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Abstract

We show the following hold, unconditionally unless otherwise stated, relative to a random
oracle:

• There are NP search problems solvable by quantum polynomial-time machines but not
classical probabilistic polynomial-time machines.

• There exist functions that are one-way, and even collision resistant, against classical ad-
versaries but are easily inverted quantumly. Similar counterexamples exist for digital
signatures and CPA-secure public key encryption (the latter requiring the assumption of
a classically CPA-secure encryption scheme). Interestingly, the counterexample does not
necessarily extend to the case of other cryptographic objects such as PRGs.

• There are unconditional publicly verifiable proofs of quantumness with the minimal rounds
of interaction: for uniform adversaries, the proofs are non-interactive, whereas for non-
uniform adversaries the proofs are two message public coin.

• Our results do not appear to contradict the Aaronson-Ambanis conjecture. Assuming this
conjecture, there exist publicly verifiable certifiable randomness, again with the minimal
rounds of interaction.

By replacing the random oracle with a concrete cryptographic hash function such as SHA2,
we obtain plausible Minicrypt instantiations of the above results. Previous analogous results
all required substantial structure, either in terms of highly structured oracles and/or algebraic
assumptions in Cryptomania and beyond.

∗This work was done in part while the author was visiting Princeton University.
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1 Introduction

Can NP search problems have a super-polynomial speed-up on quantum computers? This is one of
the oldest and most important questions in quantum complexity.

The first proposals for such quantum advantage were relative to highly structured oracles.
Examples include Simon’s oracle [Sim97], or more generally periodic oracles, as well as the Bern-
stein–Vazirani oracle [BV93] and welded trees [CCD+03].

The first non-oracular quantum advantage for NP problems is due to Shor’s famous algorithm
for factoring integers and computing discrete logarithms [Sho94]. Since Shor’s algorithm, other non-
oracular NP problems with quantum advantage include solving Pell’s equation [Hal02] and matrix
group membership [BBS09]. While the technical details of all these examples are very different,
these problems can all be seen as non-oracular instantiations of periodic oracles.

While the above non-oracular problems are certainly easy on a quantum computer, the classical
hardness can only be conjectured since, in particular, the classical hardness would imply P 6=
NP, or an analogous statement if one considers probabilistic algorithms. The problem is that,
when instantiating an oracle with real-world computational tasks, non-black-box algorithms may
be available that render the problem classically easy, despite the oracle problem being hard. For
example, index calculus methods [Adl79] yield sub-exponential time classical attacks for factoring
and discrete logarithms, despite black box period-finding being classically exponentially hard.

To make matters worse, for the known NP search problems with plausible quantum advantage,
the classical hardness is widely believed to be a much stronger assumption than P 6= NP, since the
problems have significant algebraic structure and are not believed to be NP-complete. In particular,
all NP search problems we are aware of yielding a super-polynomial quantum advantage rely on
Cryptomania tools [Imp95], in the sense that their classical hardness can be used to build public
key encryption.1 This puts the assumptions needed for an NP quantum advantage quite high in
the assumption hierarchy.

Quantum speed-ups and structure. The above tasks demonstrating speed-ups, both oracular
and non-oracular, all have one thing in common: significant “structure.” It is natural to wonder
whether such structure is necessary. In the non-oracular setting, a natural interpretation of this
question could be if Minicrypt assumptions—those that give symmetric key but not public key
cryptography—can be used to give a quantum advantage. Minicrypt assumptions, such as the
one-wayness of SHA2, lack the algebraic structure needed in typical super-polynomial quantum
speed-ups. In the oracle setting, this could mean, for example, proving unconditional quantum
advantage relative to a uniformly random oracle, which is generally seen as beeing structure-less.

Prior work on this topic could be interpreted as negative. As observed above, all non-oracular
NP problems demonstrating quantum advantage imply, or are closely related to problems that
imply, public key cryptography. In the random oracle setting, the evidence is even stronger. The
most natural problems to reason about—one-wayness and collision resistance of the random oracle,
and generalizations—provably only have a polynomial quantum advantage [BBBV97, AS04, Yue14,
Zha15]. Additional evidence is given by Aaronson and Ambanis [AA14], who build on work of Beals
et al. [BBC+98]. They consider the following conjecture, dating back to at least 1999:

Conjecture 1.1 (Paraphrased from [AA14]). Let Q be a quantum algorithm with
Boolean output that makes T queries to a random oracle O, and let ε, δ > 0. Then

1Matrix group membership includes discrete logarithms as a special case. For a public key system based on Pell’s
equations, see [Pad06].
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there exists a deterministic classical algorithm C that makes poly(T, 1/ε, 1/δ) queries,
such that

Pr
O

[ ∣∣ CO()− Pr[QO() = 1]
∣∣ ≤ ε ] ≥ 1− δ ,

where the inner probability is over the randomness of Q.

Aaronson and Ambanis give some evidence for Conjecture 1.1, by reducing it to a plausible mathe-
matical conjecture closely related to known existing results. If Conjecture 1.1 is true, any quantum
decision algorithm Q making queries to a random oracle can be simulated classically with only
polynomially-more queries.

Note that the conjectured classical simulator may be computationally inefficient, and indeed we
would expect it to be if, say, Q ignored its oracle and just factored integers. But for any particular
algorithm Q, proving computational inefficiency amounts to an unconditional hardness result, which
is beyond the reach of current complexity theory. Thus, Conjecture 1.1, if true, essentially shows
that random oracles are equivalent to the non-oracular world with respect to NP decision problems,
and cannot be used to provide provable quantum advantage for such problems.

1.1 Our Results

In this work, we make progress toward justifying super-polynomial quantum advantage for NP
problems, under less structured oracles or milder computational assumptions. We show, perhaps
surprisingly, that for certain search problems in NP, random oracles do in fact give provable un-
conditional super-polynomial quantum speed-ups.

Random oracles. Our starting point is to prove the following theorem:

Theorem 1.2 (Informal). Relative to a random oracle, there exists a non-interactive proof of
quantumness, with unconditional security against any computationally-unbounded adversary making
a polynomial number of classical queries.

Here, a proof of quantumness [BCM+18] is a protocol between a quantum prover and classical
verifier (meaning in particular that messages are classical) where no cheating classical prover can
convince the verifier. By being non-interactive, our protocol is also publicly verifiable. Prior LWE-
based proofs of quantumness [BCM+18, BKVV20] lacked public verifiability. The only previous
publicly verifiable proof of quantumness [AGKZ20] required highly non-trivial structured oracles.

Remark 1. We note the restriction to uniform adversaries is necessary in the non-interactive
setting, as a non-uniform adversary (that may take oracle-dependent advice) can simply have a
proof hardcoded. Our protocol also readily gives a two-message public coin (and hence also publicly
verifiable) protocol against non-uniform adversaries, which is the best one can hope for in the non-
uniform setting.

Theorem 1.2 has a number of interesting immediate consequences:

Corollary 1.3. Relative to a random oracle, there exists an NP search problem that is solvable by
quantum polynomial-time (QPT) machines but not by classical probabilistic polynomial-time (PPT)
machines.

Our construction also readily adapts to give one-way functions that are classically secure but
quantum insecure. We can alternatively use minimal-round proofs of quantumness generically to
give a one-way function counterexample, and even a collision resistance counterexample:
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Theorem 1.4. Relative to a random oracle, there exists a compressing function that is collision
resistant against any computationally unbounded adversary making a polynomial number of classical
queries, but is not even one-way against quantum adversaries.

Using results from [YZ21], we also obtain an unconditional analogous counterexample for digital
signatures and CPA-secure public key encryption (the latter requiring assuming classically CPA-
secure public key encryption). Previous such results required LWE (in the case of signatures) or
highly structured additional oracles (in the case of CPA-secure encryption).

Our results do not appear to contradict Conjecture 1.1, since they are for search problems
as opposed to decision problems. In particular, our quantum algorithm for generating proofs of
quantumness/breaking the one-wayness does not compute a function, but rather samples from a set
of possible values. Assuming Conjecture 1.1 shows that this is inherent. We leverage this feature
to yield the following:

Theorem 1.5. Assuming Conjecture 1.1, relative to a random oracle there exists a one- (resp.
two-) message certifiable randomness protocol against a single uniform (resp. non-uniform) quan-
tum device. By adding a final message from the verifier to the prover, our protocols become public
coin and publicly verifiable.

Here, certifiable randomness [BCM+18] means the classical verifier, if it accepts, is able to
expand a small random seed s into a truly random bit-string x, |x| � |s|, with the aid of a single
quantum device. Conditioned on the verifier accepting, x remains truly random even if the device
is adversarial. We remark that |x| � |s| is the key property that makes certifiable randomness
non-trivial: It enables the verifier to create a large random string x from a much smaller random
seed s. In addition, we remark that the random seed s is used only in the verifier’s postprocessing
for deriving x and not used during the protocol execution in our construction.

We note that our results are the best possible: if the final message is from prover to verifier, the
protocols cannot be publicly verifiable. Indeed, the prover could force, say, the first output bit to
be 0 by generating a candidate final message, computing the what the outputted string would be,
and then re-sampling the final message until the first output bit is 1. Our one- and two-message
protocols therefore require verifier random coins that are kept from the prover. In our protocols,
however, these secret random coins can be sampled and even published after the prover’s message.
The result is that, by adding a final message from the verifier, our protocols are public coin and
publicly verifiable.

Instantiating the random oracle. We next instantiate the random oracle in the above con-
struction with a standard-model cryptographic hash, such as SHA2. We cannot hope to prove
security unconditionally. Nevertheless, the resulting construction is quite plausibly secure. Indeed,
it is common practice in cryptography to prove security of a hash-based protocol relative to ran-
dom oracles [BR93], and then assume that security also applies when the random oracle is replaced
with a concrete well-designed cryptographic hash. While there are known counter-examples to the
random oracle assumption [CGH98], they are quite contrived and are not known to apply to our
construction.

We thus obtain a plausible construction of non-interactive proofs of quantumness based on a
cryptographic hash, such as SHA2. This gives a completely new approach to non-oracular quantum
advantage. What’s more, it is widely believed that SHA2 is only capable of yielding symmetric key
cryptosystems. Impagliazzo and Rudich [IR89] show that there is no classical black box construction
of public key encryption from cryptographic hash functions, and no quantum or non-black box
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techniques are known to overcome this barrier2. In fact, what [IR89] show is that, in the world
of computationally unbounded but query bounded (classical) attackers, random oracles cannot be
used to construct public key encryption. But this is exactly the setting of the random oracle model
we consider.

Therefore, by instantiating the random oracle with a well-designed hash such as SHA2, we
obtain a Minicrypt construction of a proof of quantumness. We likewise obtain candidate Minicrypt
examples of NP search problems in BQP\BPP, functions that are classically one-way but quantumly
easy, and even certifiable randomness.

1.2 Discussion

Other sources of quantum advantage. Other candidates for super-polynomial quantum speed-
ups are known. Aaronson and Arkhipov [AA11] and Bremner, Jozsa, and Shepherd [BJS10] give
a sampling task with such a speed-up, based on plausible complexity-theoretic constructions. Sim-
ilar sampling tasks are at the heart of current real-world demonstrations of quantum advantage.
More recently, Brakerski et al. [BCM+18] provided a proof of quantumness from the Learning
With Errors (LWE) assumption, Kalai et al. [KLVY23] give a construction from general quantum
homomorphic encryption, and Morimae and Yamakawa [MY23] give a construction from general
trapdoor permutations.

We note, however, that none of the these alternate sources of quantum advantage correspond
to NP search problems, as there is no way to verify the output. In the case of [AA11, BJS10], this
is because the task is to sample from a distribution, and it is in general hard to tell if an algorithm
samples from a given distribution. In the case of [BCM+18, KLVY23, MY23], this is due to the
interactive protocols being private coin.

Why NP search problems? Most real-life problems of interest can be phrased as NP search
problems, so it is a natural class of problems to study. Our work gives the first evidence besides
period finding of a quantum advantage for this class.

Moreover, NP means that solutions can be efficiently verified. For existing sampling-based
demonstrations of quantum advantage [AA11, BJS10], verification is roughly as hard as classically
sampling. Proofs of quantumness from cryptographic assumptions [BCM+18, KLVY23, MY23] do
admit verification, but the verifier must use certain secrets computed during the protocol in order
to verify. This means that only the verifier involved in the protocol is convinced of the quantumness
of the prover.

In contrast, using an NP problem means anyone can look at the solution and verify that it
is correct. Moreover, our particular instantiation allows for sampling the problems obliviously,
meaning we obtain a public coin proof of quantumness where the verifier’s message is simply
uniform random coins. Against uniform adversaries, we can even just set the verifier’s message to
000 · · · , eliminating the verifier’s message altogether.

The QROM In classical cryptography, the Random Oracle Model (ROM)[BR93] models a hash
function as a truly random function, and proves security in such a world. This model is very
important for providing security justifications of many practical cryptosystems.

Boneh et al. [BDF+11] explain that, when moving to the quantum setting, one needs to model
the random oracle as a quantum random oracle model (QROM). Many works (e.g. [Zha12, TU16,
SXY18, KLS18, KYY18, LZ19, DFMS19, CMS19]) have been devoted to lifting classical ROM

2There is also some evidence that quantum black box techniques cannot overcome this barrier [ACC+22].
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results to the QROM. Ambainis, Rosmanis, and Unruh [ARU14] demonstrated that some random-
oracle-based constructions that are known to be secure against classical adversaries are insecure
against quantum adversaries. However, their counterexamples are insecure even against quantum
adversaries in the classical ROM (i.e., those that only make classical queries), and thus they do not
indicate a difference between the classical ROM and QROM. To date, most of the main classical
ROM results have successfully been lifted. This leads to a natural question: do all ROM results
lift to the QROM?

Recently, Yamakawa and Zhandry [YZ21], leveraging recent proofs of quantumness [BKVV20]
in the random oracle, give a counter-example assuming the hardness of learning with errors (LWE).
Their counter-examples were limited to highly interactive security models such as digital signatures
and CCA-secure public key encryption.

By relying on LWE, [YZ21] left open the possibility that unconditional ROM results may all
lift to the QROM. Our proof of quantumness refutes this, showing that the ROM and QROM are
separated even in the unconditional setting. Our results also give counterexamples for many more
objects, especially for objects like one-way functions and collision resistance which have essentially
non-interactive security experiments.

Subsequent work. Our techniques have already been used in many subsequent works. Liu [Liu23]
uses our construction to give an exponential separation between classical and quantum advice, rela-
tive to a random oracle. Li, Liu, Pelecanos, Yamakawa [LLPY24] and Ben-David and Kundu [BK24]
extended this idea to show a separation between QMA and QCMA relative to a classical oracle in
restricted models. Arora et al. [ACC+23] use our construction to give a proof of quantum depth rel-
ative to random oracles. Jordan et al. [JSW+24] extend our idea to give a new quantum algorithm
for optimization problems. Göös et al. [GGJL24] use our construction to show a new quantum
advantage in the context of communication complexity. Li [Li24] and Jain et al. [JLRX24] study
the complexity of our problem in terms of subclasses of TFNP.

1.3 Overview

Let Σ be an exponentially-sized alphabet, and C ⊆ Σn be an error correcting code over Σ. Let
O : Σ→ {0, 1} be a function. Consider the following function fOC : C → {0, 1}n derived from C,O:

fOC (c1, . . . , cn) = (O(c1), . . . , O(cn))

In other words, fOC simply applies O independently to each symbol in the input codeword. We
will model O as a uniformly random function. Note that if f were applied to arbitrary words in
Σn, then it would just be the parallel application of a function with one-bit outputs, which can be
trivially inverted. By restricting the domain to only codewords, we show, under a suitable choice
of code elaborated on below, that:

• fOC is unconditionally one-way against classical probabilistic algorithms making polynomially-
many queries to O. It is even infeasible to find c ∈ C such that fOC (c) = 0n.

• There exists a quantum algorithm which, given any y ∈ {0, 1}n, samples statistically close to
uniformly from the set of pre-images c ∈ C such that fOC (c) = y.

From these properties, we immediately obtain a weak version of Theorem 1.4 which only considers
classical one-wayness. We explain in Section 7.2 how to obtain the full Theorem 1.4. To prove
quantumness, one simply produces c ∈ C such that fOC (c) = 0n, giving Theorem 1.2. Since
inverting one-way functions is in NP, this also immediately gives Corollary 1.3. We now explain
how we justify these facts about fOC .
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Classical hardness. Assume C satisfies the following properties: (1) the set of symbols obtained
at each position are distinct, and (2) C is information-theoretically list-recoverable.3 Here, we
take list-recoverability to mean that, given polynomial-sized sets Si, i ∈ [n] of possible symbols for
each position, there exist a sub-exponential sized (in n) list of codewords c such that ci ∈ Si for all
i ∈ [n]. The list size remains sub-exponential even if we include codewords such that ci /∈ Si for a
few positions.

Property (1) can be obtained generically by replacing Σ 7→ [n] × Σ, where (c1, . . . , cn) 7→
((1, c1), . . . , (n, cn)). Property (2) is satisfied by folded Reed-Solomon codes, as shown by Gu-
ruswami and Rudra [GR08].

Assuming (1) and (2), we can show classical hardness. Fix an image y. We can assume without
loss of generality that the adversary always evaluates fOC (c) for any pre-image c it outputs. Suppose
for our discussion here that all queries to O were made in parallel. Then any polynomial-sized set
of queries corresponds to a collection of Si. List recoverability means that there are at most
2n

c
, c < 1 codewords consistent with the Si. For each consistent codeword, the probability of being

a pre-image of y is at most 2−n over the choice of random oracle. Union-bounding over the list
of consistent codewords shows that the probability that any consistent codeword is a pre-image is
exponentially small. With some effort, we can show the above holds even for adaptively chosen
queries.

Remark 2. Haitner et al. [HIOS15] construct a very similar hash function from list-recoverable
codes. Their hash functions assumes a multi-bit O, but then XORs the results together, rather
than concatenating them. They prove that their hash function is collision-resistant. Our proof of
one-wayness is based on a similar idea to their proof of collision-resistance. Our novelty, and what
does not appear to be possible for their construction, is the quantum pre-image finder, which we
discuss next.

We note that we could, similar to [HIOS15], prove the collision resistance of fOC by choosing C
to have an appropriate rate. However, our quantum pre-image finder constrains C to having a rate
where we only know how to prove one-wayness. Proving Theorem 1.4 therefore requires a different
construction, which we elaborate on in Section 7.2.

Quantum easiness. Our algorithm can be seen as loosely inspired by Regev’s quantum reduction
between SIS and LWE [Reg05]. Given an image y, our goal will be to create a uniform superposition
over pre-images of y:

|ψy〉 ∝
∑

c∈C:fOC (c)=y

|c〉

We can view |ψy〉 as the point-wise product of two vectors:

|φ〉 ∝
∑
c∈C
|c〉 , and |τy〉 ∝

∑
c∈Σn:fOC (c)=y

|c〉

Observe that |τy〉 looks like |ψy〉, except that the domain is no longer constrained to codewords.
Once we have the state |ψy〉, we can simply measure it to obtain a random pre-image of y. We will
show how to construct |ψy〉 in reverse: we will show a sequence of reversible transformations that
transform |ψy〉 into states we can readily construct. By applying these transformations in reverse
we obtain |ψy〉. To do so, we will now impose that Σ is a vector space over Fq for some prime q,

3List-recoverable codes have been used in cryptography in the contexts of domain extension of hash functions
[HIOS15, KNY18, BKP18] and the Fiat-Shamir transform [HLR21].
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and that C is linear over Fq.4 This means there is a dual code C⊥, such that c · d = 0 for all
c ∈ C, d ∈ C⊥.

We now consider the quantum Fourier transform QFT of |ψy〉.5 Write:

|φ̂〉 := QFT|φ〉 ∝
∑
c∈Σn

αc|c〉 =
∑
c∈C⊥

|c〉

|τ̂y〉 := QFT|τy〉 ∝
∑
c∈Σn

βy,c|c〉

Above, we used the fact that the QFT of a uniform superposition over a linear space is just the
uniform superposition over the dual space. Then, by the Convolution Theorem, the QFT of |ψy〉
is the convolution of |φ̂〉 and |τ̂y〉:

|ψ̂y〉 := QFT|ψy〉 ∝
∑
c,e∈Σn

αcβy,e|c+ e〉 =
∑

c∈C⊥,e∈Σn

βy,e|c+ e〉

The next step is to decode c and e from c+ e; assuming we had such a decoding, we can apply it
to obtain the state proportional to ∑

c∈C⊥,e∈Σn

βy,e|c, e〉 = |φ̂〉|τ̂y〉

We can then construct |φ̂〉 as the QFT of |φ〉, which we can generate using the generator matrix
for C. We will likewise construct |τ̂y〉 as the QFT of |τy〉. To construct |τy〉, we note that |τy〉 is a
product of n states that look like:

|τi,yi〉 ∝
∑

σ∈Σ:O(σ)=yi

|σ〉

Since each yi is just a single bit, we can construct such states by applying O to a uniform super-
position of inputs, measuring the result, and starting over if we obtain the incorrect yi.

It remains to show how to decode c, e from c + e. We observe that |τ̂i,yi〉 has roughly half of
its weight on 0, whereas the remaining half the weight is essentially uniform (though with complex
phases) since O is a random function. This means we can think of e as a vector where each symbol
is 0 with probability 1/2, and random otherwise. In other words, c + e is a noisy version of c
following an analog of the binary symmetric channel generalized to larger alphabets. If the dual
code C⊥ were efficiently decodable under such noise, then one can decode c (and hence e) from
c+ e.

Toward that end, we show that c is uniquely and efficiently decodable (with high probability)
provided the rate of C⊥ is not too high. In our case where C is a folded Reed-Solomon code,
C⊥ is essentially another Reed-Solomon code, and we can decode efficiently using list-decoding
algorithms [GS99]. We can show that the list-decoding results in a unique codeword (with high
probability) for the above described error distribution assuming C to have an appropriate rate.

4In the main body, we use an extension field Fq (i.e., q is a prime power) for an appropriate parameter choice, but
one can think of it as a prime field for the purpose of this overview.

5Note that an element of Σn can be written as a vector over Fq. Here, we simply write QFT to mean the operation
that applies QFT over the additive group of Fq for each coordinate.
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There are a couple important caveats with the above. First is that, to use list-recoverability to
prove one-wayness, we actually needed to augment C, which broke linearity. This is easily overcome
by only applying the QFT to the linear part of C.

More importantly, and much more challenging, we can only decode c+ e as long as e has some-
what small Hamming weight. While such e occur with overwhelming probability, there will always
be a negligible fraction of decoding errors. The problem is that the constant of proportionality in
the Convolution Theorem is exponentially large, and therefore the negligible decoding errors from
our procedure could end up being blown up and drowning out |ψ̂y〉. This is not just an issue with
our particular choice of decoding algorithm, as for large enough Hamming weight decoding errors
are guaranteed. What this means is that the map |φ̂〉|τ̂y〉 7→ |ψ̂y〉 is not even unitary, and |ψ̂y〉 is
not even unit norm.

By exploiting the particular structure of our coding problem and the uniform randomness of
the oracle O, we are able to resolve the above difficulties and show that our algorithm does, in fact,
produce pre-images of y as desired.

Certifiable randomness. We next explain that any efficient quantum algorithm for inverting fOC
likely produces random pre-images. After all, suppose there was an alternative quantum algorithm
which inverted fOC , such that it finds a deterministic pre-image on any given y. If we look at any
single bit of the pre-image, then Conjecture 1.1 would imply that this bit can be simulated by a
polynomial-query classical algorithm. By applying Conjecture 1.1 to every bit of the pre-image, we
thus obtain a classical query algorithm for inverting fOC , which we know is impossible.

This immediately gives us a proof of entropy: the prover generates a pre-image c of an arbitrary
y (even y = 0n), and the verifier checks that fOC (c) = y. If the check passes, the verifier can be
convinced that c was not deterministically generated, and therefore has some randomness. Though
this only ensures that c is not completely deterministic, by using the fact that fOC is one-way even
against sub-exponential-query algorithms, we can extend the above argument to show that the
min-entropy must be polynomial.

Once we have a string with min-entropy, we can easily get uniform random bits by having the
verifier extract using a private random seed.

Extension to non-uniform adversaries. Note that the above results all considered fixing an
adversary first, and then sampling a random oracle. A standard complexity theoretic argument
shows that, in the case of uniform adversaries, we can switch the order of quantifiers, and choose
the random oracle first and then the adversary.

For non-uniform adversaries, we have to work harder, and direct analogs of the results above
may in fact be impossible: for example, a non-uniform adversary (chosen after the random oracle)
could have a valid proof of quantumness hardcoded.

For proofs of quantumness, we can leverage the “salting defeats preprocessing” result of [CDGS18,
CGLQ20] to readily get a two-message public coin proof of quantumness against non-uniform at-
tackers. For certifiable entropy/randomness, this also works, except the known bounds would end
up requiring the verifiers message to be longer than the extracted string. This is a consequence of
leveraging the sub-exponential one-wayness of fOC to obtain polynomially-many random bits. Since
the verifier’s message must be uniform, this would somewhat limit the point of a proof of random-
ness. We show via careful arguments how to overcome this limitation, obtaining two message proofs
of randomness where the verifier’s message remains small in the classical advice setting. We leave
it open to extend our result to construct proofs of randomness that are secure against non-uniform
adversaries with quantum advice.
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Extension to worst-case completeness. Our analysis of the quantum algorithm seems to
inherently rely on the oracle being uniformly random. We show how to tweak our scheme so that
correctness holds for any oracle. The idea is to set O = O′ ⊕ P , where O′ is the oracle, and where
P is a k-wise independent function for some sufficiently large k. The point is that P is supplied
as part of the problem solution, and so is chosen by the quantum algorithm. This makes O k-wise
independent regardless of O′, which is sufficient for the analysis.

Of course, introducing P makes the classical problem easier, since now the classical adversary
has some flexibility in constructing O. We handle this by asking the adversary to find many
solutions relative to different O′, but the same P . This amplifies hardness, after which we can
union-bound over all possible P and still maintain classical hardness. The quantum algorithm, on
the other hand, can solve each of the individual instances with high probability, so it can easily
solve all instances.

This gives the following conceptual implication: By regarding the oracle as an N = 2n-bit input,
we obtain a relational problem R ⊆ {0, 1}N × {0, 1}m for m = poly(n) such that

1. R is classically efficiently verifiable, i.e., we can test if (x,w) ∈ R given w and poly(n) classical
queries to x, and

2. finding w such that (x,w) ∈ R is easy with poly(n) quantum queries to for all x but hard
with poly(n) classical queries on average over x.

Note that this is a slightly different setting than our NP relation above, where the instances and
witnesses were both polynomial-length strings, and the oracle is used to determine which witnesses
are valid for a given instance.

1.4 Acknowledgements

We thank Scott Aaronson for helpful suggestions, including the conceptual implication of worst-
case completeness. We thank anonymous reviewers of FOCS 2022, QIP 2023, and Journal of the
ACM for their helpful comments. Mark Zhandry is supported in part by an NSF CAREER award.

1.5 Organization

The remainder of the paper is organized as follows. Section 2 gives some basic preliminaries,
including for quantum computation. Section 3 defines the various objects we will be considering
and gives some basic relations. Section 4 discusses the properties of error correcting codes we will
need. Section 5 gives a technical lemma that is needed to prove the correctness of our protocol, that
may be more broadly useful. Section 6 gives our proof of quantumness, while Section 7 uses this
to give counterexamples for various cryptographic primitives. Finally, Section 8 gives our proofs of
randomness.

2 Preliminaries

Basic notations. We use λ to mean the security parameter throughout the paper. For a set X,

|X| is the cardinality of X. For a non-empty finite set X, we denote by x
$← X to mean that x is

uniformly taken from X. For a distribution D over a set X, we denote by x
$← D to mean that

x ∈ X is taken according to the distribution D. For sets X and Y, Func(X ,Y) denotes the set
of all functions from X to Y. For a positive integer n, [n] means a set {1, ..., n}. For a random
variable X, E[X] denotes its expected value. For random variables X and X ′, ∆(X,X ′) denotes the
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statistical distance between X and X ′. For a random variable X, H∞(X) denotes the min-entropy
of X, i.e., H∞(X) = − log maxx Pr[X = x]. For a quantum or randomized classical algorithm A,

we denote y
$← A(x) to mean that A outputs y on input x. For a randomized classical algorithm

A, we denote y ← A(x; r) to mean that A outputs y on input x and randomness r.

Notations for quantum states. For a not necessarily normalized state |ψ〉, we denote by ‖ |ψ〉 ‖
to mean its Euclidean norm. For not necessarily normalized quantum states |ψ〉 and |φ〉 and ε > 0,
we denote by |ψ〉 ≈ε |φ〉 to mean ‖ |ψ〉−|φ〉 ‖ ≤ ε. We simply write |ψ〉 ≈ |φ〉 to mean |ψ〉 ≈negl(λ) |φ〉.
By the triangle inequality, if we have |ψ〉 ≈ε |φ〉 and |φ〉 ≈δ |τ〉, then we have |ψ〉 ≈ε+δ |τ〉.

For not necessarily normalized quantum states |ψ〉 and |φ〉, we denote by |ψ〉 ∝ |φ〉 to mean
that |ψ〉 = C |φ〉 for some C ∈ C \ {0}.

2.1 Finite Fields

For a prime power q = pr, Fq denotes a field of order q. We use this notation throughout the
paper, and whenever we write Fq, q should be understood as a prime power. We denote by 0
to mean (0, ..., 0) ∈ Fnq where n will be clear from the context. For x = (x1, ..., xn) ∈ Fnq and
y = (y1, ..., yn) ∈ Fnq , we define x · y :=

∑n
i=1 xiyi.

We often consider vectors x ∈ Σn over the alphabet Σ = Fmq . We identify Σn and Fnmq in the
canonical way, i.e., we identify ((x1, . . . , xm), . . . , (x(n−1)m+1, . . . , xnm)) ∈ Σn and (x1, x2, . . . , xnm) ∈
Fnmq . For x = (x1, ...,xn) ∈ Σn and y = (y1, ...,yn) ∈ Σn, we define x · y :=

∑n
i=1 xi · yi.

The trace function Tr : Fq → Fp is defined by6

Tr(x) :=

r−1∑
i=0

xp
i
.

The trace function is Fp-linear, i.e., for any a, b ∈ Fp and x, y ∈ Fq, we have

Tr(ax+ by) = aTr(x) + bTr(y).

We let ωp := e2πi/p. For any x ∈ Fnq \ {0}, we have∑
y∈Fnq

ωTr(x·y)
p = 0. (1)

The multiplicative group F∗q of Fq is cyclic, and thus there is an element γ ∈ F∗q such that

{γi}i∈[q−1] = F∗q .

For x ∈ Fnq , we denote by hw(x) to mean the Hamming weight of x, i.e., hw(x) := |{i ∈ [n] : xi 6= 0}|
where x = (x1, . . . , xn). For x = (x1, . . . , xn) ∈ Fnq and a subset S ⊆ [n], we denote by xS to mean
(xi)i∈S .

2.2 Quantum Fourier Transform over Finite Fields

We review known facts on quantum Fourier transform over finite fields. On a quantum system over
a finite field Fq, a quantum Fourier transform is a unitary denoted by QFTFq such that for any

6It may not be immediately clear from the definition below that Tr(x) ∈ Fp, but this is a well-known fact [LN97].
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x ∈ Fq,

QFTFq |x〉 =
1
√
q

∑
z∈Fq

ωTr(x·z)
p |z〉 .

A quantum Fourier transform over Fq can be approximated to within error ε in time polynomial
in log q and log 1/ε [dBCW02, vDHI06]. For ease of exposition, we ignore the approximation error
in the rest of the paper since it can be made exponentially small by a polynomial-size quantum
circuit.

We often consider quantum systems over the alphabet Σ = Fmq for some positive integer m. We
define the QFT over Σ to be the m-tensor product of QFTFq : For x = (x1, ..., xm) ∈ Σ,

QFTΣ |x〉 := QFT⊗mFq |x1〉 |x2〉 ... |xm〉

=
1√
|Σ|

∑
z∈Σ

ωTr(x·z)
p |z〉

where the second equality follows from the definition of QFTFq and linearity of Tr. Similarly, for
any positive integer n and x ∈ Σn, we have

QFT⊗nΣ |x〉 =
1

|Σ|n/2
∑

z∈Σn

ωTr(x·z)
p |z〉

by the definition of QFTΣ and linearity of Tr.
For a function f : Σn → C, we define

f̂(z) :=
1

|Σ|n/2
∑

x∈Σn

f(x)ωTr(x·z)
p .

Then it is easy to see that we have

QFT⊗nΣ

∑
x∈Σn

f(x) |x〉 =
∑

z∈Σn

f̂(z) |z〉 .

For functions f : Σn → C and g : Σn → C, f · g and f ∗ g denote the point-wise product and
convolution of f and g, respectively, i.e.,

(f · g)(x) := f(x) · g(x)

(f ∗ g)(x) :=
∑

y∈Σn

f(y) · g(x− y).

We have the following standard lemmas. We include the proofs for completeness.

Lemma 2.1 (Parseval’s equality). For any f : Σn → C, we have∑
x∈Σn

|f(x)|2 =
∑

z∈Σn

|f̂(z)|2.

Proof. Since QFTFq is unitary, QFT⊗nΣ is also unitary. This immediately implies Lemma 2.1.
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Lemma 2.2. Let m be a positive integer that divides n. Suppose that we have fi : Σ → C for
i ∈ [n] and f : Σn → C is defined by

f(x) :=
∏
i∈[n]

fi(xi) (2)

where x = (x1,x2, ...,xn). Then, we have

f̂(z) =
∏
i∈[n]

f̂i(zi)

where z = (z1, z2, ..., zn).

Proof. This can be proven by the following equalities:

f̂(z) =
1

|Σ|n/2
∑

x∈Σn

f(x)ωTr(x·z)
p

=
1

|Σ|n/2
∑
x1∈Σ

...
∑

xn∈Σ

∏
i∈[n]

fi(xi)ω
Tr(xi·zi)
p

=
∏
i∈[n]

1

|Σ|1/2
∑
xi∈Σ

fi(xi)ω
Tr(xi·zi)
p

=
∏
i∈[n]

f̂i(zi)

where the second equality follows from Equation (2) and the linearity of Tr.

Lemma 2.3 (Convolution theorem). For functions f : Σn → C, g : Σn → C, and h : Σn → C, the
following equations hold.

f̂ · g =
1

|Σ|n/2
(f̂ ∗ ĝ), (3)

f̂ ∗ g = |Σ|n/2(f̂ · ĝ), (4)

̂f · (g ∗ h) = (f̂ ∗ (ĝ · ĥ)). (5)
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Proof. For any x ∈ Σn, we have

(f̂ ∗ ĝ)(x) =
∑

y∈Σn

f̂(y)ĝ(x− y)

=
∑

y∈Σn

(
1

|Σ|n/2
∑

z∈Σn

f(z)ωTr(y·z)
p

)(
1

|Σ|n/2
∑

z′∈Σn

g(z′)ωTr((x−y)·z′)
p

)

=
1

|Σ|n
∑

y∈Σn

∑
z∈Σn

∑
z′∈Σn

f(z)g(z′)ωTr(x·z′)
p ωTr(y·(z−z′))

p

=
1

|Σ|n
∑

z∈Σn

∑
z′∈Σn

f(z)g(z′)ωTr(x·z′)
p

∑
y∈Σn

ωTr(y·(z−z′))
p


=

1

|Σ|n
· |Σ|n

∑
z∈Σn

f(z)g(z)ωTr(x·z)
p

=
∑

z∈Σn

f(z)g(z)ωTr(x·z)
p

= |Σ|n/2(f̂ · g)(x)

where the third equality follows from the linearity of Tr and the fifth equality follows from Equa-
tion (1). This implies Equation (3).

For any x ∈ Σn, we have

(̂f ∗ g)(x) =
1

|Σ|n/2
∑

z∈Σn

(f ∗ g)(z)ωTr(x·z)
p

=
1

|Σ|n/2
∑

z∈Σn

∑
y∈Σn

f(y)g(z− y)ωTr(x·y)
p ωTr(x·(z−y))

p

=
1

|Σ|n/2

∑
y∈Σn

f(y)ωTr(x·y)
p

( ∑
z′∈Σn

g(z′)ωTr(x·z′)
p

)
= |Σ|n/2(f̂ · ĝ)(x)

where the second equality follows from the linearity of Tr. This implies Equation (4). Equation (5)
immediately follows from Equations (3) and (4).

2.3 Other Lemmas

We rely on the following well-known lemmas.

Lemma 2.4 (Chernoff Bound). Let X1, ..., Xn be independent random variables taking values in
{0, 1}, X :=

∑
i∈[n]Xi, and µ := E[X]. For any δ ≥ 0, it holds that

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
2+δ .

Lemma 2.5 ([Zha12]). For any sets X and Y of classical strings and q-quantum-query algorithm
A, we have

Pr[AH = 1 : H
$← Func(X ,Y)] = Pr[AH = 1 : H

$← F ]

where F is a family of 2q-wise independent hash functions from X to Y.
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3 Cryptographic Definitions in the Random Oracle Model

Here, we define various cryptographic notions we will be constructing. We consider the following
variations of the random oracle model.

• Classical random oracle model (CROM) [BR93]. In this model, a uniformly random
function H : {0, 1}n → {0, 1}m is chosen at the beginning where n = n(λ) and m = m(λ) are
polynomials in the security parameter λ (that may vary depending on the protocol), and the
adversary is allowed to make classical queries to H.7 When we consider probabilities over the
random oracle H, it should be understood to be uniformly chosen from the set of all functions
from {0, 1}n to {0, 1}m unless otherwise stated. We often refer to adversaries in the CROM
as uniform classical adversaries.

• Quantum random oracle model (QROM) [BDF+11]. This is identical to the CROM
except that queries to H can now be quantum. In other words, a quantum oracle that applies
a unitary |x〉 |y〉 7→ |x〉 |y ⊕H(x)〉 is available. We often refer to adversaries in the QROM as
uniform quantum adversaries.

• Classical random oracle model with auxiliary-inputs (AI-CROM) [Unr07]. This is
identical to the CROM except that the adversary is allowed to take a polynomial-size classical
advice that depends on the random oracle. We often refer to adversaries in the AI-CROM as
non-uniform classical adversaries.

• Quantum random oracle model with (classical) auxiliary-inputs (AI-QROM) [HXY19].8

This is identical to the QROM except that the adversary is allowed to take a polynomial-size
classical advice that depends on the random oracle. We often refer to adversaries in the
AI-QROM as non-uniform quantum adversaries.

Remark 3. In this paper, we treat random oracles as functions defined over a finite-size domain
that depends on the security parameter. This treatment is more common in cryptography. On the
other hand, in complexity theory, random oracles are often treated as functions over the infinite set
{0, 1}∗. By standard arguments, we can translate our results into those in the complexity theoretic
setting (e.g., relative to a random oracle with probability 1, proofs of quantumness exist etc.).

Definition 3.1 (Family of oracle-aided functions.). For functions `key = `key(λ), `in = `in(λ), `out =
`out(λ), a family {fλ : {0, 1}`key × {0, 1}`in → {0, 1}`out}λ∈N of efficiently computable oracle-aided
keyed functions relative to oracles H : {0, 1}n → {0, 1}m is a family of functions fλ that is im-
plemented by a polynomial-time (deterministic) classical machine with an oracle access to H. The
family of functions is keyless if `key = 0. If we do not specify keyed or keyless, we mean keyless.
We denote by fHλ to mean fλ relative to a specific oracle H.

One-way functions. We now define what it means for an oracle-aided function to be one-way
relative to a random oracle. For one-way functions, we only consider keyless functions, as it is well
known that keyless and keyed one-way functions are equivalent.

Definition 3.2 (One-way functions with random oracles). We say that a family {fλ : {0, 1}`in →
{0, 1}`out}λ∈N of efficiently computable oracle-aided functions relative to oracles H : {0, 1}n →

7The classical random oracle model is often just referred to as the ROM, but we call it CROM to emphasize that
the oracle access is classical.

8We could also consider the QROM with quantum auxiliary-inputs, but we do not consider it in this paper.
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{0, 1}m is one-way in the CROM (resp. QROM) if for all unbounded-time A that make poly(λ)
classical (resp. quantum) queries to H, there exists a negligible function negl such that:

Pr
H

[y = fHλ (x′) : x
$← {0, 1}`in , y = fHλ (x), x′

$← AH(1λ, y)] < negl(λ). (6)

We say that {fλ : {0, 1}`in → {0, 1}`out}λ∈N is one-way in the AI-CROM (resp. AI-QROM) if for
all unbounded-time A that make poly(λ) classical (resp. quantum) queries to H and polynomial-size
classical advice {a(H)}H , there exists a negligible function negl such that:

Pr
H

[y = fHλ (x′) : x
$← {0, 1}`in , y = fHλ (x), x′

$← AH(a(H), 1λ, y)] < negl(λ). (7)

Collision-resistance. We now define collision-resistant hashing.

Definition 3.3 (Collision-resistance with random oracles). We say that a family {fλ : {0, 1}`key ×
{0, 1}`in → {0, 1}`out}λ∈N of efficiently computable oracle-aided keyed functions relative to oracles
H : {0, 1}n → {0, 1}m is collision-resistant in the CROM (resp. QROM) if for all unbounded-time
adversaries A that make poly(λ) classical (resp. quantum) queries to H, there exists a negligible
function negl such that:

Pr
H

[fHλ (k, x0) = fHλ (k, x1) ∧ x0 6= x1 : k
$← {0, 1}`key , (x0, x1)

$← AH(k)] = negl(λ).

Collision-resistance in the AI-CROM and AI-QROM is defined analogously.

A keyless hash function has `key = 0. Note that unlike one-way functions, keyless collision
resistant hash functions cannot have security against non-uniform adversaries since collisions may
be hardcoded in the advice.

Proofs of quantumness. We now define proofs of quantumness, which have a quantum prover
prove that they are quantum to a classical verifier. Like before, we will consider various definitions.

Definition 3.4. A (keyed non-interactive publicly verifiable) proof of quantumness with key length
`key = poly(λ) relative to a random oracle consists of algorithms (Prove,Verify).

ProveH(1λ, k): This is a QPT algorithm that takes the security parameter 1λ and a key k ∈ {0, 1}`key
as input, makes poly(λ) quantum queries to the random oracle H, and outputs a classical proof
π.

VerifyH(1λ, k, π): This is a deterministic classical polynomial-time algorithm that takes the security
parameter 1λ, k and a proof π, makes poly(λ) queries to the random oracle H, and outputs
> indicating acceptance or ⊥ indicating rejection.

We require a proof of quantumness to satisfy the following properties.

Correctness. We have

Pr
H,k

[
VerifyH(1λ, k, π) = ⊥ : π

$← ProveH(1λ, k)
]
≤ negl(λ).

Soundness. A proof of quantumness is (Q(λ), ε(λ))-sound in the CROM if, for any unbounded-
time adversary A that makes Q(λ) classical oracle queries to H, we have

Pr
H,k

[
VerifyH(1λ, k, π∗) = > : π∗

$← AH(1λ, k)
]
≤ ε(λ).
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When we do not specify Q and ε, we require that for any unbounded-time adversary A that makes
poly(λ) queries, the above probability is negl(λ). Soundness in the AI-CROM is defined analogously.
A keyless proof of quantumness has `key = 0.

Note that, as with collision resistance, there cannot be keyless proofs of quantumness with
soundness against non-uniform adversaries. Indeed, a valid proof π could be hardcored in the
advice.

Proofs of randomness. We now define proofs of (min-)entropy and proofs of randomness, also
referred to as certifiable randomness. These are protocols by which a classical verifier with very
little entropy can produce significant entropy with the help of a potentially untrusted quantum
device.

We note that Brakerski et al.’s [BCM+18] work giving the first certifiable randomness protocol
for a single device actually did not provide a formal definition. The work of Amos et al. [AGKZ20]
provide a definition of certifiable min-entropy, but we observe that it is inappropriate. Their
definition says that, conditioned on the verifier accepting, the string produced by the verifier must
have min-entropy. We note, however, that a malicious device may always output a deterministic
value. This value may be accepted with negligible but non-zero probability. Conditioned on
accepting, the entropy remains zero. We give new definitions for certifiable entropy and randomness,
overcoming this limitation.

We also note that defining certifiable randomness relative to a random oracle is subtle, since the
random oracle itself is an infinite source of randomness. To accurately model entropy that comes
from the protocol as opposed to the random oracle, we insist that the random string produced by
the verifier has min-entropy or is uniformly random, even conditioned on the random oracle.

We note that for a proof of min-entropy, the situation is analogous to collision resistance where
it is potentially feasible in the uniform setting or with a key, but trivially impossible in the non-
uniform keyless setting. However, for a proof of randomness, it is inherent in the non-interactive
setting that the verifier must have some local randomness. This is because, in the non-interactive
setting without verifier randomness, a malicious prover can keep generating samples until, say, the
first bit of the output is 0. Such a string clearly will not be uniformly random. This shows that
the actual string obtained by the verifier must be kept secret from the prover, at least until after
the prover’s message is sent.

We now give the definitions.

Definition 3.5. A (keyed non-interactive publicly verifiable) proof of min-entropy relative to a
random oracle with key length `key = poly(λ) consists of algorithms (Prove,Verify).

ProveH(1λ, k, 1h): This is a QPT algorithm that takes the security parameter 1λ, key k ∈ {0, 1}`key ,
and a min-entropy threshold 1h as input. It makes poly(λ, h) quantum queries to the random
oracle H, and outputs a classical proof π.

VerifyH(1λ, k, 1h, π): This is a deterministic classical polynomial-time algorithm that takes 1λ, k, 1h,
and a proof π; it makes poly(λ, h) queries to the random oracle H, and outputs either a string
x (whose length may depend on h), or ⊥ indicating rejection.

We require a proof of min-entropy to satisfy the following properties:

Correctness. For any h = h(λ), we have

Pr
H,k

[
VerifyH(1λ, k, 1h, π) = ⊥ : π

$← ProveH(1λ, k, 1h)
]
≤ negl(λ).
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Min-entropy. For any polynomially-bounded h = h(λ), any unbounded-time adversary A that
makes poly(λ) quantum oracle queries to H, and for any inverse polynomial δ, there is a negligible
negl such that the following holds. Let AH> (1λ, k, 1h) be the distribution VerifyH(1λ, k, 1h,AH(1λ, k, 1h)),
conditioned on the output not being ⊥. Then:

Pr
H,k

[
Pr[VerifyH(1λ, k, 1h,AH(1λ, k, 1h)) 6= ⊥] ≥ δ(λ) ∧H∞

(
AH> (1λ, k, 1h)

)
≤ h(λ)

]
≤ negl(λ)

The min-entropy requirement in the AI-QROM is defined analogously. A keyless proof of min-
entropy has `key = 0 in which case we omit k from the input of Prove and Verify.

Note that min-entropy and correctness together imply that the output of Verify when interacting
with the honest Prove algorithm must have min-entropy at least h for an overwhelming fraction of
H, k.

Definition 3.6. A (keyed non-interactive publicly verifiable) proof of randomness relative to a
random oracle has the same syntax as a proof of min-entropy (Definition 3.5), except that we allow
Verify to be randomized and require the output of Verify to be exactly h bits unless its output is ⊥.
We require a proof of randomness to satisfy the following properties:
Correctness. For any h = h(λ), we have

Pr
H,k,r

[
VerifyH(1λ, k, 1h, π; r) = ⊥ : π

$← ProveH(1λ, k, 1h)
]
≤ negl(λ).

Succinct randomness. The length of the randomness r used by Verify is poly(λ, log h) bits.
True randomness. For any polynomially-bounded h = h(λ) and any unbounded-time adversary
A that makes poly(λ) quantum oracle queries to H, and for any inverse polynomial δ, there is a
negligible negl such that the following holds for a (1 − negl(λ))-fraction of (H, k). If it holds that
Pr[VerifyH(k, h,AH(k, h); r) 6= ⊥] ≥ δ, then

∆
(

(r, U) , (r,AH> (1λ, k, 1h; r)) )
)
≤ negl(λ)

where AH> (1λ, k, 1h; r) is the distribution VerifyH(1λ, k, 1h,AH(1λ, k, 1h); r), conditioned on the out-
put not being ⊥, and U is the uniform distribution over h-bit-strings. In other words, provided that
Verify actually outputs a string with inverse polynomial probability, that string will be statistically
close to random for an overwhelming fraction of H, k.

The true randomness requirement in the AI-QROM is defined analogously. A keyless proof of
randomness has `key = 0 in which case we omit k from the input of Prove and Verify.

From min-entropy to true randomness. Here we discuss how proofs of min-entropy imply
proofs of randomness. This is an immediate application of extractors:

Theorem 3.7. If proofs of min-entropy in the QROM (resp. AI-QROM) exist, then so do proofs
of randomness in the QROM (resp. AI-QROM). If the proof of min-entropy is keyless, then so is
the proof of randomness.

Proof. We simply have a new Verify′ which chooses a random seed for a strong extractor, which it
applies to the result of Verify, outputting whatever the extractor outputs. By choosing the min-
entropy h sufficiently higher than the desired output length according to the parameters of the
extractor, the output of Verify′ will be statistically close to random and the desired length.

17



We note that the verifier’s random seed for the extractor can be sampled after the prover’s
message, and can also be made public afterward. The result is that if the proof of min-entropy is
public coin and publicly verifiable, the proof of randomness will be as well, at the cost of a single
final message from the verifier.

3.1 From Uniform to Non-Uniform Security

Clearly, security against non-uniform adversaries implies security against uniform adversaries. For
the other direction, we can use known results of [CDGS18] and [CGLQ20] that show that salting
generically lifts uniform security to non-uniform security in the classical and quantum random
oracle models, respectively. Note that the results require it to be efficiently verifiable when the
adversary wins; this applies to one-way functions, collision resistance, and proofs of quantumness,
but not to proofs of min-entropy/randomness, where it cannot be efficiently checked if the adversary
produced a low entropy or non-uniform string. As immediate corollaries of these results, we obtain
the following:

Theorem 3.8. If {fλ}λ is one-way in the CROM (resp. QROM), then {gλ}λ where gHλ (s, x) =

s||fH(s||·)
λ (x) and where s ∈ {0, 1}λ is one-way in the AI-CROM (resp. AI-QROM).

Theorem 3.9. If {fλ}λ is a potentially keyed function family that is collision resistant in the

CROM (resp. QROM), then the keyed function {gλ}λ where gλ(k0||k1, x) = f
H(k1||·)
λ (k0, x) and

where k1 ∈ {0, 1}λ is collision resistant against in the AI-CROM (resp. AI-QROM).

Theorem 3.10. If (Prove0,Verify0) is a proof of quantumness that satisfies soundness in the

CROM, then (Prove,Verify) satisfies soundness in the AI-CROM, where ProveH(1λ, k0||k1) = Prove
H(k1||·)
0 (1λ, k0)

and VerifyH(1λ, k0||k1, π) = Verify
H(k1||·)
0 (1λ, k0, π) and where k1 ∈ {0, 1}λ.

We next discuss how salting actually does lift security for proofs of min-entropy and randomness
from the uniform to non-uniform case in the classical advice setting. We note that [CGLQ20]
actually does work, by fixing a particular string, and having the adversary win if it can cause the
verifier to output that string. This event occurs with exponentially-small probability, but [CGLQ20]
would handle exponentially small probabilities by setting the salt to be appropriately larger than
the min-entropy requirement. This limits the utility of a proof of min-entropy, since the large salt
could have just been used as the source of randomness. In the following, we show that small salts
can, in fact, be used, though it requires a more careful proof and cannot simply rely on the prior
theorem statements.

Theorem 3.11. If (Prove0,Verify0) is a proof of min-entropy (resp. proof of randomness) in the
QROM, then (Prove,Verify) is a proof of min-entropy (resp. proof of randomness) in the AI-

QROM, where ProveH(1λ, k0||k1, 1
h) = Prove

H(k1||·)
0 (1λ, k0, 1

h+1) and VerifyH(1λ, k0||k1, 1
h, π) =

Verify
H(k1||·)
0 (1λ, k0, 1

h+1, π) and where k1 ∈ {0, 1}λ.

We defer the proof to Section 9.

4 Error Correcting Codes.

In this section, we first review basic definitions and facts on error correcting codes. Then, we state
requirements of codes that are needed for our purpose. Then, we show that such a code exists
based on known results.
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4.1 Definitions

A code of length n ∈ N over an alphabet Σ (which is a finite set) is a subset C ⊆ Σn.

Linear codes. A code C is said to be a linear code if its alphabet is Σ = Fq for some prime
power q and C ⊆ Fnq is a linear subspace of Fnq .

Folded linear codes. A code C is said to be a folded linear code [Kra03, GR08] if its alphabet
is Σ = Fmq for some prime power q and a positive integer m and C ⊆ Σn is a linear subspace of Fnmq
where n is the length of C and we embed C into Fnmq in the canonical way. Linear codes are the
special case of folded linear codes where m = 1. For a linear code C ⊆ Fnq and a positive integer m

that divides n, we define its m-folded version C(m) as follows:

C(m) := {((x1, . . . , xm), (xm+1, . . . , x2m) . . . , (xn−m+1, . . . , xn)) : (x1, . . . , xn) ∈ C}.

Clearly, C(m) is a folded linear code. Conversely, any folded linear code can be written as C(m) for
some linear code C and a positive integer m.

Dual codes. Let C be a linear code of length n and dimension k over Fq. The dual code C⊥ of
C is defined as the orthogonal complement of C as a linear space over Fq, i.e.,

C⊥ := {z ∈ Fnq : x · z = 0 for all x ∈ C}.

C⊥ is a linear code of length n and dimension n− k over Fq.9
We define dual codes for folded linear codes similarly. That is, for a folded linear code C ∈ Σn

over the alphabet Σ = Fmq , its dual C⊥ is defined as

C⊥ := {z ∈ Σn : x · z = 0 for all x ∈ C}.10

It is clear from the definition that (C⊥)(m) = (C(m))⊥ for any linear codes C of length n and
positive integer m that divides n.

Lemma 4.1. For a folded linear code C ⊆ Σn, if we define

f(x) :=


1√
|C|

x ∈ C

0 otherwise
,

then we have

f̂(z) =


1√
|C⊥|

z ∈ C⊥

0 otherwise
.

Proof. For z ∈ C⊥, we have

f̂(z) =
1

|Σ|n/2
∑

x∈Σn

f(x)ωTr(x·z)
p

=
1

|Σ|n/2
∑
x∈C

1√
|C|

=
1√
|C⊥|

9Note that it does not always hold that Fnq = C ⊕ C⊥ since the bilinear form (x,y) 7→ x · y does not satisfy the
axioms of the inner product (i.e., there may exist x 6= 0 such that x · x = 0).

10Recall that x · z for x, z ∈ Σn is defined in Section 2.1.
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where the final equality follows from |C| · |C⊥| = |Σ|n. That f̂(z) = 0 for z /∈ C⊥ immediately
follows from the above and Lemma 2.1.

List recovery. We say that a code C ⊆ Σn is (ζ, `, L)-list recoverable if for any subsets Si ⊆ Σ
such that |Si| ≤ ` for i ∈ [n], we have

|{(x1, ..., xn) ∈ C : |{i ∈ [n] : xi ∈ Si}| ≥ (1− ζ)n}| ≤ L.

Note that list recoverability in the literature usually requires that the list of all codewords (x1, ..., xn) ∈
C satisfying |{i ∈ [n] : xi ∈ Si}| ≥ (1− ζ)n can be computed from {Si}i∈[n] in time polynomial in
|Σ|, n, `. However, we will not require this.

4.2 Suitable Codes

The following lemma claims the existence of codes that are suitable for our purpose.

Lemma 4.2 (Suitable codes). For any constants 0 < c < c′ < 1, there is an explicit family

{Cλ}λ∈N of folded linear codes over the alphabet Σ = Fmq of length n where |Σ| = 2λ
Θ(1)

, n = Θ(λ),

and |Cλ| ≥ 2n+λ that satisfies the following.11

1. Cλ is (ζ, `, L)-list recoverable where ζ = Ω(1), ` = 2λ
c

and L = 2Õ(λc
′
).

2. There is an efficient deterministic decoding algorithm DecodeC⊥λ
for C⊥λ that satisfies the

following. Let D be a distribution over Σ that takes 0 with probability 1/2 and otherwise takes
a uniformly random element of Σ \ {0}. Then, it holds that

Pr
e

$←Dn
[∀x ∈ C⊥λ , DecodeC⊥λ

(x + e) = x] = 1− 2−Ω(λ).

3. For all j ∈ [n− 1], Pr
x

$←Cλ
[hw(x) = n− j] ≤

(
n
|Σ|

)j
.

Our instantiation of Cλ is just folded Reed-Solomon codes with an appropriate parameter
setting. Item 1 is a direct consequence of the list recoverability of folded Reed-Solomon codes
in a certain parameter regime [GR08, Rud07]. For proving Item 2, we first remark that the duals
of folded Reed-Solomon codes are folded generalized Reed-Solomon codes, which have efficient list
decoding algorithms [GS99]. Then, we prove that the list decoding algorithm returns a unique
decoding result when the error comes from the distribution Dn. Item 3 follows from a simple
combinatorial argument. The proof of Lemma 4.2 is given in Section 4.3.

Remark 4. Folded Reed-Solomon codes are the only instantiation of Cλ which we are aware of.
Especially, we are not aware of any other codes that satisfy list-recoverability with appropriate
parameters for our purpose.

4.3 Proof of Lemma 4.2

In this subsection, we prove Lemma 4.2, i.e., we give a construction of codes that satisfy the
properties stated in Lemma 4.2.

11Item 3 is not needed for the construction of a proof of quantumness given in Section 6. It is used only in the
counterexample for one-way functions given in Section 7.1.
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4.3.1 Preparation

Before giving the construction, we need some preparations.

Generalized Reed-Solomon codes. We review the definition and known facts on (generalized)
Reed-Solomon codes. See e.g., [Lin10, Section 6] for more details.

A generalized Reed-Solomon code GRSFq ,γ,k,v over Fq w.r.t. a generator γ of F∗q , the degree

parameter 0 ≤ k ≤ N , and v = (v1, ..., vN ) ∈ F∗qN where N := q − 1 is defined as follows:

GRSFq ,γ,k,v := {(v1f(γ), v2f(γ2)...vNf(γN )) : f ∈ Fq[x]deg≤k}

where Fq[x]deg≤k denotes the set of polynomials over Fq of degree at most k.12 We remark that
GRSFq ,γ,k,v is a linear code over Fq that has length N = q−1 and dimension k+1. A Reed-Solomon
code is a special case of a generalized Reed-Solomon code where v = (1, 1, . . . , 1). We denote it
by RSFq ,γ,k (which is equivalent to GRSFq ,γ,k,(1,1,...,1)). The dual of RSFq ,γ,k is GRSFq ,γ,N−k−2,v for

some v ∈ FNq [Lin10, Claim 6.3].13

There is a classical deterministic list decoding algorithm GRSListDecodeFq ,γ,k,v for GRSFq ,γ,k,v
that corrects up to N −

√
kN errors in polynomial time in N [GS99].14 More precisely, for any

z ∈ FNq , GRSListDecodeFq ,γ,k,v(z) returns the list of all x ∈ GRSFq ,γ,k,v such that hw(x − z) <

N −
√
kN .

Folded Reed-Solomon codes. Let m be a positive integer that divides N = q−1. The m-folded

version RS
(m)
Fq ,γ,k of RSFq ,γ,k is a folded linear code of length n = N/m.15 It is known that RS

(m)
Fq ,γ,k

is list recoverable in the following parameter regime [GR08, Rud07].16

Lemma 4.3 ([Rud07, Sec. 3.6]). Let q be a prime power, γ ∈ F∗q be a generator, N := q − 1,
k < N be a positive integer, and m be a positive integer that divides N . For positive integers `, r,
and s ≤ m and a real 0 < ζ < 1, suppose that the following inequalities hold:

(1− ζ)N

m
≥
(

1 +
s

r

) s+1
√
N`ks

m− s+ 1
(8)

(r + s)
s+1

√
N`

k
< q. (9)

Then, RS
(m)
Fq ,γ,k is (ζ, `, L)-list recoverable where L = qs.

4.3.2 Construction

We show that folded Reed-Solomon codes satisfy the requirements of Lemma 4.2 if we set parameters
appropriately. In the following, whenever we substitute non-integer values into integer variables,

12Reed-Solomon codes whose length N is smaller than q − 1 are often considered. But we focus on the case of
N = q − 1.

13Recall that the dimension of (generalized) Reed-Solomon codes is the degree parameter k plus one.
14[GS99] described the list decoding algorithm for Reed-Solmon codes, but that can be extended to one for gener-

alized Reed-Solomon codes in a straightforward manner since scalar multiplications in each coordinate do not affect
the decodability.

15We remark that the roles of n and N are swapped compared with [GR08, Rud07].
16The following lemma is based on Rudra’s PhD thesis [Rud07]. The same result is also presented in the journal

version [GR08], but note that there is a notational difference in the definition of list recovery: the definition of
(ζ, `, L)-list recovery of [GR08] means ((1−ζ), `, L)-list recovery of [Rud07] and this paper. Also remark Footnote 15.
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there is an implicit flooring to integers which we omit writing. Fix 0 < c < c′ < 1, which defines
` = 2λ

c
. Our choices of parameters are as follows:

• q = 22blog λc (which automatically defines N = q − 1), m = 2blog λc + 1, and n = N/m =
2blog λc − 1.17

• γ is an arbitrary generator of F∗q . Note that we can find γ in polynomial time in λ since
q = poly(λ).

• k = αN for an arbitrary constant 5/6 < α < 1.

We set Cλ := RS
(m)
Fq ,γ,k. By the above parameter setting, it is easy to see that we have |Σ| = 2λ

Θ(1)
,

n = Θ(λ), and |Cλ| = qk+1 ≥ 2n+λ. We show that {Cλ}λ∈N satisfies the requirements of Lemma 4.2.
For notational simplicity, we omit λ from the subscript of C.

First item. We prove Item 1 of Lemma 4.2. First, we remark that we only have to prove that
the requirement is satisfied for sufficiently large λ since we can set L = qN for finitely many λ for
which (ζ, `, L)-list recoverability is trivially satisfied for any ζ and `. We apply Lemma 4.3 with
the following parameters:

• s = λc
′
. Note that this satisfies the requirement s ≤ m in Lemma 4.3 for sufficiently large λ

since m = Ω(λ) and c′ < 1.

• r = λc
′′

for a constant c′ < c′′ < 1.

• 0 < ζ < 1− α is an arbitrary constant.

Based on the above parameter setting, we have limλ→∞(1 + s
r ) = 1, limλ→∞

m
m−s+1 = 1, and

limλ→∞
s+1
√
` = 1 where we used ` = 2λ

c
and c < c′. Therefore, Equation (8) can be rearranged as

follows:

1− ζ ≥ (1 + o(1))

(
k

N

) s
s+1

(10)

This is satisfied for sufficiently large s (which occurs for sufficiently large λ) since we assume k = αN
and ζ < 1− α.

Similarly, by our choice of parameters, the LHS of Equation (9) is O(λc
′′
) and the RHS is Ω(λ2).

Since c′′ < 1, Equation (9) also holds for sufficiently large λ.

Thus, by Lemma 4.3, RS
(m)
Fq ,γ,k with the above parameter setting is (ζ, `, L)-list recoverable where

L = qs ≤ (λ2)λ
c′

= 2Õ(λc
′
). This means that Item 1 of Lemma 4.2 is satisfied.

Second item. Next, we prove Item 2 of Lemma 4.2. Since C = RS
(m)
Fq ,γ,k is a folded Reed-Solomon

code, its dual C⊥ is a folded generalized Reed-Solomon code GRS
(m)
Fq ,γ,N−k−2,v for some v ∈ FNq .

In the following, we think of an element of Σn as an element of FNq in the canonical way. Then,

C⊥ = GRS
(m)
Fq ,γ,N−k−2,v is identified with GRSFq ,γ,N−k−2,v. Let d := N − k− 2 and 0 < ε < 0.09 be

a constant specified later. We define DecodeC⊥ as follows.

17This is an example of the parameter choice. Any prime power of the form q = nm+1 where n and m are positive
integers such that n = Ω(λ) and m = Ω(λ) suffices.
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DecodeC⊥(z): On input z ∈ FNq , it runs the list decoding algorithm GRSListDecodeFq ,γ,N−k−2,v(z)
to get a list of codewords. If there is a unique x in the list such that hw(z−x) ≤ (1/2 + ε)N ,
it outputs x, and otherwise outputs ⊥.

We define a subset G ⊆ FNq as follows.

G := {e ∈ FNq : hw(e) ≤ (1/2 + ε)N ∧ ∀y ∈ C⊥ \ {0}, hw(e− y) > (1/2 + ε)N}.

For any x ∈ C⊥ and e ∈ G, by the definition of G, x is the only codeword of C⊥ whose Hamming
distance from x+e is smaller than or equal to (1/2+ε)N . Moreover, since k = αN for α > 5/6 and
ε < 0.09, it holds that N−

√
dN = N−

√
(1− α)N2 − 2N ≥ (1−

√
1− α)N > 0.59N > (1/2+ε)N .

Thus, for any x ∈ C⊥ and e ∈ G, the list output by GRSListDecodeFq ,γ,N−k−2,v(x+e) must contain
x, which implies

DecodeC⊥(x + e) = x.

Thus, it suffices to prove

Pr
e

$←Dn
[e /∈ G] = 2−Ω(λ)

where D is the distribution as defined in Lemma 4.2.18 For e ∈ FNq , we parse it as e = (e1, ..., en) ∈
Σn and define Se ⊆ [N ] as the set of indices on which ei = 0, i.e.,

Se :=
⋃

i∈[n]:ei=0

{(i− 1)m+ 1, (i− 1)m+ 2, . . . , im}.

By the definition of D and n = Θ(λ), the Chernoff bound (Lemma 2.4) gives

Pr
e

$←Dn
[(1/2− ε)N ≤ |Se| ≤ (1/2 + ε)N ] ≥ 1− 2Ω(λ).

Therefore, it suffices to prove

Pr
e

$←Dn
[e /∈ G | Se = S∗] = 2−Ω(λ) (11)

for all S∗ ⊆ [N ] such that (1/2− ε)N ≤ |S∗| ≤ (1/2 + ε)N . Fix such S∗. When Se = S∗, it is clear
that we have hw(e) ≤ (1/2 + ε)N since |S∗| ≥ (1/2 − ε)N . Thus, when Se = S∗ and e /∈ G, there
exists y ∈ C⊥ \ {0} such that

hw(e− y) ≤ (1/2 + ε)N. (12)

Let S̄∗ := [N ] \ S∗. Note that |S̄∗| > d+ 2εN holds by our parameter choices. It holds that19

hw(e− y) = hw(eS∗ − yS∗) + hw(eS̄∗ − yS̄∗). (13)

Since we assume S∗ = Se, we have eS∗ = 0. On the other hand, since y 6= 0 and degree d non-zero
polynomials have at most d roots, y can take 0 on at most d indices. In particular, we have

hw(eS∗ − yS∗) ≥ |S∗| − d. (14)

18Dn is defined as a distribution over Σn, but its sample can be interpreted as an element of FNq in the canonical
way.

19Recall the notation xS = (xi)i∈S for x = (x1, . . . , xN ) ∈ FNq and S ⊆ [N ].

23



By combining Equations (12) to (14), we have

hw(eS̄∗ − yS̄∗) ≤ (1/2 + ε)N − (|S∗| − d) ≤ d+ 2εN (15)

where we used |S∗| ≥ (1/2− ε)N . That is, conditioned on Se = S∗, Equation (15) holds for some
y ∈ C⊥ \ {0} whenever e /∈ G. Moreover, conditioned on Se = S∗, the distribution of eS̄∗ is a
direct product of |S̄∗|/m copies of the uniform distribution over Fmq \ {0} by the definition of D.

Since qm = 2Ω(λ), the distribution is statistically 2−Ω(λ)-close to the uniform distribution over FNq .
Combining these observations, it holds that20

Pr
e

$←Dn
[e /∈ G | Se = S∗] ≤ Pr

eS̄∗
$←F|S̄

∗|
q

[∃y ∈ C⊥ hw(eS̄∗ − yS̄∗) ≤ d+ 2εN ] + 2−Ω(λ). (16)

When there exists y ∈ C⊥ such that hw(eS̄∗ − yS̄∗) ≤ d+ 2εN , there is a subset T ⊆ S̄∗ such that
|T | = |S̄∗| − dd + 2εNe and eT = yT since we have |S̄∗| > dd + 2εNe. On the other hand, since a
codeword of C⊥ is determined by values on d+ 1 indices, for any fixed T ⊆ S∗, we have

Pr
eS̄∗

$←F|S̄
∗|

q

[∃y ∈ C⊥ eT = yT ] = q−(|T |−(d+1)) ≤ q−( 1
2
−3ε)N+2d+1 (17)

where we used |T | ≥ |S̄∗| − d − 2εN and |S̄∗| ≥ (1/2 − ε)N . Since there are
( |S̄∗|
dd+2εNe

)
possible

choices of T , combined with Equation (17), it holds that

Pr
eS̄∗

$←F|S̄
∗|

q

[∃y ∈ C⊥ hw(eS̄∗ − yS̄∗) ≤ d+ 2εN ] ≤
(

|S̄∗|
dd+ 2εNe

)
· q−( 1

2
−3ε)N+2d+1

≤ qd+2εN+1 · q−( 1
2
−3ε)N+2d+1

≤ q−( 1
2
−3(1−α)−5ε)N−4 (18)

where we used |S̄∗| ≤ N < q in the second inequality and d = N −k−2 = (1−α)N −2 in the third
inequality. Since 5/6 < α < 1, we can choose 0 < ε < 0.09 in such a way that 1

2 −3(1−α)−5ε > 0.
(For example, ε := −1

4 + 3
10α suffices.) Then, by combining Equations (16) and (18) together with

q = Ω(λ) and 1
2 − 3(1− α)− 5ε = Ω(1), we obtain Equation (11).

Third item. Finally, we prove Item 3 of Lemma 4.2. For dk+1
m e < j < n, there does not exist

a codeword x such that hw(x) = n − j. This is because if hw(x) = n − j, the polynomial f
corresponding to x has at least mj ≥ k + 1 roots, which means that x = 0 since the degree of f is
at most k. This contradicts hw(x) = n− j > 0.

The case of j ≤ dk+1
m e is proven below. In this case, since a polynomial of degree at most k is

determined by evaluated values on k + 1 points, for any subset S ⊆ [n] such that |S| = j, xS is

uniformly distributed over Σj when x
$← Cλ. Therefore, we have

Pr
x

$←Cλ
[hw(x) = n− j] ≤

∑
S⊆[n] s.t. |S|=j

Pr
x

$←Cλ
[xS = 0]

≤
(
n

j

)
|Σ|−j

≤
(
n

|Σ|

)j
.

This completes the proof of Lemma 4.2.

20We can take ∃y ∈ C⊥ instead of ∃y ∈ C⊥ \ {0} in the RHS since this does not decrease the probability. Indeed,
one can see that the probabilities are the same noting that eS̄∗ does not take 0 on any index and |S̄∗| > d+ 2εN .
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5 Technical Lemma

We prepare a lemma that is used in the proof of correctness of our proof of quantumness constructed
in Section 6. The lemma is inspired by the quantum step of Regev’s reduction from LWE to worst-
case lattice problems [Reg05].

Lemma 5.1. Let |ψ〉 and |φ〉 be quantum states on a quantum system over an alphabet Σ = Fmq
written as

|ψ〉 =
∑

x∈Σn

V (x) |x〉

|φ〉 =
∑

e∈Σn

W (e) |e〉 .

Let F : Σn → Σn be a function. Let GOOD ⊆ Σn×Σn be a subset such that for any (x, e) ∈ GOOD,
we have F (x + e) = x. Let BAD be the complement of GOOD, i.e., BAD := (Σn × Σn) \ GOOD.
Suppose that we have ∑

(x,e)∈BAD

|V̂ (x)Ŵ (e)|2 ≤ ε (19)

∑
z∈Σn

∣∣∣∣∣∣
∑

(x,e)∈BAD:x+e=z

V̂ (x)Ŵ (e)

∣∣∣∣∣∣
2

≤ δ. (20)

Let Uadd and UF be unitaries defined as follows:

|x〉 |e〉 Uadd−−→ |x〉 |x + e〉 UF−−→ |x− F (x + e)〉 |x + e〉 .

Then we have

(I ⊗ (QFT−1
Σ )⊗n)UFUadd(QFT⊗nΣ ⊗ QFT⊗nΣ ) |ψ〉 |φ〉 ≈√ε+√δ |Σ|

n/2
∑

z∈Σn

(V ·W )(z) |0〉 |z〉 .

Proof. Equations (19) and (20) immediately imply the following inequalities, respectively:∥∥∥∥∥∥
∑

(x,e)∈BAD

V̂ (x)Ŵ (e) |x〉 |e〉

∥∥∥∥∥∥ ≤ √ε
and ∥∥∥∥∥∥

∑
(x,e)∈BAD

V̂ (x)Ŵ (e) |x + e〉

∥∥∥∥∥∥ ≤ √δ.
Since BAD is the complement of GOOD, the above imply the following:∑

(x,e)∈Σn×Σn

V̂ (x)Ŵ (e) |x〉 |e〉 ≈√ε
∑

(x,e)∈GOOD

V̂ (x)Ŵ (e) |x〉 |e〉 (21)

and ∑
(x,e)∈Σn×Σn

V̂ (x)Ŵ (e) |x + e〉 ≈√δ
∑

(x,e)∈GOOD

V̂ (x)Ŵ (e) |x + e〉 . (22)
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Then, we have

UFUadd(QFT⊗nΣ ⊗ QFT⊗nΣ ) |ψ〉 |φ〉 = UFUadd

∑
(x,e)∈Σn×Σn

V̂ (x)Ŵ (e) |x〉 |e〉

≈√ε UFUadd

∑
(x,e)∈GOOD

V̂ (x)Ŵ (e) |x〉 |e〉

=
∑

(x,e)∈GOOD

V̂ (x)Ŵ (e) |0〉 |x + e〉

≈√δ
∑

(x,e)∈Σn×Σn

V̂ (x)Ŵ (e) |0〉 |x + e〉

=
∑

z∈Σn

(V̂ ∗ Ŵ )(z) |0〉 |z〉

= |Σ|n/2
∑

z∈Σn

̂(V ·W )(z) |0〉 |z〉

= (I ⊗ QFT⊗nΣ )|Σ|n/2
∑

z∈Σn

(V ·W )(z) |0〉 |z〉

where we used Equation (21) for the second line, Equation (22) for the fourth line, and the con-
volution theorem (Equation (3) in Lemma 2.3) for the sixth line. This completes the proof of
Lemma 5.1.

6 Proofs of Quantumness

In this section, we give a construction of proofs of quantumness in the QROM, which is the main
result of this paper.

Theorem 6.1. There exists a keyless proof of quantumness relative to a random oracle that satisfies
soundness in the CROM.

By Theorem 3.10, we immediately obtain the following corollary.

Corollary 6.2. There exists a keyed proof of quantumness relative to a random oracle that satisfies
soundness in the AI-CROM.

The rest of this subsection is devoted to a proof of Theorem 6.1.

Construction. Let {Cλ}λ be a family of codes over an alphabet Σ = Fmq that satisfies the
requirements of Lemma 4.2 with arbitrary 0 < c < c′ < 1. In the following, we omit λ from the
subscript of C since it is clear from the context. We use notations defined in Lemma 4.2 (e.g.,
n,m, ζ, `, L etc). Let H : Σ → {0, 1}n be a random oracle.21 For i ∈ [n], let Hi : Σ → {0, 1} be a
function that on input x outputs the i-th bit of H(x). Then, we construct a proof of quantumness
Π = (Prove,Verify) in the QROM as follows.

21Strictly speaking, we consider a random oracle with the domain {0, 1}∗. However, since our construction only
makes queries to H on (bit representaions of) elements of Σ for a fixed security parameter, we simply denote by H
to mean the restriction of H to (bit representations of) Σ.
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ProveH(1λ): For i ∈ [n], it generates a state

|φi〉 ∝
∑

ei∈Σ s.t. Hi(ei)=1

|ei〉 .

This is done as follows. It generates a uniform superposition over Σ, coherently evaluates H,
and measures its value. If the measurement outcome is 1, then it succeeds in generating the
above state. It repeats the above procedure until it succeeds or it fails λ times. If it fails to
generate |φi〉 within λ trials for some i ∈ [n], it just aborts. Otherwise, it sets

|φ〉 := |φ1〉 ⊗ |φ2〉 ⊗ . . .⊗ |φn〉 .

Note that we have
|φ〉 ∝

∑
e=(e1,...,en)∈Σn s.t.
Hi(ei)=1 for all i∈[n]

|e〉 .

It generates a state

|ψ〉 ∝
∑
x∈C
|x〉 .

Then it applies QFT⊗nΣ to both |ψ〉 and |φ〉. At this point, it has the state

|η〉 := QFT⊗nΣ |ψ〉 ⊗ QFT⊗nΣ |φ〉 .

Let Uadd and Udecode be unitaries on the Hilbert space of |η〉 defined by the following:

|x〉 |e〉 Uadd−−→ |x〉 |x + e〉 Udecode−−−−→ |x− DecodeC⊥(x + e)〉 |x + e〉

where DecodeC⊥ is the decoder for C⊥ as required in Item 2 of Lemma 4.2. Then it applies
(I⊗(QFT−1

Σ )⊗n)UdecodeUadd to |η〉, measures the second register, and outputs the measurement
outcome x ∈ Σn as π. A diagram showing how to compute π is given in Figure 1.

VerifyH(1λ, π): It parses π = x = (x1, . . . ,xn) and outputs > if x ∈ C and Hi(xi) = 1 for all i ∈ [n]
and ⊥ otherwise.

Correctness.

Lemma 6.3. Π satisfies correctness.

Proof. Let THii ⊆ Σ be the subset consisting of ei ∈ Σ such that Hi(ei) = 1 and TH := TH1
1 ×T

H2
2 ×

. . . × THnn ⊆ Σn. Let H̃ ⊆ Func(Σ, {0, 1}n) be the subset that consists of all H ∈ Func(Σ, {0, 1}n)

such that 1
3 <

|THii |
|Σ| < 2

3 for all i ∈ [n]. By the Chernoff bound (Lemma 2.4) and union bound, we can

see that (1−n ·2−Ω(|Σ|))-fraction of H ∈ (Σ, {0, 1}n) belongs to H̃. Since we have n ·2−|Σ| = negl(λ)
by our parameter choices specified in Lemma 4.2, it suffices to prove the correctness assuming that
H is uniformly chosen from H̃ instead of from Func(Σ, {0, 1}n). We prove this below.

First, we show that the probability that Prove aborts is negligible. In each trial to generate

|φi〉, the success probability is
|THii |
|Σ| < 2

3 . Thus, the probability that it fails to generate |φi〉 λ times
is negligible.
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b

b

…

DecodeC?

Figure 1: The algorithm Prove for computing π. Here, n− k is the dimension of C⊥, and MC⊥ is
any invertible matrix whose first n− k columns are a basis for C⊥.
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Let V : Σn → C, WHi
i : Σ→ C, and WH : Σn → C be functions defined as follows:22

V (x) =


1√
|C|

x ∈ C

0 otherwise

WHi
i (ei) =


1√
|THii |

ei ∈ THii

0 otherwise

WH(e) =


1√
|TH |

e ∈ TH

0 otherwise

Then we have

|ψ〉 =
∑

x∈Σn

V (x) |x〉

|φ〉 =
∑

e∈Σn

WH(e) |e〉

where |ψ〉 and |φ〉 are as in the description of Prove. For using Lemma 5.1, we prove the following
claim.

Claim 6.4. For an overwhelming fraction of H ∈ H̃, there is a subset GOOD ⊆ Σn×Σn such that
DecodeC⊥(x + e) = x for any (x, e) ∈ GOOD and we have∑

(x,e)∈BAD

|V̂ (x)ŴH(e)|2 ≤ negl(λ),

∑
z∈Σn

∣∣∣∣∣∣
∑

(x,e)∈BAD:x+e=z

V̂ (x)ŴH(e)

∣∣∣∣∣∣
2

≤ negl(λ).

where BAD = (Σn × Σn) \ GOOD.

We prove Claim 6.4 later. We complete the proof of Lemma 6.3 by using Claim 6.4. By
Lemma 5.1 and Claim 6.4 where we set F := DecodeC⊥ , for an overwhelming fraction of H ∈ H̃,
we have

(I ⊗ (QFT−1
Σ )⊗n)UdecodeUadd |η〉 ≈ |Σ|n/2

∑
x∈Σn

(V ·WH)(x) |0〉 |x〉 (23)

where |η〉 is as in the description of Prove. Since (V ·WH)(x) = 0 for x /∈ C ∩ TH , if we measure
the second register of the RHS of Equation (23), the outcome is in C ∩ TH with probability 1.
Thus, if we measure the second register of the LHS of Equation (23), the outcome is in C ∩S with
probability 1−negl(λ). This means that an honestly generated proof π passes the verification with
probability 1− negl(λ).

To complete the proof of correctness, we prove Claim 6.4 below.

22Since we assume that H is sampled from H̃, we do not define them when |THi
i | = 0 for some i.
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Proof of Claim 6.4. We use the notations defined in the proof of Lemma 6.3 above. For each
i ∈ [n], let H̃i ⊆ Func(Σ, {0, 1}) be the subset that consists of all Hi ∈ Func(Σ, {0, 1}) such that

1
3 <

|THii |
|Σ| < 2

3 .23 Choosing H
$← H̃ is equivalent to choosing Hi

$← H̃i independently for each

i ∈ [n]. In the following, whenever we write H or Hi in subscripts of E, they are uniformly taken
from H̃ or H̃i, respectively.

By Lemma 4.1 and the definition of V , we have

V̂ (x) =


1√
|C⊥|

x ∈ C⊥

0 otherwise
.

Let G ⊆ Σn be a subset defined as follows:

G := {e ∈ Σn : ∀x ∈ C⊥, DecodeC⊥(x + e) = x}.

Let B := Σn \ G. Item 2 of Lemma 4.2 implies

Pr
e

$←Dn
[e ∈ B] = negl(λ) (24)

where D is the distribution as defined in Item 2 of Lemma 4.2. We define GOOD := C⊥ × G
and BAD := (Σn × Σn) \ GOOD. Then, we have DecodeC⊥(x + e) = x for all (x, e) ∈ GOOD by
definition.

Noting that V̂ (x) = 0 for x /∈ C⊥, it is easy to see that we have the following:∑
(x,e)∈BAD

|V̂ (x)ŴH(e)|2 =
∑
e∈B
|ŴH(e)|2, (25)

∑
z∈Σn

∣∣∣∣∣∣
∑

(x,e)∈BAD:x+e=z

V̂ (x)ŴH(e)

∣∣∣∣∣∣
2

=
∑

z∈Σn

∣∣∣∣∣∣∣∣
∑

x∈C⊥,e∈B
:x+e=z

V̂ (x)ŴH(e)

∣∣∣∣∣∣∣∣
2

. (26)

We should prove that values of Equations (25) and (26) are negligible for an overwhelming fraction
of H ∈ H̃. By a standard averaging argument, it suffices to prove that their expected values are
negligible, i.e.,

E
H

[∑
e∈B
|ŴH(e)|2

]
≤ negl(λ), (27)

E
H

∑
z∈Σn

∣∣∣∣∣∣∣∣
∑

x∈C⊥,e∈B
:x+e=z

V̂ (x)ŴH(e)

∣∣∣∣∣∣∣∣
2 ≤ negl(λ). (28)

Before proving them, we remark an obvious yet useful claim.

Claim 6.5. Let π be a permutation over Σ (resp. Σn). Then, the distributions of Hi and Hi ◦ π
(resp. H and H ◦ π) are identical when Hi

$← H̃i (resp. H
$← H̃).

23Mathematically, the set H̃i does not depend on i. We index it by i for notational convenience.
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Proof of Claim 6.5. Recall that H̃i is the set of all Hi : Σ → {0, 1} such that |Σ|3 < |{ei ∈ Σ :

H(ei) = 1}| < 2|Σ|
3 . Clearly, we have |{ei ∈ Σ : H(ei) = 1}| = |{ei ∈ Σ : H ◦ π(ei) = 1}|. Thus, π

induces a permutation over H̃i, and thus Hi ◦ π is uniformly distributed over H̃i when Hi
$← H̃i.

A similar argument works for H̃ as well.

Then, we prove Equations (27) and (28).

Proof of Equation (27). First, we prove the following claim.

Claim 6.6. For all i ∈ [n] and e, e′ ∈ Σ \ {0}, it hold that

E
Hi

[
|Ŵi(0)|2

]
=

1

2
(29)

and

E
Hi

[
|Ŵi(e)|2

]
= E

Hi

[
|Ŵi(e

′)|2
]
. (30)

Proof of Claim 6.6. Equation (29) is proven as follows.

E
Hi

[
|Ŵi(0)|2

]
= E

Hi

∣∣∣∣∣ 1√
|Σ|

∑
z∈Σ

WHi
i (z)

∣∣∣∣∣
2
 =

EHi
[
|THii |

]
|Σ|

=
1

2
.

Since e 6= 0, for any w ∈ Fq, the number of z ∈ Σ such that e · z = w is |Σ|/q. A similar statement
holds for e′ too. Therefore, there is a permutation πe,e′ : Σ → Σ such that e · z = e′ · πe,e′(z) for
all z ∈ Σ. Then, Equation (30) is proven as follows.

E
Hi

[
|Ŵi(e)|2

]
= E

Hi

∣∣∣∣∣ 1√
|Σ|

∑
z∈Σ

WHi
i (z)ωTr(e·z)

p

∣∣∣∣∣
2


= E
Hi

∣∣∣∣∣ 1√
|Σ|

∑
z∈Σ

W
Hi◦π−1

e,e′
i (πe,e′(z))ω

Tr(e′·πe,e′ (z))
p

∣∣∣∣∣
2


= E
Hi

∣∣∣∣∣ 1√
|Σ|

∑
z∈Σ

W
Hi◦π−1

e,e′
i (z)ωTr(e′·z)

p

∣∣∣∣∣
2


= E
Hi

∣∣∣∣∣ 1√
|Σ|

∑
z∈Σ

WHi
i (z)ωTr(e′·z)

p

∣∣∣∣∣
2


= E
Hi

[
|Ŵi(e

′)|2
]

where the fourth equality follows from Claim 6.5.

Claim 6.6 means that we have

D(ei) = E
Hi

[
|Ŵi(ei)|2

]
(31)
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for all ei ∈ Σ where D(·) is the probability density function of the distribution D as defined in
Item 2 of Lemma 4.2. Moreover, for any e = (e1, . . . , en) ∈ Σn and H ∈ H̃, since we have
WH(e) =

∏n
i=1W

Hi
i (ei), by Lemma 2.2, we have

ŴH(e) =
n∏
i=1

ŴHi
i (ei). (32)

By combining Equations (31) and (32), we obtain

Dn(e) = E
H

[
|Ŵ (e)|2

]
(33)

for all e ∈ Σn where Dn(·) is the probability density function of Dn. By Equation (24), Equa-
tion (33), and the linearity of expectation, we obtain Equation (27).

Proof of Equation (28). We define a function B : Σn → C so that B̂ satisfies the following:24

B̂(e) =

{
1 e ∈ B
0 otherwise

.

We prove the following claims.

Claim 6.7. For any H ∈ H̃, it holds that

∑
z∈Σn

∣∣∣∣∣∣∣∣
∑

x∈C⊥,e∈B
:x+e=z

V̂ (x)ŴH(e)

∣∣∣∣∣∣∣∣
2

=
∑

z∈Σn

∣∣(V · (B ∗WH))(z)
∣∣2 .

Proof of Claim 6.7. For any z ∈ Σn, we have∑
x∈C⊥,e∈B

:x+e=z

V̂ (x)ŴH(e) =
∑

x∈Σn,e∈Σn

:x+e=z

V̂ (x)(B̂ · ŴH)(e)

= (V̂ ∗ (B̂ · ŴH))(z)

= ̂(V · (B ∗WH))(z)

where we used V̂ (x) = 0 for x /∈ C⊥ in the first equality and the convolution theorem (Equation (5)
in Lemma 2.3) in the third equality. Claim 6.7 follows from the above equation and Parseval’s
equality (Lemma 2.1).

Claim 6.8. For any z ∈ Σn, it holds that

E
H

[
|(B ∗WH)(z)|2

]
≤ negl(λ).

24That is, we first define B̂ and then define B as its inverse discrete Fourier transform.
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Proof of Claim 6.8. First, we observe that EH
[
|(B ∗WH)(z0)|2

]
= EH

[
|(B ∗WH)(z1)|2

]
for any

z0, z1. Indeed, if we define a permutation π : Σn → Σn as π(z) := z + z0 − z1, we have

E
H

[∣∣(B ∗WH)(z0)
∣∣2]

=E
H

∣∣∣∣∣ ∑
x∈Σn

B(x)WH(z0 − x)

∣∣∣∣∣
2


=E
H

∣∣∣∣∣ ∑
x∈Σn

B(x)WH◦π(z1 − x)

∣∣∣∣∣
2


=E
H

∣∣∣∣∣ ∑
x∈Σn

B(x)WH(z1 − x)

∣∣∣∣∣
2


=E
H

[∣∣(B ∗WH)(z1)
∣∣2]

where the third equality follows from Claim 6.5.
Then, for any z ∈ Σn, we have

E
H

[∣∣(B ∗WH)(z)
∣∣2]

=
1

|Σ|n
∑

z∈Σn

E
H

[∣∣(B ∗WH)(z)
∣∣2]

=
1

|Σ|n
E
H

[∑
z∈Σn

∣∣(B ∗WH)(z)
∣∣2]

=
1

|Σ|n
E
H

[∑
z∈Σn

∣∣∣|Σ|n/2(B̂ · ŴH)(z)
∣∣∣2]

=E
H

[∑
z∈B

∣∣∣ŴH(z)
∣∣∣2]

≤negl(λ).

where the third equality follows from the convolution theorem (Equation (4) in Lemma 2.3) and
Parseval’s equality (Lemma 2.1) and the final inequality follows from Equation (27).
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Then, we prove Equation (28) as follows:

E
H

∑
z∈Σn

∣∣∣∣∣∣∣∣
∑

x∈C⊥,e∈B
:x+e=z

V̂ (x)ŴH(e)

∣∣∣∣∣∣∣∣
2

=E
H

[∑
z∈Σn

∣∣(V · (B ∗WH))(z)
∣∣2]

=E
H

[∑
z∈C

1

|C|
∣∣(B ∗WH))(z)

∣∣2]

=
1

|C|
∑
z∈C

E
H

[∣∣(B ∗WH))(z)
∣∣2]

≤negl(λ).

where the first equality follows from Claim 6.7, the second equality follows from the definition of
V , and the final inequality follows from Claim 6.8.

This completes the proof of Claim 6.4.

Soundness.

Lemma 6.9. Π satisfies (2λ
c
, 2−Ω(λ))-soundness in the CROM.

Proof. Let A be an adversary that makes Q ≤ 2λ
c

classical queries to H. Without loss of generality,
we assume that A queries x∗i to H at some point for all i ∈ [n] where x∗ = (x∗1, ...,x

∗
n) ∈ Σn is A’s

final output. Since a query to H can be replaced with queries to each of H1, . . . ,Hn, there is an
adversary A′ that makes Q queries to each of H1,...,Hn and succeeds with the same probability as
A. We denote A′’s total number of queries by Q′ = nQ. We remark that A′ queries x∗i to Hi at
some point by our simplifying assumption on A.

For each i ∈ [n] and j ∈ [Q′], let Sji ⊆ Σ be the set of elements that A′ ever queried to Hi

by the point when it has just made the j-th query counting queries to any of H1, ...,Hn in total.
After the j-th query, we say that a codeword x = (x1, ...,xn) ∈ C is K-queried if there is a subset
I ∈ [n] such that |I| = K, xi ∈ Sji for all i ∈ I, and xi /∈ Sji for all i /∈ I. By our assumption,
the final output x∗ must be n-queried at the end. Since a K-queried codeword either becomes
(K + 1)-queried or remains K-queried by a single query, x∗ must be K-queried at some point of
the execution of A′ for all K = 0, 1, ..., n.

We consider the number of codewords that ever become K-queried for K = d(1 − ζ)ne where
ζ is the constant as in Item 1 of Lemma 4.2. If x = (x1, ...,xn) ∈ C is d(1− ζ)ne-queried at some

point, the number of i such that xi ∈ SQ
′

i is at least d(1− ζ)ne since Sji ⊆ SQ
′

i for all i, j. By the

construction of A′, we have |SQ
′

i | = Q ≤ 2λ
c
. On the other hand, C is (ζ, `, L)-list recoverable for

` = 2λ
c

and L = 2Õ(λc
′
) as required in Item 1 of Lemma 4.2. Thus, the number of codewords that

ever become d(1− ζ)ne-queried is at most L = 2Õ(λc
′
).

Let Ei be the event that the i-th codeword that becomes d(1 − ζ)ne-queried is finally output
by A′. Here, if multiple codewords become d(1 − ζ)ne-queried at the same time, we order them
according to the lexicographical ordering. By the above argument, we have

Pr[A′ wins] =
∑
i∈[L]

Pr[A′ wins ∧ Ei] (34)
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where we say that A′ wins if its output passes the verification. Moreover, we show that for each
i ∈ [L],

Pr[A′ wins ∧ Ei] = 2−Ω(λ). (35)

This can be seen as follows. Suppose that we simulate oracles H1, ...,Hn for A′ via lazy sampling,
that is, instead of uniformly choosing random functions at first, we sample function values whenever
they are queried by A′. Let x be the i-th codeword that becomes d(1−ζ)ne-queried in the execution
of A′. Since the function values on the unqueried bζnc positions are not sampled yet, x can become

a valid proof only if all those values happen to be 1, which occurs with probability
(

1
2

)bζnc
= 2−Ω(λ)

by ζ = Ω(1) and n = Ω(λ). This implies Equation (35).

By combining Equations (34) and (35) and L = 2Õ(λc
′
) for c′ < 1, we complete the proof of

Lemma 6.9.

Theorem 6.1 follows from Lemmas 6.3 and 6.9.

Achieving worst-case correctness. Remark that the correctness proven in Lemma 6.3 only
ensures that the proving algorithm succeeds with an overwhelming probability over the random
choice of the oracle H. Below, we show a modified protocol for which we can show that the
correctness holds for any H, while still preserving soundness on random H.

The motivation of achieving worst-case correctness is as follows. In the query-complexity litera-
ture (e.g., [BBC+01, BdW02, AA14]), it is more common to think of an oracle as an (exponentially
large) “input” rather than a function. In that context, the (classical, randomized, or quantum)
query complexity of a task is defined to be the minimum number of queries that is needed to solve
the task with probability at least 2/3 for all inputs. Viewing our problem from this perspective,
it is natural to require correctness to hold for all possible oracles H.

Construction. Let {Cλ}λ be a family of codes over an alphabet Σ = Fmq that satisfies the
requirements of Lemma 4.2 with arbitrary 1 < c < c′ < 1. Let H : [t]× Σ → {0, 1}n be a random
oracle where t is a positive integer specified later. For j ∈ [t], we define H(j) : Σ → {0, 1}n by
H(j)(x) := H(j||x). Let F = {fK : Σ → {0, 1}n}K∈K be a family of 2(λn + 1)-wise independent

hash functions. Then, we construct a proof of quantumness Π̃ = (P̃rove, Ṽerify) based on Π =
(Prove,Verify) as follows.

P̃rove
H

(1λ): It chooses K
$← K and defines a function H̃

(j)
K : Σ→ {0, 1}n by H̃

(j)
K (x) := H(j)(x)⊕

fK(x) for j ∈ [t]. Then, it runs π(j) $← ProveH̃
(j)
K (1λ) for j ∈ [t] and outputs a proof

π̃ := (K, {π(j)}j∈[t]).

Ṽerify
H

(1λ, π̃): It parses π̃ := (K, {π(j)}j∈[t]) and outputs > if VerifyH̃
(j)
K (1λ, π(j)) = > for all j ∈ [t]

and ⊥ otherwise.

Correctness.

Lemma 6.10. Π̃ satisfies worst-case correctness, i.e., for any H,

Pr

[
Ṽerify

H
(1λ, π̃) = ⊥ : π̃

$← P̃rove
H

(1λ)

]
≤ negl(λ).
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Proof. For each j ∈ [t] and fixed H, by the construction of Prove and the definition of H̃
(j)
K , we can

view ProveH̃
(j)
K as an oracle-algorithm that makes λn queries to fK . Similarly, we can view VerifyH̃

(j)
K

as an oracle-algorithm that makes a single query to fK . Since the combination of ProveH̃
(j)
K and

VerifyH̃
(j)
K makes λn + 1 quantum queires to fK , which is chosen from a family of 2(λn + 1)-wise

independent hash functions, by Lemma 2.5, the probability that π(j) generated by ProveH̃
(j)
K passes

VerifyH̃
(j)
K does not change even if fK is replaced with a uniformly random function. Moreover, if

fK is replaced with a uniformly random function, the correctness of Π immediately implies that

π(j) generated by ProveH̃
(j)
K passes VerifyH̃

(j)
K with an overwhelming probability (for each fixed H).

By taking the union bound over j ∈ [t], π(j) generated by the ProveH̃
(j)
K passes VerifyH̃

(j)
K for all

j ∈ [t] with an overwhelming probability, which means that Π̃ satisfies correctness.

Soundness.

Lemma 6.11. Π̃ satisfies (2λ
c
, |K| · 2−Ω(tλ))-soundness in the CROM.

Proof. (sketch.) We observe that the proof of the soundness of Π (Lemma 6.9) can be easily
extended to prove (2λ

c
, 2−Ω(tλ))-soundness for the t-parallel repetition of Π. A similar soundness

holds even if we use H̃
(j)
K as the oracle for the i-th instance for each fixed K since a random oracle

shifted by fK behaves as another random oracle. Thus, by taking the union bound over K ∈ K,
we obtain Lemma 6.11.

Since |K| = 2poly(λ) for some polynomial poly that is independent of t, we can set t = poly(λ) so
that |K| · 2−Ω(tλ) = 2−Ω(λ).

7 Counterexamples for Cryptographic Primitives

In this section, we give constructions of cryptographic primitives that are secure in the CROM but
insecure in the QROM. They are easy consequences of our proof of quantumness constructed in
Section 6.

7.1 Counterexample for One-Way Functions

We give a construction of a family of functions that is one-way in the CROM but not one-way in
the QROM. It is easy to generically construct such a one-way function from proofs of quantumness.
Indeed, we prove a stronger claim than that in Section 7.2. Nonetheless, we give a direct construc-
tion with a similar structure to the proof of quantumness presented in Section 6. An interesting
feature of the direct construction which the generic construction does not have is that it is not even
distributionally one-way in the QROM as explained in Remark 5.

Theorem 7.1 (Counterexample for one-way functions). There exists a family {fλ}λ of efficiently
computable oracle-aided functions that is one-way in the CROM but not one-way in the QROM.

Proof. The construction of fλ is very similar to that of the proof of quantumness constructed in
Section 6. We rely on similar parameter settings as in Section 6, and use similar notations as in
Section 6.

We define fHλ : C → {0, 1}n as follows:

fHλ (x1, ...,xn) = (H1(x1), ...,Hn(xn)).
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where Hi : Σ→ {0, 1} is the function that outputs the i-th bit of the output of H : Σ→ {0, 1}n.
The Prove algorithm in Section 6 can be understood as an algorithm to invert fλ for the

image 1n in the QROM. This can be extended to find a preimage of any image y ∈ {0, 1}n in a
straightforward manner: We only need to modify the definition of THi to the subset consisting of
ei ∈ Σ such that Hi(ei) = yi instead of Hi(ei) = 1 in the proof of Lemma 6.3. The rest of the proof
works analogously. Thus, {fλ}λ is not one-way in the QROM.

The proof of one-wayness in the CROM is similar to that of soundness of the proof of quan-
tumness in Section 6. By a straightforward extension of the proof of Lemma 6.9 where we replace
1n with arbitrary y ∈ {0, 1}n, we obtain the following claim.

Claim 7.2. For any adversary A that makes poly(λ) classical queries and y ∈ {0, 1}n,

Pr[y = fHλ (x′) : x′
$← AH(1λ, y)] < negl(λ).

The above claim does not immediately imply one-wayness since in the one-wayness game, y is

chosen by first sampling x
$← C and then setting y = fHλ (x) instead of fixing y independently of

H. Fortunately, we can show that the distribution of y is almost independent of H as shown in the
following claim.

Claim 7.3. We have
∆((H, y), (H, y′)) = negl(λ)

where H
$← Func(Σ, {0, 1}n),x

$← C, y = fHλ (x), and y′
$← {0, 1}n.

By combining Claims 7.2 and 7.3, one-wayness in the CROM immediately follows.
For proving Claim 7.3, we rely on the following well-known lemma that relates the collision

probability and statistical distance from the uniform distribution.

Definition 7.4. For a random variable X over a finite set X , we define its collision probability as
Col(X) =

∑
x∈X Pr[X = x]2.

Lemma 7.5. Let X be a random variable over a finite set X . For ε > 0, if Col(X) ≤ 1
|X |(1 + ε),

then
∆(X,UX ) ≤

√
ε/2

where UX denotes the uniform distribution over X .

See e.g., [MV08, Lemma 4.5] for the proof of Lemma 7.5.
Then, we prove Claim 7.3 below.

Proof of Claim 7.3. By Lemma 7.5, it suffices to prove Col(H, y) = 2−(|Σ|+1)n · (1 + negl(λ)) where

H
$← Func(Σ, {0, 1}n),x

$← C, y = fHλ (x). We prove this as follows where H and H ′ are uniformly
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sampled from Func(Σ, {0, 1}n) and x and x′ are uniformly sampled from C.

Col(H, y) = Pr
H,H′,x,x′

[H = H ′ ∧ fHλ (x) = fH
′

λ (x′)]

= 2−|Σ|n · Pr
H,x,x′

[fHλ (x) = fHλ (x′)]

= 2−|Σ|n ·
n∑
j=0

Pr
x,x′

[hw(x− x′) = n− j] · 2−(n−j)

= 2−|Σ|n ·
n∑
j=0

Pr
x

[hw(x) = n− j] · 2−(n−j)

≤ 2−(|Σ|+1)n ·

1 +
2n

|Cλ|
+
n−1∑
j=1

Pr
x

[hw(x) = n− j] · 2j


≤ 2−(|Σ|+1)n ·

1 +
2n

|Cλ|
+

n−1∑
j=1

(
2n

|Σ|

)j
≤ 2−(|Σ|+1)n ·

1 +
2n

|Cλ|
+

∞∑
j=1

(
2n

|Σ|

)j
= 2−(|Σ|+1)n ·

1 +
2n

|Cλ|
+

(
2n
|Σ|

)
1−

(
2n
|Σ|

)


= 2−(|Σ|+1)n · (1 + negl(λ))

where we used Prx[hw(x) = n] ≤ 1 and Prx[hw(x) = 0] = 1
|Cλ| for the fifth line, Item 3 of

Lemma 4.2 for the sixth line, and |Σ| = 2λ
Θ(1)

, n = Θ(λ), and |Cλ| ≥ 2n+λ for the final line. This
completes the proof of Claim 7.3.

This completes the proof of Theorem 7.1.

Remark 5 (On distributional one-wayness). It is worth mentioning that {fλ}λ is not even distri-
butionally one-way in the QROM. That is, one can find an almost uniformly distributed preimage
of y with quantum oracle access to H. This can be seen by observing that the proof of Lemma 6.3
actually shows that the proving algorithm outputs an almost uniformly distributed valid proof. This
corresponds to finding an almost uniformly distributed preimage of y for the above fλ.

7.2 Counterexample for Collision-Resistant Hash Functions.

We give a construction of a family of compressing functions that is collision-resistant in the CROM
but not even one-way in the QROM. It is a generic construction based on proofs of quantumness.

Theorem 7.6 (Counterexample for collision-resistant functions). There exists a family {fλ}λ of
efficiently computable oracle-aided compressing keyless (resp. keyed) functions that is collision-
resistant against in the CROM (resp. AI-CROM) but not even one-way against oracle-independent
adversaries in the QROM.

Proof. Since the keyed version immediately follows from the keyless version by Theorem 3.9, we
prove the keyless version below.
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Let (Prove,Verify) be a keyless proof of quantumness that satisfies soundness in the CROM as
given in Theorem 6.1. Let `π be its maximum proof length.

We assume that the proof of quantumness uses a random oracle H : {0, 1}λ+`π → {0, 1}λ
without loss of generality. We construct fHλ : {0, 1}λ+`π → {0, 1}λ as follows:

fHλ (x, π) :=

{
x if VerifyH(1λ, π) = >
H(x, π) otherwise

where the input is parsed as x ∈ {0, 1}λ and π ∈ {0, 1}`π . Collision-resistance of {fλ}λ in the CROM
is clear from the soundness of the proof of quantumness. Indeed, an adversary with a classical access
to H can output (x, π) such that Verify(1λ, π) = > only with a negligible probability. Assuming
that this does not happen, an adversary has to find a collision of H, which can be done only with
probability at most Q(Q+1)

2 · 2−λ = negl(λ) where Q = poly(λ) is the number of queries to H. On
the other hand, the correctness of the proof of quantumness gives a trivial way to invert fHλ on any

target y ∈ {0, 1}λ with a quantum access to H: one can just run π
$← ProveH(1λ) and then output

(y, π). We have fHλ (y, π) = y except for a negligible probability by the correctness of the proof of
quantumness. This means that {fλ}λ is not one-way in the QROM.

7.3 Counterexamples for Public Key Primitives

In [YZ21], they give counterexamples for public key encryption (PKE) and digital signatures.
Since their constructions are generic based on proofs of quantumness, we can plug our proofs of
quantumness given in Section 6 into their constructions to obtain the following theorems.

Theorem 7.7. If there exists a PKE scheme that is IND-CPA secure in the CROM, then there
exists a PKE scheme that is IND-CCA secure in the CROM but not IND-CPA secure in the QROM.

Theorem 7.8. There exists a digital signature scheme that is EUF-CMA secure in the CROM but
not EUF-NMA secure in the QROM.

See [YZ21] for the formal definitions of PKE and digital signatures and their security notions.
Note that [YZ21] proved similar theorems relative to additional artificial classical oracles and weaker
variants of them assuming the LWE assumption. We significantly improve them by removing the
necessity of additional oracles or complexity assumptions.

7.4 A Remark on Pseudorandom Generators

One might think that we can also construct pseudorandom generators (PRGs) that are secure in
the CROM but insecure in the QROM because Theorem 7.1 gives one-way functions (OWFs) that
are secure in the CROM but insecure in the QROM and there is a black-box construction of PRGs
from OWFs [HILL99]. However, we remark that this does not work. The reason is that PRGs
constructed from OWFs may be secure in the QROM even if the building block OWF is insecure
in the QROM. For example, there is no obvious attack against the PRG of [HILL99] even with an
inverter for the building block OWF.

Indeed, we believe that we can show that any black-box construction of PRGs from OWFs
may remain secure even if the building block OWF is insecure. We sketch the intuition below. Let
f : X → X be a OWF. We augment the domain to X ×R where R is an exponentially large space
by defining

f ′(x, r) := f(x).
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Then, it is clear that f ′ is also a OWF. Suppose that we construct a PRG G by making black-box
use of f ′. Since f ′ is a secure OWF, Gf

′
is a secure PRG. For each r∗ ∈ R, we define f ′r∗ as follows:

f ′r∗(x, r) :=

{
f(x) if r 6= r∗

x otherwise
.

Then, f ′r∗ clearly does not satisfy the one-wayness: for inverting y, one can just output (y, r∗). On
the other hand, when we run G with respect to f ′r∗ instead of f ′ for a randomly chosen r∗, there
would be a negligibly small chance of calling the second branch of f ′r∗ if the number of G’s queries
is polynomial. This means that G remains secure even though the building block function f ′r∗ is
insecure as a OWF.

We observe that the (im)possibility of separating CROM and QROM for PRGs is closely related
to the Aaronson-Ambainis conjecture [AA14] (Conjecture 8.1). Very roughly speaking, the conjec-
ture claims that any single-bit output algorithm in the QROM can be simulated in the CROM with
a polynomial blowup on the number of queries. Since a PRG distinguisher’s output is a single-
bit, it is reasonable to expect that we can prove the equivalence of QROM security and CROM
security for PRGs under the Aaronson-Ambainis conjecture. Unfortunately, this does not work
as it is because a distinguisher takes a PRG value as its input, which may be correlated with the
random oracle, whereas the Aaronson-Ambainis conjecture only captures the case where no side
information of the random oracle is given. Nonetheless, we conjecture that QROM security and
CROM security for PRGs (against polynomial-query unbounded-time adversaries) are equivalent.
It is a fascinating direction for future work to reduce it to the Aaronson-Ambainis conjecture or its
reasonable variant.25

8 Proofs of Randomness

In this section, we construct proofs of randomness assuming the Aaronson-Ambainis conjecture [AA14].
Roughly speaking, the Aaronson-Ambainis conjecture claims that for any algorithm A with a

quantum access to a random oracle, there is an algorithm B that approximates the probability that
A outputs a particular output with a classical access to the random oracle, and the number of
queries of A and B are polynomially related. A formal claim is stated below.

Conjecture 8.1 (Aaronson-Ambainis conjecture [AA14, Theorem 22]). Let ε, δ > 0 be reals. Given
any quantum algorithm A that makes Q quantum queries to a random oracle H : {0, 1}n → {0, 1}m,
there exists a deterministic classical algorithm B that makes poly(Q,m, ε−1, δ−1) classical queries
and satisfies

Pr
H

$←Func({0,1}n,{0,1}m)

[
∣∣Pr[AH()→ 1]− BH()

∣∣ ≤ ε] ≥ 1− δ.

Remark 6. We remark that the way of stating the conjecture is slightly different from that in
[AA14, Theorem 22], but they are equivalent. The difference is that [AA14] considers oracle ac-
cess to Boolean inputs whereas we consider an oracle access to functions. They are equivalent by
considering a function as a bit string concatenating outputs on all inputs. We remark that a straight-
forward rephrasing would result in an oracle with 1-bit outputs, but their conjecture is equivalent in
the setting with m-bit output oracles since an m-bit output oracle can be seen as a concatenation

25Interestingly, a follow-up work by Katz and Sela [KS24] unconditionally proves our conjecture without relying
on the Aaronson-Ambainis conjecture.
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of m 1-bit output oracles. We note that the number of B’s queries in the above conjecture depends
on m unlike theirs due to this difference.

We also remark that Aaronson and Ambainis [AA14] reduce the above conjecture to another
seemingly unrelated conjecture in Fourier analysis. In the literature, the latter conjecture is often
referred to as Aaronson-Ambainis conjecture. On the other hand, we call Conjecture 8.1 Aaronson-
Ambainis conjecture since this is more relevant to our work.

The main theorem we prove in this section is the following.

Theorem 8.2. If Conjecture 8.1 is true, there exists keyless (resp. keyed) proofs of randomness in
the QROM (resp. AI-QROM).

By Theorems 3.7 and 3.11, it suffices to prove the following theorem for proving Theorem 8.2.

Theorem 8.3. If Conjecture 8.1 is true, there exists keyless proofs of min-entropy that has min-
entropy in the QROM.

In the following, we prove Theorem 8.3.

From proofs of quantumness to proofs of min-entropy. Our proof of quantumness con-
structed in Section 6 has a large entropy in proofs. We can easily show that this is inherent assuming
Aaronson-Ambainis conjecture. This is because if the proving algorithm is almost deterministic, it
can be simulated by a polynomial-query classical algorithm, which breaks soundness. The following
theorem gives a generalization of the above argument.

Theorem 8.4. If Conjecture 8.1 is true, the following holds. Let (Prove,Verify) be a keyless proof
of quantumness relative to a random oracle H : {0, 1}n → {0, 1}m that satisfies (Qpoq(λ), εpoq(λ))-
soundness. Let A be an adversary that makes QA(λ) quantum queries. Let εA(λ), δA(λ) > 0 be
reals. There exists a polynomial p such that if we have

Qpoq(λ) ≥ p(λ,QA(λ), εA(λ)−1, δA(λ)−1)

and
εpoq(λ) ≤ δA(λ)/4, 26

for all λ ∈ N, then we have

Pr
H

$←Func({0,1}n,{0,1}m)

[
max

π∗ s.t. VerifyH(1λ,π∗)=>
Pr[AH(1λ)→ π∗] ≤ εA(λ)

]
≥ 1− δA(λ).

We defer the proof of Theorem 8.4 to the end of this section. By plugging the proofs of quan-
tumness in Section 6 into Theorem 8.4, we obtain proofs of min-entropy, which proves Theorem 8.3.

Proof of Theorem 8.3. For any polynomial h(λ), there exists a constant C such that Qpoq(λ) =
2C(h(λ)+λ) and εpoq(λ) = 2−λ−2 satisfy the requirements of Theorem 8.4 for QA(λ) = poly(λ),
εA(λ) = 2−(h(λ)+λ), and δA(λ) = 2−λ. As shown in Lemma 6.9, our proof of quantumness con-
structed in Section 6, which we denote by (Provepoq,Verifypoq), satisfies subexponential security.
Thus, by standard complexity leveraging, there is a polynomial q(λ) such that if we replace the

26In fact, it suffices to require εpoq(λ) ≤ cδA(λ) for any constant c < 1.
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security parameter with q(λ) in (Provepoq,Verifypoq), then it satisfies (2C(h(λ)+λ), 2−λ−2)-soundness.
By Theorem 8.4, for any adversary A that makes poly(λ) quantum queries, we have

Pr
H

$←Func({0,1}n,{0,1}m)

[
max

π∗ s.t. VerifyHpoq(1q(λ),π∗)=>
Pr[AH(1λ)→ π∗] ≤ 2−(h(λ)+λ)

]
≥ 1− 2−λ. (36)

Then, we construct proofs of min-entropy (Prove,Verify) as follows.

ProveH(1λ, 1h(λ)) := ProveHpoq(1q(λ))

VerifyH(1λ, 1h(λ), π): If VerifyHpoq(1q(λ), π) = ⊥, it outputs ⊥. Otherwise, it outputs π.

Suppose that (Prove,Verify) does not have min-entropy in the QROM. Then, there exist an adver-
sary B that makes poly(λ) quantum queries and a polynomial h(λ) such that we have

Pr[VerifyH(1λ, h(λ),BH(1λ, 1h(λ))) 6= ⊥] ≥ 1/poly(λ) ∧H∞
(
BH> (1λ, 1h(λ))

)
≤ h(λ) (37)

for a non-negligible fraction of H. It is easy to see that Equation (37) implies

max
π∗ s.t. VerifyHpoq(1q(λ),π∗)=>

Pr[BH(1λ, 1h(λ))→ π∗] ≥ 2−h(λ)/poly(λ).

Since this holds for a non-negligible fraction of H, if we consider AH(1λ) := BH(1λ, 1h(λ)), this
contradicts Equation (36). Therefore, (Prove,Verify) has min-entropy in the QROM.

Intuition for the proof of Theorem 8.4. In the following, we often omit dependence on λ and
simply write e.g., εA to mean εA(λ) for brevity.

Towards a contradiction, we assume that

Pr
H

$←Func({0,1}n,{0,1}m)

[
max

π∗ s.t. VerifyH(1λ,π∗)=>
Pr[AH(1λ)→ π∗] > εA

]
> δA.

We have to construct a classical adversary that breaks the soundness of the proof of quantumness.
If εA ≈ 1, it is easy: We consider an algorithm Aj that outputs the j-th bit of A’s output for
j ∈ [`π] where `π is the length of a proof in the proof of quantumness. For δA-fraction of H, Aj ’s
output is almost deterministic for all j. Then, we can classically simulate Aj for all j by invoking
Conjecture 8.1 for ε� 1 and δ � δA/`π. This breaks the soundness of the proof of quantumness.

When εA � 1, such a simple bit-by-bit simulation attack does not work. The reason is that
mixing up bits of multiple valid proofs does not result in a valid proof in general. To deal with such
a case, we attempt to convert A into an almost deterministic attacker. If this is done, the same
idea as the case of εA ≈ 1 works. For making A almost deterministic, our first idea is to consider
an modified adversary A′ that outputs the smallest valid proof π in the lexicographical order such
that A outputs π with probability at least εA. If we can efficiently construct such A′, then this idea
works. However, the problem is that A′ cannot exactly compute the probabilities that A outputs
each π with a limited number of queries. What A′ can do is to run A many times to approximate
the probabilities up to a 1/poly error.27 Now, a problem occurs if there are multiple π such that
the probability that A outputs π is within εA ± 1/poly.

27poly means a polynomial in the number of repetition of A run by A′.
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To deal with this issue, we rely on an idea to randomly decide the threshold.28 That is, A′
outputs the lexigographically smallest valid proof π such that the approximated probability that
A outputs π is at least t for some randomly chosen threshold t ∈ (εA/2, εA). If we choose t from a
sufficiently large set and set the approximation error to be sufficiently small, we can show that it is
impossible that there are multiple π such that the probability that A outputs π is within t±1/poly
for a large fraction of t by a simple counting argument. This resolves the above problem.

Proof of Theorem 8.4. In the rest of this section, we give a formal proof of Theorem 8.4. We
first show the following simple lemma.

Lemma 8.5. Let A be a (possibly quantum) algorithm that outputs an `-bit string z. For any
ε, δ > 0, there is an algorithm Approx(A, ε, δ) that runs A O(` log(δ−1)ε−2) times and outputs a
tuple {Pz}z∈{0,1}` such that

Pr
[
∀z ∈ {0, 1}` |Pz − Pr[A()→ z]| ≤ ε

]
≥ 1− δ

where {Pz}z∈{0,1}`
$← Approx(A, ε, δ). We say that Approx(A, ε, δ) succeeds if the event in the above

probability occurs.

Proof. Approx(A, ε, δ) works as follows. It runs A() N times where N is an integer specified later.
For each z, let Kz be the number of executions where A outputs z. Then it outputs {Pz :=
Kz
N }z∈{0,1}` .

If we set N ≥ C` log(δ−1)ε−2 for a sufficiently large constant C, by the Chernoff bound
(Lemma 2.4), for each z, we have

Pr [|Pz − Pr[A()→ z]| ≤ ε] ≥ 1− δ

2`
.

By the union bound, we obtain Lemma 8.5.

Then, we prove Theorem 8.4.

Proof of Theorem 8.4. Towards a contradiction, we assume that

Pr
H

$←Func({0,1}n,{0,1}m)

[
max

π∗ s.t. VerifyH(1λ,π∗)=>
Pr[AH(1λ)→ π∗] > εA

]
> δA. (38)

It suffices to prove that there exists a classical adversary B that makes p(QA,m, ε
−1
A , δ−1

A ) quantum
queries and satisfies

Pr
H

$←Func({0,1}n,{0,1}m)

[VerifyH(1λ, π) = > : π
$← BH(1λ)] ≥ δA/4

for some polynomial p. Let M := d 4
εA
e. For i ∈ [M ], we consider a quantum adversary Ai that

works as follows.

28This idea is inspired by [CCY20].
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AHi (1λ): It runs {Pπ}π∈{0,1}`π
$← Approx(A, εA4M ,

1
5) where `π is the length of a proof. Then it

outputs the smallest π in the lexicographical order that satisfies

VerifyH(1λ, π) = >

and

Pπ >
εA
2

(
1 +

2i− 1

2M

)
.

The number of queries by Ai is QAi = poly(λ,QA, ε
−1
A ) since `π = poly(λ). For each H, let πHi be

the most likely output of AHi (1λ).29 We prove the following claim.

Claim 8.6. For at least
(
δA
2

)
-fraction of H ∈ Func({0, 1}n, {0, 1}m) and i ∈ [M ], it holds that

Pr[AHi (1λ)→ πHi ] > 4/5.

Proof of Claim 8.6. By Equation (38), at least δA-fraction of H satisfies

max
π∗ s.t. VerifyH(1λ,π∗)=>

Pr[AH(1λ)→ π∗] > εA. (39)

Fix such H. Then, for at least 1
2 -fraction of i ∈ [M ], there does not exist π satisfying∣∣∣∣Pr[AH(1λ)→ π]− εA

2

(
1 +

2i− 1

2M

)∣∣∣∣ < εA
4M

. (40)

This can be seen by a simple counting argument. First, we remark that if π satisfies Equation (40)
for some i ∈ [M ], then we have Pr[AH(1λ) → π] > εA/2. Therefore, the number of such π is at
most 2/εA. Second, we remark that each π can satisfy Equation (40) for at most one i. Therefore,
the fraction of i ∈ [M ] such that there is π that satisfies Equation (40) is at most 2/(εAM) ≤ 1/2.

Therefore, for at least
(
δA
2

)
-fraction of H and i, Equation (39) holds and there does not exist

π satisfying Equation (40). For such H and i, if Approx(A, εA4M ,
1
5) succeeds, which occurs with

probability at least 4
5 , then Ai outputs the smallest π in the lexicographical order that satisfies

VerifyH(1λ, π) = >

and

Pr[AH(1λ)→ π] >
εA
2

(
1 +

2i− 1

2M

)
.

Since the above π is output with probability larger than 4/5, this is the most likely output πHi .

Thus, for at least
(
δA
2

)
-fraction of H and i, AHi returns πHi with probability larger than 4/5. This

completes the proof of Claim 8.6.

For j ∈ [`π], let Ai,j be the algorithm that runs Ai and outputs the j-th bit of the output of
Ai. Since Ai,j makes the same number of queries as Ai, its number of queries is QAi,j = QAi =

poly(λ,QA, ε
−1
A ). We apply Conjecture 8.1 to Ai,j where ε := 1/5 and δ := δA

4`π
. Then, Conjec-

ture 8.1 ensures that there exists a deterministic classical algorithm Bi,j that makes poly(QAi.j ,m, ε
−1, δ−1) =

poly(λ,QA, ε
−1
A , δ−1

A ) classical queries and satisfies

Pr
H

$←Func({0,1}n,{0,1}m)

[∣∣∣Pr[AHi,j(1λ)→ 1]− BHi,j(1λ)
∣∣∣ ≤ 1/5

]
≥ 1− δA

4`π
.

29If there is a tie, we choose the smallest one in the lexicographical order.
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By the union bound, we have

Pr
H

$←Func({0,1}n,{0,1}m)

[
∀j ∈ [`π]

∣∣∣Pr[AHi,j(1λ)→ 1]− BHi,j(1λ)
∣∣∣ ≤ 1/5

]
≥ 1− δA

4
. (41)

Now, we give the classical adversary B.

BH(1λ): It randomly chooses i
$← [M ]. For j = 1, 2, ..., `π, it runs BHi,j(1λ) and sets πj := 1 if the

output is larger than 1/2 and πj := 0 otherwise. Then it outputs π := π1||π2||...||π`π .

By the construction, we can see that B makes poly(λ,QA, ε
−1
A , δ−1

A ) queries. By combining Claim 8.6

and Equation (41), for at least
(
δA
4

)
-fraction of H ∈ Func({0, 1}n, {0, 1}m) and i ∈ [M ], for all

j ∈ [`π], if the j-th bit of πHi is 1, we have

BHi,j(1λ) > 3/5

and otherwise
BHi,j(1λ) < 2/5.

Thus, for such H and i, BH(1λ) outputs πHi . Since we have VerifyH(1λ, πHi ) = > for all i ∈ [M ],
we have

Pr
H

$←Func({0,1}n,{0,1}m)

[VerifyH(1λ, π) = > : π
$← BH(1λ)] ≥ δA

4
.

This contradicts the soundness of the proof of quantumness in the CROM. This completes the proof
of Theorem 8.4.

9 Proof of Theorem 3.11

In this section, we prove Theorem 3.11. For the reader’s convenience, we restate the theorem below.

Theorem 9.1 (Restatement of Theorem 3.11). If (Prove0,Verify0) is a proof of min-entropy (resp.
proof of randomness) in the QROM, then (Prove,Verify) is a proof of min-entropy (resp. proof

of randomness) in the AI-QROM, where ProveH(1λ, k0||k1, 1
h) = Prove

H(k1||·)
0 (1λ, k0, 1

h+1) and

VerifyH(1λ, k0||k1, 1
h, π) = Verify

H(k1||·)
0 (1λ, k0, 1

h+1, π) and where k1 ∈ {0, 1}λ.

Proof. We prove the case of proof of min-entropy, the case of proofs of randomness being es-
sentially identical. Consider a non-uniform oracle-dependent adversary A for the min-entropy of
(Prove,Verify), with advice function a(H) of polynomial output length.

To get an intuition for our proof, consider two possible advice strings a(H). The first is where
a(H) is computed by choosing an arbitrary k∗1, and setting a(H) to be some function of H(k∗1||·),
the portion of the truth table that uses the prefix k∗1. The second is where a(H) is, say, H(0||x)⊕
H(1||x)⊕H(2||x), · · · for some x, which depends on H evaluated at all possible prefixes.

In the first case, a(H) is only useful if k1 = k∗1, which occurs with exponentially-small probability.

If k1 6= k∗1, then since Verify
H(k1||·)
0 only queries H on inputs that are independent of a(H), security

follows from the underlying security of (Prove0,Verify0) in the ordinary QROM.
The second case is slightly trickier, since now a(H) depends on all possible prefixes. Here,

however, we can come up with a simple fix: choose a uniform k∗1, and re-sample H on all inputs
of the form k∗1||·. Let the resulting oracle be H ′. Because k∗1 is random and independent of the
adversary’s view, it is straightforward to show that this change negligibly impacts the adversary’s
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output distribution. Now, however, a(H) is actually independent of H ′, since the re-sampled parts
eliminate any dependency.

Our proof will follow similar lines, but work more generally. We re-sample a large-but-not-too-
large number of prefixes, and show that this does not change the adversaries output distribution
by much. Intuitively, if a(H) depended globally on many prefixes (as in our second example), then
by re-sampling a few prefixes we make a(H) close to independent of H ′. On the other hand, if
a(H) depends on just a few prefixes, it is anyway exponentially unlikely that k1 will be among
the prefixes. The result in either case is that H(k1||·) will be close to independent of a(H), which
allows us to base security on the underlying security of (Prove0,Verify0) in the ordinary QROM.

The above argument would work for “typical” cryptographic games. One wrinkle, however,
with applying it to proofs of min-entropy is that a negligible change in the adversary’s output
distribution can result in a non-negligible change in the entropy. It is therefore insufficient to argue
simply that the adversary’s output distribution is negligibly close. We utilize a careful argument
to show that, indeed, entropy is preserved in our reduction. The intuition is that instead of an
additive error, we show that the probability of each outcome incurs only a small multiplicative
change moving from H to H ′. Such a small multiplicative change will indeed preserve entropy. We
now give the proof.

Suppose A breaks min-entropy. This means there is a polynomial h, an inverse polynomial δ
and a non-negligible ε such that the following simultaneously hold with probability at least ε over
the choice of H, k0, k1:

Pr[VerifyH(1λ, k0||k1, 1
h,AH(1λ, a(H), k0||k1, 1

h)) 6= ⊥] ≥ δ(λ) (42)

H∞

(
AH> (1λ, a(H), k0||k1, 1

h)
)
≤ h (43)

We now implement the re-sampling process outlined above. Choose a second random oracle J .
Moreover, choose a random set of salts S ⊆ {0, 1}λ. S will be chosen as follows. First choose a size
` ∈ [2λ] according to a distribution D, which will be specified later. Then choose S to be a uniform
random subset of size `. Define H ′ as

H ′(s, x) =

{
J(s, x) if s ∈ S
H(s, x) otherwise

We now specify two different distributions D1, D2 for `, which induce distributions E1, E2 over
H ′. Let k, d, n be non-negative integers with dn ≤ 2λ. We will think of d, n as being super-
polynomial, and k as being polynomial. Define the matrix A ∈ Z(k+1)×n as follows:

A =


1 1 1 1 · · · 1
0 1 2 3 · · · n
0 1 4 9 · · · n2

...
...

...
...

. . .
...

0 1 2k 3k · · · nk


Let x be the n-dimensional vector x = (1 − 1 0 0 · · · 0), and let y be the orthogonal projection
of x onto the space orthogonal to the rows A. Let y+ be the vector obtained from y by replacing
all the negative entries with 0 and keeping all the positive entries. Let y− be the vector obtained
from y by replacing all the positive entries with 0, and negating all the negative entries (thereby
making them positive). That is,

y+
i = max(yi, 0)

y−i = max(−yi, 0)
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This means y+,y− have only non-negative entries, and y = y+ − y−. We will 0-index the co-
ordinates of y,y+,y−, so that the first entry has position i = 0, the second has position i = 1,
etc.

Now define D1 as the distribution which samples i · d with probability proportional to y+
i

(namely, with probability y+
i /|y+|1 where | · |1 represents the 1-norm), and D2 as the distribution

which samples i · d with probability proportional to y−i (namely, with probability y−i /|y−|1). We
call E1, E2 the distributions over H ′ that result from sampling ` from D1, D2, respectively.

The intuition for these distributions is that y+ will be very close to (1 0 · · · 0) while y− will
be very close to (0 1 0 · · · 0). This means D1 will place the bulk of its weight on 0, meaning
|S| = 0 with high probability, in which case H ′ = H. The small probability that H 6= H ′ means
that the probability of any output of A could only have changed by a small multiplicative amount,
meaning the min-entropy stays low (we want the entropy to stay low since we are ultimately going
to use the adversary to break (Prove0,Verify0)). On the other hand, D2 places all of its weight on
values at least d, meaning |S| ≥ d. In this case, we will show that for a random choice of s /∈ S, the
truth table of H(s, ·) is essentially independent of a(H) given H ′. This allows us to show that if A
breaks min-entropy under the distribution D2, then we can turn A into an adversary B for H(s, ·)
in the setting where B is given no auxiliary input. This would contradict the assumed security of
(Prove0,Verify0). The proof is then completed by showing that, since A · (y+−y−) = 0, the output
distributions under D1 and D2 are identical. We now prove the above facts.

Part 1: Small entropy difference for E1. We now show that in the case H ′ is sampled from
E1 (that is, ` sampled from D1), that the resulting distribution is very close to H. More precisely:

Lemma 9.2. Fix H, k0, k1, which in turn fixes a(H). Let z be any possible output of A. Then

Pr
H′←E1

[z ← AH′(1λ, a(H), k0||k1, 1
h)] ≥

(
1−O(k3/n1/2)

)
Pr[z ← AH(1λ, a(H), k0||k1, 1

h)]

This means that the most likely outcome z is only negligibly effected by moving from H to
H ′, when ` is sampled from D1. Hence the min-entropy of the output distribution of A can only
increase by a negligible amount.

Since H ′ = H when ` = 0, Lemma 9.2 is an immediate consequence of the following lemma:

Lemma 9.3. Pr[0← D1] ≥ 1−O(k3/n1/2)

Proof. Let z be the projection of x = (1 − 1 0 0 · · · 0) onto the row-span of A, meaning
z + y = x and y, z are orthogonal. Hence 2 = |x|2 = |z|2 + |y|2. Our goal will be to bound
|z| to being negligible. This will imply that y is very close to x, and hence y+ is very close to
(1 0 0 · · · 0). This in turn means most of the mass of D1 is on 0, as desired.

Consider the matrix B = A ·AT . Then Bi,i′ =
∑n

j=0 j
i+i′ (where we 0-index i, i′). This sum

very closely approximates ni+i
′+1/(i+ i′ + 1). To keep the following analysis simpler, we will take

Bi,i′ = ni+i
′+1/(i + i′ + 1); the error caused by this will be small and therefore will be absorbed

into the big-O. We can then write B = n ·D ·B′ ·D where

D =


1

n
n2

. . .

 B′ =


1 1

2
1
3 · · · 1

k+1
1
2

1
3

1
4 · · · 1

k+2
1
3

1
4

1
5 · · · 1

k+3
...

...
...

. . .
...

1
k+1

1
k+2

1
k+3 · · · 1

2k+1



47



Observe that the matrix representing the orthogonal projection onto the row-span of A is
AT ·B−1 ·A. Therefore, we have that

|z|2 = zT · z = xT ·AT ·B−1 ·A · x = (0 − 1 − 1 · · · − 1) ·B−1 ·


0
−1
−1
...
−1



=
1

n
·
(

0
1

n

1

n2
· · · 1

nk

)
· (B′)−1 ·


0

1/n
1/n2

...
1/nk


We therefore must compute (B′)−1. Fortunately, the inverse is known. B is known as the

Hilbert matrix, and it’s inverse is given by:

Lemma 9.4 ([Cho83]). (B′)−1
i,i′ = (−1)i+i

′
(i + i′ + 1)

(
i+i′

i

)2( k+i
i+i′+1

)(
k+i′

i+i′+1

)
, where again i, i′ are

0-indexed.

With Lemma 9.4, we have that |z|2 =
∑2k

j=2
(−1)j(j+1)

nj+1

∑
i

(
j
i

)(
k+i
j+1

)(
k+j−i
j+1

)
. We can lower-bound

the sum over i by 0 and upper bound it by
∑

i

(
j
i

)
(2k)2(j+1) = 2j · (2k)2(j+1) ≤ (4k)2j+2. Thus,

|z|2 ≤
k∑

j′=1

(2j′ + 1)

(
16k2

n

)2j′+1

≤
∞∑
j′=1

(2j′ + 1)

(
16k2

n

)2j′+1

=
(3− α2)α3

(1− α2)2
≤ 12

(
16k2

n

)3

where above we set j′ = j/2 for even j (the odd j terms being bounded by 0), α = 16k2/n, and we
assume α ≤ 1/2.

Thus we have that |z| = O(k3/n3/2), which in turn implies that |z|1 ≤ n|z| = O(k3/n1/2). Since
we have y = (1 − 1 0 · · · 0)− z, and y+ contains all the non-negative entries of y, we therefore
have that y+

1 ≥ 1 − O(k3/n1/2), and all the remaining entries of y+ sum to less that O(k3/n1/2).
Thus |y+|1 = 1 ± O(k2/n1/2), and so y+

1 /|y+| ≥ 1 − O(k3/n1/2). Thus the distribution D1 will
output zero with probability at least 1−O(k3/n1/2), as desired.

Part 2: Equivalent Output Distributions. We next show that the output distributions are
equivalent under E1 and E2:

Lemma 9.5. Fix H, k0, k1, which in turn fixes a(H). Let z be any possible output of A. Let q be the
number of queries made by A, and assume k ≥ 4q. Then PrH′←E1 [z ← AH′(1λ, a(H), k0||k1, 1

h)] =
PrH′←E2 [z ← AH′(1λ, a(H), k0||k1, 1

h)]. In other words, output distributions of AH′(1λ, a(H), k0||k1, 1
h)

is identical whether H ′ is sampled from E1 or E2.

Proof. Our proof will use the polynomial method [BBC+01]. Specifically, we will make use of the
following formulation, shown in [Zha12]:

Lemma 9.6. Let A be a quantum algorithm making q′ quantum queries to an oracle H : X → Y.
If we draw H from some distribution D, then for every z, the quantity PrH←D[z ← AH()] is a
linear combination of the quantities PrH←D[H(xi) = ri∀i ∈ [2q′]] for all possible settings of the xi
and ri. The coefficients in the linear combination are independent of the distribution D.
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In the case Y = {0, 1}, by inclusion-exclusion, we can in turn write the quantities PrH←D[H(xi) =
ri∀i ∈ {1, · · · 2q′}] as linear combinations of the quantities PrH←D[H(xi) = 1∀i ∈ [k]] for all possible
k ≤ 2q′.

We abuse notation, and let S also denote the membership oracle for S, namely S(s) = 1 if
and only if s ∈ S. Now consider the distributions D1, D2, which induce distributions over S that
we will call S1 and S2, respectively. These in turn induce distributions E1, E2 over H ′. Consider
the algorithm that simulates AH′ by making queries to S, where S is drawn from either S1 or S2,
meaning that H ′ is drawn from either E1 or E2. This simulation must make two queries to S for
each query A makes to H ′: one to compute whether s ∈ S, and then one to un-compute the value
at the end of the query. Thus, if A makes q queries, the total number of queries the simulation
makes to S is q′ = 2q. Observe also that S is independent of H, k0, k1, a(H). Thus, after fixing
H, k0, k1, a(H), we can apply Lemma 9.6 to the simulation of A, and see that the probability A
outputs any given value z is a linear combination of PrS [S(si) = 1∀i ∈ [k′]] for k′ ≤ 4q ≤ k, where
the coefficients of the linear combination are independent of the distribution over S. It suffices,
therefore, to prove that for all k′ ≤ k and for all s1, · · · , sk′ , that

Pr
S←S1

[S(si) = 1∀i ∈ [k′]] = Pr
S←S2

[S(si) = 1∀i ∈ [k′]]

Toward that end, we observe that, for any s1, · · · , sk′ , the event S(si) = 1∀i ∈ [k′] means that each

si ∈ S. For a given size ` of S, there are
(

2λ−k′
`−k′

)
ways to choose such an S. Since for both S1, S2

we have that S is uniform once we choose `, this means that for a given `,

Pr
S

[S(si) = 1∀i ∈ [k′]] =

(
2λ − k′

`− k′

)
/

(
2λ

`

)
=

(2λ − k′)!`!
(2λ)!(`− k′)!

=
(2λ − k′)!

(2λ)!
`(`− 1) · · · (`− k′ + 1),

which is a polynomial in ` of degree at most k′ ≤ k.
This in turn means the probability of any outcome z, once we have fixed z, is a polynomial pz

in ` of degree at most k. Averaging over all `, the probability of outcome z is
∑

` Pr[`]pz(`). We
must therefore show that

∑
` Pr[` ← D1]pz(`) =

∑
` Pr[` ← D2]pz(`), for which is suffices to show

that
∑

`(Pr[` ← D1]− Pr[` ← D2])`j = 0 for all j ∈ [0, k]. Recall that ` is always a multiple of d,
so this is equivalent to showing

∑
i(Pr[i · d← D1]− Pr[i · d← D2])(i · d)j = 0

We now observe that y is in the kernel of A, meaning the sum of its components is 0. As
such, we must have that |y+|1 = |y−|1 =: R. Therefore, when we re-normalize y+ and y− to
get the distributions D1, D2, the re-normalization is the same in both cases: dividing by R. Thus
yi/R = y+

i /R − y−i /R = Pr[i · d ← D1] − Pr[i · d ← D2], meaning
∑

i(Pr[i · d ← D1] − Pr[i · d ←
D2])(i · d)j = dj

R (A · y)j = 0, as desired.

Part 3: Statistical independence for E2. Here, we show that when H ′ is sampled from E2,
but when the adversary is still provided the advice a(H), then for most choices of the salt k1,
H(k1||·) is statistically close to uniform even given a(H) and H ′.

Let H(s||·) denote the slice of the truth table of H corresponding to salt s. Let H(s||·) denote
the remaining truth table not included in H(s||·).

Lemma 9.7. Consider sampling a uniform H, and then sampling H ′ ← E2 and letting k1 ←
{0, 1}λ\S. Then the distributions (a(H), k1, H(k1||·), H ′(k1||·) and (a(H), k1, R,H ′(k1||·) are

√
|a(H)|/2d-

close in statistical distance.

Proof. In order to prove Lemma 9.7, we will need the following technical lemma:
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Lemma 9.8. Let D be a distribution and X1, . . . , Xg, Y be iid random variables sampled from D.
Let F be a function with co-domain of size 2r. Then

∆( (I, XI , F (X1, . . . , Xg)) , (I, Y, F (X1, . . . , Xg)) ) ≤
√
r/2g

Above, I is uniform in [g], and ∆ denotes statistical distance.

Proof. Let I(X;Y ) denote the mutual information between random variables X and Y . Then

r ≥ I( F (X1, . . . , Xg) ; X1, . . . , Xt ) ≥
g∑
i=1

I( F (X1, . . . , Xg) ; Xi )

where the second inequality is due to the independence of the Xi. Let δi be the statistical dis-
tance between the distributions (F (X1, . . . , Xg), Xi) and (F (X1, . . . , Xg), Y ). Let δ be the statis-
tical distance between (I, XI , F (X1, . . . , Xg)) and (I, Y, F (X1, . . . , Xg)); our goal is to bound δ.
I( F (X1, . . . , Xg) ; Xi ) is just the KL divergence between (F (X1, . . . , Xg), Xi) and (F (X1, . . . , Xg), Y ).
By Pinsker’s inequality, we therefore have that δi ≤

√
I( F (X1, . . . , Xt) ; Xi )/2. This implies

r ≥ 2

g∑
i=1

δ2
i

On the other hand, δ = (
∑

i δi)/g. Jensen’s inequality then gives that

δ ≤
√∑

i

δ2
i /g ≤

√
r/2g

We now apply Lemma 9.8 to our setting. Consider sampling a random S of size ` where ` is
sampled from D2. D2 only has support on ` of size at least d. Now consider sampling a random
k1 /∈ S. It is equivalent to sample a random set S′ of size `+ 1, and then let k1 be uniform in S′,
and S = S′ \ {k1}.

Therefore let g = ` + 1, and let X1, · · · , Xg denote the slices H(s||·) of the truth table of H,
for s ∈ S ∪ {k1}. Now fix H(s||·) for s /∈ S ∪ {k1}; call this partial truth table Hpart. Let F
be the function from X1, · · · , Xg which computes a(H) (H being fully specified by Hpart together
with X1, · · ·Xg). Lemma 9.8 now says that the tuples (k1, H(k1||·), a(H)) and (k1, R, a(H)) are√
|a(H)|/2d-close given Hpart, where R is a independent uniform truth table. To complete the proof

of Lemma 9.7, we simply observe that H ′(k1|| · · · ) consists of Hpart together with H ′(s|| · · · ) for
s ∈ S. But recall that for s ∈ S, we set H ′(s|| · · · ) = J(s|| · · · ) where J is an independent random
oracle, meaning all information about H(s|| · · · ) is erased from H ′. Therefore, even conditioned on
H ′(k1|| · · · ), the tuples (k1, H(k1||·), a(H)) and (k1, R, a(H)) remain statistically close. Averaging
over all choices of H ′ gives the lemma.

Part 4: Putting it all together. We now put everything together, obtaining an adversary for
Prove0,Verify0. To create our adversary B, we do the following:

• Choose a random H and compute a(H).

• Choose a random set S from D2. Choose a random J and compute H ′.

• Choose a random k1 ∈ {0, 1}λ \ S.
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We will fix H, a(H), S, k1, H
′ in the description of B; alternatively we could imagine B choosing the

H, a(H), S, k1, H
′ which maximize its success probability.

BH0(1λ, k0, 1
h) runs AH′′(1λ, a(H), k0||k1, 1

h) and outputs whatever A outputs, where H0 is the
random oracle B is given, and H ′′ is the oracle:

H ′′(s, x) =

{
H ′(s, x) if s 6= k1

H0(x) if s = k1

Lemma 9.9. With non-negligible probability over the choice of H, a(H), S, k1, H
′ as sampled above,

there is a non-negligible δ′ such that the following is true:

Pr[VerifyH0
0 (1λ, k0, 1

h,BH0(1λ, k0, 1
h)) 6= ⊥] ≥ δ′(λ) (44)

H∞

(
BH0
> (1λ, k0, 1

h)
)
≤ h+ 1 (45)

where the probabilities above are taken over the choice of uniform H0, k0. In particular, there exists
such a choice of H, a(H), S, k1, H

′ which makes B break the security of Prove0,Verify0.

This lemma therefore completes the proof of Theorem 3.11.

Proof. We first consider setting H0 to be H ′(k1||·). In this case, H ′′ = H ′ so B runs A on H ′,
and by Lemmas 9.2 and 9.5, the entropy of the output of A and hence B is less than h + 1 with
non-negligible probability over the choice of H, a(H), S, k1, H

′.
Now we actually set B’s oracle to H0. By Lemma 9.7, H0 and H ′(k1||·) are statistically close,

even given a(H), S, k1, H ′(k1||·). Since the min-entropy of B is a property of the oracle it sees (and
k0), even after changing to H0, the probability B’s entropy is less than h + 1 is only negligibly
affected, and is hence still non-negligible.

This completes the proof of Theorem 3.11.
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