-cost model based on experimental results fits the actual
cost of running PnJBKZ well, using testing machines with different configura-
tions will inevitably cause changes in the time-cost model in low-dimensions.
Therefore, we use this experimentally constructed time-cost model only when
searching for the optimized progressive blocksize and jump size selection strat-
egy for minimize the time cost of solving LWE challenges.

6 While the dimension of sieving exceeds 128, the time cost for Pump fits the theo-
retical value well, and we can directly use the time-cost model of triple_gpu sieve
described in [28].

39

(a) PnJBKZ(85,1) (b) PnJBKZ(85,5)

(c) PnJBKZ(95,1) (d) PnJBKZ(95,5)

Fig. 10: Cost for each Pump under different index in a PnJBKZ tour by testing
SVP Challenge with different dimension d using Machine C with threads = 32
and GPUs = 2.

Additionally, when constructing the actual time-cost model by testing Pn-
JBKZ on a specific machine, we find that each Pump in PnJBKZ has a different
time cost, as shown in Fig. 10. In particular, the time cost of the first Pump is
higher than that of subsequent Pumps. It increases with the incremental index
from 2nd to (d− β + f + 1)th, then decreases after d− β + f + 1 index.

This implies that for a fixed blocksize β, the average Pump cost in PnJBKZ
increases as the lattice basis dimension d grows. This means that the simplified
model, which treats each SVP oracle inside BKZ as having the same time cost
no longer holds in the context of PnJBKZ. Therefore, in Appendix B.2.2, we
propose a new time-cost model for PnJBKZ that more accurately reflects its
time cost performance in practical applications.

B.2.1 Practical Cost Model of Pump We can regard TPump as the com-
putational cost model for the dsvp-dimensional progressive sieve. TPump in [20]

40

is considered as

TPump(dsvp) =

dsvp∑
j=β0

Tsieve(j) =

dsvp∑
j=β0

2c·j+o(j) = 2cβ0

(
1 + 2c + · · ·+ 2c(dsvp−β0)

)

≤ 2cβ0 · 2
c(dsvp+1)+o(dsvp+1)

1− 2c
= O

(
2cdsvp

)
≈ 2cdsvp+c1 ,

(5)

where β0 is the initial sieving dimension in Pump (In G6K β0 is set to 30, and in
G6K-GPU, it is set to 50), c and c1 are the coefficients related to the full sieve
cost and sieve dimension, and Tsieve(j) is the sieve cost with dimension j.

However, we find that the asymptotic complexity of sieving does not match
the actual cost well in low dimensions. While the dimension is low, the number
of threads used in the Pump increases with the dimension, balancing part of the
time cost increase. In low dimensions, c might be much lower than the theoretical
result.

To accurately predict the unknown coefficients c and c1 in our computa-
tional cost model, we use an experimental method to test the running time of
Pump with different sieving dimensions on the projected lattice bases of the
180-dimensional SVP Challenge8 and with different blocksizes βs. The experi-
mental results show that our computational cost models above can fit well with
the actual cost of Pump.

Let β be the independent variable, and log2(TPump) can be obtained from the
experimental test as the dependent variable. We use the least squares fitting to
find c and c1. We use R2 to denote the coefficient of determination (R squared)
value in the linear regression model. The coefficient of determination (R2 or
R squared) is a statistical measure in a regression model that indicates the
proportion of variance in the dependent variable explained by the independent
variable. Generally, the range of R2 is [0, 1] and when R2 is closer to 1, the better
the model fits the data.

From Figure 11, we observe that R2 is close to 1, indicating a good fitting
effect. Figure 11 also shows that the logarithm of Pump’s computational cost
is linearly correlated to dsvp for both float type “dd” and “qd”. Since the “qd”
float type is more precise than “dd”, it is slower than “dd”. So we suggest setting
“dd” float type.

B.2.1.1 Consider Cost of DualHash Generation.
Moreover, for a given sieve dimension β, the G6K-GPU-Tensor implementation
requires O(β) memory and computational cost to generate the DualHash value
used to find the nearest neighbor of each vector. Thus, an O(2cβ)-time and
O(2c2β)-space algorithm actually requires O(2cβ + β ∗ 2c2β). Set c = 0.367 and
c2 = 0.2075 according to Fig. 7 in [28] and construct the practical Pump model
as

TPump(β) = a1 · 2cβ+c1 + a2 · 2c2β+c3

. Then, we can obtain the practical Pump cost model (shown in Fig. 12 shown)
through the curve fitting method.
8 https://www.latticechallenge.org/svp-challenge

41

https://www.latticechallenge.org/svp-challenge

Fig. 11: Pump Cost Figure while d = 180, Sieve used in Pump is gpu_sieve, and it’s
running on Machine C with 2 GPUs and 32 threads: Relation between log2(TPump)
and sieve dimension n.

Fig. 12: Pump cost model considers the cost to generate the hash value: The vertical
axis represents TPump and the horizontal axis represents the sieve dimension n.

42

B.2.2 Practical Cost Model of PnJBKZ PnJBKZ consists of a series of
Pumps. Assuming PnJBKZ as a combination of Pumps with equal time cost, its
computational cost can be calculated as the sum of d+2f−β

J progressive sieves
on the (β − f)-dimension projected sublattice with jump J .

However, as shown in Fig. 10, each Pump in PnJBKZ has a different cost.
Specifically, the Pump cost increases from 2nd to (d−β+f+1)th index and then
decreases. Figure 10 shows that the growth rate in the range of [0, f + fextra]
differs from that in [f +fextra, d−β+f +1], where fextra is the extra dimension-
for-free value in G6K, set to 12 in the default setting to enhance PnJBKZ’s
efficiency.

So we divide the PnJBKZ cost into 4 parts: the first index of Pump, the
preceding indices in range [0, f+fextra), the middle indices in range [f+fextra, d−
β+f +1) and the later indices in range of [d−β+f +1, d). Let the cost of each
range be denoted as Tfirst, Tpre, Tmid and Tformer. Let Tf+fextra and Td−β+f+1

represent the Pump cost at the indices f + fextra and Td−β+f+1 respectively. We
tested Tfirst, Tpre, Tlater and the coefficients A and B in the formula

Tmid(d, β, J, f, fextra) =1/2 · (Tf+fextra + Td−β+f+1) · (d− β − fextra + 1)

=1/2 · ((A · (f + fextra) +B) + (A · (d− β + f) +B))

· (d− β − fextra + 1)

in dimension d = 180, jump J = 1 and “dd” float type. The simulated cost
model is shown in Fig. 13. Then, we can derive that

TPnJBKZ(d, β, J, f, fextra) = Tfirst + Tpre ·
⌈ f+fextra

J ⌉ − 1

f + fextra − 1

+ Tmid(d, β, J, f, fextra) ·
⌈ f+fextra

J)⌉
f + fextra

+ Tlater ·
⌈d−β−fextra

J ⌉+ 1

d− β − fextra + 1
,

(6)

where f is the dimension for free value of β.

We have also used Eq. 6 to simulate the PnJBKZ cost of other dimensions
(such as d = 160 and 170) with blocksize from 51 to 119 and jump J ≥ 1, and
found that it fits well in the simulation, as shown in Figure 14.

43

(a) Tfirst (b) Tpre

(c) A of Tmid (d) B of Tmid

(e) Tlater

Fig. 13: Simulate Tfirst, Tpre, coefficients A and B, and Tlater using the lattice basis
generated from SVP Challenge with dimension d = 180. We test PnJBKZ with different
β and setting J = 1, using f and fextra setting in the G6K GPU version. We test the
cost data on machine C with GPUs = 2 and threads = 32. The x-axis represents the
index i of each Pump in a PnJBKZ tour, while the y-axis represents the time cost (in
seconds) of PnJBKZ.

44

(a) (d, J) = (160, 1) (b) (d, J) = (160, 9)

(c) (d, J) = (170, 1) (d) (d, J) = (170, 9)

Fig. 14: Simulate each PnJBKZ Cost using Eq. (13) in (d, J) ∈
{(160, 1), (160, 9), (170, 1), (170, 9)}. The actual PnJBKZ cost is tested in ma-
chine C with GPUs = 2 and threads = 32. The test lattice basis is generated from
the SVP Challenge with different dimensions d. We test PnJBKZ with different β
and J , using f and fextra settings in the G6K GPU version. The x-axis represents
the blocksize β for PnJBKZ, while the y-axis represents the time cost (in seconds) of
PnJBKZ.

B.3 Blocksize and Jump Strategy Selection based on ProBKZ

In this section, we provide a detail description of the Blocksize and Jump Strat-
egy Selection Algorithm based on ProBKZ (BSSA). The blocksize and jump
strategy selection algorithm based on ProBKZ [19] (BSSA, Fig. 15) uses the
Shortest Path Algorithm to select the optimized reduction strategy.

BSSA begins with a fully BKZ-βstart reduced lattice basis. It try to find
the shortest path from BKZ-βstart to BKZ-βgoal reduced lattice basis by setting
several intermediate nodes (such as βsstart = βi, for βstart < βi < βgoal) from
βstart to βgoal as measures of lattice basis quality. For the edges between nodes βi

and βj , BSSA determines the tuple (βalg, Jalg, t) that minimizes the simulated
time cost TPnJBKZ to reduce a BKZ-βi basis to a BKZ-βj basis, where βi <
βalg ≤ d.

For each node, we define a blocksize and jump strategy dictionary, BS[βgoal],
where the key is each middle node βi and the value is a tuple of bs = (rr, S,
TPnJBKZs,PSC). Here rr is the length of Gram-Schmidt vector after fully BKZ-

45

Fig. 15: BSSA Process.

βgoal reduction, S represents the blocksize and jump selection strategy that will
improve the lattice basis quality from fully BKZ-βstart reduced basis to a fully
BKZ-βgoal reduced basis.

This strategy is a combination of (βalg, Jalg, t, TPnJBKZ) stored on each edge
in the shortest path from node βstart to βgoal, where the sum of the simu-
lated BKZ cost, TPnJBKZs =

∑
βalg,Jalg,t TPnJBKZ(β

alg, Jalg, t), is minimized. The
shortest path can be found using Dijkstra algorithm. PSC is one of the out-
puts from the Pump dimension estimation method (Alg. 5), representing the
estimated time cost for solving uSVPγ by processing Pump on the BKZ-βgoal

reduced basis.
By setting different final values of βgoal, we can obtain different reduction

strategies BS that improve the lattice basis quality from βstart to βgoal, along with
different sieving dimension of the last Pump corresponding to the varying quality
of the fully βgoal reduced lattice basis. Then, by considering multiple different
final βgoal values, we select the Two-step solving strategy with the minimum
total time cost. This total time cost includes the time cost of improving the
lattice basis quality via a series of PnJBKZ(β, J) ∈ S and the time cost of the
final Pump. For more details on BSSA, see Alg. 6 .

B.4 Choosing the number of LWE Samples

In this section, we will demonstrate the impact of optimizing the number of LWE
samples and the reduction strategy on solving the LWE problem.

BKZ-only mode is the mainstream method for estimating the security of
LWE-based cryptosystem currently. It employs Kannan’s Embedding technique
to reduce the LWE problem to the uSVPγ problem and utilizes the GSA as-
sumption to simulate the change of a BKZ-β reduction. This evaluation method
was first proposed by Erdem Alkim et al. in [33] and its correctness was later
proven in [60], which has provided a lower bound of LWE samples and the block-
size β. We have renamed this method as “2016 Estimation from GSA for LWE”
(referred to as 2016 Estimate).

To solve the LWE problem, the first step is to determine the number of LWE
instances required to construct the lattice basis in the primal attack. In the 2016

46

Estimate [18], the strategy for selecting the number of LWE instances, denoted
as m, is to find the value of m such that the following inequality holds, while
minimizing the value of β. Let d = m + 1, n represent the dimension of LWE
instance, then

min
β∈N

{
TBKZ(β) : σ

√
β ≤ δ (β)

2β−d−1 · q
d−n−1

d

}
. (7)

The strategy in the 2016 Estimate is to determine m such that the LWE problem
can be solved with the minimum time cost, using a fixed blocksize of BKZ-β
algorithm.

input : rr0, F (⋆,D), βstart ← 50, Jmax(⋆)← d4f(⋆)/2;
output: Tmin, Smin;

1 Function BSSA(rr0, F (⋆,D), βstart ← 50):
2 d← len(rr0); PSC(0) ← ProSieveDimEst(rr0, F (⋆,D));

BS[βstart] = (rr0, [], 0,PSC(0));
3 for β ← βstart to d do
4 T

(min)
PnJBKZs ← +∞;

5 for βsstart ← βstart to β − 1 do
6 bssstart ← BS [βsstart]; bs← (∅, ∅,+∞,+∞);
7 Update bs∗ under strategy

bssstart.S ∪ [(β, 1, ♯tours(bssstart.rr,BKZ-β)];
8 for βalg ← β + 1 to d do
9 for j ← Jmax(β

alg) to 1 do
10 T ′ ← +∞;
11 for t ← 1 to ♯tours(bssstart.rr,PnJBKZ-(βalg, j)) do
12 Update bs′ under strategy bssstart.S ∪ [(βalg, j, t)];
13 if bs′.PSC < bs∗.PSC then
14 T ′ ← bs′.TPnJBKZs;
15 break;

16 if bs.TPnJBKZs > T ′ then
17 bs← bs′;

18 if T
(min)
PnJBKZs > bs.TPnJBKZs then

19 T
(min)
PnJBKZs ← bs.TPnJBKZs; BS [β] ← bs;

20 bsmin ← min
bs.TPnJBKZs+bs.PSC

BS;

21 return Tmin ← bs.TPnJBKZs + bs.PSC, Smin ← bsmin.S;
Algorithm 6: BSSA

In G6K, the estimation method simulates a two-stage strategy. The main
difference from ours is that its two-stage strategy involves two tours of PnJBKZ
with a fixed blocksize β simulated from GSA assumption, and a progressive
sieve algorithm in dimension dsvp. It simulates this scenario and aims to find the
minimal cost for the pair (β, dsvp) from

min
β,dsvp∈N

{
2 · TBKZ(β) + PSC(dsvp) : ∥πd−dsvp(v)∥ ≤ GH(Lπ[d−dsvp])

}
, (8)

47

where c = 0.349 in G6K CPU version and c = 0.292 in G6K GPU version.
However, as explained in Sec. 4.3, the 2016 Estimate still carries a probability

of failure to find the target vector through its estimation. Therefore, our strategy
for solving the LWE problem involves simulating a two-stage strategy using our
PnjBKZ simulator and new Pump sieve dimension and PSC estimation scheme
(as described in Alg. 5).

In the first stage, PnJBKZ simulator is used to simulate the lattice basis
after a series of PnJBKZ steps. In the second stage, the goal is to find the
unique shortest vector using by the Pump algorithm. Based on the estimation
scheme in the default G6K described above, we modify the time cost of two
PnJBKZs and a progressive sieve to the time cost of serial PnJBKZs following
the blocksize strategy and a progressive sieve. Additionally, we employ the new
Pump estimation scheme to simulate the norm of the target vector.

Let P (dsvp) = Pr

[
y ← σ2χ2

dsvp

∣∣∣∣y ≤ (
GH

(
Lπ[d−dsvp:d]

))2]. Thus, the formula
becomes

min
β,dsvp∈N

{TPnJBKZs (B) + PSC (dsvp) : P (dsvp) ≥ Psuccess} , (9)

where δ is the basis quality after PnJBKZs. TPnJBKZs (B) will respectively call
PSSearch to calculate the corresponding computational cost. To minimize the
number of attempts, we narrow the range of m to [m0 − τ,m0 + τ], where m0

is the number of samples chosen in the estimation of default G6K and set a
maximum search field range τ ∈ Z∗. We use dichotomization to find an m that
minimizes both β and dsvp satisfying the inequality (9). The concrete process is
described in the Algorithm 7.

By using the optimization strategy for selecting the number of LWE in-
stances, we can solve LWE challenges faster than the G6K default strategy.
However, the efficiency improvement is not significant (at most 2.2% in the
test). See the Table 6.

C Proofs of Theorems and Lemmas

In this section, we will give the proofs of Theorem 1 and Lemma 1.

C.1 Finite Strategy Space

Theorem 1. If a lattice basis B reduced by repeatedly calling R with a fixed
parameter ξ converges to a fully-reduced basis after a finite number of calls, then
S is a finite set.

Proof. Repeatedly calling the same reduction R with parameter ξ on a lattice
basis B yields a converge after a finite number of calls. We call such converged
lattice basis ξ-reduced basis. If the ξ-reduced basis can output the target vector
v, then dsvp = 0; Otherwise, there exists a minimum value dsvp such that dsvp ∈

48

input: n, q, α, mall, βbound, d(svp)bound, τ , Amall×n , bmall×1;
output: Smin, Tmin, m;

1 σ, Tmin,mRange← αq,+∞,{};
2 m0 ← LWE samples estimation in G6K as formula (8);
3 mmin ← min {m satisfies equation (9)}; Smin, Tmin ← None, None;
4 while τ > 0 do
5 Construct B by

(
Am0×n,bm0×1, q

)
;

6 m1 ← m0;
7 for m ∈ {max{mmin,m0 − τ},m0,min{mall,m0 + τ}} do
8 d← m+ 1, M ← σ2m+ 1;
9 Construct B by

(
Am×n,bm×1, q

)
;

10 Ttotal, S ← PSSearch(rr(B), σ2χ2
⋆);

11 if Tmin is None or Tmin < Ttotal then
12 Smin, Tmin, m1 ← S, Ttotal, m;

13 if m1 = m0 then
14 τ ← ⌊ τ

2
⌋;

15 m0 ← m1;
16 return Smin, Tmin, m0;

Algorithm 7: Our LWE Samples Number Selection Algorithm

Table 6: LWE samples improvement simulated result generated by PSSearch
with no RAM limit and τ = 10.

(n,α) G6K’s m Our m Estimated Tnew (sec) Estimated Told (sec) Tnew/Told

(50,0.025) 219 221 4336037.42 4320454.232 99.6%
(55,0.020) 230 234 3937458.799 3870765.534 98.3%
(45,0.035) 210 220 74367286.54 73838336.19 99.3%
(45,0.030) 201 205 1420793.45 1404095.127 98.8%
(90,0.005) 306 316 1772710.1 1733158.312 97.8%

49

[1, d+ 1], and the target vector v can be found under the ξ-reduced basis. This
is because if dsvp = d, then v must be found through a d-dimensional SVP call.
Since the selection range of each ξ is finite, the each set S is finite. Thus, S is
finite. ⊓⊔

C.2 Order Preservation for SVPDimEst

Lemma 1. Suppose GH holds. Given an SVPDimEst described as Sec. 2.5 and
two arbitrary bases D ̸= C for the same d-dimensional lattice generated from an
LWE instance with standard deviation σ by the primal attack, assume D ≥Q C.
Let C′ (resp. D′) be the Gram-Schmidt norms of the lattice basis after calling a
tour of R-ξ on C (resp. D), then SVPDimEst(rr(C′), σ) ≥ SVPDimEst(rr(D′), σ).

Proof. From Property 1 and the condition D ≥Q C, it follows that D′ ≥Q
C′. Since |C| = |D|, we obtain GH(C′

π[k,d]) ≤ GH(D′
π[k,d]), ∀k ∈ [d]. From

the description of SVPDimEst in Sec. 2.5, dsvp := SVPDimEst(D) is the small-
est integer satisfying σ

√
dsvp ≤ GH(Dπ[d−dsvp,d]) . Then there are only two

possible cases: (1) GH(C′
π[d−dsvp,d]

) < σ
√

dsvp ≤ GH(D′
π[d−dsvp,d]

), we have
SVPDimEst(rr(C′), σ) > SVPDimEst(rr(D′), σ); (2) σ

√
dsvp ≤ GH(C′

π[d−dsvp,d]
) ≤

GH(D′
π[d−dsvp,d]

), we have SVPDimEst(rr(C′), σ) = SVPDimEst(rr(D′), σ). Thus,
we get SVPDimEst(rr(C′), σ) ≥ SVPDimEst(rr(D′), σ). ⊓⊔

D Experiments

In this section, we present all the verification experiments and provide further
details about them. First, Section D.1 showcases the accuracy verification exper-
iments for the PnJBKZ simulator. Additionally, Section D.2 demonstrates the
improvement in solving LWE after applying our optimized reduction strategy,
which is computed using either PSSearch (Algorithm 3) or BSSA. Furthermore,
we will present the optimized reduction strategies for solving LWE challenges in
Section D.3.

D.1 PnJBKZ Simulator Accuracy Verification Experiments

In this section, we first demonstrate in D.1.1 that the PnJBKZ Simulator can
accurately predict the reduction effect of PnJBKZ in the ideal case, where each
pump used by PnJBKZ outputs a HKZ-reduced lattice basis. Then, D.1.2 and
D.1.3 illustrate how to simulate PnJBKZ using d4f technology in practice. Fi-
nally, D.1.4 and D.1.5 present additional accuracy verification experiments for
the PnJBKZ simulator when employing d4f technology in practice.

D.1.1 Ideal version of PnJBKZ simulation In an ideal scenario for Pn-
JBKZ, each Pump invoked by the simulator is capable of outputting an HKZ-
reduced basis. Verifying this ideal case tests whether the fundamental theory

50

behind our construction of the PnJBKZ simulator is correct. Specifically, we
demonstrate that when the jump parameter J of PnJBKZ is smaller than the
blocksize β, the PnJBKZ simulator, constructed using the properties of HKZ-
reduced bases and Gaussian heuristics, is reasonable and can accurately predict
the actual reduction effects of PnJBKZ.

To practically ensure that each Pump outputs an HKZ-reduced basis, it is
necessary to forgo the d4f technique. Without this adjustment, a Pump will
only perform β − d4f(β) dimensional progressive sieving during the Pump-up
stage, and can thus perform at most β − d4f(β) embeddings during the Pump-
down stage. Consequently, the output basis of each β-dimensional Pump will
inevitably include d4f(β)-dimensional GS vectors that do not meet the HKZ-
reduced basis properties. Thus, in this subsection D.1.1, each β-dimensional
Pump used by PnJBKZ performs complete β-dimensional progressive sieving
during the Pump-up stage and activates sieving during the Pump-down stage.
Specifically, it executes full sievings on the corresponding projection sublattices
and embeds the shortest vectors found through resieving during the Pump-down
stage.

Additionally, since the LLL reduction is applied after each pump step during
one tour of reduction in PnJBKZ-(β, J), the Gram-Schmidt (GS) values ob-
tained from the experiments exhibit a smooth downward trend. To improve the
prediction accuracy of the PnJBKZ simulator, we incorporated the size-reduced
and Lovász conditions of the LLL-reduced basis into the original version of the
PnJBKZ simulator.

We calculate Sim(li
′′) based strictly on the properties of the HKZ-reduced

basis. Similar to classical BKZ simulators [17, 36], which assess the accuracy of
BKZ simulators, we use the ratio li

′′/Sim(li
′′) for i ∈ [0, d− 1] in each tour of

the PnJBKZ reduction as a criterion for measuring the accuracy of the PnJBKZ
simulator. Refer to Fig. 16, which shows the prediction accuracy of the PnJBKZ
simulator under different jump values. Here, li′′ represents the average logarithm
of the Gram-Schmidt vector lengths obtained from 20 independent reduction
experiments with the same parameters (β, J, tours), and Sim(li

′′) is the simulated
logarithm of these Gram-Schmidt vector lengths, calculated using Eq. (3).

When using the classic Chen-Nguyen simulator to predict the actual reduc-
tion effect of BKZ, which employs pruned enumeration as the SVP oracle, most
ratios fall within the range [0.95, 1.05]. Our simulation results are similar to those
of the classic Chen-Nguyen simulator, with the remaining ratios falling within
the range of [0.85, 1.15]. For compare, refer to Fig. 1 in Section 4.3 of the BKZ
2.0 paper [17] with Fig. 16 in our paper. Thus, the error in predicting the reduc-
tion effect of the ideal PnJBKZ using our PnJBKZ simulator is not larger than
that of the classic Chen-Nguyen simulator [17]. The overall prediction results of
the PnJBKZ simulator are also presented in Fig. 16.

51

(a) β=80, jump=20, Average Error Ra-
tio=1.8%,

(b) β=80, jump=40, Average Error Ra-
tio=1.94%,

(c) β=80, jump=20 (d) β=80, jump=40

(e) β = 80, jump=80, Average Error Ra-
tio=2.29%,

(f) β=80, jump=1

(g) β=80, jump=80 (h) β=80, jump=1

Fig. 16: Ratio l′′i /Sim(l′′i) and corresponding overall prediction effect of PnJBKZ sim-
ulator. Run PnJBKZ(β, J) reduction on a 222-dimension LWE lattice basis (n=60,α=0.010) and
record the ratio values. We test 20 times for each reduction parameter.52

D.1.2 Predicating PnJBKZ using d4f technology The ideal PnJBKZ
simulation discussed in Section 5.1 did not consider the influence of using the
dimension-for-free (d4f) technology. In practice, the implementation of PnJBKZ
used in [20] and [28] default to using d4f technology to reduce the running time
and memory requirements of sieving. Additionally, the PnJBKZ algorithm is
often accelerated by heuristically increasing the d4f value. For example, in the
G6K implementation [20], the authors use a more optimistic d4f value compared
to the theoretical one. Specifically, [26] provides two theoretical d4f estimations
for solving β-dimension SVP as d4f(β) = β ln(4/3)/ ln(β/2π) and d4f(β) =
β ln(4/3)/ ln(β/2πe), while in the implementation of G6K [20], it gives a more
relaxed value and we called it “optimistic d4f”:

d4foptimistic(β) =

 0, β < 40
⌊β − 40/2⌋, 40 ≤ β ≤ 75
⌊11.5 + 0.075β⌋, β > 75

.

After using d4f to accelerate PnJBKZ, each Pump in the algorithm performs
progressive sieving only in a (β − d4f)-dimensional space during the Pump-up
stage. As a result, it can perform at most (β − d4f) embeddings during the
Pump-down stage. Consequently, the output basis of each β-dimensional Pump
will inevitably include d4f -dimensional GS vectors that do not satisfy the HKZ-
reduced basis properties.

However, the PnJBKZ(β, J) with the optimistic d4f setting is quite efficient
in practice. To ensure that the PnJBKZ simulator accurately predicts the Gram-
Schmidt (GS) values of a PnJBKZ-reduced lattice basis when using d4f technol-
ogy, including optimistic d4f values, we employ a refined d4f value estimation
proposed in [43]. Additionally, we modify our simulation strategy to improve the
accuracy of the simulator in predicting the behavior of PnJBKZ reductions that
utilize d4f technology and optimistic d4f settings. In this Appendix D.1.2, along
with the subsequent verification experiments, we provide a detailed analysis of
these adjustments and their impact on the overall performance. Appendix D.1.3,
and D.1.4, all PnJBKZ reduction experiments use the “optimistic d4f” settings
applied in the G6K implementation [20].

Wang et al. in [43] proposed a more refined d4f value estimation function
based on the quality of the current lattice basis. Specifically, we first revisit the
estimation of the upper bound of the d4f value under the pessimistic condition
outlined in [26]. The formula for this pessimistic estimation is given by:

GH(L) ≤ GH
(
Lπ[f,d]

)√
4/3 (10)

The above inequality can be rewritten as f · ln (δ) ≤ ln (4/3)+ ln(1− f/d) using
GSA. Based on ln (δ) = Θ ((ln β) /β) = Θ ((ln d) /d), [26] gives an asymptotic
value of d4f under pessimistic condition as:

f ≈ d ln (4/3)

ln (d/2π)
(11)

53

The optimistic condition in [26]:

GH(L)
√

d− f

d
≤ GH

(
Lπ[f,d]

)√4

3
. (12)

Using the GSA and the optimistic asymptotic value of d4f, we can rewrite f as:

f ≈ d ln (4/3)

ln (d/2πe)
(13)

The theoretical derivations above are based on the assumption that the cur-
rent d-dimensional lattice basis is fully-BKZ-d/2 reduced. However, during the
lattice reduction process, the reduction quality of the lattice basis improves grad-
ually rather than remaining constant. Especially in the initial reduction stage,
when the lattice basis quality is far from being fully-BKZ-d/2 reduced. The effect
of this gradual improvement in lattice reduction quality on d4f is not considered
in Eq.(12) and Eq.(13).

Thus, the two different maximum values of d4f analyzed in [26] depend solely
on the lattice dimension and serve as asymptotic upper bounds rather than
accurate estimations. Our goal is to provide a refined estimation of the maximum
value of d4f, based on the GSA coefficient.

Since under the Gaussian Heuristic, λ1

(
Lπ[f+1,d]

)
= GH

(
Lπ[f+1,d]

)
≈

√
d−f
2πe ·(∏d

i=f+1 ∥b∗i ∥
) 1

d−f . By applying the GSA, we obtain:

λ1

(
Lπ[f+1,d]

)
=

√
d− f

2πe

|det (L)|
1

d−f · δ
f(f−1)
d−f

∥b∗
1∥

f
d−f

.

Since ∥b∗
1∥ can also be represented by δd · |det(L)|

1
d , we have

λ1

(
Lπ[f+1,d]

)
=

√
d− f

2πe

|det (L)|
1
d

δf
(14)

Based on the pessimistic condition in [26]: GH
(
Lπ[f+1,d]

)√
4/3 ≥ GH(L)

and Eq. (14), we can get a conservative d4f estimation based on GSA:

f ≤ logδ

√
4 (d− f)

3d
(15)

Based on the optimistic condition in [26]: GH
(
Lπ[f+1,d]

)√
4/3 ≥ πf (GH (L))

and Eq. (14), we can get an optimistic d4f estimation based on GSA:

f ≤ logδ

√
4

3
(16)

It illustrates that, under the current reduction quality of the lattice basis,
the maximum d4f value should be d4fδ = lnδ

√
4/3 ≈ ln (4/3)

/
(−slope). Here,

54

slope represents the slope of the logarithm of the Gram-Schmidt norms li for
∀i ∈ {0, ..., d− 1}.

This leads to a problem: the actual d4f value that can be achieved under
a certain reduction quality of the lattice basis should, in theory, be d4fδ. If
the Jump size is not limited, there may be a situation where d4fδ < Jump
< the optimistic heuristic d4f value. In this case, the first (Jump − d4fδ) GS
values of each Pump can no longer be guaranteed to be the shortest vector on
the corresponding projection sublattice. As a result, the prediction of the first
(Jump− d4fδ) GS values of each Pump based on the HKZ property is no longer
accurate.

To ensure PnJBKZ simulator can still accurately predict the GS values of
PnJBKZ-reduced lattice basis when using optimistic d4f value during PnJBKZ
reduction. We need bound the maximum Jump value during reduction. We con-
clude this result in Heuristic 2. Later, our experiments will demonstrate that, in
practice, when using optimistic d4f value during PnJBKZ reduction, Heuristic 2
indeed holds under the appropriate reduction parameter.

Heuristic 2 (Pump outputs HKZ reduced basis) Given a d-dimensional
lattice basis B with a reduction quality whose slope is equal to s. Under the reduc-
tion parameter J ≤ d4fslope (s)≪ β ≤ d, for κ < d−1, the projected sublattice ba-
sis Bπ[κ,min{κ+β,d}] reduced by a Pump(Bπ[κ,min{κ+β,d}], κ, β, f ≤ d4fslope (s)),
the first J vectors in block Bπ[κ,min{κ+β,d}] have the same Gram-Schmidt norms
follow the length profile as a HKZ reduced block, i.e. under Gaussian Heuristic,
for i ∈ [κ, κ+ J − 1], the expected norms of ∥b∗

i ∥ ≈ GH(L(Bπ[i,min{κ+β,d}])).

Here d4fslope (s) is an upper bound of the d4f value estimation function based on
the quality of the current lattice basis proposed in [43]. d4fslope (s) := lnδ

√
4/3 ≈

ln (4/3)/(−s).
As mentioned above, the default d4f function used in the implementation

of PnJBKZ (both [20] and [28]) is an optimistic heuristic setting. This opti-
mistic d4f setting in the implementation of G6K results in the actual reduc-
tion effect of a PnJBKZ(β, J) with the optimistic d4f setting being closer to
that of a PnJBKZ(β′, J) with the theory d4f estimation value, rather than a
PnJBKZ(β, J) with the theoretical d4f estimation value. Here β′ ≤ β.

Therefore, to more accurately predict the behavior of the PnJBKZ using the
optimistic d4f function, we propose the following simulation strategy. Specifically,
using the information about the quality of the current lattice basis, such as the
slope value s, [43] calculates the refined d4f value estimation as d4fslope (s) =
ln (4/3)

/
(−s). In this case J ≤ d4fslope (s), we calculate d4fgap(β, s) :=

d4foptimistic(β, s)−d4fslope (s). If β < 40, d4fgap(β, s) = 0; d4fgap(β, s) = ⌊β−
40/2−d4fslope (s)⌋, if 40 ≤ β ≤ 75; d4fgap(β, s) = ⌊11.5+0.075β−d4fslope (s)⌋,
if β > 75. Then, we calculate βsim = β−d4fgap(β, s) and replace each blocksize
β by βsim as the input of Alg. 4, when using PnJBKZ simulator.

The function d4fgap(β, s) aims to calculate the gap between the optimistic
d4f setting used in the G6K implementation and the actual d4f value under
current lattice reduction quality (slope s value). This simulation strategy, based

55

on the current lattice reduction quality information (slope value), provides a
more refined d4f estimation to adjust the over-optimistic d4f used in the default
implementation of PnJBKZ [20].

Finally, in Appendix D.1.3 and D.1.4, we show the verification experiments
of Heuristic 2 and the PnJBKZ simulator for predicting PnJBKZ reduction with
optimistic d4f settings.

Besides, the verification experiments comparison of PnJBKZ estimations un-
der different d4f estimations can be found in Section 3.2 of [43]. The comparison
results indicate that using the simulation strategy we mention above leads to
more accurate predictions of the behavior of PnJBKZ which uses the optimistic
d4f function. In this paper, we default to using the above simulation strategies
to predict the practical reduction effect of the PnJBKZ(β, J) which uses the
optimistic d4f setting in practice.

D.1.3 Verification Experiments of Heuristic 2 and the PnJBKZ Sim-
ulator for Predicting PnJBKZ Reduction with Optimistic d4f Settings
In this part, we show that Heuristic 2 is held when the jump parameter J of
PnJBKZ is below a specific upper bound. Therefore it is reasonable to use the
properties of the HKZ reduction basis to simulate the actual reduction effect of
PnJBKZ.

In this part, our experiments were tested on the TU Darmstadt LWE Chal-
lenge lattice basis with parameter (n=60, α=0.010). Before running the PnJBKZ
simulator, we performed a small block reduction to remove the influence of q-
ary vectors in the LWE Challenge lattice basis. After this pre-processing, we
obtained a 222-dimension lattice basis, which contains a few q-ary vectors at
the beginning of the lattice basis. This lattice basis has a slope value equal to
−0.0248 (with the pre-processing taking only a few minutes the walltime).

Next, we calculate the ratio li
′′/Sim(li

′′) for i ∈ [0, d− 1] in each tour of
PnJBKZ’s reduction, see Fig. 17. Here, li′′ represents the average logarithms of
these Gram-Schmidt vector lengths, which were obtained from 20 independent
reduction experiments using the same reduction parameter (β, J, tours). The
PnJBKZ reduction was performed 20 times with these parameters respectively.
Meanwhile, Sim(li

′′) denotes the simulated logarithms of the Gram-Schmidt vec-
tor lengths, calculated using Eq. (3).

We calculate Sim(li
′′) strictly based on the properties of the HKZ-reduced

basis and the Gaussian Heuristic. Therefore, in addition to serving as a criterion
for evaluating the accuracy of the PnJBKZ simulator, the ratio li

′′/Sim(li
′′) can

also be used to assess whether Heuristic 2 holds. In particular, as shown in Fig.
17, for values of β ranging from 85 to 100 and jump from 1 to 12, we observe
the minimum theoretical upper bound value for the current lattice basis quality:
d4fslope(s = −0.0248) ≈ 11.6 ≤ 12. When jump ≤ ⌈d4fslope(s = −0.0248)⌉ = 12,
even with the number of tours increasing to 12, all most of the ratios li′′/Sim(li

′′)
are within range: [0.95,1.05] (the rest ratios are also within range [0.90,1.10]).

56

(a) β=85, jump=1 (b) β=85, jump=12

(c) β=100, jump=1 (d) β=100, jump=12

(e) β=80, jump=12 (f) β=71, jump=12

(g) β=80, jump=12 (h) β=71, jump=12

Fig. 17: Ratio l′′i /Sim(l′′i). Run PnJBKZ(β, J) reduction on a 222-dimension LWE lattice basis
(n=60,α=0.010) and record the ratio values. We test 20 times for each reduction parameter.

57

Fig. 17 demonstrates that, based on the refined d4f estimation, our PnJBKZ
simulator accurately predicts the reduction effect of PnJBKZ. Furthermore,
Heuristic 2 holds when J ≤ d4fslope(s).

In comparison, when simulating classic BKZ, most ratios also fall within
[0.95, 1.05], although some extreme ratios exceed this range. The largest ratio
reaches 1.15, while the smallest falls below 0.85. This indicates that the predic-
tion accuracy of the PnJBKZ simulator, when using d4f technology for PnJBKZ
reductions, is at least as good as that of the classic BKZ simulator [17] for
predicting BKZ reductions.

Furthermore, to improve the prediction accuracy of the PnJBKZ simulator
when predicting PnJBKZ reduction with optimistic d4f settings, the PnJBKZ
simulator, similar to the ideal version, will by default account for the impact
of LLL reduction in its calculations. Specifically, in this paper, all experiments
using the PnJBKZ simulator incorporate the Size-reduced and Lovász conditions
of the LLL-reduced basis into the original version. As a result, in the subsequent
experiments, we will no longer explicitly mention whether the influence of LLL
reduction has been considered.

Moreover, this is further verified by (e) and (f) in Fig. 18 when the tours
increase to 13. Meanwhile, the PnJBKZ simulator uses Eq. (3) as an approxi-
mate estimate for the actual value li

′′. This estimate effectively reflects how the
average norms of Gram-Schmidt vectors change during each tour’s reduction of
PnJBKZ(β, J), which uses the optimistic d4f setting in practice.

We define the prediction error as

SimError(♯tours) =

d−1∑
i=0

(
∥b∗

i ∥(♯tours) − Sim(∥b∗
i ∥)(♯tours)

)2
,

where ♯tours represents the number of current tours and Sim(∥b∗
i ∥)(♯tours) are the

lengths of Gram-Schmidt vectors predicted by PnJBKZ simulator with ♯tours.
Fig. 18 illustrates that the overall prediction error of the PnJBKZ simulator for
different jumps is similar to that observed for jump=1.

More verification experiment results with different reduction parameters on
various lattice bases can be found in Appendix D.1.4.

In addition, our experiments, detailed in Table 3 and Appendix D.1.5, demon-
strate that for the LWE challenge lattice basis with various reduction parame-
ters (e.g. different blocksizes and jump sizes), the predicted slope values from
our PnJBKZ simulator closely align with those obtained from actual reductions.
These results further demonstrate that, based on the refined d4f estimation, the
PnJBKZ simulator accurately predicts the average reduction effect of PnJBKZ
using d4f. Therefore, the PnJBKZ simulator we have constructed is sufficiently
effective for its intended purpose.

58

(a) β = 85, jump = 12, ♯tours = 13 (b) β = 100, jump = 12, ♯tours = 13

(c) β = 85, jump = 12, ♯tours = 13 (d) β = 100, jump = 12, ♯tours = 13

Fig. 18: Overall Prediction effect of PnJBKZ simulator. Ratio l′′i /Sim(l′′i). We perform
the experiments on a reduced lattice basis of LWE Challenge (n=60,α=0.010) with slope value
s=−0.0248 when jump increasing to the minimum theoretical upper bound ⌈d4fslope(s)⌉=12. We
test also 20 times for each reduction parameter and show the average value of the experiments.

D.1.4 More experimental details about PnJBKZ simulator for pre-
dicting PnJBKZ with optimistic d4f In this section, we present additional
verification experiments of our PnJBKZ simulator for predicting the reduction
effect of the PnJBKZ algorithm, which uses optimistic d4f setting. These ex-
periments were tested on various LWE challenge lattice bases with different
reduction parameters. Specifically, we varied the blocksize β from 55 to 100, the
jump value from 1 to 12, and the number of tours from 1 to 13. For each set
of reduction parameters, we performed 20 independent experiments to calculate

59

the practical average length of the Gram-Schmidt vectors after applying the
PnJBKZ reduction.

First, to eliminate the influence of q-ary vectors in the initial LWE challenge
lattice basis, we perform pre-processing on all LWE challenge lattice basis using
small blocksize reduction, which can be completed within a few minutes of wall
time. For example, for (n = 70, α = 0.005) and (n = 75, α = 0.005), after pre-
processing, we obtain LWE challenge lattice basis (n = 70, α = 0.005) having
a slope of −0.04921/2. The corresponding d4fslope(s) values range from 11.7
to 13.7. Since we need the maximum jump value J ≤ d4fslope(s) to ensure
the accuracy of the PnJBKZ simulator (see Section 5 for details), we set the
maximum jump value J ≤ 12 in this test experiments.

Then we present the results of verification experiments on four different lat-
tice bases, with β ∈ [50, 70] and jump values within J ∈ [1, 12]: (n = 70, α =
0.005), (n = 75, α = 0.005), (n = 60, α = 0.010) and (n = 50, α = 0.015).
These results are shown in Figures 21 ∼ 29, respectively. The Verification ex-
periment results indicate that our PnJBKZ simulator performs well in predict-
ing the behavior of PnJBKZ for blocksize within β ∈ [75, 100] and jump within
J ∈ [1, 12] ≤ d4fslope(s) on LWE challenge lattice basis on 4 different LWE
challenge lattice bases.

Figures 19 ∼ 29 show that, for different lattice basis with different reduction
parameters, as long as the jump ≤ d4fslope(s), even when the number of tours
increase to 13, overall, the simulation values are closed match the actual values.
Most of the ratios l

′′
i

Sim(l
′′
i)

remain within the range [0.95, 1.05]. Furthermore, while
the progressive reduction strategy will not run the same reduction parameter
(β, J) for more than 10 tours, our simulator remains accurate even when the
number of tours increases to 13.

These results indicate that when J ≤ d4fslope(s), we can ensure that Heuris-
tic 2 holds, and the PnJBKZ simulator’s estimation of the actual value ∥b′′∗

i ∥
(calculated by Eq. (3)) can already reflect how the average of the norms of
Gram-Schmidt vectors change during each tour’s reduction of PnJBKZ(β, J).
Therefore our PnJBKZ simulator fits well with the actual PnJBKZ reduction
result. Similar to the classical BKZ simulator [17], the prediction error of our
PnJBKZ simulator does not exceed 5%, with most ratios l

′′
i

Sim(l
′′
i)

staying within
the range [0.95, 1.05].

Additionally, Table 3 and Appendix D.1.5 show that the practical slope of
lattice Gram-Schmidt basis after each tour of the PnJBKZ reduction, with differ-
ent blocksizes and different jump values, closely matches our simulation results.
The prediction error of lattice basis slope does not exceed 0.03%. For more de-
tails, see Table 3. This further validates the accuracy of our PnJBKZ simulator.
For selecting the optimized reduction strategy, our PnJBKZ simulator provides
sufficiently accurate predictions.

D.1.4.1 LWE challenge lattice basis (n = 75, α = 0.005).
Figure 19 ∼ Figure 20.

60

(a) β=75, jump=1 (b) β=80, jump=3

(c) β=80, jump=6 (d) β=85, jump=3

(e) β=100, jump=6 (f) β=85, jump=9

(g) β=95, jump=12 (h) β=95, jump=9

Fig. 19: Ratio l′′i /Sim(l′′i). Run 12 tours of PnJBKZ(β, J) reduction on a 252-dimension
LWE lattice basis (n = 75, α = 0.005), and record the ratio values. We test 20 times
for each reduction parameters.

61

(a) β = 75, jump = 1, ♯tours = 13 (b) β = 95, jump = 9, ♯tours = 12

(c) β = 85, jump = 3, ♯tours = 13 (d) β = 100, jump = 6, ♯tours = 13

(e) β = 85, jump = 3, ♯tours = 13 (f) β = 100, jump = 6, ♯tours = 13

Fig. 20: Overall Prediction effect of PnJBKZ simulator. Ratio l′′i /Sim(l′′i). We perform
the experiments by reducing the lattice basis of LWE Challenge (n = 75, α = 0.005).
We test also 20 times for each reduction parameters.

62

D.1.4.2 LWE challenge lattice basis (n = 70, α = 0.005).
Figure 21 ∼ Figure 23.

(a) β = 70, jump = 3 (b) β = 60, jump = 6

(c) β = 65, jump = 6 (d) β = 70, jump = 6

(e) β = 60, jump = 9 (f) β = 65, jump = 9

(g) β = 70, jump = 9 (h) β = 90, jump = 12

Fig. 21: Ratio l′′i /Sim(l′′i). Run 12 tours of PnJBKZ(β, J) reduction on a 235-dimension
LWE lattice basis (n = 70, α = 0.005), and record the ratio values. We test 20 times
for each reduction parameter.

63

(a) β = 65, jump = 6, ♯tours = 12 (b) β = 70, jump = 6, ♯tours = 12

(c) β = 65, jump = 6 (d) β = 70, jump = 6

Fig. 22: Ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 235-dimension
LWE lattice basis (n = 70, α = 0.005), different β with J = 6, and record the ratio
values. We test 20 times for each reduction parameter.

64

(a) β = 60, jump = 9, ♯tours = 12 (b) β = 65, jump = 9, ♯tours = 12

(c) β = 65, jump = 9 (d) β = 70, jump = 9

Fig. 23: ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 235-dimension
LWE lattice basis (n = 70, α = 0.005), different β with J = 9, and record the ratio
values. We test 20 times for each reduction parameter.

65

D.1.4.3 LWE challenge lattice basis (n = 60, α = 0.010).
Figure 24 ∼ Figure 26.

(a) β = 55, jump = 1 (b) β = 55, jump = 3

(c) β = 55, jump = 6 (d) β = 60, jump = 6

(e) β = 60, jump = 9 (f) β = 65, jump = 9

(g) β = 75, jump = 9 (h) β = 85, jump = 12

Fig. 24: Ratio l′′i /Sim(l′′i). Run 12 tours of PnJBKZ(β, J) reduction on a 222-dimension
LWE lattice basis (n = 60, α = 0.010), and record the ratio values. We test 20 times
for each reduction parameter.

66

(a) β = 55, jump = 6, ♯tours = 12 (b) β = 60, jump = 6, ♯tours = 12

(c) β = 55, jump = 6 (d) β = 60, jump = 6

Fig. 25: Ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 222-dimension
LWE lattice basis (n = 60, α = 0.010), different β with J = 6, and record the ratio
values. We test 20 times for each reduction parameter.

67

(a) β = 60, jump = 9, ♯tours = 12 (b) β = 65, jump = 9, ♯tours = 12

(c) β = 60, jump = 9 (d) β = 65, jump = 9

Fig. 26: Ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 222-dimension
LWE lattice basis (n = 60, α = 0.010), different β with J = 9, and record the ratio
values. We test 20 times for each reduction parameter.

D.1.4.4 LWE challenge lattice basis (n = 50, α = 0.015).

Figure 27 ∼ Figure 29.

68

(a) β = 50, jump = 1 (b) β = 60, jump = 1

(c) β = 60, jump = 3 (d) β = 60, jump = 6

(e) β = 65, jump = 6 (f) β = 75, jump = 6

(g) β = 75, jump = 9 (h) β = 80, jump = 9

Fig. 27: Ratio l′′i /Sim(l′′i). Run 12 tours of PnJBKZ(β, J) reduction on a 194-dimension
LWE lattice basis (n = 50, α = 0.015), and record the ratio values. We test 20 times
for each reduction parameter.

69

(a) β = 60, jump = 6, ♯tours = 12 (b) β = 65, jump = 6, ♯tours = 12

(c) β = 60, jump = 6 (d) β = 65, jump = 6

Fig. 28: Ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 194-dimension
LWE lattice basis (n = 50, α = 0.015), different β with J = 6, and record the ratio
values. We test 20 times for each reduction parameter.

70

(a) β = 60, jump = 3, ♯tours = 12 (b) β = 75, jump = 6, ♯tours = 12

(c) β = 60, jump = 3 (d) β = 75, jump = 6

Fig. 29: Ratio l′′i /Sim(l′′i). Run 13 tours of PnJBKZ(β, J) reduction on a 194-dimension
LWE lattice basis (n = 50, α = 0.015), different β and J , and record the ratio values.
We test 20 times for each reduction parameter.

D.1.5 Comparison between simulated slope (cost) and real slope
(cost) during reduction In this part, we will demonstrate the accuracy of our
PnJBKZ simulator by showing that the simulation slope of lattice basis closely
matches the real slope of lattice basis reduced by the PnJBKZ algorithm.

We present a comparison of the slope and time cost for two LWE Chal-
lenges using qd float type in Tables 7, 8 and Table 9. These tables show that
the simulated slope and cost closely match the real slope and time cost. They
also demonstrate that our PnJBKZ simulator accurately reflects how the av-
erage of the norms of Gram-Schmidt vectors change during the reduction of
PnJBKZ(β, J) on different LWE lattice bases.

71

Tables 4, 7, 8 and Table 9 all show that, although there is a slight gap be-
tween the slope of the simulated Gram-Schmidt (GS) norms and the slope of
the real reduced GS norms in the first round of reduction due to the influence
of the q-ary vector in the initial LWE lattice basis, this gap decreases as the
reduction progresses. Before finally entering the Pump stage, the difference be-
tween the simulated and real reduction slopes becomes sufficiently small. This
demonstrates that for selecting the optimized blocksize and jump strategy, our
PnJBKZ simulator is accurate enough.

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(70,8) -0.0288 6.4 -0.0278 6.6
(80,10) -0.0256 6.4 -0.0249 6.6
(102,11) -0.0221 7.7 -0.0218 8.0
(102,11) -0.0207 7.7 -0.0208 8.0
(103,11) -0.0202 7.8 -0.0205 8.1

Table 7: Quality and wall time (T in sec-
onds) during reduction of LWE Challenge
(n, α) = (45, 0.020).

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(56,8) -0.0307 6.2 -0.0297 6.4
(66,9) -0.0279 6.2 -0.0273 6.4
(80,10) -0.0254 6.5 -0.0250 6.8
(81,10) -0.0238 6.6 -0.0237 6.9
(102,11) -0.0215 7.8 -0.0216 8.1

(102,11,2) -0.0205 7.8 -0.0208 8.1

Table 8: Quality and log(walltime)
(log(T) in seconds) during reduction of
LWE Challenge (n, α) = (50, 0.015).

Table 9: Quality and log(walltime) (log(T) in seconds) during reduction of LWE Chal-
lenge (n, α) = (40, 0.025).

(β, J)
Simulation Practical

Slope log(T) Slope log(T)
(77,8) -0.0281 6.5 -0.0265 6.6
(81,10) -0.0249 6.2 -0.0241 6.6
(102,11) -0.0217 7.5 -0.0215 7.8
(102,11) -0.0205 7.5 -0.0207 7.8

D.2 Experiments and Application to LWE
In this section, we evaluate the walltime of different LWE solving strategies
through experiments to demonstrate that our approach is more efficient in solv-
ing LWE compared to the heuristic LWE solving strategy used in G6K. Specif-
ically, we employ an optimized reduction strategy for solving LWE, which is
derived from either PSSearch (Alg. 3) or BSSA.

D.2.1 Efficiency of MinTwoStepSolver for solving LWE The default
LWE solving algorithm in G6K is the script lwe_challenge.py in the imple-

72

mentation of G6K-GPU-Tensor [28], which uses a heuristic reduction strategy.
For more detail about the default LWE solving algorithm in G6K-GPU-Tensor,
refer to the script at 4. Fig. 30 presents the experimental result of different LWE-
solving algorithms. We use the practical cost model proposed in Appendix B.2
as T .

(a) LWE Challenges: Time. (b) LWE Challenges: Memory.

(c) LWE Instances (α = 0.010): Time. (d) LWE Instances (α = 0.010): Memory.

§ The experiment used “dd” float type and pump/down=True, under identical benchmark condi-
tions on a machine C (Sec. 6.5) with threads=32 and GPUs=2. “default G6K” refers to the
method in g6k implemented in lwe_challenge.py. TwoStepSolver + PSSearch(·) (resp. TwoStep-
Solver + BSSA(·)) represents the cost of running TwoStepSolver with strategies from PSSearch
(resp. BSSA). Jmax denotes the maximum jump value in the strategy. “Set J=1 in S” means
generating a strategy S and then setting the jump value as 1.

Fig. 30: Comparison of Different LWE-solving Algorithms under same benchmark. §

4 https://github.com/WvanWoerden/G6K-GPU-Tensor/blob/main/lwe_challenge.py

73

https://github.com/WvanWoerden/G6K-GPU-Tensor/blob/main/lwe_challenge.py

The blue lines and scatter points in Fig. 30 represent the experimental time
or memory cost of the default strategy in G6K. The remaining lines and scatter
points in Fig. 30 indicate the experimental time or memory cost of MinTwoStep-
Solver, using the strategies generated by PSSearch(Alg. 3) (BSSA(Alg. 6)). We
modify the progressive blocksize selection strategy from ProBKZ [19] to adapt it
to PnJBKZ by constructing the PnJBKZ simulator. We refer to this new strat-
egy selection algorithm as the blocksize and jump strategy selection algorithm
based on ProBKZ (BSSA). See Appendix B.3 for more details about BSSA. The
advantage of BSSA is that it runs in polynomial time; however, it cannot provide
the time-minimal LWE solving strategy like PSSearch.

From the result in Fig. 30, we can observe that using the strategy selected
by PSSearch (BSSA) significantly decreased the walltime cost by approximately
7.2∼17.0 (5.2∼10.2) times compared to that of the default LWE solving strategy
in G6K, when all LWE solvers use the same float type “dd” to calculate. The
log files of Fig. 30 for these results can be found in the lwechal-test and
lwe-instance-test. The results can also be reproduced by running the test code
implement_lwechal_forall.sh and implement_lwe_instance_forall.sh in
source code2.

As shown in Fig. 2, our approach significantly improves the speed of solv-
ing LWE and effectively addresses practical challenges. All experimental results,
except those in Table 4, were obtained using 32 threads and 2 GPUs on a work-
station with an Intel Xeon 5128 (16 cores, 32 threads)@2.3 GHz, 1.48 TB of
RAM, and two NVIDIA RTX 3090 GPUs, referred to as machine C.

Fig. 30(a) and Fig. 30(c) also show that TwoStepSolver using the strat-
egy generated by PSSearch (abbreviated as MinTwoStepSolver) is faster than
TwoStepSolver using the strategy generated by BSSA (abbreviated as TwoStep-
Solver + BSSA). Specifically, in Fig. 30(c), MinTwoStepSolver is 3.71 to 9.81
times faster than the default G6K, while TwoStepSolver + BSSA is 2.43 to
8.63 times faster than the default G6K when testing the given LWE instances
(n, α) ∈ {(n, 0.010) | n = 55, · · · , 61}. This indicates that the progressive reduc-
tion strategy generated by ProBKZ [19] is not optimal in terms of time cost,
especially for large n, with an acceptable memory cost, as demonstrated in Fig.
30(d).

Additionally, experiments shown in Fig. 30 indicate that the flexible use of a
solving strategy with jump>1 can solve LWE 4.88 to 7.85 times faster than the
Jmax=1 solving strategy. Specifically, in Fig. 30(c), we define S1 as the strategy
generated by PSSearch with Jmax=d4fslope(s), and S2 as the strategy generated
by PSSearch with Jmax=1. The walltime cost of using strategy S1 is 2.02 to 2.91
times faster than that of S2 and 4.88 to 7.85 times faster than the scenario where
J is set to 1 in S1. Here, the s in d4fslope(s) represents the simulated slope of
the lattice basis during the reduction process. This demonstrates a substantial
improvement in reduction efficiency when the maximum jump exceeds 1, poten-
tially by skipping some sufficiently reduced lattice bases, since each Pump turns
on sieving at the Pump-down stage, and there is significant overlap between each
Pump.

74

Furthermore, one can also limit the maximum memory usage of solving LWE
by adjusting parameter “--max_RAM” to control the generated solving strategy.
Additionally, we also designed an LWE sample optimized selection algorithm
(Alg. 7) to optimize the number of chosen LWE samples in Appendix B.4. How-
ever, the efficiency improvement from this optimization is not significant, with
a maximum gain of 2.2% in our test.

D.2.2 New LWE Records The TU Darmstadt LWE Challenge website
presents Challenges designed to test the efficiency of solving LWE, helping to
estimate the hardness of LWE in practice.

Using our new algorithm, i.e. MinTwoStepSolver, we have successfully solved
the LWE instances (n, α) ∈ {(80,0.005),(40,0.035),(90,0.005),(50,0.025),(55,0.020),
(40,0.040)} from the TU Darmstadt LWE Challenge website1. For more details,
refer to Fig. 2 for more details. Specifically, we used the following machines for
our experiments: Machine A, with AMD EPYCTM 7002 Series 128@2.6GHz,
NVIDIA 3090 * 8, 1.5T RAM; Machine B, with AMD EPYCTM 7002 Series
64@2.6GHz, a100 * 4, 512 GB RAM; and Machine C, a workstation with Intel
Xeon 5128 16c 32@2.3GHz, 1.48T RAM and NVIDIA RTX 3090 * 2 GPUs.

Then we present the walltime and RAM cost for solving the above LWE
Challenges in Table 4. The units for time (T) in Tables 3 and 4 are seconds and
hours, respectively. In Table 4, we observe that the time required to solve the
LWE Challenge with parameters (n, α) = (40, 0.0035) using the G6K-GPU [28]
is 23.4 times longer than the time of our method.

D.3 The Optimized Strategy for the LWE Challenge

In Table 10, we present the optimized blocksize and jump strategy generated
by PSSearch for successfully solving TU Darmstadt LWE Challenge with the
parameters

(n, α) ∈ {(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}

. These results were obtained by running by running “implement_unsolved_lwechal.sh”
in source code 2.

E Application to SVP

The optimization of the solving strategy can be applied not only to solving LWE
but also to solving SVP. The only difference lies in replacing the success condition
for solving u-SVP from Section B.1 with the success condition for solving SVP
proposed in [26]. This section focuses on demonstrating the practical efficiency
of the MinTwoStepSolver in solving SVP instances. The The algorithm

MinTwoStepSolver = TwoStepSolver + PSSearch + T

75

Table 10: Blocksize and Jump strategy generated by PSSearch(threads = 10)
using the practical cost model generated on Machine C with threads = 32 and
GPUs = 2.

(n, α) RAM limit Strategy (β, jump) PSSearchGen/s

(40,0.035) 1.5TB [(72,9),(81,10),(102,11),(106,11),
(117,12),(125,13),(133,12),(136,1)] 269.15

(40,0.040) 1.5TB
[(81, 10),(81, 10), (105, 11), (110, 12),
(118, 11), (133, 12), (141, 10), (141, 1),
(148, 1)]

289.17

(50,0.025) 1.5TB
[(77, 9), (81, 10), (102, 11), (102, 11),
(105, 11),(115, 12), (119, 12), (127, 12),
(132, 13), (140, 1), (148, 1)]

686.47

(55,0.020) 1.5TB
[(68, 9), (81, 10), (102, 11),(102, 11),
(102, 11), (114, 12), (119, 12), (119, 9),
(131, 13), (137, 12),(140, 1), (147, 1)]

831.98

(90,0.005) 512GB

[(68, 9), (81, 10), (81, 10), (81, 10), (102, 11),
(102, 11), (102, 11), (102, 11), (104, 11),
(114, 12), (119, 12),(119, 12), (119, 9),
(127, 13), (129, 12), (133, 12), (133, 12),
(141, 1),(141, 1)]

2592.26

utilizes TwoStepSolver in conjunction with a strategy generated by PSSearch, all
under a specific time-cost model T , to effectively solve SVP instances. Sec. 6.1
presents verification experiments for the PnJBKZ simulator, a core component
of PSSearch. The executable code of TwoStepSolver for solving SVP based on
PSSearch is publicly available on GitHub3.

3 https://github.com/Summwer/lwe-estimator-with-pnjbkz

76

https://github.com/Summwer/lwe-estimator-with-pnjbkz

	Refined Strategy for Solving LWE in Two-step Mode
	Introduction
	Our Contribution
	Related Works

	Preliminaries
	Lattices
	Lattice Reduction
	Lattice Sieving Algorithms and Progressive Sieve
	Technologies in G6K
	Primal Attack and SVP Dimension Estimation in Search Step
	SVP Time-Cost Model and Reduction Time-Cost Model

	Strategy Space and the Strategy Search Algorithm
	Strategy Space
	Strategy Search Algorithm

	Pruning SSearch
	Main Algorithm
	Correctness Proof of Pruning SSearch
	A Refined SVP Dimension Estimation Method

	The Design of PnJBKZ Simulator
	The PnJBKZ Simulator Construction.
	Consider the impact of LLL reduction in PnJBKZ.

	Upper bound of Jump in PnJBKZ simulator

	Experiments and Application to LWE
	Verification experiments of PnJBKZ Simulator
	Efficiency of MinTwoStepSolver for solving LWE
	Optimized strategy generated by MinTwoStepSolver
	Simulated Accuracy of MinTwoStepSolver for LWE
	New LWE Records
	Security Estimation for NIST schemes
	The Acceleration Effect of the Optimized Strategy

	Basic Definitions
	Lattice Hard Problems

	Detailed Description of Algorithms
	Detailed Description of the Refined SVPDimEst
	Practical Time-Cost model of Pump and PnJBKZ
	Practical Cost Model of Pump
	Consider Cost of DualHash Generation.

	Practical Cost Model of PnJBKZ

	Blocksize and Jump Strategy Selection based on ProBKZ
	Choosing the number of LWE Samples

	Proofs of Theorems and Lemmas
	Finite Strategy Space
	Order Preservation for SVPDimEst

	Experiments
	PnJBKZ Simulator Accuracy Verification Experiments
	Ideal version of PnJBKZ simulation
	Predicating PnJBKZ using d4f technology
	Verification Experiments of Heuristic 2 and the PnJBKZ Simulator for Predicting PnJBKZ Reduction with Optimistic d4f Settings
	More experimental details about PnJBKZ simulator for predicting PnJBKZ with optimistic d4f
	LWE challenge lattice basis (n=75,=0.005).
	LWE challenge lattice basis (n=70,=0.005).
	LWE challenge lattice basis (n=60,=0.010).
	LWE challenge lattice basis (n=50,=0.015).

	Comparison between simulated slope (cost) and real slope (cost) during reduction

	Experiments and Application to LWE
	Efficiency of MinTwoStepSolver for solving LWE
	New LWE Records

	The Optimized Strategy for the LWE Challenge

	Application to SVP

