
Efficient Online-friendly Two-Party ECDSA Signature
Haiyang Xue

The University of Hong Kong
State Key Laboratory of Information
Security, Institute of Information
Engineering, Chinese Academy of

Sciences
haiyangxc@gmail.com

Man Ho Au
The University of Hong Kong

allenau@cs.hku.hk

Xiang Xie
Shanghai Key Laboratory of

Privacy-Preserving Computation
xiexiang@matrixelements.com

Tsz Hon Yuen
The University of Hong Kong

thyuen@cs.hku.hk

Handong Cui
The University of Hong Kong

hdcui@cs.hku.hk

ABSTRACT
Two-party ECDSA signatures have received much attention due to
their widespread deployment in cryptocurrencies. Depending on
whether or not the message is required, we could divide two-party
signing into two different phases, namely, offline and online. Ideally,
the online phase should be made as lightweight as possible. At the
same time, the cost of the offline phase should remain similar to
that of a normal signature generation. However, the existing two-
party protocols of ECDSA are not optimal: either their online phase
requires decryption of a ciphertext, or their offline phase needs
at least two executions of multiplicative-to-additive conversion
which dominates the overall complexity. This paper proposes an
online-friendly two-party ECDSA with a lightweight online phase
and a single multiplicative-to-additive function in the offline phase.
It is constructed by a novel design of a re-sharing of the secret
key and a linear sharing of the nonce. Our scheme significantly
improves previous protocols based on either oblivious transfer or
homomorphic encryption. We implement our scheme and show
that it outperforms prior online-friendly schemes (i.e., those have
lightweight online cost) by a factor of roughly 2 to 9 in both com-
munication and computation. Furthermore, our two-party scheme
could be easily extended to the 2-out-of-𝑛 threshold ECDSA.

KEYWORDS
ECDSA; threshold signature; two-party signature; blockchain; zero-
knowledge proof

1 INTRODUCTION
Threshold digital signatures [13, 14] allow distributed signing among
𝑛 parties such that a given message is signed if and only if at least
𝑡 + 1 of the participants agree to sign it. Threshold signature has
attracted a lot of attention in the academic community and in-
dustry recently, possibly due to its applications in blockchain and
cryptocurrencies. A decentralized key management framework
of ECDSA [11], the most commonly used signature scheme in
blockchain, is urgently required to protect the secret key and hence
the cryptocurrency.

Threshold ECDSA. ECDSA [11] is the Elliptical Curve (EC) version
of the Digital Signature Algorithm (DSA). The core part of ECDSA

involves computing

𝑠 = 𝑘−1 (𝐻 (𝑚) + 𝑥𝑟) (1)

where 𝑥 is the secret key, 𝑘 is the secret nonce, and 𝑟 is the public
nonce (i.e., the 𝑥-coordinate of 𝑘 · 𝑃 where 𝑃 is the EC group gen-
erator). The main obstacle of constructing a threshold version of
ECDSA is to compute, in a distributed way, 𝑠 satisfying Equation 1,
where 𝑘 and 𝑥 are secrets shared among the participants. In detail,
given the shares of 𝑘 and 𝑥 , computing the shares of 𝑘−1 and 𝑘−1𝑥
are the most expensive part of the entire signing procedure. (We
remark that, if not specified, the computation in this section is over
Z𝑞 where 𝑞 is the EC group order.)

A large number of practical protocols aim to address this obstacle
in recent years. Lindell [25] proposed a very efficient two-party
signing protocol, which utilizes multiplicative shares of 𝑘, 𝑥 , and the
additively homomorphic encryption scheme Paillier. The resulting
signing procedure only involves homomorphic operations and a
decryption operation, and thus is practical. Other follow-up works
such as [6, 8, 15, 16, 19, 26, 33] handle the above obstacles with the
help of the multiplicative-to-additive functionality (denoted as MtA
hereafter). Specifically, with 𝑎 and𝑏 as inputs, theMtA functionality
securely computes and outputs 𝛼 and 𝛽 such that 𝛼 + 𝛽 = 𝑎𝑏. Thus
it helps two parties to transform shares of 𝑘, 𝑥 into additive share of
𝑘−1 and 𝑘−1𝑥 , or to transform shares of 𝑘−1, 𝑥 into additive share
of 𝑘−1𝑥 and computing 𝑘 · 𝑃 . Then, each participant could easily
compute the additive share of 𝑠 from 𝑟 and their shares of 𝑘−1 and
𝑘−1𝑥 . After the reveal of additive share of 𝑠 , the signing procedure
simply sums them up and outputs the signature after verifying its
correctness.

However, realizing theMtA functionality always involves compli-
cated zero-knowledge proof systems. This makes MtA the heaviest
part of threshold signature schemes. A typical threshold signing
invokes theMtA functionality 2 to 4 times. Specifically, given ad-
ditive shares of 𝑘 = 𝑘1 + 𝑘2 and 𝑥 = 𝑥1 + 𝑥2, two calls of MtA
are required to compute shares of 𝑘−1, and another two MtA are
needed to compute additive shares of 𝑘−1𝑥 . The same holds when
given additive shares of 𝑘−1 and 𝑥 to jointly compute 𝑘 · 𝑃 and
additive share of 𝑘−1𝑥 .
Online and Offline Signing. In real-world applications, it is ex-
tremely useful to divide an MPC protocol into offline and online
phases. In the offline phase, the message-independent part of the

1

Table 1: The offline/online cost of two-party (case of) ECDSA.
Enc (resp. Dec) is an execution of Paillier/CL encryption (resp.
decryption). “NI” indicates non-interactive online signing.
The online phase of “Fast" schemes requires extra dozens of
EC point multiplications besides the verification.

Schemes 𝑥 𝑘 or 𝑘−1 Offline (NI) Online
[7, 25] 𝑥1𝑥2 𝑘1𝑘2 Enc (✓) Dec
[15] 2-of-2 𝑥1𝑥2 𝑘1𝑘2 2MtA (✓) optimal
[15] 2-of-𝑛 𝑥1 + 𝑥2 𝑘1𝑘2 3MtA (✓) optimal
[26] 𝑥1 + 𝑥2 𝑘1 + 𝑘2 2MtA (×) MtA
[8, 19] 𝑥1 + 𝑥2 𝑘1 + 𝑘2 4MtA (×) Fast
[6, 16] 𝑥1 + 𝑥2 𝑘1 + 𝑘2 4MtA (✓) optimal
2ECDSA 𝑥1 + 𝑥2 𝑘1 (𝑟1 + 𝑘2) 1MtA (✓) optimal

protocol is computed. This is also known as pre-processing or pre-
computation and can utilize idle CPU time. This phase could be run
several times and in batches. Output of the offline phase is stored
for use in the online phase when the message to be processed is
known, This separation is commonly discussed in the literature.
For example, general-purpose MPC protocols could run the offline
phase to generate a batch of random Beaver triples [3] to be used
later to handle multiplication gates in the online phase.

As for threshold signatures, several works [6, 15, 16] have already
considered splitting the signing process of threshold ECDSA into
offline and online phases. In threshold signature, verifying the final
signature is inevitable as it allows the detection of malicious behav-
iors. Thus, we say that the online phase of a threshold signature is
optimal if it is non-interactive and its cost is the same as a single
signature verification. The scheme is said to be online-friendly if
its online phase is optimal. Existing works of threshold ECDSA
either have their online phase [7, 25, 33] requiring a decryption
of an additively homomorphic encryption or their offline phase
[6, 15, 16, 19, 26, 33] needing 2 to 4 calls of MtA functionality. Table
1 shows a summary of these works.

Starting from [27], several competitive two-party ECDSA proto-
cols [7, 25, 33] utilize multiplicative sharing in combination with
additively homomorphic encryption. Concretely, the signing key 𝑥
and the nonce 𝑘 are shared multiplicatively as 𝑥1𝑥2 and 𝑘1𝑘2. Two
parties jointly compute 𝑘−1𝑥 from multiplicative shares with the
additively homomorphic property of the underlying encryption
scheme. In spite of Paillier encryption as in [25] or Castagnos and
Laguillaumie (CL) encryption as in [7, 33], the final online phase of
this method requires a transfer and the decryption of the ciphertext.
Although the entire signing procedure is relatively practical, the
online phase is still heavy and not optimal.

As shown in Table 1, previous protocols require either a relatively
slow online computation, or 2 to 4 calls of MtA in the offline phase
when the online phase is optimal. The sub-protocolMtA dominates
the overall complexity since it is either computationally expensive
(for those based on homomorphic encryption [8, 26]) or needs a
very large amount of communication (for those based on oblivious
transfer [15]). For example, a single call of Paillier-basedMtA needs
14 Paillier encryption/exponentiations and that of OT-basedMtA
requires communication of approximately 90 KB of data.

In this paper, we focus on the two-party ECDSA. Our goal is
giving a construction to achieve (nearly) optimal online perfor-
mance with minimal number of calls, i.e., a single call, to the MtA
functionality.

1.1 Our Contribution
We propose an online-friendly two-party ECDSA, 2ECDSA, such
that its online computation is nearly optimal and its offline phase
just needs a single call of MtA.

(1) The online phase of our protocol is non-interactive and op-
timal. It only requires transmitting a single element, and its
computation cost is dominated by the verification of the re-
sulting signature. Our offline phase runs in three-pass with
a singleMtA, thus has significant improvement over [15]
and the two-party cases of [6, 8, 16, 19, 26, 33]. Two novel
techniques are developed, which may be of independent
interest.
(a) The linear sharing of the nonce 𝑘 = 𝑘1 (𝑟1 + 𝑘2), where

𝑘1, 𝑟1 are chosen by party 𝑃1 and 𝑘2 is chosen by the
other party, 𝑃2. It is different from the existing simple
additive or multiplicative sharing of the nonce.

(b) The re-sharing of the secret 𝑥 by using 𝑘2 in the offline
phase. New share 𝑥 ′1 (resp. 𝑥

′
2) of the signing key is

chosen by 𝑃1 (resp. 𝑃2), such that 𝑥 = 𝑥 ′1𝑘2 +𝑥 ′2 (which
is also a linear function).

These techniques enable us to construct an online-friendly
2ECDSA with a singleMtA. Details are given in Sec. 1.2.

(2) We provide an implementation of our two-party 2ECDSA
protocol in Rust, with instantiation of the MtA functional-
ity from Paillier encryption, CL encryption, and oblivious
transfer. We give an efficiency comparison with all previ-
ous two-party ECDSA and the two-party case of threshold
ECDSA. Details are shown in Table 2. On the premise of
preserving fast online computation, our scheme reduces
the offline cost of Paillier-based protocol to 226 ms and 6.3
KB, and further to 141 ms and 4.1 KB based on Paillier-EC
assumption. For CL-based instantiation, the complexity of
the offline phase is 1386 ms and 1.7 KB. Based on oblivious
transfer (OT), the offline cost of our scheme is 2.6 ms and
90.9 KB.

(3) Applying 2-out-of-𝑛 Shamir secret-sharing [30] to 𝑛-party
additively shared secret during key generation, our two-
party 2ECDSA could be easily extended to the 2-out-of-𝑛
ECDSA. The general scheme’s signing phase has the same
complexity as 2ECDSA.

1.2 Technical Overview
Recall that themain bottleneck of previous schemes is due to the use
of complex protocols for the two parties to compute 𝑘−1 (𝐻 (𝑚)+𝑟𝑥)
such that 𝑥 = 𝑥1 + 𝑥2 and 𝑘 = 𝑘1 + 𝑘2 (resp. 𝑥 = 𝑥1𝑥2 and 𝑘 = 𝑘1𝑘2)
in the case of additive sharing (resp. multiplicative sharing). In
other words, the bottleneck is inherent in the multiple executions
of MtA for these shares.
Starting point. We start from a simple combination of multiplica-
tive sharing of 𝑘 (i.e. 𝑘 = 𝑘1𝑘2) and additive sharing of 𝑥 (i.e.
𝑥 = 𝑥1 + 𝑥2). This has been utilized by Doerner et al. [15] to handle

2

Table 2: Comparison of signing with two-party protocols and two-party case of threshold ECDSA from Paillier, OT and CL
respectively. These concrete numbers are based on computational security parameter 𝜆 = 128 and statistical security parameter
80. For those Paillier-based schemes, E represents a Paillier exponentiation over Z𝑁 2 (we approximately count 3 operations of
mod 𝑁 as one operation of mod 𝑁 2. Some of E are single “short" exponentiation), while for CL-based schemes E means an
exponentiation over CL group.M refers to elliptic curve point multiplication which is almost free compared with E. In the
communication column, EC points, CL group elements, and ring elements of Paillier are encoded by 𝜅, 7𝜅 (only for 𝜅 = 256), and
2ℓ𝑁 bits respectively. Estimating in parentheses includes the constant overhead with the standard security recommendation, i.e.
𝜅 = 256 and ℓ𝑁 = 3072. “Paillier-EC" means that Paillier-EC assumption is applied to eliminate a zero-knowledge proof.

Signing Protocols Computation Communication Passes
offline online offline online

LNR18 [26] 28E + 157M (461ms) 14E + 121M (302ms) 32ℓ𝑁 + 67𝜅 (12KB) 16ℓ𝑁 + 51𝜅 (6.6KB) 8
GG18 [19] 42E + 40M (1237ms) 17M (3ms) 40ℓ𝑁 + 18𝜅 (15.5KB) 9𝜅 (288B) 9
CGGMP20 [6] 208E + 44M (2037ms) 2M (0.2ms) 118ℓ𝑁 + 20𝜅 (44KB) 𝜅 (32B) 4
2ECDSA (Paillier) 14E + 11M (226ms) 2M (0.2ms) 16ℓ𝑁 + 11𝜅 (6.3KB) 𝜅 (32B) 3

Lin17 [25] (Paillier-EC) 2E + 8M (34ms) 1E + 2M (8ms) 12𝜅 (192B) 2ℓ𝑁 (768B) 3
GG18 [19] (Paillier-EC) 18E + 40M (360ms) 17M (3ms) 16ℓ𝑁 + 18𝜅 (6.6KB) 9𝜅 (288B) 9
2ECDSA (Paillier-EC) 8E + 14M (141ms) 2M (0.2ms) 10ℓ𝑁 + 12𝜅 (4.1KB) 𝜅 (32B) 3

CCLST19 [7] 4E + 8M (475ms) 1E + 2M (190ms) 6𝜅 (208B) 14𝜅 (505B) 3
CCLST20 [8] 28E + 8M (3316ms) 17M (3ms) 140𝜅 (4.5KB) 9𝜅 (288B) 8
YCX21 [33] 28E + 8M (4550ms) 17M (3ms) 140𝜅 (4.5KB) 9𝜅 (288B) 8
2ECDSA (CL) 11E + 11M (1386ms) 2M (0.2ms) 53𝜅 (1.7KB) 𝜅 (32B) 3

DKLS18 [15] 13M (2.9ms) 2M (0.2ms) 16𝜅2 (169.8KB) 𝜅 (32B) 2
DKLS19 [16] 13M (3.7ms) 2M (0.2ms) 20𝜅2 (180KB) 𝜅 (32B) 7
2ECDSA (OT) 11M (2.6ms) 2M (0.2ms) 8𝜅2 (90.9KB) 𝜅 (32B) 3

2-out-of-𝑛 threshold scheme, albeit, in a rather inefficient way. To
jointly compute 𝑠 = 𝐻 (𝑚)/𝑘1𝑘2 + 𝑟 (𝑥1 +𝑥2)/𝑘1𝑘2, they adopt three
MtA to export the additive shares of 1/𝑘1 · 1/𝑘2, 𝑥1/𝑘1 · 1/𝑘2, and
1/𝑘1 · 𝑥2/𝑘2 respectively. Thus, their two-party case of 2-out-of-𝑛
scheme is worse than their direct two-party scheme where only
twoMtA are required.
The first attempt: Re-sharing of the secret. We resolve this
problem with a re-sharing of secret 𝑥 using a share of nonce 𝑘2.
Concretely, in the offline phase the secret 𝑥 = 𝑥1 + 𝑥2 is re-shared
to 𝑥 ′1, 𝑥

′
2 using one MtA such that

𝑥1 + 𝑥2 = 𝑥 ′1𝑘2 + 𝑥 ′2 .
In the online phase, 𝑃2 computes 𝑠2 = 𝑘−12 (𝐻 (𝑚) + 𝑟𝑥 ′2), and 𝑃1
could derive the signature component 𝑠 from 𝑠2, 𝑘1 and 𝑥 ′1 since

𝑠 = 𝑘−11 (𝑠2 + 𝑟𝑥 ′1)
= 𝑘−11 𝑘−12

[
𝐻 (𝑚) + 𝑟 (𝑥 ′2 + 𝑘2𝑥 ′1)

]
= 𝑘−1 (𝐻 (𝑚) + 𝑟𝑥) .

The offline phase re-shares the secret 𝑥 = 𝑥1 + 𝑥2 into 𝑥 =
𝑥 ′1𝑘2 + 𝑥 ′2, with a single MtA. Specifically, 𝑃1 chooses a random
𝑥 ′1 ← Z𝑞 , and then 𝑃1 and 𝑃2 invoke MtA with input 𝑥 ′1 and 𝑘2
respectively, and receive shares 𝑡𝐴 and 𝑡𝐵 such that 𝑡𝐴 + 𝑡𝐵 = 𝑥 ′1𝑘2.
Then 𝑃1 masks 𝑥1 with 𝑡𝐴 and sends 𝑐𝑐 = 𝑡𝐴 − 𝑥1 to 𝑃2. 𝑃2 could

extract its new share 𝑥 ′2 from 𝑐𝑐, 𝑥2, and 𝑡𝐵 , since
𝑥 ′2 = 𝑥1 + 𝑥2 − 𝑥 ′1𝑘2 = (𝑡𝐴 − 𝑐𝑐) + 𝑥2 − 𝑥 ′1𝑘2 = −𝑡𝐵 − 𝑐𝑐 + 𝑥2 .

The resulting scheme is online-friendly and requires a single MtA
in the offline phase. Unfortunately, this solution is insecure and a
malicious adversary may cheat.
Attack on the first attempt. We show that a malicious 𝑃2 can
obtain 𝑥1 in the previous scheme. Observe that

𝑥1 = 𝑡𝐴 − 𝑐𝑐 = 𝑥 ′1𝑘2 − 𝑡𝐵 − 𝑐𝑐,
where 𝑘2, 𝑡𝐵, 𝑐𝑐 are known to 𝑃2. The malicious 𝑃2 can set 𝑘2 = 0
as the input of MtA and learn 𝑃1’s secret 𝑥1 = −𝑡𝐵 − 𝑐𝑐 .
Our solution: Linear sharing of the nonce. A simple solution
to rule out the attack of 𝑘2 = 0 is to add a zero-knowledge proof of
𝑘2 ≠ 0 for 𝑃2, but it would be quite expensive. Instead, we apply a re-
randomization method to solve this problem. Now, the re-sharing
of the secret is changed to 𝑥 = 𝑥 ′1 (𝑘2 + 𝑟1) + 𝑥 ′2, where 𝑟1 is chosen
by 𝑃1 and could be given to 𝑃2. To achieve that, 𝑃1 now masks
𝑥1 with 𝑡𝐴 and a random 𝑟1 by setting 𝑐𝑐 = 𝑡𝐴 + 𝑟1𝑥 ′1 − 𝑥1. Now
𝑥1 = 𝑡𝐴 + 𝑟1𝑥 ′1 −𝑐𝑐 = 𝑥 ′1 (𝑘2 + 𝑟1) − 𝑡𝐵 −𝑐𝑐 . If 𝑟1 is chosen by 𝑃1 after
𝑘2 is chosen by the (malicious) 𝑃2, 𝑃2 learns nothing about 𝑥1 since
𝑘2 + 𝑟1 = 0 with probability at most 1/𝑞.

In order to support this change in the re-sharing of the secret, we
need to view 𝑃2’s share of the nonce as (𝑘2+𝑟1). Interestingly, while
we require 𝑟1 to be chosen by 𝑃1 (in order to withstand the above

3

attack), (𝑘2 + 𝑟1)−1 can be computed by 𝑃2 itself (otherwise, we
need another round of MtA). Hence, we change the multiplicative
sharing of the nonce 𝑘 into a linear function 𝑘1 (𝑟1 + 𝑘2). In the
offline phase, 𝑃1 picks random 𝑟1 and sends it to 𝑃2. Later in the
online phase, (𝑘2 + 𝑟1)−1 can be computed by 𝑃2. This is the reason
why we use a linear sharing of the nonce.

Additional consistency check is needed when setting up 𝑘 · 𝑃 by
𝑃1 and 𝑃2. Details are given in Sec. 3.

1.3 Extension and Instantiations

Extending to 2-out-of-𝑛Access Structures.Our two-party 2ECDSA
is presented using 2-out-of-2 additive share of the private key 𝑥 .
It could be easily extended to a 2-out-of-𝑛 protocol using Shamir
secret-sharing, in a way similar to Gennaro and Goldfeder [19]. A
similar approach has been described in [26] and [6]. We also let 𝑥 be
the additive share of each party’s contribution 𝑥𝑖 , i.e. 𝑥 = 𝑥1+· · ·+𝑥𝑛 .
It is natural to use a 2-out-of-𝑛 Shamir secret-sharing [30] to convert
it into a 2-out-of-𝑛 shares of 𝑥 in a verifiable manner.

Here, we give a brief overview. For details, please refer to Ap-
pendix A. Each 𝑃𝑖 chooses a linear function 𝑓𝑖 such that 𝑓𝑖 (0) = 𝑥𝑖
and sends 𝑥 (𝑗)

𝑖
= 𝑓𝑖 (𝑗) to 𝑃 𝑗 for all 𝑗 ∈ [1, 𝑛]. Then, every two

parties 𝑃𝑖 , 𝑃 𝑗 could recover 𝑥𝑘 (for every 𝑘 ∈ [1, 𝑛]) via interpo-
lating from 𝑥

(𝑖)
𝑘

and 𝑥 (𝑗)
𝑘

, i.e., 𝑥𝑘 = 𝛬𝑖𝑥
(𝑖)
𝑘
+ 𝛬𝑗𝑥 (𝑗)𝑘 where 𝛬𝑖 , 𝛬𝑗

are Lagrange coefficients. With Shamir’s secret sharing, any two
parties 𝑃𝑖 , 𝑃 𝑗 could generate 𝛬𝑖

∑𝑛
𝑘=1 𝑥

(𝑖)
𝑘

and 𝛬𝑗
∑𝑛
𝑘=1 𝑥

(𝑗)
𝑘

such
that 𝑥 = 𝛬𝑖

∑𝑛
𝑘=1 𝑥

(𝑖)
𝑘
+𝛬𝑗

∑𝑛
𝑘=1 𝑥

(𝑗)
𝑘

. They could further invoke the
signing of 2ECDSA directly with 𝛬𝑖

∑𝑛
𝑘=1 𝑥

(𝑖)
𝑘

and 𝛬𝑗
∑𝑛
𝑘=1 𝑥

(𝑗)
𝑘

as
their additive shares of 𝑥 . The general 2-out-of-𝑛 ECDSA has the
same signing protocol with 2ECDSA.

On the instantiations of MtA. Existing constructions of MtA
from OT, Paillier encryption, and CL-encryption can be directly
applied to our 2ECDSA.

Doerner et al. [15] proposed an OT-based MtA from Simplest
OT [10] and KOS [23] OT-extension protocols. TheirMtA is com-
putationally efficient, while the communication cost is rather high
(e.g., 90 KB for 128 bits security). Although improved method was
applied, their two-party ECDSA requires a communication cost of
at least 168 KB. Integrating the OT-based MtA into our scheme, we
obtain the first OT-based two-party signature with communication
cost less than 100 KB at 128-bit security.

Paillier-based MtA is first proposed in [27] and improved by
[6, 19, 26]. The main issue when using Paillier cryptosystem for
MtA is that it operates over Z𝑁 rather than Z𝑞 , where 𝑞 is the EC
group order. As a result, expensive zero-knowledge range proofs are
required. There are several solutions to simply or even remove these
proofs, such as range proof with slack [26], and a non-standard
Paillier-EC assumption [19] (refer to Appendix C.4). Using range
proof with slack and Paillier-EC assumption, a Paillier-basedMtA
requires 8 Paillier exponentiations and a transmission of 10 log𝑁
bits. Depending on Paillier-EC assumption is applied or not, we
propose two Paillier-based schemes.

Castagnos et al. [7] replace Paillier encryption with Castagnos
and Laguillaumie [9] encryption over class group. The key feature
of CL-encryption is that it allows instantiations where the message

space is exactly Z𝑞 . However, this kind of MtA requires new zero-
knowledge proofs performed on unknown order groups, which is
the heaviest part of all these constructions. Follow-up works [8, 33]
further improve the underlying zero-knowledge proof system.

We note that there are other instantiations from noisy Reed-
Solomon encodings (RS) [20] and Ring-LWE [2]. However, these
constructions are not very suitable for the parameters related to
ECDSA. We leave it as the future work to improve the underlying
MtA protocol with these techniques.

1.4 Related Works and Discussion
1.4.1 Related works. Efficient constructions of threshold ECDSA
fall into the following three categories. For more details, please
refer to [1].
Paillier-based Schemes. Following [27], Lindell [25] proposed a
competitive two-party ECDSA utilizing multiplicative sharing of
secret and nonce in combination with Paillier encryption. Lindell’s
scheme has the best overall efficiencywhile its online phase needs to
perform a Paillier decryption. Later, Lindell et al. [26], and Gennaro
and Goldfeder [19] proposed a full threshold ECDSA protocol with
additive shares. They both require at least 8 communication rounds
and their online phase is interactive. Recently, Canetti et al. [6]
proposed an online-friendly three-pass threshold ECDSA at the
cost of extra overhead.
CL-based Schemes. Castagnos et al. [7] addressed the problem of
relying on non-standard assumption in [25] by replacing Paillier
encryption with CL-encryption [9] which allows the message space
to match that of the signature space (Z𝑞). Castagnos et al. [8] further
extended their work to full threshold by following Gennaro and
Goldfeder’s blueprint. Very recently, Yuen et al. [33] improves the
underlying zero-knowledge proof of Castagnos et al.’s protocol,
thus reduces the overall bandwidth and running time. However,
the online phase of these schemes either requires the computation
of decryption or is interactive.
OT-based Schemes. The OT-based schemes are online-friendly
and do not require extra assumptions. Doerner et al. [15] used
multiplicative sharing of the signing key and the nonce as [7, 25],
and achieved fast online computation with the help of two MtA
from the oblivious transfer. They also generalized their work to 2-
of-𝑛 cases. Later, they [16] proposed a full threshold scheme. These
schemes are very fast in signing time, while the communication
cost is the bottleneck.

1.4.2 Discussion. We further discuss issues related to round com-
plexity and which party obtain the final signature in existing ap-
proaches.
On the Communication Rounds of Signing. As shown in Table
2, our scheme and [7, 25] require only 3 rounds (i.e., passes). All the
other protocols except [15] require more communication rounds.
However, as mentioned by [15, Sec. III], it relied on the generic
groupmodel (GGM) [31] to achieve this round reduction. Otherwise,
4 rounds are needed.
On the Generation of Final Signature. There are two commonly
used syntax regarding the output of the protocol, namely, 1) each
party generates a “signature share" and anyone (including a third
party) could compute the final signature from the signature shares;

4

2) only one party obtains the final signature. Notable examples of
the former include [6, 8, 16, 19, 26], and the latter include [7, 15, 25]
as well as our scheme. The obstacle in adding this property to our
scheme and [7, 15, 25] is that the nonce is shared multiplicatively,
and thus signature component “s" cannot be reconstructed from a
simple linear combination of signature shares.

1.5 Paper Organization.
The rest of paper is organised as follows. We review preliminaries
in section 2. Then we propose our protocol and prove its security in
section 3. In section 4, we show several instantiations of 2ECDSA.
Finally, section 5 presents a comprehensive analysis and comparison
with existing schemes.

2 PRELIMINARY
2.1 The ECDSA Signature
Let G be an elliptic curve group of order 𝑞 with base point (genera-
tor) 𝑃 . The algorithm makes use of the hash function 𝐻 . Curve co-
ordinates and scalars are represented in 𝜅 = log𝑞 bits. The ECDSA
scheme works as follows [11].

(1) Keygen(1𝜅): on input 1𝜅
• Choose a random 𝑥 ← Z𝑞 , set 𝑥 as the private key.
• Compute 𝑄 = 𝑥 · 𝑃 , and set 𝑄 as the public key.

(2) Sign(𝑥,𝑚): on input sign key 𝑥 and message𝑚
• Choose a random 𝑘 ← Z𝑞 , compute 𝑅 = (𝑟𝑥 , 𝑟𝑦) =
𝑘 · 𝑃 .
• Compute 𝑟 = 𝑟𝑥 mod 𝑞 and 𝑠 = 𝑘−1 (𝐻 (𝑚) + 𝑟𝑥)

mod 𝑞.
• Output (𝑟, 𝑠) as the signature.

(3) Verify(𝑚; (𝑟, 𝑠)) calculates (𝑟𝑥 , 𝑟𝑦) = 𝑅 = 𝑠−1𝐻 (𝑚) · 𝑃 +
𝑠−1𝑟 ·𝑄 and outputs 1 if and only if 𝑟 = 𝑟𝑥 mod 𝑞.

It is well known that for every valid signature (𝑟, 𝑠), the pair (𝑟,−𝑠)
is also a valid signature. To make (𝑟, 𝑠) unique, in this paper, we
mandate that the “smaller" of {𝑠,−𝑠} is the output.

2.2 Ideal Functionality for Two-Party ECDSA
The ideal functionality FECDSA for two-party ECDSA is shown in
Figure 1. It consists of two functions, namely, a key generation
function Keygen, called once, and a signing function Sign, called
an arbitrary number of times under the generated key.

2.3 The Multiplicative-to-Additive (MtA)
Functionality

The FMtA functionality, listed in Figure 2, is parameterized by the
group order 𝑞. It runs with two parties, 𝑃1 and 𝑃2, who may partici-
pate in the Setup phase once, and the Multiplication phases as many
times as they wish. FMtA runs and outputs 𝛼 , 𝛽 , from two parties
inputs, respectively, 𝑎 and 𝑏, under the restriction that 𝛼 + 𝛽 = 𝑎𝑏
mod 𝑞.

It could be instantiated from OT [15], Paillier encryption [19, 26],
CL encryption [8], etc. Please refer to Sec. 4 for more details.

Consider an elliptic curve group G of order 𝑞 with generator 𝑃 ,
then:
Keygen: On receiving Keygen(G, 𝑃, 𝑞) from 𝑃1 and 𝑃2

• Generate key pair (𝑄, 𝑥) where 𝑥 ← Z𝑞 and 𝑄 = 𝑥 · 𝑃 .
• Choose a hash function 𝐻 : {0, 1}∗ → {0, 1}𝜅 .
• Send 𝑄 and 𝐻 to 𝑃1 and 𝑃2.
• Store (G, 𝑃, 𝑞, 𝐻, 𝑥,𝑄) and ignore further calls.

Sign: On receiving Sign(sid,𝑚) from both 𝑃1 and 𝑃2, where keys
have been generated from a call to Keygen and sid has not been
used

• Choose 𝑘 ← Z𝑞 and compute 𝑅 = (𝑟𝑥 , 𝑟𝑦) = 𝑘 · 𝑃 .
• Compute 𝑟 = 𝑟𝑥 mod 𝑞 and 𝑠 = 𝑘−1 (𝐻 (𝑚) + 𝑟𝑥) mod 𝑞.
• Send (𝑟, 𝑠) to both 𝑃1 and 𝑃2.
• Store (Complete, sid) in the memory.

Figure 1: The functionality FECDSA for two-party ECDSA
signature.

Setup: On receiving (setup) from 𝑃1 and 𝑃2
• Store and send (setup-complete) to 𝑃1 and 𝑃2.

Multiplication: On receiving (input, sid, 𝑎 ∈ Z𝑞) from 𝑃1,
(input, sid, 𝑏 ∈ Z𝑞) from 𝑃2 where sid has not been used, if (setup-
complete) exists,

• Sample 𝛼 ∈ Z𝑞 and compute 𝛽 = 𝑎𝑏 − 𝛼 mod 𝑞.
• Send (output-1, sid, 𝛼) to 𝑃1
• Send (output-2, sid, 𝛽) to 𝑃2.

Figure 2: The functionality FMtA of multiplicative-to-
additive protocol.

2.4 Zero-Knowledge Proof
Let R be a polynomial-time-decidable binary relation. The corre-
sponding language 𝐿 consists of statement 𝑥 such that there exists
witness𝑤 and (𝑥,𝑤) ∈ R. We specify 𝐿 as an NP language.

An interactive proof consists of an interactive prover algorithm
𝑃 and a verifier algorithm 𝑉 that runs in PPT time. We call (𝑃,𝑉)
an interactive proof for relation R if it has the completeness and
soundness properties. Completeness means that for every 𝑥 ∈ 𝐿,
⟨𝑃,𝑉 ⟩(𝑥) is always 1. Soundness means that for every 𝑥 ∉ 𝐿 and ev-
ery prover 𝑃∗, Pr[⟨𝑃∗,𝑉 ⟩(𝑥) = 1] is negligible.When the soundness
holds for computationally bounded provers, the system is usually
called an “argument". In this paper, both proof and argument are
collectively referred to as proof.

Definition 2.1 (zero-knowledge). Let (𝑃,𝑉) be an interactive proof
for some language 𝐿. (𝑃,𝑉) is zero knowledge if for every PPT
verifier 𝑉 ∗ there exists a PPT simulator Sim such that the two
ensembles {𝑉𝑖𝑒𝑤𝑃

𝑉 ∗ (𝑥)}𝑥 ∈𝐿 and {Sim(𝑥)}𝑥 ∈𝐿 are identical.

We could also define statistical (resp. computational) zero-knowledge,
if the two ensembles are statistically (resp. computationally) indis-
tinguishable.

Definition 2.2 (proof-of-knowledge). Let 𝜁 : {0, 1}∗ → [0, 1] be a
function. (𝑃,𝑉) is a proof of knowledge for relation R with knowl-
edge error 𝜁 if the following properties are satisfied:

5

• Completeness: If 𝑃 and 𝑉 follow the protocol on input 𝑥
and private input𝑤 to 𝑃 where (𝑥,𝑤) ∈ R, then 𝑉 always
accepts.

• Knowledge Soundness: there exists a probabilistic oracle
machine Ext such that for every prover function 𝑃∗ and
every 𝑥 ∈ 𝐿, Ext satisfies the following: Denote 𝜖 (𝑥) the
probability that 𝑉 accepts on input 𝑥 after interacting with
𝑃∗. If 𝜖 (𝑥) > 𝜁 (𝑥), on input 𝑥 with access to 𝑃∗, Ext runs
in expected polynomial time and outputs a string𝑤 such
that (𝑥,𝑤) ∈ R with probability at least 𝜖 (𝑥) − 𝜁 (𝑥).

We remark that every zero-knowledge proof of knowledge (ZKPoK)
in this paper is transformed to non-interactive [4] using the Fiat-
Shamir paradigm [18] in the random oracle model.
ZKPoK of Discrete Logarithm. Define the relation

R𝐷𝐿 := { ((𝑅, 𝑃), 𝑥) |𝑅, 𝑃 ∈ G, 𝑅 = 𝑥 · 𝑃},
where the parameters of elliptic curve (G; 𝑃 ;𝑞) are implicit public
parameters. We use the standard Schnorr proof [29] for R𝐷𝐿 , ap-
ply the Fiat-Shamir [18] transformation to get a non-interactive
ZKPoK. Denote by nizkPoK the proof generator and Verifzk the
verify algorithm for R𝐷𝐿 .

3 TWO-PARTY SIGNATURES FOR ECDSA
In this section, we present a two-party protocol 2ECDSA. We first
describe the distributed key generation phase that is executed once,
followed by the signing phase which may run multiple times. The
process is also illustrated in Fig. 3.

Let MtA be the multiplicative-to-additive functionality, nizkPoK
be the NIZK proof for discrete logarithm relation R𝐷𝐿 . Let H :
{0, 1}∗ → {0, 1}𝜅 be a hash function.

Although we make a logical presentation of the signing proce-
dure in four phases, in the actual protocol they are intertwined. We
could reorder the messages in the instantiations such that messages
of MtA from 𝑃2 to 𝑃1 come first, followed by all messages from 𝑃1
to 𝑃2, which results in a 3-pass signing protocol.
Distributed Key Generation Phase Keygen(G, 𝑃, 𝑞).
Given the joint input (G, 𝑃, 𝑞) and security parameter 𝜆:

(1) 𝑃1’s first message:
• 𝑃1 chooses a random 𝑥1 ← Z𝑞 , and computes 𝑄1 =
𝑥1 · 𝑃 and nizk1 = nizkPoK(𝑄1, 𝑥1)
• 𝑃1 sends f1 = H(𝑄1, nizk1) to 𝑃2

(2) 𝑃2’s first message:
• 𝑃2 chooses a random 𝑥2 ← Z𝑞 , and computes 𝑄2 =
𝑥2 · 𝑃 and nizk2 = nizkPoK(𝑄2, 𝑥2)
• 𝑃2 sends 𝑄2, nizk2 to 𝑃1

(3) 𝑃1’s second message:
• On receiving 𝑄2, nizk2 from 𝑃2, 𝑃1 verifies nizk2. If

Verifzk(nizk2)=0, abort
• Else, 𝑃1 sends 𝑄1, nizk1 to 𝑃2

(4) 𝑃2’s verification:
• On receiving 𝑄1, nizk1 from 𝑃1, 𝑃2 verifies nizk1.
• If f1 ≠ H(𝑄1, nizk1) or Verifzk(nizk1)=0, abort.

(5) Compute output:
• 𝑃1 computes 𝑄 = 𝑄1 +𝑄2, stores (𝑄, 𝑥1, 𝑄1, 𝑄2).
• 𝑃2 computes 𝑄 = 𝑄2 +𝑄1, stores (𝑄, 𝑥2, 𝑄1, 𝑄2).

Distributed Sign Phase Sign(sid,𝑚). They begin with the session
id sid,𝑚 the message to be signed, and additive share of secret key.
The protocol is divided into 4 logical steps, and only the last one is
online.

• 𝑃1 has (𝑄, 𝑥1, 𝑄1, 𝑄2) as the output of Keygen, message𝑚
and session id sid.

• 𝑃2 has (𝑄, 𝑥2, 𝑄1, 𝑄2) as the output of Keygen, message𝑚
and session id sid.

(1) Commitment of 𝑃2’s nonce:
• 𝑃2 chooses a random 𝑘2 ← Z𝑞 , and computes 𝑅2 =
𝑘2 · 𝑃 with nizk3 = nizkPoK(𝑅2, 𝑘2)
• 𝑃2 computes and sends f2 = H(𝑅2, nizk3) to 𝑃1.

(2) MtA and Consistency Check:
• 𝑃1 chooses a random 𝑥 ′1 ← Z𝑞 , and computes 𝑄 ′1 =
𝑥 ′1 · 𝑃 .
• 𝑃1 and 𝑃2 invoke the MtA functionality with input 𝑥 ′1

and 𝑘2 respectively and receives 𝑡𝐴 , 𝑡𝐵 such that

𝑡𝐴 + 𝑡𝐵 = 𝑥 ′1𝑘2 mod 𝑞.

• 𝑃1 chooses a random 𝑟1 ← Z𝑞 , and computes 𝑐𝑐 :=
𝑡𝐴 + 𝑥 ′1𝑟1 − 𝑥1 mod 𝑞 and sends (𝑟1, 𝑐𝑐) to 𝑃2.
• 𝑃2 checks the consistency by checking

(𝑡𝐵 + 𝑐𝑐) · 𝑃 ?
= (𝑟1 + 𝑘2) ·𝑄 ′1 −𝑄1 .

• if the consistency check passes, 𝑃2 computes

𝑥 ′2 = 𝑥2 − (𝑡𝐵 + 𝑐𝑐) mod 𝑞.

(3) Nonce Key Exchange:
• 𝑃1 chooses a random 𝑘1 ← Z𝑞 , computes and sends
𝑅1 = 𝑘1 · 𝑃 with nizk4 = nizkPoK(𝑅1, 𝑘1) to 𝑃2.

• 𝑃2 aborts if Verifzk(nizk4)=0, otherwise sends (𝑅2, nizk3)
to 𝑃1 and computes 𝑅 = (𝑟𝑥 , 𝑟𝑦) = (𝑘2 + 𝑟1) · 𝑅1, and
𝑟 = 𝑟𝑥 mod 𝑞.
• 𝑃1 aborts if f2 ≠ H(𝑅2, nizk3) or Verifzk(nizk3)=0, oth-

erwise computes 𝑅 = (𝑟𝑥 , 𝑟𝑦) = 𝑘1 · 𝑅2 + 𝑘1𝑟1 · 𝑃 and
𝑟 = 𝑟𝑥 mod 𝑞.

(4) Online Signature:
• Given𝑚, 𝑃2 computes ℎ = 𝐻 (𝑚) and sends

𝑠2 = (𝑘2 + 𝑟1)−1 (ℎ + 𝑟𝑥 ′2) mod 𝑞

to 𝑃1.
• On receiving 𝑠2, 𝑃1 computes

𝑠 = 𝑘−11 (𝑠2 + 𝑟𝑥 ′1) mod 𝑞.

• 𝑃1 aborts if Verify(𝑚; (𝑟, 𝑠)) = 0, else returns (𝑟, 𝑠) as
the final signature.

Correctness. By the definition of 𝑥 ′2, we have

𝑥 ′2 = 𝑥2 − (𝑡𝐵 + 𝑐𝑐)
= 𝑥2 − (𝑡𝐵 + 𝑡𝐴 + 𝑥 ′1𝑟1 − 𝑥1)
= 𝑥2 − (𝑥 ′1𝑘2 + 𝑥 ′1𝑟1) + 𝑥1

over Z𝑞 , thus 𝑥 ′1 (𝑟1 + 𝑘2) + 𝑥 ′2 = 𝑥1 + 𝑥2 mod 𝑞.
6

𝑃1 𝑃2

. .Keygen(G, 𝑃, 𝑞) .

𝑥1 ← Z𝑞 , 𝑄1 = 𝑥1 · 𝑃

nizk1 := nizkPoK(𝑄1 , 𝑥1)
f1 := H(𝑄1 , nizk1)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝑥2 ← Z𝑞 , 𝑄2 = 𝑥2 · 𝑃

if Verifzk(nizk2) = 0, return ⊥
𝑄2 , nizk2←−−−−−−−−−−−−−−−−−−−−−−−−−−−− nizk2 := nizkPoK(𝑄2 , 𝑥2)

𝑄1 , nizk1−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ if f1 ≠ H(𝑄1 , nizk1) , return ⊥
if Verifzk(nizk1) = 0, return ⊥

𝑄 = 𝑄1 +𝑄2 𝑄 = 𝑄1 +𝑄2

. Sign(sid, 𝑚) .

(1) Commit 𝑃2’s Nonce 𝑘2 ← Z𝑞 , 𝑅2 = 𝑘2 · 𝑃
f2 := H(𝑅2 , nizk3)←−−−−−−−−−−−−−−−−−−−−−−−−−−−− nizk3 := nizkPoK(𝑅2 , 𝑘2)

(2)MtA and Consistency

𝑥′1 ← Z𝑞 , 𝑄′1 = 𝑥′1 · 𝑃
𝑥′1−−−−−−−→

𝑘2←−−−−−−−

MtA

𝑡𝐴←−−−−−−−
𝑡𝐵−−−−−−−→

𝑟1 ← Z𝑞

𝑐𝑐 = 𝑡𝐴 + 𝑥′1𝑟1 − 𝑥1 mod 𝑞
𝑄′1 , 𝑟1 , 𝑐𝑐−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ if (𝑡𝐵 + 𝑐𝑐)𝑃 = (𝑟1 + 𝑘2)𝑄′1 −𝑄1

𝑥′2 = 𝑥2 − (𝑡𝐵 + 𝑐𝑐) mod 𝑞

(3) Nonce KE
𝑘1 ← Z𝑞 , 𝑅1 = 𝑘1 · 𝑃

nizk4 := nizkPoK(𝑅1 , 𝑘1)
𝑅1 , nizk4−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ if Verifzk(nizk4) = 0, return ⊥

if f2 ≠ H(𝑅2 , nizk3) , return ⊥
𝑅2 , nizk3←−−−−−−−−−−−−−−−−−−−−−−−−−−−− 𝑅 := (𝑟1 + 𝑘2) · 𝑅1

if Verifzk(nizk3) = 0, return ⊥
𝑅 := 𝑘1 · 𝑅2 + 𝑘1𝑟1 · 𝑃
(4) Online Sign

𝑠 = 𝑘−11 (𝑠2 + 𝑟 𝑥′1) mod 𝑞
𝑠2←−−−−−−−−−−−−−−−−−−−−−−−−−−−− 𝑠2 = (𝑟1 + 𝑘2)−1 (𝐻 (𝑚) + 𝑟 𝑥′2) mod 𝑞

if Verify(𝑚; (𝑟 , 𝑠)) = 0, return ⊥
else return (𝑟 , 𝑠)

Figure 3: Two-party protocol 2ECDSA from a single MtA.

7

Let 𝑘 := 𝑘1 (𝑟1 + 𝑘2) mod 𝑞, then 𝑅 = 𝑘 · 𝑃 . We have
𝑠 = 𝑘−11 (𝑠2 + 𝑟𝑥 ′1)
= 𝑘−11

[(𝑟1 + 𝑘2)−1 (𝐻 (𝑚) + 𝑟𝑥 ′2) + 𝑟𝑥 ′1]
= 𝑘−11 (𝑟1 + 𝑘2)−1

[
𝐻 (𝑚) + 𝑟 (𝑥 ′2 + 𝑥 ′1𝑟1 + 𝑥 ′1𝑘2)

]
= 𝑘−11 (𝑟1 + 𝑘2)−1 [𝐻 (𝑚) + 𝑟 (𝑥1 + 𝑥2)]
= 𝑘−11 (𝑟1 + 𝑘2)−1 (𝐻 (𝑚) + 𝑟𝑥)

over Z𝑞 . Thus, (𝑟, 𝑠) is a valid signature of𝑚.

3.1 Security of 2ECDSA
Theorem 3.1. The two-party 2ECDSA protocol in Figure 3 securely

computes FECDSA in the random oracle model in the presence of a
malicious static adversary under the real/ideal definition. Concretely,
there exists a simulator for the scheme such that any probabilistic
polynomial time adversary, who corrupted 𝑃1 or 𝑃2, can distinguish a
real execution of the protocol from a simulated one with only negligible
probability.

The simulator S could only access to an ideal functionality
FECDSA for computing ECDSA signatures. All S learns in the ideal
world is the public key 𝑄 generated in the key generation phase
and several signatures for messages of its choice in the signature
phase. In the real world, the adversary, having either corrupted
𝑃1 or 𝑃2 will also see all the interactions with the non-corrupted
party. Thus S must be able to simulate the adversary’s view of
these interactions, while only knowing the expected output. The
proof proceeds in two cases: the adversary corrupts 𝑃1, and the
adversary corrupts 𝑃2.
S simulates 𝑃2- Corrupted 𝑃1.We first show that if adversaryA
corrupts 𝑃1, there exists simulator S such that the output distribu-
tion of S is indistinguishable from A’s view in the real execution
of the protocol.

Simulator S maintains a hash list 𝐿ℎ for H. On any query 𝑦 to
H, if ∃(𝑦,ℎ𝑦) ∈ 𝐿ℎ , return ℎ𝑦 , else return ℎ𝑦 ← {0, 1}𝜅 and add
(𝑦,ℎ𝑦) to 𝐿𝑓 .
Key Generation Phase.

(1) Given inputKeygenG, 𝑃, 𝑞),S sendsKeygenG, 𝑃, 𝑞) toFECDSA
and receives back the public key 𝑄 .

(2) S invokes A upon input KeygenG, 𝑃, 𝑞) and receives f1.
• if there exists (𝑄1 | |nizk1, f1) ∈ 𝐿ℎ , checkVerifzk(nizk1).

If Verifzk(nizk1) = 1, extract 𝑥1 with Ext. If𝑄1 = 𝑥1 ·𝑃 ,
compute 𝑄2 = 𝑄 −𝑄1.

• otherwise, choose random 𝑄2.
With the help of zero knowledge simulator Sim, S com-
putes nizk2, the non-interactive proof of knowledge for the
discrete log of 𝑄2.

(3) S sends 𝑄2, nizk2 to A.
(4) S receives 𝑄1, nizk1 from A. If (𝑄1 | |nizk1, f1) ∉ 𝐿ℎ , abort.
S simulates 𝑃2 aborting if Verifzk(nizk1) = 0 or𝑄1 ≠ 𝑥1 ·𝑃 .

(5) S sends continue to FECDSA for 𝑃2 to receive output and
stores (𝑄, 𝑥1, 𝑄1, 𝑄2).

To pass the check of f1 = H(𝑄1, nizk1), A must have queried
(𝑄1, nizk1) to the random oracle. Thus, the difference between
the real execution and the ideal execution simulated by S is the
generation of𝑄2 and nizk2. In the real execution,𝑄2 = 𝑥2 ·𝑃 where

𝑥2 ← Z𝑞 , and nizk2 = nizkPoK(𝑄2, 𝑥2), while in the later 𝑄2 =
𝑄 − 𝑄1 and nizk2 ← Sim(𝑄2, 𝑃) where 𝑄 is returned by FECDSA.
Ext extracts 𝑥1 with knowledge error 1/𝑞. Since FECDSA samples𝑄
uniformly at random from G, conditional on the extraction of 𝑥1,
the distribution of 𝑄2 in both cases is identical. Since Sim perfectly
simulate the proof, the distribution of nizk2 is also identical.
Signing Phase.

• Given input Sign(sid,𝑚), S sends Sign(sid,𝑚) to FECDSA
and receives signature (𝑟, 𝑠).

• Using the verification procedure, S recovers 𝑅 from (𝑟, 𝑠).
(1) Commitment: S invokes A with input Sign(sid,𝑚) and

sends a random string f2← {0, 1}𝜅 to A.
(2) MtA and consistency check:

• S interacts with A on behave of FMtA and in doing
so receives A’s input 𝑥 ′1 and output shares 𝑡𝐴 .

• On receiving 𝑄 ′1, 𝑟1, 𝑐𝑐 from A, S checks the consis-
tency by verifying 𝑄 ′1

?
= 𝑥 ′1 · 𝑃 and 𝑐𝑐 ?

= 𝑡𝐴 + 𝑥 ′1𝑟1 − 𝑥1
mod 𝑞, and simulates 𝑃2 aborting if these equations
do not hold.

(3) Nonce key exchange:
• Upon receiving (𝑅1, nizk4) from A, S simulates 𝑃2

aborting if Verifzk(nizk4) = 0. Else S extracts 𝑘1 uti-
lizing Ext algorithm.

• S computes 𝑅2 = 𝑘−11 · 𝑅 − 𝑟1 · 𝑃 , generates nizk3
by querying zero knowledge simulator Sim, and adds
(𝑅2 | |nizk3, f2) to the hash list 𝐿ℎ .

(4) Online Signature: S computes 𝑠2 = 𝑘1𝑠−𝑥 ′1𝑟 mod 𝑞 where
𝑥 ′1 and 𝑘1 are extracted from nizk1 and nizk4 respectively,
and sends 𝑅2, nizk3, 𝑠2 to A.

The difference between a real execution and the simulation is
how 𝑅2 and 𝑠2 are computed, and the consistency of 𝑄 ′1 and 𝑥 ′1
is check. In the simulation, 𝑅2 is 𝑘−11 · 𝑅 − 𝑟1 · 𝑃 whereas in the
real execution 𝑅2 = 𝑘2 · 𝑃 where 𝑘2 ← Z𝑞 . Since FECDSA samples
𝑅 uniformly at random from G, the distribution in both cases is
identical. Ext extracts 𝑘1 with knowledge error 1/𝑞. Conditional on
the correctness of 𝑘1, in the simulation

𝑠2 = 𝑘1𝑠 − 𝑥 ′1𝑟 = (𝑟1 + 𝑘2)−1 (𝐻 (𝑚) + 𝑟𝑥 ′2) mod 𝑞

which is identical to that in the real execution. Conditions𝑄 ′1 = 𝑥
′
1 ·𝑃

and 𝑐𝑐 = 𝑡𝐴 + 𝑥 ′1𝑟1 − 𝑥1 mod 𝑞 in the simulation are equivalent to
(𝑡𝐵 + 𝑐𝑐) · 𝑃 = (𝑟1 + 𝑘2) ·𝑄 ′1 −𝑄1 in the real game.

This implies that the view of a corrupted 𝑃1 in the real execution
is indistinguishable from that of the simulation, i.e., the advantage of
any PPT adversarywho corrupts 𝑃1 to distinguish the real execution
and simulated execution given by S is negligible.
S simulates 𝑃1- Corrupted 𝑃2. We show that if an adversary
A corrupts 𝑃2, there exists a simulator S such that the output
distribution of S is indistinguishable with A’s view in the real
execution of the protocol. Simulator S maintains a hash list 𝐿ℎ for
H. On any query 𝑦 to H, if ∃(𝑦,ℎ𝑦) ∈ 𝐿ℎ , return ℎ𝑦 , else return
ℎ𝑦 ← {0, 1}𝜅 and add (𝑦,ℎ𝑦) to 𝐿ℎ .
Key Generation Phase.

(1) Given inputKeygenG, 𝑃, 𝑞),S sendsKeygenG, 𝑃, 𝑞) toFECDSA
and receives back the public key 𝑄 .

8

(2) S invokesA with inputKeygenG, 𝑃, 𝑞) and sends a random
string f1← {0, 1}𝜅 to A.

(3) Upon receiving (𝑄2, nizk2) from A, S computes 𝑄1 = 𝑄 −
𝑄2 and generates nizk1 with the help of zero knowledge
simulator Sim.

(4) S adds (𝑄1 | |nizk1, f1) to the hash list 𝐿ℎ .
(5) S sends 𝑄1, nizk1 to A and stores (𝑥2, 𝑄,𝑄1, 𝑄2).
The difference between real execution and ideal execution simu-

lated by S is the generation of 𝑄1 and nizk1. In the real execution,
𝑄1 = 𝑥1 · 𝑃 where 𝑥1 ← Z𝑞 , and nizk1 = nizkPoK(𝑄1, 𝑥1), while
in the later 𝑄1 = 𝑄 − 𝑄2 and nizk1 ← Sim(𝑄1, 𝑃) where 𝑄 is re-
turned by FECDSA. Ext extracts 𝑥2 with knowledge error 1/𝑞. Since
FECDSA samples 𝑄 uniformly at random from G, conditional on
the extraction of 𝑥2, the distribution of𝑄1 in both cases is identical.
Since Sim perfectly simulate the proof, the distribution of nizk1 is
also identical.
Signing Phase.

• Given input Sign(sid,𝑚), S sends Sign(sid,𝑚) to FECDSA
and receives signature (𝑟, 𝑠).

• Using the verification procedure, S recovers 𝑅 from (𝑟, 𝑠).
(1) Commitment: S invokes A with input Sign(sid,𝑚) and

receives f2 from A.
• if ∃(𝑅2 | |nizk3, f2) ∈ 𝐿ℎ , S extracts 𝑘2 such that 𝑅2 =
𝑘2 ·𝑃 with the help of knowledge extractor (if the proof
is accepted). Then S samples a random 𝑟1 ← Z𝑞 and
computes 𝑅1 = (𝑟1 + 𝑘2)−1 · 𝑅.

• otherwise, samples a random 𝑟1 ← Z𝑞 and a random
point 𝑅1 and generates nizk4 with the help of zero
knowledge simulator Sim

(2) MtA and consistency check:
• S interacts with A on behave of FMtA and in doing

so receives its input 𝑘 ′2 and output shares 𝑡𝐵 .
• S samples a random 𝑐𝑐 ← Z𝑞 , computes

𝑄 ′1 = (𝑘 ′2 + 𝑟1)−1 [(𝑡𝐵 + 𝑐𝑐) · 𝑃 +𝑄1],
and sends (𝑄 ′1, 𝑟1, 𝑐𝑐) to A.

(3) Nonce key exchange: S computes 𝑅1 = (𝑟1 + 𝑘2)−1 · 𝑅,
generates nizk4 by querying zero knowledge simulator Sim,
and sends them to A.

(4) Online signature: Upon receiving 𝑅2, nizk3, 𝑠2 from A, S
checks the proof of nizk3, and whether f2 = H(𝑅2, nizk3)
and

𝑠2 · (𝑟1 · 𝑃 + 𝑅2) ?
= ℎ · 𝑃 + 𝑟 · (𝑥2 − 𝑡𝐵 − 𝑐𝑐) · 𝑃 .

If the checks pass, S returns (𝑟, 𝑠) as the final signature,
else aborts.

The difference between a real execution and the simulation is
how 𝑅1 and𝑄 ′1 are computed, and the condition that (𝑟, 𝑠) is output
or not.

In the simulation, 𝑅1 is 𝑅1 = (𝑟1 + 𝑘2)−1 · 𝑅 whereas in the
real execution 𝑅1 = 𝑘1 · 𝑃 where 𝑘1 ← Z𝑞 . Since FECDSA samples
𝑅 uniformly at random from G, the distribution in both cases is
identical. In the simulation, 𝑄 ′1 is (𝑘 ′2 + 𝑟1)−1 [(𝑡𝐵 + 𝑐𝑐) · 𝑃 + 𝑄1]
whereas in the real execution𝑄 ′1 = 𝑥

′
1 · 𝑃 for 𝑥 ′1 ← Z𝑞 . Since 𝑟1 and

𝑐𝑐 are sampled randomly and the consistency check always passes,
the distribution in both cases is identical.

In the real execution, the Verify algorithm checks that 𝑠 · 𝑅 ?
=

ℎ · 𝑃 + 𝑟 ·𝑄 , i.e., implicitly checks

𝑠2 (𝑟1 + 𝑘2) ?
= ℎ + 𝑟 (𝑥2 − 𝑡𝐵 − 𝑐𝑐) mod 𝑞. (2)

Since
𝑠2 · (𝑟1 · 𝑃 + 𝑅2) = ℎ · 𝑃 + 𝑟 (𝑥2 − 𝑡𝐵 − 𝑐𝑐) · 𝑃 (3)

holds if and only if Equation 2 is correct, the condition to output
(𝑟, 𝑠) in both the real and simulated case is identical.

This implies that the view of a corrupted 𝑃2 in the real execution
is indistinguishable with that of the simulation, i.e., the advantage of
any PPT adversarywho corrupts 𝑃2 to distinguish the real execution
and simulated execution given by S is negligible.

4 INSTANTIATIONS OFMTA AND THEIR
APPLICATIONS TO 2ECDSA

There are several constructions of MtA which could be directly
applied to our 2ECDSA.

4.1 MtA from Oblivious Transfer
Following Gilboa’s semi-honest oblivious transfer [21], and moti-
vated by two-party ECDSA, Doerner et al. [15] proposed a MtA
against malicious adversary. Their construction is based upon Sim-
plest OT [10] and KOS [23] OT-extension protocols. Please refer
to Appendix B for a detailed description. Their MtA is computa-
tionally very efficient, while the communication is rather large. To
compute aMtA, at least 8𝜅2 bits must be transferred. Concretely,
when 𝜅 = 256, the communication of a single execution of MtA is
≈ 90 KB.

Their OT-based MtA could be applied to 2ECDSA. The online
phase of both [15] and our protocols are extremely lightweight:
sending a single field element and computing two elliptic curve
point multiplications. In our protocol, a single MtA is required
while the two-party ECDSA of [15] needs two. Thus, our solution
requires roughly half of the communication and computation of
[15]. A concrete comparison is given in Sec. 5.

4.2 MtA from Paillier
Gennaro and Goldfeder [19] presented a Multiplicative-to-Additive
conversion protocol from Paillier encryption, which has appeared
many times before [12, 25, 27]. Lindell et al. [26] also proposed a
similar protocol and call it private multiplication. We recall it and
explain its application to our 2ECDSA.

Let 𝑝𝑘 = 𝑁 and 𝑠𝑘 = 𝜙 (𝑁) be the public and secret keys of Pail-
lier encryption. Denote the encryption of message𝑚 by Enc(𝑝𝑘,𝑚),
the decryption of ciphertext 𝑐 byDec(𝑠𝑘, 𝑐). Denote by 𝑐1⊕𝑐2 = 𝑐1𝑐2
mod 𝑁 2 the addition of the plaintext in ciphertexts 𝑐1 and 𝑐2, and
by 𝑎 ⊙ 𝑐 = 𝑐𝑎 mod 𝑁 2 the multiplication of the plaintext in 𝑐 by a
scalar 𝑎.

The Paillier-based MtA between 𝑃1 with input 𝑎 and 𝑃2 with
input 𝑏 works in Figure 4 where

• 𝜋𝑃 is a ZKPoK for {(𝑁 ;𝜙 (𝑁)) | gcd(𝑁,𝜙 (𝑁)) = 1};
• 𝜋𝐵 is a ZKPoK for {(𝑐𝐵 ;𝑏) |𝑐𝐵 = Enc(𝑝𝑘, 𝑏) ∧ 𝑏 ∈ Z𝑞};
• 𝜋𝐴 is a ZKPoK for {(𝑐𝐴, 𝑐𝐵 ;𝑎, 𝛼 ′) |𝑐𝐴 = 𝑎⊙𝑐𝐵⊕Enc(𝑝𝑘, 𝛼 ′)∧
𝑎 ∈ Z𝑞 ∧ 𝛼 ′ ∈ Z𝐾 }.

9

𝑃1 𝑃2

Setup
𝑁,𝜋𝑃←−−−−−−−− 𝑝𝑘 = 𝑁, 𝑠𝑘 = 𝜙 (𝑁)

Multiplication

𝛼 ′ ← Z𝐾
𝑐𝐵 ,𝜋𝐵←−−−−−−−− 𝑐𝐵 = Enc(𝑝𝑘, 𝑏)

𝑐𝐴 = 𝑎 ⊙ 𝑐𝐵 ⊕ Enc(𝑝𝑘, 𝛼 ′) 𝑐𝐴,𝜋𝐴−−−−−−−−→ 𝛽 ′ = Dec(𝑠𝑘, 𝑐𝐴)
𝛼 = −𝛼 ′ mod 𝑞 𝛽 = 𝛽 ′ mod 𝑞

Figure 4: The Paillier-basedMtA from [19].𝐾 is the parameter
to be determined.

Please refer to Appendix C for the full description of Paillier-based
MtA and these ZKPoK protocols (w/o slack regarding soundness).

As noted by previous works [6, 19, 25, 26], 𝜋𝐴 and 𝜋𝐵 are very
expensive. Several works have been done to reduce or even remove
these proofs. Lindell [25], Gennaro and Goldfeder [19] suggested to
eliminate 𝜋𝐴 by relying on a non-standard Paillier-EC assumption
(Appendix C.4). Lindell et al. [26], Gennaro and Goldfeder [19], and
Canetti et al. [6] found that it is enough to use proofs with a lot of
slack regarding soundness. The slack version of 𝜋𝐴 and 𝜋𝐵 roughly
cost computing 6 Paillier exponentiations and sending 6 log𝑁 bits.
Thus, the overall cost of Paillier-based MtA is computing approxi-
mately 14 Paillier exponentiations and sending 16 log𝑁 bits. Under
the Paillier-EC assumption, it could be further reduced to 8 Paillier
exponentiations and 10 log𝑁 bits respectively.

4.2.1 Applying Paillier-based MtA to 2ECDSA. We propose two
versions of Paillier-based 2ECDSA depending on whether or not
MtA relies on Paillier-EC assumption. When applying Paillier-EC
assumption, a proof-of-knowledge for the discrete logarithm of 𝑄 ′1
should be added against corrupted 𝑃1. (In order to extract 𝑥 ′1 to
querying the oracle in Paillier-EC assumption.) Actually, Gennaro
and Goldfeder [19] also proposed another non-standard assumption
to further eliminate 𝜋𝐵 , and their technique could also be applied
to our protocol. Nevertheless, to simplify the analysis, we do not
include it in this paper and just analyze Gennaro and Goldfeder’s
scheme based on Paillier-EC.

Lindell’s two-party protocol [25] has the best overall perfor-
mance. Nevertheless, their online phase is comparatively expensive,
i.e., sending a Paillier ciphertext and computing Paillier decryp-
tion. The online phase of the two-party case of Lindell’s threshold
scheme [26] is worst, since 14 Paillier exponentiations are required.
The online phase of [19] is fast, while their offline phase requires at
least computing 18 Paillier exponentiations and sending 16 ℓ𝑁 bits
depending on Paillier-EC is required or not. The online phase of the
two-party case of Canetti et al. [6] and our scheme are extremely
lightweight. However, the offline phase of [6] needs 204 Paillier ex-
ponentiations. Our scheme relies on 8 or 14 Paillier exponentiations
and sending 10 ℓ𝑁 or 16 ℓ𝑁 bits depending on whether Paillier-EC
is required. A concrete comparison is given in Sec. 5.

𝑃1 (pk, 𝑎) 𝑃2 (pk, sk;𝑏)

𝛼 ′ ← Z𝑞
𝑐𝐵 ,𝜋𝐶𝐿←−−−−−−−− 𝑐𝐵 = Enc𝑐𝑙 (pk, 𝑏)

𝑐𝐴 = 𝑎 ⊙ 𝑐𝐵 ⊕ Enc𝑐𝑙 (𝑝𝑘, 𝛼 ′)
𝑐𝐴−−−−−−−−→ 𝛽 ′ = Dec𝑐𝑙 (𝑠𝑘, 𝑐𝐴)

𝛼 = −𝛼 ′ mod 𝑞 𝛽 = 𝛽 ′ mod 𝑞

Figure 5: The CL-basedMtA extracted from [7, 8].

4.3 MtA with CL-encryption Achieving
Game-based Security

To address the problem of non-standard assumption in Paillier-
based MtA, Castagnos et al. [7, 8] replaces Paillier with CL encryp-
tion [9] which allows instantiations where the message space is
exactly Z𝑞 .

Let (𝑠, 𝑓 , 𝑔𝑞, 𝑔𝑞,𝐺, 𝐹, 𝑞) be public parameters of CL encryption
(as defined in [8]), where 𝐹 = ⟨𝑓 ⟩ is the subgroup of𝐺 with order
𝑞, 𝑔𝑞 is a random element in ⟨𝑔𝑞⟩. Denote by sk, pk = 𝑔sk𝑞 secret-
public key pair. CL encryption Enc𝑐𝑙 (pk,𝑚, 𝑟) computes (𝑐1, 𝑐2) =
(𝑔𝑟𝑞, pk𝑟 𝑓𝑚) as the encryption of𝑚 ∈ Z𝑞 with randomness 𝑟 ←
[0, 𝑆] (for some 𝑆), and Dec𝑐𝑙 (sk, 𝑐1, 𝑐2) computes log𝑓 (𝑐2/𝑐sk1) to
decrypt. We also denote by ⊕ the addition of the plaintext in two
ciphertexts, and by ⊙ the scalar multiplication on ciphertext.

We abstract CL-basedMtA from Castagnos et al.’s protocol [8].
𝑃2 generates public-secret keypair and sends pk to 𝑃1 in the setup
phase. The CL-based MtA protocol is presented in Fig. 5, where
𝜋𝐶𝐿 is a ZKPoK for relation

{(pk, 𝑐1, 𝑐2;𝑚, 𝑟) |pk ∈ 𝐺, 𝑟 ∈ [0, 𝑆], 𝑐1 = 𝑔𝑟𝑞 ∧ 𝑐2 = pk𝑟 𝑓𝑚}.
Please refer to Appendix D for the proof 𝜋𝐶𝐿 .

The CL-encryption requires 2 exponentiations on the class group
while the decryption requires 1. The prover of 𝜋𝐶𝐿 needs 2 expo-
nentiations while the verifier computes 4 exponentiations. The size
of 𝜋𝐶𝐿 is about a CL ciphertext. Thus, the overall cost of CL-based
MtA is sending 3 CL ciphertexts and computing 9 exponentiations
over the class group.

Note that the scheme of Figure 5 dose not provide full simulation-
based security when 𝑃1 is corrupted. We remark that simulation
based security could be achieved by adding an expensive ZKPoK for
the affine operation of 𝑐𝐴 on 𝑐𝐵 . In our specific usage, we choose the
same strategy as Castagnos et al. [8, Sec. 2.2] to achieve a weaker
game-based threshold unforgeability given in Appendix D.2, thus
do not add this ZKPoK.

4.3.1 Applying CL-based MtA to 2ECDSA. Instantiating MtA by
CL will result in a CL-based 2ECDSA1. In both [7, 8] and our pro-
tocol, CL encryption/decryption and/or 𝜋𝐶𝐿 dominate the overall
complexity.

Although the overall cost of [7] is best, a CL ciphertext should be
transferred and a decryption computation is required making the
online phase computationally expensive. In particular, it is more
1𝜋𝐶𝐿 requires a setup step to guarantee that 𝑔𝑞 is a random element of the subgroup
⟨𝑔𝑞 ⟩. It is executed in the key generation phase.

10

than 50 times slower compared with [8, 33], and nearly 1000 times
slower than ours in the online phase. The online phase of two-party
case of [8, 33] is fast (although it is interactive), while it costs 28
exponentiations and 140𝜅 bits (when 𝜅 = 256). Our online phase is
non-interactive and extremely fast, and our offline cost is just 11
exponentiations and 53𝜅 bits. A concrete comparison is given in
Sec. 5.

5 IMPLEMENTATION AND COMPARISON
In this section, we give a comprehensive implementation and com-
parison of two-party ECDSA from Paillier, OT and CL-encryption.
Although [6, 8, 16, 19, 26] support threshold larger than two, we
only consider their performance in two-party case.

We benchmark our implementation using Rust on a MacBook
Pro 13-inch 2019 with Intel Core i5 @ 1.4 GHz CPU and 16 GB 2133
MHz LPDDR3 RAM running macOSMojave v10.14.5. For simplicity,
we evaluate the protocols in a single laptop and consider only the
computation time. We remark that the comparison will further
favor our scheme if latency is taken into account. The reason is, as
shown in Sec. 1.4, our scheme has fewer communication rounds
than other schemes. The results are the median time of running 100
times. All benchmarks were taken over curve secp256k1 which is
recommended by NIST [24] and is the curve used in Bitcoin, among
many other blockchains and cryptocurrencies. We use SHA-256 to
instantiate the hash functions, random oracles and/or the PRG.

The code for our CL-based protocol is available at https://github.
com/LatticeX-Foundation/CG-MPC-ECDSA. The code for Paillier
and OT-based schemes will be available soon.

Overall comparison is shown in Figure 6 and Table 2. The detailed
comparisons are given in the following subsections.

5.1 Paillier-based Schemes
We set security parameters 𝜅 = 256 (achieving 128-bits computa-
tional security), 80 bits statistical security, and 80 bits soundness
error for our Paillier-based 2ECDSA. The underlyingMtA is that in
Appendix C. Lin17 [25] uses 40-bits statistical security and sound-
ness error. LNR18 [26] and CGGMP20 [6] set the same statistical
and soundness parameters with us. GG18 [19] sets 128-bits compu-
tational security, 256-bit statistical security and 128-bits soundness
error. We note that these works recommend 2048-bit module 𝑁 . To
make a fair comparison with CL and OT-based schemes, we set a
3072-bit module in the implementation and comparison.

We implement two versions of 2ECDSA and GG18 (one with
and one without Paillier-EC), LNR18, and CGGMP20 based on the
elementary code of ZenGo [32] and run ZenGo’s code on Lin17. The
results of computation and communication on signing are presented
in Table 3. The key generation of our scheme has a similar cost
with GG18, LNR18, and CGGMP20.

Without Paillier-EC assumption, our scheme improves GG18’s
offline complexity by a factor of 5 for computation and a factor of 2
for communication. Our implementation outperforms CGGMP20’s
work by a factor of 9 for computation and a factor of 8 for com-
munication. Without Paillier-EC assumption, we improve GG18’s
computation by a factor of 2 and its communication by a factor of
1.6.

Table 3: Cost comparison of Paillier-based schemes.

Schemes Computation Communication
Offline Online Offline Online

LNR18 [26] 461ms 302ms 12.1KB 6.6KB
GG18 [19] 1237ms 3ms 15.5KB 288B
CGGMP20 [6] 2037ms 0.2ms 44KB 32B
2ECDSA (Paillier) 226ms 0.2ms 6.3KB 32B
Lin17 [25] (Paillier-EC) 34ms 8ms 192B 768B
GG18 [19] (Paillier-EC) 360ms 3ms 6.6KB 288B
2ECDSA (Paillier-EC) 141ms 0.2ms 4.1KB 32B

Table 4: Cost comparison of OT-based schemes.

Schemes Computation Communication
Offline Online Offline Online

DKLS18 [15] 2.9ms 0.2ms 169.8KB 32B
DKLS19 [16] 3.7ms 0.2ms 180KB 32B
2ECDSA (OT) 2.6ms 0.2ms 90.9KB 32B

5.2 OT-based Schemes
We set security parameters 𝜅 = 256 (achieving 128-bits computa-
tional security), 80-bits statistical security and soundness error as
DKLS18-19 [15, 16] did. We implement OT-based 2ECDSA using
MtA of [28] and run their code on DKLS18 and DKLS19 protocols.
The results of computation and communication on signing are re-
ported in Table 4. The key generation of our scheme has the same
complexity as DKLS19.

The offline communication of our scheme is 90.9 KB, which
outperforms DKLS19-20 by a factor of roughly 2.

5.3 CL-based Schemes
For CL-based instantiations, we set 128-bits computational security,
take 80-bits statistical distance and soundness error as YCX21 [33]
did. CCLST19 [7] used 40-bits statistical and soundness security,
and CCLST20 [8] utilized 128-bits for soundness error and 80-bits
for statistical distance. We implement CL-based 2ECDSA and two-
party schemes of CCLST20 and YCX21 and run ZenGo’s code on
CCLST19. The cost comparison is reported in Table 5. The key
generation of our scheme has the same complexity with [8].

The offline complexity of our scheme is 1.7KB and 1386ms.
CCLST20’s offline phase needs at least 2× cost than our work.
The offline phase of YCX21 requires 2× communication and 3×
computation than our scheme.

6 CONCLUSION
We propose an online-friendly two-party 2ECDSA such that its
online computation is extremely fast and its offline phase requires
only a single execution of MtA. Our scheme could be efficiently
instantiated with constructions of MtA from Paillier, CL encryp-
tions and oblivious transfer. Furthermore, our scheme can be easily
extended to the more general case of 2-out-of-𝑛.

11

https://github.com/LatticeX-Foundation/CG-MPC-ECDSA
https://github.com/LatticeX-Foundation/CG-MPC-ECDSA

0 10 20 30 400

1,000

2,000

3,000

Communication (KB)

Co
m
pu

ta
tio

n
(m

s)

CL-based
CCLST19
CCLST20

2ECDSA-CL
Paillier-based

LNR18
GG18

CGGMP20

0 2 4 6

100

200

300

Communication (KB)

Co
m
pu

ta
tio

n
(m

s)

Paillier-based
Lin17

2ECDSA-PaillierEC
2ECDSA-Paillier
GG18-PaillierEC

100 120 140 160 180
2.5

3

3.5

4

Communication (KB)

Co
m
pu

ta
tio

n
(m

s)

OT-based
DKLS18
DKLS19

2ECDSA-OT

Figure 6: Cost comparison of all two-party schemes. For every scheme, the south-west point is the offline cost, while north-east
point is the overall cost. Thus, the distance between these two points indicates the online complexity. The dashed red rectangles
share the same area.

Table 5: Cost comparison of CL-based schemes.

Schemes Computation Communication
Offline Online Offline Online

CCLST19 [7] 475ms 190ms 505B 208B
CCLST20 [8] 3316ms 3ms 4.5KB 288B
YCX21 [33] 4550ms 3ms 4.5KB 288B
2ECDSA (CL) 1386ms 0.2ms 1.7KB 32B

Our work focuses on the two-party ECDSA. We believe the idea
of this work will lead to improvements of the full threshold ECDSA,
and we leave this for further work.

ACKNOWLEDGMENTS
We would like to thank Xuyang Song and Xueli Wang for their
help in the experiments. Haiyang Xue is supported by the Na-
tional Natural Science Foundation of China (No. 62172412), the
National Key Research and Development Program of China (No.
2020YFB1807502). Man Ho Au is supported by the National Natural
Science Foundation of China (No. 61972332), the Research Grant
Council of Hong Kong (GRF Project 15211120).

REFERENCES
[1] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. 2020. A

Survey of ECDSA Threshold Signing. (2020). https://eprint.iacr.org/2020/1390.
pdf.

[2] Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl, and
Juan Ramón Troncoso-Pastoriza. 2020. Efficient Protocols for Oblivious Lin-
ear Function Evaluation from Ring-LWE. In SCN. Springer, 130–149.

[3] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.
In CRYPTO. Springer, 420–432.

12

https://eprint.iacr.org/2020/1390.pdf
https://eprint.iacr.org/2020/1390.pdf

[4] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-interactive zero-
knowledge and its applications. In STOC. 103–112.

[5] Fabrice Boudot. 2000. Efficient proofs that a committed number lies in an interval.
In EUROCRYPT. Springer, 431–444.

[6] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. 2020. UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable
Aborts. In ACM CCS. 1769–1787.

[7] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and
Ida Tucker. 2019. Two-party ECDSA from hash proof systems and efficient
instantiations. In CRYPTO. Springer, 191–221.

[8] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and
Ida Tucker. 2020. Bandwidth-efficient threshold EC-DSA. In PKC. Springer,
266–296.

[9] Guilhem Castagnos and Fabien Laguillaumie. 2015. Linearly homomorphic
encryption from DDH. In CT-RSA. Springer, 487–505.

[10] Tung Chou and Claudio Orlandi. 2015. The simplest protocol for oblivious
transfer. In LATINCRYPT. Springer, 40–58.

[11] William M Daley and Raymond G Kammer. 2000. Digital signature standard
(DSS). Technical Report. BOOZ-ALLEN AND HAMILTON INC MCLEAN VA.

[12] Ivan Damgård, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P Smart.
2012. Implementing AES via an actively/covertly secure dishonest-majority MPC
protocol. In SCN. Springer, 241–263.

[13] Yvo Desmedt. 1987. Society and group oriented cryptography: A new concept.
In CRYPTO. Springer, 120–127.

[14] Yvo Desmedt and Yair Frankel. 1989. Threshold cryptosystems. In CRYPTO.
Springer, 307–315.

[15] JackDoerner, Yashvanth Kondi, Eysa Lee, andAbhi Shelat. 2018. Secure two-party
threshold ECDSA from ECDSA assumptions. In IEEE Symposium on Security and
Privacy. IEEE, 980–997.

[16] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. 2019. Threshold
ECDSA from ECDSA assumptions: the multiparty case. In IEEE Symposium on
Security and Privacy. IEEE, 1051–1066.

[17] Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret
sharing. In 28th Annual Symposium on Foundations of Computer Science (sfcs
1987). IEEE, 427–438.

[18] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO. Springer, 186–194.

[19] Rosario Gennaro and Steven Goldfeder. 2018. Fast multiparty threshold ECDSA
with fast trustless setup. In ACM CCS. 1179–1194.

[20] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. 2017. Maliciously secure
oblivious linear function evaluation with constant overhead. In ASIACRYPT.
Springer, 629–659.

[21] Niv Gilboa. 1999. Two party RSA key generation. In CRYPTO. Springer, 116–129.
[22] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, Tomas Toft, and An-

gelo Agatino Nicolosi. 2019. Efficient RSA key generation and threshold paillier
in the two-party setting. Journal of Cryptology 32, 2 (2019), 265–323.

[23] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively secure OT
extension with optimal overhead. In CRYPTO. Springer, 724–741.

[24] C Kerry and P Gallagher. 2013. FIPS PUB 186-4: Digital Signature Standard
(DSS). Federal Information Processing Standards Publication. National Institute of
Standards und Technology (2013).

[25] Yehuda Lindell. 2017. Fast secure two-party ECDSA signing. In CRYPTO. Springer,
613–644.

[26] Yehuda Lindell and Ariel Nof. 2018. Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. In ACM
CCS. 1837–1854. Refer https://eprint.iacr.org/2018/987.pdf for the full version..

[27] Philip MacKenzie and Michael K Reiter. 2001. Two-party generation of DSA
signatures. In CRYPTO. Springer, 137–154.

[28] NEUCRYPO. 2021. mp-ecdsa. https://gitlab.com/neucrypt/mpecdsa.
[29] Claus-Peter Schnorr. 1991. Efficient signature generation by smart cards. Journal

of cryptology 4, 3 (1991), 161–174.
[30] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[31] Victor Shoup. 1997. Lower bounds for discrete logarithms and related problems.

In International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 256–266.

[32] ZenGo X. 2021. multi-party-ecdsa. https://github.com/ZenGo-X/multi-party-
ecdsa.

[33] Tsz Hon Yuen, Handong Cui, and Xiang Xie. 2021. Compact Zero-Knowledge
Proofs for Threshold ECDSA with Trustless Setup. In PKC. Springer, 481–511.

A KEY GENERATION PROTOCOL FOR
2-OUT-OF-𝑛 ACCESS STRUCTURES

Distributed Key Generation Phase Keygen(G, 𝑃, 𝑞). Given the
joint input (G, 𝑃, 𝑞):

• Phase 1: Each player 𝑃𝑖 selects 𝑥𝑖 ← Z𝑞 and computes
𝑋𝑖 = 𝑥𝑖 · 𝑃 and a ZKPoK of discrete logarithm using 𝑥𝑖 .
Then, 𝑃𝑖 broadcasts a commitment of𝑋𝑖 and corresponding
ZKPoK.

• Phase 2: Upon receiving commitments from other par-
ties, 𝑃𝑖 decommits 𝑋𝑖 and corresponding ZKPoK. Then,
𝑃𝑖 checks all the received commitments and the ZKPoKs.

• Phase 3: Each party 𝑃𝑖 runs (2, 𝑛) Feldman-VSS [17] us-
ing his secret 𝑥𝑖 . Specifically, let {𝑥 (𝑖)1 , · · · , 𝑥 (𝑖)𝑛 } be the
secret sharing of 𝑥𝑖 , 𝑃𝑖 adds the private shares received
from Feldman-VSS, i.e., 𝑣𝑖 =

∑𝑛
𝑗=1 𝑥

(𝑗)
𝑖

mod 𝑞. Note that
𝑉𝑖 = 𝑣𝑖 · 𝑃 is publicly computable.
• Phase 4: Each player 𝑃𝑖 proves in zero-knowledge that it

knows 𝑣𝑖 , the discrete logarithm of 𝑉𝑖 . Each player sets
𝑄 =

∑𝑛
𝑖=1 𝑋𝑖 to be the public key, otherwise aborts. Note

that 𝑥 =
∑𝑛
𝑖=1 𝑢𝑖 mod 𝑞 be the secret key.

Assuming that 𝑃𝑖 and 𝑃 𝑗 are the two parties to sign𝑚, they could
compute 𝛬𝑖𝑣𝑖 , 𝛬𝑗𝑣 𝑗 respectively (such that 𝑥 = 𝛬𝑖𝑣𝑖 + 𝛬𝑗𝑣 𝑗), where
𝛬𝑖 and 𝛬𝑗 are Lagrange coefficients.

B MTA FROM OBLIVIOUS TRANSFER
We recall theMtA from OT proposed in [15].

Let F ℓOTe be the Correlated OT-extension functionality that al-
lows arbitrarily many Correlated OT instances to be executed in
batches of size ℓ . The input of the receiver is a vector of choice bits
while the sender’s input is a vector of correlated elements. The func-
tionality samples ℓ random pads and sends them to the sender. To
the receiver, it sends the pads if the sender’s corresponding choice
bits were 0, otherwise the sum of the pads and their corresponding
correlations. Please refer to [15, Sec. IV and Appendix A] for the
concrete definition and instantiation.

The OT-basedMtA is constructed in the F ℓOTe hybrid model. It
is parameterized by the statistical security parameter 𝑠 , the curve
order 𝑞, and 𝜅 = |𝑞 |. Let g = gG | |gR be a coefficient vector where
gG satisfies gG

𝑖
= 2𝑖−1, and gR is a public random vector. Assume

the input of Alice and Bob is 𝑎, 𝑏 ∈ Z𝑞 respectively, they execute
the following protocol to export 𝛼 , 𝛽 such that 𝛼 + 𝛽 = 𝑎𝑏.
Encoding:

• Bob samples 𝛾 ← {0, 1}𝜅+2𝑠 , and encodes its input as b =
Bits(𝑏 − ⟨gR, 𝛾⟩) | |𝛾 .

• Alice samples 𝑎 ← Z𝑞 and sets a = {𝑎 | |𝑎} 𝑗 ∈[1,2𝜅+2𝑠] .
Multiplication:

• Alice who plays as sender and Bob as receiver, invokes func-
tionality F ℓOTe with their encoded input where ℓ = 2𝜅 + 2𝑠 .
They receive as outputs, respectively, {t𝐴𝑗 | |t̂𝐴𝑗 } 𝑗 ∈[1,2𝜅+2𝑠]
and {t𝐵𝑗 | |t̂𝐵𝑗 } 𝑗 ∈[1,2𝜅+2𝑠]

• Alice and Bob generate two shared random values by calling
the random oracle, i.e., (𝜒, 𝜒) ← RO(transcript).

• Alice computes and sends r = {𝜒t𝐴𝑗 + 𝜒 t̂𝐴𝑗 } 𝑗 ∈[1,2𝜅+2𝑠] ,
𝑢 = 𝜒𝑎 + 𝜒𝑎 to Bob.
• Bob aborts if 𝜒t𝐵𝑗 + 𝜒 t̂𝐵𝑗 ≠ b𝑗𝑢 − r𝑗 for any 𝑗 ∈ [1, 2𝜅 + 2𝑠].
• Alice and Bob compute their output shares respectively, i.e.,
𝛼 =

∑
𝑗 ∈[1,2𝜅+2𝑠] g𝑗 t𝐴𝑗 , and 𝛽 =

∑
𝑗 ∈[1,2𝜅+2𝑠] g𝑗 t𝐵𝑗 .

13

https://eprint.iacr.org/2018/987.pdf
https://gitlab.com/neucrypt/mpecdsa
https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/ZenGo-X/multi-party-ecdsa

C MTA FROM PAILLIER
We recall the MtA protocol from Paillier encryption, which has
appeared many times before [6, 12, 19, 25–27].

Paillier is awell-known additive homomorphic encryption scheme.
Let 𝑝𝑘 = 𝑁 and 𝑠𝑘 = 𝜙 (𝑁) be the public and secret keys of Pail-
lier encryption respectively. Denote the encryption of message𝑚
with randomness 𝑟 by Enc(𝑝𝑘,𝑚, 𝑟) = 𝑟𝑁 (1 + 𝑁)𝑚 mod 𝑁 2, the
decryption of ciphertext 𝑐 by Dec(𝑠𝑘, 𝑐). For simplicity, we may
eliminate the randomness 𝑟 and denote encryption as Enc(𝑝𝑘,𝑚).

Let 𝑁0 be the RSA modulus, ℎ ∈ 𝑄𝑅𝑁0 be a random quadratic
residue, and 𝑔 ∈< ℎ >. The Pedersen commitment of 𝑥 with ran-
domness 𝜌 is 𝑔𝑥ℎ𝜌 mod 𝑁0.

C.1 Zero-knowledge Proofs
We list the necessary relations with zero-knowledge proofs here.
Concrete proofs are given in Appendix C.3.
Proof of Paillier-Blum Modulus. Define the relation

RP = {(𝑁 ;𝑝, 𝑞) | gcd(𝑁,𝜙 (𝑁)) = 1, 𝑁 = 𝑝𝑞,

𝑝, 𝑞 ≡ 3 mod 4 are primes.}
Proof ZKPoKRP for this relation could be found in [6, Sec. 4.3].

Proof of for ℎ ∈ 𝑄𝑅𝑁0 . Define the relation

RQR = {(𝑁0, ℎ;𝑥) |ℎ = 𝑥2 mod 𝑁0}.
Let ZKPoKQR be the corresponding proof.
Proof for 𝑔 ∈< ℎ >. Define the relation

RQRdl = {(𝑁0, 𝑔, ℎ;𝛼) |𝑔 = ℎ𝛼 mod 𝑁0}.
Let ZKPoKQRdl be a corresponding proof.
Proof for Paillier Encryption with Range Proof. Define the
relation
RPwR := {(𝑁,𝑞, 𝑐;𝑥, 𝑟) |𝑐 = 𝑟𝑁 (1 + 𝑁)𝑥 mod 𝑁 2 ∧ 𝑥 ∈ Z𝑞}

of Paillier encryption with range proof. Denote ZKPoKRPwR as the
proof for this relation.
Proof of Paillier-Pedersen Range-Bounded Affine Operation.
Define the relation R ′AffRan as

{(𝑁,𝑞, 𝑐𝐴, 𝑐𝐵 ;𝑎, 𝛼) |𝑐𝐴 =
(
𝑐𝐵 (1 + 𝑁)2

𝑡+𝑙𝑞
)𝑎
(1 + 𝑁)𝛼 mod 𝑁 2

∧ 𝑎 ∈ Z𝑞 ∧ 𝛼 ∈ Z𝐾 },
for some integer 𝑡, 𝑙 and 𝐾 . Denote ZKPoKR′AffRan as the proof for
this relation.

C.2 Paillier-based MtA
The Paillier-basedMtA works as in Fig. 7. We remark that all the
ZKPoKs utilized are transferred to non-interactive using the Fiat-
Shamir paradigm [18]. As analyzed in [26, Sec. 6.2], we set 𝐾 =
2𝑡+𝑙+𝑠𝑞2.

In the setup phase,
• 𝑃2 generates a Paillier key-pair 𝑝𝑘 = 𝑁 , 𝑠𝑘 = 𝜙 (𝑁), com-

putes a ZKPoKRP proof 𝜋𝑃 for the correctness of Paillier
public key. 𝑃2 computes public parameters𝑔 andℎ for Peder-
sen commitment under modulus 𝑁 and corresponding zero-
knowledge proofs (i.e., ZKPoKQR proof 𝜋QR forℎ ∈ 𝑄𝑅 and

ZKPoKQRdl proof 𝜋QRdl for 𝑔 ∈< ℎ >.). 𝑃2 sends public key,
parameters and zero-knowledge proofs to 𝑃1.

• 𝑃1 also generates Paillier key-pair 𝑝𝑘0 = 𝑁0, 𝑠𝑘0 = 𝜙 (𝑁0),
public parameters 𝑔0, ℎ0 for Pedersen commitment, and
corresponding zero-knowledge proofs 𝜋0

𝑃
, 𝜋0QR, and 𝜋

0
QRdl.

In the multiplication phase, let 𝑎, 𝑏 ∈ Z𝑞 be the input of 𝑃1 and
𝑃2 respectively.

• 𝑃2 initiates the protocol
– Compute 𝑐𝐵 = Enc(𝑁,𝑏) and a ZKPoKRPwR proof 𝜋𝐵

on the correctness of ciphertext 𝑐𝐵 and 𝑏 ∈ [0, 𝑞].
(Note: in ZKPoKRPwR , we use 𝑃1’s public key 𝑁0 as the
modulus of Pedersen commitment.)

– Send (𝑐𝐵, 𝜋𝐵) to 𝑃1.
• On receiving (𝑐𝐵, 𝜋𝐵), 𝑃1 does the following

– Verify 𝜋𝐵 , and abort if it fails.
– Choose 𝛼 ′ ← Z𝐾 . Set output 𝛼 = −𝛼 ′ mod 𝑞.
– Compute the ciphertext

𝑐𝐴 =
(
𝑐𝐵 (1 + 𝑁)2

𝑡+ℓ𝑞
)𝑎
(1 + 𝑁)𝛼′ mod 𝑁 2,

and a ZKPoKR′AffRan proof 𝜋𝐴 for relation R ′AffRan with
witness 𝑎, 𝛼 ′. (Note: Due to the slack of range proof in
𝜋𝐵 , we add 2𝑡+ℓ𝑞 to the plaintext of 𝑐𝐵 ; inZKPoKR′AffRan ,
we set 𝑁 as the modulus of Pedersen commitment.)

– Send (𝑐𝐴, 𝜋𝐴) to 𝑃2.
• Upon receiving (𝑐𝐴, 𝜋𝐴), 𝑃2 does the following

– Verify 𝜋𝐴 , and abort if it fails.
– Compute 𝛽 ′ = Dec(𝑠𝑘, 𝑐𝐴) and output 𝛽 = 𝛽 ′ mod 𝑞.

C.3 Constructions of Zero-knowledge Proofs.
C.3.1 Proof of for ℎ ∈ 𝑄𝑅𝑁0 . The following protocol ZKPoKQR is
a perfect zero-knowledge proof for language 𝑄𝑅𝑁0 with soundness
error 1/2. Repeating it 𝑡 times would achieve a soundness error of
2−𝑡 . We could transfer it into non-interactive via Fiat-Shamir [18].
Prover 𝑃 , holding witness 𝑥 s.t. ℎ = 𝑥2, runs the following to prove
that ℎ ∈ 𝑄𝑅𝑁0 .

• Commitment: 𝑃 chooses 𝑟 ← Z𝑁0 and computes 𝑎 = 𝑟2

mod 𝑁0. Then, 𝑃 sends 𝑎 to 𝑉 .
• Challenge: 𝑉 chooses and sends 𝑒 ← {0, 1} to 𝑃 .
• Respond: 𝑃 computes and sends 𝑧 = 𝑥𝑒𝑟 mod 𝑁0 to 𝑉 .
• Verification: 𝑉 accepts if 𝑧2 = ℎ𝑒𝑎 mod 𝑁0.

C.3.2 Proof for 𝑔 ∈< ℎ >. The following protocol ZKPoKQRdl is a
2𝑠 statistical zero-knowledge proof for 𝑔 ∈< ℎ > with soundness
error 1/2. Repeating it 𝑡 times would achieve a soundness error of
2−𝑡 . We could transfer it into non-interactive via Fiat-Shamir [18].
Prove 𝑃 , holding 𝛼 ∈ Z𝑁0 such that 𝑔 = ℎ𝛼 mod 𝑁0, runs as the
following.

• Commitment: 𝑃 chooses a random even number 𝛽 from
[1, 2𝑠𝑁0] and computes 𝑎 = ℎ𝛽 mod 𝑁0. Then, 𝑃 sends 𝑎
to 𝑉 .

• Challenge: 𝑉 chooses and sends 𝑒 ← {0, 1} to 𝑃 .
• Respond: 𝑃 computes and sends 𝑧 = 𝑒𝛼 + 𝛽 (as integer) to
𝑉 .
• Verification: 𝑉 accepts if ℎ𝑧 = 𝑔𝑒𝑎 mod 𝑁0.

14

𝑃1 𝑃2

Setup
𝑁,𝜋𝑃 ,𝜋QR,𝜋QRdl←−−−−−−−−−−−−− 𝑝𝑘 = 𝑁, 𝑠𝑘 = 𝜙 (𝑁), 𝑔, ℎ

𝑝𝑘0 = 𝑁0, 𝑠𝑘0 = 𝜙 (𝑁0), 𝑔0, ℎ0
𝑁0,𝜋0

𝑃
,𝜋0

QR,𝜋
0
QRdl−−−−−−−−−−−−−−→

Multiplication

𝛼 ′ ← Z𝐾
𝑐𝐵 ,𝜋𝐵←−−−−−−−− 𝑐𝐵 = Enc(𝑝𝑘, 𝑏)

𝑐𝐴 =
(
𝑐𝐵 (1 + 𝑁)2𝑡+ℓ𝑞

)𝑎
(1 + 𝑁)𝛼′ mod 𝑁 2 𝑐𝐴,𝜋𝐴−−−−−−−−→ 𝛽 ′ = Dec(𝑠𝑘, 𝑐𝐴)

𝛼 = −𝛼 ′ mod 𝑞 𝛽 = 𝛽 ′ mod 𝑞

Figure 7: The Paillier-basedMtA.

C.3.3 ZKPoK for Paillier Encryption with Range Proof under Strong-
RSA Assumption. Define the relation
RPwR := {(𝑁,𝑞, 𝑐;𝑥, 𝑟) |𝑐 = 𝑟𝑁 (1 + 𝑁)𝑥 mod 𝑁 2 ∧ 𝑥 ∈ Z𝑞}

of Paillier encryption with range proof.
Let 𝑡 , ℓ , 𝑠 be security parameters. In the implementation, we set

𝑡 = 𝑠 = 128 and ℓ = 80 for 80 bits statistical security.
• Prover’s first message: 𝑃 chooses 𝛼 ← Z𝑁0 , 𝛽 ← Z2𝑡+ℓ𝑁0
𝑦 ∈ Z2𝑡+ℓ𝑞 , 𝑟𝑑 ← Z𝑁 and computes 𝐶 = 𝑔𝑥ℎ𝛼 mod 𝑁0,
𝑑 = 𝑟𝑁

𝑑
(1 + 𝑁)𝑦 mod 𝑁 2, and 𝐷 = 𝑔𝑦ℎ𝛽 mod 𝑁0. Then

Prover sends (𝐶,𝑑, 𝐷) to 𝑉 .
• Challenge: 𝑉 chooses 𝑒 ∈ Z2𝑡 and sends 𝑒 to 𝑃 .
• Prover’s second message: 𝑃 computes 𝑧1 = 𝑦 + 𝑒𝑥 (over the

integer), 𝑧2 = 𝑟𝑑𝑟𝑒 mod 𝑁 , 𝑧3 = 𝛽 +𝛼𝑒 . 𝑃 sends (𝑧1, 𝑧2, 𝑧3)
to 𝑉 .

• Verification: Accept if and only if
– 𝑧𝑁2 (1 + 𝑁)𝑧1 = 𝑑 (𝑐)𝑒 mod 𝑁 2

– 𝑔𝑧1ℎ𝑧3 = 𝐷 (𝐶)𝑒 mod 𝑁0
– 𝑧4 ∈ [2𝑡𝑞, 2𝑡+ℓ𝑞)

This proof guarantees that 𝑥 ∈ [−2𝑡+𝑙𝑞, 2𝑡+𝑙𝑞].
C.3.4 Proof of Paillier-Pedersen Range-Bounded Affine Operation.
Define the relation RAffRan as
{(𝑁,𝑞, 𝑐𝐴, 𝑐;𝑎, 𝛼) |𝑐𝐴 = 𝑐𝑎 (1 + 𝑁)𝛼 mod 𝑁 2 ∧ 𝑎 ∈ Z𝑞 ∧ 𝛼 ∈ Z𝐾 }
of Paillier encryption with range proof. We also define the relation
R ′AffRan as

{(𝑁,𝑞, 𝑐𝐴, 𝑐𝐵 ;𝑎, 𝛼) |𝑐𝐴 =
(
𝑐𝐵 (1 + 𝑁)2

𝑡+𝑙𝑞
)𝑎
(1 + 𝑁)𝛼 mod 𝑁 2

∧ 𝑎 ∈ Z𝑞 ∧ 𝛼 ∈ Z𝐾 }.
R ′AffRan could be taken as a special case of RAffRan by setting 𝑐 =
𝑐𝐵 (1 + 𝑁)2𝑡+𝑙𝑞 mod 𝑁 2.

We present proof ZKPoKRAffRan for relation RAffRan (which has
been presented in [26, Sec.6.2.7]), and proofZKPoKRAffRan forRAffRan
could be easily extended.

As in ZKPoKRPwR , in the setup, we also instruct the verifier 𝑉
sends the prover 𝑃 parameters 𝑁0, 𝑔, ℎ with zero-knowledge proofs
on the correctness of the parameters.

ZKPoKRAffRan . Let 𝑡 , ℓ , 𝑠 be security parameters. In the implemen-
tation, we set 𝑡 = 𝑠 = 128 and ℓ = 80 for 80 bits statistical security.
The proof works as follows.

As in ZKPoKRPwR , in the setup, we also instruct the verifier 𝑉
sends the prover 𝑃 parameters 𝑁0, 𝑔, ℎ and zero-knowledge proofs
that all the parameters are generated correctly. (In our specific
usage toMtA, 𝑁0 could be 𝑁 since the verifier generates 𝑁 in the
special case.)

• Prover’s first message: 𝑃 chooses 𝑏 ∈ Z2𝑡+ℓ𝑞 , 𝛽 ← Z2𝑡+ℓ𝐾 ,
𝜌1, 𝜌2 ← Z2𝑡+ℓ𝑁0 , 𝜌3, 𝜌4 ← Z𝑁0 . Then, 𝑃 computes 𝐴 =

𝑐𝑏 (1 + 𝑁)𝛽 mod 𝑁 2, 𝐵1 = 𝑔𝑏ℎ𝜌1 mod 𝑁0, 𝐵2 = 𝑔𝛽ℎ𝜌2

mod 𝑁0, 𝐵3 = 𝑔𝑎ℎ𝜌3 mod 𝑁0, 𝐵4 = 𝑔𝛼ℎ𝜌4 mod 𝑁0. 𝑃
sends (𝐴, 𝐵1, 𝐵2, 𝐵3, 𝐵4) to 𝑉 .

• Challenge: 𝑉 sends a random 𝑒 ∈ Z2𝑡 to 𝑃 .
• Prover’s second message: 𝑃 computes and sends 𝑧1 = 𝑏 +𝑒𝑎,
𝑧2 = 𝛽 + 𝑒𝛼 , 𝑧3 = 𝜌1 + 𝑒𝜌3, 𝑧4 = 𝜌2 + 𝑒𝜌4 to 𝑉 .
• Verification: Accept if and only if

– 𝑧1 ∈ [2𝑡𝑞, 2𝑡+ℓ𝑞)
– 𝑧2 ∈ [2𝑡𝐾, 2𝑡+ℓ𝐾]
– 𝑐𝑧1 (1 + 𝑁)𝑧2 = 𝐴(𝑐𝐴)𝑒 mod 𝑁 2

– 𝑔𝑧1ℎ𝑧3 = 𝐵1 (𝐵3)𝑒 mod 𝑁0
– 𝑔𝑧2ℎ𝑧4 = 𝐵2 (𝐵4)𝑒 mod 𝑁0

This proof guarantees 𝑎 ∈ [−2𝑡+𝑙𝑞, 2𝑡+𝑙𝑞], 𝛼 ∈ [−2𝑡+𝑙𝐾, 2𝑡+𝑙𝐾].

C.4 Paillier-EC Assumption
The Paillier-EC assumption states the security of encryption even
the adversary is given a restricted oracle. Concretely, it says that
any PPT adversary A can only win the following experiment (i.e.
the experiment outputs 1) with 1/2 plus a negligible probability.

• Generate a Paillier key pair (𝑝𝑘, 𝑠𝑘)
• Choose𝑤0,𝑤1 ← Z𝑞 and compute 𝑄0 = 𝑤0 · 𝑃
• Choose a random 𝑏 ← {0, 1} and compute 𝑐 = Enc(𝑝𝑘,𝑤𝑏)
• Let𝑏 ′ = AO(·, ·, ·) (𝑝𝑘, 𝑐,𝑄0), whereO(𝑐, 𝑎, 𝑏) = 1 iffDec(𝑐) =
𝑎 + 𝑏𝑤𝑏 mod 𝑞 and the oracle O holds once it returns 0.
• The experiment returns 1 if and only if 𝑏 ′ = 𝑏.

As noted by [19, 25], 𝜋𝐴 of Paillier-based MtA in C.2 could be
eliminated under the non-standard Paillier-EC assumption.

15

Table 6: The CL encryption scheme.

Enc𝑐𝑙 (pk,𝑚) Dec𝑐𝑙 (sk, 𝑐1, 𝑐2)
Pick 𝑟 ← [0, 𝑆] Compute𝑀 = 𝑐2/𝑐sk1
Return (𝑔𝑟𝑞, pk𝑟 𝑓𝑚) Return log𝑓 (𝑀)

D THE CL-ENCRYPTION, ZKPOK FOR
CL-ENCRYPTION AND GAME-BASED
THRESHOLD UNFORGEABILITY.

We recall the CL encryption [9] and ZKPoK for CL encryption from
[8].

Let (𝑠, 𝑓 , 𝑔𝑞, 𝑔𝑞,𝐺, 𝐹, 𝑞) be public parameters of CL encryption
(as defined in [8]), where 𝐹 = ⟨𝑓 ⟩ is the subgroup of𝐺 with order 𝑞,
𝑔𝑞 is a random element in ⟨𝑔𝑞⟩. Denote by sk, pk = 𝑔sk𝑞 secret-public
key pair. CL encryption and decryption works as Table 6, where 𝑆
is an integer to be determined.

We denote by 𝑐 ⊕ 𝑐 the addition of the plaintext in ciphertexts
𝑐 and 𝑐 , and by 𝑎 ⊙ 𝑐 the multiplication of the plaintext in 𝑐 by a
scalar 𝑎.

D.1 ZKPoK for correctness of CL encryption
We recall the zero-knowledge argument of knowledge for correct-
ness of ciphertext from [8]. Define relation

𝑅CL := {(pk, 𝑐1, 𝑐2;𝑚, 𝑟) |pk ∈ 𝐺, 𝑟 ∈ [0, 𝑆],
𝑐1 = 𝑔

𝑟
𝑞 ∧ 𝑐2 = pk𝑟 𝑓𝑚}.

Let C be the challenge space and𝐶 = |C|. In the setup, the prover
should send public parameters to verifier and proves 𝑔𝑞 is a random
element of ⟨𝑔𝑞⟩ (using the proof given in [8, Sec. 3.2]).

• Prover’s first message: 𝑃 chooses 𝑟1 ← [0, 280𝑠𝐶], 𝑟1 ← Z𝑞 ,
computes 𝑡1 = 𝑔𝑟1𝑞 , 𝑡2 = pk𝑟1 𝑓 𝑟1 . 𝑃 sends (𝑡1, 𝑡2) to 𝑉 .

• Challenge: 𝑉 sends a random 𝑒 ← C to 𝑃 .
• Prover’s secondmessage: 𝑃 computes and sends 𝑧1 = 𝑟1+𝑒𝑟 ,
𝑧2 = 𝑟1 + 𝑒𝑚 to 𝑉 .
• Verification: Accept if and only if

– 𝑧1 ∈ [0, 240𝑠𝐶 (240 + 1)]
– 𝑧2 ∈ Z𝑞
– 𝑔𝑧1𝑞 = 𝑡1𝑐𝑒1
– pk𝑧2 𝑓 𝑧2 = 𝑡2 (𝑐2)𝑒

D.2 Game-based Threshold Unforgeability
We recall the definition of game-based threshold unforgeaility given
in [8, Sec. 2.2], and specify it to two-party case.

Definition D.1 (Two-party signature unforgeability). Consider a
two-party signature (Keygen, Sign,Verify), and a PPT algorithm
A, having corrupted one of two parties, and which is given the
view of two-party protocols Keygen and Sign on input messages
of its choice (chosen adaptively) as well as signatures on these
messages. Let𝑀 be the set of aforementioned messages. The two-
party signature is said to be unforgeable under chosen message
attack if for any such A the probability that A can produce a
signature on a message𝑚 ∉ 𝑀 is negligible.

16

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Extension and Instantiations
	1.4 Related Works and Discussion
	1.5 Paper Organization.

	2 Preliminary
	2.1 The ECDSA Signature
	2.2 Ideal Functionality for Two-Party ECDSA
	2.3 The Multiplicative-to-Additive (MtA) Functionality
	2.4 Zero-Knowledge Proof

	3 Two-Party Signatures for ECDSA
	3.1 Security of 2ECDSA

	4 Instantiations of MtA and their applications to 2ECDSA
	4.1 MtA from Oblivious Transfer
	4.2 MtA from Paillier
	4.3 MtA with CL-encryption Achieving Game-based Security

	5 Implementation and Comparison
	5.1 Paillier-based Schemes
	5.2 OT-based Schemes
	5.3 CL-based Schemes

	6 Conclusion
	Acknowledgments
	References
	A Key generation protocol for 2-out-of-n Access Structures
	B MtA from Oblivious Transfer
	C MtA from Paillier
	C.1 Zero-knowledge Proofs
	C.2 Paillier-based MtA
	C.3 Constructions of Zero-knowledge Proofs.
	C.4 Paillier-EC Assumption

	D The CL-encryption, ZKPoK for CL-encryption and Game-based Threshold Unforgeability.
	D.1 ZKPoK for correctness of CL encryption
	D.2 Game-based Threshold Unforgeability

