
Indistinguishability Obfuscation
via Mathematical Proofs of Equivalence

(or: How to Overcome Non-Falsifiability)

Abhishek Jain Zhengzhong Jin

Johns Hopkins University

Abstract

Over the last decade, indistinguishability obfuscation (iO) has emerged as a seemingly omnipotent
primitive in cryptography. Moreover, recent breakthrough work has demonstrated that iO can be re-
alized from well-founded assumptions. A thorn to all this remarkable progress is a limitation of all
known constructions of general-purpose iO: the security reduction incurs a loss that is exponential in
the input length of the function. This “input-length barrier” to iO stems from the non-falsifiability of
the iO definition and is discussed in folklore as being possibly inherent. It has many negative conse-
quences; notably, constructing iO for programs with inputs of unbounded length remains elusive due
to this barrier.

We present a new framework aimed towards overcoming the input-length barrier. Our approach
relies on short mathematical proofs of functional equivalence of circuits (and Turing machines) to avoid
the brute-force “input-by-input” check employed in prior works.

– We show how to obfuscate circuits that have efficient proofs of equivalence in Propositional Logic
with a security loss independent of input length.

– Next, we show how to obfuscate Turing machines with unbounded length inputs, whose func-
tional equivalence can be proven in Cook’s Theory 𝑃𝑉 .

– Finally, we demonstrate applications of our results to succinct non-interactive arguments and
witness encryption, and provide guidance on using our techniques for building new applications.

To realize our approach, we depart from prior work and develop a new gate-by-gate obfuscation
template that preserves the topology of the input circuit.

1

Contents

1 Introduction 4
1.1 Our Results . 6
1.2 Applications . 7
1.3 How to Use iO with Proofs of Equivalence . 9

1.3.1 Puncturable PRFs . 9
1.3.2 Proving Arithmetic Properties in 𝑃𝑉 . 10

1.4 Discussion and Future Directions . 10

2 Technical Overview 12
2.1 Δ-Equivalence from Propositional Proofs . 12
2.2 Construction of iO for Δ-equivalent Circuits . 15
2.3 iO For Turing Machines with 𝑃𝑉 -proof of Equivalence . 20

2.3.1 Proof of Security . 21

3 Preliminaries: Part I 23
3.1 Propositional Logic Systems . 23
3.2 Cook’s Theory 𝑃𝑉 . 24
3.3 Theory 𝑃𝑉1 . 26

4 Δ-Equivalent Circuits 27
4.1 Background . 28
4.2 Definition of Δ-Equivalent Circuits . 28
4.3 Δ-Equivalence from Propositional Proofs . 29

5 Preliminaries: Part II 32
5.1 Learning with Errors . 32
5.2 Pseudorandom Generators . 33
5.3 Puncturable Pseudorandom Functions . 33
5.4 Homomorphic Encryption . 33
5.5 Indistinguishability Obfuscation for Circuits . 34
5.6 Somewhere Extractable Hash . 34
5.7 SNARGs for Batch-NP . 36

6 iO for Δ-Equivalent Circuits 38
6.1 Somewhere Extractable Hash with Consistency Proof . 38
6.2 Construction of ΔiO . 41
6.3 Security . 41

7 iO for Turing Machines 51
7.1 Δ-Equivalence for Turing Machines . 51
7.2 Succinct Description of Cook’s Translation . 52
7.3 Δ-Equivalence for Turing Machines from Cook’s Theory 𝑃𝑉 54
7.4 Construction of iO for Turing machines . 58

2

8 Applications 62
8.1 Witness Encryption for Circuits . 62
8.2 Witness Encryption for Turing Machines . 65
8.3 SNARGs for Turing Machines . 68

A Proof of Theorem 9 80
A.1 Succinct Description of Translated Formulas . 81
A.2 Succinct Description of Cook’s Translation . 84

3

1 Introduction

Program obfuscation is the technique of converting a computer program into a new version that re-
tains the functionality of the original but is immune to reverse-engineering. While a formal study of
this notion was initiated at the turn of this century [Had00, BGI+01], the past decade has seen a re-
newed push towards its study. The notion of indistinguishability obfuscation (iO) [BGI+01] has emerged
as the central figure, with a long sequence of works aimed towards investigating its existence (see e.g.,
[GGH+13, PST14, GLSW15, AJ15, BV15, Lin16, LV16, LPST16b, GMM+16, LPST16a, AS17, Lin17, LT17,
Agr19, JLMS19, AJL+19, BDGM20, AP20, GJLS21, WW21, GP21]). This line of work recently led to the
breakthrough result of [JLS21] who constructed iO for general functions from well-founded assumptions.

A parallel line of research over the last decade has demonstrated that most cryptographic primitives,
including several powerful ones such as witness encryption [GGSW13], multiparty non-interactive key ex-
change [BZ14], succinct non-interactive arguments [SW21, BCG+18], software watermarking [CHN+16],
and deniable encryption [SW21] can be built from iO. Moreover, iO has also found appeal outside cryp-
tography, e.g. for establishing hardness of Nash equilibrium [BPR15] and the hardness of certain tasks
in differential privacy [BZ14, BZ16]. These results have established iO as a “central hub” of theoretical
cryptography.

Input-Length Barrier. A thorn to all this remarkable progress is a limitation of all known constructions
of iO: the security reduction incurs a loss that is exponential in the input length of the function. This has
severe negative consequences on the necessary assumptions and the efficiency of the scheme. In particular,
it requires the program input length to be a priori bounded. This, in turn, prevents us from realizing iO
for efficient computing models such as Turing machines with unbounded input length.1

This state of affairs motivates the following question:

Can we build iO with a loss in the security reduction independent of the input length?

To answer the above question, it is first important to understand whether the input-length barrier
stems from technical limitations or something more fundamental. To develop intuition, it is useful to recall
a folklore argument that explains the origin of the input-length barrier. Here, we sketch the informal idea2

(adapted from [GGSW13, LZ17]) based on the meta-reduction technique [BV98].
Let us first recall the security definition of iO: if two programs 𝑃1 and 𝑃2 are functionally equivalent

(i.e., for any input 𝑥 , 𝑃1(𝑥) = 𝑃2(𝑥)), then their obfuscations must be indistinguishable to any polynomial-
time algorithm. Now, suppose that there is a construction of iO whose security can be based on some
polynomial-time hardness assumption (say) 𝑌 . That is, there is a polynomial-time reduction such that
given black-box access to an adversary for the iO scheme, it can break the assumption 𝑌 . Consider the fol-
lowing “trivial” polynomial-time adversary that chooses two programs 𝑃1, 𝑃2 that are functionally equiv-
alent except that their outputs differ at some input (say) 𝑥∗. Such an adversary can easily distinguish
between obfuscations of 𝑃1 and 𝑃2 by evaluating them on 𝑥∗; yet the reduction must seemingly work for
such an adversary as well. Then, combining the reduction with this trivial adversary, we have found a
polynomial-time algorithm for 𝑌 , which is unlikely.

To prevent the above argument, it seems that the reduction must check whether the two programs 𝑃1, 𝑃2
are functionally equivalent so as to not be “fooled” by the trivial adversary. But how can the reduction
check equivalence? One natural way is to iterate through all the inputs one by one. Indeed, this is the
strategy implicit in the security proofs of all general-purpose constructions of iO. This strategy, however,
leads to a security loss that is exponential in the input length.

1Some prior works overcome this barrier by relying on non-standard assumptions.
2We stress that this is not a formal proof. Turning this argument into a formal proof runs into subtle technical challenges.

4

Can we use an alternative strategy that does not incur such a loss? A sequence of prior works [GPS16,
GS16, GPSZ17, LZ17] demonstrate that the exponential loss can be avoided in some cases when functional
equivalence can be decided in polynomial time [LZ17]. This naturally limits their applicability (see Section
1.4 for discussion). Indeed, in general, functional equivalence may not be efficiently checkable. We ask
whether it is possible to overcome the input-length barrier in such cases as well.

A Broader Perspective. The seeming necessity of checking functional equivalence and its consequences
is in fact an example of a broader phenomenon in cryptography. The security definition of many crypto-
graphic primitives is predicated on a mathematical premise that is not decidable inNP. For example, the
security of witness encryption [GGSW13] for a language 𝐿 requires that a ciphertext encrypted using an
instance 𝑥 ∉ 𝐿 must remain semantically secure. Similarly, the soundness definition of a proof system for
a language 𝐿 requires that any proof for an instance 𝑥 ∉ 𝐿 must be rejected by the verifier. In both of these
cases, “𝑥 ∉ 𝐿” is the mathematical premise, and deciding its truthfulness is a 𝑐𝑜NP problem that might
require exponential time.

The difficulty of checking the mathematical premise can be leveraged to employ a similar meta-reduction
technique as discussed above to establish barriers for other cryptographic primitives. This is reflected in
the case of witness encryption, where all known constructions incur a security loss exponential in the
witness length. In the regime of proof systems, Gentry and Wichs [GW11] leverage this observation to
rule out adaptively-sound succinct non-interactive arguments [Mic00] based on falsifiable assumptions
[Nao03]. Moreover, even known non-adaptively sound constructions (obtained by instantiating [SW21]
with existing iO constructions) incur an exponential loss in the witness length.3

A New Approach. We present a new framework aimed towards overcoming the input-length barrier to
iO. We then leverage the power of iO to overcome analogous barriers for other cryptographic primitives.

Our starting point is the following simple observation: suppose we are given a secure indistinguisha-
bility obfuscator. In order to leverage its security for a given pair of programs, we first write amathematical
proof to convince ourselves (and others) that the two programs are functionally equivalent. Importantly,
this proof is short so that anyone can verify it. In particular, it is significantly shorter than the “brute-force”
proof that involves iterating over every input. Our key insight is to rely on such (short) mathematical proofs
of functional equivalence for proving the security of the obfuscator.

This raises the following question: How can we use the mathematical proof of equivalence in proving
security? Our approach involves two principal steps:

– Incremental Proofs of Equivalence: We first rely on the following local property of mathematical
proofs: recall that a mathematical proof consists of a series of true propositions, one followed by
another. The truthfulness of each proposition is derived from only a constant number of previous
propositions and an inference rule. We leverage this property to show that a short mathematical
proof (of specific form) of “𝐶1(𝑥) = 𝐶2(𝑥)” for two circuits 𝐶1 and 𝐶2 can be translated to a small
number of incremental changes that transform the circuit 𝐶1 into 𝐶2. Crucially, each incremental
change is of small size.

– New Template for iO: Next, we provide a new construction template for iO to leverage the above
proofs of equivalence. Our template involves obfuscating an input circuit in a gate-by-gate manner
to preserve its topology in the obfuscated circuit. This allows us to devise a security proof consisting
of a polynomial number of steps, where in each step we only switch an obfuscated subcircuit corre-
sponding to an incremental change. This results in a security loss exponential only in the size of the
subcircuit but independent of the input length.

3We discuss more on this later in Section 1.2.

5

1.1 Our Results

We now proceed to describe our results.

I. iO for Circuits. We first consider the circuit model of computation. Our results rely on proofs in
Propositional Logic [Bus98] — a branch of logic that deals with propositions and relations among them.

We define a notion of propositional proof of equivalence for circuits. Roughly speaking, we say that two
circuit families {𝐶1

𝑛}𝑛∈N and {𝐶2
𝑛}𝑛∈N have a propositional proof of equivalence, if there exists a proof in

propositional logic system to establish that 𝐶1
𝑛 and 𝐶2

𝑛 are functionally equivalent. Furthermore, we say
that the proof is efficient if it is polynomial-sized.

Our first result is an obfuscation scheme for any two families of circuits with efficient propositional
proofs of equivalence, with security loss independent of input length.

Theorem 1 (iO for Circuits from Propositional Proofs of Equivalence, Informal). There exist polynomials
𝑝1(·), 𝑝2(·, ·, ·), such that assuming the hardness of the following, there exists a construction of iO for any two
families of circuits {𝐶1

𝑛}𝑛∈N, {𝐶2
𝑛}𝑛∈N with efficient propositional proofs of equivalence:

– Polynomial-hardness of Learning with Errors (LWE),

– 2𝑝1 (𝜆) -secure one-way functions,

– 2𝑝1 (𝜆) -secure indistinguishability obfuscation for circuits of size 𝑝2(𝜆, log |𝐶1
𝑛 |, log |𝐶2

𝑛 |),

where 𝜆 is the security parameter of the iO scheme.

A few remarks are in order:

– Unlike prior works, we allow 𝑛, namely, the input length of circuits 𝐶1
𝑛,𝐶

2
𝑛 (and their sizes) to arbi-

trarily depend on 𝜆, and not be bounded by 𝑝1, 𝑝2.

– The above theorem only requires an underlying indistinguishability obfuscator for small circuits of
size essentially independent of 𝐶1

𝑛,𝐶
2
𝑛 .

We obtain the above result in two steps: we first define a new notion of Δ-equivalent circuits and show
how Δ-equivalent circuits can be constructed via Proofs in Propositional Logic [Bus98]. We then show
how to construct iO for Δ-equivalent circuits, with security loss independent of input length.

Step 1: Δ-Equivalent Circuits. Informally, we say that two circuit families are Δ-equivalent, if there exist a
polynomial number of intermediate circuits such that each two adjacent circuits only differ by a logarithmic
number of gates, and the two subcircuits formed by these gates are functionally equivalent.

We demonstrate that efficient propositional proof of equivalence implies Δ-equivalence for circuits.

Lemma 1 (Δ-Equivalence from Propositional Logic Proofs). If there exist polynomial-size propositional
proofs of equivalence for the circuit families {𝐶1

𝑛}𝑛∈N and {𝐶2
𝑛}𝑛∈N, then {𝐶1

𝑛}𝑛∈N and {𝐶2
𝑛}𝑛∈N areΔ-equivalent.

Given a pair of circuits (𝐶1
𝑛,𝐶

2
𝑛) and a propositional proof of equivalence, we prove this lemma by

embedding the propositional formulas (in the proof of equivalence) inside 𝐶1
𝑛 to gradually transform it

into 𝐶2
𝑛 , while preserving the functionality. We leverage the “local” property of the proof as well as the

truthfulness of each formula to establish Δ-equivalence. See Section 2.1 for an overview of the proof.

Step II: iO for Δ-Equivalent Circuits. We next provide a construction of iO for Δ-equivalent circuits.

Lemma 2 (iO for Δ-Equivalent Circuits, Informal). There exist polynomials 𝑝1(·), 𝑝2(·, ·, ·), such that assum-
ing the same hardness assumptions as in Theorem 1, there exists a construction of iO for any two Δ-equivalent
circuit families {𝐶1

𝑛}𝑛∈N, {𝐶2
𝑛}𝑛∈N.

6

In order to prove the above lemma, we depart from prior templates for iO. To leverage Δ-equivalence,
we develop a new (albeit, natural) gate-by-gate obfuscation template that preserves the topology of the
input circuit. Due to such a design, a key challenge is to overcome various “mix-and-match” attacks,
and we develop several techniques towards that end. A central component in our construction is a new
notion of somewhere extractable hash functions with consistency proofs. We show how to build this object by
combining somewhere extractable hash functions [HW15] with (publicly-verifiable) non-interactive batch
arguments [CJJ21]. Both of these objects, in turn, can be based on the LWE assumption. We refer the
reader to Section 2 for an overview of our technical approach.

II. iO for Turing Machines. We next tackle the challenging problem of constructing iO for Turing
machines with unbounded length inputs. All prior results can either handle inputs of a priori bounded
length [BGL+15, CHJV15, KLW15], or require very strong assumptions [BCP14, ABG+13, IPS15, LPST16b]
(some of which are in fact known to be implausible in general [BCPR14, GGHW14, BSW16, LPST16b]).

We show how to obfuscate Turing machines with arbitrary length inputs based on similar assumptions
as used for obfuscating circuits. Our approach is applicable to Turing machines whose functional equiv-
alence can be proven in Cook’s theory 𝑃𝑉 [Coo75]. Cook introduced the theory 𝑃𝑉 in 1975 to formalize
the intuition of polynomial-time reasoning. 𝑃𝑉 is a fundamental theory in the area of proof complexity
[Par71, Coo75, Bus86], and is useful for translating theorems to propositional logic proofs.

We say that two Turing machines 𝑀1 and 𝑀2 have a 𝑃𝑉 -proof of equivalence if the functional equiva-
lence of 𝑀1 and 𝑀2 is provable in 𝑃𝑉 . We prove the following result:

Theorem 2 (iO for Turing Machines, Informal). Assuming quasi-polynomial hardness of Learning with Er-
rors, sub-exponentially secure one-way functions, and sub-exponentially secure indistinguishable obfuscation
for circuits, there exists a construction of iO for Turing machines with unbounded-length inputs and 𝑃𝑉 -proofs
of equivalence.

On the use of Sub-exponential Assumptions. Although we rely on the sub-exponential security of the
underlying primitives in our results, the hardness requirement for the underlying primitives is independent
of the input length of the input circuits.

To our understanding, there is no obvious barrier to avoiding these sub-exponential assumptions due
to the following observation: given a series of intermediate circuits, verifying Δ-equivalence only takes
polynomial time, since checking whether two subcircuits of size 𝑂 (log𝑛) are functionally equivalent or
not only takes 2𝑂 (log𝑛) = poly(𝑛) time. Hence, constructing ΔiO for Δ-equivalent circuits from polyno-
mial hardness is not ruled out by the input-length barrier. We therefore view our use of sub-exponential
assumptions as a technical limitation that we can hope to overcome in the future.

1.2 Applications

We now discuss applications of our results towards building witness encryption and succinct non-interactive
arguments (SNARGs) with properties that were not known to be achievable earlier. Our results for these
primitives apply for a subclass ofNP ∩ 𝑐𝑜NP languages whose disjointness with its complement can be
proven in some logic system.

We start by characterizing this class of languages.

Mathematical Proof of Disjointness. Intuitively, we say a language 𝐿 ∈ NP ∩ 𝑐𝑜NP has proof of
disjointness, if “𝐿 ∩ 𝐿 = 𝜙” can be proven in some mathematical logic system, where 𝐿 = {0, 1}∗ \ 𝐿 is the
complement of 𝐿 and both 𝐿, 𝐿 are represented by circuits or Turing machines.

Specifically, let {𝑀𝑛}𝑛∈N and {𝑀𝑛}𝑛∈N be the circuit families that define the NP-relation of 𝐿 and 𝐿
respectively. We say that 𝐿 has propositional proof of disjointness, if “𝑀𝑛 (𝑥,𝑤) = 1→ 𝑀𝑛 (𝑥,𝑤) ≠ 1” has
polynomial-size proofs in the extended Frege system. This intuitively requires that the statement

7

“For any 𝑥 , if𝑀𝑛 (𝑥, ·) is satisfiable, then𝑀𝑛 (𝑥, ·) is not.”

can be proven in propositional logic sytem. Similarly, let 𝑀,𝑀 be the Turing machines that defines 𝐿, 𝐿
respectively. We say 𝐿 has 𝑃𝑉 proof of disjointness, if 𝑀 (𝑥,𝑤) = 1 → 𝑀 (𝑥,𝑤) ≠ 1 can be proven in
Cook’s theory 𝑃𝑉 . Since propositional translation [Coo75] can translate a 𝑃𝑉 proof to polynomial-size
propositional proofs, 𝑃𝑉 proof of disjointness implies propositional proof of disjointness.

What languages have proofs of disjointness? We expect that for most NP ∩ 𝑐𝑜NP languages that
we are interested in, we can write a mathematical proof of disjointness. Indeed, otherwise it is hard to
convince ourselves that the language is in NP ∩ 𝑐𝑜NP. We give a concrete example below, namely, the
language TAUT in computational complexity. Furthermore, we will show in Section 1.3 that for crypto-
graphic applications, a large part of such mathematical proofs can be formalized in theory 𝑃𝑉 .

Example. TAUT is the language that contains all tautologies. Recall that a tautology is a formula that
always evaluates to true for any truth assignment. TAUT is known to be 𝑐𝑜NP-complete and hence is an
important language in complexity theory.

By the completeness theorem of propositional logic [Bus98], any tautology has a proof in propositional
logic. However, such a proof may not have a polynomial size. Hence, to ensure the honest prover/encryptor
runs in the polynomial-time in the setting of SNARGs/WE, we consider a slight variant of TAUT, which
is the following promise language 𝐿TAUT = (𝐿YES, 𝐿NO). 𝐿YES contains all tautologies with a polynomial-
bounded propositional logic proof, whereas 𝐿NO contains all non-tautologies. Then 𝑃𝑉 proof of disjoint-
ness can be extended naturally to promise languages: we require “𝐿YES∩𝐿NO = 𝜙” can be proven in theory
𝑃𝑉 . Cook [Coo75] showed that the soundness of propositional logic system is provable in 𝑃𝑉 , which
implies that 𝐿TAUT has 𝑃𝑉 proof of disjointness.

We now proceed to discuss applications to witness encryption and SNARGs.

I. Witness Encryption. A witness encryption (WE) scheme allows an encryptor to use an instance 𝑥
from a language 𝐿 to encrypt a message 𝑚 such that anyone who knows a witness 𝑤 for 𝑥 can retrieve
the message𝑚. Security requires that if 𝑥 ∉ 𝐿, then the ciphertext hides𝑚. As discussed earlier, all prior
constructions of WE only support bounded witness lengths due to the input-length barrier.

As a generic application of Theorem 1, we build a WE scheme for any language 𝐿 ∈ NP ∩ 𝑐𝑜NP with
propositional proof of disjointness, with security loss independent of the witness length. Furthermore, as
an application of Theorem 2, we build a WE scheme for Turing machines for any language 𝐿 inNP∩𝑐𝑜NP
with 𝑃𝑉 proof of disjointness. The latter scheme can support witnesses of unbounded length. The ciphertext
size is independent of the witness length, but grows with the running time of the Turing machine 𝑀 .

II. Succinct Non-Interactive Arguments. A non-interactive argument system for anNP language 𝐿 is
said to be succinct if the proof size is much smaller than the witness size. Gentry and Wichs (GW) [GW11]
proved that such argument systems cannot be constructed with a black-box proof of adaptive4 soundness
to falsifiable assumptions. On the other hand, a non-adaptively sound construction based on iO was given
by Sahai and Waters (SW) [SW21].

While iO is not a falsifiable assumption, one can instantiate the SW construction with a recent iO
scheme (such as [JLS21]) to obtain a scheme based on falsifiable assumptions. This resulting scheme,
however, incurs a security loss exponential in the witness length due to the input-length barrier to iO.
This has two consequences: first, this means that the scheme bypasses the GW lower bound due to the fact
that the security reduction is able to decide the language.5 Second, the scheme can only handle witnesses

4Adaptive (resp., non-adaptive) soundness refers to the setting where the adversary can choose the challenge instance after
(resp., before) viewing the common reference string.

5Indeed, this scheme can also achieve adaptive security by standard complexity leveraging (over the instances) without further
security degradation.

8

of a priori bounded length; in particular, the size of the common reference string (which contains the
obfuscation) grows with the size of the witness.

We show how to overcome these limitations by constructing SNARGs that can support witnesses of
unbounded length for any language 𝐿 ∈ NP ∩ 𝑐𝑜NP with 𝑃𝑉 proof of disjointness. The CRS size is
independent of the witness length and only depends on the running time of the Turing machine 𝑀 that
defines 𝐿. Our base scheme is non-adaptively sound, but by standard complexity leveraging over the
instances, it can also achieve adaptive soundness.

An important step towards this obtaining this result is to build puncturable pseudorandom functions
(PRFs) [BW13, BGI14, KPTZ13] with a 𝑃𝑉 -proof of functionality preservation. As we discuss shortly,
puncturable PRFs based on the GGM PRFs [BW13, BGI14, KPTZ13, SW21] satisfy this property.

1.3 How to Use iO with Proofs of Equivalence

We provide some general guidance for building new applications using our results. We consider some tools
that are commonly used within iO-based applications and demonstrate how one can formalize properties
about such tools in propositional logic or theory 𝑃𝑉 . Such proofs can then be used to build proofs of
equivalence of circuits or Turing machines involved in the desired application.

In Section 1.3.1, we consider puncturable PRFs that are used ubiquitously in constructions involving
iO [SW21]. Specifically, we show that the functionality preservation property of GGM-based puncturable
PRFs [BW13, BGI14, KPTZ13, SW21] can be proven in theory PV. Next, in Section 1.3.2, we provide gen-
eral guidance on proving properties of tools in group-based cryptography and lattice-based cryptography.
As concrete examples, we demonstrate that the correctness of ElGamal encryption [ElG85] and Regev’s
encryption [Reg05] can be proven in theory 𝑃𝑉 .

1.3.1 Puncturable PRFs

A puncturable PRF [BW13, BGI14, KPTZ13, SW21] PRF𝑝𝑢𝑛𝑐 is a pseudorandom function with the additional
property that allows one to puncture the PRF key 𝑘 at any point 𝑥∗ to obtain a punctured key 𝑘 \ {𝑥∗}. For
each 𝑥 ≠ 𝑥∗, the functionality preservation property guarantees that PRF(𝑘, 𝑥) = PRF𝑝𝑢𝑛𝑐 (𝑘 \ {𝑥∗}, 𝑥).

iO-based constructions that involve the use of puncturable PRFs require the functionality preser-
vation property to establish the functional equivalence of the two programs being obfuscated. Since
our constructions require proofs of equivalence in theory 𝑃𝑉 , this translates to requiring that the func-
tionality preservation property of PRF𝑝𝑢𝑛𝑐 can be proven in theory 𝑃𝑉 . Formally, we say that a punc-
turable PRF PRF𝑝𝑢𝑛𝑐 has a 𝑃𝑉 proof of functionality preservation if the algorithms PRF𝑝𝑢𝑛𝑐 , PRF and
the puncturing algorithm can be defined in 𝑃𝑉 as function symbols and there exists a proof in 𝑃𝑉 for
𝑥 ≠ 𝑥∗ → PRF(𝑘, 𝑥) = PRF𝑝𝑢𝑛𝑐 (𝑘 \ {𝑥∗}, 𝑥).

We observe that the GGM-based construction of puncturable PRFs has a 𝑃𝑉 proof of functionality
preservation. We emphasize that we do not need to modify the GGM construction nor its natural mathe-
matical proof of functionality preservation. All we need to do is formalize the existing mathematical proof
of functionality preservation in theory 𝑃𝑉 . It is important to note that theory 𝑃𝑉 does not allow general
proof-by-induction rules. Instead, it only allows the following “polynomial-time induction” rule.

If Φ(0) holds and Φ(𝑥) → (Φ(2𝑥) ∧ Φ(2𝑥 + 1)) holds for every 𝑥, then Φ(𝑥) holds for all 𝑥,

where Φ(𝑥) is a formula in 𝑃𝑉 .
Fortunately, the binary tree structure of the GGM construction is naturally compatible with the polynomial-

time induction rule. Hence, the functionality preservation property can be naturally formalized in 𝑃𝑉 .

9

1.3.2 Proving Arithmetic Properties in 𝑃𝑉

In addition to puncturable PRFs, iO-based applications often involve the use of cryptographic primitives
such as commitment schemes and encryption schemes. In such cases, key properties of these primitives
such as perfect binding or correctness of decryption are essential for establishing the functional equiva-
lence of the programs being obfuscated. We now discuss how such properties can be proven in theory
𝑃𝑉 when the cryptographic primitives are instantiated using group-based cryptography and lattice-based
cryptography.

The general principle involves the following two steps:

– First, write a mathematical proof of such property in natural language.

– Second, examine the basic theorems and axioms used in the mathematical proof to ensure that they
can be formalized in theory 𝑃𝑉 .

For illustration purposes, we demonstrate how to prove correctness of group-based and lattice-based
public key encryption schemes in theory 𝑃𝑉 .

Instantiation from Groups. As an example in group-based cryptography, we show how to prove the
correctness of ElGamal encryption [ElG85] in theory 𝑃𝑉 .

Recall that the public key of ElGamal encryption is of the form (𝑔,𝑔𝑠) where 𝑠 is the secret key, and
𝑔 ∈ G is a group element. To encrypt a message 𝑚 ∈ G with random coins 𝑟 under the public key, we
compute the ciphertext as (𝑔𝑟 , (𝑔𝑠)𝑟 ·𝑚).

Following the general principle described above, we can prove the correctness in 𝑃𝑉 as follows:

– We first write down the mathematical proof of correctness of ElGamal in natural language, as follows.
Let (𝑐1, 𝑐2) be a ciphertext, then 𝑐1 = 𝑔

𝑟 , 𝑐2 = (𝑔𝑠)𝑟 ·𝑚. The decryption algorithm Dec computes

Dec((𝑐1, 𝑐2), 𝑠) = 𝑐2/𝑐1
𝑠 = (𝑔𝑠)𝑟 ·𝑚/(𝑔𝑟)𝑠 = (𝑔𝑠)𝑟 ·𝑚/(𝑔𝑠)𝑟 =𝑚 · ((𝑔𝑠)𝑟 · /(𝑔𝑠)𝑟) =𝑚.

– Formalization in 𝑃𝑉 : The above mathematical proof only relies on some basic theorems in arith-
metic such as commutative law and associative law of modular multiplication and (𝑔𝑠)𝑟 = (𝑔𝑟)𝑠 .
All such basic theorems can be formalized and proven in 𝑃𝑉 [Coo75, Bus86]. Therefore, the above
mathematical proof can be formalized in 𝑃𝑉 .

For more details, see Section 8.

Instantiation from Lattices. Using the above ideas, one can also prove the correctness of Regev’s
public key encryption scheme [Reg05] in 𝑃𝑉 . The main point is that the proof of correctness in natural
language only uses some basic arithmetic theorems such as commutative law, distributive law, and some
basic properties about inequalities to reason about rounding operations. By Buss’s work [Bus86], all such
theorems can be proven in 𝑃𝑉 . For more details, see Section 8.

1.4 Discussion and Future Directions

On Propositional Logic and Theory 𝑃𝑉 . Since proofs in propositional logic are central to our results,
it is important to understand their provability. If one does not care about the proof length, propositional
logic is quite powerful due to the completeness theorem [Bus98] which says that any semantically true
formula6 in propositional logic has a proof. Furthermore, we expect that most theorems proven in math-
ematical logic systems other than propositional logic (e.g. Peano Arithmetic) can also be represented in

6A propositional formula is semantically true if it always evaluates to true under any truth assignments.

10

propositional logic if we set a bound on the number of digits in the natural numbers, and use truth variables
in propositional logic to represent the digits of natural numbers.

Propositional logic is powerful enough for proving the equivalence of two Turing machines: for any
two functionality equivalent polynomial-time Turing machines, we can set an upper bound on the input
length that is super-polynomial in the security parameter. Then, by the completeness theorem of propo-
sitional logic, there always exists a propositional logic proof of equivalence for the two Turing machines
under the given input bound. However, there is no guarantee that such proofs in propositional logic have
polynomial size.

Our results crucially require the proof size to be a polynomial. Thus, it is important to understand
what can be proven with polynomial-size propositional proofs. This question has been extensively studied
in proof complexity. In [Coo75], Cook introduced a theory 𝑃𝑉 to formalize the intuition of “polynomial-
time reasoning” and showed that any proof in 𝑃𝑉 can be translated to a polynomial-size propositional
logic proof. Later, a series of works [PW85, Bus86, KP90] proposed other propositional translations. In
this work, we use 𝑃𝑉 since it is conceptually the simplest. 𝑃𝑉 allows the definition of new function symbols
using Cobham’s characterization of polynomial time functions [Cob65]. Basic arithmetic operations can
be introduced in this way, and their related properties can be proved in 𝑃𝑉 .

On the positive side, Cook [Coo75] suggested that a good part of elementary number theory can be
formalized in 𝑃𝑉 if the theorems are stated carefully. In the area of linear algebra, [SC04] showed that the
Cayley–Hamilton theorem, basic properties of determinants, and basic matrix properties can be proven in
𝑃𝑉 . For theorems in complexity, it is known that the Cook-Levin theorem and PCP theorem can be formal-
ized and proven in 𝑃𝑉 [CK07, Pic15]. Indeed, Cook observed that the correctness of “natural” polynomial-
time algorithms usually can be proven in 𝑃𝑉 [Coo]. In this work, we give evidence that a large part of
cryptographic algorithms fall in this category. They include functionality preservation of puncturable PRFs
and the correctness of ElGamal Encryption [ElG85] and Regev’s encryption [Reg05] (see Section 1.3).

On the negative side, it is known that Fermat’s little theorem is unlikely to be provable in 𝑃𝑉 unless
factoring can be solved in polynomial time, due to the witnessing theorem [Bus86]. Because of the same
reason, the correctness of any polynomial-time algorithm that decides primes is unlikely to be proven in
𝑃𝑉 . Moreover, assumingNP ≠ 𝑐𝑜NP, there are tautologies that can not be proven with polynomial-size
proofs in propositional logic, because TAUT is 𝑐𝑜NP-complete [CR79].

BeyondTheory 𝑃𝑉 . As discussed earlier, our approach relies on polynomial-size proofs in propositional
logic. To increase the scope of our approach, a future direction is to handle super-polynomial size propo-
sitional proofs. The main challenge is that in our present approach, the sizes of the intermediate circuits
grows with the size of the propositional proofs, and thus the obfuscated program will be super-poly size
if we naively rely on super-polynomial size propositional proofs. We hypothesize that a potential solution
could be to restrict the logic system to “bounded-space reasoning” theories, and finding a more clever way
to build the intermediate circuits from propositional logic proofs.

An alternate future direction is to generalize our idea to leverage the “local” property of proofs in
more powerful logic systems such as Buss’s theories 𝑆𝑖2,𝑇 𝑖2 [Bus86] since more theorems can be proven in
them. Ultimately, one might ask if we can build iO for programs whose equivalence is provable in Zer-
melo–Fraenkel set theory with the axiom of choice (ZFC). Since ZFC is the most common foundation of
mathematics, such a result might be sufficient for most applications of iO. The main seeming difficulty
towards this goal is that our current method crucially relies on the property that each line of the propo-
sitional proof is also a circuit, whereas a line in ZFC is naturally a Turing machine that evaluates the
truthfulness of that line. Hence, an interesting future direction is to extend our “gate-by-gate” framework
to “Turing-machine-by-Turing-machine” framework to support ZFC.

TowardsNP ∩ 𝑐𝑜NP. Our method of leveraging mathematical proofs limits us to circuits whose equiv-
alence can be verified in polynomial time. Since circuit equivalence is trivially in 𝑐𝑜NP, ideally, we could

11

hope to bypass the input-length barrier for the language of circuit pairs in NP ∩ 𝑐𝑜NP [LZ17].
Our work makes an important attempt in this direction. We note, however, that not all pairs of circuits

whose functionally equivalence is inNP ∩ 𝑐𝑜NP necessarily have short mathematical proofs. Therefore,
fully realizing the above vision is an important goal for future work.
Comparison with Decomposable iO. Liu and Zhandry [LZ17] introduced the notion of decomposable
iO to unify prior works [GPS16, GS16, GPSZ17] that attempt to avoid the use of sub-exponential hardness
assumptions in some specific applications of iO. In the same work [LZ17], Liu and Zhandry proved that
deciding whether two circuits are “decomposing-equivalent” is in P. This naturally limits the applicability
of their framework. For example, it cannot support the Sahai-Waters construction of public-key encryp-
tion from iO and pseudorandom generators [SW21]. This is because the security of the pseudorandom
generator implies that the two circuits of consideration in the security proof cannot be “decomposing-
equivalent” since the latter is in P. Indeed, a similar issue arises in many other applications and for this
reason, decomposable iO is applicable when it is easy to check equivalence. (See Section 1.5 in [LZ17] for
more discussion.)

Our work does not require circuit equivalence to be decidable in P. Instead, we only require the
existence of a witness that allows us to verify the equivalence of two circuits, where the witness is a
polynomial-size propositional logic proof. In general, deciding whether the equivalence of two circuits
has a short propositional logic proof is not known to be in P.
On Our Gate-by-Gate Template for iO. In this work, we develop a new (topology preserving) “gate-
by-gate” template for building iO for general circuits from iO for “small” circuits.

While this approach is crucial towards obtaining our results, we observe that it also yields some ad-
ditional features that might be beneficial in specific use cases. Suppose after distributing an obfuscated
circuit, one wishes to modify some gates in the underlying circuit (e.g., for patching a vulnerability in a
program) [AJS17, GP17]. Instead of obfuscating the modified circuit from scratch (which might be costly),
our “gate-by-gate” template allows for easy replacement of the relevant gates in the obfuscated circuit. We
defer a formal treatment of this property to future work.

2 Technical Overview

We now provide an overview of our results. In Section 2.1, we discuss how to establish Δ-Equivalence
starting from propositional proofs of equivalence of two circuits. In Section 2.2, we describe our con-
struction of iO for Δ-equivalent circuits. Finally, in Section 2.3, we describe our construction of iO for
unbounded-input Turing machines with 𝑃𝑉 proofs of equivalence.

2.1 Δ-Equivalence from Propositional Proofs

We show that given two circuits𝐶1,𝐶2, if the proposition “𝐶1(𝑥) = 𝐶2(𝑥)” can be proven in a propositional
logic system with extension axioms such as extended Frege system (EF), then𝐶1,𝐶2 are Δ-equivalent up to
some padding. That is, we can find a series of intermediate circuits 𝐶 ′1,𝐶 ′2, . . . ,𝐶 ′ℓ with the same topology
such that every two adjacent circuits 𝐶 ′𝑖 ,𝐶 ′𝑖+1 only differ in a logarithmic number of gates, and the subcir-
cuits formed by these gates in 𝐶 ′𝑖 ,𝐶 ′𝑖+1 are functionality equivalent. Furthermore, the initial circuit 𝐶 ′1 and
the final circuit 𝐶 ′ℓ are obtained by padding 𝐶1,𝐶2, respectively, with some dummy gates.
Background. We first recall the definition of propositional proof systems with extension axioms. Such
logic systems can be described as a set of variables and connectives including “→”, “↔”, “∧”, “∨”, and
“¬”, which refers to “imply”, “equal”, “and”, “or”, and “negation”, respectively. A proof in the propositional
proof system is a series of propositional formulas, where each formula is derived from one of the following
cases.

12

– Axiom: The formula is in one of the following forms: 𝑃 → (𝑄 → 𝑃), (𝑃 → (𝑄 → 𝑅)) → ((𝑃 →
𝑄) → (𝑃 → 𝑅)), or ¬¬𝑃 → 𝑃 where 𝑃,𝑄, 𝑅 are formulas.

– Modus Ponens: The formula is in the form 𝑄 , and there are two previous formulas 𝑃, 𝑃 → 𝑄

derived before the current formula.

– Extension: The formula is in the form 𝑒 ↔ 𝑄 , where 𝑒 is a new variable that does not appear in
𝑄 and all previous formulas. This rule is used to introduce intermediate variables and hence can
shorten the proof size.

For a more detailed description of propositional logic proofs, see our preliminary (Section 3.1). For any
circuit, we can treat each of its wires as a variable in propositional logic, whose truth value represents the
wire value. Then the mathematical statement “𝐶1(𝑥) = 𝐶2(𝑥)” can be formalized in EF as a formula.

Assuming there exists a proof 𝜋 = (𝜃1, 𝜃2, . . . , 𝜃𝑘) in propositional logic for 𝐶1(𝑥) = 𝐶2(𝑥), we now
prove that 𝐶1,𝐶2 are Δ-equivalent. Equivalently, we only need to show that we can transform from 𝐶1 to
𝐶2 via a series of incremental changes, where each change replaces a logarithmic size subcircuit with a
functionally equivalent new subcircuit. To illustrate our high-level ideas, we firstly ignore the topology of
the circuits, and hence we can add gates and delete gates arbitrarily. Since we can always treat extension
rules as introducing a new wire in the circuit, we also assume there are no extension rules for simplicity.

Our transformation is based on the following key observations.

– The proof 𝜋 is “local”, i.e., the truthfulness of each 𝜃𝑖 follows from a constant number of previous
formulas in 𝜃1, . . . , 𝜃𝑖−1.

– The propositional formulas 𝜃1, 𝜃2, . . . , 𝜃𝑘 can also be regarded as boolean circuits, since the connec-
tives including “→” can be expressed as the combination of ∧,∨, and ¬ gates.

A Sketch of the Transformation. Based on these observations, our transformation from 𝐶1 to 𝐶2
proceeds in the following phases. We start with a circuit 𝐶 that is the same as 𝐶1. After the following
incremental changes to 𝐶 , 𝐶 will become 𝐶2.

– Grow 𝐶2. We add the circuit 𝐶2(𝑥) to 𝐶 in a gate-by-gate manner. Specifically, we add each gate of
𝐶2 in the topological order to𝐶 , while the output wire of𝐶 is still set to be the output wire of𝐶1(𝑥).
We only change the circuit 𝐶 for a constant number of gates when we add a gate, since we can
always assume such a gate has a constant arity without loss of generality.

– Grow the Proof. We add the formulas 𝜃1, 𝜃2, . . . 𝜃𝑘 in the proof 𝜋 one by one to 𝐶 as follows.
Note that each formula 𝜃𝑖 can be regarded as a circuit that computes the truth values of 𝜃𝑖 from its
variables.
Firstly, we add 𝜃1 to 𝐶 by modifying the output of 𝐶 as 𝐶1(𝑥) ∧ 𝜃1. Similarly, to add 𝜃2, we further
modify the output of 𝐶 to be 𝐶1(𝑥) ∧ 𝜃1 ∧ 𝜃2. We continue this process until all 𝜃1, 𝜃2, . . . , 𝜃𝑘 are
added. Then the output of 𝐶 becomes 𝐶1(𝑥) ∧ 𝜃1 ∧ 𝜃2 ∧ . . . ∧ 𝜃𝑘 .
We now show that we only change a small subcircuit in each step of the above process. There are
three cases for each 𝑖 , depending on how 𝜃𝑖 is derived.

– Axiom: In this case 𝜃𝑖 is one of the axioms, for example, 𝜃𝑖 is in the form 𝑃 → (𝑄 → 𝑃). We
can assume without loss of generality that 𝑃,𝑄 are constant size formulas, as we can always
reduce the size of 𝑃,𝑄 by assigning their subformulas to new variables using the extension
rule.

13

In this case the change from𝐶1(𝑥) ∧𝜃1∧ . . .∧𝜃𝑖−1 to𝐶1(𝑥) ∧𝜃1∧ . . .∧𝜃𝑖−1∧𝜃𝑖 can be regarded
as replacing a subcircuit that always outputs 1 with a new subcircuit 𝜃𝑖 . The functionality
equivalence between the two subcircuits follows from the fact that axioms must be tautologies.

– Modus Ponens: For this case, there exists some 𝑃,𝑄 such that 𝑃, 𝑃 → 𝑄 are the formulas
derived in the first (𝑖 − 1) formulas, and the current formula 𝜃𝑖 is 𝑄 . Similar to the case of
axioms, we can assume 𝑃,𝑄 are constant-size formulas.
In this case the change from𝐶1(𝑥)∧. . .∧𝑃∧. . .∧(𝑃 → 𝑄)∧. . .∧𝜃𝑖−1 to𝐶1(𝑥)∧. . .∧𝑃∧. . .∧(𝑃 →
𝑄) ∧ . . .∧𝜃𝑖−1∧𝑄 can be regarded as replacing a subcircuit 𝑃 ∧ (𝑃 → 𝑄) with a new subcircuit
𝑃 ∧ (𝑃 → 𝑄) ∧ 𝑄 . The functionality equivalence can be proved by enumerating all possible
truth assignment to 𝑃 and 𝑄 .

– Change the Output. Let 𝑜1, 𝑜2 be the output wires of 𝐶1,𝐶2 respectively. Then a proof of “𝐶1(𝑥) =
𝐶2(𝑥)” ends with 𝑜1 ↔ 𝑜2. Namely, 𝜃𝑘 is the formula 𝑜1 ↔ 𝑜2. Hence, we can replace the output of
𝐶 , which is 𝑜1 ∧ 𝜃1 ∧ . . . ∧ 𝜃𝑘 , with 𝑜2 ∧ 𝜃1 ∧ . . . ∧ 𝜃𝑘 . This step is an incremental change, since it can
be regarded as replacing the subcircuit 𝑜1 ∧ (𝑜1 ↔ 𝑜2) with 𝑜2 ∧ (𝑜1 ↔ 𝑜2).

– Shrink theProof. This phase deletes𝜃1, 𝜃2, . . . , 𝜃𝑘 in the circuit𝐶 . Specifically, we remove𝜃𝑘 , 𝜃𝑘−1, . . . 𝜃1
one by one in the reversing order that they are added.
This process is a series of incremental changes for the same reason as the “Grow the Proof” phase.

– Shrink 𝐶1. At the beginning of this phase, the circuit 𝐶 outputs 𝑜2, which is the output wire of
𝐶2(𝑥). The circuit 𝐶1 is still in 𝐶 , but its output wire 𝑜1 is not used anywhere. Then we delete the
gates of 𝐶1 in 𝐶 one by one in the reverse topological order. Finally, we obtain the circuit 𝐶 = 𝐶2.
Deleting a gate of 𝐶1 in this phase is an incremental change for the same reason as the “Grow 𝐶2”
phase.

The reader may already notice that the above sketch oversimplifies many details. For example, the
output of the circuit 𝐶 is computed as a series of ∧-gates, i.e. 𝐶 (𝑥) = 𝑜1 ∧ 𝜃1 ∧ 𝜃2 . . . in the “Grow the
Proof” phase, and we argue that we change the subcircuit 𝑃 ∧ (𝑃 → 𝑄) to 𝑃 ∧ (𝑃 → 𝑄) ∧𝑄 . However, in
the reality, we need to use the arity-2∧-gates to implement the series of∧-gates in𝐶 (𝑥). Then 𝑃∧(𝑃 → 𝑄)
and 𝑃 ∧ (𝑃 → 𝑄) ∧ 𝑄 may not be subcircuits, since the positions of 𝑃,𝑄 may not be consecutive in the
circuit.

Building An AND Tree. We resolve this issue by implementing the series of ∧-gates as a binary tree
of ∧-gates. Initially, on every leaves there is a gate that always outputs 1. Then in the “Grow the Proof”
phase, we replace the leaves with 𝜃𝑖 ’s one by one. Now, for each 𝜃𝑖 = 𝑄 obtained from modus ponens,
the subcircuit consists of the root-to-leaf paths of 𝑃, 𝑃 → 𝑄 and 𝜃𝑖 . This subcircuit contains only 𝑂 (log𝑘)
gates, which is logarithmic.

Handling Extension Rules. Another issue is how to handle the extension rules. Indeed, there is an
additional phase “Grow the Extension” between the “Grow 𝐶2” phase and the “Grow the Proof” phase,
where we handle all the extensions by introducing new wires in the circuit. Specifically, for any extension
of the form 𝑒 ↔ 𝑄 , we add a new wire 𝑒 and set it as the output wire of a circuit that computes𝑄 . Here we
can also assume𝑄 is only constant size for the same reason as the “Grow the Proof” phase. Also, between
the “Shrink the Proof” phase and the “Shrink 𝐶1” phase, we add a phase “Shrink the Extension” to delete
the wires in the reverse order that they are introduced.

More technical issues raise when we build iO leveraging the series of incremental changes above. As
we will show later, our construction of iO for Δ-equivalent circuits does not hide the topology of the input

14

circuit. As a result, in our Δ-equivalence definition, we require the circuits 𝐶1,𝐶2 and their intermediate
circuits 𝐶 ′1, . . . ,𝐶 ′ℓ have the same topology.

Padding the Circuit. To further preserve the topology during the incremental changes, we build a
padding algorithm Pad that can pad 𝐶1,𝐶2 to the two circuits with the same topology. Moreover, the
above series of incremental changes can now be modified to further preserve the topology of the circuit.

To achieve this, the idea is to implement the adding and deleting gates via changing the functionality of
the gates, instead of really adding or deleting them. Specifically, we build the following two helper circuits
Copy and Proj, which provide multiple output gate functionality and select input wires from all existing
wires, respectively.

– Copy: The Copy circuit copies a wire to multiple wires of the same value. It is constructed as a
binary tree of gates, where each tree node is a 2-output-1-input gate that either copies its input wire
to the two output wires, or always outputs zeros.

– Proj: The Proj circuit selects a wire from multiple wires. This circuit is also construed as a binary
tree of gates, where each tree node is a 2-input-1-output gate that either outputs its left child or its
right child.

Due to the tree structure, we can add a copy of the input wire in Copy or change the wire selected in
Proj by only changing a logarithmic number of gates.

Now we pad the input circuit 𝐶 as follows. For each gate in 𝐶 , the padding algorithm Pad attaches a
Copy circuit to each output wire of the gates in 𝐶 , and also attaches a Proj circuit to each input wire of
the gates in 𝐶 . Moreover, it connects the leaves of Proj circuits to all previous leaves of the Copy circuits.
Finally, we add some dummy gates that do nothing with their output wires padded with Copy and input
wires padded with Proj.

Now, to avoid changing the topology in the above incremental changes, instead of adding or deleting
gates, we change the functionality of existing dummy gates, or modify the functionality of Proj and Copy
circuits, while still keeping the size of the subcircuit logarithmic. For more details, see Section 4.3.

2.2 Construction of iO for Δ-equivalent Circuits

We now describe our construction of iO for Δ-equivalent circuits. Our high-level strategy is as follows:

– We first consider a notion of 𝛿 iO, namely, iO for circuits that only differ by a small subcircuit.
Specifically, we build 𝛿 iO for any two circuits that only differ by two logarithmic-size functionally
equivalent subcircuits.

– Next, we use 𝛿 iO to obfuscate Δ-equivalent circuits as follows. Recall that for any Δ-equivalent
circuits 𝐶1,𝐶2, there is a polynomial number of intermediate circuits 𝐶1 = 𝐶 ′1,𝐶

′
2, . . . ,𝐶

′
ℓ = 𝐶2, and

each two adjacent circuits𝐶 ′𝑖 ,𝐶 ′𝑖+1 only differ by two functionality equivalent logarithmic subcircuits.
From the first step, it follows that for every 𝑖 , 𝛿 iO(𝐶 ′𝑖) and 𝛿 iO(𝐶 ′𝑖+1) are indistinguishable. By a
hybrid argument, we can now establish the indistinguishability of 𝛿 iO(𝐶1) and 𝛿 iO(𝐶2).

Let us explain why this approach overcomes the input-length barrier. Whether two circuits only differ
by two functionality equivalent subcircuits of logarithmic size can be decided in polynomial-time, since
we only need to check all inputs to the subcircuit instead of all inputs to the entire circuit. Hence, the
input-length barrier does not apply to 𝛿 iO. Therefore, we can hope to build 𝛿 iO without a security loss
that is exponential in the input length.

Thus, the main task towards our goal is to build 𝛿 iO. Towards this end, we present a new template
for obfuscation that preserves the topology of the input circuit. This feature is crucial to proving security

15

without incurring a loss exponential in the input length. In particular, it allows us to make “local” changes
to leverage the fact the input pair of circuits only differ by a logarithmic-size functionally equivalent sub-
circuit. To the best of our understanding, this property is not satisfied by prior templates for obfuscation
(see, e.g., [AJ15, BV15, CHJV15, BGL+15, KLW15, GS18]).

Our Gate-by-Gate iO Template. Our first attempt is to mimic the gate-by-gate construction of garbled
circuits [Yao86] that preserves the structure of the input circuit. Specifically, for each gate 𝑔 in an input
circuit 𝐶 , we use a “small” iO to obfuscate the gate functionality. Note that the input and output wires
need to be encrypted since otherwise, an adversary can run the obfuscated program on arbitrary inputs
and observe the truth table of the gate 𝑔. Towards this end, we associate a puncturable PRF key to each
wire of the circuit, and use it to encrypt the wire value. Then, for each gate 𝑔, we obfuscate the following
circuit Gate𝑔 (·, ·): it takes as input two ciphertexts that correspond to encryptions of 𝑔’s input wires. It
first decrypts the ciphertexts, computes the functionality of the gate 𝑔, and then encrypts the output wire
value. In order to perform the decryption and encryption steps, Gate𝑔 contains the puncturable PRF keys
for the input and output wires of 𝑔 hardwired in its description. The obfuscated circuit consists of the
obfuscation of iO(Gate𝑔)’s for every gate 𝑔 in 𝐶 .

In order to prove security, the main idea is to only modify the obfuscation of the gates that correspond
to the logarithmic-size subcircuit where the input circuits differ. Note that our use of existing iO schemes
(that incur security loss exponential in the input length) does not pose a problem towards bypassing the
input-length barrier because the input length of each Gate𝑔 is much smaller than the input length of the
entire circuit 𝐶 .

Mix-and-Match Attacks. This initial attempt, unfortunately, suffers from “mix-and-match” attacks. An
adversary can run the obfuscated program for several different inputs, and keep the ciphertexts of the
intermediate wires. Later, the adversary can provide the “mixed” input ciphertexts sourced from different
inputs to some gate iO(Gate𝑔). Then the adversary might learn more input-output pairs of Gate𝑔 than the
functionality of the circuit Gate𝑔 should have provided, and thus we have no hope to prove the security
of the above construction.

To prevent such attacks, we can modify the construction as follows: let ct𝑙 , ct𝑟 denote the “left” and
“right” input ciphertexts to Gate𝑔. The modified Gate𝑔 additionally takes the entire inputs 𝑥𝑙 , 𝑥𝑟 to 𝐶 that
lead to the input ciphertexts ct𝑙 , ct𝑟 and checks whether 𝑥𝑙 = 𝑥𝑟 . In order to “tie” the entire input with a
ciphertext, we use another puncturable PRF to compute a message-authenticate code (MAC) over the pair
(ct𝑙 , 𝑥𝑙) and similarly (ct𝑟 , 𝑥𝑟)

It is not difficult to see that this modified construction prevents “mix-and-match” attacks. Intuitively,
only the ciphertexts generated by Gate𝑔 can have a valid MAC, and hence the mix-and-match attacks can
be caught by the consistency check over the inputs 𝑥𝑙 , 𝑥𝑟 . Unfortunately, however, the input length of
Gate𝑔 is now as large as the input length of 𝐶 . This means that this construction will incur a security loss
exponential in the input length of 𝐶 .

An Intermediate Step. Towards overcoming this problem, we first describe a modified construction that
improves upon the above but only for specific circuits, namely, ones in NC0. As we will see shortly, it
serves as a useful basis towards our final solution for general circuits.

Our starting idea is to leverage the fact that each gate in 𝐶 might not depend on the entire input of
𝐶 . Hence, we can modify Gate𝑔 such that it only takes as input the input wire values of 𝐶 that 𝑔 depends
upon. To characterize dependency, we introduce the notation dep(𝑤) to denote the set containing all the
intermediate wires that a wire 𝑤 depends upon, excluding itself. Note that dep(𝑤) includes not only the
input wires but also the internal wires of 𝐶 . Formally, dep(𝑤) is defined inductively as follows:

– For each input wire𝑤 of 𝐶 , define dep(𝑤) as an empty set.

16

– For each wire𝑤 that is the output wire of some gate 𝑔 with two input wires 𝑙, 𝑟 , we define dep(𝑤) =
dep(𝑙) ∪ dep(𝑟) ∪ {𝑙, 𝑟 }.

We modify the circuit Gate𝑔 as described in Figure 1. The input wires to 𝑔 are denoted as 𝑙, 𝑟 and 𝑜
denotes its output wire.

Circuit Gate𝑔

– Input: Ciphertexts ct𝑙 , ct𝑟 and their MACs 𝜎𝑙 , 𝜎𝑟 ; Ciphertexts that 𝑙, 𝑟 , 𝑜 depend on,
respectively: 𝐶𝑇𝑙 B {ct𝑤}𝑤∈dep(𝑙) ,𝐶𝑇𝑟 B {ct𝑤}𝑤∈dep(𝑟) ,𝐶𝑇𝑜 B {ct𝑤}𝑤∈dep(𝑜) .

– Hardwires: The MAC keys and puncturable PRF keys of encryption for 𝑙, 𝑟 , 𝑜 .

– Consistency Check: Check whether the sets 𝐶𝑇𝑙 (resp. 𝐶𝑇𝑟) and 𝐶𝑇𝑜 contains
the same ciphertexts in dep(𝑙) (resp. dep(𝑟)). Also check whether ct𝑙 and ct𝑟 is
consistent with 𝐶𝑇𝑜 .

– Verification: Verify the MACs 𝜎𝑙 , 𝜎𝑟 with respect to the messages ct𝑙 | |𝐶𝑇𝑙 , ct𝑟 | |𝐶𝑇𝑟 ,
respectively.

– Compute: Decrypt the ciphertexts ct𝑙 , ct𝑟 , compute the gate 𝑔, and encrypt the
output wire value using the randomness generated by the puncturable PRF with
input 𝐶𝑇𝑜 . Sign ct𝑜 | |𝐶𝑇𝑜 for the output wire.

– Output: Ciphertext ct𝑜 and its MAC.

Figure 1: Modified circuit Gate𝑔.

The intuition behind security is the same as earlier. For simplicity, we only consider the indistin-
guishability of a pair of intermediate circuits 𝐶 ′𝑖 ,𝐶 ′𝑖+1 (obtained from Δ-equivalence). Let 𝑆 denote the
(logarithmic-size) subcircuit where these two circuits differ. In the security proof, for every 𝑔 ∈ 𝑆 , we re-
place the obfuscation ofGate𝑔 with an obfuscation of circuitGatedirect𝑔 that does the same consistency check
and verification as above, but decrypts the ciphertexts in {ct𝑤 | 𝑤 ∈ dep(𝑜) and𝑤 is an input wire of 𝐶 }
and computes the output wire 𝑜 directly from those input wire values. We perform such replacement for
every 𝑔 ∈ 𝑆 inductively in the topological order. At an induction step, for a given gate 𝑔, all gates that 𝑔
depends on have been replaced with the above new gates. We first leverage the security of the MACs to
argue that if the verification of the MACs passes, then the decrypted input wire values must match the
values computed directly from the input wires of 𝐶 . Next, we can replace Gate𝑔 with Gatedirect𝑔 .

The security loss incurred by this modified construction is exponential in the input length of Gate𝑔.
This loss is small when 𝐶 is in NC0 since any output bit of an NC0 circuit only depends on a constant
number of input bits. However, for general circuits, dep(𝑙) and dep(𝑟) may contain the entire input in the
worst case. In such a scenario, the security loss is still exponential in the input length of 𝐶 .

Shrinking Input Length viaHashing. To resolve this issue, we observe that in the above security proof,
Gatedirect𝑔 does not even need to know every ciphertext in dep(𝑙) ∪ dep(𝑟) to compute the wire value of
𝑜 . Instead, the wire 𝑜 only depends on the wires in dep(𝑜) that are also the input wires of the subcircuit
𝑆 . For ease of representation, we use inp(𝑆) to denote the input to 𝑆 . Since the size of dep(𝑜) ∩ inp(𝑆) is
only logarithmic, if we modify Gate𝑔 to take as input the ciphertexts in dep(𝑜) ∩ inp(𝑆) instead, then we
significantly shorten the input length of Gate𝑔.

17

However, we can not provide the above set as an explicit input to Gate𝑔 since 𝑆 is not known in the
construction of 𝛿 iO; instead, it is only available in the security reduction. If we hardwire 𝑆 in (the public
description of) Gate𝑔 in an intermediate hybrid of the security proof, then we can not hope to argue
indistinguishability. Hence, we need to hide the set 𝑆 and at the same time also provide the above set of
ciphertexts in dep(𝑜) ∩ inp(𝑆) as an input to Gate𝑔.

To achieve these two properties simultaneously, we use a somewhere extractable hash function (SEH)
[HW15] to hash the ciphertexts in dep(𝑙) and the ciphertexts in dep(𝑟). We set the hash function to be
extractable for the ciphertexts in dep(𝑙)∩inp(𝑆) and dep(𝑟)∩inp(𝑆). The key indistinguishability property
of SEH guarantees that the extraction locations are hidden in the hash key. Moreover, the size of the SEH
hash value grows linearly in |𝑆 |.

Next, we modify the circuit Gate𝑔 to take Hash(𝐶𝑇𝑙),Hash(𝐶𝑇𝑟) as additional inputs, where𝐶𝑇𝑙 (resp.
𝐶𝑇𝑟) contains all ciphertexts that the wire 𝑙 (resp. 𝑟) depends on. Then in the security proof, for each two
adjacent intermediate circuits 𝐶 ′𝑖 ,𝐶 ′𝑖+1, we first switch the set 𝑆 to be the subcircuit that 𝐶 ′𝑖 and 𝐶 ′𝑖+1 differ
on. Then, we replace Gate𝑔 with a new Gatedirect𝑔

′ that extracts the sets of ciphertexts in dep(𝑜) ∩ inp(𝑆)
from the hash values and computes the output wires 𝑜 directly from them.

However, an issue arises in arguing security since we need to enforce the consistency check of the
ciphertexts in dep(𝑙) and the ciphertexts in dep(𝑟) given only their hash values. A natural idea is to
further attach a succinct non-interactive proof that proves that the two hash values are consistent. Note
that we seemingly need such a proof to be statistically sound; such proofs, however, are unlikely to exist.

Our key observation is that we in fact do not need a succinct proof with full statistical soundness.
Instead, we only succinct non-interactive arguments (SNARGs) with the following somewhere statisti-
cal soundness property: for two hash values computed as above, the extracted ciphertexts are consis-
tent. Namely, given the hash values ℎ𝑙 , ℎ𝑟 , ℎ𝑜 with respect to dep(𝑙), dep(𝑟), dep(𝑜), respectively, if the
extracted ciphertexts in dep(𝑙) ∩ inp(𝑆) and dep(𝑜) ∩ inp(𝑆) are inconsistent, or the extracted cipher-
texts in dep(𝑟) ∩ inp(𝑆) and dep(𝑜) ∩ inp(𝑆) are inconsistent, then any proof computed by an unbounded
cheating prover must be rejected.

We build such somewhere statistically sound SNARGs with only poly-logarithmic size proof and ver-
ification time from the polynomial hardness of learning with errors (LWE) by relying on the techniques
in the recent work of [CJJ21]. In [CJJ21], the authors constructed SNARGs for the so-called batch index
language with (semi-adaptive) somewhere extraction property from LWE, where an index language is an
NP language where the instances are treated as indices that can be described in a logarithmic number
of bits. We observe that a minor modification of their construction achieves (semi-adaptive) somewhere
statistical soundness.

Armed with somewhere statistically sound SNARGs for the batch index language, we show how to
build an SEH with consistency proofs. We start with the somewhere statistical binding hash construc-
tion of [HW15]. Their construction also allows extraction of the binding positions, and hence is also an
SEH. Moreover, their construction has a Merkle tree structure, and thus supports succinct local openings.
Namely, one can use a root-to-leaf in the Merkle tree to serve as a small-size opening for each bit in the
string being hashed. To hash the index set 𝐶𝑇𝑙 , we first assign a unique integer to each wire. Then we
arrange the elements in 𝐶𝑇𝑙 as an array. At the index 𝑤 , if 𝑤 index is non-empty in 𝐶𝑇𝑙 then we put ct𝑤
at the 𝑤-th index. Otherwise, we put a special symbol ⊥ at the 𝑤-th index. To generate a consistency
proof for ℎ𝑙 and ℎ𝑜 , we use a SNARG for batch-index language to prove that for each wire 𝑤 , there exists
valid local openings to ℎ𝑙 and ℎ𝑜 at the index 𝑤 , and if 𝐶𝑇𝑙 has a non-empty element at the index 𝑤 , then
𝐶𝑇𝑜 also has the same element at the index 𝑤 . Then the somewhere statistical soundness of SNARGs for
batch-index implies the property we want from the consistency proof.

Summary of theConstruction So Far. We summarize the modified construction of the circuitGate𝑔. We
replace the sets of ciphertexts𝐶𝑇𝑙 ,𝐶𝑇𝑟 ,𝐶𝑇𝑜 in Figure 1 with their hash values, and replace the consistency

18

check with the verification of the consistency proofs. To check the consistency between ct𝑙 , ct𝑟 and ct𝑜 , we
additionally verify the local openings of ct𝑙 , ct𝑟 with respect to the hash ℎ𝑜 . Specifically, we modify Gate𝑔
as described in Figure 2.

Circuit Gate𝑔

– Input:

– Ciphertexts ct𝑙 , ct𝑟 and their MACs 𝜎𝑙 , 𝜎𝑟
– Hashes of the ciphertexts that the wires 𝑙, 𝑟 , 𝑜 depend on: ℎ𝑙 , ℎ𝑟 , ℎ𝑜
– Consistency proof 𝜋𝑙 between ℎ𝑙 and ℎ𝑜 , and also the consistency proof 𝜋𝑟

between ℎ𝑟 and ℎ𝑜
– Local openings to ct𝑙 , ct𝑟 with respect to ℎ𝑜 : 𝜌𝑙 , 𝜌𝑟 ;

– Hardwires: The MAC keys and puncturable PRF keys of encryption for 𝑙, 𝑟 , 𝑜 .

– Consistency Check: Verify the consistency proofs 𝜋𝑙 , 𝜋𝑟 with respect to
(ℎ𝑙 , ℎ𝑜), (ℎ𝑟 , ℎ𝑜), respectively. Also verify the local openings 𝜌𝑙 , 𝜌𝑟 with respect to
the hash ℎ𝑜 for ct𝑙 , ct𝑟 , respectively.

– Verification: Verify the MACs 𝜎𝑙 , 𝜎𝑟 of the messages ct𝑙 | |ℎ𝑙 , ct𝑟 | |ℎ𝑟 , respectively.

– Compute: Decrypt the ciphertexts ct𝑙 , ct𝑟 , compute the gate 𝑔, and encrypt the
output wire value using the randomness generated by the puncturable PRF with
input ℎ𝑜 . Then sign ct𝑜 | |ℎ𝑜 for the output wire.

– Output: Ciphertext ct𝑜 and its MAC.

Figure 2: Modified circuit Gate𝑔.

The security proof remains almost the same as before. We still inductively replace Gate𝑔 with Gatedirect𝑔

for each gate 𝑔 in the subcircuit 𝑆 in the topological order. The only difference is that we now leverage the
somewhere statistical soundness of the consistency proof to ensure that for any ciphertexts ct𝑙 , ct𝑟 that
passes the consistency check and verification of the MACs, the decrypted input wire values from ct𝑙 , ct𝑟
must match the values computed directly from the ciphertexts extracted from ℎ𝑜 . For more details, see
Section 6.3.

It looks like we have bypassed the input-length barrier, since the input length to Gate𝑔 seems to be
independent of the input length of 𝐶 . However, a careful examination reveals that this is not the case.
Specifically, the bit-length of the hash value ℎ𝑜 is at least the size of one ciphertext plus a poly(𝜆) term, and
the size of one ciphertext is at least the size of ℎ𝑙 or ℎ𝑟 . Hence, we have |ℎ𝑜 | ≥ |ℎ𝑙 | +poly(𝜆). Therefore, the
size of the hash value ℎ𝑜 grows at least linearly in the depth of the circuit. This leads to a linear dependence
on the depth of the circuit in the input length of Gate𝑔.

Removing the Depth Dependence. To overcome this issue, we need to further shrink the hash values.
Towards this end, our key observation is that we only require a weaker extraction property from SEH:
instead of extracting the ciphertexts, we only need to extract the underlying messages. To implement this
idea while achieving a reduction in the size of hash values, we make use of fully homomorphic encryption
(FHE). Specifically, we use FHE to encrypt the SEH extraction trapdoor together with the puncturable PRF

19

keys for the wires whose values we wish to extract from SEH. Now, given the SEH hash values ℎ𝑙 , ℎ𝑟 , ℎ𝑜
inside the circuit Gate𝑔, we first homomorphically extract the ciphertexts using the FHE encryption of the
SEH trapdoor. Then we homomorphically decrypt the extracted ciphertexts. Finally, we obtain the FHE
ciphertextsℎ′

𝑙
, ℎ′𝑟 , ℎ

′
𝑜 of size poly(𝜆)-bits. Then we use these FHE ciphertexts as the input to the puncturable

PRFs to encrypt the wires 𝑙, 𝑟 , 𝑜 and also authenticate them in MACs. This allows us to remove the hash
size dependence on the depth of the circuit, thus finally allowing us to bypass the input-length barrier.

2.3 iO For Turing Machines with 𝑃𝑉 -proof of Equivalence

In this section, we leverage 𝑃𝑉 proof of equivalence for Turing machines to build iO for Turing machines
with unbounded length inputs. We start by briefly recalling Cook’s theory 𝑃𝑉 [Coo75].
Background onTheory 𝑃𝑉 . 𝑃𝑉 is a theory of open equations, i.e. theorems and lines in 𝑃𝑉 are equations
about natural numbers (e.g. 𝑎 + 𝑏 = 𝑏 + 𝑎). Roughly speaking, theory 𝑃𝑉 allows us to reason about
propositions for all natural numbers, whereas formulas in propositional logic systems can only take finite
many truthful assignments. In the initial work [Coo75], Cook showed that proofs in 𝑃𝑉 can be translated
to polynomial-size propositional logic proofs7, if one sets an upper bound on the length of the natural
numbers in 𝑃𝑉 , and represents the digits of natural numbers by propositional variables. Hence, loosely
speaking, proofs in 𝑃𝑉 can be viewed as a “uniform” version of polynomial-size propositional proofs. For
more background on theory 𝑃𝑉 , see Section 3.2.
Starting Approach. To build iO for Turing machines with unbounded length inputs, we depart from
prior templates.

To obfuscate a Turing machine𝑀 , we first translate it to a sequence of circuits J𝑀K1, J𝑀K2, . . . , J𝑀K𝜆log𝜆 ,
where J𝑀K𝑛 represents the circuit that computes 𝑀 with input-length 𝑛. We then use our iO scheme for
Δ-equivalent circuits to obfuscate these circuits. Since we are only interested in polynomial-length inputs,
it is sufficient to consider all 𝑛 bounded by some super-polynomial 𝜆log𝜆 . Let us put aside the efficiency of
this construction for the moment. Looking ahead, in our security proof, to prove the indistinguishability of
the obfuscations of two Turing machines 𝑀1, 𝑀2 with 𝑃𝑉 proof of equivalence, we only use 𝜆log𝜆 hybrids
to switch the set of circuits {J𝑀1K𝑖}𝑖 to {J𝑀2K𝑖}𝑖 one-by-one, where in the 𝑖-th hybrid, switching from
J𝑀1K𝑖 to J𝑀2K𝑖 only incurs a polynomial loss. Here, we leverage the fact that Cook’s translation implies
that J𝑀1K𝑖 ’s and J𝑀2K𝑖 ’s have polynomial-size propositional proofs of equivalence. In total, we only incur
a 𝜆log𝜆 loss in the security reduction, which is independent of the input length.

While promising, the above idea does not work as is since the above obfuscator is not efficient. In
particular, it needs to obfuscate a super-polynomial number of circuits; hence it is not a polynomial-time
algorithm.
Towards an Efficient Construction. To build a polynomial-time obfuscator, our intuition is that we can
describe the circuit being obfuscated by a succinct circuit J𝑀K(𝑛, 𝑖) that takes as input an input-length 𝑛
and an index 𝑖 , and outputs the description of 𝑖-th gate in J𝑀K𝑛 . Next, instead of obfuscating the circuits
J𝑀K1, J𝑀K2, . . . in a gate-by-gate manner as we did in Section 2.2, we obfuscate a “uniform gate” UGate,
which uses J𝑀K(𝑛, 𝑖) internally and provides the functionality for the 𝑖-th gate in J𝑀K𝑛 .

Indeed, the construction of UGate circuits is almost the same as Gate𝑔 in our construction of iO for
circuits in Section 2.2, since most parts of the description of Gate𝑔 are already “uniform” for every𝑔, except
the following two places.

– 𝐾𝑔, which contains independently sampled PRF keys for the input wires and output wires of the gate
𝑔. We can generate𝐾𝑔 uniformly by a new puncturable PRF, and assign each wire an index. Crucially,

7The “propositional logic” in this paper refers to extended Frege systems (EF). Cook’s initial translation is from 𝑃𝑉 to extended
resolution. Later, it is shown that extended resolution and extended Frege can “simulate” each other with a polynomial overhead
[CR79].

20

the bit-length of the index needs to be succinct, in the sense that it is independent of the input length
of the Turing machine. Then we use the succinct index as the input to the new puncturable PRF to
generate the puncturable PRF keys for the wires.

– The functionality of the gate 𝑔 in the “Compute” phase of Gate𝑔. We can make this part uniform by
computing the functionality of the gate 𝑔 on-the-fly by J𝑀K(𝑛, ⌜𝑔⌝), where ⌜𝑔⌝ is the index of the
gate 𝑔.

In summary, we let the “uniform gate” UGate(𝑛, ⌜𝑔⌝, ·) be the following circuit. It takes as input the
input-length 𝑛 with 𝑛 ≤ 𝜆log𝜆 , the index of a gate ⌜𝑔⌝, and all the inputs to Gate𝑔. UGate uses J𝑀K(𝑛, ⌜𝑔⌝)
to obtain the functionality of 𝑔-th gate and also the indices of its input and output wire. Then it uses a
puncturable PRF to generate the puncturable PRF keys 𝐾𝑔 used by Gate𝑔 using the gate information. Next,
it computes Gate𝑔 internally, and outputs whatever Gate𝑔 outputs.

Indexing Wires and Gates Succinctly. In the above description, UGate internally uses the indices of
the gates and wires of the circuit. In this work, we use ⌜𝑔⌝ to denote the index of a gate 𝑔 and use ⌜𝑤⌝
to denote the index of a wire 𝑤 . It is important that the size of such indices is essentially independent of
the input length of the Turing machine, and the indices of the input and output wire of each gate 𝑔 can be
computed in polynomial-time given ⌜𝑔⌝. Otherwise, the size of UGate will grow with the input length.

To assign a unique succinct number to each gate and wire, we observe that the gates in the padded
circuit can be classified into the following four types.

– Regular: It carries out the actual computation in the input circuit.

– Copy: Gates of this type are part of the Copy helper circuit attached to the output wires of the
regular gates.

– Projection: Gates of this are part of the Proj helper circuit attached to the input wires of the regular
gates.

– Tree: Gates of this type are part of the AND tree used to compute the output of the entire circuit.

We observe that each type can be naturally assigned to a succinct number indicating the location of
the gates. For example, for each gate in the “Copy” type, it can be uniquely indexed by (⌜𝑔⌝, 𝑖), where
𝑖 ∈ {0, 1}∗ indicates the path from the current gate to the root, and ⌜𝑔⌝ is the index of a regular gate,
denoting which output wire the Copy circuit copies. The actual numbering is more involved, for more
details, see Section 7.3.

2.3.1 Proof of Security

To prove security, the idea is to enumerate an input-length 𝑛0 in the hybrid argument. Then we puncture
the “uniform gate” circuit UGate for the input-length 𝑛0. Namely, for any two Turing machines 𝑀1, 𝑀2,
we have UGate compute 𝑀1 for 𝑛 < 𝑛0, and compute 𝑀2 for 𝑛 ≥ 𝑛0. Then we only need 𝜆log𝜆 hybrids to
change from 𝑀1 to 𝑀2. Hence, the main challenge of the security proof is how to switch from 𝑛0 to 𝑛0 + 1,
without a loss that is exponential in the input-length.

As we mentioned earlier, we will use Cook’s propositional translation [Coo75]. That is, if 𝑀1(𝑥) =
𝑀2(𝑥) can be proven in 𝑃𝑉 for two Turing machines 𝑀1, 𝑀2, then for any integer 𝑛0, there exists a propo-
sitional logic proof for J𝑀1K𝑛0 ↔ J𝑀2K𝑛0 of size polynomial in 𝑛0. Our initial idea is to use the same
strategy as in the security proof of iO for Δ-equivalent circuits. However, the existence of such a propo-
sitional proof is not sufficient, because the obfuscations of two functionally equivalent circuits can only
be indistinguishable when they are padded to the same length. This requires us to further ensure that

21

the intermediate circuits discussed in Section 2.1 can be described succinctly by small circuits, otherwise
the size of the obfuscated program will grow with the size of the intermediate circuits, which are super
polynomial.

We abstract this succinctness requirement on the intermediate circuits as the following Δ-equivalence
for Turing machines.

Δ-equivalent Turing Machines. Specifically, we say two Turing machines are Δ-equivalent, if for any
integer 𝑛0, there is a sequence of intermediate circuits that can be described succinctly such that they trans-
form from (the padding of) J𝑀0K𝑛0 to J𝑀1K𝑛0 via a sequence of incremental changes. Here, by succinctness,
we require that the sizes of the small circuits describing the intermediate circuits are essentially indepen-
dent of the input length to the Turing machine.

We show that if two Turing machines 𝑀1, 𝑀2 can be proven functionally equivalent in Cook’s theory
𝑃𝑉 , then they are Δ-equivalent Turing machines. Intuitively, we can hope for such an implication, because
Cook’s propositional translation can be described succinctly in a paper, and thus a large part of the trans-
lated propositional proof is “uniform” so that they can be described by small circuits. To implement this
intuition, we first abstract the property we need from the propositional translation and hence we separate
the propositional translation and our construction of the intermediate circuits.

Our key observation is that, in our construction of the intermediate circuits in Section 2.1, at any point,
we only need the following information from the propositional proofs to describe the intermediate circuits.

– Given an index 𝑖 , we need the 𝑖-th “line” 𝜃𝑖 of the propositional proof.

– Given a variable, we need the indices of the lines where the variable appears.

At a high level, each line of the propositional proof corresponds to a gate in the intermediate circuit. Hence,
𝜃𝑖 tells us the functionality of the gates. The topology of the intermediate circuit, which is implemented as
the functionally of the Copy and the Proj helper circuits, is determined by the location where a variable
appears.

Succinct Description of Cook’s Translation. We abstract the above property as the succinct descrip-
tion of propositional proof. Namely, we require that there is a pair of small circuits (Get,Where) “describ-
ing” the propositional logic proof, with the following syntax. ‘Get’ takes as input an index 𝑖 , and outputs
𝜃𝑖 encoded as a binary string (Gödel number). ‘Where’ takes as input the variable encoded as a binary
string, and outputs a set of indices of the lines where the variable appears.

We then observe that Cook’s translation has succinct descriptions. Namely, we can construct small
circuits Get,Where whose sizes are independent of the input length of the Turing machine. The idea is as
follows. In Cook’s translation, to translate a 𝑃𝑉 proof (𝑒1, 𝑒2, . . . , 𝑒ℓ) to propositional proof, one first trans-
lates each 𝑒𝑖 in propositional proof and concatenates them together. The main challenge is that, Get(𝑖)
needs to directly output the 𝑖-th line of the proof, without computing the first 𝑖 lines of proofs. Otherwise,
the size of the circuit Get is not polynomial in its input and hence not succinct. To compute Get(𝑖) suc-
cinctly, the key idea is the following way to concatenate two succinct descriptions of propositional proof
Π1 = (Get1,Where1),Π2 = (Get2,Where2) as a new succinct description (Get,Where).

– Get(𝑖) : decide whether 𝑖-th line is in the first proof Π1 or the second proof Π2, by comparing 𝑖 with
the number of lines in Π1. Then it invokes either Get1 or Get2 to obtains the 𝑖-th line.

– Where(⌜𝑣⌝) : It invokes Where1(⌜𝑣⌝) and Where2(⌜𝑣⌝) and outputs the union of them.

In this way, we can concatenate two propositional proofs without explicitly writing down all lines in Π1
and Π2, and thus the sizes of Get,Where are still small. For a more detailed proof sketch, see Appendix A.

22

On the Size of Obfuscated Program. In the above discussion, we only require the sizes of the descrip-
tion circuits (Get,Where) to be independent of the input length of the Turing machine. The reader may
wonder what the circuit sizes exactly are, since the sizes of the intermediate circuits and thus the size of
the obfuscated program will depend on them.

A natural attempt is to use the size of the 𝑃𝑉 proof to upper bound the sizes of Get,Where. However,
given a 𝑃𝑉 proof of equivalence of two Turing machines with ℓ lines, we can define a Turing machine
that runs in time 𝑛2𝑂 (ℓ) somewhere in the proof. This would affect our cryptographic applications, since
the Turing machines we are interested in usually have some poly(𝜆) bits hardwired (e.g. a PRG seed), and
hence the proof length ℓ could also be polynomial in 𝜆. Then the obfuscated program size could be 2poly(𝜆) .
However, we expect that for most of the cases in practice, the time complexity of the Turing machines we
are interested in does not reach that high. For instance, for most of the programs in the real world, the
time complexity of the program does not grow exponentially in the size of data it hardwired.

Hence, we introduce a more fine-grained complexity measure Desc[·] to characterize the size of the
circuit describing the terms in 𝑃𝑉 . Intuitively, for any term 𝑡 in 𝑃𝑉 , Desc[𝑡] measures how many terms we
need to evaluate before evaluating 𝑡 . Then we extend the notion Desc[Π] naturally to any proof Π in 𝑃𝑉 .
Then the size of our obfuscated program is polynomial in Desc[Π], where Π is the 𝑃𝑉 proof of function-
ality equivalence. We expect the complexity measure Desc[·] to be polynomials in most of cryptographic
applications. For more details, see Section 7.2.

We stress that usually our 𝑃𝑉 -proof of equivalence can be written in a “highly uniform” way. That
is, only a constant number of function symbols are introduced in the proof. In such a case, we have
Desc[Π] = poly(|Π |), where |Π | is the length of the binary string encoding Π. Namely, the size of the
obfuscated Turing machine is poly(𝜆, |Π |).

3 Preliminaries: Part I

A family of elements {𝑥𝑖}𝑖∈𝐼 in a set 𝑆 indexed by a set 𝐼 , is a map 𝜙 : 𝐼 → 𝑆 from 𝐼 to 𝑆 , with 𝜙 (𝑖) = 𝑥𝑖 .
A family of circuits {𝐶𝑛}𝑛∈N in P/poly is an aforementioned map, with the additional property that there
exists a polynomial 𝑠 = 𝑠 (𝑛) such that the size of the circuit 𝐶𝑛 is bounded by 𝑠 (𝑛).

For any integer 𝑛, we use [𝑛] to denote the set of integers {1, 2, . . . , 𝑛}.
We say two circuits 𝐶1(·),𝐶2(·) are functionality equivalent or 𝐶1(𝑥) ≡ 𝐶2(𝑥), if for every input 𝑥 ,

𝐶1(𝑥) = 𝐶2(𝑥).

3.1 Propositional Logic Systems

We use extended Frege systems (denote as EF) for propositional logic [Bus98]. Such a system is described
by a set of variables, a set of connectives, and a set of inference rules. Variables are the most basic elements,
usually represented by letters such as 𝑥,𝑦, 𝑧. Connectives are used to connect variables. We only use two
connectives→ and ¬ for “imply” and “negation”, respectively. Other connectives such as ∧,∨, ⊕ for “and”,
“or”, “xor”, can be defined using→ and ¬. We use↔ to denote “if and only if”, and formally, 𝑎 ↔ 𝑏 is the
abbreviation of (𝑎 → 𝑏) ∧ (𝑏 → 𝑎). We use F to represent “false”, and define “true” T as ¬F.

Formulas are defined inductively: F is a formula; any variable is a formula; if 𝑢, 𝑣 are formulas, then
𝑢 → 𝑣 , ¬𝑢 are formulas. A formula can be treated as a labeled tree, where leaves are labeled with variables,
and internal nodes are labeled with connectives. A subformula of 𝐴 is defined as a subtree of 𝐴. We define
the following complexity measures of formulas. For each formula𝐴, we define the size of𝐴 as the number
of nodes in the tree. We denote ldp(𝐴) as the logical depth of 𝐴, which represent the depth of the tree.
Formally, it can be inductively defined as follows: ldp(F) = 0; for any variable 𝑎, ldp(𝑎) = 0; for any two
formulas 𝑢, 𝑣 , ldp(𝑢 → 𝑣) = 1 +max(ldp(𝑢), ldp(𝑣)), and ldp(¬𝑢) = 1 + ldp(𝑢).

23

A substitution 𝜎 is a map from the set of variables to the set of formulas. If 𝐴 is a formula, then the
result of applying 𝜎 to 𝐴 is denoted as 𝐴𝜎 , which is a formula obtained by replacing each occurrence of
the variables in 𝐴 by its image under 𝜎 . For example, let 𝐴 = 𝑝 → (𝑞 → 𝑝) and let a substitution 𝜎 be
𝑝 ↦→ 𝑎 ∧ 𝑏, 𝑞 ↦→ 𝑎 ∨ 𝑏, then 𝐴𝜎 = (𝑎 ∧ 𝑏) → ((𝑎 ∨ 𝑏) → (𝑎 ∧ 𝑏)).

A Frege system is specified by a set of inference rules. Each inference rule is defined as 𝐴1, 𝐴2, . . . , 𝐴𝑘 ⊢
𝐴0, where 𝐴0, 𝐴1, . . . , 𝐴𝑘 are formulas. Intuitively, it means that “if 𝐴1, 𝐴2, . . . , 𝐴𝑘 are valid, then 𝐴0 is also
valid”. If 𝑘 = 0, then we say such inference rule is an axiom.

In this work, we use the following set of axioms and modus ponens as inference rules for positional
logic.

– Axiom 1: 𝑝 → (𝑞 → 𝑝)

– Axiom 2: (𝑝 → (𝑞 → 𝑟)) → ((𝑝 → 𝑞) → (𝑝 → 𝑟))

– Axiom 3: ¬¬𝑝 → 𝑝

– Modus Ponens: 𝑝, 𝑝 → 𝑞 ⊢ 𝑞

In a proposition 𝑝1, 𝑝2, . . . , 𝑝𝑛 ⊢ 𝑞, we call 𝑝1, 𝑝2, . . . , 𝑝𝑛 as premise and call 𝑞 as conclusion. A derivation
for the proposition 𝑝1, 𝑝2, . . . , 𝑝𝑛 ⊢ 𝑞 is a series of formulas 𝜃1, 𝜃2, . . . , 𝜃ℓ with 𝜃ℓ = 𝑞, and for each 𝑖 ∈ [ℓ],
𝜃𝑖 is either

– A premise 𝑝 𝑗 with 𝑗 ∈ [𝑘]), or

– 𝐴0𝜎 , where 𝐴1, 𝐴2, . . . , 𝐴𝑘 ⊢ 𝐴0 is an inference rule, and 𝜎 is a substitution, and {𝐴1𝜎,𝐴2𝜎, . . . , 𝐴𝑘𝜎}
are a subset of the formulas {𝜃1, 𝜃2, . . . , 𝜃𝑖−1}.

A proof is a derivation with no premise.
The extended Frege system denoted as EF is a logic system that additionally has the following extension

axioms. Namely, for a derivation (𝜃1, 𝜃2, . . . , 𝜃ℓ) in EF , for each 𝑖 ∈ [ℓ], 𝜃𝑖 needs to satisfy the aforemen-
tioned constraint or 𝜃𝑖 is of the form 𝑡 ↔ 𝐴, where𝐴 is a formula, and 𝑡 is a new variable that has not been
occurred in 𝜃1, 𝜃2, . . . , 𝜃𝑖−1, and also does not occur in 𝐴. We define the size of a derivation (𝜃1, 𝜃2, . . . , 𝜃ℓ)
as the summation of the sizes of the formulas 𝜃1, 𝜃2, . . . , 𝜃ℓ .

Gödel Numbering. For any formula 𝑓 in EF , we can uniquely encode it as a binary string {0, 1}∗ of
length 𝑂 (|𝑓 |) in a natural way, by encoding the variables, connectives, and brackets used to express 𝑓 as
binary strings and concatenating them. We denote this encoding function as ⌜·⌝.

What kind of mathematical statements have polynomial size proofs in EF ? This problem has been
extensively studied in the field of proof complexity. In this field, bounded arithmetics developed by [Par71,
Coo75, Bus86] and many others provides subtheories of Peano arithemtics (the axiomatization of natural
numbers), which allows efficient translations of proofs involving arithmetics to propositional logic proofs.
Hence, to show the applications (Section 8) of our method, we will use several results in Cook’s Theory
𝑃𝑉 [Coo75] and Buss’s theory 𝑆1

2 [Bus86].

3.2 Cook’s Theory 𝑃𝑉

Cook introduced a theory 𝑃𝑉 [Coo75] to capture the intuition of feasibly constructive proofs (i.e. polynomial-
time reasoning). 𝑃𝑉 is an equational theory, i.e, each statement in 𝑃𝑉 asserts that two terms are equal.
Moreover, it allows the introduction of new function symbols by Cobham’s definition of polynomial-time
functions [Cob65]. Hence, any polynomial-time function is definable in 𝑃𝑉 [Coo75]. Moreover, common
used arithmetical operations such as addition, multiplication, and modulus functions can also be defined
in 𝑃𝑉 . Their related properties such as commutative law, associative law etc. can be proven in 𝑃𝑉 [Bus86].

24

Formally, Cook’s theory 𝑃𝑉 [Coo75] is defined as follows. 𝑃𝑉 works on the natural numbers that are
represented in the dyadic notation, where any natural number 𝑥 is uniquely represented as a finite string
of integers in {1, 2}∗. Specifically, we represent 𝑥 as the string 𝑥𝑛𝑥𝑛−1𝑥𝑛−2 . . . 𝑥1 ∈ {1, 2}𝑛 , if

∑𝑛
𝑖=1 𝑥𝑖2𝑖 = 𝑥 ,

and use an empty string to represent 0. It’s easy to see that such presentation is unique for any natural
number. The function 𝑠𝑖 (𝑥) = 2𝑥 + 𝑖, 𝑖 = 1, 2 appends 𝑖 to the string 𝑥 . Hence, we also denote 𝑠𝑖 (𝑥) as 𝑥 | |𝑖 .

We introduce the following terminologies. Terms are defined inductively as follows: any variable is a
term; any function symbol of arity 0 is a term; if 𝑡1, 𝑡2, . . . , 𝑡𝑘 are terms, and 𝑓 is a function symbol, then
𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑘) is a term. Equations are of the form 𝑡 = 𝑢, where both 𝑡 and𝑢 are terms. A derivation for the
statement 𝐸1, 𝐸2, . . . , 𝐸𝑛 ⊢𝑃𝑉 𝐸 in 𝑃𝑉 is a series of equations 𝐷1, 𝐷2, . . . , 𝐷ℓ such that 𝐷ℓ = 𝐸 and for any
𝑖 ∈ [ℓ], the equation 𝐷𝑖 is either a premise 𝐸 𝑗 (𝑗 ∈ [𝑛]), or a defining equation for some function symbol
that we will introduce later, or follows from some inference rule that will introduce later. A proof in 𝑃𝑉 is
a derivation with no premise (𝑛 = 0).
Introducing Function Symbols. A new function symbol 𝑓 can be introduced in 𝑃𝑉 in the following two
ways. The first way is to define

𝑓 (𝑥1, 𝑥2, . . . 𝑥𝑘) = 𝑡,

where 𝑡 is a term with variables 𝑥1, 𝑥2, . . . , 𝑥𝑘 .
The second way is to use Cobham’s characterization of polynomial-time functions [Cob65]. Specifi-

cally, for existing function symbols 𝑔, ℎ1, ℎ2, 𝑘1, 𝑘2 in 𝑃𝑉 , define the following equations as defining equa-
tions

𝑓 (0, y) = 𝑔(y), 𝑓 (𝑥 | |𝑖, y) = ℎ𝑖 (𝑥, y, 𝑓 (𝑥, y)), 𝑖 = 1, 2, (1)

where y = (𝑦1, . . . , 𝑦𝑘) is a series of 𝑘 variables. Then how 𝑓 is computed for any 𝑥, y is fully specified. To
avoid any undecidable issue, 𝑃𝑉 further requires that the output length of 𝑓 is bounded by a polynomial.
To ensure this, Cook requires that “|ℎ𝑖 (𝑥, y, 𝑧) | ≤ |𝑧 | + |𝑘𝑖 (𝑥, y) |” is provable in 𝑃𝑉 , where | · | is the length
of the dyadic presentation. To achieve this, Cook introduced the LESS function, and it is defined with other
initial functions as follows. 𝑠𝑖 , 𝑖 = 1, 2 has no defining functions. 0 is also function symbol with arity 0, and
has no defining function.

– TR: TR(0) = 0, TR(𝑥 | |𝑖) = 𝑥, 𝑖 = 1, 2. It cuts off the least significant digit in the dyadic notion.

– ★: ★(𝑥, 0) = 𝑥,★(𝑥,𝑦 | |𝑖) = 𝑠𝑖 (𝑥,𝑦), 𝑖 = 1, 2. It concatenates the string 𝑥 and 𝑦.

– ⃝★: ⃝★(𝑥, 0) = 𝑥,⃝★(𝑥,𝑦 | |𝑖) = ★(𝑥,⃝★(𝑥,𝑦)), 𝑖 = 1, 2. It concatenates |𝑦 | copies of 𝑥 .

– LESS : LESS(𝑥, 0) = 𝑥, LESS(𝑥,𝑦 | |𝑖) = TR(LESS(𝑥,𝑦)), 𝑖 = 1, 2. It cuts off the |𝑦 | right most digits of
𝑥 in the dyadic notion. Then we can use LESS(𝑥,𝑦) = 0 to express |𝑥 | ≤ |𝑦 |.

To complete the definition of function 𝑓 , 𝑃𝑉 requires two proofs 𝜋1, 𝜋2 in 𝑃𝑉 for LESS(ℎ𝑖 (𝑥, y, 𝑧), 𝑧 ★
𝑘𝑖 (𝑥, y)) = 0, 𝑖 = 1, 2. Then a function symbol 𝑓 is defined as the tuple (𝑔, ℎ1, ℎ2, 𝑘1, 𝑘2, 𝜋1, 𝜋2).

The inference rules are in the following. Here, 𝑡,𝑢, 𝑣 are any terms, 𝑥 is any variable, and y = (𝑦1, 𝑦2, . . . , 𝑦𝑘)
is any tuple of 𝑘 ≥ 0 variables. 𝑓 is any function symbol (we will define later).

– 𝑅1: 𝑡 = 𝑢 ⊢ 𝑢 = 𝑡 .

– 𝑅2: 𝑡 = 𝑢,𝑢 = 𝑣 ⊢ 𝑡 = 𝑢

– 𝑅3: 𝑡1 = 𝑢1, 𝑡2 = 𝑢2, . . . , 𝑡𝑘 = 𝑡𝑘 ⊢ 𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑘) = 𝑓 (𝑢1, 𝑢2, . . . , 𝑢𝑘).

– 𝑅4: 𝑡 = 𝑢 ⊢ 𝑡 (𝑣/𝑥) = 𝑢 (𝑣/𝑥). Here, the notation “𝑡 (𝑣/𝑥)” means replacing each occurrence of the
variable 𝑥 with the term 𝑣 . “𝑢 (𝑣/𝑥)” is defined in the same way.

25

– 𝑅5: 𝐸1, 𝐸2, . . . , 𝐸6 ⊢ 𝑓1(𝑥, y) = 𝑓2(𝑥, y), where 𝐸1, 𝐸2, . . . , 𝐸6 are the defining equations 1 for 𝑓1, 𝑓2, with
the same function symbols 𝑔, ℎ1, ℎ2.

Propositional Translation. In the same work [Coo75], Cook showed that any proofs in 𝑃𝑉 can be
translated to polynomial size propositional logic proofs. The original theorem statement uses extended
resolutions logic. Later [CR79] showed that extended resolution and extended Frege system are essentially
equivalent in terms of proof size. For simplicity, we use extended Frege system in this work, and state
Cook’s result in extended Frege system.

Before we formally state the theorem, we first describe how to transform a theorem statement in
𝑃𝑉 to proposition logic. The idea is to use variables in EF to present each digit in the dyadic notation.
Specifically, let𝑚 be an integer. For each term 𝑡 in 𝑃𝑉 , let 𝑃0 [𝑡], 𝑃1 [𝑡], . . . , 𝑃𝑚 [𝑡] and𝑄0 [𝑡], 𝑄1 [𝑡], . . . , 𝑄𝑚 [𝑡]
be a set of variables in EF . For each 𝑖 ∈ [𝑚], use 𝑄𝑖 [𝑡] to indicate whether 𝑡 has 𝑖-th digit, and use 𝑃𝑖 [𝑡]
to indicate the 𝑖-th digit of 𝑡 , i.e.

𝑄𝑖 [𝑥] =
{
T, if 𝑡 ≥ 2𝑖+1 − 1
F, otherwise

𝑃𝑖 [𝑥] =
{
T, if the 𝑖-th dyadic digit of 𝑡 is 2
F, otherwise

For the easy of representation, in this work we use the following notation Var𝑚 [𝑡] to denote the variables
{𝑃𝑖 [𝑡], 𝑄𝑖 [𝑡]}𝑚𝑖=1 corresponds to 𝑡 . For each term 𝑡 , one can associate it with a proposition formula Prop𝑚 [𝑡],
assertingVar𝑚 [𝑡] is computed correctly from the variablesVar𝑚 [𝑝1], . . . ,Var𝑚 [𝑝𝑘], where 𝑝1, 𝑝2, . . . , 𝑝𝑘 are
all variables appear in 𝑡 . For any variable 𝑥 , Prop𝑚 [𝑥] is the formula asserting Var𝑚 [𝑥] is well-formed, i.e.
¬𝑄𝑖 [𝑥] implies ¬𝑄𝑖+1 [𝑥] for 𝑖 ∈ [𝑚 − 1]. The definition of Prop𝑚 [𝑡] can be inductively defined for any
term 𝑡 . For more details, see [Coo75].

For any integer 𝑛, if the computation of all terms in the proof only needs 𝑚 dyadic digits, then 𝑚 is
called a bounding value. For any equation 𝑡 = 𝑢, where 𝑡 and 𝑢 are both terms. J𝑡 = 𝑢K𝑛𝑚 is defined as the
propositional formula asserting that if the variables in 𝑡 are all less than 𝑛 digit, then the value of 𝑡 and 𝑢
are equal. For its formal definition, see [Coo75].

Next, we present the theorem statement for Cook’s propositional translation.

Theorem 3 (Corollary of ER Simulation Theorem in [Coo75]). For any two terms 𝑡 and 𝑢, and any 𝑛 and
any polynomial bounding value𝑚 = 𝑚(𝑛), if ⊢𝑃𝑉 𝑡 = 𝑢, then J𝑡 = 𝑢K𝑛𝑚 has polynomial size logic proofs in
extended Frege logic.

The idea of the Corollary 3 is to do an induction on the length of the proofs in 𝑃𝑉 , and translate each
step of the proof in 𝑃𝑉 to a polynomial size proof in the propositional logic.

Numerals. Numerals are a way to express nature numbers in 𝑃𝑉 . We will use them to express hardwired
values in the Turing machine. Formally, a numeral is a term of the form 𝑖1 | |𝑖2 | | . . . | |𝑖𝑘 (or 𝑠𝑖1 (𝑠𝑖2 (. . . 𝑠𝑖𝑘 (0))),
where 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ {1, 2}.

3.3 Theory 𝑃𝑉1

In the same work [Coo75], Cook also introduced a theory 𝑃𝑉1 in which formalizing proofs is easier than
𝑃𝑉 . [Coo75] showed that the theory 𝑃𝑉1 is a conservative extension of 𝑃𝑉 , which means that any theorem
proven in 𝑃𝑉1 can also be proven in 𝑃𝑉 . Hence, in this work, we do not distinguish 𝑃𝑉 and 𝑃𝑉1.

The theory 𝑃𝑉1 contains all variables, function symbols, and terms in 𝑃𝑉 . Furthermore, it contains
formulas, which is either equations, or truth-functional combinations of equations, using “∧,∨,¬,→,↔”,
which express “and”, “or”, “negation”, “imply”, and “equivalent”.

The axioms of 𝑃𝑉1 are defined as follows. Here, 𝑥 is a variable, 𝑡,𝑢, 𝑡𝑖 , 𝑢𝑖 are terms.

26

– 𝐸1: 𝑡 = 𝑡

– 𝐸2: 𝑡 = 𝑢 → 𝑢 = 𝑡

– 𝐸3: 𝑡 = 𝑢 ∧ 𝑢 = 𝑣 → 𝑡 = 𝑣

– 𝐸4: (𝑡1 = 𝑢1 ∧ . . . ∧ 𝑡𝑘 = 𝑢𝑘) → 𝑓 (𝑡1, . . . , 𝑡𝑘) = 𝑓 (𝑢1, . . . , 𝑢𝑘), where 𝑓 is a function symbol in 𝑃𝑉 .

– 𝐸5: 𝑥 = 𝑦 ↔ 𝑥 | |𝑖 = 𝑦 | |𝑖 , 𝑖 = 1, 2

– 𝐸6: ¬(𝑥 | |1 = 𝑥 | |2)

– 𝐸7: ¬(0 = 𝑥 | |𝑖), 𝑖 = 1, 2

– Defining Functions: Defining equations for any function symbol in 𝑃𝑉 is axioms in 𝑃𝑉1. Moreover,
𝑃𝑉1 allows defining multi-variable functions via recursion as follows. Let𝑔00, 𝑔01, 𝑔10, {ℎ𝑖 𝑗 , 𝑘𝑖 𝑗 }𝑖, 𝑗 ∈{1,2}
be function symbols. Then a new function symbol 𝑓 can be defined by the following defining equa-
tions.

𝑓 (0, 0, 𝑧) = 𝑔00(𝑧)
𝑓 (0, 𝑦 | | 𝑗, 𝑧) = 𝑔01(𝑧), 𝑗 = 1, 2
𝑓 (𝑥 | |𝑖, 0, 𝑧) = 𝑔10(𝑧), 𝑖 = 1, 2

𝑓 (𝑥 | |𝑖, 𝑦 | | 𝑗, 𝑧) = ℎ𝑖 𝑗 (𝑥,𝑦, 𝑧, 𝑓 (𝑥,𝑦, 𝑧)), 𝑖, 𝑗 ∈ {1, 2}

Moreover, LESS(ℎ𝑖 𝑗 (𝑥,𝑦, 𝑧,𝑢), 𝑢 ★ 𝑘𝑖 𝑗 (𝑥,𝑦, 𝑧)) = 0, 𝑖, 𝑗 ∈ {1, 2} needs to be provable in 𝑃𝑉 . Finally,
the defining of the initial functions TR,★,⃝★, and LESS are also axioms of 𝑃𝑉1.

– Tautology: The truth-functionally valid formulas of 𝑃𝑉1 are axioms.

The inference rules of 𝑃𝑉1 are as follows.

– Substitution. 𝐴 ⊢ 𝐴(𝑡/𝑥), where 𝐴 is a formula in 𝑃𝑉1, 𝑡 is a term and 𝑥 is a variable. Here, we use
𝐴(𝑡/𝑥) to denote the formula 𝐴𝜎 , where 𝜎 is the substitution 𝜎 : 𝑥 ↦→ 𝑡 .

– Implication. 𝐴1, 𝐴2, . . . , 𝐴𝑘 ⊢ 𝐵, where the formula 𝐵 is a truth-functional implication of formulas
𝐴1, . . . 𝐴𝑘 .

– 𝑘-Induction. {𝐴(0/𝑥𝑖)}𝑖∈[𝑘], {𝐴 → 𝐴(𝑥1 | | 𝑗1/𝑥1, . . . , 𝑥𝑘 | | 𝑗𝑘/𝑥𝑘)} 𝑗1, 𝑗2,..., 𝑗𝑘 ∈{1,2} ⊢ 𝐴, where 𝐴 is a for-
mula of the variables 𝑥1, . . . , 𝑥𝑘 .

4 Δ-Equivalent Circuits

In this section, we introduce a new notion of equivalence between circuits: Δ-equivalence. In Section 4.1,
we define some terminologies for subcircuits. In Section 4.2, we formally define 𝛿-equivalence and Δ-
equivalence for circuits. In Section 4.3, we show that propositional proofs of equivalence for circuits implies
our notion of Δ-equivalence.

27

4.1 Background

Circuits and Subcircuits. A circuit is a acyclic graph, where each node of the graph represents a gate,
and each edge of the graph represents a wire. The topology of the circuit refers to how the nodes are
connected in the graph, ignoring what functions that the nodes compute. For any circuit𝐶 , we use inp(𝐶)
and out(𝐶) to denotes the sets of its input and output wires.

Let 𝐶 be a circuit. A subcircuit 𝑆 of 𝐶 is defined as a subset of the gates in 𝐶 . Moreover, we define the
following terms.

– Input wire. We say a wire𝑤 is an input wire of 𝑆 , if𝑤 is the output wire of a gate 𝑔 ∉ 𝑆 , meanwhile
𝑤 is also an input wire of a gate 𝑔′ ∈ 𝑆 . We denote the set of input wires as inp(𝑆).

– Output wire. We say a wire𝑤 is an output wire of 𝑆 , if𝑤 is an input wire of a gate 𝑔 ∉ 𝑆 , meanwhile
𝑤 is also the output wire of a gate 𝑔′ ∈ 𝑆 . We denote the set of output wires as out(𝑆).

– Functionality. The circuit 𝐶 naturally induces a circuit {0, 1} |inp(𝑆) | → {0, 1} |out(𝑆) | for the subcir-
cuit 𝑆 . We denote this circuit as 𝐶𝑆 .

We remark that in the definition of subcircuit, we do not require the subset 𝑆 is “connected”. Instead,
we allow the elements in the subcircuit 𝑆 scatter arbitrarily in the circuit 𝐶 .

4.2 Definition of Δ-Equivalent Circuits

Before we define the Δ-equivalence, we first introduce the notion of 𝛿-equivalence. Intuitively, we say
two circuits are 𝛿-equivalent, if they only differ by two small functionality equivalent subcircuits of poly-
logarithmic size at the same location. In the following, we define the 𝛿-equivalence via a subcircuit 𝑆 in
order to be general. The reader can keep in mind that the size of 𝑆 is very small.

Definition 1 (𝛿-Equivalent via Subcircuit 𝑆). We say that two circuits𝐶1,𝐶2 are 𝛿-equivalent via a subcircuit
𝑆 , if

– The topology of 𝐶1 and 𝐶2 are identical.

– The corresponding gates of 𝐶1 and 𝐶2 outside of 𝑆 are identical.

– The subcircuits of 𝐶1,𝐶2 induced by 𝑆 are identical. Namely,

𝐶1𝑆 (𝑥) = 𝐶2𝑆 (𝑥), ∀𝑥 ∈ {0, 1} |inp(𝑆) | .

Next, we define the notion of Δ-equivalent circuits. Intuitively, two circuits are Δ-equivalent, if one can
be transformed to another by a polynomial number of steps, where each step only modifies a logarithmic
size subcircuit, while preserving the functionality of the subcircuit at each step.

Definition 2 (Δ-Equivalent Circuits). We say that two families of circuits {𝐶1
𝑛}𝑛, {𝐶2

𝑛}𝑛 are Δ-equivalent,
if there exists a polynomial ℓ = ℓ (𝑛) and a function 𝐵 = 𝑂 (log𝑛) such that, for any positive integer 𝑛, there
exist ℓ ≥ 2 intermediate circuits 𝐶 ′1,𝐶

′
2, . . . ,𝐶

′
ℓ and a series of subcircuits {𝑆𝑖}𝑖∈[ℓ−1] of size 𝐵 with 𝐶 ′1 = 𝐶1

𝑛 ,
𝐶 ′ℓ = 𝐶

2
𝑛 , and for any 𝑖 ∈ [ℓ − 1], 𝐶𝑖 and 𝐶𝑖+1 are 𝛿-equivalent via the subcircuit 𝑆𝑖 .

28

4.3 Δ-Equivalence from Propositional Proofs

In this section, we will show that the Δ-equivalence in Definition 2 is implied by any polynomial size
propositional of functionally equivalence. To formalize this implication, we first define the propositional
formula naturally induced by the circuits.

Circuit Induced Propositions. For any Boolean circuit 𝐶 , we denote the set of propositions naturally
induced by 𝐶 as Prop[𝐶]. Namely, for each wire 𝑤 in the circuit, we use a variable 𝑣𝑤 in the extended
Frege system to represent that wire. Then for each gate 𝑔 with output wire 𝑜 and input wires 𝑙 and 𝑟 , it
corresponds to a formula 𝑣𝑤 ↔ 𝑓 (𝑣𝑙 , 𝑣𝑟), where 𝑓 (𝑣𝑙 , 𝑣𝑟) is the formula expressing the computation of 𝑔.
For example, if 𝑔 is an AND gate, then 𝑓 (𝑣𝑙 , 𝑣𝑟) = 𝑣𝑙 ∧ 𝑣𝑟 , and the cases for OR gates and NOT gates are
similar. Prop[𝐶] is defined to be the set containing all such formulas for every gates in the circuit 𝐶 .

For simplicity, we use the notation 𝑜 B Prop[𝐶] (𝑥) to denote that the input wires of 𝐶 corresponds
to the tuple of variables 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥 |inp(𝐶) |) and the output wire corresponds to the variable 𝑜 in the
extended Frege system (Section 3.1), where inp(𝐶) is the set of input wires of𝐶 , as we define in Section 4.1.

Propositional Proofs of Equivalence. Next, we define the notion of propositional proofs of equivalence.
Intuitively, we say two circuit families have propositional proofs of equivalence, if there exists a polynomial
size proof of functional equivalence in the propositional logic.

Definition 3 (Propositional Proofs of Equivalence). We say that two families of circuits {𝐶1
𝑛}𝑛∈N, {𝐶2

𝑛}𝑛∈N
have propositional proofs of equivalence of size 𝑠 for a function 𝑠 (·), if for every positive integer 𝑛, there exists
a derivation of size 𝑠 (𝑛) of

𝑜1 B Prop[𝐶1
𝑛] (𝑥), 𝑜2 B Prop[𝐶2

𝑛] (𝑥) ⊢ 𝑜1 ↔ 𝑜2.

If 𝑠 is bounded by a polynomial of 𝑛, then we say {𝐶1
𝑛}𝑛∈N and {𝐶2

𝑛}𝑛∈N have efficient propositional proofs
of equivalence. If 𝑠 is clear from the context or irrelevant, then we omit 𝑠 and just say that the two families of
circuits have propositional proofs of equivalence.

Lemma 3 (Δ-Equivalence from Propositional Proofs of Equivalence). There exists a polynomial time al-
gorithm Pad which takes as input a circuit 𝐶 , and an integer 𝑠 , it outputs a new circuit 𝐶 ′ with following
properties.

– The functionalities of 𝐶 ′ and 𝐶 are identical.

– The size of the circuit 𝐶 ′ is bounded by poly(|𝐶 |, 𝑠).

– If two families of circuits {𝐶1
𝑛}𝑛∈N, {𝐶2

𝑛}𝑛∈N have efficient propositional proofs of equivalence of size 𝑠 ,
then {Pad(𝐶1

𝑛, 𝑠 (𝑛))}𝑛 and {Pad(𝐶2
𝑛, 𝑠 (𝑛))}𝑛 are Δ-equivalent circuits.

– Each gate in 𝐶 ′ has at most 2 input wires, and at most 2 output wires.

Proof. As described in Section 2, we will transform from circuit {𝐶1
𝑛}𝑛∈N to {𝐶2

𝑛}𝑛∈N in several steps, where
each step changing the functionality of some gates and how wires connect to them. However, our con-
struction of iO later can only support limited number of input and output wires for each gate, and it does
not allow the change of topology.

To resolve this issue, we build the following helper circuits to pad the original circuit. The Copy circuit
copies an output wire of a gate to multiple wires of the same value. It provides the support for the multi-
output wires. The projection circuit “selects” a wire value from multiple wire values. It allows us to change
the way how wires are connected, without changing the topology of the circuits.

Copy Circuit Copy. For any integer 𝑛, any subset 𝑆 ⊆ [𝑛], Copy𝑆𝑛 : {0, 1} → {0, 1}𝑛 copies the input
bit to |𝑆 | copies. Namely, Copy𝑆𝑛 (𝑥) = {𝑥𝑖}𝑖∈[𝑛] , where 𝑥𝑖 = 𝑥 if 𝑖 ∈ 𝑆 and 𝑥𝑖 = 0 otherwise. We construct

29

Copy𝑆𝑛 as a binary tree, where each node corresponds to a gate Copy{1,2}2 (𝑥) = (𝑥, 𝑥) if the node is on the
root-to-leaf path of an element in 𝑆 , otherwise it corresponds to a gate that always outputs 0. In this way,
for any 𝑛, any two subsets 𝑆1, 𝑆2 ⊆ [𝑛], the topology of Copy𝑆1

𝑛 and Copy𝑆2
𝑛 are identical. Note that for each

gate in Copy𝑆𝑛 circuit, we only set it to be a “copy” functionality when necessary. If the root-to-leaf paths
for 𝑆 doesn’t go through a gate, then we set the functionality of such a gate to be always outputting 0.

Projection Circuit Proj. The projection circuit Proj𝑖𝑛 : {0, 1}𝑛 → {0, 1} takes 𝑥1, 𝑥2, . . . , 𝑥𝑛 as input, and
outputs 𝑥𝑖 . To build Proj𝑖𝑛 , we also build a binary tree, where 𝑥1, 𝑥2, . . . , 𝑥𝑛 are on the leaves. Each internal
node of the tree computes a projection function Proj𝑏ℎ2 (𝑥1, 𝑥2) = 𝑥𝑏 , for the ℎ-th bit 𝑏ℎ of 𝑖 , at the height ℎ.

Next, we describe the padding algorithm Pad in Figure 3. When describing the algorithm, we use the
term add wire 𝑤 with copy to represent that we add a new wire 𝑤 and a copy circuit Copy𝜙𝑛 , where 𝑤 is
treated as the input wire to the copy circuit. We use the term add wire 𝑤 with projection to represent the
following procedure.

– Add a new wire 𝑤 and a projection circuit Proj1𝑛 , where 𝑤 is treated as the output wire of the pro-
jection circuit.

– For each existing copy circuit, take an unused output wire of it, and replace it with an unused input
wire in the projection circuit.

We use the term connect wire𝑤 with wire𝑤 ′ to represent that we modify the projection circuit associated
with 𝑤 and the copy circuit associated with 𝑤 ′ such that the wire value of 𝑤 equals 𝑤 ′. Note that we
change the superscripts 𝑆 for Copy and 𝑖 for Proj in this procedure.

Now we examine each property of the new circuit 𝐶 ′ we want to prove. For the size of 𝐶 ′, the size is
clearly polynomial, since we set the parameter ℓ to be a polynomial of |𝐶 | and 𝑠 . For the parameter 𝑛, we
can set it to be an integer larger than 2(ℓ + |𝐶 |) rounded to a power of 2, which is also a polynomial.

Preserving Functionality. The functionality of𝐶 is preserved, since we use the gates {𝑔′}𝑔 (𝑔 range over
all gates in𝐶) to simulate the circuit𝐶 . Finally, in the binary tree, the first leaf compute𝐶 (𝑥), and the rest
of leaves always computes 1, hence the circuit 𝐶 ′ computes 𝐶 (𝑥) ∧ 1 ∧ . . . ∧ 1 = 𝐶 (𝑥).

Δ-Equivalence from Propositional Proofs. For any two circuit 𝐶1,𝐶2 with a propositional proof of
equivalence of size 𝑠 , to show that 𝐶 ′1 = Pad(𝐶1, 𝑠) and 𝐶 ′2 = Pad(𝐶2, 𝑠) are Δ-equivalent, we only need
to show how to modify Pad(𝐶1, 𝑠) by changing a 𝑂 (log |𝐶1 | + log 𝑠)-size subcircuit each time to obtain
Pad(𝐶2, 𝑠). We proceed with the following phases.

Grow𝐶2. This phases takes𝑂 (|𝐶2 |) steps to gradually “grow”𝐶2 in𝐶 ′1, by using the dummy gates. Namely,
we iterate on the gates of𝐶2 in the topological order. In each step, we take an unused dummy gate 𝑔′ in𝐶 ′1
and change it to compute a gate in 𝐶2. We also connect its input wires to the corresponding output wires
of its children. In each step, the subcircuit that we make changes has size 𝑂 (log𝑛) since we only need to
change a root-to-leaf path in the copy circuits and the projection circuits.

Given a polynomial-size propositional proof of equivalence (𝜃, 𝜃2, . . . , 𝜃𝑚). In the next “Grow the Ex-
tension” phase, we will add all extensions rules in the proof to 𝐶 ′1. However, if the formulas are too long,
then the subcircuit we make change to may be too large. Hence, we need to break 𝜃𝑖 ’s into constant-size
formulas. The idea is to exploit the extension axiom in the extended Frege system, by introducing new
atoms that represent some intermediate subformulas.

Formally, we iterate over 𝑖 ∈ [𝑚] and build the following set 𝑄 of formulas. Initially, 𝑄 is set to be an
empty set. For each 𝑖 ∈ [𝑚], if 𝜃𝑖 follows from an extension rule 𝑡𝑖 ↔ 𝐴𝑖 , then we add all subformulas
of 𝐴𝑖 to 𝑄 . Otherwise, we add all subformulas of 𝜃𝑖 to 𝑄 . Now, for each non-atomic formula 𝐴 in 𝑄 , we
assign it with a new atom 𝑣𝐴.

30

Padding Algorithm Pad(𝐶, 𝑠)

– Initialize a new circuit 𝐶 ′ as follows. Create |inp(𝐶) | input wires. For each input wire 𝑥𝑖 ,
add 𝑥𝑖 with copy.

– Iterate on the gate of𝐶 in the topological order, for each gate 𝑔 in𝐶 , let ℎ, 𝑓 be its children.

– Create a gate 𝑔′ in 𝐶 ′. Add its output wires with copy. We refer to such gate 𝑔′ as
regular gates.

– Create two input wires 𝑙, 𝑟 to 𝑔′, and add them with projection.
– Let 𝑔′ compute the same functionality as 𝑔. Connect the input wires 𝑙, 𝑟 with the

output wires of ℎ,𝑔, respectively.

– Let ℓ = 2(|𝐶 | + 𝑠), and round up ℓ to a power of 2. Add ℓ “dummy” arity-2 gates, by
adding their output wires with copy, and adding their input wires with projection. Each
gate always outputs 1.

– Create a binary tree of gates with ℓ leaf gates in 𝐶 ′. Each internal node of the binary tree
computes an ∧ of its two children, and each leaf gate always outputs 1, except the first leaf
gate, which computes the identity function. For each leaf gate, we add one input wire with
projection.

– Finally, connect the first leaf wire with the output wire of the output gate of𝐶 , and set the
output wire of 𝐶 ′ to be the output wire of the root. Output 𝐶 ′ as the augmented circuit.

Figure 3: Description of the padding algorithm Pad.

Grow the Extension. This phase takes𝑂 (𝑠) steps to take care of all extension rules used in the proof. We
firstly iterate all non-atomic formulas 𝐴 in the set 𝑄 according to their logical depth from 1 to maximum,
and “add” 𝑣𝐴 to the circuit 𝐶 ′1. Specifically, if 𝐴 is of the form 𝑈 → 𝑉 , then 𝑣𝑈 , 𝑣𝑉 has already been added
in𝐶 ′1 since we iterate the formulas based on their logical depth. To add 𝑣𝐴, we take a unused dummy gate
𝑔′ in 𝐶 ′1, and change it to compute the “→” function, and connect the input wires of 𝑔′ with the output
wires of 𝑣𝑈 , 𝑣𝑉 . If 𝐴 is of the form ¬𝑈 , then we add it similarly.

Next, we also iterate over 𝜃𝑖 in the proof, and “add” all 𝜃𝑖 ’s that follow from the extension rules to 𝐶 ′1.
Specifically, for each 𝑖 ∈ [𝑚], if 𝜃𝑖 follows from an extension rule, i.e. 𝜃𝑖 is 𝑡𝑖 ↔ 𝐴𝑖 , where 𝐴𝑖 is a formula.
Then we replace an unused dummy gate 𝑔′ in𝐶 ′1 to represent 𝑡𝑖 , connect one of its input wire to the output
wire of 𝑣𝐴𝑖

, and set functionality of 𝑔′ to be the identity function.
The size of the subcircuit which we makes changes in and the functional equivalence of the subcircuit

can be argued in the same way as in the “Grow 𝐶2” phase, since each step modifies a dummy gate.

Grow the Proof. This phase takes𝑂 (𝑠) steps to replacing the 1’s on the leaves of the binary tree with the
formulas 𝜃𝑖 obtained from the inference rules. For each 𝑖 = 1, 2, . . . ,𝑚, if 𝜃𝑖 is obtained from an inference
rule 𝐴1, 𝐴2, . . . , 𝐴𝑘 ⊢ 𝐴0 with a substitution 𝜎 : 𝑝1 ↦→ 𝜙1, 𝑝2 ↦→ 𝜙2, . . . , 𝑝𝑡 ↦→ 𝜙𝑡 , where 𝑝1, 𝑝2, . . . , 𝑝𝑡 are all
variables used in 𝐴0, 𝐴1, 𝐴2, . . . , 𝐴𝑘 , and 𝜙1, 𝜙2, . . . , 𝜙𝑡 are formulas. Then 𝜃𝑖 = 𝐴0𝜎 , and 𝐴1𝜎, . . . , 𝐴𝑘𝜎 must
have appeared in {𝜃 𝑗 } 𝑗<𝑖 . Hence, by our construction of 𝑄 , we have 𝐴 𝑗𝜎 ∈ 𝑄 , for 𝑗 = 0, 1, . . . , 𝑘 . Now, we
choose an unused leaf gate (which always outputs 1) in the binary tree in𝐶 ′1, and connect one of its input
wire with the output wire of 𝑣𝐴0𝜎 .

To argue the 𝛿-equivalence for each step. We first explain how we choose the subcircuit 𝑆 . Firstly, we

31

add all gates “between” 𝑣𝐴 𝑗𝜎 ’s and 𝑣𝜙 𝑗
’s to 𝑆 . Formally, 𝑆 contains all 𝑣𝜙 , where 𝜙 is a subformula in one

of 𝐴1𝜎,𝐴2𝜎, . . . , 𝐴𝑘𝜎 , and also a superformula for one of 𝜙1, . . . , 𝜙𝑡 . Clearly, the size of 𝑆 now is the total
size of the formulas 𝐴0, 𝐴1, . . . , 𝐴𝑘 , which is a constant. Then we add the “connections” between the gates
in 𝑆 via the copy circuits and the projection circuits. This step only blow up the size of 𝑆 by a 𝑂 (log𝑛)-
factor. Finally, we add all the gates in the root-to-leaf path of 𝑣𝐴1𝜎 , 𝑣𝐴2𝜎 , . . . , 𝑣𝐴𝑘𝜎 . Note that we can do this
because 𝑣𝐴1𝜎 , 𝑣𝐴2𝜎 , . . . , 𝑣𝐴𝑘𝜎 are already “selected” by one of the leaves previously, since they have already
appeared in the first (𝑖−1) 𝜃 𝑗 ’s. Since the root to leaf path contains𝑂 (log ℓ) gates, after this, 𝑆 still contains
logarithmic gates.

To prove that the change we make preserves functionality of the subcircuit 𝑆 , the initial observation
is that only the output wire of the root is affected by our change. Hence, if we let 𝜎 ′ : 𝑝1 ↦→ 𝑣𝜙1, 𝑝2 ↦→
𝑣𝜙2, . . . , 𝑝𝑡 ↦→ 𝑣𝜙𝑡 , then before the change, the output wire at the root gate computes𝐴1𝜎

′∧𝐴2𝜎
′ . . . 𝐴𝑘𝜎

′∧𝑡 ,
where 𝑡 is a term that contains all other inputs to the subcircuit 𝑆 . After we make the change, it com-
putes 𝐴1𝜎

′ ∧ 𝐴2𝜎
′ . . . 𝐴𝑘𝜎

′ ∧ 𝐴0𝜎
′ ∧ 𝑡 . Since 𝐴1, 𝐴2, . . . 𝐴𝑘 ⊢ 𝐴0 is an inferece rule, the formula 𝐴1𝜎

′ ∧
𝐴2𝜎

′ . . . 𝐴𝑘𝜎
′→ 𝐴0𝜎

′ is a tautology. Hence, 𝐴1𝜎
′∧𝐴2𝜎

′ . . . 𝐴𝑘𝜎
′∧𝐴0𝜎

′∧ 𝑡 = 𝐴1𝜎
′∧𝐴2𝜎

′ . . . 𝐴𝑘𝜎 ∧ 𝑡 , and
thus the functionality of the subcircuit is preserved.
Change the Output. In this phase we replace the first leaf, which is originally set to select the output
of 𝐶1 in 𝐶 ′1, with a gate that selects the output of 𝐶2 computed by the dummy gates. The 𝛿-equivalence of
this step can be argued in a similar way as the previous phase.
Shrink the Proof. This phase undo the changes we make in “Grow the Proof” phase. Namely, we replace
each leaf gate of the binary tree back to a gate that always output 1 in the reverse order of the “Grow the
Proof” phase. We can do this because any argument we made about the equivalence of the subcircuit in
“Grow the Proof” phase does not involve the first leaf, which is now switched to output𝐶2(𝑥). Hence, we
can replace 1 back in the leaves.
Shrink the Extension. This phase undo the changes we make in the “Grow the Extension” phase.
Namely, we remove the gates that introduce the extensions, in the reverse order that they’re added.
Move𝐶2 to the Place of𝐶1. The start of this phase is almost𝐶 ′2, except that𝐶2 is computed by the |𝐶1 |-th
regular gate to the |𝐶1 | + |𝐶2 |-th regular gate added in 𝐶 ′1 (See the definition of Regular gates in Figure 3),
while 𝐶2 is computed by the first |𝐶2 |-gates in 𝐶 ′2. Hence, in this phase we move the 𝐶2 computed by the
dummy gates to the first |𝐶2 | gates. Finally, we obtain 𝐶 ′2.

5 Preliminaries: Part II

In this section, we define several cryptographic building blocks that we shall use in the next section.

5.1 Learning with Errors

We start by recalling the learning with errors problem below.

Definition 4 (Learning with Error Assumption). For any positive integers 𝑛, 𝑞, any s ∈ Z𝑛 , and any error
distribution 𝜒 over Z, the LWE (Learning with Error) distribution 𝐴s,𝜒 is defined by uniformly sampling a
vector a, and outputting (a, ⟨a, s⟩ + 𝑒) ∈ Z𝑛𝑞 × Z𝑞 , where 𝑒 ← 𝜒 .

The LWE𝑛,𝑞,𝜒 assumption states that no non uniform PPT adversary can distinguish, with non-negligible
probability, between (i) the distribution𝐴s,𝜒 for a single s← Z𝑛𝑞 ; and (ii) the uniform distribution over Z𝑛𝑞×Z𝑞 .

A standard instantiation of LWE chooses 𝜒 as discrete Gaussian distribution over Z with parameters
𝑟 = 2

√
𝑛. For this parameterization, LWE is at least as hard as quantumly approximating some “short

vector” problem on 𝑛-dimensional lattices in the worst case to �̃� (𝑞
√
𝑛) factors [Reg09, PRS17]. There are

also classical reductions for different parameterizations [Pei09, BLP+13].

32

5.2 Pseudorandom Generators

A pseudorandom generator (PRG) [ILL89] stretches random strings into strings that look uniformly ran-
dom to a computationally bounded adversary.

Definition 5 (Pseudorandom Generator). A function PRG : {0, 1}𝜆 → {0, 1}𝜃 is pseudorandom if 𝜃 > 𝜆

and if the following distributions are computationally indistinguishable:

𝑟 ≈ PRG(seed)

where 𝑟 ←$ {0, 1}𝑚 and seed←$ {0, 1}𝜆 .

5.3 Puncturable Pseudorandom Functions

We define the notion of puncturable pseudorandom functions below.

Definition 6. A pseudorandom function of the form PRF𝑝𝑢𝑛𝑐 (𝐾, ·) is said to be a 𝜇-secure puncturable PRF
if there exists a PPT algorithm PRFPunc that satisfies the following properties:

– Functionality preserved under puncturing. PRFPunc takes as input a PRF key 𝐾 and an input 𝑥
and outputs 𝐾\{𝑥} such that for all 𝑥 ′ ≠ 𝑥 , PRF𝑝𝑢𝑛𝑐 (𝐾\{𝑥}, 𝑥 ′) = PRF𝑝𝑢𝑛𝑐 (𝐾, 𝑥 ′).

– Pseudorandom at punctured points. For every PPT adversary (A1,A2) such thatA1(1𝜆) outputs
an input 𝑥 , consider an experiment where 𝐾

$←− {0, 1}𝜆 and 𝐾\{𝑥} ← PRFPunc(𝐾, 𝑥). Then for all
sufficiently large 𝜆 ∈ N,��Pr[A2(𝐾\{𝑥}, 𝑥, PRF𝑝𝑢𝑛𝑐 (𝐾, 𝑥)) = 1] − Pr[A2(𝐾\{𝑥}, 𝑥,𝑈𝜒 (𝜆)) = 1]

�� ≤ 𝜇 (𝜆)
where𝑈𝜒 (𝜆) is a string drawn uniformly at random from {0, 1}𝜒 (𝜆) .

If 𝜇 is negligible, we refer to PRF𝑝𝑢𝑛𝑐 as a secure puncturable PRF.

As observed by [BW13, BGI14, KPTZ13], the GGM construction [GGM84] of PRFs from one-way functions
yields puncturable PRFs.

Theorem 4 ([GGM84, BW13, BGI14, KPTZ13]). If 𝜇

poly(𝜆) -secure one-way functions exist, for some fixed
polynomial poly(𝜆), then there exist 𝜇-secure puncturable pseudorandom functions.

5.4 Homomorphic Encryption

We recall the notion of homomorphic encryption [Gen09].

Definition 7 (Homomorphic Encryption). A homomorphic encryption scheme (KGen, Enc,Dec, Eval) for a
function family F is composed of the following PPT algorithms.

– The key generation algorithm KGen takes as input the security parameter 𝜆 and returns a key pair
(sk, pk).

– The encryption algorithm Enc takes as input a public key pk and a message𝑚 and returns a ciphertext
𝑐 .

– The evaluation algorithm Eval takes as input a public key pk, a ciphertext 𝑐 and a function 𝑓 and returns
an evaluated ciphertext 𝑐 .

33

– The decryption algorithm takes as input a secret key sk and a ciphertext 𝑐 and returns a message𝑚.

The homomorphic encryption scheme is correct if for all functions 𝑓 ∈ F , all (sk, pk) ∈ KGen(1𝜆), all
message𝑚, all ciphertexts 𝑐 ∈ Enc(pk,𝑚), then Dec(sk, Eval(pk, 𝑐, 𝑓)) = 𝑓 (𝑚). Moreover, we say an FHE
scheme is compact, if the size of the homomorphically evaluated ciphertext Eval(pk, 𝑐, 𝑓) does not depends
on the circuit being evaluated, and is bounded by poly(𝜆, |𝑓 (𝑚) |).

If F is the family of all polynomially computable functions we say that the encryption scheme is fully
homomorphic (FHE). Furthermore, if the maximum size of the computable circuit is a priori bounded,
we say that the FHE is leveled. We say that a scheme is secure if it satisfies the standard notion of CPA-
security [GM82].

5.5 Indistinguishability Obfuscation for Circuits

We define the notion of indistinguishability obfuscation (iO) for circuits [BGI+01, GGH+13] below.

Definition 8 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm iO is called an
𝜀-secure indistinguishability obfuscator for a circuit family {C𝜆}𝜆∈N, where C𝜆 consists of circuits 𝐶 of the
form 𝐶 : {0, 1}ℓ → {0, 1}, if the following holds:

– Completeness: For every 𝜆 ∈ N, every 𝐶 ∈ C𝜆 , every input 𝑥 ∈ {0, 1}ℓ , where ℓ = ℓ (𝜆) is the input
length of 𝐶 , we have that

Pr
[
𝐶 ′(𝑥) = 𝐶 (𝑥) : 𝐶 ′← iO(1𝜆,𝐶)

]
= 1

– 𝜀-Indistinguishability: For any PPT distinguisher 𝐷 , there exists a negligible function negl(·) such
that the following holds: for all sufficiently large 𝜆 ∈ N, for all pairs of circuits 𝐶0,𝐶1 ∈ C𝜆 such that
𝐶0(𝑥) = 𝐶1(𝑥) for all inputs 𝑥 ∈ {0, 1}ℓ , where ℓ = ℓ (𝜆) is the input length of 𝐶0,𝐶1, we have:��� Pr

[
𝐷 (𝜆, iO(1𝜆,𝐶0)) = 1

]
− Pr

[
𝐷 (1𝜆, iO(1𝜆,𝐶1)) = 1

] ��� ≤ 𝜀
If 𝜀 is negligible in 𝜆 then we refer to iO as a secure indistinguishability obfuscator.

5.6 Somewhere Extractable Hash

We recall the notion of somewhere extractable hash functions that are defined similarly to somewhere
statistical binding hash functions [HW15], except that we explicitly require an extraction property.

A somewhere extractable hash has a key with two computationally indistinguishable modes: (i) In the
normal mode, the key is uniformly random; and (ii) in the trapdoor mode, the key is generated according
to a subset 𝑆 denoting the coordinates of the hashed message. Furthermore, we require the following
properties.

– Efficiency: We require that the size of the key and hash value roughly grow with |𝑆 |.

– Extraction: The trapdoor mode hash key is associated with a trapdoor td, such that given the
trapdoor, one can extract the message on coordinates in 𝑆 . Note that the extraction implies the
statistical binding property for the coordinates in 𝑆 .

– Local Opening: We allow the prover to generate a local opening for any single coordinate of the
message. The local opening needs to have a small size, which only grows poly-logarithmically with
the total length of the message. Moreover, we require that the value from the local opening should
be consistent with the extracted value.

34

More formally, a somewhere extractable hash scheme is a tuple of algorithms (Gen, TGen,Hash,Open,
Verify, Ext) described below.

Gen(1𝜆, 1𝑁 , 1 |𝑆 |): On input a security parameter, the length of the message 𝑁 , and the size of a subset
𝑆 ⊆ [𝑁], the “normal mode” key generation algorithm outputs a uniformly random hash key 𝐾 .

TGen(1𝜆, 1𝑁 , 𝑆): On input a security parameter, the length of the message 𝑁 , an extraction subset
𝑆 ⊆ [𝑁], the “trapdoor mode” key generation algorithm outputs a hash key 𝐾∗ and a trapdoor td.

Hash(𝐾,m ∈ {0, 1}𝑁): On input the hash key 𝐾 , a vector m = (𝑚1,𝑚2, . . . ,𝑚𝑁) ∈ {0, 1}𝑁 , it outputs a
hash value 𝑐 .

Open(𝐾,m, 𝑖): On input the hash key 𝐾 , a vector m = (𝑚1,𝑚2, . . . ,𝑚𝑁) ∈ {0, 1}𝑁 , an index 𝑖 ∈ [𝑁],
the opening algorithm outputs a local opening 𝜋𝑖 to𝑚𝑖 .

Verify(𝐾, 𝑐,𝑚𝑖 , 𝑖, 𝜋𝑖): On input the hash key 𝐾 , a hash value 𝑐 , a bit𝑚𝑖 ∈ {0, 1}, and a local opening 𝜋𝑖 ,
the verification algorithm decides to accept (output 1) or reject (output 0) the local opening.

Ext(𝑐, td): On input a hash value 𝑐 , and the trapdoor td generated by the trapdoor key generation
algorithm TGen with respect to the subset 𝑆 , the extraction algorithm outputs an extraction string
𝑚∗
𝑆

on the subset 𝑆 .
Furthermore, we require the hash scheme to satisfy the following properties.

Succinct Key. The size of the key is bounded by poly(𝜆, |𝑆 |, log𝑁).
Succinct Hash. The size of the hash value 𝑐 is bounded by poly(𝜆, |𝑆 |, log𝑁).
Succinct Local Opening. The size of the local opening𝜋𝑖 ← Open(𝐾,𝑚, 𝑖, 𝑟) is bounded by poly(𝜆, |𝑆 |, log𝑁).
Succinct Verification. The running time of the verification algorithm is bounded by poly(𝜆, |𝑆 |, log𝑁).
Key Indistinguishability. For any non-uniform PPT adversary A and any polynomial 𝑁 = 𝑁 (𝜆),

there exists a negligible function 𝜈 (𝜆) such that���� Pr
[
𝑆 ← A(1𝜆, 1𝑁), 𝐾 ← Gen(1𝜆, 1𝑁 , 1 |𝑆 |) : A(𝐾) = 1

]
−

Pr
[
𝑆 ← A(1𝜆, 1𝑁), (𝐾∗, td) ← TGen(1𝜆, 1𝑁 , 𝑆) : A(𝐾∗) = 1

] ���� ≤ 𝜈 (𝜆) .
Opening Completeness. For any hash key 𝐾 , any message m = (𝑚1, . . . ,𝑚𝑁) ∈ {0, 1}𝑁 , any ran-

domness 𝑟 , and any index 𝑖 ∈ [𝑁], we have

Pr [𝑐 ← Hash(𝐾,m; 𝑟), 𝜋𝑖 ← Open(𝐾,m, 𝑖, 𝑟) : Verify(𝐾, 𝑐,𝑚𝑖 , 𝑖, 𝜋𝑖) = 1] = 1.

Extraction Correctness. For any subset 𝑆 ⊆ [𝑁], any trapdoor key (𝐾∗, td) ← TGen(1𝜆, 1𝑁 , 𝑆), any
hash 𝑐 , any index 𝑖 ∈ 𝑆 , any bit𝑚𝑖∗ ∈ {0, 1}, and any proof 𝜋𝑖∗ , we have

Pr [Verify(𝐾, 𝑐,𝑚𝑖∗, 𝑖
∗, 𝜋𝑖∗) = 1⇒ Ext(𝑐, td) |𝑖∗ =𝑚𝑖∗] = 1.

Since the extracted value Ext(𝑐, td) |𝑖∗ is unique, the extraction correctness implies statistical bind-
ing property.

Theorem 5. There exists a construction of somewhere extractable hash from LWE.

The proof of the above theorem is implicit in [HW15].

Remark 1. We observe that the construction is a Merkle-tree based construction, and thus the input length 𝑁
can in fact be unbounded. That is, the running time of Gen, TGen grows poly-logarithmically in 𝑁 . If we set
𝑁 to be a slightly super-polynomial in 𝜆, then the hash key can support any polynomial input length. Hence,
in our construction, we suppress the input length 𝑁 in Gen and TGen.

35

5.7 SNARGs for Batch-NP
Let SAT be the following language

SAT = {(𝐶, 𝑥) | ∃ 𝑤 s.t. 𝐶 (𝑥,𝑤) = 1},

where 𝐶 : {0, 1}𝑛 × {0, 1}𝑚 → {0, 1} is a Boolean function, and 𝑥 ∈ {0, 1}𝑛 is an instance.
A SNARGs for batch-NP (or non-interactive batch argument) is a protocol between a prover and a

verifier. The prover and the verifier first agree on a circuit 𝐶 , and a series of 𝑇 instances 𝑥1, 𝑥2, . . . , 𝑥𝑇 .
Then the prover sends a single message to the verifier and tries to convince the verifier that (𝐶, 𝑥1), (𝐶, 𝑥2),
. . . , (𝐶, 𝑥𝑇) ∈ SAT.

More formally, such a protocol is specified by a tuple of algorithms (Gen, TGen, P,V) that work as
follows.

– Gen(1𝜆, 1𝑇 , 1 |𝐶 |) : On input a security parameter 𝜆, the number of instances 𝑇 , and the size of the
circuit 𝐶 , the CRS generation algorithm outputs crs.

– TGen(1𝜆, 1𝑇 , 1 |𝐶 |, 𝑖∗) : On input a security parameter 𝜆, the number of instances 𝑇 , the size of the
circuit 𝐶 and an index 𝑖∗, the trapdoor CRS generation algorithm outputs crs∗.

– P(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 , 𝜔1, 𝜔2, . . . , 𝜔𝑇) : On input crs, a circuit 𝐶 , and 𝑇 instances 𝑥1, 𝑥2, . . . , 𝑥𝑇 and
their corresponding witnesses 𝜔1, 𝜔2, . . . , 𝜔𝑇 , the prover algorithm outputs a proof 𝜋 .

– V(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 , 𝜋) : On input crs, a circuit𝐶 , a series of instances 𝑥1, 𝑥2, . . . , 𝑥𝑇 , and a proof 𝜋 ,
the verifier algorithm decides to accept (output 1) or reject (output 0).

Furthermore, we require the aforementioned algorithms to satisfy the following properties.

– Succinct Communication. The size of 𝜋 is bounded by poly(𝜆, log𝑇, |𝐶 |).

– Compact CRS. The size of crs is bounded by poly(𝜆, log𝑇, |𝐶 |).

– Succinct Verification. The verification algorithm runs in time poly(𝜆,𝑇 , 𝑛) + poly(𝜆, log𝑇, |𝐶 |).
Moreover, it can be split into the following two parts8:

– Pre-processing: There exists a deterministic algorithm PreVerify(crs, 𝑥1, 𝑥2, . . . , 𝑥𝑇) that takes
as input the CRS, and 𝑇 instances 𝑥1, 𝑥2, . . . , 𝑥𝑇 , and outputs a short sketch 𝑐 , where |𝑐 | =
poly(𝜆, log𝑇, |𝑥1 |).

– Online Verification: There exists an online verification algorithm OnlineVerify(crs, 𝑐,𝐶, 𝜋)
that takes as input the sketch 𝑐 , a circuit𝐶 , and a proof 𝜋 , and outputs 1 (accepts) or 0 (rejects).
Furthermore, the running time of the online verification algorithm is poly(𝜆, |𝐶 |, |𝑐 |, |𝜋 |) =

poly(𝜆, log𝑇, |𝐶 |).

– CRS Indistinguishability. For any non-uniform PPT adversaryA, and any polynomial 𝑇 = 𝑇 (𝜆),
there exists a negligible function 𝜈 (𝜆) such that���� Pr

[
𝑖∗ ← A(1𝜆, 1𝑇), crs← Gen(1𝜆, 1𝑇) : A(crs) = 1

]
−

Pr
[
𝑖∗ ← A(1𝜆, 1𝑇), crs∗ ← TGen(1𝜆, 1𝑇 , 𝑖∗) : A(crs∗) = 1

] ���� ≤ 𝜈 (𝜆) .
8We note this is a stronger property than previously considered. However, it is natural, and our construction achieves this

property.

36

– Completeness. For any circuit 𝐶 , any 𝑇 instances 𝑥1, . . . , 𝑥𝑇 such that (𝐶, 𝑥1), (𝐶, 𝑥2), . . . , (𝐶, 𝑥𝑇) ∈
SAT and witnesses 𝜔1, 𝜔2, . . . , 𝜔𝑇 for (𝐶, 𝑥1), (𝐶, 𝑥2), . . . , (𝐶, 𝑥𝑇), we have

Pr[crs← Gen(1𝜆, 1𝑇 , 1 |𝐶 |), 𝜋 ← P(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 , 𝜔1, 𝜔2, . . . , 𝜔𝑇) :
V(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 , 𝜋) = 1] = 1.

– Semi-Adaptive Somewhere Soundness. For any non-uniform PPT adversary A, and any poly-
nomial 𝑇 = 𝑇 (𝜆), there exists a negligible function 𝜈 (𝜆) such that AdvsoundA (𝜆) ≤ 𝜈 (𝜆), where
AdvsoundA (𝜆) is defined as

Pr
[
𝑖∗ ← A(1𝜆, 1𝑇), crs∗ ← TGen(1𝜆, 1𝑇 , 𝑖∗), (𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 ,Π) ← A(crs∗) :

𝑖∗ ∈ [𝑇] ∧ (𝐶, 𝑥𝑖∗) ∉ SAT ∧ V(crs,𝐶, 𝑥1, 𝑥2, . . . , 𝑥𝑇 ,Π) = 1
]
.

Index Language. Let the index language be the following language

Lidx = {(𝐶, 𝑖) | ∃ 𝑤 s.t. 𝐶 (𝑖,𝑤) = 1},

where 𝐶 is a Boolean function, and 𝑖 is an index.
SNARGs for batch-index language is a special case of SNARGs for batch-NP when the instances

𝑥1, 𝑥2, . . . , 𝑥𝑇 are simply the indices 1, 2, . . . ,𝑇 . We therefore omit 𝑥1, 𝑥2, . . . , 𝑥𝑇 as inputs to the prover
and the verifier algorithms (and also as an output of the adversary A describing the semi-adaptive some-
where soundness property). Furthermore, since the verifier does not need to read the instances, there is
no pre-processing in this case, and the succinct verification property requires the verifier to run in time
poly(𝜆, log𝑇, |𝐶 |).

Theorem 6 ([CJJ21]). Assuming LWE, there exists a SNARGs for batch-index.

Somewhere Statistical Soundness. To use such SNARGs in our constructions, we require the following
stronger soundness property.

Definition 9 (Semi-Adaptive Somewhere Statistical Soundness). We say a SNARG for batch-index satisfies
semi-adaptive somewhere statistical soundness, if for any unbounded adversaryA, AdvsoundA (𝜆) defined above
is negligible.

We observe that the construction in [CJJ21] can be easily modified to obtain the following result:

Theorem 7. Assuming LWE, there exists a SNARGs for batch-index. Furthermore, the construction satisfies
the semi-adaptive somewhere statistical soundness.

The above theorem can be obtained as follows. Choudhuri et al. [CJJ21] constructed SNARGs for index
language language, with (computational) semi-adaptive somewhere soundness defined above. Their con-
struction relies on correlation intractable hash functions (CIH) for efficiently verifiable product relations
[HLR21]. We observe that if the underlying CIH is statistically secure, then we can achieve semi-adaptive
somewhere statistical soundness. Furthermore, we observe that the construction of CIH in [Theorem 3.7,
[HLR21]] makes generic use of the underlying CIH for efficiently searchable relations by [PS19], and [PS19]
also constructed a CIH with somewhere statistical security [Definition 2.5,[PS19]]. Hence, if we apply the
generic construction in [HLR21] to the somewhere statistical CIH [Construction 3.1, [CJJ21]], then we ob-
tain a somewhere statistical CIH for efficiently verifiable product relations. Plugging it in the construction
of SNARGs for batch-index language in [CJJ21], we obtain Theorem 7.

37

6 iO for Δ-Equivalent Circuits

In this section, we define ΔiO, which means iO for Δ-equivalent circuits. Then we construct ΔiO. Our con-
struction needs a new notion of somewhere statistical hash with a consistency proof, which is introduced
and constructed in Section 6.1. Then in Section 6.2, we construct ΔiO.

We start by defining the notion of ΔiO.

Definition 10 (ΔiO). Let C𝜆 be a family of circuits 𝐶 of the form 𝐶 : {0, 1}ℓ → {0, 1}. A uniform PPT
algorithm iO is a secure Δ-indistinguishability obfuscator (ΔiO) for a class of circuits {C𝜆}𝜆∈N if it satisfies:

– Completeness for any circuit in {C𝜆}𝜆∈N,

– Indistinguishability for any pair of Δ-equivalent circuit families in {C𝜆}𝜆∈N.

6.1 Somewhere Extractable Hash with Consistency Proof

We first extend the notion of somewhere extractable hash (SEH) functions (see Section 5.6) to SEH for a
family of elements in some alphabet Σ. Then we introduce the notion of consistency proofs. Namely, SEH
with consistency proofs is a SNARGs for the following promise language. For completeness, it allows any
prover with two “consistent” families of elements to provide a succinctly verifiable proof for their hash
values. For soundness, given two hash values, if the elements extracted by SEH from the hash values is
not “consistent”, then any proof will be rejected for unbunded prover. Here, by “consistent”, we mean one
family of elements is a subset of the other.

Recall that, a family of elements {𝑣𝑖}𝑖∈𝐼 in Σ with the index set 𝐼 , is defined as a map 𝜙 : 𝐼 → Σ where
𝑣𝑖 = 𝜙 (𝑖).

SEH for a Family of Elements. Let Σ be an alphabet. For an integer 𝑁 , let𝑊 ⊆ [𝑁] be a subset of
the integers in [𝑁], and let {𝑣𝑤}𝑤∈𝑊 be a family of elements indexed by𝑊 , where each 𝑣𝑤 is an element
in Σ. Given a somewhere extractable hash (Gen, TGen,Hash,Open,Verify, Ext), and a hash key 𝐾 , we
define Hash(𝐾, {𝑣𝑤}𝑤∈𝑊) as Hash(𝐾, {𝑉𝑖}𝑖∈[𝑁]), where 𝑉𝑖 = 𝑣𝑤 if 𝑖 ∈ 𝑊 , and 𝑉𝑖 = ⊥ otherwise, and
Hash(𝐾, {𝑉𝑖}𝑖∈[𝑁]) is computed by firstly encoding the elements in Σ ∪ {⊥} as binary strings and then
applying the SEH for binary strings in Section 5.6. The extraction Ext is defined accordingly as follows,
for each subset 𝑆 ⊆ [𝑁] and a trapdoor td for 𝑆 , and a hash value ℎ, Ext(ℎ, td) output a family {𝑉 ∗𝑖 }𝑖∈𝑆 of
elements in Σ ∪ {⊥}, where 𝑉 ∗𝑖 is ⊥ if 𝑖 is not in the index set𝑊 .

SEH with Consistency Proof. A somewhere extractable hash with consistency proof is a somewhere
extractable hash for families with the following additional algorithms (P,V).

– P(𝐾, {𝑣1
𝑤}𝑤∈𝑊1, {𝑣2

𝑤}𝑤∈𝑊2) : The prover takes as input a hash key𝐾 , two families of elements {𝑣1
𝑤}𝑤∈𝑊1,

{𝑣2
𝑤}𝑤∈𝑊2 indexed by the subsets𝑊1,𝑊2 ⊆ [𝑁] in some universe [𝑁]. It outputs a proof 𝜋 , proving

that {𝑣2
𝑤}𝑤∈𝑊2 ⊆ {𝑣1

𝑤}𝑤∈𝑊1 . Namely,𝑊2 ⊆𝑊1, and for each𝑤 ∈𝑊2, 𝑣1
𝑤 = 𝑣2

𝑤 .

– V(𝐾,𝐻1, 𝐻2, 𝜋) : The verifier takes two hash values 𝐻1, 𝐻2 and a proof 𝜋 . Then it decides to accept
or reject.

Furthermore, we require the following properties.

– Succinct Verification. The verification circuit V has size poly(𝜆, |𝑆 |, log𝑁).

38

– Completeness. If {𝑣1
𝑤}𝑤∈𝑊1 and {𝑣2

𝑤}𝑤∈𝑊2 satisfies that𝑊2 ⊆𝑊1 and 𝑣1
𝑤 = 𝑣2

𝑤,∀𝑤 ∈𝑊2, then the
honestly generated proof is accepted. Namely,

Pr
[
𝐻1 = Hash(𝐾, {𝑣1

𝑤}𝑤∈𝑊1), 𝐻2 = Hash(𝐾, {𝑣2
𝑤}𝑤∈𝑊2),

𝜋 ← P(𝐾, {𝑣1
𝑤}𝑤∈𝑊1, {𝑣2

𝑤}𝑤∈𝑊2) : V(𝐾,𝐻1, 𝐻2, 𝜋) = 1
]
= 1.

– Somewhere Statistical Soundness. If the hash key is in the trapdoor mode with subset 𝑆 ⊆ [𝑁]
and trapdoor td, for any two hash values 𝐻1, 𝐻2, we denote {𝑉 𝑏∗𝑖 }𝑖∈𝑆 ← Ext(𝐻𝑏, td) for 𝑏 = 1, 2, and
there exists an 𝑖 ∈ 𝑆 such that 𝑉 2∗

𝑖 ≠ ⊥ and 𝑉 1∗
𝑖 ≠ 𝑉 2∗

𝑖 (which means {𝑉 2∗
𝑖 }𝑖 ⊆ {𝑉 1∗

𝑖 }𝑖 doesn’t hold),
then any proofs should be rejected with overwhelming probability. Namely, there exits a negligible
function such that

Pr
𝐾

[
∃𝜋, 𝐻1, 𝐻2 : {𝑉 𝑏∗𝑖 }𝑖∈𝑆 ← Ext(𝐻𝑏, td), 𝑏 = 1, 2

∃𝑖 ∈ 𝑆 : 𝑉 2∗
𝑖 ≠ ⊥ ∧𝑉 1∗

𝑖 ≠ 𝑉 2∗
𝑖 ∧ V(𝐾,𝐻1, 𝐻2, 𝜋) = 1

]
≤ negl(𝜆) .

Lemma 4. Assuming polynomial hardness of learning with errors, there exists a somewhere extractable hash
with consistency proof.

Ingredient. Before we present our construction, we firstly list our ingredients.

– A somewhere extractable hash H = (H.Gen,H.TGen,H.Hash,H.Open,H.Verify,H.Ext).

– SNARGs for Batch-Index language Π = (Π.Gen,Π.P,Π.V). Recall that, such SNARGs satisfy semi-
adaptive somewhere soundness 5.7.

Construction. The construction for the key generation, hash algorithm, local opening are almost the same
as the underlying somwehere extractable hash, except that we additionally generate a key for the SNARGs
for batch-index in the key generation. Namely, the key for the new somewhere extractable hash we’re
constructing becomes (H.𝐾,Π.crs), where H.𝐾 is the hash key for the underlying somewhere extractable
hash H and Π.crs is the CRS for the underlying SNARGs Π for batch-index language.

The trapdoor mode hash key 𝐾∗ for a subset 𝑆 of indices is generated by firstly generating a trapdoor
mode key H.𝐾∗ for 𝑆 in the underlying SEH, then we generate a trapdoor CRS Π.crs∗ for the underlying
SNARGs for Batch-Index language with semi-adaptive somewhere soundness for the instances in 𝑆 . Finally,
we set 𝐾∗ = (H.𝐾∗,Π.crs∗) as the trapdoor mode hash key. Then we describe the construction in Figure 4.

Security. The completeness of the construction follows from the completeness of the underlying proto-
cols. Next, we prove the somewhere statistical soundness.

Lemma 5 (Succinct Verification). The construction in Figure 4 satisfies the succinct verification property.

Proof. The verification circuit takes input 𝐾,𝐻1, 𝐻2, 𝜋 . |𝐾 | = poly(𝜆, |𝑆 |, log𝑁) by the key succinctness
of SEH (Section 5.6) and the compact CRS property of SNARGs for Batch-Index (Section 5.7). |𝐻𝑏 | =
poly(𝜆, |𝑆 |, log𝑁) for 𝑏 = 1, 2 by the hash value succinctness of SEH. The size of 𝜋 and 𝐶 [H.𝐾,𝐻1,𝐻2] is
bounded by poly(𝜆, |𝑆 |, log𝑁) from the succinct verification property of SNARGs for Batch-Index.

Lemma 6. The construction in Figure 4 satisfies the somewhere statistical soundness.

39

Somewhere extractable hash with consistency proof

– Prover P(𝐾, {𝑣1
𝑤}𝑤∈𝑊1, {𝑣2

𝑤}𝑤∈𝑊2): Parse the key 𝐾 = (H.𝐾,Π.crs).

– For 𝑏 ∈ {1, 2}, compute the hash values 𝐻𝑖 = H.Hash(H.𝐾, {𝑣𝑏𝑤}𝑤∈𝑊𝑏
), and prepare

the local openings for all indices,

𝜌𝑏𝑖 ← H.Open(H.𝐾, {𝑣𝑣𝑤}𝑤∈𝑊𝑏
, 𝑖), ∀𝑖 ∈ [𝑁] .

– Let𝐶 [H.𝐾,𝐻1,𝐻2] (·, ·) be the circuit in Figure 5, and let {(𝜌1
𝑖 , 𝜌

2
𝑖 ,𝑉

1
𝑖 ,𝑉

2
𝑖)}𝑖∈[𝑁] be the wit-

ness for the Batch-Index language for the instances {(𝐶, 1), (𝐶, 2), . . . , (𝐶, 𝑁)}, where
𝑉 𝑏𝑖 = ⊥ for 𝑖 ∉ 𝑊𝑏 and 𝑉 𝑏𝑖 = 𝑣𝑏𝑖 otherwise. Generate a proof 𝜋 using SNARGs for
batch-index as follows.

Π.𝜋 ← Π.P(Π.crs,𝐶 [H.𝐾,𝐻1,𝐻2], {(𝜌1
𝑖 , 𝜌

2
𝑖 ,𝑉

1
𝑖 ,𝑉

2
𝑖)}𝑖∈[𝑁]) .

– Output Π.𝜋

– Verifier V(𝐾,𝐻1, 𝐻2, 𝜋): Parse the key 𝐾 = (H.𝐾,Π.crs), and parse the proof 𝜋 = Π.𝜋 .
Then verify the proof as

Π.Verify(Π.crs,𝐶 [H.𝐾,𝐻1,𝐻2], 𝜋)
?
= 1.

Figure 4: Description of the somewhere extractable hash with consistency proof.

Circuit 𝐶 [H.𝐾,𝐻1,𝐻2] (𝑖, (𝜌1, 𝜌2,𝑉 1,𝑉 2))

– Hardwire: a hash key H.𝐾 and two hash values 𝐻1, 𝐻2.

– Input: an index 𝑖 , and the local openings 𝜌1 and 𝜌2, and two elements 𝑉 1,𝑉 2 ∈ Σ ∪ {⊥}.

– Verify if 𝑉 1,𝑉 2 are the 𝑖-th elements of 𝐻1, 𝐻2 with local openings 𝜌1, 𝜌2, respectively.
Namely, it checks whether

H.Verify(H.𝐾, 𝐻𝑏,𝑉 𝑏, 𝑖, 𝜌𝑏)
?
= 1, ∀𝑏 ∈ {1, 2}.

– Then it checks whether (𝑉 2 ≠ ⊥) → (𝑉 1 = 𝑉 2) holds. If both checking passes, then output
1. Otherwise output 0.

Figure 5: Description of the circuit 𝐶 [H.𝐾,𝐻1,𝐻2] (·, ·).

Proof. By the semi-adaptive somewhere soundness of the underlying SNARGs for Batch-Index, we have
that, except for negligible probability over Π.crs∗, (𝐶 [H.𝐾,𝐻1,𝐻2], 𝑖) ∈ Lidx for every 𝑖 ∈ 𝑆 (See Section 5.7).
By the construction of𝐶 [H.𝐾,𝐻1,𝐻2] , for every 𝑖 ∈ 𝑆 , there exists local openings 𝜌1

𝑖 , 𝜌
2
𝑖 and elements𝑉 1

𝑖 ,𝑉
2
𝑖 ∈

Σ ∪ {⊥} with (𝑉 2
𝑖 ≠ ⊥) → (𝑉 1

𝑖 = 𝑉 2
𝑖). By the extraction correctness, Ext(𝐻𝑏, td) |𝑖 = 𝑉 𝑏𝑖 for 𝑏 ∈ {1, 2} and

40

𝑖 ∈ 𝑆 . However, this implies that the predicate ∃𝑖 ∈ 𝑆 : 𝑉 2
𝑖 ≠ ⊥ ∧ 𝑉 2

𝑖 ≠ 𝑉 1
𝑖 is false. Hence, we finish the

proof.

6.2 Construction of ΔiO

In this section, we proceed to construct ΔiO.

Ingredients. Before we present our construction, we list the necessary building blocks as follows.

– Polynomial-secure leveled fully homomorphic encryption (FHE) FHE = (KGen, Enc, Eval,Dec).

– 2poly(𝜆, |𝑆 |) -secure pseudorandom generator PRG : {0, 1}𝜆PRG → {0, 1}𝜃PRG , with 𝜆PRG = poly(𝜆, |𝑆 |).

– 2poly(𝜆, |𝑆 |) -secure puncturable PRF PRF𝑝𝑢𝑛𝑐 (·, ·) with output length 𝜆PRG.

– Polynomial-secure Somewhere extractable hash with consistent proof (Gen, TGen,Hash,Open,Verify, Ext, P,V).

– 2poly(𝜆, |𝑆 |) -secure indistinguishable obfuscation scheme iO.

– A circuit Gate in Figure 7 emulating the computation at each gate for the input circuit.

– A circuit Shrink[𝐻] (·, ·) in Figure 8 that decrypts the symmetric key encryption inside the FHE, and
thus shrink the size of the somewhere extractable hash value 𝐻 .

Firstly, we construct an algorithm 𝛿 iO for 𝛿-equivalent circuits in Figure 6. In Lemma 7, we prove the
security that 𝛿 iO provides for 𝛿-equivalent circuits. For the ease of presentation, we present an evaluation
algorithm separately for 𝛿 iO in Figure 9. Then we apply the padding algorithm in Lemma 3 to build an
obfuscator ΔiO in Figure 10. By combining the 𝛿 iO with Lemma 3, we show that ΔiO is an obfuscator for
Δ-equivalent circuits in Theorem 8.

6.3 Security

In Lemma 7, we prove the security for 𝛿 iO for 𝛿-equivalent circuits. Here we provide a stronger security
guarantee than the indistinguishability security of iO (Definition 8) for 𝛿-equivalent circuits.

Note that the construction of 𝛿 iO is gate-by-gate (See Figure 6). Namely, for each gate it outputs an
obfuscated circuit �Gate𝑔. For any two 𝛿-equivalent circuit via a subcircuit 𝑆 , the only difference between
the outputs of 𝛿 iO(𝐶1) and 𝛿 iO(𝐶2) is {�Gate𝑔}𝑔∈𝑆 , since by our 𝛿-equivalence Definition 2, all gates outside
of 𝑆 are identical in 𝐶1,𝐶2.

At a high level, in Lemma 7 we prove that even if we are given all other variables, including the PRF
keys outside of 𝑆 , and only switch {�Gate𝑔}𝑔, then the two output distributions of 𝛿 iO for 𝐶1,𝐶2 are still
indistinguishable.

Lemma 7 (Security for 𝛿 iO). The algorithm 𝛿 iO in Figure 6 provides the following security. For any two
circuits 𝐶1,𝐶2 that are 𝛿-equivalent via the subcircuit 𝑆 , let {𝐾𝑚

𝑏,𝑤
, 𝐾𝜎
𝑏,𝑤
}𝑤, t̃d𝑏, 𝐾𝑏,𝑖 , 𝐾𝑏, pk𝑏 be the variables

generated in 𝛿 iO(1𝜆,𝐶𝑏), for 𝑏 = 1, 2. Then we have{
𝐾1, pk1, t̃d1, {𝐾1,𝑖}𝑖∈[|𝑆 |], {𝐾𝑚1,𝑤, 𝐾𝜎1,𝑤}𝑤∈𝜕𝑆 , {�Gate1,𝑔}𝑔∈𝑆

}
𝜆∈N
≈{

𝐾2, pk2, t̃d2, {𝐾2,𝑖}𝑖∈[|𝑆 |], {𝐾𝑚2,𝑤, 𝐾𝜎2,𝑤}𝑤∈𝜕𝑆 , {�Gate2,𝑔}𝑔∈𝑆
}
𝜆∈N

,

where 𝜕𝑆 = inp(𝑆) ∪ out(𝑆) .

41

𝛿 iO(1𝜆,𝐶)

– Generate a somewhere extractable hash key 𝐾 ← Gen(1𝜆). Then for each wire 𝑤 in the
circuit 𝐶 , generate the following

– Puncturable PRF key 𝐾𝑚𝑤 for symmetric key encryption.
– Puncturable PRF key 𝐾𝜎𝑤 for the MACs of the ciphertexts.

– Generate a FHE key pair (sk, pk) ← FHE.KGen(1𝜆), and let t̃d ← FHE.Enc(pk, 0 |td |). For
each 𝑖 ∈ [|𝑆 |], let 𝐾𝑖 ← FHE.Enc(pk, 0 |𝐾𝑚

𝑖
|).

– For each gate 𝑔 in 𝐶 , let inp(𝑔) and out(𝑔) be the set of input and output wires of 𝑔, and
for each 𝑜 ∈ out(𝑔) let 𝑔𝑜 : {0, 1} |inp(𝑔) | → {0, 1} be the function that computes the value
of the output wire 𝑜 . For each gate 𝑔, we obfsucate a circuit�Gate𝑔 ← iO(1𝜆,Gate[𝐾,{𝐾𝑚

𝑖
,𝐾𝜎

𝑖
}𝑖∈inp(𝑔) ,{𝑔𝑜 ,𝐾𝑚

𝑜 ,𝐾
𝜎
𝑜 }𝑜∈out(𝑔) ,pk,t̃d,{𝐾𝑖 }ı∈[|𝑆 |]]) .

– Output 𝐶 =

(
{�Gate𝑔}𝑔∈𝐶 , {𝐾𝑚𝑤 , 𝐾𝜎𝑤}𝑤∈inp(𝐶)∪out(𝐶) , 𝐾, pk, t̃d, {𝐾𝑖}𝑖∈[|𝑆 |]) .

Figure 6: Description of the obfuscator for 𝛿-equivalent circuits, where the circuit Gate is described in
Figure 7.

Proof. We prove the lemma via a series of hybrids. Let𝐶1,𝐶2 be two 𝛿-equivalent circuits via subcircuit 𝑆 .
Then𝐶1,𝐶2 only differ by such a subcircuit, and the functionalities of the subcircuit in𝐶1,𝐶2 are equivalent.
Hybrid H0: This hybrid is the same as 𝛿 iO(1𝜆,𝐶1).
Hybrid H1: This hybrid is almost the same as H0, except that we replace the somewhere extractable hash
key 𝐾 to the trapdoor mode that is extractable for the indices 𝐼 = {𝑖}𝑖∈inp(𝑆) , such that we can extract the
ciphertexts and hash values {ct𝑖 , ℎ𝑖}𝑖∈inp(𝑆) given the trapdoor td. Then we replace the FHE ciphertexts t̃d
and 𝐾 as t̃d← FHE.Enc(pk, td) and 𝐾𝑖 ← FHE.Enc(pk, 𝐾𝑚𝑖), for every 𝑖 ∈ inp(𝑆).

This hybrid is computationally indistinguishable withH0 from the key indistinguishability of the some-
where extractable hash and the semantic security of FHE.
Hybrid H2: This hybrid is almost as the same as H0, except that for each gate 𝑔 ∈ 𝑆 , instead of obfuscate
the Gate circuit in Figure 7, we obfuscate the following circuit. This new circuit has the puncturable PRF
keys {𝐾𝑚𝑖 }𝑖∈inp(𝑆) hardwired.

– . . . (The same verification of the local openings, proof of consitency, and MACs). . .

– Extract the input to the subcircuit via the decryption of the FHE:

{𝑚∗𝑖 }𝑖∈𝐼 ← Dec(sk, ℎ) .

If any of {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜) is ⊥, then abort.

– Compute the output wire values {𝑚𝑜 }𝑜∈out(𝑔) :

𝑚𝑜 = 𝐶1
𝑜
𝑆 ({𝑚

∗
𝑖 }𝑖∈inp(𝑆)∩dep(𝑜)),

where𝐶1
𝑜
𝑆

is the circuit that computes the output wire value𝑜 directly from the inputs {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜) .

42

Gate[𝐾,{𝐾𝑚
𝑖
,𝐾𝜎

𝑖
}𝑖∈inp(𝑔) ,{𝑔𝑜 ,𝐾𝑚

𝑜 ,𝐾
𝜎
𝑜 }𝑜∈out(𝑔) ,pk,t̃d,{𝐾𝑖 }𝑖∈[|𝑆 |]] (𝐻, {𝐻𝑖 , ct𝑖 , 𝜌𝑖 , 𝜋𝑖 , 𝜎𝑖}𝑖∈inp(𝑔))

– Homomorphically evaluate the circuit Shrink (Figure 8) for 𝐻, {𝐻𝑖}𝑖∈inp(𝑔) ,

ℎ ← FHE.Eval(pk, Shrink[𝐻], (t̃d, {𝐾𝑖}𝑖∈[|𝑆 |])),

ℎ𝑖 ← FHE.Eval(pk, Shrink[𝐻𝑖], (t̃d, {𝐾𝑤}𝑤∈[|𝑆 |])), ∀𝑖 ∈ inp(𝑔).

– For each input wire 𝑖 ∈ inp(𝑔) of the gate 𝑔, we verify the following:

– Local opening 𝜌𝑖 for the hash value 𝐻 with message ct𝑖 and index 𝑖 ,

Verify(𝐾,𝐻, (ct𝑖 , ℎ𝑖), 𝑖, 𝜌𝑖)
?
= 1.

– Proof of consistency for 𝐻 and 𝐻𝑖 with proof 𝜋𝑖 : V(𝐾,𝐻,𝐻𝑖 , 𝜋𝑖)
?
= 1.

– MAC 𝜎𝑖 for the ciphertext ct𝑖 : PRG(𝜎𝑖)
?
= PRG(PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑖 , (ct𝑖 , ℎ𝑖))).

– Decrypt the symmetric key ciphertexts ct𝑖 , 𝑖 ∈ inp(𝑔)

𝑚𝑖 = ct𝑖 ⊕ PRF𝑝𝑢𝑛𝑐 (𝐾𝑚𝑖 , ℎ𝑖), ∀𝑖 ∈ inp(𝑔) .

– Compute the wire value 𝑚𝑜 of for each output wire 𝑜 ∈ out(𝑔) as 𝑚𝑜 = 𝑔𝑜 ({𝑚𝑖}𝑖∈inp(𝑔)),
where 𝑔𝑜 the function computing the wire 𝑜 at gate 𝑔.

– Encrypt𝑚𝑜 under the key 𝐾𝑚𝑜 , and MAC the ciphertext to obtain 𝜎𝑜 for each output wire
𝑜 , i.e.

ct𝑜 =𝑚𝑜 ⊕ PRF𝑝𝑢𝑛𝑐 (𝐾𝑚𝑜 , ℎ), 𝜎𝑜 = PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑜 , (ct𝑜 , ℎ)), ∀𝑜 ∈ out(𝑔) .

– Output {(ct𝑜 , 𝜎𝑜)}𝑜∈out(𝑔) .

Figure 7: Description of the circuit Gate.

– . . . (Compute the ciphertexts and MACs in the same way as in before). . .

To show that Hyrbid H1 and Hybrid H2 are indistinguishable, we will use a series of intermediate
hybrids.

Hybrid H<𝑔

1.5: This hybrid is indexed by a gate 𝑔. In this hybrid, the obfuscator processes all gates that 𝑔
depends on in the same way as H2, but on the gate 𝑔, it still obfsucates the circuit Gate in Figure 7. Hence,
to show that the Hybrid H1 and the Hybrid H2 are indistinguishable, it suffices to show that the Hybrid
H<𝑔

1.5 and the following Hybrid H≤𝑔1.5 are indistinguishable.

Hybrid H≤𝑔1.5: This gate is almost the same as Hybrid H<𝑔

1.5, except that we also obfuscate the gate 𝑔 in the
same way as the Hybrid H2. To show that H<𝑔

1.5 and H≤𝑔1.5 are indistinguishable, we again use a series of
intermediate hybrids. For simplicity, let us consider a typical case, where the gate 𝑔 has arity-2 with two
input wires inp(𝑔) = {𝑙, 𝑟 }, and a single output wire out(𝑔) = {𝑜}. The situations for arity-1 gate or two
output wires are similar.

43

Shrink[𝐻] (td, {𝐾𝑚𝑖 }𝑖∈[|𝑆 |])

– Let 𝐼 be the subset of indices that SEH can extract. Extract the ciphertexts and hash values
by SEH,

{(ct∗𝑖 , ℎ∗𝑖)}𝑖∈𝐼 ← Ext(𝐻, td) .

– For each 𝑖 ∈ 𝐼 , if ct∗𝑖 , ℎ∗𝑖 contain ⊥, then let𝑚∗𝑖 = ⊥. Otherwise, decrypt the message

𝑚∗𝑖 ← ct∗𝑖 ⊕ PRF𝑝𝑢𝑛𝑐 (𝐾𝑖 , ℎ∗𝑖) .

– Output {𝑚∗𝑖 }𝑖∈𝐼 .

Figure 8: Description of the circuit Shrink.

HybridH<𝑔

1.5,𝑙 : This hybrid is almost the same as HybridH<𝑔

1.5, except that we additionally extract {𝑚∗𝑖 }𝑖∈𝐼 ←
Dec(sk, ℎ) and checks whether {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) contains ⊥. If it does, then abort. To show that the
current Hybrid H<𝑔

1.5,𝑙 and the Hybrid H<𝑔

1.5 are indistinguishable, we use the following series of hybrids
H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
) , and we will show that H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
) and H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
)+1 are indistinguishable.

Hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
) : This hybrid is almost the same as the previous hybrid, except that we add an index

(𝑏, ℎ1
𝑙
), and decide whether to check the extracted messages by the index (𝑏, ℎ1

𝑙
).

– . . . (The same verification of the local openings, proof of consistency, and MACs). . .

– Extract {𝑚∗𝑖 }𝑖∈𝐼 ← Dec(sk, ℎ).

– If (ct𝑙 , ℎ𝑙) < (𝑏, ℎ1
𝑙
), then check whether {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) contains ⊥. If it does, then abort.

– . . . (Compute the ciphertexts and MACs in the same way as before). . .
To show that the HybridH<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
) and the HybridH<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
)+1 are indistinguishable, we need to utilize

the consistency proof of SEH.
Let’s denote {𝑚1

𝑖 }𝑖∈𝐼 ← Dec(sk, ℎ1
𝑙
). By statistical somewhere soundness of the SEH with consis-

tency proof (See Section 6.1), {𝑚∗𝑖 }𝑖∈𝐼 ← Dec(sk, ℎ) extracted in the gate 𝑔 always satisfies 𝑚1
𝑖 ≠ ⊥ →

(𝑚∗𝑖 = 𝑚1
𝑖), for an overwhelming fraction of the SEH key 𝐾 . Hence, it suffices to consider the case when

{𝑚1
𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) contains ⊥, since for other cases, {𝑚∗𝑖 }𝑖∈inp(𝑆)dep(𝑙) also does not contains ⊥, and then

the check of ⊥ doesn’t affect the functionality, so that the indistinguishability follows from the security of
the underlying iO.

Now, let’s consider the case when {𝑚1
𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) contains a ⊥. If 𝑙 is an input wire to the subcircuit

𝑆 , then inp(𝑆) ∩ dep(𝑙) = 𝜙 the additional check does nothing, and hence the indistinguishability also
follows from the indistinguishability security of the underlying iO.

Hence, we only need to consider the case when the wire 𝑙 is the output wire of some gate 𝑔𝑙 that is
also in the subcircuit 𝑆 (otherwise 𝑙 is an input wire). In this case, we first show that H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
) and the

following new hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),1 are indistinguishable.

Hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),1: This hybrid is almost the same as the hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
) , except that we replace the

PRF key for verifying the MAC 𝜎𝑙 with the PRF key punctured at the point (𝑏, ℎ1
𝑙
). Note that, in this hybrid,

we also modify the gate 𝑔𝑙 . Namely, for gate 𝑔, we modify the circuit Gate as follows.

44

Evaluation of 𝛿 iO

– Given an obfuscated circuit 𝐶 =

(
{�Gate𝑔}𝑔∈[|𝐶 |], {𝐾𝑚𝑖 , 𝐾𝜎𝑖 }𝑖∈[|inp(𝐶) |], 𝐾, t̃d, {𝐾𝑖}𝑖∈[|𝑆 |]) , and

an input 𝑥 ∈ {0, 1} |inp(𝐶) | , we now compute 𝐶 (𝑥), assuming the topology of 𝐶 is public.

– We iterate the gates of 𝐶 in its topological order. For each wire 𝑤 , we denote dep(𝑤) the set
of the wires that𝑤 depends on, not including𝑤 . For each gate 𝑔, we do the following.

– Prepare the hash of the ciphertexts that the input wires and the output wires depends
on:

𝐻 = Hash(𝐾, {ct𝑤, ℎ𝑤}𝑤∈dep(𝑜)), ∀𝑖 ∈ inp(𝑔), 𝐻𝑖 = Hash(𝐾, {ct𝑤, ℎ𝑤}𝑤∈dep(𝑖)),

where 𝑜 ∈ out(𝑔) is one of the output wire of 𝑔. (Note that all output wires have the
same set of the dependent wires.)

– Shrink the hash values 𝐻, {𝐻𝑖}𝑖∈inp(𝑔) by homomorphically evaluating Shrink (Figure 8)
and obtain values ℎ, {ℎ𝑖}𝑖∈inp(𝑔) as in Figure 7.

– Prepare the local opening for {ct𝑖 , ℎ𝑖}𝑖∈inp(𝑔) in the hash value 𝐻 , let

𝜌𝑖 ← Open(𝐾, {ct𝑤, ℎ𝑤}𝑤∈dep(𝑜) , 𝑖), ∀𝑖 ∈ inp(𝑔).

– For each input wire 𝑖 ∈ inp(𝑔), if 𝑖 is an input wire of the entire circuit, then compute
the ciphertext ct𝑖 from 𝑥𝑖 using the key 𝐾𝑚𝑖 , and MAC the ciphertext using the key 𝐾𝜎

𝑖

as 𝜎𝑖 . Otherwise, since we iterate the gates in the topological order, ct𝑖 and 𝜎𝑖 must have
already been produced by previous gates.

– Compute the gate 𝑔. Let

{(ct𝑜 , 𝜎𝑜)}𝑜∈out(𝑔) ←�Gate𝑔 (ℎ, {ℎ𝑖 , ct𝑖 , 𝜌𝑖 , 𝜋𝑖 , 𝜎𝑖}𝑖∈inp(𝑔)) .
– Finally, use the key {𝐾𝑚𝑜 }𝑜∈out(𝐶) to decrypt the output wires {ct𝑜 }𝑜∈out(𝐶) and output the wire

values.

Figure 9: Description of evaluation of 𝛿 iO.

ΔiO(1𝜆,𝐶, 𝑠)

– Padding the circuit 𝐶 by 𝐶 ′ ← Pad(1𝜆,𝐶, 𝑠), where Pad is the padding algorithm in
Lemma 3.

– Obfuscate the padded circuit 𝐶 ′ as 𝐶 ← 𝛿 iO(1𝜆,𝐶 ′), and output 𝐶 .

Figure 10: Description of the obfuscator for Δ-equivalent circuits.

45

– . . . (The same verification of the local openings, proof of consistency, and the MAC for 𝜎𝑟). . .

– If (ct𝑙 , ℎ𝑙) ≠ (𝑏, ℎ1
𝑙
), then verify if

PRG(𝜎𝑙)
?
= PRG(PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 \ {(𝑏, ℎ

1
𝑙
)}, (ct𝑙 , ℎ𝑙))).

Otherwise, verify if
PRG(𝜎𝑙)

?
= PRG(PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 , (𝑏, ℎ

1
𝑙
))).

– Extract {𝑚∗𝑖 }𝑖∈𝐼 ← Dec(sk, ℎ).

– If (ct𝑙 , ℎ𝑙) < (𝑏, ℎ1
𝑙
), then check whether {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) contains ⊥. If it does, then abort.

– . . . (Compute the ciphertexts and MACs in the same way as before). . .

For the gate 𝑔𝑙 , we modify the gate Gate for 𝑔𝑙 as follows.

– . . . (The same verification and computing {𝑚𝑜 }𝑜∈out(𝑔𝑙) as H2) . . .

– . . . (The same encryption of ct𝑙 and other output wires as H2, and the same MACs for other output
wires except 𝑙) . . .

– MAC the ciphertext ct𝑙 and hash value ℎ𝑙 for 𝑙 as follows. If (ct𝑙 , ℎ𝑙) ≠ (𝑏, ℎ1
𝑙
), then let 𝜎𝑙 ←

PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 \ {(𝑏, ℎ𝑙)}, (ct𝑙 , ℎ𝑙)). Otherwise, let 𝜎𝑙 ← PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 , (𝑏, ℎ
1
𝑙
)).

The indistinguishability from H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
) and H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),1 follows from the preservation of the functionality

for puncturable PRF (Section 5.3) and iO indistinguishability.

Hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),2: This hybrid is almost the same as the last hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),1, except that we replace

each occurrence of the value PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 , (𝑏, ℎ
1
𝑙
)) with a random value 𝑠 . This hybrid is indistinguishable

with the last hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),1, by the pseudorandomness at the punctured point property (Section 5.3).

HybridH<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),3: This hybrid is almost the same as last hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),2, except that we replace each

occurrence of PRG(𝑠) with a random value 𝑢 in the range of the PRG PRG.
For the gate 𝑔, the circuit we obfuscate becomes the following circuit, with a random 𝑢 hardwired.

– . . .

– If (ct𝑙 , ℎ𝑙) ≠ (𝑏, ℎ1
𝑙
), then verify if

PRG(𝜎𝑙)
?
= PRG(PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 \ {(𝑏, ℎ𝑙)}, (ct𝑙 , ℎ𝑙))).

Otherwise, verify if
PRG(𝜎𝑙)

?
= 𝑢.

– Extract {𝑚∗𝑖 }𝑖∈𝐼 ← Dec(sk, ℎ).

– If (ct𝑙 , ℎ𝑙) < (𝑏, ℎ1
𝑙
), then check whether {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) contains ⊥. If it does, then abort.

– . . .

For the gate 𝑔𝑙 , we obfuscate the following circuit.

46

– . . .

– MAC the ciphertext ct𝑙 and hash value ℎ𝑙 for 𝑙 as follows. If (ct𝑙 , ℎ𝑙) ≠ (𝑏, ℎ1
𝑙
), then let 𝜎𝑙 =

PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 \ {(𝑏, ℎ𝑙)}, (ct𝑙 , ℎ𝑙)). Note that here we no longer have the branch (ct𝑙 , ℎ𝑙) = (𝑏, ℎ1
𝑙
).

To show the indistinguishability between the current hybrid and the last hybrid, we consider the fol-
lowing two cases. Since {𝑚1

𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) contains ⊥, then by our ordering on the gates, such ℎ1
𝑙

must be
rejected at gate 𝑔𝑙 . Hence, the assignment 𝜎𝑙 = 𝑢 never happens. Then the indistinguishability between
the current hybrid and the last hybrid follows from the indistinguishability of iO and the security of PRG.

HybridH<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),4: This hybrid is almost the same as the last hybrid, except that modify the check in the

circuit for 𝑔 as follows.

– . . .

– If (ct𝑙 , ℎ𝑙) < (𝑏, ℎ1
𝑙
), then check whether {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) contains ⊥. If it does, then abort.

– If (ct𝑙 , ℎ𝑙) = (𝑏, ℎ1
𝑙
), and {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) contains ⊥, then abort.

– . . .

Since 𝑢 is uniformly random, if we set the expansion of the PRG to be 𝜆 + |(𝑏, ℎ1
𝑙
) |, then with (1 −

1/2𝜆+|ℎ1
𝑙
|+1)-fraction of 𝑢, it doesn’t fall in the range of the PRG𝐺 . Hence, the functionalities of the circuit

for 𝑔 in this hybrid and the last hybrid are identical with probability 1 − 1/2𝜆+|ℎ1
𝑙
|+1. Then the indistin-

guishability follows from the security of the underlying iO.
Note that this hybrid is also the same as the Hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
)+1. Hence, by the hybrid argument, the

Hybrid H<𝑔

1.5,𝑙 and the Hybrid H<𝑔

1.5 are indistinguishable.

Hybrid H<𝑔

1.5,𝑙,𝑟 : This hybrid is almost the same as H<𝑔

1.5,𝑙 , except that for the gate 𝑔, we also checks whether
{𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑟) contains ⊥, and if it does, then we abort.

The indistinguishability between the Hybrid H<𝑔

1.5,𝑙 and the current Hybrid H<𝑔

1.5,𝑙,𝑟 follows from the
similar argument from H<𝑔

1.5 to H<𝑔

1.5,𝑙 , where we add the check for the left input wire 𝑙 there, and now we
are adding the check for the right input wire 𝑟 .

HybridH<𝑔

1.5,⊥: This hybrid is almost the same as the HybridH<𝑔

1.5,𝑙,𝑟 , except that it aborts if {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜)
contains ⊥, while H<𝑔

1.5,𝑙,𝑟 only checks for 𝑖 ∈ inp(𝑆) ∩ dep(𝑙) and 𝑖 ∈ inp(𝑆) ∩ dep(𝑟). Note that inp(𝑆) ∩
dep(𝑜) equals to the disjoint union of the following three sets: inp(𝑆) ∩ dep(𝑙), inp(𝑆) ∩ dep(𝑟), and
inp(𝑆) ∩ {𝑙, 𝑟 }. Hence, from H<𝑔

1.5,𝑙,𝑟 to H<𝑔

1.5,⊥, we only additionally check inp(𝑆) ∩ {𝑙, 𝑟 }.
Note that, since we check whether the local openings 𝜌𝑙 , 𝜌𝑟 to (ct𝑙 , ℎ𝑙), (ct𝑟 , ℎ𝑟) are accepted (See Fig-

ure 7), if such check passes, then for any 𝑖 ∈ inp(𝑆)∩{𝑙, 𝑟 }, we have that the extracted values ct∗𝑖 , ℎ∗𝑖 from the
Ext algorithm of SEH do not contain ⊥ (by extraction correctness in Definition 5.6). Hence, by the Shrink
circuit (Figure 8), it outputs𝑚∗𝑖 ≠ ⊥. Hence,𝑚∗𝑖 decrypted by Dec is also not ⊥, for each 𝑖 ∈ inp(𝑆) ∩ {𝑙, 𝑟 }.
Now, we can argue the indistinguishability between H<𝑔

1.5,𝑙,𝑟 and H<𝑔

1.5,⊥ by the security of iO.
Now, by the hybrid argument, we derive that H<𝑔

1.5 and H<𝑔

1.5,⊥ are indistinguishable.

Hybrid H<𝑔

1.5,⊥,ℎ1
𝑙

: This hybrid is almost the same as H<𝑔

1.5,⊥, except that we additionally add a checking
for the decrypted values𝑚𝑙 of the ciphertext (ct𝑙 , ℎ𝑙), depending on whether ℎ𝑙 < ℎ1

𝑙
or not. Namely, we

modify the circuit we obfuscate at gate 𝑔 as follows.

– . . .

47

– If ℎ𝑙 < ℎ1
𝑙
, then check𝑚𝑙

?
= 𝐶1

𝑙
𝑆
({𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜)). If not, then abort.

– . . . (Compute and output the ciphertexts and MACs of the output wires) . . .

Now we use a series of hybrids to argue that H<𝑔

1.5,⊥,ℎ1
𝑙

and H<𝑔

1.5,⊥,ℎ1
𝑙
+1 are indistinguishable.

Hybrid H<𝑔

1.5,⊥,ℎ1
𝑙
,1: This hybrid is almost the same as H<𝑔

1.5,⊥,ℎ1
𝑙

, except that we puncture the point for ℎ1
𝑙

in
the circuit we obfuscate at the gate 𝑔. If 𝑙 is not an input wire of 𝑆 , let 𝑔𝑙 be the gate whose output wire is
𝑙 . Then we also puncture the ℎ1

𝑙
when we compute the MAC for 𝑙 at 𝑔𝑙 . Namely, we modify the circuit at

the gate 𝑔 as follows. Let {𝑚1
𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) be a set of input wires extracted by {𝑚1

𝑖 }𝑖∈𝐼 ← Dec(sk, ℎ1
𝑙
). If

{𝑚1
𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) contains ⊥, then by a similar argument in the hybrid from H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
) to H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
)+1, we

can argue the indistinguishability. Hence, it suffices to consider the case when {𝑚1
𝑖 }𝑖∈inp(𝑆)∩dep(𝑙) doesn’t

contain ⊥.
Let𝑚1

𝑙
= 𝐶1

𝑙
𝑆
({𝑚1

𝑖 }𝑖∈inp(𝑆)) be the unique message computed by {𝑚1
𝑖 }𝑖 given the subcircuit 𝑆 , and let

ct1
𝑙
=𝑚1

𝑙
⊕ PRF𝑝𝑢𝑛𝑐 (𝐾𝑚𝑙 , ℎ

1
𝑙
) be its ciphertext. We denote ct1

𝑙
= ct1

𝑙
⊕ 1 as the flip of ct1

𝑙
. We now puncture

the point (ct1
𝑙
, ℎ1
𝑙
) for PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 , ·).

– . . .

– If ℎ𝑙 ≠ ℎ1
𝑙
, then verify if

PRG(𝜎𝑙)
?
= PRG(PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 \ {(ct1𝑙 , ℎ

1
𝑙
)}, (ct𝑙 , ℎ𝑙))) .

Otherwise, if ℎ𝑙 = ℎ1
𝑙

and ct𝑙 = ct𝑙 , then verify if

PRG(𝜎𝑙)
?
= PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 \ {(ct1𝑙 , ℎ

1
𝑙
)}, (ct𝑙 , ℎ1

𝑙
)) .

Otherwise, ℎ𝑙 = ℎ1
𝑙

and ct𝑙 = ct1
𝑙
, then we verify the following

PRG(𝜎𝑙)
?
= PRG(PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 , (ct1𝑙 , ℎ

1
𝑙
))).

– . . .

And we modify the circuit at gate 𝑔𝑙 as follows.

– . . . (Verifications). . .

– . . . (Extract wire values in ℎ𝑙 and compute𝑚𝑙 directly from the extracted values) . . .

– MAC the ciphertext ct𝑙 and hash value ℎ𝑙 for 𝑙 as follows,

𝜎𝑙 = PRF𝑝𝑢𝑛𝑐 (𝐾𝜎𝑙 \ {(ct1𝑙 , ℎ
1
𝑙
)}, (ct𝑙 , ℎ𝑙)) .

The indistinguishability of the current hybrid H<𝑔

1.5,⊥,ℎ1
𝑙
,1 and the last hybrid H<𝑔

1.5,⊥,ℎ1
𝑙

follows from the
security of the underlying iO, since the functionality equivalence of the obfuscated circuit at the gate 𝑔𝑙
can be argued as follows.

The only change we make is how the MAC𝜎𝑙 is computed. Note that𝑚𝑙 is derived fromℎ𝑙 by extraction.
Hence, if ℎ𝑙 = ℎ1

𝑙
, then𝑚𝑙 =𝑚

1
𝑙
, and ct𝑙 = ct1

𝑙
. Hence, the point (ct1

𝑙
, ℎ1
𝑙
) is never used in H<𝑔

1.5,⊥,ℎ1
𝑙

, and thus
we keep the functionality unchanged at the gate 𝑔𝑙 .

48

Hybrid H<𝑔

1.5,⊥,ℎ1
𝑙
,2: This hybrid is almost the same as the last hybrid H<𝑔

1.5,⊥,ℎ1
𝑙
,1, except that, at the gate 𝑔,

we directly abort if ℎ𝑙 = ℎ1
𝑙

and ct𝑙 ≠ ct1
𝑙
. This hybrid is indistinguishable from the last hybrid H<𝑔

1.5,⊥,ℎ1
𝑙
,1,

following the same argument as the hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),2 to hybrid H<𝑔

1.5,𝑙,(𝑏,ℎ1
𝑙
),4.

From Hybrid H<𝑔

1.5,⊥,ℎ1
𝑙
,2 to Hybrid H<𝑔

1.5,⊥,ℎ1
𝑙
+1: Note that in hybrid H<𝑔

1.5,⊥,ℎ1
𝑙
,2, we check whether ct𝑙 = ct1

𝑙

when ℎ𝑙 = ℎ1
𝑙
. Hence, we can add an additional checking𝑚𝑙

?
= 𝑚1

𝑙
without changing the functionality of

the circuit being obfuscated. By the hybrid argument, H<𝑔

1.5,⊥,ℎ1
𝑙
,2 and H<𝑔

1.5,⊥,ℎ1
𝑙
+1 are indistinguishable.

By the hybrid argument, H<𝑔

1.5,⊥,ℎ1
𝑙

and H<𝑔

1.5,⊥,ℎ1
𝑙
+1 are indistinguishable.

HybridH<𝑔

1.5,⊥,check: This hybrid is almost the same as hybrid H<𝑔

1.5,⊥,1|ℎ𝑙 |+1
, except that we add an additional

check for the right input wire 𝑟 . Namely, the circuit we obfuscate at 𝑔 becomes

– . . .

– Check𝑚𝑤
?
= 𝐶1

𝑤
𝑆
({𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜)) for𝑤 ∈ {𝑙, 𝑟 }. If not, then abort.

– . . .

Hybrid H<𝑔

1.5,⊥,check,𝐶𝑆
: This hybrid is almost the same as the last hybrid H<𝑔

1.5,⊥,check, except that we modify
the computation of 𝑚𝑜 at the gate 𝑔 as 𝑚𝑜 = 𝐶1

𝑜
𝑆
({𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜)). Given the check on the input

wires, the functionality of the circuit we obfuscate at the gate 𝑔 is the same as the Hybrid H<𝑔

1.5,⊥,check. The
indistinguishability of the current hybrid and the last Hybrid H<𝑔

1.5,⊥,check,𝐶𝑆
follows from the security of the

underlying iO.

From Hybrid H<𝑔

1.5,⊥,check,𝐶𝑆
to Hybrid H≤𝑔1.5: The only difference between H<𝑔

1.5,⊥,check,𝐶𝑆
and H≤𝑔1.5 is that,

in H≤𝑔1.5 we additionally check whether the input wire values are correctly computed. We can undo this
checking by reversing the hybrids that allows us to introduce it.

By the hybrid argument, H<𝑔

1.5 and H≤𝑔1.5 are indistinguishable, and thus H1 and H2 are indistinguishable.

HybridH3: In this hybrid, for each gate in the subcircuit 𝑆 , instead of computing each output wires by𝐶1,
we compute it by the circuit 𝐶2. Namely, at each gate 𝑔 ∈ 𝑆 , we obfuscate the following circuit. Note that
in H2, each gate 𝑔 in the subcircuit 𝑆 only computes its output wire value directly from the input wires in
inp(𝑆).

– . . . (The same verification of the local openings, proof of consitency, and MACs). . .

– Extract the input to the subcircuit via the decryption of the FHE:

{𝑚∗𝑖 }𝑖∈𝐼 ← Dec(sk, ℎ).

If any of {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜) is ⊥, then abort.

– Compute the output wire values {𝑚𝑜 }𝑜∈out(𝑔) :

𝑚𝑜 = 𝐶2
𝑜
𝑆 ({𝑚

∗
𝑖 }𝑖∈inp(𝑆)∩dep(𝑜)),

where𝐶1
𝑜
𝑆

is the circuit that computes the output wire value𝑜 directly from the inputs {𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜) .

– . . . (Compute the ciphertexts and MACs in the same way as in before). . .

49

To show that the Hybrid H2 and H3 are indistinguishable, we use a series of intermediate hybrids that
is indexed by a gate 𝑔1 ∈ 𝑆 , as follows.

Hybrid H2.5,𝑔1 : For each gate 𝑔 with 𝑔 < 𝑔1, it computes its output wire using𝐶2, but for each gate 𝑔 ≥ 𝑔1,
it still uses 𝐶1 to compute its output wires. We will show that H2.5,𝑔1 and H2.5,𝑔1+1 are indistinguishable.
Let 𝑜 be the output wire of 𝑔. If 𝑜 is also an output wire of the subcircuit 𝑆 , then we can directly switch
𝐶1

𝑜
𝑆

to 𝐶2
𝑜
𝑆
, since the functionality of the subcircuit is preseved. Next, we are going to use the security of

the symmetric key encryption to show that we can still switch to use 𝐶2 when 𝑜 is not an output wire of
𝑆 , by using the following Hybrids H2.5,𝑔1,ℎ1

𝑜
.

Hybrid H2.5,𝑔1,ℎ1
𝑜
: This hybrid is almost the same as the hybrid H2.5,𝑔1 , except that we compute the wire

value𝑚𝑜 and its ciphertext ct𝑜 as the following.

– . . .

– If ℎ < ℎ1
𝑜 , compute𝑚𝑜 = 𝐶2

𝑜
𝑆
({𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜)), and ct𝑜 =𝑚𝑜 ⊕ PRF𝑝𝑢𝑛𝑐 (𝐾𝑚𝑜 \ {ℎ1

𝑜 }, ℎ).

– Otherwise, If ℎ = ℎ1
𝑜 , compute𝑚𝑜 = 𝐶1

𝑜
𝑆
({𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜) , and ct𝑜 =𝑚𝑜 ⊕ PRF𝑝𝑢𝑛𝑐 (𝐾𝑚𝑜 , ℎ1

𝑜).

– Otherwise, ℎ > ℎ1
𝑜 , compute𝑚𝑜 = 𝐶1

𝑜
𝑆
({𝑚∗𝑖 }𝑖∈inp(𝑆)∩dep(𝑜) , and ct𝑜 =𝑚𝑜 ⊕ PRF𝑝𝑢𝑛𝑐 (𝐾𝑚𝑜 \ {ℎ1

𝑜 }, ℎ).

– . . .

Next, we can use the pseudorandomness of the punctured PRF at the point ℎ1
𝑜 to argue that the hybrid

H2.5,𝑔1,ℎ1
𝑜

and hybrid H2.5,𝑔1,ℎ1
𝑜+1 are indistinguishable. We can do this because in the hybrid H2.5,𝑔1,ℎ1

𝑜
, the

PRF key 𝐾𝑚𝑜 is only used to encrypt the message, and is never used elsewhere for decryption.
Hence, by the hybrid argument, H2.5,𝑔1 and H2.5,𝑔1+1 are indistinguishable, and thus H2 and H3 are

indistinguishable.

Hybrid H4: This hybrid is the final hybrid, it is almost the same as hybrid H0, except that we use each
gate in 𝐶2 to obfuscate the circuit.

This hybrid is indistinguishable with the last H3, by using the same hybrid arguments from H0 to H2
in the reverse order.

By the hybrid argument, we finish the proof.

Theorem 8 (𝛿 iO is a ΔiO). The algorithm in Figure 6 is a ΔiO for Δ-equivalent circuits. Namely, there
exist polynomials 𝑝 (·), 𝑞(·, ·, ·), such that assuming the hardness of the following assumptions, there exists a
construction of iO for any two Δ-equivalent circuit families {𝐶1

𝑛}𝑛∈N, {𝐶2
𝑛}𝑛∈N:

– Polynomial-hardness of Learning with Errors,

– Sub-exponential secure pseudorandom generators and puncturable pseudorandom functions, with secu-
rity parameters 𝜆PRG = 𝜆PRF = 𝑝 (𝜆)

– Sub-exponential secure indistinguishability obfuscation for circuits of size 𝑞(𝜆, log |𝐶1
𝑛 |, log |𝐶2

𝑛 |), with
security parameter 𝜆iO = 𝑞(𝜆, log |𝐶1

𝑛 |, log |𝐶2
𝑛 |)

where 𝜆 is the security parameter of the 𝛿 iO.

Remark 2. Crucially, the security parameters of the underlying primitives and assumptions only rely on a
fixed polynomial in 𝜆, and is independent of 𝑛, or the input length of the circuits {𝐶1

𝑛}𝑛∈N, {𝐶2
𝑛}𝑛∈N.

Since one-way functions imply pseudorandom generators and puncturable pseudorandom functions, we
can also base our result on sub-exponential secure one-way functions.

50

Proof. For any Δ-equivalent circuit families {𝐶1
𝑛}𝑛∈N and {𝐶2

𝑛}𝑛∈N, for any 𝑛, there exists a series of in-
termediate circuits 𝐶1

𝑛 = 𝐶 ′1,𝐶
′
2, . . . ,𝐶

′
ℓ = 𝐶2

𝑛 , where 𝐶 ′𝑖 and 𝐶 ′𝑖+1 are 𝛿-equivalent via a subcircuit of size
𝑂 (log𝑛).

By Lemma 7, we have that 𝛿 iO(𝐶 ′𝑖) and 𝛿 iO(𝐶 ′𝑖+1) are indistinguishable. By hybrid argument, 𝛿 iO(𝐶1
𝑛)

and 𝛿 iO(𝐶2
𝑛) are also indistinguishable.

Corollary 1 (iO for Circuits with Efficient Propositional Proofs of Equivalence). Under the same assump-
tions as Theorem 8, the algorithm in Figure 10 is an iO for circuit families with efficient propositional proofs
of equivalence.

The proof follows directly from Lemma 3 and Theorem 8.

7 iO for Turing Machines

In this section, we show the construction of iO for Turing machines with 𝑃𝑉 -proof of equivalence. In
section 7.1, we define Δ-equivalence for Turing machines. Section 7.2 and Section 7.3 will prove that
Cook’s translation implies Δ-equivalence of Turing machines. In section 7.4, we construct iO for Turing
machines with Δ-equivalence, and as a corollary, we obtain iO for Turing machines with 𝑃𝑉 proof of
equivalence.

7.1 Δ-Equivalence for Turing Machines

To build iO for Turing machines, we rely on the conversion of Turing machines to circuits, and then apply
our result of iO for circuits. However, doing this conversion naively would result in a bounded-input
circuit, which is not sufficient for our goal for unbounded Turing machines. To avoid this, we rely on the
uniform structure of the converted circuits. Namely, its description can be generated by a small circuit of
poly-logarithmic size. In the following, we formally state this uniform structure.
Small Description Circuit. There exists a polynomial 𝑆 (·, ·) such that, for any polynomial-time Turing
machine𝑀 that halts in𝑇 (·) steps, any input length bound 𝑁 , we can construct a circuit J𝑀K𝑁 (·, ·) of size
𝑆 (log𝑁, |𝑀 |), with the following syntax. Here, we use |𝑀 | to denote the number of bits used to describe
the Turing machine 𝑀 .

(inp𝑔, out𝑔, 𝑓𝑔) ← J𝑀K𝑁 (𝑛,𝑔) .
Specifically, J𝑀K𝑁 takes an input length 𝑛 and an index 𝑔 of the gates, and outputs the description of the
𝑔-th gate, which contains a set of indices for its input wires inp𝑔, a set of indices for its output wires out𝑔,
and the computation 𝑔-th gate performs 𝑓𝑔 : {0, 1} |inp(𝑔) | → {0, 1}.

Without loss of generality, we use 𝑇 (𝑛) to bound the number of gates that J𝑀K𝑁 (𝑛, ·) describes.
Namely, the circuit formed by the gates {J𝑀K𝑁 (𝑛,𝑔)}𝑔∈[𝑇 (𝑛)] emulates the Turing machine for the input
length 𝑛.

In the following, we define the notion of Δ-equivalence for two Turing machines.

Definition 11 (Δ-equivalent Turing Machines). We say two Turing machines 𝑀1, 𝑀2 are Δ-equivalent, if
there exist functions ℓ = poly(𝑛, log𝑁), 𝐵(𝑁) = 𝑂 (log𝑁), and 𝑆 (𝑁) = poly(log𝑁) such that for any positive
integer 𝑁 and any 𝑛 < 𝑁 , there exists a series of circuit 𝐶 ′1(·),𝐶 ′2(·), . . . ,𝐶 ′ℓ (·) with the following properties.

– J𝑀1K𝑁 (𝑛, ·) ≡ 𝐶 ′1 and 𝐶 ′ℓ ≡ J𝑀2K𝑁 (𝑛, ·). Recall that “≡” means functionally equivalence.

– Let 𝐶𝑖 be the circuit that 𝐶 ′𝑖 describes. That is, 𝐶 ′𝑖 (𝑔) outputs the description (inp𝑔, out𝑔, 𝑓𝑔) of the 𝑔-th
gate in 𝐶𝑖 . Then for each 𝑖 ∈ [ℓ − 1], 𝐶𝑖 and 𝐶𝑖+1 are 𝛿-equivalent via a subcircuit of size 𝐵(𝑁).

– For each 𝑖 ∈ [ℓ], the size of the circuit |𝐶 ′𝑖 | is bounded by 𝑆 (𝑁).

51

7.2 Succinct Description of Cook’s Translation

In this section, we give a uniform presentation of Cook’s translation [Coo75] from 𝑃𝑉 to propositional
logic. Namely, the translated propositional logic proof can be “described” by a small circuit of size inde-
pendent of the number of digits in the dyadic notation.

To achieve this, we at least need the “lines” in the translated proof to be short, so that the output
of the description circuit can be succinct. Hence, as we did in Lemma 3, we assign new variables to the
sub-formulas to break the size of any large formula to constant.

Introducing Intermediate Variables. For each formula 𝑓 in EF , we assign it with a new variable
ATOM[𝑓] to reduce the size of the formulas in the proof, as we did in the proof of Lemma 3. If we treat
𝑓 as a circuit, then we can represent the computation of each gate in it as an extension. We use Def (𝑓) to
denote the set containing all such extensions in 𝑓 . Formally, Def (𝑓) is defined inductively as follows.

– If 𝑓 is a variable or constant, then Def (𝑓) is defined to be Def (𝑓) = {ATOM[𝑓] ↔ 𝑓 }.

– If 𝑓 is 𝑓1 ◦ 𝑓2, where 𝑓1, 𝑓2 are formulas, and ◦ is either ∧,∨ or→, then we define Def (𝑓) as Def (𝑓1) ∪
Def (𝑓2) ∪ {ATOM[𝑓] ↔ (ATOM[𝑓1] ◦ ATOM[𝑓2])}.

– If 𝑓 is ¬𝑓 ′, then we define Def (𝑓) = Def (𝑓 ′) ∪ {ATOM[𝑓] ↔ ¬ATOM[𝑓 ′]}.

Definition 12 (Small Formula Derivation). Let 𝑆 be a set of propositional formulas, and 𝑓 be a formula in
EF . We say a sequence of formulas

Π = (𝜋1, 𝜋2, . . . , 𝜋𝐸, 𝜋𝐸+1, . . . , 𝜋𝐸+𝑅)

is a small formula derivation of 𝑆 ⊢ 𝑓 , if it has the following structure.

– Extension Phase: 𝜋1, 𝜋2, . . . , 𝜋𝐸 include all extension axioms used in the proof (but we allow them to
be repetitive for convenience). Formally, for each 𝑖 ∈ [𝐸], 𝜋𝑖 is either

– In the form 𝑣 ↔ 𝑎 ◦𝑏 or 𝑣 ↔ 𝑐 , where 𝑣 is a new variable that hasn’t appeared in the proof so far,
and 𝑎, 𝑏, 𝑐 are either variables or their negations, and ◦ is ∧,∨, or→.

– Repeating some 𝜋 𝑗 where 𝑗 < 𝑖 , i.e. 𝜋𝑖 = 𝜋 𝑗 .

Moreover, we require that the formulas in Def (𝑓) and Def (𝜙) for all 𝜙 ∈ 𝑆 are “correctly” introduced.
That is,

Def (𝑓) ∪ ∪𝜙 ∈𝑆Def (𝜙) ⊆ {𝜋1, 𝜋2, . . . , 𝜋𝐸}.

– Reasoning Phase: 𝜋𝐸+1, 𝜋𝐸+2, . . . , 𝜋𝐸+𝑅 are variables in EF . Moreover, each variable 𝜋𝐸+𝑖 is derived
via one of the following cases.

– 𝜋𝐸+𝑖 is in the form ATOM[𝜙𝑖], where 𝜙𝑖 is a premise, i.e. 𝜙𝑖 ∈ 𝑆 .
– There exists a universal constant 𝑐 independent of Π, and 𝑐 indices 𝑖1, 𝑖2, . . . , 𝑖𝑐 < 𝑖 such that

𝜋𝑖1, 𝜋𝑖2, . . . , 𝜋𝑖𝑐 ⊢ 𝜋𝐸+𝑖 .

Moreover, the last variable 𝜋𝐸+𝑅 is ATOM[𝑡].

Definition 13 (Succinct Description of Small Formula Derivation). A succinct description of a small formula
derivation (𝜋1, 𝜋2, . . . , 𝜋𝐸, 𝜋𝐸+1, . . . , 𝜋𝐸+𝑅) is a tuple of circuits (Get,Where). with the following syntax.

52

– Get(𝑖) : Get circuit takes as input an index 𝑖 , it outputs the representation of the 𝑖-th “line” in the proof
⌜𝜋𝑖⌝. Recall that the Gödel numbering ⌜·⌝ (see Section 3.1) is the natural way to represent the formulas
in EF as binary strings.

– Where(⌜𝑣⌝): It takes as input the representation of a variable 𝑣 , and outputs a subset of indices 𝑇 ⊆
[𝐸 + 𝑅], which contains all indices 𝑡 such that the variable 𝑣 appears as a variable in 𝜋𝑡 .

We introduce the following complexity measureDesc[·] to characterize the size of the succinct descrip-
tion for Cook’s propositional translation. For a high level explanation, see technical overview Section 2.3.
Description Size Desc[·]. Intuitively, for any term 𝑡 in 𝑃𝑉 , we will use Desc[𝑡] to denote the number of
terms in 𝑃𝑉 that 𝑡 depends on. Specifically, Desc[𝑡] is defined inductively as follows.

– If 𝑡 is a variable or a function symbol of arity 0, then we define Desc[𝑡] B 1.

– If 𝑡 is of the form 𝑓 (𝑡1, . . . , 𝑡𝑘), where 𝑓 is a function symbol defined as 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑘) in the vari-
ables 𝑥1, 𝑥2, . . . , 𝑥𝑘 , and 𝑡1, . . . , 𝑡𝑘 are terms. Then we define

Desc[𝑡] B Desc[𝑡1] + Desc[𝑡2] + . . . + Desc[𝑡𝑘] + Desc[𝑓] · (|𝑡1 | + |𝑡2 | + . . . + |𝑡𝑘 |),

where |𝑡𝑖 | represents the size of the binary encoding ⌜𝑡𝑖⌝, and Desc[𝑓] for any function symbol 𝑓 is
defined as follows.

– Desc[𝑓] for a function symbol 𝑓 (𝑥1, . . . , 𝑥𝑘) in the variables 𝑥1, . . . , 𝑥𝑘 is defined as follows.

– If 𝑓 (𝑥1, . . . , 𝑥𝑘) is defined as a term 𝑡 ′ of the variables 𝑥1, . . . , 𝑥𝑘 . Then we define

Desc[𝑓] B Desc[𝑡 ′] + 1.

– If 𝑓 (𝑥1, . . . , 𝑥𝑘) is defined by limited recursion on notations, i.e.

𝑓 (0, y) = 𝑔(y), 𝑓 (𝑥 | |𝑖, y) = ℎ𝑖 (𝑥, y, 𝑓 (𝑥, y)), 𝑖 = 1, 2,

where y = (𝑥2, . . . , 𝑥𝑘), and there exists 𝑘1, 𝑘2 such that |ℎ𝑖 (𝑥,𝑦, 𝑧) | ≤ |𝑧 | + |𝑘𝑖 (𝑥,𝑦) | can be
proven in 𝑃𝑉 with proofs Π1,Π2, respectively. Then we define

Desc[𝑓] B Desc[𝑔(x2)] + Desc[ℎ1] + Desc[ℎ2] + Desc[Π1] + Desc[Π2]

where we will define Desc[·] for the proofs Π1, Π2 soon.
– If 𝑓 (𝑥1, . . . , 𝑥𝑘) is an initial function, then we define Desc[·] for them as follows. For 𝑠1, 𝑠2,

we directly define Desc[𝑠𝑖] = 1. For other initial functions which are defined recursively, we
define Desc[𝑓] B Desc[𝑔(x2)] + Desc[ℎ1] + Desc[ℎ2] similar to the previous case.

For any equation 𝑡 = 𝑢, we define Desc[𝑡 = 𝑢] B Desc[𝑡] +Desc[𝑢] +1. Given a proof Π = (𝜋1, . . . , 𝜋ℓ)
in 𝑃𝑉 , we define Desc[Π] = ∑ℓ

𝑖=1 Desc[𝜋𝑖].
We prove the following theorem for the translation from Cook’s theory 𝑃𝑉 to extended Frege system

EF .

Theorem 9 (Succinct Description of Cook’s Translation). Let 𝑡,𝑢 be two terms in 𝑃𝑉 with ⊢𝑃𝑉 𝑡 = 𝑢,
and let Π be the proof in 𝑃𝑉 , 𝑛 be an integer and 𝑚 be the bounding value for 𝑛 related to 𝑡 = 𝑢, then
there exists a succinct description (Get,Where) of small formula derivation of ⊢EF J𝑡 = 𝑢K𝑛𝑚 . Moreover, the
sizes of Get,Where are bounded by poly(Desc[Π], log𝑚), and the length of the EF -proof they describe is
poly(Desc[Π],𝑚).

We defer the proof sketch to the Appendix A.

53

7.3 Δ-Equivalence for Turing Machines from Cook’s Theory 𝑃𝑉

In this subsection, we show that if the functional equivalence of two Turing machines can be proven in
Cook’s theory 𝑃𝑉 [Coo75], then the two Turing machines are Δ-equivalent. Cook [Coo75] showed that
any polynomial-time function can be defined in 𝑃𝑉 .

Lemma 8. There exists a padding algorithm Pad with the following properties.

– It takes as input a security parameter 𝜆 and a Turing machine𝑀 , and it outputs a new Turing machine
𝑀 ′, which preserves the functionality of𝑀 for any input of length polynomial in 𝜆.

– Let 𝑓1(𝑥), 𝑓2(𝑥) be two function symbols that are definable in Cook’s theory 𝑃𝑉 (See Section 3.2) with ⊢𝑃𝑉
𝑓1(𝑥) = 𝑓2(𝑥). Let Π be a proof of ⊢𝑃𝑉 𝑓1(𝑥) = 𝑓2(𝑥) and let𝑀1, 𝑀2 be two Turing machines computing
𝑓1, 𝑓2 in a natural way, then Pad(1𝜆, 𝑀1) and Pad(1𝜆, 𝑀2) are Δ-equivalent Turing machines. Moreover,
the size of the intermediate circuits 𝑆 (𝑁) in the definition of Δ-equivalent circuit (see Definition 11) is
bounded by poly(|Desc[Π] |, log𝑁).

The proof of Lemma 8 follows from the same idea as Lemma 3. The only difference is that here we fur-
ther need to show that the intermediate circuits in the Δ-equivalent circuits (Definition 2) can be described
succinctly. Hence, we only sketch the proof here, with the focus on how to describe the intermediate cir-
cuits by some small circuits.

Proof Sketch of Lemma 8. From the definition of Δ-equivalence of Turing machines, it suffices to show that
for any integer 𝑁 and any 𝑛 < 𝑁 , there exists a series of ℓ = poly(𝑛, log𝑁) small circuits 𝐶 ′1,𝐶 ′2, . . . ,𝐶 ′ℓ
such that the circuits they describe 𝐶1, . . . ,𝐶ℓ are 𝛿-equivalent for each two adjacent circuits.

The idea is to use the small circuit of size poly(log𝑚,Desc[Π]) provided by Theorem 9 to succinctly
describe the circuit in each hybrid in Lemma 3. We briefly recall the proof of Lemma 3 here. We first use
an algorithm Pad to pad the input circuit 𝐶 by attaching the projection circuits Proj to the input wires of
each gate and also attaching copy circuits Copy to the output wires of every gate. Both Proj and Copy are
built as binary trees of gates. Next, we build a binary tree of AND gates, with all leaves outputting a value
1, except the first leaf outputting the output wire value of𝐶 . Then the proof of Lemma 3 shows a series of
steps transforming from Pad(𝐶1) to Pad(𝐶2).

As our first step, we show how to represent each gate of the padded circuit in Lemma 3 as a binary
string of 𝑂 (log(𝑚) + log |Desc[Π] |)-bits. Next, we show how to represent the wires in the same amount
of bits.

Numbering Gates. We classify the gates of the padded circuit Pad(𝐶) in Lemma 3 into the following
four types and assign each gate a succinct numbering. Let ℓ be the depth of the AND tree, and 𝑑 be the
depth of the Copy and Proj circuits.

– Regular: If the gate corresponds to a gate in the input circuit 𝐶 or a dummy gate (See Figure 3).
This kind of gates can be uniquely encoded by (1, idx), where “1” represents the “regular” type, and
idx is the number of the regular gates that has been added to the circuit before the current regular
gate is added.

– AND-Tree: The gate is part of the binary tree that computes an multi-arity AND at the end. This type
of gate can be uniquely encoded as (2, 𝑖), where “2” indicates the “AND Tree” type and 𝑖 ∈ {0, 1}≤ℓ
represents the location of the gate in the tree. Specifically, we use the empty string 𝜙 to denote the
root node, and for each node 𝑖 , we use 𝑖 | |0 to represent its left child and 𝑖 | |1 for its right child.

54

– Copy: This gate is part of the Copy circuit attached to the output wire of a regular gate or an
input wire. Recall that the Copy circuit is built as a binary tree. Hence, this type of gate can be
uniquely represented as (3, 𝑔, 𝑖), where “3” represents the “copy” type, 𝑔 is either in the form (1, idx),
which represents idx-th regular gate, or in the form (0, idx), which represents the idx-th input wire.
𝑖 ∈ {0, 1}≤𝑑 represents the location of the gate in the binary tree.

– Projection: The gate that is part of the projection circuit attached to the input wires of a regular
gate or a leaf of the AND-tree. Hence, this type of gates can be uniquely represented as (4, 𝑔, 𝑖),
where “4” means “projection” type, and 𝑔 is either of the form (1, idx, 𝑏) or (2, idx), which represent
the 𝑏-th input wire of a regular gate with index idx, or the idx-th leaf of the AND-tree, respectively.
𝑖 represents that the gate is at the location 𝑖 ∈ {0, 1}≤𝑑 of the Proj circuit.

Similarly, we also represent the wires in logarithmic bits.

Numbering Wires. The wires are classified as input and non-input wires. For non-input wires, they are
uniquely determined by the gate that has such a wire as output. Specifically, their numbering are defined
as follows.

– InputWires: This type of wires can be uniquely represented as (0, inp), where 0 represented “input”
and inp is an index of the wire.

– Non-Input Wires: This type of wires can be uniquely encoded as (1, 𝑔, 𝑏), where 𝑔 is an encoding
of a gate defined above, and 𝑏 ∈ {0, 1} is a bit indicating the wire is the left or right output wire of 𝑔.

For the ease of presentation, we use ⌜𝑔⌝ to denote the numbering of the gate 𝑔 and use ⌜𝑤⌝ to denote
the numbering of the wire𝑤 .

Lengths of the Numbering. We will set the number of the regular gates and the number of leaf
nodes of the AND-tree to be a polynomial of the EF proof length in Cook’s translation of Π, which
is poly(log𝑚 + log |Desc[Π] |). Hence, their indices can be represented in 𝑂 (log𝑚 + log |Desc[Π] |) bits.
From our numbering, this implies that the encoding of the gates ⌜𝑔⌝ and wires ⌜𝑤⌝ can also be represented
in 𝑂 (log𝑚 + log |Desc[Π] |) bits.

Topology from Numbering. The topology of any gate 𝑔, which includes the numbering of its in-
put and output wires, can be computed from the numbering ⌜𝑔⌝ by a small circuit ‘Topology’ of size
poly(log𝑚, log |Desc[Π] |).

For the regular gates and the gates in AND-Tree, this computation is straightforward. Here we em-
phasis on the topology of the gates in Copy and Proj circuits. For the leaves with index 𝑖 ∈ {0, 1}𝑑 in Copy
circuits attached to the output wire of the idx-th regular gate, we set the output wires of idx as follows.
Let 𝐸 be the total number of regular gates.

– If 𝑖 ≤ 𝐸 and 𝑖 > idx, we let the number of output wires of such a gate to be 2. For 𝑏 = 0, 1, we set the
𝑏-th output wire of the leaf as the input wires of the idx-th leaf node of the Proj circuit attached to
the 𝑏-th input wire of the 𝑖-th regular gate. Here, we put the restriction “𝑖 > idx” to ensure that the
circuit can be executed in the order of index of the regular gates.

– Otherwise, if 𝑖 > 𝐸, we let the number of output wires of such a gate be 1. Then we set the output
wire of the leaf as the input wire of the idx-th leaf node of the Proj circuit attached to the (𝑖 − 𝐸)-th
leaf node of the AND-tree.

For other cases of the leaves in the Copy circuit, we don’t set any output wires.

55

Succinct Description of the Hybrids. We first represent the padding circuit Pad(·, ·) in Lemma 3 suc-
cinctly as the following small circuit SPad. It takes as input a Turing machine 𝑀 , an input length 𝑛, and
the numbering of a gate 𝑔, it calculates the topology of the gate 𝑔, which includes the numbering of its
input and output wires, and also computes the functionality 𝑓𝑔 of the gate 𝑔. For the ease of presentation,
we further require that for idx-th input wire, outidx outputted by J𝑀K𝑁 (𝑛, idx) contains the indices of all
gates which uses the idx-input wire as input.

Succinct Padding SPad(1𝜆, 𝑀, 𝑛, ⌜𝑔⌝):

Input: A Turing machine 𝑀 , a input length 𝑛 and the numbering of a gate 𝑔.

– Check if ⌜𝑔⌝ is well-formed. If it’s not, then output ⊥ and abort.

– Compute the topology of the gate 𝑔 in the same way as the proof of Lemma 3, as described in the
above ‘Topology from Numbering’ paragraph, i.e., compute (inp𝑔, out𝑔) ← Topology(⌜𝑔⌝).

– Set 𝑁 = 𝜆log𝜆 to be a slight super-polynomial. Then depending on the type of 𝑔, we set the function-
ality 𝑓𝑔 of the gate 𝑔 as follows.

– Regular: Parse ⌜𝑔⌝ as (1, idx). Recall that we use 𝑇 (𝑛) to denote the size of the circuit that
J𝑀K𝑁 (𝑛, ·) describes. Hence, if idx > 𝑇 (𝑛), then we set 𝑓𝑔 = 0, since the gate 𝑔 is a “dummy”
gate.
Otherwise, when idx ≤ 𝑇 (𝑛), we compute the topology of the idx-th gate of the circuit com-
puting 𝑀 as (inpidx, outidx, 𝑓idx) ← J𝑀K𝑁 (𝑛, idx), and let 𝑓𝑔 = 𝑓idx.

– AND-Tree: Parse ⌜𝑔⌝ as (2, idx), where idx ∈ {0, 1}≤ℓ . Note that |idx| = ℓ if and only if 𝑔 is a
leaf node of the AND-tree. We have the following cases.

∗ First Leaf: (idx = 0ℓ), we set 𝑓𝑔 (𝑥) = 𝑥 .
∗ Other Leaves: (idx ≠ 0ℓ and |idx| = ℓ), we set 𝑓𝑔 = 1.
∗ Non-Leaf: (|idx| < ℓ), we set 𝑓𝑔 = ∧ to be an AND gate.

– Copy: Parse ⌜𝑔⌝ as (3, 𝑔′, 𝑖), where 𝑖 ∈ {0, 1}≤𝑑 . Parse 𝑔′ as (𝑏 ∈ {0, 1}, idx), then compute the
topology of idx-th gate of 𝑀 or the idx-th input wire of 𝑀 as

(inpidx, outidx, 𝑓idx) ← J𝑀K𝑁 (𝑛, idx).

Here we assume outidx is the set of gate indices that takes the idx-th input wire as an input,
for every idx ∈ [𝑛]. And the actual gates in J𝑀K𝑛 are indexed starting from 𝑛 + 1. If outidx ∩
[𝑖 | |0𝑑−|𝑖 |, 𝑖 | |1𝑑−|𝑖 |] ≠ 𝜙 , then let 𝑓𝑔 (𝑥) = (𝑥, 𝑥). Else, let 𝑓𝑔 (𝑥) = (0, 0). Here we assume that
J𝑀K𝑁 (𝑛, idx) outputs the numbering of the output wires in .

– Projection: Parse ⌜𝑔⌝ as (4, 𝑔′, 𝑖), where 𝑖 ∈ {0, 1}≤𝑑 . Depending on the type of 𝑔′, we have
two cases.

∗ If 𝑔′ is the form (1, idx, 𝑏), i.e. 𝑔 is a gate in the projection circuit attached to the 𝑏-th input
wire of idx-th regular gate. If idx > 𝑇 (𝑛), then we set 𝑓𝑔 = 0, since the idx-th gate is a
“dummy” gate. Otherwise, we compute the 𝑓𝑔 as follows. Let

(inpidx, outidx, 𝑓idx) ← J𝑀K𝑁 (𝑛, idx).

Let inpidx [𝑏] be the𝑏-th element of the array inpidx. If inpidx [𝑏] ∈ [𝑖 | |0| |0𝑑−|𝑖 |−1, 𝑖 | |0| |1𝑑−|𝑖 |−1],
then it means that the𝑏-th input wire is on the “left child” of𝑔. Hence, we let 𝑓𝑔 (𝑥0, 𝑥1) = 𝑥0.
Otherwise, 𝑏-th input wire is on the “right child” of 𝑔, we let 𝑓𝑔 (𝑥0, 𝑥1) = 𝑥1.

56

∗ If 𝑔′ is the form (2, idx) where idx ∈ {0, 1}ℓ , i.e. 𝑔 is a gate in the projection circuit attached
to the idx-th leaf of the AND-tree. Let 𝑜 be the index of the output gate of the circuit
described by J𝑀K𝑁 (𝑛, ·). We will have ⌜𝑜⌝ hardwired in the circuit. Next, we have the
following two cases.
· First Leaf: (idx = 0ℓ), if ⌜𝑜⌝ ∈ [𝑖 | |0| |0𝑑−|𝑖 |−1, 𝑖 | |0| |1𝑑−|𝑖 |−1], then this means that 𝑜 can

be reached from the “left child”, and hence we set 𝑓𝑔 (𝑥0, 𝑥1) = 𝑥0. Otherwise, we set
𝑓𝑔 (𝑥0, 𝑥1) = 𝑥1.

· Other Leaves: (idx ≠ 0ℓ), let 𝑓𝑔 = 0.

– Output (inp𝑔, out𝑔, 𝑓𝑔).

Now for each step 𝑖 in the transformation in Lemma 3, we describe the following small circuit 𝐶 ′𝑖
that takes an encoding of a gate (described above). By Theorem 9, there exists a succinct description
(Get,Where) of small derivation of ⊢EF J𝑓1(𝑥) = 𝑓2(𝑥)K𝑛𝑚 . Let Π = (𝜋1, 𝜋2, . . . , 𝜋𝐸, 𝜋𝐸+1, . . . 𝜋𝐸+𝑅) be the
small derivation, where (𝜋1, . . . , 𝜋𝐸) is the extension phase and (𝜋𝐸+1, . . . , 𝜋𝐸+𝑅) is the reasoning phase.

“Grow 𝐶2” Phase and “Grow the Extension” Phase. We without loss of generality assume that there
exist𝑇1,𝑇2 ≤ 𝐸 such that𝜋1, 𝜋2, . . . , 𝜋𝑇1 are the translation of the definition of 𝑓1(𝑥), and𝜋𝑇1+1, 𝜋𝑇1+2, . . . , 𝜋𝑇1+𝑇2

are the translation of the definition of 𝑓2(𝑥). Now, we build the following intermediate circuits 𝐶𝐼 ,𝐼 𝐼
𝑖∗ (·) for

each 𝑖∗ ∈ [𝐸 −𝑇1]. In 𝐶𝐼 ,𝐼 𝐼
𝑖∗ (·), the first 𝑇1 + 𝑖∗ regular gates corresponds to the extensions 𝜋1, 𝜋2, . . . , 𝜋𝑇1+𝑖∗ .

The rest of the regular gates remains dummy gates that always output 0.

Succinct Description of the Intermediate Circuits in Phase I, II: 𝐶𝐼 ,𝐼 𝐼
𝑖∗ (⌜𝑔⌝):

Input: The numbering of a gate 𝑔.
Hardwire: Input length 𝑛, succinct description (Get,Where), and an index of the circuits 𝑖∗ ∈ [𝐸 −𝑇1].

– Check whether ⌜𝑔⌝ is well-formed or not, and compute the topology of the gate 𝑔 using the circuit
Topology in the same way as SPad above. Let inp𝑔, out𝑔 be the output of Topology(⌜𝑔⌝).
Then depending on the type of 𝑔, we have the following cases.

– Regular: Parse ⌜𝑔⌝ as (1, idx). Note that at the 𝑖-th hybrid, only the first 𝑇1 + 𝑖∗ regular gates
should be used. Hence, if idx > 𝑇1 + 𝑖∗, then we simply set 𝑓𝑔 = 0.
Otherwise, in the case idx ≤ 𝑇1 + 𝑖∗, instead of computing the topology of 𝑔 via J𝑀K𝑁 (𝑛, ·),
here we execute ⌜𝜋idx⌝← Get(idx) to obtain 𝜋idx. Since 𝜋idx is in the extension phase, we can
further parse it as 𝑣 ↔ 𝑡 , where 𝑣 is a variable, and 𝑡 is a formula. Then we set 𝑓𝑔 be the function
that compute 𝑡 . That is, let 𝑡 be the form 𝑣1 ◦ 𝑣2, where 𝑣1, 𝑣2 are variables and ◦ is either ∧,∨,
or→, then we set 𝑓𝑔 (𝑥0, 𝑥1) = 𝑥0 ◦ 𝑥1.

– AND-Tree: The AND-tree is the same as SPad above.
– Copy: The copy circuit is almost the same as SPad, except that we obtain outidx as follows.

⌜𝑣 ↔ 𝑡⌝← Get(idx), 𝑇 ←Where(⌜𝑣⌝),

and we set outidx = 𝑇 ∩ (idx,𝑇1 + 𝑖∗] be the indices in 𝑇 that falls in [𝑇1 + 𝑖∗], but are larger
than the current gate idx. We add this condition to ensure that the output of idx-gate can only
be used as input to the gates whose indices are larger than idx, so that the circuit is an acyclic
graph.

– Projection: The projection circuit is also almost the same as the succinct description of SPad
above, except that in the case when the projection circuit is attached to the output wire of a

57

regular gate, we compute the input wires of inpidx as follows: let ⌜𝑣 ↔ 𝑡⌝ ← Get(idx), and
{𝑣𝑠 }𝑠∈[𝑇] be the variables in 𝑡 . We let the input wire set inpidx be the set contains the indices
where 𝑣𝑡 is introduced for the first time. Specifically,

inpidx = {Def𝑠 | 𝑠 ∈ [𝑇]},

where Def𝑠 = minWhere(⌜𝑣𝑠⌝) is the index where 𝑣𝑠 is introduced by the extension axiom.
Here we take the first indices that 𝑣𝑠 appears, since we allow repetition in the extension phase
(See Definition 12), and thus 𝑣𝑠 could appear many times as the same extension. Note that we
only need to compute inpidx above when idx ≤ 𝑇1 + 𝑖∗. Otherwise, if idx > 𝑇1 + 𝑖∗, we directly
set 𝑓𝑔 = 0 since idx corresponds to a “dummy” gate that has not been used.
If the projection circuit is attached to a leaf of the AND-Tree, then 𝑓𝑔 is defined in the same
way as SPad above.

– Finally, we output (inp𝑔, out𝑔, 𝑓𝑔).

For other phases, the idea to construct the succinct description of the intermediate circuits is the same
as above, except that the detail is more involved, and hence are omitted.

7.4 Construction of iO for Turing machines

In this section, we present our construction of iO for Δ-equivalent Turing machines (See Definition 11).
Ingredients. Before we present our construction, we list the following necessary ingredients.

– Sub-exponentially secure puncturable PRF PRF𝑝𝑢𝑛𝑐 (·, ·).

– Sub-exponentially secure pseudorandom generator PRG.

– Fully homomorphic encryption (FHE) FHE = (Setup, Enc, Eval,Dec).

– Somewhere extractable hash with consistent proof (Gen, TGen,Hash,Open,Verify, Ext, P,V).

– A circuit Gate in Figure 7 emulating the computation at each gate for the input circuit.

– A circuit Shrink[𝐻] (·, ·) in Figure 8 that decrypts the symmetric key encryption inside the FHE, and
thus shrink the size of the somewhere extractable hash value 𝐻 .

– Sub-exponentially secure indistinguishable obfuscation scheme iO.

– The Gate algorithm in Figure 7.

We present our construction in Figure 11.

Lemma 9. The ΔiO algorithm in Figure 11 satisfies indistinguishability for any two Δ-equivalent Turing
machines𝑀1, 𝑀2.

Proof. For the ease of presentation, for any subcircuit 𝑆 , we define the closure of 𝑆 denoted as 𝑆 to be a
set 𝑆 =

⋃
𝑔∈𝑆 inp(𝑔) ∪ out(𝑔). To prove the construction satisfies indistinguishability, we construct the

following hybrids.
Hybrid H0: This hybrid outputs ΔiO(1𝜆, 𝑀1).
Hybrid H𝑛0

1 : This hybrid is almost the same as H0, except that we modify the uniform gate UGate as
follows. When compute the gate information for 𝑔, it compares whether 𝑛 with 𝑛0 and decides to use 𝑀1
or 𝑀2.

58

ΔiO for Δ-equivalent Turing Machines: ΔiO(1𝜆, 𝑀)

– Let 𝑁0 = 𝜆log𝜆 be two values that are superpolynomial in 𝜆, and let 𝑆0 = log2 𝑁0 be an
upper bound for the number of elements we will extract from SEH.

– Generate a somewhere extractable hash key 𝐾 ← Gen(1𝜆, 1𝑆0).

– Generate a puncturable PRF key PRF𝑝𝑢𝑛𝑐 .𝐾 . We will use puncturable PRF to generate the
encryption keys and MAC keys for each gate.

– Generate a FHE key pair (pk, sk) ← FHE.Setup(1𝜆), and let t̃d← FHE.Enc(pk, 0 |td |). For
each 𝑖 ∈ [𝑆0], let 𝐾𝑖 ← FHE.Enc(pk, 0 |𝐾𝑚

𝑖
|).

– Then we obfuscate the circuit UGate

ŨGate← iO(1𝜆,UGate[𝐾,PRF𝑝𝑢𝑛𝑐 .𝐾,pk,t̃d,{𝐾𝑖 }𝑖∈[𝑆0]]
) .

– Output (ŨGate, 𝐾, pk).

Figure 11: Description of the iO for Δ-equivalent Turing machines, where UGate in Figure 12 is an uniform
way to describe Gate.

UGate[𝐾,PRF𝑝𝑢𝑛𝑐 .𝐾,pk,t̃d,{𝐾𝑖 }𝑖∈[𝑆0]]
(𝑛,𝑔,−−−−→input = (𝐻, {𝐻𝑖 , ct𝑖 , 𝜌𝑖 , 𝜋𝑖 , 𝜎𝑖}𝑖∈[2]))

– Obtain the description of the 𝑔-th gate

(inp𝑔, out𝑔, {𝑓𝑜 }𝑜∈out𝑔) ← J𝑀K𝑁0 (𝑛,𝑔).

– Generate the keys for the input/output wires of the 𝑔-th gate using puncturable PRF, with
the input 𝑛 concatenated with the wire indices.

∀𝑤 ∈ inp𝑔 ∪ out𝑔, (𝐾𝑚𝑤 , 𝐾𝜎𝑤) ← PRF𝑝𝑢𝑛𝑐 (PRF𝑝𝑢𝑛𝑐 .𝐾, (𝑛,𝑤)) .

– Use Gate to emulate the 𝑔-th gate,

−−−−−→output← Gate[𝐾,{𝐾𝑚
𝑖
,𝐾𝜎

𝑖
}𝑖∈inp𝑔 ,{𝑓𝑜 ,𝐾

𝑚
𝑜 ,𝐾

𝜎
𝑜 }𝑜∈out𝑔 ,t̃d,{𝐾𝑖 }𝑖∈[𝑆0]]

(−−−−→input) .

– Output −−−−−→output.

Figure 12: Description of UGate, which is an uniform way to compute Gate.

– If 𝑛 < 𝑛0, it uses 𝑀2 to obtain the description of the 𝑔-th gate

(inp𝑔, out𝑔, {𝑓𝑜 }𝑜∈out𝑔) ← J𝑀2K𝑁0 (𝑛,𝑔).

59

– Otherwise, 𝑛 ≥ 𝑛0, it uses 𝑀1 to generate the description of the 𝑔-th gate

(inp𝑔, out𝑔, {𝑓𝑜 }𝑜∈out𝑔) ← J𝑀1K𝑁0 (𝑛,𝑔).

– . . .

Clearly, when 𝑛0 = 0, then the functionality of UGate is the same as H0. Next, we’re going to argue
the indistinguishability between the Hybrid H𝑛0

1 and H𝑛0+1
1 via a series of hybrids.

In the next hybrid we will use the Δ-equivalence of the Turing machines 𝑀1, 𝑀2. Since 𝑀1, 𝑀2 are Δ-
equivalent, by definition, for the integer 𝑛0 < 𝑁0, there exists a series of circuits𝐶 ′1,𝐶 ′2, . . . ,𝐶 ′ℓ that satisfies
the properties in the definition.

Hybrid H𝑛0
1,𝑖 : This hybrid is almost the same as H𝑛0

1 , except that we modify the uniform gate UGate as the
following circuit with 𝐶 ′𝑖 hardwired.

– If 𝑛 < 𝑛0, it uses 𝑀2 to obtain the description of the 𝑔-th gate

(inp𝑔, out𝑔, {𝑓𝑜 }𝑜∈out𝑔) ← J𝑀2K𝑁0 (𝑛,𝑔).

– If 𝑛 = 𝑛0, then we compute the 𝑔-th gate as follows.

(inp𝑔, out𝑔, {𝑓𝑜 }𝑜∈out𝑔) ← 𝐶 ′𝑖 (𝑔) .

– If 𝑛 > 𝑛0, it uses 𝑀1 to generate the description of the 𝑔-th gate

(inp𝑔, out𝑔, {𝑓𝑜 }𝑜∈out𝑔) ← J𝑀1K𝑁0 (𝑛,𝑔).

– . . .

Clearly, for any 𝑛0, Hybrid H𝑛0
1,𝑖=1 and the last hybrid H𝑛0

1 are indistinguishable, since the functionalities of
UGate in both hybrids are identical, because 𝐶 ′1(·) and J𝑀1K𝑁0,𝑇0 (𝑛0, ·) have the same functionality. Next,
we are going to show that the Hybrid H𝑛0

1,𝑖 and the Hybrid H𝑛0
1,𝑖+1 are indistinguishable. We show this by

firstly puncture the points in {𝑛0} × 𝑆 in the puncturable PRF.

Hybrid H𝑛0
1,𝑖,1: This hybrid is almost the same as the last hybrid H𝑛0

1,𝑖 , except that we replace the PRF
evaluation as the puncturable PRF.

– . . . (Obtain the description for the 𝑔-th gate). . .

– For each𝑤 ∈ inp𝑔 ∪ out𝑔, generate the encryption key and MAC key for𝑤 as follows.

– If 𝑛 = 𝑛0 and𝑤 ∈ 𝑆 , then let

(𝐾𝑚𝑤 , 𝐾𝜎𝑤) ← PRF𝑝𝑢𝑛𝑐 (PRF𝑝𝑢𝑛𝑐.𝐾, (𝑛0,𝑤)) .

– Otherwise, let
(𝐾𝑚𝑤 , 𝐾𝜎𝑤) ← PRF𝑝𝑢𝑛𝑐 (PRF𝑝𝑢𝑛𝑐.𝐾 \ {𝑛0} × 𝑆, (𝑛0,𝑤)) .

– . . .

60

By the functionality preservation property of puncturable PRF, this modification does not change the
functionality of the circuitUGate. Hence, the current hybridH𝑛0

1,𝑖,1 and last hybridH𝑛0
1,𝑖 are indistinguishable

by the security of iO.

Hybrid H𝑛0
1,𝑖,2: This hybrid is almost the same as the previous hybrid H𝑛0

1,𝑖,1, except that we replace the
PRF evaluation at the punctured point with random values {𝐾𝑚𝑤 , 𝐾𝜎𝑤}𝑤∈𝑆 , and these random values are
hardwired in the circuit description. This hybrid is indistinguishable with the previous hybrid by the
pseudorandomness at the punctured point.

Hybrid H𝑛0
1,𝑖,3: This hybrid is almost the same the last hybrid, except that for each 𝑔 ∈ 𝑆𝑖 , we generate�Gate𝑔 ← iO(Gate[𝐾,{𝐾𝑚

𝑖
,𝐾𝜎

𝑖
}𝑖∈inp(𝑔) ,{𝑓𝑜 ,𝐾𝑚

𝑜 ,𝐾
𝜎
𝑜 }𝑜∈out𝑔 ,t̃d,{𝐾𝑖 }𝑖∈[𝑆0]]]

)

at the outside, and hardwire these circuits in UGate. Then we change UGate as follows. In this hybrid, we
only hardwire uniformly random {𝐾𝑚𝑤 , 𝐾𝜎𝑤}𝑤∈𝜕𝑆 , where 𝜕𝑆 = inp(𝑆) ∪ out(𝑆).

– . . . (Obtain gate information for 𝑔) . . .

– For each𝑤 ∈ inp𝑔 ∪ out𝑔, if 𝑛 ∉ 𝑛0, then compute 𝐾𝑚𝑤 , 𝐾𝜎𝑤 via puncturable PRF. Otherwise, if 𝑛 = 𝑛0
and 𝑤 ∈ 𝜕𝑆 , then take 𝐾𝑚𝑤 , 𝐾𝜎𝑤 from the hardwired values in the circuit description. Note that here
we do nothing when 𝑛 = 𝑛0 and𝑤 ∈ 𝑆 \ 𝜕𝑆 .

– If 𝑔 ∈ 𝑆 , let −−−−−→output←�Gate𝑔 (−−−−→input).

– Otherwise, 𝑔 ∉ 𝑆 , we compute the output in the same way as before,

−−−−−→output← Gate[𝐾,{𝐾𝑚
𝑖
,𝐾𝜎

𝑖
}𝑖∈inp𝑔 ,{𝑓𝑜 ,𝐾

𝑚
𝑜 ,𝐾

𝜎
𝑜 }𝑜∈out𝑔 ,t̃d,{𝐾𝑖 }𝑖∈[𝑆0]]

(−−−−→input) .

This hybrid is indistinguishable with the previous hybrid, since iO preserves the functionality of Gate,
and hence the functionality of UGate is the same as before, and so the indistinguishability follows from
the security of iO.

Hybrid H𝑛0
1,𝑖,4: This hybrid is the almost the same as the last hybrid, except that when we generate �Gate𝑔,

we generate them with the gate information 𝑓 ′𝑜 that is computed by 𝐶 ′𝑖+1. Namely,

∀𝑔 ∈ 𝑆, (inp𝑔, out𝑔, {𝑓 ′𝑜 }𝑜∈out𝑔) ← 𝐶 ′𝑖+1(𝑔) .

The indistinguishability of this hybrid and the last hybrid follows from Lemma 7.

From Hybrid H𝑛0
1,𝑖,4 to H𝑛0

1,𝑖+1: Note that the Hybrid H𝑛0
1,𝑖,4 and the hybrid H𝑛0

1,𝑖,3 are symmetric: everything
is the same except that H𝑛0

1,𝑖,3 generates �Gate𝑔 using 𝐶 ′𝑖 , while H𝑛0
1,𝑖,4 generates it using 𝐶 ′𝑖+1. Hence, we can

prove that H𝑛0
1,𝑖,4 and H𝑛0

1,𝑖+1 are indistinguishable, by arguing in the reverse order from H𝑛0
1,𝑖 to H𝑛0

1,𝑖,3.

FromHybridH𝑛0
1 toH𝑛0+1

1 . By the hybrid argument, H𝑛0
1,𝑖 andH𝑛0

1,𝑖+1 are indistinguishable. Hence, by using
hybrid argument again, H𝑛0

1,1 and H𝑛0
1,ℓ are indistinguishable. Since in H𝑛0

1,ℓ , the circuit UGate computes the
same functionality as H𝑛0+1

1 , we prove that H𝑛0
1 and H𝑛0+1

1 are indistinguishable. We finish the proof.

Hybrid H2. This hybrid is almost the same as H1, except that we use 𝑀2 to compute the description of
the gates. This hybrid is indistinguishable with H𝑛0+1

1 by the security of iO, since the UGate in H𝑛0+1
1 and

H2 computes the same functionality.
By the hybrid argument, we finish the proof.

The following theorem is straightforward combining Lemma 8 and Lemma 9.

61

Theorem10 (iO for Turing Machines with 𝑃𝑉 -proof of Equivalence). Assuming quasi-polynomial hardness
of LWE, sub-exponential hardness of one-way functions, and sub-exponential security of iO, there exists a con-
struction of iO for unbounded-input Turingmachines𝑀1, 𝑀2 with ⊢𝑃𝑉 𝑀1(𝑥) = 𝑀2(𝑥). Moreover, letΠ be the
𝑃𝑉 -proof of 𝑀1(𝑥) = 𝑀2(𝑥), then the obfuscated Turing machine has size poly(𝜆, |Desc[Π] |, log𝑚(𝜆log𝜆)),
where𝑚(·) is the bounding value for Π.

We stress that usually the proof for functionality equivalence we write is highly “uniform”. That is,
there are only a constant number of function symbols are introduced in Π (instead of poly(𝜆) number of
function symbols), then |Desc[Π] | = poly(|Π |), where we use |Π | to denote the length of the binary string
encoding Π. Moreover, in this case𝑚(·) is a polynomial in 𝜆. Hence, we have the following corollary.

Corollary 2 (iO for Turing machines with 𝑃𝑉 -proof of Equivalence, Simplified). Under the same assump-
tions as Theorem 10, there exists iO for unbounded-input Turing machines 𝑀1, 𝑀2 with obfuscated program
size poly(𝜆, |Π |), where Π is a proof in 𝑃𝑉 for𝑀1(𝑥) = 𝑀2(𝑥) with a constant number of function symbols.

8 Applications

In this section, we show some examples of witness encryption. We first recall the definition.

Definition 14. A witness encryption for an NP language 𝐿 is a pair of algorithms WE = (Enc,Dec) with
the following syntax.

– Encryption Enc(1𝜆, 𝑥,𝑚): It takes a security parameter 𝜆, an instance 𝑥 ∈ {0, 1}∗, and a message𝑚
as input, and outputs a ciphertext ct.

– Decryption Dec(ct,𝑤): It takes a ciphertext ct and a witness𝑤 . If𝑤 is a witness for 𝑥 , then it outputs
a message𝑚′.

Furthermore, we require it to satisfy the following properties.

– Correctness. For any instance 𝑥 ∈ 𝐿, and any witness𝑤 of 𝑥 ,

Pr[Dec(Enc(1𝜆, 𝑥,𝑚),𝑤) =𝑚] = 1.

– Indistinguishability Security. For any instance 𝑥 ∉ 𝐿, and any two messages𝑚0,𝑚1, we have

{Enc(1𝜆, 𝑥,𝑚0)}𝜆∈N ≈ {Enc(1𝜆, 𝑥,𝑚1)}𝜆∈N.

8.1 Witness Encryption for Circuits

We build witness encryption for a large class of languages inNP∩𝑐𝑜NP, without relying on the hardness
of the assumption that is proportional to the witness length. Specifically, we build witness encryption for
the language 𝐿 such that 𝐿 ∈ 𝑐𝑜NP can be proved in propositional logic. Formally, we define it as follows.

Definition 15 (Propositional Proof of Disjointness). Let 𝐿 be an NP ∩ 𝑐𝑜NP language, where {𝐶𝑛}𝑛∈N
and {𝐶𝑛}𝑛∈N are the relation circuit families for 𝐿 and 𝐿 respectively. We say that 𝐿 has propositional logic
proof of disjointness, if there exists an polynomial-size propositional logic proof of ⊢ 𝐶𝑛 (𝑥,𝑤) → ¬𝐶𝑛 (𝑥,𝑤).

We build witness encryption for all languages inNP∩𝑐𝑜NP with propositional proof of disjointness,
without the security parameter independent of 𝑛. Our construction is generic from our Theorem 8.

Corollary 3. Under the same assumptions of Theorem 8, there exists a witness encryption with security
parameters independent of the witness length for any language with propositional proof of disjointness.

62

Proof Sketch. The idea is to follow the witness encryption construction from iO in the previous works
[SW21]. Namely, to encrypt a message𝑚 under an instance 𝑥 , we compute the ciphertext as the obfuscation
of a circuit 𝐺 [𝑥,𝑚] (𝑤) that takes the 𝑤 as input and outputs the message𝑚 if 𝐶𝑛 (𝑥,𝑤) = 1. Otherwise, it
outputs 0.

To prove indistinguishability security, we use Corollary 1. We need to show that if 𝑥 ∉ 𝐿, then there
exists an efficient propositional proof of equivalence between 𝐺 [𝑥,𝑚] and another circuit 𝐺 ′ that always
outputs 0. The existence of such an efficient propositional proof follows directly from the propositional
proof of disjointness in Definition 15, and a witness 𝑤 for any 𝑥 ∉ 𝐿. Then by Corollary 1, if 𝑥 ∉ 𝐿, the
ciphertext is indistinguishable with the obfuscation of 𝐺 ′. Hence, the indistinguishability security of the
witness encryption follows.

Example: Commit-and-Prove. As a concrete example, we consider the following commit-and-prove
language for the commitment scheme instantiated by a public key encryption (Gen, Enc,Dec). Let 𝑛 be an
integer, and pk← Gen(1𝑛) be a public key. We define the following NP language

𝐿pk = {(𝑐, 𝑓) | ∃(𝑚, 𝑟) : 𝑐 = Enc(pk,𝑚; 𝑟) ∧ 𝑓 (𝑚) = 1},

where pk is a public key generated by Gen, and 𝑓 is any Boolean circuit. To establish our instantiation,
We require the public key encryption to satisfy the following property. We will show that this property
is naturally achieved by the ElGamal encryption scheme from DDH [ElG85] and Regev’s encryption from
lattices [Reg05].

Definition 16 (𝑃𝑉 -Proof of Correctness). We say a public key encryption scheme (Gen, Enc,Dec) has 𝑃𝑉 -
proof of correctness, if its correctness can be proven in 𝑃𝑉 (or 𝑃𝑉), i.e., Gen, Enc,Dec can be formalized in 𝑃𝑉
as function symbols, and

⊢𝑃𝑉 (pk, sk) = Gen(1𝑛 ; 𝑟 ′) → Dec(Enc(pk,𝑚; 𝑟), sk) =𝑚

The following lemma shows that 𝑃𝑉 -proof of correctness implies propositional proof of disjointness.

Lemma 10. If the public key encryption scheme (Gen, Enc,Dec) has 𝑃𝑉 -proof of correctness, then 𝐿pk is a
language in NP ∩ 𝑐𝑜NP with propositional proof of disjointness.

Proof. We first describe how to construct the circuits 𝐶𝑛 and 𝐶𝑛 . We construct 𝐶𝑛 naturally from the
definition of 𝐿pk. Namely, 𝐶𝑛 ((𝑐, 𝑓), (𝑚, 𝑟)) takes as input (𝑚, 𝑟) as witness, and verifies whether 𝑐 =

Enc(pk,𝑚; 𝑟) and 𝑓 (𝑚) = 1. For 𝐶𝑛 ((𝑐, 𝑓)), we compute ¬𝑓 (Dec(𝑐, sk)).
Now we need to show that ⊢ 𝐶𝑛 (𝑥) → ¬𝐶𝑛 (𝑥,𝑤) has polynomial size propositional logic proof, where

𝑥 = (𝑐, 𝑓) and𝑤 = (𝑚, 𝑟). We first prove it in 𝑃𝑉 that ⊢𝑃𝑉 𝐶𝑛 (𝑥) = 1→ ¬𝐶𝑛 (𝑥,𝑤) = 1 as follows.

1. (pk, sk) = Gen(1𝑛 ; 𝑟 ′) → Dec(Enc(pk,𝑚; 𝑟), sk) = 𝑚, where pk, sk are any concrete numerals gen-
erated honestly by Gen(1𝑛 ; 𝑟 ′), and 𝑟 is also a concrete numeral. (See Section 3.2 for definition of
numerals). This follows from the 𝑃𝑉 -proof of correctness and substitution rule (See Section 3.3 for
substitution in inference rules).

2. (pk, sk) = Gen(1𝑛 ; 𝑟 ′). This follows from the fact that pk, sk are generated honestly from Gen with
randomness 𝑟 ′.

3. Dec(Enc(pk,𝑚; 𝑟), sk) =𝑚. This follows from 1 and 2 and the implication rule.

4. 𝐶𝑛 ((𝑐, 𝑓), (𝑚, 𝑟)) = 1→ 𝑐 = Enc(pk,𝑚; 𝑟) ∧ 𝑓 (𝑚) = 1. (Follows from the defining function of 𝐶𝑛 .)

5. 𝑐 = Enc(pk,𝑚; 𝑟) → Dec(𝑐, sk) = Dec(Enc(pk,𝑚; 𝑟), sk) (Follows from 𝐸4).

63

6. 𝐶𝑛 ((𝑐, 𝑓), (𝑚, 𝑟)) = 1→𝑚 = Dec(𝑐, sk) ∧ 𝑓 (𝑚) = 1. (Follows from 3, 4, and 5).

7. 𝑚 = Dec(𝑐, sk) → 𝑓 (𝑚) = 𝑓 (Dec(𝑐, sk)) (Follows from 𝐸4).

8. 𝐶𝑛 ((𝑐, 𝑓), (𝑚, 𝑟)) = 1→ 𝑓 (Dec(𝑐, sk)) = 1 (Combining 6 and 7).

9. 𝑓 (Dec(𝑐, sk)) = 1→ 𝐶𝑛 ((𝑐, 𝑓)) = 0 (From the defining function of 𝐶𝑛).

10. 𝐶𝑛 ((𝑐, 𝑓), (𝑚, 𝑟)) = 1→ ¬𝐶𝑛 ((𝑐, 𝑓)) = 1 (Combining 8 and 9).

11. 𝐶𝑛 ((𝑐, 𝑓)) = 1→ ¬𝐶𝑛 ((𝑐, 𝑓), (𝑚, 𝑟)) = 1 (Follows from 10).

By Cook’s translation (See Section 3.2, propositional translation), any proof in 𝑃𝑉 (or 𝑃𝑉1) can be
translated to a propositional proof of polynomial size. Hence, there exists a polynomial size proof in EF
for ⊢EF 𝐶𝑛 (𝑥) → ¬𝐶𝑛 (𝑥,𝑤), where 𝑥 = (𝑐, 𝑓) and𝑤 = (𝑚, 𝑟).

We now instantiate above public key encryption scheme in group-based cryptography and lattice-
based cryptography, and show that they satisfies 𝑃𝑉 -proof of correctness.

Groups-based Instantiation. We first instantiate the above examples from group-based cryptography.
As an example, we consider the ElGamal encryption scheme [ElG85].

Recall that, the public key of ElGamal encryption is a group element pk = ℎ = 𝑔𝑠 , where 𝑠 is the secret
key. To encrypt a message 𝑚 ∈ {0, 1}, the encryption algorithm Enc(pk,𝑚; 𝑟) uses the randomness 𝑟 to
compute and output 𝑐 = (𝑔𝑟 , ℎ𝑟 ·𝑚) as the ciphertext. To decrypt the ciphertext 𝑐 = (𝑐1, 𝑐2), the decryption
algorithm computes 𝑐2/𝑐𝑠1 to obtain𝑚.

Lemma 11. ElGamal encryption scheme has 𝑃𝑉 -proof of correctness.

Proof Sketch. We now prove its correctness in 𝑃𝑉 via the following steps.

1. (ℎ, 𝑠) = Gen(1𝑛 ; 𝑟 ′) → ℎ = 𝑔𝑠 . (Note that here we use ℎ to represent pk and 𝑠 to represent sk. This
line follows from the defining function of Gen.)

2. ℎ = 𝑔𝑠 → ℎ𝑟 ·𝑚/(𝑔𝑟)𝑠 = (𝑔𝑠)𝑟 ·𝑚/(𝑔𝑟)𝑠 (This follows from the substitution rule.)

3. (𝑔𝑠)𝑟 = (𝑔𝑟)𝑠 (The basic properties of arithmetic can be proven in 𝑃𝑉 [Bus86].)

4. (𝑔𝑠)𝑟 ·𝑚/(𝑔𝑟)𝑠 =𝑚 (From 3 and basic properties of arithmetic, i.e. commutative law and associative
law of multiplication.)

5. ℎ = 𝑔𝑠 → ℎ𝑟 ·𝑚/(𝑔𝑟)𝑠 =𝑚 (Combine 4 with 2.)

6. (ℎ, 𝑠) = Gen(1𝑛 ; 𝑟 ′) → Dec(Enc(pk,𝑚; 𝑟), sk) =𝑚. (Follows from 5, 1, and the defining functions of
Enc,Dec.)

We finish the proof.

Lattice-based Instantiation. We next show how to instantiate the above example in lattice-based as-
sumptions. We use Regev’s public key encryption scheme [Reg05] as an example.

We first recall the construction of Regev’s public key encryption scheme [Reg05]. Let𝑛,𝑚,𝑞 be positive
integers. The private key is a vector s ∈ Z𝑛𝑞 and the public key is (A, b) ∈ Z𝑛×𝑚𝑞 ×Z1×𝑚

𝑞 , where b = s𝑇 ·A+e𝑇 ,
for some e ≈ 0. To encrypt a message 𝜇 ∈ {0, 1}, one uses the random string r ∈ {0, 1}𝑚 , and computes

64

(c1 = A · r, 𝑐2 = b · r + 𝜇 · ⌊𝑞/2⌋). To decrypt the ciphertext (c1, 𝑐2), one computes 𝑐2 − s𝑇 · c1. If the value
is close to ⌊𝑞/2⌋ then output 1. Otherwise, output 0. The correctness follows from the fact that

𝑐2 − s𝑇 · c1 = b · r + 𝜇 · ⌊𝑞/2⌋ − s𝑇Ar = (s𝑇A + e𝑇)r + 𝜇 ⌊𝑞/2⌋ − s𝑇Ar = 𝜇 · ⌊𝑞/2⌋ + e𝑇 r. (2)

Since e ≈ 0, one can bound |e𝑇 r| ≤ ∥e∥1 · ∥r∥1 ≤ ∥e∥1 ·𝑚. Hence, if ∥e∥1 ·𝑚 ≤ 𝑞/4, then the decryption is
correct.

Lemma 12. Regev’s public key encryption scheme has 𝑃𝑉 -proof of correctness.

Proof. To show that the above proof of correctness can be formalized in 𝑃𝑉 , we need to slightly modify
the Gen algorithm such that Gen only outputs a key-pair if ∥e∥1 < 𝑞/(4𝑚). Otherwise, it outputs ⊥. Then

((A, b), s) = Gen(1𝑛 ; 𝑟 ′) →
b − s𝑇A1 ≤ 𝑞/(4𝑚)

can be proven in 𝑃𝑉 by the defining functions of Gen. Here, we use (A, b) to represent pk and s to
represent sk. ((A, b), s) = Gen(1𝑛 ; 𝑟 ′) implicitly expresses that Gen(1𝑛 ; 𝑟 ′) doesn’t output ⊥. Next, we can
prove Equation 2 in 𝑃𝑉 , since +,−, ·, /, ⌊·⌋, ≤ can be introduced in 𝑃𝑉 as function symbols, and their basic
laws such as commutative law, associative law, distributive law, etc. can be proven in 𝑃𝑉 . This is proven
by the work [Bus86], where Buss introduces the 𝐵𝐴𝑆𝐼𝐶 axioms to formalize these laws and he showed that
𝐵𝐴𝑆𝐼𝐶 can be proven in 𝑃𝑉 (See Chapter 6 in [Bus86]).

8.2 Witness Encryption for Turing Machines

In this subsection, we show how to use our results of iO for Turing machines with 𝑃𝑉 -proof of equivalence.
(Theorem 10).

Definition 17 (𝑃𝑉 proof of Disjointness). We say anNP ∩ 𝑐𝑜NP language 𝐿 ⊆ {0, 1}∗ has a 𝑃𝑉 proof of
disjointness, if there exists Turing machines𝑀 and𝑀 with the following properties.

– 𝐿 can be decided by𝑀 : 𝐿 = {𝑥 | ∃𝑤 : 𝑀 (𝑥,𝑤) = 1}.

– 𝐿 = {0, 1} \ 𝐿 can be decided by𝑀 : 𝐿 = {𝑥 | ∃𝑤 : 𝑀 (𝑥,𝑤) = 1}.

– 𝑃𝑉 -proof of “𝐿 ∩ 𝐿 = 𝜙”: ⊢𝑃𝑉 𝑀 (𝑥,𝑤) = 1→ 𝑀 (𝑥,𝑤) = 0, which says that the statement

“For any 𝑥 , if there exists a witness𝑤 for 𝐿, then 𝑥 can’t have a witness𝑤 for 𝐿”

can be proven in theory 𝑃𝑉 .

Remark 3. The above definition of 𝑃𝑉 proof of disjointness for languages in NP ∩ 𝑐𝑜NP can be extended
to promise languages (𝐿YES, 𝐿NO), where we require𝑀 defines 𝐿YES and𝑀 defines 𝐿NO and “𝐿YES ∩ 𝐿NO = 𝜙”
can be proven in 𝑃𝑉 .

Theorem 11 (Witness Encryption for Turing machines). Under the same assumptions of Theorem 10, there
exists a witness encryption scheme for any language 𝐿 ∈ NP∩𝑐𝑜NP with 𝑃𝑉 proof of disjointness. Moreover,
let𝑀 (·, ·) be the Turing machine that decides the relation of 𝐿, and for any 𝑥 , let𝑇 (|𝑥 |) be the upper bound of
the running time of the𝑀 (𝑥, ·), then the ciphertext size for instance 𝑥 is poly(𝜆,𝑇 (|𝑥 |)), which is independent
of the witness size.

Remark 4. We remark that although the ciphertext size grows with 𝑇 (|𝑥 |) in our witness encryption con-
struction, the security parameter is independent of𝑇 (|𝑥 |), and can be set to be smaller than the witness length
for 𝐿.

65

Proof. Let 𝑀 and 𝑀 be the Turing machines in the Definition 17. Our construction of witness encryption
follows from the construction in [SW21]. Namely, to encrypt a message𝑚 under an instance 𝑥0, we output
the obfuscation of the following Turing machine 𝑓𝑥0,𝑚 (𝑤) as ciphertext. 𝑓𝑥0,𝑚 (𝑤) outputs𝑚, if 𝑀 (𝑥0,𝑤) =
1. Otherwise, it outputs 0.

To prove the security, we need to show that for any 𝑥0 ∉ 𝐿, we have ⊢𝑃𝑉 𝑓𝑥0,𝑚 (𝑤) = 0. Once we have
this, we can invoke Theorem 10 to argue that for any 𝑚0,𝑚1, the obfuscation of 𝑓𝑥0,𝑚0 (·), ΔiO(𝑓𝑥0,𝑚0) is
indistinguishable with ΔiO(0), and thus is also indistinguishable with ΔiO(𝑓𝑥0,𝑚1) by hybrid argument.
Hence the indistinguishable security follows.

We now show ⊢𝑃𝑉 𝑓𝑥0,𝑚 (𝑤) = 0 for any 𝑥0 ∉ 𝐿. We first formalize 𝑓𝑥0,𝑚 (·) in 𝑃𝑉 . Specifically, we
formalize the “if” condition in 𝑃𝑉 as the following function symbol If.

If (0, 𝑦, 𝑧) = 𝑧, If (𝑥 | |1, 𝑦, 𝑧) = 𝑦, If (𝑥 | |2, 𝑦, 𝑧) = 0

The proof of the bound on the output length in 𝑃𝑉 is straightforward. Now, 𝑓𝑥0,𝑚 (𝑤) can be formalized in
𝑃𝑉 as

𝑓𝑥0,𝑚 (𝑤) = If (𝑀 (𝑥0,𝑤),𝑚, 0),

where 𝑥0,𝑚 are expressed as numerals in 𝑃𝑉 (See Section 3.2). We prove 𝑓𝑥0,𝑚 (𝑤) = 0 in 𝑃𝑉 as follows.

1. 𝑀 (𝑥,𝑤) = 1→ 𝑀 (𝑥,𝑤) = 0 (Follows from the 𝑃𝑉 proof of disjointness.)

2. 𝑀 (𝑥,𝑤) = 0→ If (𝑀 (𝑥,𝑤),𝑚, 0) = If (0,𝑚, 0) (Axiom 𝐸4)

3. 𝑀 (𝑥,𝑤) = 1→ If (𝑀 (𝑥,𝑤),𝑚, 0) = If (0,𝑚, 0) (Combine 1 and 2 by the implication rule.)

4. 𝑀 (𝑥,𝑤) = 1 → (If (𝑀 (𝑥,𝑤),𝑚, 0) = If (0,𝑚, 0) ∧ If (0,𝑚, 0) = 0) (Combine 3 and defining equation
of If by the implication rule)

5. (If (𝑀 (𝑥,𝑤),𝑚, 0) = If (0,𝑚, 0) ∧ If (0,𝑚, 0) = 0) → If (𝑀 (𝑥,𝑤),𝑚, 0) = 0 (Axiom 𝐸3)

6. 𝑀 (𝑥,𝑤) = 1→ If (𝑀 (𝑥,𝑤),𝑚, 0) = 0 (Combine 4 and 5 by the implication rule similar to 3)

7. 𝑀 (𝑥,𝑤) = 1 → (If (𝑀 (𝑥,𝑤),𝑚, 0) = 0 ∧ 𝑓𝑥,𝑚 (𝑤) = If (𝑀 (𝑥,𝑤),𝑚, 0)) (Combine 6 and the defining
equation of 𝑓𝑥,𝑚 (𝑤) by the implication rule similar to 4.)

8. (If (𝑀 (𝑥,𝑤),𝑚, 0) = 0 ∧ 𝑓𝑥,𝑚 (𝑤) = If (𝑀 (𝑥,𝑤),𝑚, 0)) → 𝑓𝑥,𝑚 (𝑤) = 0 (Axiom 𝐸3)

9. 𝑀 (𝑥,𝑤) = 1→ 𝑓𝑥,𝑚 (𝑤) = 0 (Combine 7 and 8 by the implication rule similar to 3)

10. 𝑀 (𝑥0,𝑤0) = 1, since 𝑥0 ∈ 𝐿 and 𝑀 decides 𝐿, there must be a 𝑤0 such that 𝑀 (𝑥0,𝑤0) = 1, and
𝑀 (𝑥0,𝑤0) = 1 can be proven in 𝑃𝑉 by following the computation of 𝑀 in a natural way.

11. 𝑀 (𝑥0,𝑤0) = 1→ 𝑓𝑥0,𝑚 (𝑤) = 0 (Substitution rule applied to 9 with 𝑥 ↦→ 𝑥0,𝑤 ↦→ 𝑤0)

12. 𝑓𝑥0,𝑚 (𝑤) = 0 (Combine 10 and 11 by implication rule.)

This concludes a proof in 𝑃𝑉 such that ⊢𝑃𝑉 𝑓𝑥0,𝑚 (𝑤) = 0.

Bounding the size of |Π |. Line 1 contributes 𝑂 (1) in Desc[Π]. For other lines except Line 10, they
are either axioms or followed by inference rules. Hence they contribute 𝑂 (1) in |Π |. Line 10 costs a
polynomial in the running time of 𝑀 (𝑥0,𝑤0). Hence, |Π | = poly(𝑇 (|𝑥0 |)), and by Corollary 2, we obtain a
witness encryption of ciphertext size poly(𝑇 (|𝑥0 |)).

This finish the proof. We remark that although we need 𝑀 , 𝑀 , and the existence of a 𝐿-witness 𝑤0 in
the 𝑃𝑉 proof, the construction of our witness encryption (and ΔiO) only needs Turing machine 𝑀 .

66

Example: The Language TAUT. As a concrete example of Theorem 11, we will show that TAUT, which
contains all tautologies, has 𝑃𝑉 proof of disjointness, and hence Theorem 11 implies a witness encryption
for TAUT. TAUT is an important language in complexity since it’s 𝑐𝑜NP-complete [AB09].

In this work, we define TAUT as the following promise language (𝐿YES, 𝐿NO) so that the honest prover
can take a polynomial size witness as input.

– Yes Instance: It contains all formula 𝜙 such that there exists a polynomial-size proof of size at most
𝑝 (|𝜙 |) for 𝜙 in the extended Frege system EF . Let 𝑝 (·) be a polynomial.

𝐿YES = {𝜙 | ∃Propositional logic proof of size at most 𝑝 (|𝜙 |) for 𝜙}.

– No Instance: It contains all formula 𝜙 such that there exists an assignment 𝑥 that 𝜙 (𝑥) = 0.

𝐿NO = {𝜙 | ∃𝑥 s.t. 𝜙 (𝑥) = 0}.

Note that size of the witness for 𝐿YES is unbounded in |𝜙 |, since the size of the propositional proof can be
arbitrary (here we allow 𝑝 (·) to be any polynomial). However, the size of the witness for 𝐿NO is bounded
by |𝜙 |, since any assignment to 𝜙 can be described as a binary string of length no longer than |𝜙 |.

We will show in Lemma 13 that TAUT has 𝑃𝑉 proof of disjointness. Then by Theorem 11, there exists
a witness encryption for TAUT with ciphertext size independent of the witness size.

Lemma 13. The promise language TAUT has 𝑃𝑉 proof of disjointness.

Proof. We first describe the construction of the Turing machines 𝑀 and 𝑀 deciding 𝐿YES and 𝐿NO, respec-
tively. Let 𝐹 (⌜𝜋⌝) be the following function: if ⌜𝜋⌝ is the Gödel number of a valid proof 𝜋 in EF , then
𝐹 outputs the tautology that 𝜋 proves. Otherwise 𝐹 outputs 1. Clearly, 𝐹 is a polynomial time function.
Since any polynomial function can be defined in 𝑃𝑉 , so does 𝐹 . Cook in [Coo75] further showed that the
soundness of EF can be proven in 𝑃𝑉 . Specifically, let TRUTH be the following function.

TRUTH(⌜𝜙⌝, ⌜𝑣⌝) =
{

1 if 𝜙 is a formula, and 𝑣 ∈ {0, 1}∗ is an assignment with 𝜙 (𝑣) = 1
0 otherwise

Cook [Coo75] showed that ⊢𝑃𝑉 TRUTH(𝐹 (𝑥), 𝑦) = 1, which means that any formula that 𝐹 outputs must
evaluate to 1 for any assignment.

We will use 𝐹 and TRUTH to define 𝐿YES and 𝐿NO, respectively. For 𝐿YES, we build𝑀 as𝑀 (⌜𝜙⌝, ⌜𝜋⌝) =
Eq(⌜𝜙⌝, 𝐹 (⌜𝜋⌝)), where Eq is a function symbol such that Eq(𝑥,𝑦) outputs 1, if 𝑥 = 𝑦, and it outputs 0
otherwise. Formally, we define Eq(𝑥,𝑦) recursively as follows.

Eq(0, 0) = 1
Eq(0, 𝑦 | | 𝑗) = 0, Eq(𝑥 | |𝑖, 0) = 0, 𝑖, 𝑗 ∈ {1, 2}

Eq(𝑥 | |𝑖, 𝑦 | | 𝑗) =
{
Eq(𝑥,𝑦) 𝑖 = 𝑗

0 Otherwise
, 𝑖, 𝑗 ∈ {1, 2}

For 𝐿NO, we build 𝑀 (⌜𝜙⌝, ⌜𝑣⌝) as 𝑀 (⌜𝜙⌝, ⌜𝑣⌝) = ¬TRUTH(⌜𝜙⌝, ⌜𝑣⌝). Next, we prove 𝑀 (𝑥,𝑤) = 1→
𝑀 (𝑥,𝑤) = 0 in 𝑃𝑉 , where 𝑥 and 𝑤 represents ⌜𝜙⌝ and ⌜𝑣⌝, respectively. Here we only give a high level
sketch.

1. Show that 𝑀 (𝑥,𝑤) = 1→ TRUTH(𝑥,𝑤) = 0 by using defining function of 𝑀 .

2. Show that Eq(𝑥, 𝐹 (𝑤)) = 1→ TRUTH(𝑥,𝑤) = 1 via the following steps.

67

(a) Show that Eq(𝑥,𝑦) = 1→ 𝑥 = 𝑦 for variables 𝑥 and 𝑦, by an induction on the digits in 𝑥 and 𝑦.
(b) Eq(𝑥, 𝐹 (𝑤)) = 1→ 𝑥 = 𝐹 (𝑤). (Applying the substitution 𝑦 ↦→ 𝐹 (𝑤) to 2a.)
(c) TRUTH(𝐹 (𝑥), 𝑦) = 1 for the variables 𝑥,𝑦 (proven by Cook in [Coo75]).

Then combine 2b and 2c, and substitute 𝑦 with𝑤 in 2c.

3. 𝑀 (𝑥,𝑤) = 1→ ¬Eq(𝑥, 𝐹 (𝑤)) = 1 (From 1 and 2, using implication rule.)

4. Show that 𝑀 (𝑥,𝑤) = 1→ Eq(𝑥, 𝐹 (𝑤)) = 0 from 3, by first proving that ¬Eq(𝑥,𝑦) = 1→ Eq(𝑥,𝑦) =
0 and substitute 𝑦 with 𝐹 (𝑤).

5. Show that 𝑀 (𝑥,𝑤) = 1→ 𝑀 (𝑥,𝑤) = 0, from the defining equation of 𝑀 (𝑥,𝑤) and 4.

Since we reach𝑀 (𝑥,𝑤) = 1→ 𝑀 (𝑥,𝑤) = 0 at the last line, we prove ⊢𝑃𝑉 𝑀 (𝑥,𝑤) = 1→ 𝑀 (𝑥,𝑤) = 0,
and thus TAUT has 𝑃𝑉 proof of disjointness.

Combining Theorem 11 and Lemma 13, we obtain a witness encryption for TAUT. Note that for any
formula 𝜙 , the running time of the Turing machine 𝑀 (𝜙, ·) is poly(|𝜙 |), which is independent of the size
of the propositional proof proving 𝜙 . Hence, we have the following corollary.

Corollary 4 (Witness Encryption for TAUT). Assuming the same assumptions as Theorem 11, there exists a
witness encryption for TAUT with ciphertext size independent of the witness size.

8.3 SNARGs for Turing Machines

In this section, we build SNARGs for Turing machines, following the construction in [SW21]. We first
recall the definition of SNARGs [GW11].

Definition 18 (SNARGs). A succinct non-interactive argument (SNARG) for a language 𝐿 is a tuple of algo-
rithms (Gen, P,V) with the following syntax.

– Gen(1𝜆) : It takes as input the security parameter, and output a common reference string crs.

– P(crs, 𝑥,𝑤) : It takes as input the crs, an instance 𝑥 and its witness𝑤 , and outputs a proof 𝜋 .

– V(crs, 𝑥, 𝜋) : It takes as input the crs, instance 𝑥 , and a proof 𝜋 , and decides to accept or reject.

Furthermore, they need to satisfy the following properties.

– Succinctness: The proof size |𝜋 | is sub-linear in |𝑤 |.

– Completeness: For any 𝑥 ∈ 𝐿 and any witness𝑤 of 𝑥 ,

Pr
[
crs← Gen(1𝜆), 𝜋 ← P(crs, 𝑥,𝑤) : V(crs, 𝑥, 𝜋) accepts

]
= 1.

– Soundness: For any 𝑥∗ ∉ 𝐿, and any non-uniform PPT adversary P∗, there exists a negligible function
𝜈 (𝜆) such that

Pr
[
crs← Gen(1𝜆), 𝜋∗ ← P∗(crs, 𝑥∗) : V(crs, 𝑥∗, 𝜋∗) accepts

]
≤ 𝜈 (𝜆) .

Theorem 12 (SNARGs for languages with 𝑃𝑉 proof of disjointness). Under the same assumptions of The-
orem 10, there exists SNARGs for any language 𝐿 with 𝑃𝑉 proof of disjointness. Moreover, let the relation
Turing machine of 𝐿 be𝑀 and let𝑇 (|𝑥 |) be an upper bound of the running time for𝑀 (𝑥, ·). Then the CRS size
of the SNARG is bounded by poly(𝑇 (|𝑥 |)).

68

Before we prove the theorem, we introduce the following notion of 𝑃𝑉 proof of functionality preser-
vation.

Definition 19 (𝑃𝑉 -proof of Functionality Preservation). We say a puncturable PRF has 𝑃𝑉 -proof of func-
tionality preservation, if PRF, PRFPunc, PRF𝑝𝑢𝑛𝑐 can be formalized as function symbols in 𝑃𝑉 , and

⊢𝑃𝑉
(
¬𝑥 = 𝑥∗ ∧ EQLEN(𝑥, 𝑥∗) = 1

)
→ PRF𝑝𝑢𝑛𝑐 (PRFPunc(𝐾, 𝑥∗), 𝑥) = PRF(𝐾, 𝑥),

where EQLEN(𝑎, 𝑏) is a function that outputs 1 if 𝑎, 𝑏 have the same lengths, and it outputs 0 otherwise.
EQLEN can be defined in 𝑃𝑉 by limited recursion on the notations of 𝑎 and 𝑏.

Lemma 14. There exists a construction of puncturable PRF with 𝑃𝑉 -proof of functionality preservation.

Proof. We will show that the GGM construction of puncturable PRF in [GGM84] has 𝑃𝑉 -proof of func-
tionality preservation property.

Formalization. We first formalize GGM puncturable PRF construction in 𝑃𝑉 .

– PRF(𝐾, 𝑥): Let PRG : {0, 1} |𝐾 | → {0, 1}2 |𝐾 | be a pseudorandom generator, 𝜋1 : {0, 1}2 |𝐾 | → {0, 1} |𝐾 |

be a function that outputs the least significant half digits of its input, and 𝜋2 : {0, 1}2 |𝐾 | → {0, 1} |𝐾 | be
a function that outputs the most significant half digits of its input. Since PRG, 𝜋1, 𝜋2 are polynomial
time functions, they can be defined in 𝑃𝑉 as function symbols. Next, we define PRF(𝐾, 𝑥) via limited
recursion on the notations of 𝑥 .

PRF(𝐾, 0) = 𝐾,
PRF(𝐾, 𝑥 | |𝑖) = 𝜋𝑖 (PRG(PRF(𝐾, 𝑥))), for 𝑖 = 1, 2

The upper bound on its output length is provable in 𝑃𝑉 , since the output length of 𝜋𝑖 is bounded by
|𝐾 |.

– PRFPunc(𝐾, 𝑥∗): This algorithm outputs 𝐾∗ = (𝑥∗, 𝑓 ∗), where 𝑓 ∗ = (𝑓1, . . . , 𝑓 |𝑥∗ |) is a list of PRF
values on the root-to-leaf path for 𝑥∗. Specifically, 𝑓 ∗𝑖 = PRF𝑝𝑢𝑛𝑐 (𝐾, 𝑥∗𝑖), where 𝑥∗𝑖 contains the first
𝑖 digits of 𝑥∗ with the last digit flipped. To define PRFPunc in 𝑃𝑉 , we introduce function symbols
Cons,Car,Cdr to manipulate a list of elements, in a similar way as LISP [Ste90]. Specifically, they
are function symbols in 𝑃𝑉 such that Car(Cons(𝑥,𝑦)) = 𝑥 and Cdr(Cons(𝑥,𝑦)) = 𝑦 can be proven
in 𝑃𝑉 . Then we define PRFPunc as follows.

PRFPunc(𝐾, 0) = Cons(0, 0),

PRFPunc(𝐾, 𝑥∗ | |𝑖∗) = Cons
(
𝑥∗ | |𝑖∗,Cons

(
Cdr(PRFPunc(𝐾, 𝑥∗)), PRF(𝐾, 𝑥∗ | |𝑖∗)

))
,

where 𝑖∗ ∈ {1, 2} \ 𝑖∗ is the “flip” of 𝑖∗.

– PRF𝑝𝑢𝑛𝑐 (𝐾∗, 𝑥): Since 𝐾∗ is in the form Cons(𝑥∗, 𝑓 ∗), we will define the following function symbol
PPRF(𝐾∗, 𝑥∗, 𝑥) first and then define PRF𝑝𝑢𝑛𝑐 (𝐾∗, 𝑥) = PPRF(𝐾∗,Car(𝐾∗), 𝑥).

PPRF(𝐾∗, 0, 0) = 0, PPRF(𝐾∗, 0, 𝑥 | |𝑖) = 0, PPRF(𝐾∗, 𝑥∗ | |𝑖∗, 0) = 0,
PPRF(𝐾∗, 𝑥∗ | |𝑖∗, 𝑥 | |𝑖) = If (Eq(𝑥∗, 𝑥),

Nth(𝑥∗ | |𝑖, 𝐾∗),
𝜋𝑖 (PRG(PPRF(𝐾∗, 𝑥∗, 𝑥)))), 𝑖, 𝑖∗ ∈ {1, 2},

69

Where Nth(𝑥∗, 𝐾∗) will output 𝑓 |𝑥∗ | . Formally, Nth is defined as

Nth(𝑥, 𝐿) = Cdr(Strip(LESS(Car(𝐿), 𝑥),Cdr(𝐿))),

where Strip(𝑦, 𝐿) is a function that deletes the last |𝑦 | elements from the list 𝐿. Then our construction
of Nth(𝑦, 𝐿) first deletes |𝐿 | − |𝑦 | elements in the list 𝐿 and then outputs the last elements, which is
the |𝑦 |-th element in the list. Formally, Strip(𝑦, 𝐿) is defined via the following limited recursion on
the notations of 𝑦.

Strip(0, 𝐿) = 𝐿, Strip(𝑦 | |𝑖, 𝐿) = Car(Strip(𝑦, 𝐿)) .

Proof of Functionality Preservation in 𝑃𝑉 . To show above formalization of puncturable PRFs has 𝑃𝑉
proof of functionality preservation, we will argue inductively on the variable 𝑥 and 𝑥∗. Specifically, let
𝐴(𝑥, 𝑥∗, 𝐾) be the formula we want to prove(

¬𝑥 = 𝑥∗ ∧ EQLEN(𝑥, 𝑥∗) = 1
)
→ PRF𝑝𝑢𝑛𝑐 (PRFPunc(𝐾, 𝑥∗), 𝑥) = PRF(𝐾, 𝑥) .

We will show that 𝐴(0, 0, 𝐾) holds and ⊢𝑃𝑉 𝐴(𝑥, 𝑥∗, 𝐾) → 𝐴(𝑥 | |𝑖, 𝑥∗ | |𝑖∗, 𝐾) for every 𝑖, 𝑖∗ ∈ {1, 2}.
Then by 2-induction rule (See our preliminary Section 3.3), we can prove𝐴(𝑥, 𝑥∗, 𝐾). Since𝐴(0, 0, 𝐾) holds
trivially, we only need to prove 𝐴(𝑥, 𝑥∗, 𝐾) → 𝐴(𝑥 | |𝑖, 𝑥∗ | |𝑖∗, 𝐾) in 𝑃𝑉 . We prove this in the following two
cases.

– Case I: 𝑥∗ = 𝑥 : In this case we will prove that 𝐴(𝑥, 𝑥∗, 𝐾) ∧ 𝑥∗ = 𝑥 → 𝐴(𝑥 | |𝑖, 𝑥∗ | |𝑖∗, 𝐾). To show
this, we prove that 𝑥∗ = 𝑥 → PRF𝑝𝑢𝑛𝑐 (PRFPunc(𝐾, 𝑥∗ | |𝑖∗), 𝑥 | |𝑖) = Nth(𝑥∗ | |𝑖, 𝐾∗) by the defining
equations of PRF𝑝𝑢𝑛𝑐 and PPRF. Then we can prove that ¬𝑥 | |𝑖 = 𝑥∗ | |𝑖∗ ∧ 𝑥 = 𝑥∗ → 𝑖 = 𝑖∗, and hence

𝑥∗ = 𝑥 → (¬𝑥 | |𝑖 = 𝑥∗ | |𝑖∗ → Nth(𝑥∗ | |𝑖, 𝐾∗) = PRF(𝐾, 𝑥∗ | |𝑖∗)) .

Hence, we have 𝑥∗ = 𝑥 → (¬𝑥 | |𝑖 = 𝑥∗ | |𝑖∗ → PRFPunc(𝐾, 𝑥∗ | |𝑖∗), 𝑥 | |𝑖) = PRF(𝐾, 𝑥∗ | |𝑖∗)), which
implies that 𝐴(𝑥, 𝑥∗, 𝐾) ∧ 𝑥∗ → 𝐴(𝑥 | |𝑖, 𝑥∗ | |𝑖, 𝐾).

– Case II: 𝑥∗ ≠ 𝑥 : In this case we will prove 𝐴(𝑥, 𝑥∗, 𝐾) ∧ ¬𝑥∗ = 𝑥 → 𝐴(𝑥 | |𝑖, 𝑥∗ | |𝑖∗, 𝐾). We start
with the induction hypothesis, since EQLEN(𝑥 | |𝑖, 𝑥∗ | |𝑖∗) → EQLEN(𝑥, 𝑥∗) = 1 can be proven by the
defining equations of EQLEN, we can prove

𝐴(𝑥, 𝑥∗, 𝐾) ∧ ¬𝑥∗ = 𝑥 ∧ EQLEN(𝑥 | |𝑖, 𝑥∗ | |𝑖∗) = 1→ PRF𝑝𝑢𝑛𝑐 (PRFPunc(𝐾, 𝑥∗), 𝑥) = PRF(𝐾, 𝑥) .

By defining equations of PRF𝑝𝑢𝑛𝑐 , we have PRF𝑝𝑢𝑛𝑐 (𝐾 \ {𝑥∗}, 𝑥) = PPRF(𝐾 \ {𝑥∗}, 𝑥∗, 𝑥), where we
denote PRFPunc(𝐾, 𝑥∗) as 𝐾 \ {𝑥∗} for simplicity. Hence, under the premise of 𝐴(𝑥, 𝑥∗, 𝐾),¬𝑥∗ =
𝑥, EQLEN(𝑥 | |𝑖, 𝑥∗ | |𝑖∗) = 1, we have PPRF(𝐾 \ {𝑥∗}, 𝑥∗, 𝑥) = PRF(𝐾, 𝑥).
Next, also by the defining equations of PRF𝑝𝑢𝑛𝑐 and PPRF, we have

¬𝑥 = 𝑥∗ → PRF𝑝𝑢𝑛𝑐 (𝐾 \ {𝑥∗ | |𝑖∗}, 𝑥 | |𝑖) = 𝜋𝑖 (PRG(PPRF(𝐾 \ {𝑥∗ | |𝑖∗}, 𝑥∗, 𝑥))).

On the other hand, from the defining equations of PRF, we have PRF(𝐾, 𝑥 | |𝑖) = 𝜋𝑖 (PRG(PRF(𝐾, 𝑥))).
Now, once we have PPRF(𝐾 \{𝑥∗}, 𝑥∗, 𝑥) = PPRF(𝐾 \{𝑥∗ | |𝑖∗}, 𝑥∗, 𝑥), then we can derive PRF𝑝𝑢𝑛𝑐 (𝐾 \
{𝑥∗ | |𝑖∗}, 𝑥 | |𝑖) = PRF(𝐾, 𝑥 | |𝑖), and hence we finish the proof. To show this, we let 𝐵(𝑎, 𝑎∗, 𝐾, 𝑥∗) be
the following formula.

LESS(𝑎, 𝑥∗) = 0 ∧ EQLEN(𝑎, 𝑎∗) = 1→ PPRF(𝐾 \ {𝑥∗}, 𝑎∗, 𝑎) = PPRF(𝐾 \ {𝑥∗ | |𝑖∗}, 𝑎∗, 𝑎).

Then we can prove 𝐵(𝑎, 𝑎∗, 𝐾, 𝑥∗) holds by a 2-induction on the notations of 𝑎 and 𝑎∗. Finally, we
apply substitution rule to replace 𝑎 and 𝑎∗ with 𝑥 and 𝑥∗ in the formula 𝐵. Then we finish the proof.

70

Using puncturable PRF with 𝑃𝑉 -proof of functionality preservation, we are ready to prove Theorem 12.

Proof of Theorem 12. We use the same construction of NIZKs in [SW21]. We recall the construction first.
Then we formalize the algorithms used in the construction as function symbols in theory 𝑃𝑉 . Next, we
show that all functional equivalence arguments used in the original soundness proof in [SW21] can be
formalized in 𝑃𝑉 .

Construction. Let 𝑀 be the Turing machine deciding the relation of the language 𝐿 ∈ NP. Let OWF be
a one-way function.

– Gen(1𝜆) : Let crs = (ΔiO(PK(·, ·)),ΔiO(VK(·, ·)))) be the obfuscation of the following Turing ma-
chines.

– PK(𝑥,𝑤) : It takes as input an instance 𝑥 and a string 𝑤 . If 𝑀 (𝑥,𝑤) = 1, then output 𝜋 ←
PRF(𝐾, 𝑥), where 𝐾 is a secret key hardwired. Otherwise it output 0.

– VK(𝑥, 𝜎) : It takes as input an instance 𝑥 and a proof 𝜋 . if OWF(𝜋) = OWF(PRF(𝐾, 𝑥)), then
it outputs 1 to indicate “accept”. Otherwise it outputs 0 to represent “reject”.

– P(crs, 𝑥,𝑤) : It parses crs = (P̃K(·, ·), ṼK(·, ·)), then it executes and outputs 𝜋 ← P̃K(𝑥,𝑤).

– V(crs, 𝑥, 𝜋) : It parses crs = (P̃K(·, ·), ṼK(·, ·)). If ṼK(𝑥, 𝜋) = 1, then accept. Otherwise reject.

Formalizing PK,VK in 𝑃𝑉 . We formalize PK,VK as function symbols in 𝑃𝑉 as follows.

– PK(𝑥,𝑤) : Let If be the condition function symbol we constructed in the proof of Theorem 11. We
define

PK(𝑥,𝑤) = If (𝑀 (𝑥,𝑤), PRF(𝐾, 𝑥), 0),
where the PRF key 𝑘 is represented as numerals in 𝑃𝑉 (See Section 3.2).

– VK(𝑥, 𝜋) : Since any polynomial-time algorithm can be defined in 𝑃𝑉 , we can define OWF as a
function symbol in 𝑃𝑉 . We define

VK(𝑥, 𝜋) = If (Eq(OWF(𝜋),OWF(PRF(𝐾, 𝑥))), 1, 0) .

Completeness follows from the functional equivalence between P̃K, PK and ṼK,VK.

Soundness. We prove the soundness via the following hybrids. For any 𝑥∗0 ∉ 𝐿, we represent 𝑥∗0 as
numerals in 𝑃𝑉 .

– H0: In this hybrid, the crs is the same as in the honest CRS generation algorithm.

– H1: We modify PK(·, ·) as the following PK1(·, ·):

PK1(𝑥,𝑤) =If (Eq(𝑥, 𝑥∗0),
If (𝑀 (𝑥∗0,𝑤), PRF(𝐾, 𝑥∗0), 0)
If (𝑀 (𝑥,𝑤), PRF(𝐾, 𝑥), 0)) .

which is almost the same as PK, except that we add a branch for 𝑥 = 𝑥∗0 . We can prove ⊢𝑃𝑉 PK(𝑥,𝑤) =
PK1(𝑥,𝑤) by proving 𝑥 = 𝑥∗0 → PK(𝑥,𝑤) = PK1(𝑥,𝑤) and (¬𝑥 = 𝑥0) → PK(𝑥,𝑤) = PK1(𝑥,𝑤), and
then combine them by the implication rule. Then the indistinguishability from H0 and H1 follows
from the security of ΔiO.

71

– H2: We further replace PK1(𝑥,𝑤) with the following function symbol PK2(·, ·).

PK2(𝑥,𝑤) =If (Eq(𝑥, 𝑥∗0),
If (0, PRF(𝐾, 𝑥∗0), 0)
If (𝑀 (𝑥,𝑤), PRF(𝐾, 𝑥), 0)) .

We can prove ⊢𝑃𝑉 PK1(𝑥,𝑤) = PK2(𝑥,𝑤) by using the fact that𝑥∗0 ∉ 𝐿, and hence there exists𝑤0 such
that 𝑀 (𝑥∗0,𝑤0) = 1. Since 𝐿 has 𝑃𝑉 proof of disjointness, we have ⊢𝑃𝑉 𝑀 (𝑥,𝑤) = 1→ 𝑀 (𝑥,𝑤) = 0.
Then PK1(𝑥,𝑤) = PK2(𝑥,𝑤) follows.

– H3: We further modify PK2(·, ·) to the following function symbol PK3(·, ·):

PK3(𝑥,𝑤) = If (Eq(𝑥, 𝑥∗0), 0, If (𝑀 (𝑥,𝑤), PRF(𝐾, 𝑥), 0)

Then ⊢𝑃𝑉 PK2(𝑥,𝑤) = PK3(𝑥,𝑤) follows from the defining function of If.

– H4: We replace PRF with PPRF and build PK4(·, ·) as follows.

PK4(𝑥,𝑤) = If (Eq(𝑥, 𝑥∗0), 0, If (𝑀 (𝑥,𝑤), PPRF𝑝𝑢𝑛𝑐 (𝐾 \ {𝑥∗0}, 𝑥), 0)) .

We prove ⊢𝑃𝑉 PK3(𝑥,𝑤) = PK4(𝑥,𝑤) by firstly proving 𝑥 = 𝑥∗0 → PK3(𝑥,𝑤) = PK4(𝑥,𝑤) using
the defining function of If, and then proving (¬𝑥 = 𝑥∗0) → PK3(𝑥,𝑤) = PK4(𝑥,𝑤) using 𝑃𝑉 -proof
of functionality preservation of PPRF. Finally, we combine them to obtain PK3(𝑥,𝑤) = PK4(𝑥,𝑤)
using the implication rule similar to H1.

– H5: This hybrid is almost the same as H4. The only difference is that we also replace VK(·, ·) with
the following function symbol VK′(·, ·).

VK′(𝑥, 𝜋) =If (Eq(𝑥, 𝑥∗0),
If (Eq(OWF(𝜋),OWF(PRF(𝐾, 𝑥∗0))), 1, 0)
If (Eq(OWF(𝜋),OWF(PPRF𝑝𝑢𝑛𝑐 (𝐾 \ {𝑥∗0}, 𝑥))), 1, 0))

We can prove ⊢𝑃𝑉 VK(𝑥, 𝜋) = VK′(𝑥, 𝜋) following the similar idea from H1 to H4. Then the indistin-
guishability from H5 and H4 follows from the security of ΔiO.

– H6: In this hybrid, we modify VK′(𝑥, pk) as the following VK′′(·, ·):

VK′(𝑥, 𝜋) =If (Eq(𝑥, 𝑥∗0),
If (Eq(OWF(𝜋), 𝑦), 1, 0)
If (Eq(OWF(𝜋),OWF(PPRF𝑝𝑢𝑛𝑐 (𝐾 \ {𝑥∗0}, 𝑥))), 1, 0)),

where𝑦 = OWF(𝑠) is a numeral computed from a random numeral 𝑠 . This hybrid is indistinguishable
with H5 from the pseudorandomness at the puncturable point 𝑥∗0 of PPRF.
Now we can argue the soundness of the SNARGs in hybrid H6 using the security of the one-way
function OWF.

By the hybrid argument, we prove the soundness.

Combining Theorem 12 and Lemma 13, we obtain the following corollary.

Corollary 5 (SNARGs for TAUT). Under the same assumption as Theorem 10, there exists SNARGs for TAUT
with unbounded witness length.

72

Acknowledgement

The authors were supported in part by NSF CNS-1814919, NSF CAREER 1942789 and Johns Hopkins Uni-
versity Catalyst award. The first author was additionally supported in part by AFOSR Award FA9550-19-
1-0200 and the Office of Naval Research Grant N00014-19-1-2294. This work was done while the authors
were visiting University of California Berkeley.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, USA, 1st edition, 2009. 67

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-
inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689, 2013.
https://eprint.iacr.org/2013/689. 7

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New methods
for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lecture Notes in Computer Science,
pages 191–225, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany. 4

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in Cryp-
tology – CRYPTO 2015, Part I, volume 9215 of Lecture Notes in Computer Science, pages 308–326,
Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany. 4, 16

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indistinguisha-
bility obfuscation without multilinear maps: New paradigms via low degree weak pseudoran-
domness and security amplification. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer
Science, pages 284–332, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany. 4

[AJS17] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Robust transforming combiners from indis-
tinguishability obfuscation to functional encryption. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part I, volume 10210 of Lecture
Notes in Computer Science, pages 91–121, Paris, France, April 30 – May 4, 2017. Springer, Hei-
delberg, Germany. 12

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps: At-
tacks and fixes for noisy linear FE. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in Computer Science,
pages 110–140, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. 4

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indis-
tinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part I, volume 10210
of Lecture Notes in Computer Science, pages 152–181, Paris, France, April 30 – May 4, 2017.
Springer, Heidelberg, Germany. 4

73

https://eprint.iacr.org/2013/689

[BCG+18] Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain, Huijia Lin, Rafael
Pass, Sidharth Telang, and Vinod Vaikuntanathan. Indistinguishability obfuscation for RAM
programs and succinct randomized encodings. SIAM J. Comput., 47(3):1123–1210, 2018. 4

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda Lin-
dell, editor, TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of Lecture Notes
in Computer Science, pages 52–73, San Diego, CA, USA, February 24–26, 2014. Springer, Hei-
delberg, Germany. 7

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of
Computing, pages 505–514, New York, NY, USA, May 31 – June 3, 2014. ACM Press. 7

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO from homo-
morphic encryption schemes. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryp-
tology – EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in Computer Science, pages
79–109, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany. 4

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, Advances
in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 1–18,
Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany. 4, 34

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014: 17th International Conference on Theory and
Practice of Public Key Cryptography, volume 8383 of Lecture Notes in Computer Science, pages
501–519, Buenos Aires, Argentina, March 26–28, 2014. Springer, Heidelberg, Germany. 9, 33

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct randomized
encodings and their applications. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
Annual ACM Symposium onTheory of Computing, pages 439–448, Portland, OR, USA, June 14–
17, 2015. ACM Press. 7, 16

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th Annual ACM Symposium on Theory of Computing, pages 575–584, Palo Alto, CA,
USA, June 1–4, 2013. ACM Press. 32

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a Nash
equilibrium. In Venkatesan Guruswami, editor, 56th Annual Symposium on Foundations of
Computer Science, pages 1480–1498, Berkeley, CA, USA, October 17–20, 2015. IEEE Computer
Society Press. 4

[BSW16] Mihir Bellare, Igors Stepanovs, and Brent Waters. New negative results on differing-inputs
obfuscation. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology –
EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science, pages 792–821,
Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany. 7

[Bus] Samuel R. Buss. Propositional proof complexity, an introduction. https://mathweb.
ucsd.edu/sbuss/ResearchWeb/marktoberdorf97/paper.pdf. 84

[Bus86] Samuel Buss. Bounded Arithmetic. Bibliopolis, Naples, Italy, 1986. 7, 10, 11, 24, 64, 65

74

https://mathweb.ucsd.edu/~sbuss/ResearchWeb/marktoberdorf97/paper.pdf
https://mathweb.ucsd.edu/~sbuss/ResearchWeb/marktoberdorf97/paper.pdf

[Bus98] Samuel R. Buss. Chapter i - an introduction to proof theory. In Samuel R. Buss, editor, Hand-
book of Proof Theory, volume 137 of Studies in Logic and the Foundations of Mathematics, pages
1–78. Elsevier, 1998. 6, 8, 10, 23

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring.
In Kaisa Nyberg, editor,Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes
in Computer Science, pages 59–71, Espoo, Finland, May 31 – June 4, 1998. Springer, Heidelberg,
Germany. 4

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional en-
cryption. In Venkatesan Guruswami, editor, 56th Annual Symposium on Foundations of Com-
puter Science, pages 171–190, Berkeley, CA, USA, October 17–20, 2015. IEEE Computer Society
Press. 4, 16

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013, Part II,
volume 8270 of Lecture Notes in Computer Science, pages 280–300, Bengalore, India, Decem-
ber 1–5, 2013. Springer, Heidelberg, Germany. 9, 33

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro, editors, Ad-
vances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science,
pages 480–499, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.
4

[BZ16] Mark Bun and Mark Zhandry. Order-revealing encryption and the hardness of private learn-
ing. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptography
Conference, Part I, volume 9562 of Lecture Notes in Computer Science, pages 176–206, Tel Aviv,
Israel, January 10–13, 2016. Springer, Heidelberg, Germany. 4

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct garbling
and indistinguishability obfuscation for RAM programs. In Rocco A. Servedio and Ronitt Ru-
binfeld, editors, 47th Annual ACM Symposium on Theory of Computing, pages 429–437, Port-
land, OR, USA, June 14–17, 2015. ACM Press. 7, 16

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs.
Watermarking cryptographic capabilities. In Daniel Wichs and Yishay Mansour, editors, 48th
Annual ACM Symposium on Theory of Computing, pages 1115–1127, Cambridge, MA, USA,
June 18–21, 2016. ACM Press. 4

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for P from lwe. In FOCS,
2021. https://ia.cr/2021/808. 7, 18, 37

[CK07] Stephen Cook and Jan Krajı́ček. Consequences of the provability of NP ⊆ P/poly. Journal of
Symbolic Logic, 72(4):1353 – 1371, 2007. 11

[Cob65] Alan Cobham. The intrinsic computational difficulty of functions. In Yehoshua Bar-Hillel, edi-
tor, Logic, Methodology and Philosophy of Science: Proceedings of the 1964 International Congress
(Studies in Logic and the Foundations of Mathematics), pages 24–30. North-Holland Publishing,
1965. 11, 24, 25

75

https://ia.cr/2021/808

[Coo] Stephen Cook. Connecting complexity classes, weak formal theories, and propositional proof
systems. https://www.cs.toronto.edu/sacook/slidesPrint.pdf. page
10-15. 11

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (preliminary
version). In Proceedings of the Seventh Annual ACM Symposium onTheory of Computing, STOC
’75, page 83–97, New York, NY, USA, 1975. Association for Computing Machinery. 7, 8, 10, 11,
20, 21, 24, 25, 26, 52, 54, 67, 68, 83

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof sys-
tems. Journal of Symbolic Logic, 44(1):36–50, 1979. 11, 20, 26

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory, 31:469–472, 1985. 9, 10, 11, 63, 64

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178, Bethesda, MD,
USA, May 31 – June 2, 2009. ACM Press. 33

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA, Oc-
tober 26–29, 2013. IEEE Computer Society Press. 4, 34

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In Juan A. Garay
and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616
of Lecture Notes in Computer Science, pages 518–535, Santa Barbara, CA, USA, August 17–21,
2014. Springer, Heidelberg, Germany. 7

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In 25th Annual Symposium on Foundations of Computer Science, pages
464–479, Singer Island, Florida, October 24–26, 1984. IEEE Computer Society Press. 33, 69

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its appli-
cations. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM
Symposium on Theory of Computing, pages 467–476, Palo Alto, CA, USA, June 1–4, 2013. ACM
Press. 4, 5

[GJLS21] Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
simple-to-state hard problems: New assumptions, new techniques, and simplification. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
Part III, volume 12698 of Lecture Notes in Computer Science, pages 97–126, Zagreb, Croatia,
October 17–21, 2021. Springer, Heidelberg, Germany. 4

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguishability ob-
fuscation from the multilinear subgroup elimination assumption. In Venkatesan Guruswami,
editor, 56th Annual Symposium on Foundations of Computer Science, pages 151–170, Berkeley,
CA, USA, October 17–20, 2015. IEEE Computer Society Press. 4

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In 14th Annual ACM Symposium onTheory of Computing,
pages 365–377, San Francisco, CA, USA, May 5–7, 1982. ACM Press. 34

76

https://www.cs.toronto.edu/~sacook/slidesPrint.pdf

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and Mark
Zhandry. Secure obfuscation in a weak multilinear map model. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference, Part II, volume 9986 of
Lecture Notes in Computer Science, pages 241–268, Beijing, China, October 31 – November 3,
2016. Springer, Heidelberg, Germany. 4

[GP17] Sanjam Garg and Omkant Pandey. Incremental program obfuscation. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part II, volume 10402 of
Lecture Notes in Computer Science, pages 193–223, Santa Barbara, CA, USA, August 20–24,
2017. Springer, Heidelberg, Germany. 12

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Sym-
posium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 736–749. ACM,
2021. 4

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryptographic
hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan Katz, editors, Ad-
vances in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science,
pages 579–604, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.
5, 12

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking the sub-
exponential barrier in obfustopia. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology – EUROCRYPT 2017, Part III, volume 10212 of Lecture Notes in Computer
Science, pages 156–181, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.
5, 12

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryption with
polynomial loss. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryp-
tography Conference, Part II, volume 9986 of Lecture Notes in Computer Science, pages 419–442,
Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg, Germany. 5, 12

[GS18] Sanjam Garg and Akshayaram Srinivasan. A simple construction of iO for turing machines.
In Amos Beimel and Stefan Dziembowski, editors, TCC 2018: 16th Theory of Cryptography
Conference, Part II, volume 11240 of Lecture Notes in Computer Science, pages 425–454, Panaji,
India, November 11–14, 2018. Springer, Heidelberg, Germany. 16

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifi-
able assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd Annual ACM Symposium
on Theory of Computing, pages 99–108, San Jose, CA, USA, June 6–8, 2011. ACM Press. 5, 8, 68

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Tatsuaki Okamoto, editor, Advances
in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
443–457, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg, Germany. 4

[HLR21] Justin Holmgren, A. Lombardi, and R. Rothblum. Fiat-shamir via list-recoverable codes (or:
Parallel repetition of gmw is not zero-knowledge). STOC, 2021. 37

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function eval-
uation with long output. In Tim Roughgarden, editor, ITCS 2015: 6th Conference on Innovations

77

in Theoretical Computer Science, pages 163–172, Rehovot, Israel, January 11–13, 2015. Associa-
tion for Computing Machinery. 7, 18, 34, 35

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-
way functions (extended abstracts). In 21st Annual ACM Symposium on Theory of Computing,
pages 12–24, Seattle, WA, USA, May 15–17, 1989. ACM Press. 33

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfuscation and
its applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory
of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer Science, pages
668–697, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany. 7

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of constant-
degree expanding polynomials overaR to build 𝑖O. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lecture Notes in Computer
Science, pages 251–281, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Ger-
many. 4

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium onTheory of Computing, Virtual Event, Italy, June 21-25, 2021,
pages 60–73. ACM, 2021. 4, 8

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation
for turing machines with unbounded memory. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th Annual ACM Symposium on Theory of Computing, pages 419–428, Portland, OR,
USA, June 14–17, 2015. ACM Press. 7, 16

[KP90] Jan Krajı́ček and Pavel Pudlák. Quantified propositional calculi and fragments of bounded
arithmetic. Mathematical Logic Quarterly, 36(1):29–46, 1990. 11

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013: 20th Conference on Computer and Communications
Security, pages 669–684, Berlin, Germany, November 4–8, 2013. ACM Press. 9, 33

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016,
Part I, volume 9665 of Lecture Notes in Computer Science, pages 28–57, Vienna, Austria, May 8–
12, 2016. Springer, Heidelberg, Germany. 4

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I,
volume 10401 of Lecture Notes in Computer Science, pages 599–629, Santa Barbara, CA, USA,
August 20–24, 2017. Springer, Heidelberg, Germany. 4

[LPST16a] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation with
non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang, editors, PKC 2016: 19th International Conference on Theory and Practice of Public Key
Cryptography, Part II, volume 9615 of Lecture Notes in Computer Science, pages 447–462, Taipei,
Taiwan, March 6–9, 2016. Springer, Heidelberg, Germany. 4

78

[LPST16b] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing randomized
encodings and applications. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th
Theory of Cryptography Conference, Part I, volume 9562 of Lecture Notes in Computer Science,
pages 96–124, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Germany. 4, 7

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 630–660, Santa
Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany. 4

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like as-
sumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th Annual Symposium
on Foundations of Computer Science, pages 11–20, New Brunswick, NJ, USA, October 9–11,
2016. IEEE Computer Society Press. 4

[LZ17] Qipeng Liu and Mark Zhandry. Decomposable obfuscation: A framework for building appli-
cations of obfuscation from polynomial hardness. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017: 15th Theory of Cryptography Conference, Part I, volume 10677 of Lecture Notes in
Computer Science, pages 138–169, Baltimore, MD, USA, November 12–15, 2017. Springer, Hei-
delberg, Germany. 4, 5, 12

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000. 5

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan Boneh, editor,
Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 96–109, Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany. 5

[Par71] Rohit Parikh. Existence and feasibility in arithmetic. The Journal of Symbolic Logic, 36(3):494–
508, 1971. 7, 24

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: ex-
tended abstract. In Michael Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of
Computing, pages 333–342, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press. 32

[Pic15] Ján Pich. Logical strength of complexity theory and a formalization of the PCP theorem in
bounded arithmetic. Logical Methods in Computer Science, Volume 11, Issue 2, June 2015. 11

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-LWE
for any ring and modulus. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
49th Annual ACM Symposium on Theory of Computing, pages 461–473, Montreal, QC, Canada,
June 19–23, 2017. ACM Press. 32

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning
with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer Science, pages 89–114, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany. 37

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro, editors,
Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer
Science, pages 500–517, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg,
Germany. 4

79

[PW85] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In Carlos Augusto Di Prisco,
editor, Methods inMathematical Logic, pages 317–340, Berlin, Heidelberg, 1985. Springer Berlin
Heidelberg. 11

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of Com-
puting, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press. 9, 10, 11, 63, 64

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6), September 2009. 32

[SC04] Michael Soltys and Stephen Cook. The proof complexity of linear algebra. Annals of Pure and
Applied Logic, 130(1):277–323, 2004. Papers presented at the 2002 IEEE Symposium on Logic
in Computer Science (LICS). 11

[Ste90] Guy Steele. Common LISP: the language. Elsevier, 1990. 69

[SW21] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryp-
tion, and more. SIAM J. Comput., 50(3):857–908, 2021. 4, 5, 8, 9, 12, 63, 66, 68, 71

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
Part III, volume 12698 of Lecture Notes in Computer Science, pages 127–156, Zagreb, Croatia,
October 17–21, 2021. Springer, Heidelberg, Germany. 4

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th An-
nual Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario, Canada,
October 27–29, 1986. IEEE Computer Society Press. 16

A Proof of Theorem 9

To present our succinct description of Cook’s translation, we first define the following operations on the
succinct description of small formula derivation (See Definition 13).

Concatenation. Given two succinct descriptions Π1 = (Get1,Where1),Π2 = (Get2,Where2), let the
number of lines in the extension phase and the reasoning phase of the proof described by Π𝑖 be 𝐸𝑖 , 𝑅𝑖 ,
respectively (𝑖 = 1, 2). Then we define the following succinct description Π = (Gen,Where) as the con-
catenation of Π1,Π2, and denote it as Π = Π1 ◦ Π2.

Π describes the following concatenated proof, where the first 𝐸1 +𝐸2 lines are the concatenation of the
extension phase of Π1,Π2, and the rest 𝑅1 +𝑅2 lines are the concatenation of the reasoning phase of Π1,Π2.
Specifically,

– Get(𝑖) : If 𝑖 ∈ [𝐸1], output Get1(𝑖). If 𝑖 ∈ (𝐸1, 𝐸1+𝐸2], output Get2(𝑖−𝐸1). If 𝑖 ∈ (𝐸1+𝐸2, 𝐸1+𝐸2+𝑅1],
then output Get1(𝑖 − 𝐸1). Finally, 𝑖 > 𝐸1 + 𝐸2 + 𝑅1, and we output Get2(𝑖 − (𝐸1 + 𝑅1)).

– Where(⌜𝑣⌝) : It invokes Where1(⌜𝑣⌝) and Where2(⌜𝑣⌝) and shifts the returned indices to the cor-
responding indices in the concatenated proof, and finally outputs the union of them.

Substitution. For any substitution 𝜎 in 𝑃𝑉 , we naturally extend 𝜎 to the propositional variables in
extended Frege system EF . Namely, we define 𝜎 (𝑃𝑖 [𝑡]) B 𝑃𝑖 [𝑡𝜎], and also 𝜎 (𝑄𝑖 [𝑡]) B 𝑄𝑖 [𝑡𝜎]. We also

80

extend the substitution to ATOM[𝑓] for any formula 𝑓 in EF , i.e. we define 𝜎 (ATOM[𝑓]) B ATOM[𝑓 𝜎].
(See ATOM[·] defined for intermediate variables in Section 7.2).

Let 𝜎 be a substitution in 𝑃𝑉 . Then given any succinct description Π = (Get,Where), we define the
succinct description Π𝜎 through one of the following cases.

– Direct Construction: We will explicitly specify the construction of Π𝜎 for any 𝜎 after our con-
struction of Π. Our construction will satisfy the following property.

– Get′(𝑖) : It invokes Get(𝑖), and applies 𝜎 to it.
– Where′(⌜𝑣⌝) : We use 𝜎−1(𝑣) to denote the set of all variables in Π such that its image under
𝜎 is 𝑣 . Then this circuit will output

⋃
𝑣′∈𝜎−1 (𝑣)Where(⌜𝑣 ′⌝).

– Inductive Definition: If Π = Π1 ◦ Π2, and Π1𝜎,Π2𝜎 have been already defined, then we define
Π𝜎 B (Π1𝜎) ◦ (Π2𝜎). Also, if Π = Π′𝜎 ′, then we define Π𝜎 B Π′(𝜎 ′ · 𝜎), where 𝜎 ′ · 𝜎 is the
composition of 𝜎 ′ and 𝜎 .

On the Sizes. For concatenation operation, if Π = Π1 ◦ Π2, then Get and Where circuits of Π have
sizes |Get1 | + |Get2 | + poly(log𝑚), and |Where1 | + |Where2 | + poly(log𝑚), respectively. Hence, we have
|Π | = |Π1 | + |Π2 | + poly(log𝑚).

Similarly, for substitution operation, if Π𝜎 is defined through direct construction, then we have |Π𝜎 | =
|Π |+ |𝜎 |+ |𝜎−1 |, where |𝜎 | is the size of the circuit computing 𝜎 , and |𝜎−1 | is the size of the circuit computing
𝜎−1. In our construction, we are interested in those 𝜎 such that both |𝜎 | and |𝜎−1 | can be bounded by
poly(log𝑚).

A.1 Succinct Description of Translated Formulas

In this section, we will succinctly describe the propositional formula J𝑡 = 𝑢K𝑛𝑚 in Cook’s translation.
Namely, we will break the formula J𝑡 = 𝑢K𝑛𝑚 via a series of extension rules, such that each rule only
contain a single connective (See Section 7.2).

Towards this, we first define a succinct description Φ𝑚 [𝑡] for any term 𝑡 . Intuitively, Φ𝑚 [𝑡] specifies
how Val𝑚 [𝑡] is computed from the variables appeared in 𝑡 via a sequence of extension rules. (See Prelim-
inary 3.2 for the definition of Val𝑚 [𝑡].) If the bounding value𝑚 is clear from the context, we suppress it
for representation simplicity. More specifically, Φ𝑚 [𝑡] is defined inductively as follows.

– If 𝑡 is a variable or function symbols of arity 0, then we define Φ𝑚 [𝑡] as the empty proof.

– If 𝑡 is a term 𝑓 (𝑡1, . . . , 𝑡𝑘), where 𝑓 is function symbols and 𝑡1, . . . , 𝑡𝑘 are terms, we define

Φ[𝑓 (𝑡1, . . . , 𝑡𝑘)] B Φ[𝑡1] ◦ Φ[𝑡2] ◦ . . . ◦ Φ[𝑡𝑘] ◦ Φ[𝑓]𝜎,

where 𝑓 is a function symbol originality defined as 𝑓 (𝑥1, . . . , 𝑥𝑘) and 𝑥𝑖 ’s are variables, and 𝜎 : 𝑥1 ↦→
𝑡1, . . . , 𝑥𝑘 ↦→ 𝑡𝑘 is a substitution, and Φ[𝑓] for any function symbol 𝑓 is defined as follows.

– If 𝑓 is an initial function, then we define Φ[𝑓] in a natural way.
– If 𝑓 is defined as 𝑓 (𝑥1, . . . , 𝑥𝑘) = 𝑡 ′, where 𝑡 ′ is a term. Then we define Φ[𝑓] B Φ[𝑡 ′] ◦ Φ𝑒𝑞

𝑓

inductively, where Φ𝑒𝑞
𝑓

consists of the lines setting Val𝑚 [𝑓 (𝑥1, . . . , 𝑥𝑘)] as the same truth values
of Val𝑚 [𝑡 ′].

81

– If 𝑓 is defined in Cobham’s limited recursion on notation, i.e.

𝑓 (0, y) = 𝑔(y), 𝑓 (𝑥 | |𝑖, y) = ℎ𝑖 (𝑥, y, 𝑓 (𝑥, y)), 𝑖 = 1, 2.

Then we define
Φ[𝑓] B Φ[𝑔(y)] ◦ ΦCP

y ◦ ΦCP
𝑔 (y) ◦ Φ𝑥 ◦ Φ𝑓 ,

where ΦCP
y ,ΦCP

𝑔 (y) ,Φ𝑥 ,Φ𝑓 are defined as follows. Here, we use ΦCP
y ,ΦCP

𝑔 (y) to “copy” the values of the
term y and 𝑔(y) for 𝑚 times, and when we compute 𝑓 at each level of the recursion, we use “one
copy” of y, 𝑔(y). In this way, each propositional variable in Val𝑚 [y] and Val𝑚 [𝑔(y)] only appears a
constant number of times in the translated propositional logic proof, and hence our ‘Where’ circuit
can have an output length independent of𝑚, which is necessary for ‘Where’ circuit to be succinct.

– ΦCP
y : We introduce the function symbols CP1(y),CP2(y), . . . ,CP𝑚 (y) to “copy” the value of

the term y, i.e. we firstly set CP0(y) = y, and then for each 𝑗 = 1, 2, . . . ,𝑚, we set CP𝑗 (y) =
CP𝑗−1(y). ΦCP

y is then defined as the following extension rules. ForV ∈ {𝑃𝑖 , 𝑄𝑖 | 𝑖 = 0, 1, . . . ,𝑚},

V[CP0(y)] ↔ V[y] V[CP𝑗 (y)] ↔ V[CP𝑗−1(y)], ∀𝑗 ∈ [𝑚] .

Next, we define the ‘Where’ circuits of ΦCP
y and ΦCP

y 𝜎 via direct construction. Since ΦCP
y can

also be regarded as ΦCP
y 𝜎 with a trivial 𝜎 , we only need to define ‘Where’ for ΦCP

y 𝜎 , where 𝜎 is
a general substitution in 𝑃𝑉 . For input variable 𝑣 in EF , if 𝑣 is in the form V[CP𝑗 (𝜎 (y))] or
V[𝜎 (y)], where V ∈ {𝑃𝑖 , 𝑄𝑖 | 𝑖 = 0, 1, . . . ,𝑚} then ‘Where’ outputs the indices of the lines that
involves V[CP𝑗 (y)] and V[y].

– ΦCP
𝑔 (y) : Similar to ΦCP

y , we introduce the terms CP0(𝑔(y)) = 𝑔(y),CP𝑗 (𝑔(y)) = CP𝑗−1(𝑔(y)), 𝑗 ∈
[𝑚] to copy the term 𝑔(y).
The ‘Where’ circuit of ΦCP

𝑔 (y) is constructed in a similar way as above.

– Φ𝑥 : We introduce the variables 𝑥 𝑗 for 𝑗 = 0, 1, . . . ,𝑚 − 1, and informally speaking, let “𝑥 𝑗 =
TR(𝑥 𝑗+1) for any 𝑗 ∈ [𝑚], and 𝑥𝑚 = 𝑥”. Formally, the lines in Φ𝑥 is as follows.

Val𝑚 [𝑥𝑚] ↔ Val𝑚 [𝑥]
𝑃𝑚 [𝑥 𝑗] ↔ F, 𝑃𝑖 [𝑥 𝑗] ↔ 𝑃𝑖+1 [𝑥 𝑗+1], For 𝑖, 𝑗 = 0, . . . ,𝑚 − 1
𝑄𝑚 [𝑥 𝑗] ↔ F, 𝑄𝑖 [𝑥 𝑗] ↔ 𝑄𝑖+1 [𝑥 𝑗+1], For 𝑖, 𝑗 = 0, . . . ,𝑚 − 1

Since we introduce new variables 𝑥 𝑗 , we need to define how they interact with substitutions
over 𝑥, y. For any substitution 𝜎 , we define 𝜎 (𝑥 𝑗) B 𝜎 (𝑥) 𝑗 . We construct ‘Where’ circuit of
Φ𝑥𝜎 for a general substitution 𝜎 via direct construction as follows. For input propositional
variable 𝑣 , if 𝑣 is in the form V[𝜎 (𝑥) 𝑗], then it outputs the indices that V[𝑥 𝑗] appears in the
above extension rules, where V ∈ {𝑃𝑖 , 𝑄𝑖 | 𝑖 = 0, 1, . . . ,𝑚}.

– Φ𝑓 : Finally, we introduce the terms 𝑓 (𝑥 𝑗 , y) for 𝑗 = 0, 1, . . . ,𝑚, and informally speaking, we
shall define them as “𝑓 (𝑥 𝑗 , y) = CP𝑗 (𝑔(y)), if𝑥 𝑗 = 0, and 𝑓 (𝑥 𝑗 , y) = ℎ𝑖 (𝑥 𝑗−1,CP𝑗−1(y), 𝑓 (𝑥 𝑗−1, y))
otherwise”, where 𝑖 is the last digit of 𝑥 𝑗 . Formally, Φ𝑓 consists of the following lines. Let
𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 be the variables in the original definition of ℎ𝑖 , 𝑖 = 1, 2.
We first introduce Val𝑚 [ℎ𝑖 (𝑥 𝑗−1,CP𝑗−1(y), 𝑓 (𝑥 𝑗−1, y))], 𝑖 = 1, 2 by

Φ𝑚 [ℎ𝑖]𝜎 𝑗𝑖 ,where 𝜎 𝑗
𝑖

: 𝛼𝑖 ↦→ 𝑥 𝑗−1, 𝛽𝑖 ↦→ CP𝑗−1(y), 𝛾𝑖 ↦→ 𝑓 (𝑥 𝑗−1, y), 𝑖 = 1, 2, 𝑗 ∈ [𝑚],

82

Then we introduceVal𝑚 [𝑓 (𝑥 𝑗 , y)] by selecting betweenVal𝑚 [ℎ𝑖 (𝑥 𝑗−1,CP𝑗−1(y), 𝑓 (𝑥 𝑗−1, y))] (𝑖 =
1, 2) and Val𝑚 [CP𝑗 (𝑔(y))], depending on the last digit of 𝑥 𝑗 and 𝑄0 [𝑥 𝑗].

V[𝑓 (𝑥 𝑗 , y)] ↔
(
𝑄0 [𝑥 𝑗] ∧

[
(¬𝑃0 [𝑥 𝑗] ∧ V[ℎ1(𝑥 𝑗−1,CP𝑗−1(y), 𝑓 (𝑥 𝑗−1, y))])

∨(𝑃0 [𝑥 𝑗] ∧ V[ℎ2(𝑥 𝑗−1,CP𝑗−1(y), 𝑓 (𝑥 𝑗−1, y))])
])
∨

(¬𝑄0 [𝑥 𝑗]) ∧ V[CP𝑗 (𝑔(y))], where V ∈ {𝑃𝑖 , 𝑄𝑖 | 𝑖 = 0, 1, . . . ,𝑚}.

The above lines of extensions can be broken down by introducing intermediate propositional
variables. To avoid using𝑄0 [𝑥 𝑗] in every lines of V = 𝑄𝑖 , 𝑖 = 0, 1, . . . ,𝑚, we “copy” it to𝑄𝑖0 [𝑥 𝑗],
similar to what we did for CP(y). For any substitution 𝜎 , we define 𝑓 (𝑥 𝑗 , y)𝜎 B 𝑓 (𝜎 (𝑥) 𝑗 , y𝜎)
and 𝜎 (𝑄𝑖0 [𝑥 𝑗]) = 𝑄𝑖0 [𝜎 (𝑥) 𝑗]. Then we define ‘Where’ circuit for Φ𝑓 𝜎 correspondingly via direct
construction.

Describe Prop𝑚 [·] Succinctly. Next, we will succinctly describe Prop𝑚 [·] in [Coo75] by small description
of small formula derivationΨ𝑛𝑚 [·]. For a brief overview of Prop𝑚 [·], the readers can refer to our preliminary
(Section 3.2). We define Ψ𝑛𝑚 [𝑡] for any term 𝑡 inductively as follows.

– If 𝑡 is a variable, recall that Prop𝑚 [𝑡] =
∧𝑚
𝑖=1𝑄𝑖 [𝑡] → 𝑄𝑖−1 [𝑡]. Ψ𝑛𝑚 consists of the following lines

introducing intermediate propositional variables (See Section 7.2).
We first introduce ATOM[V[𝑡]] ↔ V[𝑡], for all V ∈ {𝑃𝑖 , 𝑄𝑖 | 𝑖 = 0, 1, . . . ,𝑚}. Then for 𝑗 = 1, 2, . . . ,𝑚,
we introduce a new variable 𝑅 𝑗 [𝑡] for the term 𝑡 , and write the following lines and setting 𝑅0 [𝑡] ↔ T.

ATOM
[
𝑄 𝑗 [𝑡] → 𝑄 𝑗−1 [𝑡]

]
↔

(
ATOM

[
𝑄𝑖 [𝑡]

]
→ ATOM

[
𝑄𝑖−1 [𝑡]

])
𝑅 𝑗 [𝑡] ↔ 𝑅 𝑗−1 [𝑡] ∧ ATOM

[
𝑄 𝑗 [𝑡] → 𝑄 𝑗−1 [𝑡]

]
Then Prop𝑚 [𝑡] can be represented as𝑅𝑚 [𝑡]. For any substitution𝜎 in 𝑃𝑉 , we define𝑅𝑖 [𝑡]𝜎 B 𝑅𝑖 [𝑡𝜎],
and construct Where circuit for Ψ𝑛𝑚 [𝑡] accordingly.

– If 𝑡 is in the form 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑘), where 𝑓 is a function symbol, and 𝑡1, . . . , 𝑡𝑘 are terms. Then we
define Ψ𝑛𝑚 [𝑡] to contain the following lines.

Ψ𝑛𝑚 [𝑓 (𝑡1, . . . , 𝑡𝑘)] B Φ𝑚 [𝑓 (𝑡1, . . . , 𝑡𝑘)] ◦ Ψ𝑚 [𝑥1] ◦ Ψ𝑚 [𝑥1] ◦ · · · ◦ Ψ𝑚 [𝑥𝑘′],

where 𝑥1, 𝑥2, . . . , 𝑥𝑘′ are the variables appears in 𝑡 .

– For any function symbol 𝑓 (𝑥1, . . . , 𝑥𝑘), we define Ψ𝑛𝑚 [𝑓] naturally to describe Prop𝑚 [𝑓 (𝑥1, . . . , 𝑥𝑘)]
in a similar way as above.

Finally, we define Ψ𝑛𝑚 [·] for equations. For any equation 𝑡 = 𝑢, where both 𝑡 and𝑢 are terms, we define

Ψ𝑛𝑚 [𝑡 = 𝑢] B Ψ𝑛𝑚 [𝑡] ◦ Ψ𝑛𝑚 [𝑢] ◦ Ψ𝐸𝑞,

where Ψ𝐸𝑞 is the succinct description of the following formula J𝑡 = 𝑢K𝑛𝑚 that represents “if the variables in
𝑡 and 𝑢 are in a certain range, then Val𝑚 [𝑡] is the same as Val𝑚 [𝑢]”. We use a new propositional variable
EQ [𝑡,𝑢] to represent J𝑡 = 𝑢K𝑛𝑚 .

EQ𝑛
𝑚 [𝑡,𝑢] ↔

{(
𝑅𝑚 [𝑥1] ∧ 𝑅𝑚 [𝑥2] . . . ∧ 𝑅𝑚 [𝑥𝑘] ∧ ¬𝑄𝑛 [𝑥1] ∧ ¬𝑄𝑛 [𝑥2] ∧ . . . ∧ ¬𝑄𝑛 [𝑥𝑘]

)
→

𝑚∧
𝑖=0
(𝑄𝑖 [𝑡] ↔ 𝑄𝑖 [𝑢]) ∧

[
𝑄𝑖 [𝑡] → (𝑃𝑖 [𝑡] ↔ 𝑃𝑖 [𝑢])

]}
.

83

The above extension for EQ𝑛
𝑚 [𝑡,𝑢] can be broken down to small formulas via a series of extension rules

that can be described succinctly. Finally, we set the reasoning phase of Ψ𝑚 [𝑡 = 𝑢] as EQ𝑛
𝑚 [𝑡,𝑢].

On the Sizes. From the analysis on the sizes of concatenation and substitution operations in the previous
section, we bound the size of Ψ𝑛𝑚 [𝑡] for any term 𝑡 as follows. For a term 𝑡 = 𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑘) with variables
𝑥1, . . . , 𝑥𝑘′ , we have |Ψ𝑛𝑚 [𝑡] | ≤ |Φ𝑚 [𝑡] | + 𝑂 (𝑘 ′) · poly(log𝑚), where Φ𝑚 [𝑓 (𝑡1, 𝑡2, . . . , 𝑡𝑘)] can be bounded
inductively as |Φ𝑚 [𝑓 (𝑡1, . . . , 𝑡𝑘)] | ≤ |Φ𝑚 [𝑡1] | + |Φ𝑚 [𝑡2] | + . . . + |Φ𝑚 [𝑡𝑘] | + |Φ𝑚 [𝑓] | · |𝜎 | +𝑂 (𝑘) · poly(log𝑚),
and |𝜎 | ≤ 𝑂 (|𝑡1 | + |𝑡2 | + . . . + |𝑡𝑘 |). The sizes of other succinct descriptions can be argued similarly in an
inductive way. Finally, we have |Ψ𝑛𝑚 [𝑡] | ≤ poly(Desc[𝑡], log𝑚) for any term 𝑡 .

A.2 Succinct Description of Cook’s Translation

Finally, we slightly modify Cook’s translation from theory 𝑃𝑉 to propositional logic to make the translation
succinct.

Let (eq1, eq2, . . . , eqℓ) be a proof in theory 𝑃𝑉 . To translate it to propositional logic proof, we need
to translate each step of the derivation to propositional logic. However, the inference rule 𝑅4 of 𝑃𝑉 is
essentially a substitution rule. But the extended Frege system in our current definition does not natively
support substitutions rules, although it is known how to use extended Frege to simulate substitution Frege.
Here we incorporate this kind of simulation presented in [Bus, Theorem 9] to deal with 𝑅4 rule.

Our first step is to define a substitution 𝜎𝑖, 𝑗 , which maps any propositional variable 𝑥 to a new proposi-
tional variable𝑥 (𝑖, 𝑗) . Then we use𝜎𝑖, 𝑗 to replace all propositional variables inΨ𝑚 [eq1],Ψ𝑚 [eq2], . . . ,Ψ𝑚 [eqℓ].
For simplicity, let’s denote Ψ𝑖, 𝑗

𝑘
B Ψ𝑚 [eq𝑘]𝜎𝑖, 𝑗 , and we introduce

𝜙 𝑗 B Ψ 𝑗,1
1 ◦ Ψ

𝑗,2
2 ◦ . . . ◦ Ψ

𝑗, 𝑗

𝑗

Next, to prove Ψ𝑚 [eqℓ] in extended Frege system, we will firstly prove 𝜙1 is a tautology, then we
prove 𝜙1 ⊢ 𝜙2, 𝜙2 ⊢ 𝜙3, . . . , 𝜙ℓ−1 ⊢ 𝜙ℓ in extended Frege system and then Ψ𝑚 [eqℓ] follows from 𝜙ℓ . Since
𝜙1 = Ψ[eq1]𝜎1,1 must follow from an axiom, it can be proven directly. Next, we will use a series of succinct
descriptions of proofs to show that 𝜙 𝑗 ⊢ 𝜙 𝑗+1. We will prove this by introducing the propositional variables
𝑥 (𝑗,·) in 𝜙 𝑗 using the extension rule, in terms of propositional variables 𝑥 (𝑗+1,·) in 𝜙 𝑗+1. Namely, for each
𝑗 ∈ [ℓ − 1], there are two cases.

Case I: Handling Rules Except 𝑅4. If eq𝑗 is derived from an inference rule other than 𝑅4 applied to
eq𝑖1, eq𝑖2, . . . , eq𝑖𝑐 , where 𝑖1, 𝑖2, . . . , 𝑖𝑐 < 𝑖 and 𝑐 is a constant, then we introduce the propositional variables
𝑥 (𝑗,𝑖) as follows.

– If 𝑖 ∈ {𝑖1, 𝑖2, . . . , 𝑖𝑐 }, then let 𝑥 (𝑗,𝑖) be 𝑥 (𝑗+1, 𝑗+1) , if Ψ (𝑗+1,𝑖)
𝑖

holds. Otherwise, let 𝑥 (𝑖, 𝑗) be 𝑥 (𝑗+1,𝑖+1) .
Formally, we introduce 𝑥 (𝑗,𝑖) via the following extension.

𝑥 (𝑗,𝑖) ↔
[
(Jeq𝑖K𝜎 𝑗+1,𝑖 ∧ 𝑥 (𝑗+1, 𝑗+1)) ∨ (¬Jeq𝑖K𝜎 𝑗+1,𝑖 ∧ 𝑥 (𝑗+1,𝑖))

]
.

– Otherwise, we set 𝑥 (𝑗,𝑖) ↔ 𝑥 (𝑗+1,𝑖) .

After we add above extension rules for 𝑥 (𝑗,·) , we next construct the following proofs and concatenate
them.

1. Show that for any 𝑖 ∈ {𝑖1, 𝑖2, . . . , 𝑖𝑐 }, Ψ 𝑗,𝑖

𝑖
⊢ Ψ 𝑗+1,𝑖

𝑖
◦ Ψ 𝑗+1, 𝑗+1

𝑖
. Intuitively, this is true because under the

premise of Ψ 𝑗,𝑖

𝑖
, if Jeq𝑖K𝜎 𝑗+1,𝑖 is false, then 𝑥 (𝑗,𝑖) ↔ 𝑥 (𝑗+1,𝑖) , and we can show that Ψ 𝑗,𝑖

𝑖
→ Ψ 𝑗+1,𝑖

𝑖
, which

is a contradiction. Hence, under the premise of Ψ 𝑗,𝑖

𝑖
we must have Jeq𝑖K𝜎 𝑗+1,𝑖 and thus 𝑥 (𝑗,𝑖) ↔

𝑥 (𝑗+1, 𝑗+1) , which implies that Ψ 𝑗,𝑖

𝑖
⊢ Ψ 𝑗+1, 𝑗+1

𝑖
.

84

2. Show that for any 𝑖 ∉ {𝑖1, 𝑖2, . . . , 𝑖𝑐 }, Ψ (𝑗,𝑖)𝑖
⊢ Ψ (𝑗+1,𝑖+1)

𝑖
. This follows from 𝑥 (𝑗,𝑖) ↔ 𝑥 (𝑗+1,𝑖) . Both this

proof and the previous one can be described succinctly. To describe them, we can use substitution
for succinct descriptions, and leverage the fact that the map 𝜎𝑖, 𝑗 : 𝑥 ↦→ 𝑥 (𝑖, 𝑗) and its inverse can be
computed by a succinct circuit.

3. Show that

Ψ 𝑗,1
1 ◦ Ψ

𝑗,2
2 ◦ . . . ◦ Ψ

𝑗, 𝑗

𝑗
⊢ Ψ 𝑗+1,1

1 ◦ . . . ◦ Ψ 𝑗+1, 𝑗+1
𝑗+1 ◦ (Ψ 𝑗+1, 𝑗+1

𝑖1
◦ Ψ 𝑗+1, 𝑗+1

𝑖2
◦ . . . ◦ Ψ 𝑗+1, 𝑗+1

𝑖𝑐
),

by combing the 1 and 2.
This step can be done by poly(ℓ) lines, and thus can be described succinctly by a poly(ℓ)-size circuit.

4. Show that Ψ 𝑗+1, 𝑗+1
𝑖1

◦ Ψ 𝑗+1, 𝑗+1
𝑖2

◦ . . . ◦ Ψ 𝑗+1, 𝑗+1
𝑖𝑐

⊢ Ψ 𝑗+1, 𝑗+1
𝑗+1 . This step needs to take care of inference rules

𝑅1, 𝑅2, 𝑅3 and 𝑅5 and axioms in 𝑃𝑉 , separately.

5. Prove that 𝜙𝑖 ⊢ 𝜙𝑖+1. This can be proven by combining 3 and 4.

Case II: Handling Substitution Rule 𝑅4. If eq𝑗 is derived from a substitution rule, i.e. eq𝑗 = eq𝑖′ (𝑣/𝑦)
for some 𝑖 ′ < 𝑗 , where 𝑣 is a term and𝑦 is a variable in 𝑃𝑉 , then we introduce the variables 𝑥 (𝑗,𝑖) as follows.

1. If 𝑖 = 𝑖 ′, then similar to the argument above, we set

𝑥 (𝑗,𝑖) ↔
[
(Jeq𝑖K𝜎 𝑗+1,𝑖 ∧ 𝜎 (𝑥) (𝑗+1, 𝑗+1)) ∨ (¬Jeq𝑖K𝜎 𝑗+1,𝑖 ∧ 𝑥 (𝑗+1,𝑖))

]
,

where 𝜎 is the substitution 𝑦 ↦→ 𝑣 extended to propositional variables.

2. Otherwise, for 𝑖 ≠ 𝑖 ′, we set 𝑥 (𝑗,𝑖) ↔ 𝑥 (𝑗+1,𝑖) .

Then similar to the Case I, we can succinctly describe the following proofs and concatenate them.

1. Show that Ψ 𝑗,𝑖′

𝑖′ ⊢ Ψ
𝑗+1,𝑖′
𝑖′ ◦ Ψ 𝑗+1, 𝑗+1

𝑗+1 . We first use the same idea as in Case I to show that Ψ 𝑗,𝑖′

𝑖′ →

Ψ 𝑗+1,𝑖′
𝑖′ ∧ (Ψ 𝑗+1, 𝑗+1

𝑖′ 𝜎). Note that Ψ 𝑗+1, 𝑗+1
𝑖′ 𝜎 is the same as Ψ 𝑗+1, 𝑗+1

𝑗+1 , since eq𝑗 = eq𝑖′𝜎 . Hence, we
already have the desired proof.

2. Show that Ψ 𝑗,𝑖

𝑖
⊢ Ψ 𝑗+1,𝑖

𝑖
for each 𝑖 ≠ 𝑖 ′. This can be shown in a similar way as we did in Case I.

3. Prove that 𝜙𝑖 ⊢ 𝜙𝑖+1. This can be obtained by combining the above two proofs via poly(ℓ) lines, and
hence can also be described succinctly.

85

	Introduction
	Our Results
	Applications
	How to Use iO with Proofs of Equivalence
	Puncturable PRFs
	Proving Arithmetic Properties in PV

	Discussion and Future Directions

	Technical Overview
	-Equivalence from Propositional Proofs
	Construction of iO for -equivalent Circuits
	iO For Turing Machines with PV-proof of Equivalence
	Proof of Security

	Preliminaries: Part I
	Propositional Logic Systems
	Cook's Theory PV
	Theory PV1

	-Equivalent Circuits
	Background
	Definition of -Equivalent Circuits
	-Equivalence from Propositional Proofs

	Preliminaries: Part II
	Learning with Errors
	Pseudorandom Generators
	Puncturable Pseudorandom Functions
	Homomorphic Encryption
	Indistinguishability Obfuscation for Circuits
	Somewhere Extractable Hash
	SNARGs for Batch-NP

	iO for -Equivalent Circuits
	Somewhere Extractable Hash with Consistency Proof
	Construction of iO
	Security

	iO for Turing Machines
	-Equivalence for Turing Machines
	Succinct Description of Cook's Translation
	-Equivalence for Turing Machines from Cook's Theory PV
	Construction of iO for Turing machines

	Applications
	Witness Encryption for Circuits
	Witness Encryption for Turing Machines
	SNARGs for Turing Machines

	Proof of Theorem 9
	Succinct Description of Translated Formulas
	Succinct Description of Cook's Translation

