
ABE for Circuits with Constant-Size Secret Keys
and Adaptive Security

Hanjun Li Huijia Lin Ji Luo

Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA

{hanjul,rachel,luoji}@cs.washington.edu

May 2022

Abstract

An important theme in research on attribute-based encryption (ABE) is mini-
mizing the sizes of the secret keys and ciphertexts. In this work, we present two new
ABE schemes with constant-size secret keys, that is, the key size is independent of the
sizes of policies or attributes, and dependent only on the security parameter 𝜆.

• We construct the first key-policy ABE scheme for circuits with constant-size
secret keys, |sk𝑓 | = poly(𝜆), which concretely consist of only three group ele-
ments. The previous state-of-the-art construction by [Boneh et. al., Euro-
crypt’14] has key size polynomial in the maximum depth 𝑑 of the policy cir-
cuits, |sk𝑓 | = poly(𝑑,𝜆). Our new scheme removes this dependency of key size
on 𝑑 while keeping the ciphertext size the same, which grows linearly in the
attribute length and polynomially in the maximal depth, |ct𝑥 | = |𝑥| poly(𝑑,𝜆).

• We present the first ciphertext-policy ABE scheme for Boolean formulae that
simultaneously has constant-size keys and succinct ciphertexts of size indepen-
dent of the policy formulae, in particular, |sk𝑓 | = poly(𝜆) and |ct𝑥 | = poly(|𝑥|,𝜆).
Concretely, each secret key consists of only two group elements. Previous
ciphertext-policy ABE schemes either have succinct ciphertexts but non constant-
size keys [Agrawal–Yamada, Eurocrypt’20, Agrawal–Wichs–Yamada, TCC’20], or
constant-size keys but large ciphertexts that grow with the policy size, as well as
the attribute length. Our second construction is the first ABE scheme achieving
double succinctness, where both keys and ciphertexts are smaller than the cor-
responding attributes and policies tied to them.

Our constructions feature new ways of combining lattices with pairing groups for
building ABE and are proven selectively secure based on LWE and in the generic
(pairing) group model. We further show that when replacing the LWE assumption
with its adaptive variant introduced in [Quach–Wee–Wichs FOCS ’18] the constructions
become adaptively secure.

i

https://orcid.org/0000-0003-1225-5310

Contents

1 Introduction 1

2 Technical Overview 4

3 Preliminaries 13
3.1 Attribute-Based Encryption . 13
3.2 Lattice Tools . 16
3.3 Pairing Groups and Generic Asymmetric Pairing Group Model 18
3.4 Inner-Product Functional Encryption . 19

4 Computational Secret Sharing with Adaptive Security 21
4.1 Secret Sharing for Bounded-Depth Circuits from (Adaptive) LWE 22
4.2 Proof of Proposition 6 . 26
4.3 Secret Sharing for Boolean Formulae from Adaptive LWE 30
4.4 Proof of Proposition 13 . 33

5 KP-ABE for Bounded-Depth Circuits 37
5.1 Proof of Proposition 18 . 39

6 Doubly Succinct CP-ABE 42
6.1 Stronger IPFE in GGM . 42
6.2 ABDP Scheme . 43
6.3 Proof of Proposition 22 . 44
6.4 Doubly Succinct CP-ABE for Boolean Formulae 46
6.5 Proof of Proposition 23 . 49

References 53

ii

1 Introduction

Attribute-based encryption (ABE) [SW05,GPSW06] is a novel generalization of public-
key encryption for enforcing fine-grained access control. In this work, we focus on
improving the efficiency of ABE schemes, especially on minimizing the sizes of secret
keys while keeping ciphertexts small. In key-policy (KP) ABE, a secret key sk𝑓 is tied
to a policy 𝑓 and a ciphertext ctx encrypting a message 𝜇 is tied to an attribute x, so
that a secret key is only “authorized” to decrypt a ciphertext if the associated attribute x
satisfies the policy 𝑓 . At first glance, since a secret key specifies the associated policy 𝑓 ,
it appears that the size of the secret key would have to depend at least linearly on the
(description) size of 𝑓 . Similarly, a ciphertext would have to grow linearly with the length
of the associated attribute x. Secret keys and ciphertexts with linear dependency of their
sizes on the policies and attributes they are tied to are said to be compact, and most ABE
schemes are indeed compact.

However, upon closer examination, as ABE does not guarantee privacy of the policies
nor the attributes, it is possible to give a description of the policy 𝑓 in the clear in the
secret key, and the non-trivial part of the secret key may be smaller than the policy. In
this case, the right measure of efficiency should be the size of the non-trivial part (i.e.,
the overhead), which we now view as the secret key. We can now aim for secret keys
of size smaller than that of the policy — i.e., |sk𝑓 | = o(| 𝑓 |) — referred to as succinct keys,
or even keys of size independent of that of the policy — i.e., |sk𝑓 | = O(1) — referred to
as constant-size keys.1 Similarly, succinct ciphertexts have size smaller than the length of
the attributes, |ctx | = o(|x|), and constant-size ciphertexts satisfy |ctx | = O(1). We further
examine the efficiency of ciphertext-policy (CP) ABE [BSW07], which enables instead
the ciphertexts ct𝑓 to specify the policies, so that only secret keys skx with attributes
satisfying the policies can decrypt them. Naturally, succinct keys and ciphertexts have
size |skx | = o(|x|) and |ct𝑓 | = o(| 𝑓 |), and constant size means the same as in KP-ABE.

How close can we get to the ideal efficiency of having both constant-size keys and
ciphertexts? Despite tremendous effort, the state-of-the-art is still far from the ideal.
Current ABE schemes with either succinct keys or succinct ciphertexts can be broadly
classified as follows (see Figures 1 and 2):

• The work of [BGG+14] built KP-ABE based on LWE for polynomial-size circuits with
succinct keys |sk𝑓 | = poly(𝑑) and ciphertexts of size |ctx | = |x| poly(𝑑), where 𝑑 is
the depth of the circuit.

• Several works [ALdP11,YAHK14,Tak14,Att16,ZGT+16,AT20,LL20] constructed KP-ABE
and CP-ABE for low-depth computations with either constant-size secret keys or
constant-size ciphertexts from pairing, i.e., either |sk| = O(1) or |ct| = O(1), at the
cost of the other component being much larger, of size Ω(| 𝑓 | · |x|).

• The recent works of [AY20,AWY20] constructed CP-ABE for Boolean formulae with
succinct ciphertexts |ct𝑓 | = Θ(|x|) and compact keys |skx | = Θ(|x|). These schemes
are based on LWE and strong assumptions on pairing groups — either the generic
(pairing) group model [AY20] or knowledge assumptions [AWY20].

In this work, we set out to improve the state-of-the-art towards the direction of ideal
efficiency. We observe that though there are ABE schemes for low-depth computations

1We always ignore polynomial factors in the security parameter.

1 / 57

Figure 1. Efficiency comparison for KP-ABE
schemes. The pink region highlights succinct-
ness for |ctx | and |sk𝑓 |. This work and [BGG+14]
are KP-ABE schemes for circuits, while the rest
of the schemes are for low-depth computation.

Figure 2. Efficiency comparison for CP-ABE
schemes. The pink region highlights succinct-
ness for |ct𝑓 | and |skx |. All the included schemes
are CP-ABE for low-depth computation.

with constant-size keys, we do not have such ABE for general circuits. We ask:

Can we construct ABE for circuits with constant-size keys?

Furthermore, all of the above schemes either have succinct keys or succinct ciphertexts,
but never both at the same time. If we were to eventually achieve ideal efficiency, we
would have to first overcome the intermediate barrier of simultaneously having succinct
keys and ciphertexts — we refer to this as double succinctness. We thus ask:

Can we construct ABE for expressive policies with
both succinct keys and succinct ciphertexts?

We note that the above questions are unanswered even when assuming the strong prim-
itive of indistinguishability obfuscation (iO). Several works [GGH+13,GGSW13,KNTY19]
constructed ABE for circuits (or even functional encryption for circuits) using indistin-
guishability obfuscation or related primitives. However, they all have large secret keys
of size poly(| 𝑓 |). The only work that manages to obtain ABE for RAM with constant-size
keys [GKP+13] rely on a strong primitive called extractable witness encryption, which
however lacks provably secure instantiation.

Our Results. We address both questions. For the former, we construct the first KP-ABE
scheme for circuits with constant-size keys while keeping the ciphertext size the same as
in [BGG+14]. Concretely, each secret key consists of only 3 group elements. For the latter,
we present the first CP-ABE scheme for Boolean formulae achieving double succinctness
— it has constant-size keys and succinct ciphertexts. Concretely, each secret key consists
of only 2 group elements. Both constructions rely on LWE and the generic (pairing)
group model, similar to [AY20].

Theorem (KP-ABE). Assuming LWE, in the generic (pairing) group model, there is a KP-ABE
for circuits (Construction 3) that achieves selective security and has key size |sk𝐶 | = poly(𝜆)

2 / 57

(concretely, containing 3 group elements) and ciphertext size |ctx | = |x| poly(𝜆, 𝑑), where 𝑑 is
the maximum depth of the policy circuits.

Theorem (CP-ABE). Assuming LWE, in the generic (pairing) group model, there is a CP-ABE
for Boolean formulae (Construction 5) that achieves very selective security, and has constant-
size keys |skx | = poly(𝜆) (concretely, containing 2 group elements) and ciphertexts of size
|ct𝑓 | = |x|2 poly(𝜆) independent of the formula size | 𝑓 |.

Additional Contribution — Adaptive Security. The standard security property of ABE
is collusion resistance, which stipulates that no information of the message 𝜇 encrypted
in a ciphertext should be revealed even when multiple secret keys are issued, as long as
none of the keys alone is authorized to decrypt the ciphertext. Adaptive security requires
collusion resistance to hold even when attributes and policies tied to the challenge
ciphertext and the secret keys are chosen adaptively by the adversary. The weaker
selective security restricts the adversary to commit to the attribute (in KP-ABE) or the
policy (in CP-ABE) associated with the challenge ciphertext before seeing any parameters
of the system, and very selective security further requires all attributes and policies in
both the challenge ciphertext and the secret keys to be chosen statically.

Adaptive security guards against more powerful adversaries than selective security. It
is known that the latter can be generically lifted to the former via complexity leveraging,
at the cost of subexponential hardness assumptions. However, complexity leveraging is
undesirable not only because it requires subexponential hardness, but also because it
requires scaling the security parameter to be polynomial in the length of the information
to be guessed, 𝜆 = poly(|𝑥|) in KP-ABE or 𝜆 = poly(| 𝑓 |) in CP-ABE. As a result, complexity
leveraging is not a viable solution when aiming for constant-size keys, as key size poly(𝜆)
would already depends on |𝑥| or | 𝑓 |.

Instead, we show that if our constructions of KP- and CP-ABE assume adaptive LWE
instead of plain LWE, then the schemes achieve adaptive security and our reduction only
incurs polynomial security loss. The adaptive LWE assumption introduced in [QWW18]
postulates that LWE samples of the form {sT(A𝑖 − x[𝑖]G) + eT𝑖 }𝑖 are pseudorandom, even
if the adversary adaptively chooses x depending on the random matrices {A𝑖}𝑖.

Theorem (adaptive security). Assuming the polynomial hardness of adaptive LWE (instead
of LWE), in the generic (pairing) group model, the KP-ABE scheme (Construction 3) and the
CP-ABE scheme (Construction 5) are adaptively secure.

In the literature, the ABE schemes for circuits based on lattices [GVW12,BGG+14]
achieve only selective security (without complexity leveraging). Adapting it to have adap-
tive security has remained a technical barrier, except for very limited classes of policies
such as 3-CNF [Tsa19]. Alternatively, there are schemes based on indistinguishability
obfuscation or functional encryption for all circuits that are adaptively secure [Wat15,
KNTY19], but requiring stronger assumptions. Our technique can be viewed as making
the lattice-based schemes adaptively secure when combined with pairing. Note that
this is not trivial, for instance, the recent CP-ABE schemes in [AY20,AWY20] that com-
bine [BGG+14] with pairing groups inherit the selective security of the former (even if
assuming adaptive LWE).

3 / 57

2 Technical Overview

High-Level Ideas. Let’s focus on our KP-ABE scheme for circuits first. The cele-
brated constructions of KP-ABE for circuits from LWE [GVW13,BGG+14] have keys of size
poly(𝑑,𝜆) and achieve only selective security because they rely on the lattice trapdoor
simulation techniques. Consider the BGG+ scheme. Its ciphertext encodes the attributes x
and message 𝜇 as follows.

BGG Encoding: sTA + eT, sT
(B︷ ︸︸ ︷
(A1 | | · · · | |Aℓ) − x ⊗ G

)
+ (e′)T, sTv + 𝑒′′ + 𝜇⌊𝑞/2⌉.

One can homomorphically evaluate any circuit 𝑓 on the attribute encoding to obtain
sT(B𝑓 − 𝑓 (𝑥)G) + eT

𝑓
. To decrypt, the secret key sk𝑓 simply is a short vector rA,𝑓 satisfying

(A| |B𝑓)rA,𝑓 = v, which can be sampled using a trapdoor TA for A. This approach however
has two drawbacks:

• Difficulty towards Constant-Size Keys.Difficulty towards Constant-Size Keys. The short vector rA,𝑓 contained in the secret
key sk𝑓 has size poly(𝑑,𝜆). This is because it has dimension 𝑚 = 𝑛 log 𝑞 for log 𝑞 =

poly(𝑑,𝜆) and entries of magnitude exponential in 𝑑.

• Difficulty towards Adaptive Security.Difficulty towards Adaptive Security. The security proof relies on the ability to sim-
ulate trapdoors for these matrixes A| |B𝑓 corresponding to secret keys that are
unauthorized to decrypt the challenge ciphertext with attribute x∗, that is 𝑓 (x∗) = 1.
However, to do so, current technique plants x∗ in the public matrixes A𝑖’s (contained
in mpk), leading to selective security. Note that even with the stronger adaptive
LWE assumption, it is unclear how to simulate these trapdoors in another way.

Towards constant-size keys and adaptive security, our construction circumvents the use
of lattice trapdoors all together. At a high level, we turn attention to a much weaker
lattice primitive called attribute-based laconic function evaluation (AB-LFE) [QWW18],
and lifts it to a KP-ABE scheme for circuits using pairing. AB-LFE is an interactive
protocol where a receiver sends a digest of a function, which is exactly the matrix B𝑓 in
BGG. The sender then encodes the attribute x and message 𝜇 as follows.

AB-LFE Encoding: sT
(
(A1 | | · · · | |Aℓ) − x ⊗ G

)
+ (e′)T, sTB𝑓 r + 𝑒′′ + 𝜇⌊𝑞/2⌉.

where r = G−1(a) is the bit decomposition of a random vector a. Security guarantees that
the encoding reveals only the output 𝑓 (x). At a first glance, the LFE encoding appears
the same as BGG, but the novelty is in details. Since the LFE encoding depends on B𝑓

(and hence 𝑓), it can be generated without using lattice trapdoors — the short vector r
sampled first, and B𝑓 r computed next. When 𝑓 (𝑥) = 1, the hiding of 𝜇 follows directly
from the pseudorandomness of LWE samples sT((A1 | | · · · | |Aℓ) − x ⊗ G)) + e′ and sTa + 𝑒′′′.
When x is adaptively chosen, security follows naturally from adaptive LWE.

However, AB-LFE is able to avoid lattice trapdoor only because it is significantly
weaker than ABE, or even 1-key ABE: 1) its message encoding depends on B𝑓 (unknown
at ABE encryption time), and 2) it is only secure for a single function. Our next challenge
is lifting AB-LFE back to full ABE, for which we use pairing.

More specifically, we first modify the AB-LFE scheme of [QWW18] to obtain a nearly
linear secret sharing scheme for circuits. It contains two parts.

Our LSS Encoding: 𝐿x = sT
(
(A1 | | · · · | |Aℓ) − x ⊗ G

)
+ (e′)T mod 𝑞,

𝐿𝑓 = sTRound(B𝑓 r) + 𝑒′′ + 𝜇⌊𝑝/2⌉ mod 𝑝.

4 / 57

Note that we round B𝑓 r from modulus 𝑞 of poly(𝑑) length to 𝑝 of poly(𝜆) length so
that the component 𝐿𝑓 in the secret sharing that depends on 𝑓 and 𝜇 has constant size,
which is the key towards constant-size ABE keys. To solve the problem that 𝐿𝑓 requires
knowledge of B𝑓 unknown at encryption time, we use a pairing-based inner-product
functional encryption (IPFE) to compute 𝐿𝑓 in the exponent, by viewing it as as inner
product 𝐿𝑓 = ⟨sT | |𝜇⌊𝑝/2⌉, Round(B𝑓 r) | |1⟩, where the two vectors are known respectively
at ABE encryption and key generation time. To overcome that AB-LFE only guarantees
security for a single 𝐿𝑓 . We follow the idea of [AY20,AWY20] to compute 𝛿𝑓 · 𝐿𝑓 in
the exponent instead, where 𝛿𝑓 is an independent and random scalar chosen at key
generation time. In GGM, the presence of 𝛿𝑓 prevents adversaries from meaningfully
“combining” information from multiple 𝐿𝑓 for different 𝑓 .

Comparison with [AY20,AWY20]. Our way of combining lattice-based LSS with pairing-
based IPFE differs from that of [AY20,AWY20], in order to address unique technical
difficulties. To start with, they use an LSS scheme based on the BGG ABE and inherits
the selective security. Second, our KP-ABE scheme reveals part of the secret h 𝐿x in
the clear (in ciphertext), and only compute 𝐿𝑓 in the exponent, whereas [AY20,AWY20]
computes the entire LSS in the exponent. This is because the decryptor needs to perform
the non-linear rounding operation on the result of homomorphic evaluation on 𝐿x, in
order to obtain Round(sT(B𝑓 − 𝑓 (𝑥)G)r+eT

𝑓
) for decryption. Keeping 𝐿x in the clear allows

rounding, but renders security harder to prove.
Furthermore, the security proof of AB-LFE relies on noise flooding — their technique

can only show that 𝐿𝑓 + 𝑒 is secure for a super-polynomially large 𝑒. But noise flooding
is incompatible with computing 𝐿𝑓 in the exponent, since we must keep noises polyno-
mially small in order for decryption to be efficient (which performs discrete logarithm).
Without noise flooding, we cannot prove that unauthorized shares are pseudorandom as
in [QWW18]. Nevertheless, we show that unauthorized shares are “entropic”, captured by
a new notion called non-annihilability, and that the “entropic” 𝐿𝑓 computed in the expo-
nent still hides the message 𝜇. The proof of non-annihilability combines techniques
from AB-LFE and leakage simulation [JP14,CCL18]. The work of [AY20,AWY20] does not
encounter issues with super-polynomial noises.

We add a note on our doubly succinct CP-ABE for Boolean formulae. It is closer
to the CP-ABE scheme of [AY20,AWY20]. However, to obtain constant-size keys, we
rely on an IPFE scheme with strong (selective) simulation security — it enables simul-
taneously simulating a polynomial number 𝑘 of ciphertexts, by programming 𝑘 inner
products for every secret key, while keeping the secret key constant-size (independent of
𝑘). Such strong simulation is impossible in the standard model following an incompress-
ibility argument. We show that this is possible in GGM, in particular, the IPFE scheme
of [ABDP15] satisfies it. IPFE with such strong simulation may find other applications.

Next, we explain our ideas in more details.

Combining LSS with IPFE. An IPFE scheme enables generating keys isk(v𝑗) and cipher-
texts ict(u𝑖) associated with vectors v𝑗 ,u𝑖 ∈ ℤ𝑁

𝑝 such that decryption reveals only their
inner products ⟨u𝑖, v𝑗⟩ and hides all other information about u𝑖 encrypted in the cipher-
texts (whereas v𝑗 associated with the keys are public). IPFE can be based on a variety of
assumptions such as MDDH, LWE, DCR [ABDP15,ALS16].

5 / 57

A nearly linear secret sharing scheme enables generating shares 𝐿𝑓 , 𝐿0, {𝐿𝑏
𝑖
} asso-

ciated with a policy 𝑓 and some secret 𝜇, such that for any input x ∈ {0, 1}ℓ , its corre-
sponding subset of shares 𝐿x = (𝐿0, {𝐿x[𝑖]𝑖

}), together with 𝐿𝑓 can be used to approximately
reconstruct the secret 𝜇 if and only if 𝑓 (x) = 0:

(𝐿𝑓 , 𝐿0, {𝐿𝑏
𝑖
}𝑖∈[ℓ],𝑏∈{0,1}) ← Share(𝑓 , 𝜇; r)
𝑓 (𝑥) = 0 =⇒ 𝜇 ≈ Recon(𝑓 , x, 𝐿𝑓 , 𝐿

x).

Near linearity means that Recon is linear in the shares 𝐿𝑓 , 𝐿
x and that its output is close

to the secret 𝜇.
How can we combine these two primitives to construct a KP-ABE? We require 𝐿0, {𝐿𝑏

𝑖
}

to be independent of 𝑓 and 𝜇, and 𝐿𝑓 to be linear in 𝜇 and the randomness r of Share. The
first requirement allows us to simply put 𝐿x in the ciphertext. The second requirement
allows us to encode 𝜇, r into ict’s and the coefficients (of 𝐿𝑓 as a function of 𝜇, r) into
isk’s, so that their inner product is exactly 𝐿𝑓 . For convenience, we write ⟦𝑥⟧𝑖 for 𝑔𝑥

𝑖
and

use additive notation for the groups. The idea is as follows:

kp.sk𝑓 : ⟦𝛿⟧2, isk(coefficients of 𝛿𝐿𝑓)
kp.ctx : 𝐿x, ict(𝜇, r)

}
⟦𝛿𝐿𝑓 ⟧T and 𝐿x. (1)

If 𝑓 (x) = 0, the linear reconstruction can be carried out in the exponents to approximately
obtain ⟦𝛿𝜇⟧T. Decryption enumerates all possible errors to recover 𝜇 exactly. We stress
again that different from [AY20,AWY20], we keep 𝐿x in the clear (in the ciphertext),
instead of computing the entire secret sharing 𝐿x, 𝐿𝑓 in the exponent, which is important
for achieving constant-size keys, but makes proving security more difficult.

We construct a secret sharing scheme that features 𝐿𝑓 of constant size, which translates
to KP-ABE with constant-size secret keys.

Combining secret sharing and IPFE to construct CP-ABE is similar. We can encode
𝐿0, {𝐿𝑏

𝑖
} in ict’s, and a “selection” vector according to x in isk’s, so that their inner products

are exactly 𝐿x:

cp.skx : ⟦𝛿⟧2, isk(𝛿 · selection vector for x)
cp.ct𝑓 : ⟦𝐿𝑓 ⟧1, ict(𝐿0, {𝐿𝑏

𝑖
}).

}
⟦𝛿𝐿𝑓 ⟧T and ⟦𝛿𝐿x⟧T. (2)

We use an IPFE scheme with secret keys of constant size, independent of the vector
dimension or the number of ciphertexts, and a secret sharing scheme whose 𝐿𝑓 , 𝐿

x grows
only with the input length |x|. This translates to CP-ABE with double succinctness.

Lattice-Based Nearly Linear Secret Sharing. The BGG+ ABE scheme introduces an
important homomorphic evaluation procedure: Given public matrixes B = (A1 | | · · · | |A |x |),
and the following encoding of an input x, one can homomorphically evaluate any circuit
𝑓 on the encodings to obtain an encoding of the output.

cT = sT(B − (1, x) ⊗ G) + eT2,
EvalCX(c2, 𝑓 , x) = cT𝑓 = s

T(B𝑓 − 𝑓 (x)G) + eT𝑓 , where EvalC(B, 𝑓) = B𝑓 . (3)

As discussed before, the BGG+ ABE scheme uses lattice trapdoor simulation technique,
which we try to avoid in order to get constant-size key and adaptive security.

6 / 57

Wehence turn to using the weaker primitive of AB-LFE scheme introduced by [QWW18].
It is a two-party protocol between a sender and a receiver who share the LWE public
matrix B as the common reference string. The receiver first computes a digest B𝑓 = EvalC(B, 𝑓)
for a function 𝑓 and sends it to the sender. Upon receiving the digest, the sender masks
a message 𝜇 by an LWE sample 𝑐0 = sTv𝑓 + 𝑒 + 𝜇⌊𝑞/2⌉, where r = G−1(a) and v𝑓 = B𝑓 r are
analogues of rA,𝑓 and v in BGG+. It also encodes an attribute x into LWE samples c1 as
described below.

AB-LFE.crs : B
AB-LFE.digest : B𝑓 = EvalC(B, 𝑓)

�����������
AB-LFE.ct𝑓 ,x(𝜇) :

a $← ℤ𝑛
𝑞

𝑐0 = sT B𝑓G−1(a)︸ ︷︷ ︸
v𝑓

+𝜇⌊𝑞/2⌉ + 𝑒

cT1 = s
T(B − (1, x) ⊗ G) + eT1

Decryption proceeds by first running EvalCX(c1, 𝑓 , x) to obtain c𝑓 = sT(B𝑓 − 𝑓 (x)G) + eT
𝑓
. If

𝑓 (x) = 0, the decryptor computes 𝑐0 − cT𝑓 r = 𝜇⌊𝑞/2⌉ + (𝑒 − eT
𝑓
r) and round it to recover 𝜇.

Observe that the above scheme can be viewed as a nearly linear secret sharing
scheme, where the shares chosen by x are exactly Lx = c1 and the shares dependent on 𝑓

and 𝜇 is 𝐿𝑓 = 𝑐0. At the moment, the bit-length of 𝐿𝑓 is Θ(log 𝑞). Since the noise growth
during the homomorphic evaluation is exponential to the depth of the computation, 𝑞
is a poly(𝑑,𝜆)-bit modulus in order to accommodate for the noise growth. We next turn
to reducing the size of 𝐿𝑓 to a constant independent of 𝑑.

Rounding to Make 𝑳𝒇 Constant-Size. Since the encrypted message is only a single bit,
we can afford to lose a lot of precision in the above decryption process. In particular,
the scheme is still correct if we round down the digest B𝑓 to a much smaller modulus
𝑝 ≪ 𝑞, and change 𝑐0 to use the rounded digest (while keeping cT1 unchanged):

𝑐′0 = sT⌊B𝑓G−1(a)⌉𝑝 + 𝜇⌊𝑝/2⌉ + 𝑒 over ℤ𝑝.

During decryption, one now computes, over ℤ𝑝,

𝑐′0 − ⌊cT𝑓G
−1(a)⌉𝑝 = 𝑐′0 − ⌊sTB𝑓G−1(a) + 𝑓 (x)sTa + eT𝑓G

−1(a)⌉𝑝
= 𝑐′0 −

(
sT⌊B𝑓G−1(a)⌉𝑝 + 𝑓 (x) ⌊sTa⌉𝑝 + ⌊eT𝑓G

−1(a)⌉𝑝︸ ︷︷ ︸
𝑒′
𝑓

+ 𝑒𝑠
)

= 𝜇⌊𝑝/2⌉ − 𝑓 (x) ⌊sTa⌉𝑝 + (𝑒 − 𝑒′𝑓 − 𝑒𝑠), (4)

where the rounding error 𝑒𝑠 is of magnitude |𝑒𝑠 | = Θ(∥s∥1). As long as the error terms
are much smaller than 𝑝/2, when 𝑓 (x) = 0, one can still recover 𝜇. We can now recast
the above rounded AB-LFE scheme into a secret sharing scheme with 𝐿𝑓 of bit-length
Θ(log 𝑝), which could be independent of depth 𝑑!

SS.pp : a,B mod 𝑞;
𝐿𝑓 : 𝑐′0 = sT⌊B𝑓G−1(a)⌉𝑝 + 𝜇⌊𝑝/2⌉ + 𝑒 mod 𝑝 ≪ 𝑞;
Lx : cT1 = s

T (B − (1, x) ⊗ G) + eT1 mod 𝑞.

As shown in Equation (1), to obtain KP-ABE, we will use a pairing-based IPFE to compute
𝐿𝑓 in the exponent. Specifically, the IPFE secret key isk encodes (⌊B𝑓G−1(a)⌉𝑝, ⌊𝑝/2⌉), and

7 / 57

the IPFE ciphertext ict encodes (sT, 𝜇). Together, they decrypt to exactly ⟦𝐿𝑓 ⟧T. Since
both vectors live in ℤ𝑝, the KP-ABE key, consisting of only isk, is of size independent
of 𝑑. Our secret sharing scheme is summarized below. It turns out that arguing security
is actually tricky and requires additional modification.

Our Secret Sharing Scheme for KP-ABE

Setup(1𝜆) : pp = LFE.pp = (a,B) = (a,A0,A1, . . . ,Aℓ).
ShareX(pp) : Compute LWE samples

L0 = sTA0 + e0, L𝑏
𝑖
= sT(A𝑖 − 𝑏G) + eT𝑖 .

Output (L0, {L𝑏
𝑖
}, s).

ShareF(pp, 𝑓 , 𝜇, s) : Compute B𝑓 = EvalC(B, 𝑓).
Output 𝐿𝑓 = sT⌊B𝑓G−1(a)⌉𝑝 + 𝜇⌊𝑝/2⌉.

∀x ∈ {0, 1}ℓ : Lx =
(
L0, Lx[1]1 , . . . , Lx[ℓ]

ℓ

)
Recon(pp, 𝑓 , 𝐿𝑓 , x, Lx) : If 𝑓 (x) = 1, output ⊥.

Otherwise, compute c𝑓 = EvalCX(Lx, 𝑓 , x), and
recover 𝜇 from 𝐿𝑓 − ⌊cT𝑓G

−1(a)⌉𝑝 ≈ 𝜇⌊𝑝/2⌉.

Non-Annihilability by Leakage Simulation. However, using AB-LFE creates a further
complication, as its security relies on flooding the 𝑒′

𝑓
, 𝑒𝑠 terms (which may contain infor-

mation of s and x) with 𝑒, in order to prove pseudorandomness of 𝐿𝑓 . By Equations (3, 4),
when 𝑓 (x) = 1 we have

𝐿𝑓 = ⌊EvalCX(Lx, 𝑓 , x)TG−1(a)⌉𝑝 − ⌊sTa + 𝑒𝑎⌉𝑝 + 𝜇⌊𝑝/2⌉ + (𝑒 − 𝑒′𝑓 − 𝑒𝑠). (5)

Observe that in the above, for later convenience, an additional polynomial LWE noise 𝑒𝑎

is introduced in the term ⌊sTa + 𝑒𝑎⌉𝑝 (which by rounding simply equals to ⌊sTa⌉𝑝).
At this point, in order to show that 𝐿𝑓 is pseudorandom, given that x is selected

before Setup, one could program the public matrices as A𝑖 = A′𝑖 + 𝑥𝑖G according to x,
where B′ = (A′0, ..,A′ℓ) are sampled at random. And one would hope to apply LWE to
argue that

Lx = sT(B + (1, x) ⊗ G) + eT1 = sTB′ + eT1,

and (sTa + 𝑒𝑎) are jointly pseudorandom. However, the noise terms 𝑒′
𝑓
and 𝑒𝑠 may leak

information about e2 and s.
The solution in [QWW18] is noise flooding. By setting 𝑒 to be super-polynomially

larger than (𝑒′
𝑓
+ 𝑒𝑠), we have 𝑒 − 𝑒′

𝑓
− 𝑒𝑠 ≈s 𝑒. By LWE, we can now switch Lx and (sTa + 𝑒𝑎)

to random and conclude that 𝐿𝑓 is pseudorandom.
However, the unique challenge here is that 𝐿𝑓 is going to be computed in the exponent

of the pairing group, and decryption only recovers (𝜇⌊𝑝/2⌉ + 𝑒) in the exponent. When
𝑒 is super-polynomial, we can no longer extract 𝜇 out of the exponent. Our solution
is avoiding flooding altogether and remove the noise 𝑒 from 𝐿𝑓 . As such, we cannot
prove pseudorandomness of 𝐿𝑓 , but only a weaker security notion that we call non-
annihilability (for 𝐿𝑓). This notion captures that 𝐿𝑓 is still entropic.

8 / 57

Non-Annihilability. Non-annihilability requires that no adversary, after seeing Lx (but
not 𝐿𝑓) can come up with an affine function 𝛾 such that 𝛾(𝐿𝑓) = 0. As we will see, this
security notion, combined with GGM, suffices for our proof.

Towards proving non-annihilability, we want to show that 𝐿𝑓 is highly entropic (even
without 𝑒). Our idea is to view the noises 𝑒′

𝑓
, 𝑒𝑠 as leakage of the randomness that gener-

ates Lx and (sTa + 𝑒𝑎) as well as the other information, and simulate 𝑒′
𝑓
, 𝑒𝑠 using leakage

simulation [JP14,CCL18]. Crucially, because 𝑒′
𝑓
, 𝑒𝑠 have polynomial range, the simulation

can run in polynomial time. More precisely, the leakage simulation lemma of [CCL18]
states that for any joint distribution (𝑋, 𝑍) ∼ D (𝑍 viewed as leakage of randomness
for generating 𝑋), adversary size bound 𝑠, and error bound 𝜀, there is a simulator ℎ

simulating 𝑍 as ℎ(𝑋) such that (𝑋, 𝑍) and (𝑋, ℎ(𝑋)) are (𝑠, 𝜀)-indistinguishable. Fur-
thermore, the running time of ℎ is O(𝑠𝜀−22 |𝑍 |). Suppose for contradiction that there is
an adversary A of size 𝑠 = poly(𝜆) winning the non-annihilability game with probability
2𝜀 ≥ 1/poly(𝜆). Consider the joint distribution D of running the game with A, defined
in the first line below:

D→ {𝑋 = (pp, x, Lx, 𝑓 , 𝜇,𝛾,𝜓 = sTa + 𝑒𝑎), 𝑍 = 𝑒′𝑓 + 𝑒𝑠}
𝑠,𝜀≈ Hybrid 1→ {𝑋 = (pp, x, Lx, 𝑓 , 𝜇,𝛾,𝜓 = sTa + 𝑒𝑎), 𝑍 = ℎ(𝑋)}

≈ Hybrid 2→ {𝑋 = (pp, x, Lx random, 𝑓 , 𝜇,𝛾,𝜓 random), 𝑍 = ℎ(𝑋)}.

Using (𝑋, 𝑍), one can emulate 𝐿𝑓 as (cf. Equation (5) with 𝑒 removed and (𝑒′
𝑓
+ 𝑒𝑠) replaced

by 𝑍)

𝐿𝑓 = ⌊EvalCX(Lx, 𝑓 , x)G−1(a)⌉𝑝 − ⌊𝜓⌉𝑝 + 𝜇⌊𝑝/2⌉ − 𝑍.

Since 𝑍 = 𝑒′
𝑓
+ 𝑒𝑠, and 𝑠, 𝜀−1 are all polynomially bounded, we can simulate 𝑍 by ℎ(𝑋) in

polynomial time (Hybrid 1). Now, we can apply LWE to switch Lx,𝜓 = sTa + 𝑒𝑎 to random
(Hybrid 2). At this point, it seems that 𝐿𝑓 is just pseudorandom by the pseudorandomness
of 𝜓. However, there is a subtle issue: 𝑍 = ℎ(𝑋) depends on 𝜓 contained in 𝑋 , and hence
(⌊𝜓⌉𝑝 − 𝑍) may not be pseudorandom, and neither may be 𝐿𝑓 . Despite this dependency,
thanks again to (𝑒′

𝑓
+ 𝑒𝑠), thus ℎ(𝑋), being polynomially bounded, (−⌊𝜓⌉𝑝 + ℎ(𝑋)) still

has almost full entropy (up to a logarithmic loss). Therefore, the probability that 𝐿𝑓

is annihilated by an affine function 𝛾 chosen by A before 𝜓 is randomly sampled is
negligible. This gives a contradiction and concludes the proof of non-annihilability.

Multi-Key Security of KP-ABE in GGM. Our KP-ABE scheme combines an IPFE scheme
with the secret sharing scheme described above. As described before, in our KP-ABE
scheme, we only compute the 𝐿𝑓 part of secret sharing using IPFE, and leave the Lx
part in the clear so that rounding can be performed. To achieve multi-key security, we
further employ the idea from [AY20,AWY20] to “isolate” each ABE secret key in GGM by
multiplying it with a fresh random element 𝛿.

kp.sk : ⟦𝛿⟧2, isk
(
⟦𝛿(⌊B𝑓G−1(a)⌉𝑝, ⌊𝑝/2⌉)⟧2

)
kp.ct : Lx, ict(⟦(s, 𝜇)⟧1)

}
decrypt to ⟦𝛿𝐿𝑓 ⟧T.

The decryption algorithm first computes IPFE decryption to recover ⟦𝛿𝐿𝑓 ⟧T. It then
computes (homomorphically in the exponent of 𝑔T)

⟦𝛿𝐿𝑓 ⟧T − ⟦𝛿⟧T⌊cT𝑓G
−1(a)⌉𝑝 = ⟦𝛿

(
𝜇⌊𝑝/2⌉ − (𝑒′𝑓 + 𝑒𝑠)

)
⟧T.

9 / 57

Since the noise (𝑒′
𝑓
+ 𝑒𝑠) has a polynomial range, the decryption algorithm enumerates

all its possible values to recover 𝜇.
Multi-key security, at a high level, relies on the fact that in GGM, an adversary can

only learn information about ⟦𝛿𝐿𝑓 ⟧T by submitting zero-test queries of affine functions.
When the adversary attacks multiple keys, it essentially submits zero-test queries over
the terms {𝛿𝑗𝐿𝑓𝑗 }. Let 𝛾({𝛿𝑗𝐿𝑓𝑗 }) be any zero-test query submitted by A, we can view it
as a degree-1 polynomial over 𝛿𝑗 ’s:

𝛾({𝛿𝑗𝐿𝑓𝑗 }) =
∑︁
𝑗

𝛾𝑗 (𝐿𝑓𝑗)𝛿𝑗 + 𝛾0,

where 𝛾𝑗 (𝐿𝑓𝑗) is the coefficient of 𝛿𝑗. Since each 𝛿𝑗 is sampled independently at random,
by Schwartz–Zippel, with all but negligible probability, 𝛾 evaluates to zero only if all 𝛾𝑗 ’s
evaluate to zero. In other words, the adversary is effectively constrained to annihilate
each 𝐿𝑓𝑗 individually. By the non-annihilability for 𝐿𝑓 , if 𝛾𝑗 is not the zero function, it
evaluates to non-zero with overwhelming probability. Hence the adversary learns no
information of each 𝐿𝑓𝑗 and the message 𝜇 encoded in them.

Our KP-ABE Scheme

Setup(1𝜆) : Output mpk = impk for IPFE, pp for secret sharing
and msk = imsk for IPFE.

KeyGen(msk, 𝐶) : Sample 𝛿
$← ℤ𝑝 and compute B𝑓 = EvalC(B, 𝑓).

Output sk = (⟦𝛿⟧2, isk(⟦𝛿(⌊B𝑓G−1(a)⌉𝑝, ⌊𝑝/2⌉)⟧2)).

Enc(mpk, x, 𝜇) : Compute (L0, {L𝑏
𝑖
}, s) $← ShareX(pp).

Output ct = (Lx, ict(⟦s, 𝜇⟧1)).
Dec(mpk, sk, 𝐶, ct, x) : Run IPFE decryption to recover ⟦𝛿𝐿𝑓 ⟧T.

Compute c𝑓 = EvalCX(Lx, 𝑓 , x) and find 𝜇 from
⟦𝛿𝐿𝑓 ⟧T − ⟦𝛿⟧T⌊cT𝑓G

−1(a)⌉𝑝 = ⟦𝛿(𝜇⌊𝑝/2⌉ − 𝑒𝑠 − 𝑒′𝑓)⟧T.

Summary of Our KP-ABE. Combining the above secret sharing scheme with an IPFE
scheme, we obtain a KP-ABE scheme for bounded-depth circuits as summarized above.

We note that our KP-ABE scheme achieves the same asymptotic ciphertext compact-
ness as the BGG+ scheme. Let 𝑑 be an upper bound on the depth of the policy 𝑓 , then
|ct| = poly(𝜆, 𝑑) |x|. The secret keys of our scheme contains only O(1) group elements,
in fact only three using the IPFE scheme of [ALS16] in a group of order 𝑝. We set
log 𝑝 = poly(𝜆) and hence obtain constant size keys.

Security Sketch for KP-ABE. Finally, for completeness, we add a security sketch that
puts the previous ideas together. We emphasize that that we only use GGM in the last
argument, when we need to isolate the share 𝐿𝑓𝑗 for each 𝑓 .

The selective security game of ABE (summarized in H0 below) at a high level is as
follows: The adversary A first decides a challenge attribute x∗ before receiving a master
public keympk and a ciphertext ct∗ from the challenger C. It is then allowed to repeatedly
query secret keys sk𝑗 for functions 𝑓𝑗. The adversary wins if every queried function 𝑓𝑗

satisfies 𝑓𝑗 (x∗) ≠ 0, and if it guesses the encrypted bit 𝜇 correctly.

10 / 57

H0

C A
x∗

mpk, ct∗ = Lx∗ , ict(⟦s, 𝜇⟧1)

𝑓𝑗

sk𝑗 =
(
⟦𝛿𝑗⟧2,

isk(⟦𝛿𝑗 (⌊B𝑓G−1 (a) ⌉𝑝, ⌊𝑝/2⌉)⟧2)
) repeat

H1

C A
x∗

mpk, ct∗ = Lx∗ , ĩct(⊥)

𝑓𝑗
IPFE
====⇒

sk𝑗 =
(
⟦𝛿𝑗⟧2,

ĩsk(⟦𝛿𝑗𝐿𝑓𝑗
⟧2)

) repeat

Note that we can generate the IPFE ciphertext ict(⟦s, 𝜇⟧1) before any IPFE secret keys
isk(⟦𝛿(⌊B𝑓𝑗G

−1(a)⌉𝑝, ⌊𝑝/2⌉)⟧2). Relying on the selective simulation security of IPFE, we
can (as summarized in H1 above) replace ict(⟦s, 𝜇⟧1) with a simulated ciphertext ĩct(⊥),
and each isk(⟦𝛿𝑗 (⌊B𝑓𝑗G

−1(a)⌉𝑝, ⌊𝑝/2⌉)⟧2) with a simulated secret key ĩsk(⟦𝛿𝑗𝐿𝑓𝑗⟧2) using
their inner products.

In GGM, we can now argue that A only learns information about 𝜇 through zero-test
queries over {𝛿𝑗𝐿𝑓𝑗 }. As argued before, by the non-annihilability of 𝐿𝑓 , the adversary
learns no information of 𝜇.

Building Doubly Succinct CP-ABE. To build a CP-ABE scheme we need a different secret
sharing construction, because the previous rounding solution does not work anymore.
As described in Equation (2), in the CP case, we use IPFE to compute Lx in the exponent,
hence cannot perform rounding on it. Without rounding, the e𝑓 term, as a result of
EvalCX, in Equation (4) becomes super-polynomial. This again makes the ABE decryption
inefficient.

Fortunately, for Boolean formulae, the work of [GV15] develops specialized homo-
morphic evaluation procedures EvalF, EvalFX that ensure the evaluation noise e𝑓 has a
polynomial range. Therefore, our secret sharing scheme for CP removes the rounding
and replaces EvalC, EvalCX by EvalF, EvalFX. We summarize our modified secret sharing
scheme below (Setup, ShareX are kept the same).

Modified Secret Sharing Scheme for CP-ABE

ShareF′(pp, 𝑓 , 𝜇, s) : Compute B𝑓 = EvalF(B, 𝑓).
Output 𝐿𝑓 = sTB𝑓G−1(a) + 𝜇⌊𝑝/2⌉ + 𝑒.

Recon′(pp, 𝑓 , 𝐿𝑓 , x, Lx) : If 𝑓 (x) = 1, output ⊥.

Otherwise, compute c𝑓 = EvalFX(Lx, 𝑓 , x),
and find 𝜇 from 𝐿𝑓 − cT𝑓G

−1(a) = 𝜇⌊𝑝/2⌉ + (𝑒 − 𝑒′𝑓).

As noted before, in our CP-ABE scheme we use IPFE to compute Lx. To achieve double
succinctness, we carefully implement a pair of functions Sel, Encode using an IPFE with
constant-size isk’s, such that Sel(⟦x⟧2) and Encode(⟦L0, {L𝑏

𝑖
}⟧1) decrypts exactly to ⟦Lx⟧T.

We obtain a CP-ABE scheme for Boolean formulae as summarized below.

11 / 57

Our CP-ABE Scheme

Setup(1𝜆) : Output mpk = impk for IPFE and pp for secret sharing,
and msk = imsk for IPFE.

KeyGen(msk, x) : Sample 𝛿
$← ℤ𝑝.

Output sk = (⟦𝛿⟧2, Sel(⟦𝛿x⟧2)).

Enc(mpk, 𝑓 , 𝜇) : Compute (L0, {L𝑏
𝑖
}, s) $← ShareX(pp)

and 𝐿𝑓
$← ShareF′(pp, 𝑓 , 𝜇, s).

Output ct = (⟦𝐿𝑓 ⟧1, Encode(⟦L0, {L𝑏
𝑖
}⟧1)).

Dec(mpk, sk, x, ct, 𝑓) : Run IPFE decryption to recover ⟦𝛿Lx⟧T.
Compute ⟦𝛿c𝑓 ⟧T = EvalFX(⟦𝛿Lx⟧T, 𝑓 , x),

and find 𝜇 from
⟦𝐿𝑓 ⟧1⟦𝛿⟧2 − ⟦𝛿cT𝑓 ⟧TG

−1(a) = ⟦𝛿(𝜇⌊𝑝/2⌉ + (𝑒 − 𝑒′𝑓))⟧T.

We now describe the Sel, Encode functions. Let ℓ = |x| denote the length of x. The
Sel algorithm first computes the “selection vector” for x as

v = (1, 1 − x[1], x[1], . . . , 1 − x[𝑖], x[𝑖], . . .),

and then computes an IPFE secret key isk(⟦v⟧2). The Encode algorithm places input
shares in the matrix

©«

L0 0 0 · · · 0 0 · · · 0 0
0 L0

1 L1
1 · · · 0 0 · · · 0 0

0
...

...
. . .

...
...

. . .
...

...

0 0 0 · · · L0
𝑖

L1
𝑖
· · · 0 0

0
...

...
. . .

...
...

. . .
...

...

0 0 0 · · · 0 0 · · · L0
ℓ

L1
ℓ

ª®®®®®®®®®¬
and computes one IPFE ciphertext for each row u𝑙 of the matrix. Our CP-ABE has both
succinct keys and ciphertexts: |sk| = O(1) and |ct| = poly(𝜆) |x|2.

Simulation Security for IPFE in GGM. Similar to the security proof for KP-ABE, our
security proof for CP-ABE requires selective simulation security of IPFE.

Sel : isk(⟦v⟧2)
Encode : ∀𝑙 ict(⟦u𝑙⟧1)

����� 𝑐≈
ĩsk(⟦Lx⟧2)
ĩct(⊥)

Note that above we need to simulate multiple IPFE ciphertexts and program all their
decryption outcome Lx in each secret key. This is possible using existing IPFE schemes [ALS16,
LL20], but at the cost of having the secret key size proportional to the number 𝑘 = |Lx |
of ciphertexts to be simulated. However, we aim for constant-size secret keys (indepen-
dent of 𝑘). Unfortunately, in the standard model, it is impossible to achieve simulation
security for 𝑘 ciphertexts if the secret key is shorter than 𝑘 bits by an incompressibility
argument [BSW11]. We show that simulation security for unbounded polynomially many
ciphertexts can nevertheless be achieved with constant-size secret keys in the GGM. In

12 / 57

particular, the IPFE scheme of [ABDP15], whose secret key contains a single group ele-
ment, satisfies it. Roughly speaking, in the GGM, an adversary only learns information
about values in the exponent through zero-test queries over the pairings of keys and
ciphertexts, which the simulator can answer by translating them into zero-test queries
over the inner products. As a side note, we can in fact prove adaptive simulation security
for the [ABDP15] IPFE scheme, though our ABE scheme only relies on selective simulation
security.

Achieving Adaptive Security. Examining the security sketch for KP-ABE, we observe
that in our construction, the ict(⟦s, 𝜇⟧1) component of ciphertext ct∗ doesn’t depend on
the challenge attribute x∗. This means that even in the adaptive KP-ABE game, where x∗
is decided after some key queries, the ict(⟦s, 𝜇⟧1) component of ct∗ can be fixed at the
beginning of the game, before any key queries. Therefore, we can still rely on selective
simulation security of IPFE for the first proof step.

However, when we next need to invoke non-annihilability for 𝐿𝑓 , we run into a
problem: the security for 𝐿𝑓 only holds when x∗ is chosen before the LWE public matrix
B is revealed in the public parameter pp of the secret sharing. To achieve adaptive
security, what we need is adaptive non-annihilability property, which allows x∗ to be
chosen adaptively dependent on pp. We show that this is implied by the adaptive LWE
assumption formulated in [QWW18].

In summary, we obtain adaptively secure KP-ABE for circuits and CP-ABE for Boolean
formulae both with constant-size keys from GGM and Adaptive LWE.

3 Preliminaries

Let 𝜆 be the security parameter, which runs throughℕ. Except in the definitions, we sup-
press 𝜆 for brevity. Efficient algorithms are probabilistic polynomial-time (PPT) Turing
machines. Efficient adversaries are non-uniform PPT Turing machines, or equivalently
families of polynomial-sized circuits. We denote by H0 ≈ H1 (resp. ≈s, ≡) computational
indistinguishability (resp. statistical indistinguishability, identity) of two distributions or
experiments.

We write [𝑎..𝑏] for the set {𝑎, 𝑎+ 1, . . . , 𝑏} and [𝑛] for [1..𝑛]. Vectors and matrices are
written in boldface, and are always indexed using [·], i.e., A[𝑖, 𝑗] is the (𝑖, 𝑗)-entry of A.
The infinity norm of a vector and its induced operator norm of a matrix are denoted
by ∥·∥∞.

Schwartz–Zippel Lemma. We will use the following lemma for various proofs:

Lemma 1 (Schwartz–Zippel). Let 𝑃(z) be a non-zero polynomial with 𝑍 indeterminates of
degree at most 𝑑 over ℤ𝑝, then Pr

[
z $← ℤ𝑍

𝑝 : 𝑃(z) = 0
]
≤ 𝑑/𝑝.

3.1 Attribute-Based Encryption

Definition 1 (ABE [GPSW06]). Let P = {P𝜆}𝜆∈ℕ be a sequence of predicate families with
P𝜆 =

{
𝑃 : 𝑋𝑃 ×𝑌𝑃 → {0, 1}

}
. An attribute-based encryption scheme for P consists of 4 effi-

cient algorithms:

• Setup(1𝜆, 𝑃) takes as input the security parameter 1𝜆 and a predicate 𝑃 ∈ P𝜆, and
outputs a pair of master public/secret keys (mpk,msk).

13 / 57

• KeyGen(msk, 𝑦) takes as input the master secret key msk and some 𝑦 ∈ 𝑌𝑃, and
outputs a secret key sk.

• Enc(mpk, 𝑥, 𝜇) takes as input themaster public keympk, some 𝑥 ∈ 𝑋𝑃, and amessage
𝜇 ∈ {0, 1}, and it outputs a ciphertext ct.

• Dec(mpk, sk, 𝑦, ct, 𝑥) takes as input the master public key mpk, a secret key sk, its
associated 𝑦, a ciphertext ct, and its associated 𝑥, and is supposed to recover the
message if 𝑃(𝑥, 𝑦) = 1.

The scheme is required to be correct, i.e., for all 𝜆 ∈ ℕ, 𝑃 ∈ P𝜆, 𝑥 ∈ 𝑋𝑃, 𝑦 ∈ 𝑌𝑃, 𝜇 ∈ {0, 1}
such that 𝑃(𝑥, 𝑦) = 1, it holds that

Pr

(mpk,msk) $← Setup(1𝜆, 𝑃)

sk $← KeyGen(msk, 𝑦)

ct $← Enc(mpk, 𝑥, 𝜇)

: Dec(mpk, sk, 𝑦, ct, 𝑥) = 𝜇

 = 1.

There are two major variants of ABE, key-policy (KP) and ciphertext-policy (CP). In KP-
ABE, each 𝑦 ∈ 𝑌𝑃 describes a function from 𝑋𝑃 to {0, 1}, each 𝑥 ∈ 𝑋𝑃 is an input (bit-string)
to the functions, and 𝑃(𝑥, 𝑦) evaluates 𝑦 on 𝑥. In CP-ABE, the roles of 𝑋𝑃, 𝑌𝑃 are swapped.
We refer to the function (resp. input) as the policy (resp. attribute). When we want to
emphasize 𝑥 or 𝑦 is a function represented by formula or circuit (resp. bit-string), we
write 𝑓 or 𝐶 (resp. x) instead.

Security. We consider adaptive IND-CPA security of ABE.

Definition 2 (ABE security [LOS+10]). An ABE scheme (Definition 1) is adaptively secure if
Exp0

CPA ≈ Exp
1
CPA, where Exp

𝑏
CPA(1

𝜆) with adversary A proceeds as follows:

• Setup. The challenger launches A(1𝜆) and receives from it a predicate 𝑃 ∈ P𝜆. The
challenger runs (mpk,msk) $← Setup(1𝜆, 𝑃) and sends mpk to A.

• Query I. The following is repeated for arbitrarily many rounds determined by A:
In each round, A submits some 𝑦𝑗 ∈ 𝑌𝑃 for a secret key. Upon this query, the
challenger runs sk𝑗

$← KeyGen(msk, 𝑦𝑗) and sends sk𝑗 to A.

• Challenge. A submits some 𝑥∗ ∈ 𝑋𝑃 for the challenge ciphertext. The challenger
runs ct $← Enc(mpk, 𝑥∗, 𝑏) and sends ct to A.

• Query II. Same as Query I.

• Guess. A outputs a bit 𝑏′. The outcome of the experiment is 𝑏′ if 𝑃(𝑥∗, 𝑦𝑗) = 0 for
all 𝑦𝑗 queried in Query I/II. Otherwise, the outcome is set to 0.

Furthermore, an ABE scheme is selectively secure if the same condition above holds
except that A must choose the challenge 𝑥∗ before it receives mpk. An ABE scheme is
very selectively secure if the same condition above holds except that Amust choose both
the challenge 𝑥∗ and all the key queries {𝑦𝑗} before it receives mpk.

14 / 57

Computation Model. In this paper, we construct schemes for both variants: KP-ABE and
CP-ABE. Our KP scheme supports bounded-depth circuits for any polynomial bound, and
our CP schemes support all polynomial-sized permutation branching programs of width
five (5-permutation branching programs, or 5-PBP), which are known to be equivalent to
NC1 [Bar86]. The definition of 5-PBP is standard in the literature, for which we refer the
readers to [GV15].

Definition 3 (KP-ABE for circuits). A KP-ABE for (bounded-depth) circuits is ABE for PCkt:2

𝑋Ckt
𝜆,ℓ ,𝑑 = {0, 1}ℓ , 𝑌Ckt

𝜆,ℓ ,𝑑 =
{
Boolean circuit 𝐶 : {0, 1}ℓ → {0, 1} of depth 𝑑

}
,

𝑃Ckt𝜆,ℓ ,𝑑(x, 𝐶) = ¬𝐶(x), PCkt
𝜆 =

{
𝑃Ckt𝜆,ℓ ,𝑑

��ℓ , 𝑑 ∈ ℕ, 𝑑 ≤ 𝐷𝜆

}
, PCkt =

{
PCkt
𝜆

}
𝜆∈ℕ.

Here, 𝐷𝜆 is a super-polynomial function (specified by the constructions). As an input to
Setup, the predicate 𝑃Ckt

𝜆,ℓ ,𝑑
is represented by (1ℓ , 1𝑑).

Definition 4 (CP-ABE for 5-PBP). A CP-ABE for 5-PBP is ABE for P5PBP:

𝑋5PBP
𝜆,ℓ =

{
5-PBP 𝑓 : {0, 1}ℓ → {0, 1} of length ≤ 𝑠𝜆

}
, 𝑌5PBP

𝜆,ℓ = {0, 1}ℓ ,
𝑃5PBP𝜆,ℓ (𝑓 , x) = ¬𝑓 (x), P5PBP

𝜆 =
{
𝑃5PBP𝜆,ℓ

�� ℓ ∈ ℕ }
, P5PBP =

{
P5PBP
𝜆

}
𝜆∈ℕ.

Here, 𝑠𝜆 is a super-polynomial function (specified by the constructions). As an input to
Setup, the predicate 𝑃5PBP

𝜆,ℓ
is represented by 1ℓ .

It is worth noting that for KP-ABE, since Setup takes the unary representation of ℓ , 𝑑,
which will be polynomial in 𝜆, as input, they are bounded by that polynomial once
the system is set up. However, 𝑑 can be up to 𝐷𝜆, which is super-polynomial in 𝜆,
so one can set up the system for any polynomial depth, i.e., our KP-ABE for circuits
supports bounded-depth circuits for arbitrary polynomial depth bound. In contrast, for
CP-ABE, each 𝑋5PBP

𝜆,ℓ
contains all 5-PBP of size up to 𝑠𝜆, again super-polynomial in 𝜆, so

the branching program size is not bounded by any polynomial even after the system has
been set up, i.e., our CP-ABE for 5-PBP supports unbounded polynomial-size 5-PBP.

Compactness and Succinctness. Since KeyGen, Enc run in polynomial time, the lengths
of key and ciphertext could grow polynomially in |𝑦|, |𝑥|, respectively. Moreover, the
input length is an argument passed into Setup, so both keys and ciphertexts could have
polynomial size dependency on it. We are interested in ABE schemes with short keys
and ciphertexts:

Definition 5 (ABE efficiency). For KP-ABE for circuits (of depth at most 𝑑), it has

• succinct keys if |sk| = poly(𝜆, 𝑑) is independent of |𝐶 |, |x|;

• compact ciphertexts if |ct| = |x| poly(𝜆, 𝑑) is independent of |𝐶 |.

For CP-ABE for 5-PBP, it has

• compact keys if |sk| = |x| poly(𝜆) is independent of | 𝑓 |;

• succinct keys if |sk| = poly(𝜆) is independent of | 𝑓 |, |x|;
2When working with lattices, it is more convenient to indicate authorization of decryption by zero, thus

the negation of 𝐶(x).

15 / 57

• succinct ciphertexts if |ct| = |x| poly(𝜆) is independent of | 𝑓 |.

The CP-ABE is doubly succinct if it has succinct keys and ciphertexts.

We remark that an ideally succinct component should be of length poly(𝜆). Nevertheless,
our versions defined above are still meaningful. For KP-ABE, the circuit size can be much
larger than its depth. For CP-ABE, the branching program size can be much larger than
its input length.

3.2 Lattice Tools

Homomorphic Evaluation. We use the following abstraction of homomorphic evaluation
for ABE over lattices, developed in a series of works [GSW13,BGG+14,GV15] with the
syntax in [BV15,BTVW17]. The actual algorithms we use are that for ABE for circuits
in [BGG+14] (slightly changed), and that for ABE for 5-PBP in [GV15]. The former handles
general polynomial-size circuits, but the noise grows exponentially in the circuit depth.
The latter is specialized for 5-PBP, and the noise grows polynomially in the branching
program size.

In our version of the algorithms from [BGG+14], instead of using G as the gadget
matrix, we consider QG for any invertible Q. Note that G−1(Q−1 × ·) is a right inverse
of QG with binary output. We replace any invocation of G−1(·) in the original algorithms
by G−1(Q−1 × ·) to obtain the following:

Lemma 2 (homomorphic evaluation for circuits, adapted from [BGG+14]). EvalC and
EvalCX are two efficient deterministic algorithms. Let 𝑛, ℓ , 𝑞 be positive integers, 𝑚 = 𝑛⌈log2 𝑞⌉,
G the gadget matrix, B a matrix over ℤ𝑞 of shape 𝑛 × (ℓ + 1)𝑚, Q an invertible matrix over ℤ𝑞

of shape 𝑛 × 𝑛, x an ℓ -bit string (row vector), and 𝐶 a circuit of depth 𝑑 with input length ℓ .
The algorithms work as follows:

• EvalC(B,Q, 𝐶) outputs H𝐶 ∈ ℤ(ℓ+1)𝑚×𝑚;

• EvalCX(B,Q, 𝐶, x) outputs Ĥ𝐶,x ∈ ℤ(ℓ+1)𝑚×𝑚.

The outputs satisfy

∥HT
𝐶∥∞, ∥Ĥ

T

𝐶,x∥∞ ≤ (𝑚 + 1)𝑑,
(
B − (1, x) ⊗ QG

)
Ĥ𝐶,x = BH𝐶 − 𝐶(x)QG.

Lemma 3 (homomorphic evaluation for 5-PBP [GV15]). EvalF and EvalFX are two efficient
deterministic algorithms. Let 𝑛, ℓ , 𝑞 be positive integers, 𝑚 = 𝑛⌈log2 𝑞⌉, G the gadget matrix,
B a matrix over ℤ𝑞 of shape 𝑛 × (ℓ + 1)𝑚, x an ℓ -bit string (row vector), and 𝑓 a 5-PBP of
length ℓBP with input length ℓ . The algorithms work as follows:

• EvalF(B, 𝑓) outputs H𝑓 ∈ ℤ(ℓ+1)𝑚×𝑚;

• EvalFX(B, 𝑓 , x) outputs Ĥ𝑓 ,x ∈ ℤ(ℓ+1)𝑚×𝑚.

The outputs satisfy

∥HT
𝑓 ∥∞, ∥Ĥ

T

𝑓 ,x∥∞ ≤ 3𝑚ℓBP + 1,
(
B − (1, x) ⊗ G

)
Ĥ𝑓 ,x = BH𝑓 − 𝑓 (x)G.

Gadget Matrix [MP12]. Let 𝑛, 𝑞 be positive integers and 𝑚 = 𝑛⌈log2 𝑞⌉. The gadget matrix
is G = gT ⊗ I𝑛, where gT = (20, 21, . . . , 2 ⌈log2 𝑞⌉−1). There exists an efficiently computable
function G−1 : ℤ𝑛

𝑞 → {0, 1}𝑚 such that G · G−1(u) = u for all u ∈ ℤ𝑛
𝑞.

16 / 57

Assumption. We rely on the adaptive learning with errors (LWE) assumption, a natural
variant of LWE first proposed in [QWW18]:

Definition 6 (adaptive LWE, adapted from [QWW18]). We suppress the security param-
eter 𝜆 and all the parameters are dependent on 𝜆. Let 𝑛 be the dimension, 𝑞 the
modulus, 𝜒 the error distribution, 𝑚 = 𝑛⌈log2 𝑞⌉, and G the gadget matrix. The adaptive
LWE assumption ALWE𝑛,𝑞,𝜒 states that Exp0

ALWE ≈ Exp
1
ALWE, where Exp

𝑏
ALWE(1

𝑛, 𝑞, 𝜒) with
adversary A proceeds as follows:

• Setup. The challenger launches A and receives (1ℓ , 1𝑚′) from it. The challenger
then samples A $← ℤ𝑛×𝑚′

𝑞 , B $← ℤ
𝑛×(ℓ+1)𝑚
𝑞 , and sends A,B to A.

• Challenge. A submits x ∈ {0, 1}ℓ . Depending on 𝑏,

if 𝑏 = 0: s $← ℤ𝑛
𝑞, e

$← 𝜒𝑚′, f $← 𝜒 (ℓ+1)𝑚,

cT = sTA + eT, dT = sT
(
B − (1, x) ⊗ G

)
+ f T;

if 𝑏 = 1: cT $← ℤ𝑚′
𝑞 , dT $← ℤ

(ℓ+1)𝑚
𝑞 .

The challenger sends c,d to A.

• Guess. A outputs a bit, the outcome of the experiment.

For our KP-ABE, we need a small-secret variant of the adaptive LWE assumption,
which we show is implied by the adaptive LWE assumption:

Definition 7 (small-secret adaptive LWE). Using the notations in adaptive LWE (Defini-
tion 6), the small-secret adaptive LWE assumption sALWE𝑛,𝑞,𝜒 states that Exp0

sALWE ≈ Exp
1
sALWE,

where Exp𝑏sALWE(1
𝑛, 𝑞, 𝜒) with adversary A proceeds as follows:

• Setup. The challenger launches A and receives (1ℓ , 1𝑚′) from it. The challenger
samples A $← ℤ𝑛×𝑚′

𝑞 , B $← ℤ
𝑛×(ℓ+1)𝑚
𝑞 , and a uniformly random invertible Q ∈ ℤ𝑛×𝑛

𝑞 . It
sends A,B,Q to A.

• Challenge. A submits x ∈ {0, 1}ℓ . Depending on 𝑏,

if 𝑏 = 0: s $← 𝜒𝑛 , e $← 𝜒𝑚′, f $← 𝜒 (ℓ+1)𝑚,

cT = sTA + eT, dT = sT
(
B − (1, x) ⊗ QG

)
+ f T;

if 𝑏 = 1: cT $← ℤ𝑚′
𝑞 , dT $← ℤ

(ℓ+1)𝑚
𝑞 .

The challenger sends c,d to A.

• Guess. A outputs a bit, which is the outcome of the experiment.

Lemma 4 (small-secret adaptive LWE). The small-secret adaptive LWE assumption sALWE𝑛,𝑞,𝜒

holds if the adaptive LWE assumption ALWE𝑛,𝑞,𝜒 holds and 𝜒 is symmetric (i.e., −𝜒 ≡ 𝜒).

Proof (Lemma 4). We follow the ideas in [ACPS09] to transform LWE samples into small-
secret LWE samples. Suppose for contradiction that there exists an efficient distinguisher
A for the small secret adaptive LWE experiments Exp0

sALWE and Exp
1
sALWE. We construct

an efficient distinguisher B for the adaptive LWE experiments Exp0
ALWE and ExpALWE as

follows:

17 / 57

1. B launches A with fresh randomness 𝑟A. It receives from A two lengths ℓ , 𝑚′ in
unary, and forwards 1ℓ , 1𝑛2+𝑚′ to the adaptive LWE experiment.

2. B receives back A,B which have shapes 𝑛×(𝑛2+𝑚′) and 𝑛×(ℓ +1)𝑚. It goes through
the first 𝑛2 columns of A, to accumulate 𝑛 columns that form an invertible matrix.
If B fails, then abort. Otherwise, it sets Q−1 to be this invertible matrix, and A′ to
be the last 𝑚′ columns of A. It sends (QA′,QB,Q) to A.

3. B receives an input x ∈ {0, 1}ℓ from A, and forwards x to the adaptive LWE experi-
ment.

4. B receives back two vectors c,d. It defines q to be the entries of c corresponding
to the columns that form Q−1, and c′ to be the last 𝑚′ entries of c. It then sets

c̃ T
= qTQA′ − c′T,

d̃
T
= qTQB − (1, x) ⊗ qTQG − dT,

and sends c̃, d̃ to A.

5. B receives a bit from A, and outputs the same bit.

By construction B is efficient, and if B doesn’t abort in step 2, then B emulates Exp1
sALWE

for A in Exp1
ALWE. It remains to show that B doesn’t abort in step 2 and that B emulates

Exp0
sALWE in Exp

0
ALWE.

□

Parameter Settings. We rely on the hardness of adaptive LWE with subexponential
modulus-to-noise ratio. For some 0 < 𝛿 < 1

2 , the adaptive LWE assumption is assumed
to be hard when the dimension is 𝑛 = poly(𝜆), the prime modulus is 𝑞 = O(2𝑛𝛿), and
the error distribution 𝜒 is the discrete Gaussian over ℤ of width 𝐵/𝜆 truncated within
[−𝐵..𝐵] for 𝐵 = poly(𝜆).3 Hereafter we default to these parameters.

3.3 Pairing Groups and Generic Asymmetric Pairing Group Model

We construct our ABE using pairing groups and prove its security in the generic pairing
group model.

Pairing Groups. Throughout the paper, we use a sequence of pairing groups

G = {(𝑝𝜆, 𝐺𝜆,1, 𝐺𝜆,2, 𝐺𝜆,T, 𝑔𝜆,1, 𝑔𝜆,2, 𝑔𝜆,T, 𝑒𝜆)}𝜆∈ℕ,

where 𝐺𝜆,1 (resp. 𝐺𝜆,2, 𝐺𝜆,T) is a cyclic group generated by 𝑔𝜆,1 (resp. 𝑔𝜆,2, 𝑔𝜆,T) of
prime order 𝑝𝜆 = 2𝜆Θ(1) and 𝑒𝜆 : 𝐺𝜆,1 × 𝐺𝜆,2 → 𝐺𝜆,T is the pairing operation, satisfying
𝑒𝜆 (𝑔𝑎

𝜆,1, 𝑔
𝑏
𝜆,2) = 𝑔𝑎𝑏

𝜆,T for all integers 𝑎, 𝑏. We require the group operations as well as the
pairing operation to be efficiently computable.

For a fixed security parameter 𝜆, we denote 𝑔𝑥
𝜆,𝑖
by ⟦𝑥⟧𝑖 for 𝑖 ∈ {1, 2,T}. The notation

extends to matrices, ⟦A⟧𝑖 = 𝑔A𝜆,𝑖, where exponentiation is done component-wise. With
these notations, the group operations are written additively and the pairing operation
multiplicatively. For example, ⟦A⟧1 − B⟦C⟧1D = ⟦A − BCD⟧1 and ⟦X⟧2⟦Y⟧1 = ⟦XY⟧T.

3This truncation only introduces an exponentially small statistical error.

18 / 57

Generic Asymmetric Pairing Group. We will prove the security of our ABE scheme
in the generic asymmetric pairing group model (GGM), where the pairing groups can
only be accessed via (non-unique) handles representing group elements and oracles for
operating the handles. There are several different yet equivalent definitions of the model.
We use a minimalist definition simplified from [Ps16], which suffices for security proofs.

Definition 8 (generic asymmetric pairing group [Ps16]). Let 𝑝 = {𝑝𝜆}𝜆∈ℕ be a sequence
of natural numbers. The generic asymmetric pairing group of order 𝑝 consists of four
stateful oracles. The state consists of three lists Vals𝑖 (𝑖 ∈ {1, 2,T}) storing the encoded
values, which are initially singleton lists of 1 (representing the generators). The oracles
are as follows:

• The encoding oracle GrpEnc𝑖 (𝑣), where 𝑖 ∈ {1, 2,T}, takes 𝑣 ∈ ℤ𝑝 as input. It appends
𝑣 to Vals𝑖 and outputs the current length of Vals𝑖 as a handle for 𝑣.

• The zero-test oracle GrpZT(𝛾) takes as input a linear function 𝛾. It evaluates

𝛾
(
{Vals1 [𝑗1]Vals2 [𝑗2]}𝑗1∈[𝐽1], 𝑗2∈[𝐽2] , {ValsT [𝑗T]}𝑗T∈[𝑗T]

)
,

where 𝐽𝑖 is the current length of Vals𝑖 for 𝑖 ∈ {1, 2,T}. The oracle outputs whether
the evaluation yields 0 or not.

The security experiment can call all the four oracles, yet the adversary is only allowed
to call GrpZT.

We remark two major differences between our formulation and that in [Ps16]. First,
instead of random bit-strings, we use sequential indices as the handles, which can be
used to position the coefficients of linear functions passed into GrpZT. Second, for zero-
test queries, the function is linear over all values that can be computed in the target
group, which simplifies the interface.

As noted in [Ps16], the definition does not explicitly allow algebraic operations over
the encodings, yet this is without loss of generality. The security experiment provides
the oracles and maintains their states, so it knows which value is encoded with each
handle, and can operate over the values and call GrpEnc𝑖 on the result. The adversary
can replace all (allowed) algebraic operations by keeping track of the linear function
over the values encoded by the security experiment, and zero-test the appropriate linear
functions.

Brace Notation. For brevity, we write {[𝑣]}𝑖 for a newly created handle encoding the
value 𝑣 in group 𝐺𝑖, so “returning {[3]}2” means calling ℎ ← GrpEnc2(3) and returning
ℎ. This notation naturally extends to matrices, where a handle is created for each entry
in the matrix. Since they represent handles and our definition does not explicitly allow
algebraic operations over the encodings, we do not use operations with brace notations
(unlike bracket notations).

3.4 Inner-Product Functional Encryption

Inner-product functional encryption schemes enable generating keys and ciphertexts
tied to vectors. Decryption reveals the inner product and nothing more about the plain-
text vector. In this work, we consider IPFE schemes based on pairing, where keys and
ciphertexts are encoded in the two source groups and decryption recovers inner products
encoded in the target group.

19 / 57

Definition 9 (group-based IPFE). Let G be a sequence of pairing groups of order {𝑝𝜆}𝜆∈ℕ.
An inner-product functional encryption (IPFE) scheme based on G consists of 4 efficient
algorithms:

• Setup(1𝜆, 1𝑁) takes as input the security parameter 1𝜆 and the vector dimension 1𝑁 .
It outputs a pair of master public/secret keys (impk, imsk).

• KeyGen(imsk, ⟦v⟧2) takes as input the master secret key and a vector (encoded
in 𝐺2), and outputs a secret key isk.

• Enc(impk, ⟦u⟧1) takes as input the master public key and a vector (encoded in 𝐺1),
and outputs a ciphertext ict.

• Dec(isk, ⟦v⟧2, ict) takes a secret key, the vector in the secret key, and a ciphertext
as input, and is supposed to compute the inner product encoded in 𝐺T.

The scheme is required to be correct, meaning that for all 𝜆, 𝑁 ∈ ℕ,u, v ∈ ℤ𝑁
𝑝𝜆
,

Pr

(impk, imsk) $← Setup(1𝜆, 1𝑁)

isk $← KeyGen(imsk, ⟦v⟧2)

ict $← Enc(impk, ⟦u⟧1)

: Dec(isk, ⟦v⟧2, ict) = ⟦uTv⟧T

 = 1.

Definition 10 (key-succinct IPFE). An IPFE scheme (Definition 9) is (key-)succinct if the
length of isk is a fixed polynomial in 𝜆, independent of 𝑁.

Security. Our basic security notion is selective simulation:

Definition 11 (selective simulation [Wee17,LL20]). A simulator for an IPFE scheme (Defi-
nition 9) consists of 3 efficient algorithms:

• �Setup(1𝜆, 1𝑁) takes the same input as Setup, and outputs simulated keys (�impk,�imsk).
• �KeyGen(�imsk, ⟦v⟧2, ⟦𝑧𝑖⟧2) takes as input the simulated master secret key, a vector
encoded in 𝐺2, and an inner product encoded in 𝐺2. It outputs a simulated key ĩsk.

• Ẽnc(�imsk) takes as input the simulated master secret key. It outputs a simulated
ciphertext ĩct.

The IPFE scheme is selectively simulation-secure if there exists a simulator such that
Expreal ≈ Expsim, where Expreal(1𝜆) or Expsim(1𝜆) with A proceeds as follows:

• Challenge. The challenger launches A(1𝜆) and receives from it the vector dimen-
sion 1𝑁 and the challenge vector u ∈ ℤ𝑁

𝑝 .

• Setup. The challenger runs

in Expreal: (impk, imsk) $← Setup(1𝜆, 1𝑁), ict $← Enc(impk, ⟦u⟧1);

in Expsim: (impk,�imsk) $←�Setup(1𝜆, 1𝑁), ict $← Ẽnc(�imsk);
and sends impk, ict to A.

20 / 57

• Query. The following is repeated for arbitrarily many rounds determined by A: In
each round, A submits a vector ⟦v𝑗⟧2 encoded in 𝐺2. Upon receiving the query,
the challenger runs

in Expreal: isk𝑗
$← KeyGen(imsk, ⟦v𝑗⟧2);

in Expsim: isk𝑗
$← �KeyGen(�imsk, ⟦v𝑗⟧2,uT⟦v𝑗⟧2);

and sends isk𝑗 to A.

• Guess. A outputs a bit 𝑏, which is the output of the experiment.

Lemma 5 ([ALS16,Wee17]). Assuming the MDDH assumption (true in GGM), there exists a
succinct selectively simulation-secure IPFE scheme. Its components have sizes

|impk| = 𝑘(𝑘 + 1 + 𝑁) |𝐺1 |, |imsk| = (𝑘 + 1)𝑁 log2 𝑝,

|isk| = (𝑘 + 1) |𝐺2 |, |ict| = (𝑘 + 1 + 𝑁) |𝐺1 |,

where 𝑝 is the modulus, 𝑘 is the MDDH parameter (can be 1 in GGM), 𝑁 is the dimension,
and |𝐺𝑖 | is the bit-length of an element in 𝐺𝑖.

4 Computational Secret Sharing with Adaptive Security

Secret sharing schemes have been used extensively to construct ABE schemes. The
seminal work of [GPSW06] and a long line of follow-up works ([LOS+10,OT10,LW12,Att16,
KW19] to name a few) used linear secret sharing schemes to construct ABE schemes in
pairing groups. Its security notion is information-theoretic. The share size of such a
scheme is equal to the smallest monotone span program [KW93] computing the policy.
It is also known that functions computed by polynomial-sized span programs are in
NC [Bei96,Ber84,BDHM92,KW93,Mul87].

The works of [AY20,AWY20] introduced the notion of nearly linear secret sharing
with computational security. The relaxations enabled greater expressiveness and better
efficiency. Assuming LWE, such a scheme exists for all polynomial-sized circuits [BGG+14,
GV15,AY20,AWY20] and the shares are succinct, i.e., they only grow with the circuit depth,
but not the circuit size. However, the scheme is only selectively secure. Furthermore,
due to technical reasons, when combined with pairing to obtain ABE, it only applies to
Boolean formulae (equivalent to 5-PBP).

This work follows the blueprint of [AY20,AWY20] for the notions of secret sharing
schemes, but departs from them in three important aspects. First, we consider a dif-
ferent security notion, adaptive non-annihilability, which is incomparable4 to selective
pseudorandomness considered in [AY20,AWY20] and enables us to prove adaptive secu-
rity of ABE. Second, we further relax the linearity requirement so that it could apply to
KP-ABE for polynomial-sized circuits. Third, we refine the syntax to separate encodings
of input and function. This separation helps proving adaptive security for our CP-ABE
scheme, in which we need to simulate input encodings before the function is known.
Our secret sharing schemes for both variants achieve succinct share sizes.

4It is stronger in that it is adaptive, but weaker in that the shares are not necessarily pseudorandom.

21 / 57

Definition 12 (secret sharing). Let F = {F𝜆,ℓ ,param}𝜆,ℓ ∈ℕ,param be an ensemble of Boolean
function families such that for all 𝜆, ℓ ∈ ℕ and param, every 𝑓 ∈ F𝜆,ℓ ,param is a function
mapping {0, 1}ℓ to {0, 1}. A secret sharing scheme for F consists of 4 efficient algorithms:

• Setup(1𝜆, 1ℓ , param) takes the security parameter 1𝜆, the input length 1ℓ , and addi-
tional parameters param as input. It outputs some public parameter pp.

• ShareX(pp) takes the public parameter pp as input. It outputs 1 + 2ℓ shares, 𝐿0, {𝐿𝑏
𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] ,

and some shared randomness 𝑟. For 𝑥 ∈ {0, 1}ℓ , we denote by 𝐿x the set of shares
𝐿0, {𝐿x[𝑖]𝑖

}𝑖∈[ℓ].

• ShareF(pp, 𝑓 , 𝜇, 𝑟) takes the public parameter pp, a Boolean function 𝑓 ∈ F𝜆,ℓ ,param,
a secret 𝜇 ∈ {0, 1}, and the shared randomness 𝑟 (output by ShareX) as input. It
outputs a share 𝐿𝑓 .

• Recon(pp, 𝑓 , x, 𝐿𝑓 , 𝐿
x) takes the public parameter pp, the Boolean function 𝑓 ∈ F𝜆,ℓ ,param,

the input x ∈ {0, 1}ℓ to 𝑓 , and the shares 𝐿𝑓 , 𝐿
x as input. It is supposed to recover

the secret 𝜇 if 𝑓 (x) = 0.5

The scheme is required to be correct, i.e., for all 𝜆, ℓ ∈ ℕ, param, x ∈ {0, 1}ℓ , 𝑓 ∈ F𝜆,ℓ ,param,
𝜇 ∈ {0, 1} such that 𝑓 (x) = 0, it holds that

Pr

pp $← Setup(1𝜆, 1ℓ , param)

(𝐿0, {𝐿𝑏
𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , 𝑟) $← ShareX(pp)

𝐿𝑓
$← ShareF(pp, 𝑓 , 𝜇, 𝑟)

: Recon(pp, 𝑓 , x, 𝐿𝑓 , 𝐿
x) = 𝜇

 = 1.

Definition 13 (succinct shares). A secret sharing scheme is succinct if the size of each
share output by ShareX, ShareF is a fixed polynomial in 𝜆, independent of the length
of x or the description size of 𝑓 , i.e., |𝐿𝑓 |, |𝐿0 |, |𝐿𝑏

𝑖
| are all poly(𝜆, |param|), where 𝑖 ∈ [ℓ],

𝑏 ∈ {0, 1}.6

While correctness (Definition 12) and succinctness (Definition 13) are defined similarly
to that of [AWY20], our linearity and security notions are different. Furthermore, our
secret sharing schemes for KP-ABE and CP-ABE require slightly different linearity and
security properties, so we introduce these definitions separately with their respective
constructions.

4.1 Secret Sharing for Bounded-Depth Circuits from (Adaptive) LWE

In our KP-ABE construction, we need a secret sharing scheme with two linearity proper-
ties. The first is a relaxation of the nearly linear reconstruction requirement in [AWY20].
requirement on reconstruction. Our relaxed version (Definition 14) only stipulates it to
be linear in L𝑓 (and possibly non-linear in 𝐿x).

Definition 14 (weakly nearly linear reconstruction). A secret sharing scheme (Defini-
tion 12) is weakly nearly linear if it satisfies the following requirements:

• Let {𝑝𝜆}𝜆∈ℕ be a sequence of prime numbers. L𝑓 = 𝐿𝑓 is a vector over ℤ𝑝𝜆 .
5We use 𝑓 (x) = 0 to express authorization.
6There are 2|x| + 2 shares, so the total share size is linear in the length of x.

22 / 57

• There is an efficient coefficient-finding algorithm FindCoef(pp, 𝑓 , x, 𝐿x), taking as
input the public parameter pp, a Boolean function 𝑓 ∈ F𝜆,ℓ ,param, an input x ∈ {0, 1}ℓ
to 𝑓 , and the shares 𝐿x. It outputs an affine function 𝛾 and a noise bound 1𝐵. For all
𝜆, ℓ ∈ ℕ, param, x ∈ {0, 1}ℓ , 𝑓 ∈ F𝜆,ℓ ,param, 𝜇 ∈ {0, 1} such that 𝑓 (x) = 0, it holds that

Pr

pp $← Setup(1𝜆, 1ℓ , param)

(𝐿0, {𝐿𝑏
𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , 𝑟) $← ShareX(pp)

L𝑓 ← ShareF(pp, 𝑓 , 𝜇, 𝑟)

(𝛾, 1𝐵) $← FindCoef(pp, 𝑓 , x, 𝐿x)

:
4𝐵 + 1 < 𝑝𝜆 and
∃𝑒 ∈ [−𝐵..𝐵]s.t.
𝛾(L𝑓) = 𝜇⌊𝑝/2⌉ + 𝑒

= 1.

The second is an additional linearity requirement on ShareF.

Definition 15 (linear function sharing). Let {𝑝𝜆}𝜆∈ℕ be a sequence of prime numbers. A
secret sharing scheme (Definition 12) has linear function sharing if r = 𝑟 is a vector over
ℤ𝑝𝜆 and ShareF(pp, 𝑓 , 𝜇, r) is deterministic and linear in (𝜇, r).

A (weakly) nearly linear scheme is by definition correct. Given FindCoef, we let Recon
call FindCoef to obtain 𝛾, 𝐵 and output the unique 𝜇 ∈ {0, 1} satisfying 𝛾(L𝑓) − 𝜇⌊𝑝/2⌋ ∈
[−𝐵..𝐵]. The constructed Recon is efficient and correct. Since Recon is implied by FindCoef,
we will only specify FindCoef and omit Recon when constructing (weakly) nearly linear
secret sharing schemes.

Security. We consider a different security notion from [AWY20], called non-annihilability.
Unlike [AWY20], which fixes the choice of policy 𝑓 before Setup is run, we allow the adver-
sary to adaptively choose 𝑓 after seeing the public parameters pp and the input shares
𝐿x. Another difference is that instead of requiring all shares (𝐿𝑓 , 𝐿

x) to look random, we
only require that efficient adversaries cannot find a non-trivial affine function (poten-
tially dependent on 𝐿x) that evaluates to zero on L𝑓 . This notion suffices for the security
proofs of our KP-ABE scheme.

Definition 16 (non-annihilability for L𝑓). Let {𝑝𝜆}𝜆∈ℕ be a sequence of prime numbers.
A secret sharing scheme (Definition 12) is adaptively non-annihilable for L𝑓 if the output
L𝑓 of ShareF is a vector over ℤ𝑝𝜆 and all efficient adversary wins ExpANN-f with negligible
probability, where in ExpAANN-f(1

𝜆), the adversary A interacts with the challenger as
follows:

• Setup. The challenger launches A(1𝜆) and receives from it the input length 1ℓ and
the additional parameter param. The challenger sets up the system by running
pp $← Setup(1𝜆, 1ℓ , param), and sends pp to A.

• Share. A first submits an input x ∈ {0, 1}ℓ . Upon receiving it, the challenger creates
the input shares by running

(
𝐿0, {𝐿𝑏

𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , 𝑟

) $← ShareX(pp) and sends 𝐿x to A.

• Challenge. A outputs a Boolean function 𝑓 ∈ F𝜆,ℓ , a message bit 𝜇 ∈ {0, 1}, and
an affine function 𝛾. Upon receiving them, the challenger runs L𝑓

$← ShareF(pp, 𝑓 , 𝜇, 𝑟)
and determines the outcome of the experiment. A wins if i) 𝑓 (x) = 1; ii) 𝛾 is not
the zero function; and iii) 𝛾(L𝑓) = 0. Otherwise, A loses.

23 / 57

Furthermore, a secret sharing scheme is selectively non-annihilable if it satisfies the above
conditions, with the change that the adversary must choose the input x before receiving
pp.

We now construct a succinct secret sharing scheme, satisfying the above linearity and
adaptive annihilability for bounded-depth circuits from small-secret adaptive LWE. Our
construction is based on the attribute-based laconic function evaluation scheme [BGG+14,
QWW18].

Construction 1 (secret sharing for circuits). All variables 𝑥𝜆 are indexed by 𝜆. For
simplicity of notations, we suppress 𝜆 in subscripts. Let 𝑛 be the LWE dimension,
𝑝 = 2ω(log𝜆) a fixed prime modulus, (the LWE parameters will be chosen during Setup).
We construct a weakly nearly linear and succinct secret sharing scheme, with linear
function sharing, for the family of bounded-depth circuits (see Definition 3):

Ckt𝜆,ℓ ,𝑑 =
{
Boolean circuit 𝐶 : {0, 1}ℓ → {0, 1} of depth at most 𝑑

}
,

where 𝑑 ≤ 𝑝𝛿/4−log2 𝑝

(1+𝛿−1) Θ(1) . Let (EvalC, EvalCX) be the algorithms in Lemma 2. The scheme
works as follows:

• Setup(1𝜆, 1ℓ , 1𝑑) takes the input length ℓ in unary as input. It sets

𝑛 = 𝐵 =
(
(𝑑 + 1) (𝛿−1 + 1) + log2 𝑝 + O(𝑑)

)2/𝛿
, 𝑞 = 2𝑛𝛿 , 𝑚 = 𝑛⌈log2 𝑞⌉,

and picks 𝜒 to be 𝐵-bounded. It next samples and sets

a $← ℤ𝑛
𝑞, A0,A1, . . . ,Aℓ

$← ℤ𝑛×𝑚
𝑞 , B = (A0,A1, . . . ,Aℓ).

It finally samples a random invertiblematrixQ ∈ ℤ𝑛×𝑛
𝑞 , and outputs pp = (𝑛, 𝑞, 𝑚, 𝐵, 𝜒, a,B,Q).

Note: Recall that 𝛿 is a constant depending on the underlying adaptive LWE assump-
tion. The choice of 𝑛, 𝐵, 𝑞 are subject to the requirement of the underlying adap-
tive LWE assumption as well as correctness and efficiency of the scheme. They satisfy
𝑞/𝐵 ≥ (𝑚 + 1)𝑑+1 and 4((𝑛 + 1)𝐵 + 3) + 1 < 𝑝.

• ShareX(pp) takes the public parameter pp as input. It samples and sets

s $← 𝜒𝑛, e0, e1, . . . , eℓ
$← 𝜒𝑚,

L0 = sT(A0 − QG) + eT0, {L𝑏
𝑖
= sT(A𝑖 − 𝑏QG) + eT𝑖 }

𝑏∈{0,1}
𝑖∈[ℓ] ,

and outputs (L0, {L𝑏
𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , s).

• ShareF(pp, 𝑓 , 𝜇, s) takes as input the public parameter pp, some 𝑓 ∈ Ckt𝜆,ℓ ,𝑑, a secret
bit 𝜇 ∈ {0, 1}, and the shared randomness s. It runs H𝑓 ← EvalC(B,Q, 𝑓), and sets

L𝑓 = sT⌊BH𝑓G−1(a)⌉𝑝 + 𝜇⌊𝑝/2⌉, where ⌊𝑥⌉𝑝 = ⌊ 𝑝𝑥
𝑞
⌉

It outputs L𝑓 .

Note: The scheme indeed has linear function sharing (Definition 15) because ShareF is a
deterministic linear function over 𝜇, s with coefficients ⌊𝑝/2⌉, ⌊BH𝑓G−1(a)⌉𝑝. The scheme
is also succinct as L𝑓 contains 1 element in ℤ𝑝, and each share output by ShareX contains
𝑚 elements in ℤ𝑞. Note that 𝑚 is a fixed polynomial in 𝜆, 𝑑 and is independent of the
description size of 𝑓 and the input length ℓ .

24 / 57

• FindCoef(pp, 𝑓 , x, Lx) takes as input the public parameter pp, some x ∈ {0, 1}ℓ , some
𝑓 ∈ Ckt𝜆,ℓ ,𝑑, and the shares Lx. If 𝑓 (x) = 1, it outputs ⊥ and terminates. Otherwise,
it runs Ĥ𝑓 ,x ← EvalCX(B,Q, 𝑓 , x), and defines

𝛾
(
L𝑓
)
= L𝑓 − ⌊LxĤ𝑓 ,xG−1(a)⌉𝑝, 𝐵 = (𝑛 + 1)𝐵 + 3,

The algorithm outputs (𝛾, 1𝐵).

Note: The procedure is indeed efficient since 𝑛, 𝐵 are polynomials in 𝜆, 𝑑. We show that
FindCoef is correct, i.e., if 𝑓 (x) = 0, then 4𝐵 + 1 ≤ 𝑝 and 𝛾(L𝑓) = 𝜇⌊𝑝/2⌉ + 𝑒 for some
𝑒 ∈ [−𝐵, 𝐵]. First, by the choice of 𝑛, 𝐵, we have

4𝐵 + 1 = 4((𝑛 + 1)𝐵 + 3) + 1 ≤ 𝑝.

Next, by construction we have

𝛾(L𝑓) = L𝑓 − ⌊LxĤ𝑓 ,xG−1(a)⌉𝑝
= sT⌊BH𝑓G−1(a)⌉𝑝 + 𝜇⌊𝑝/2⌉︸ ︷︷ ︸

L𝑓

− ⌊
(
sT(B − (1, x) ⊗ QG) + (eT0, eT1, . . . , eTℓ)︸ ︷︷ ︸

Lx

)
Ĥ𝑓 ,xG−1(a)⌉𝑝

(Lemma 2) = sT⌊BH𝑓G−1(a)⌉𝑝 + 𝜇⌊𝑝/2⌉−
− ⌊sT(BH𝑓 − 𝑓 (x)︸︷︷︸

=0

QG)G−1(a) + (eT0, eT1, . . . , eTℓ)Ĥ𝑓 ,xG−1(a)︸ ︷︷ ︸
=𝑒𝑓

⌉𝑝

= sT⌊BH𝑓G−1(a)⌉𝑝 + 𝜇⌊𝑝/2⌉ − ⌊sTBH𝑓G−1(a) + 𝑒𝑓 ⌉𝑝

Since G−1(a) ∈ {0, 1}𝑚, by the definition of EvalCX (Lemma 2), we have

|𝑒𝑓 | ≤ 𝑚 · ∥ĤT

𝑓 ,x∥∞ · ∥ (eT0, eT1, . . . , eTℓ)
T∥∞ ≤ (𝑚 + 1) (𝑑+1)𝐵

Note that we can break a rounded sum into a sum of individually rounded terms, at the
expense of some rounding errors:

⌊sTBH𝑓G−1(a) + 𝑒𝑓 ⌉
= ⌊sTBH𝑓G−1(a)⌉𝑝 + ⌊𝑒𝑓 ⌉𝑝 + 𝜀, where |𝜀 | ≤ 3,
⌊sTBH𝑓G−1(a)⌉𝑝
= sT⌊BH𝑓G−1(a)⌉𝑝 + 𝑒𝑠, where |𝑒𝑠 | ≤ 𝑛 · ∥s∥∞ ≤ 𝑛𝐵.

Finally, we have

𝛾(L𝑓) = 𝜇⌊𝑝/2⌉ + sT⌊BH𝑓G−1(a)⌉𝑝 − ⌊sTBH𝑓G−1(a) + 𝑒𝑓 ⌉𝑝
= 𝜇⌊𝑝/2⌉ + sT⌊BH𝑓G−1(a)⌉𝑝 − ⌊sTBH𝑓G−1(a)⌉𝑝 − ⌊𝑒𝑓 ⌉𝑝 − 𝜀
= 𝜇⌊𝑝/2⌉ −𝑒𝑠 − ⌊𝑒𝑓 ⌉𝑝 − 𝜀︸ ︷︷ ︸

=𝑒

.

By the definition of 𝑒𝑓 , 𝑒𝑠, 𝜀, and the setting of 𝑞, we have

|𝑒| ≤ |𝑒𝑠 | +
��⌊𝑒𝑓 ⌉𝑝�� + |𝜀 | ≤ ⌈

(𝑚 + 1) (𝑑+1)

𝑞/𝑝 𝐵

⌉
+ 𝑛𝐵 + 3 ≤ 𝐵.

25 / 57

We remark that by the choice of parameters, the above construction is a weakly nearly
linear and succinct secret sharing scheme for the family of bounded-depth circuits (see
Definition 3).

Efficiency. In the above construction, the public parameters pp mainly consists of three
matrices a ∈ ℤ𝑛

𝑞,B ∈ ℤ
𝑛×(𝑚ℓ)
𝑞 ,Q ∈ ℤ𝑛×𝑛

𝑞 , where 𝑛 = poly(𝜆, 𝑑), 𝑞 = 2𝑛𝛿 , and 𝑚 = 𝑛⌈log 𝑞⌉ =
poly(𝜆, 𝑑). Therefore, the bit length of pp is |pp| = poly(𝜆, 𝑑) · ℓ . The shares L0 and {L𝑏

𝑖
}

are 2ℓ + 1 vectors in ℤ𝑚
𝑞 . Therefore |L0 | = |L𝑏

𝑖
| = poly(𝜆, 𝑑). Finally, L𝑓 is a single element

in ℤ𝑝, where 𝑝 = 2ω(log𝜆) . Therefore, |L𝑓 | = poly(𝜆).
We next state and prove (in Section 4.2) non-annihilability security for L𝑓 of the

scheme.

Proposition 6. Assuming the small-secret adaptive LWE assumption, Construction 1 is non-
annihilable for L𝑓 . Specifically, for all efficient adversary A that wins the non-annihilability
for L𝑓 game with probability 𝜀A, and for all 𝑘 ∈ ℕ, there exists an efficient B that distinguishes
the small-secret adaptive LWE experiments with probability 𝜀sALWE, such that

𝜀A ≤ (𝜆−𝑘 + 𝜀sALWE + (2𝐵′ + 1)/𝑝), (6)

where 𝐵′ = (𝑛 + 1)𝐵 + 1 is a polynomial.

Remark 1. In Construction 1, if we only assume plain (non-adaptive) LWE (which implies
small-secret LWE [ACPS09]), then the resultant secret sharing scheme is selective non-
annihilable for L𝑓 . The advantage relation in Proposition 6 holds, except 𝜀A is the
advantage in the selective game and 𝜀sALWE is replaced by 𝜀sLWE.

4.2 Proof of Proposition 6

We will need the following lemma in our proof:

Lemma 7 (leakage simulation [CCL18]). Let 𝑠, 𝑡, 𝑡′ ∈ ℕ and 𝜀 > 0. For every distribution
(𝑋, 𝑍) over {0, 1}𝑡 × {0, 1}𝑡′, there exists a simulator ℎ of circuit size Õ(2𝑡′𝑠𝜀−2) such that for
all circuit 𝐷 of size at most 𝑠 with binary output,��Pr[(𝑥, 𝑧) $← (𝑋, 𝑍) : 𝐷(𝑥, 𝑧) = 1] − Pr[(𝑥, 𝑧) $← (𝑋, 𝑍) : 𝐷(𝑥, ℎ(𝑥)) = 1]

�� ≤ 𝜀.

Proof (Proposition 6). Fix an an efficient adversary A and constant 𝑘 ∈ ℕ, we construct
an adversary B that distinguishes the small-secret adaptive LWE experiments. We bound
the advantage 𝜀A of A in the non-annihilability game as in (6) from the proposition
statement.

Recall that in the security game, the adversary first sees the public parameter, and
chooses some x. The adversary next sees 𝐿x, and chooses 𝑓 , 𝜇 such that 𝑓 (x) = 1. It
finally, without seeing anything else, outputs some non-zero affine function 𝛾. We denote
components in the non-annihilability experiment by the following:

𝑋0 = 𝑟A, 𝑋1 = pp = (a,B,Q), 𝑋2 =
(
L0, Lx[1]1 , . . . , Lx[ℓ]

ℓ

)
, 𝑋3 = sTQa + 𝑒,

𝑋 = (𝑋0, 𝑋1, 𝑋2, 𝑋3), 𝑍 = −(⌊𝑒𝑓 ⌉𝑝 + 𝑒𝑠 + 𝜀1 + 𝜀2),
𝐵′ = (𝑛 + 1)𝐵 + 5.

26 / 57

Here, 𝑟A is the randomness used by A, 𝑒 is an LWE noise sampled as 𝑒 ← 𝜒, 𝑒𝑓 is
a shorthand defined as 𝑒𝑓 = (eT0, eT1, . . . , eTℓ)Ĥ𝑓 ,xG−1(a), and 𝜀1, 𝜀2, 𝑒𝑠 are rounding errors
defined as follows:

⌊sTBH𝑓G−1(a) − sTQa + 𝑒𝑓 ⌉𝑝
= ⌊sTBH𝑓G−1(a)⌉𝑝 − ⌊sTQa⌉𝑝 + ⌊𝑒𝑓 ⌉𝑝 + 𝜀1, where |𝜀1 | ≤ 4
⌊sTQa + 𝑒⌉𝑝 = ⌊sTQa⌉𝑝 + ⌊𝑒⌉𝑝︸︷︷︸

=0

+𝜀2, where |𝜀2 | ≤ 1

⌊sTBH𝑓G−1(a)⌉𝑝 = sT⌊BH𝑓G−1(a)⌉𝑝 + 𝑒𝑠, where |𝑒𝑠 | ≤ 𝑛 · ∥s∥∞ ≤ 𝑛𝐵.

We consider four hybrids, and let 𝐴𝑖 denote the probabilities that A wins in H𝑖 for 𝑖 ∈ [4].

• H1 is the non-annihilability experiment.

• H2 proceeds identically to H1, except for two differences. First, if 𝑍 > 𝐵′, we
immediately claim A to have lost. Second, we equivalently compute L𝑓 as

L𝑓 = ⌊𝑋2Ĥ𝑓 ,xG−1(a)⌉𝑝 + ⌊𝑋3⌉𝑝 + 𝑍 + 𝜇⌊𝑝/2⌉.

By the following claim, we have 𝐴1 = 𝐴2.

Claim 8. |𝑍 | ≤ 𝐵′ always holds in H1, and H1 is identical to H2.

• H3 proceeds identically to H2, except that we simulate 𝑍 by ℎ(𝑋), where ℎ is an
efficient algorithm guaranteed by the leakage simulation lemma.

Claim 9. There exists some efficient algorithm ℎ such that |𝐴2 − 𝐴3 | ≤ 𝜆−𝑘 when ℎ is
used in H3.

• H4 proceeds identically to H3, except that we replace 𝑋2, 𝑋3 by random. By the fact
that they are LWE samples, we can construct from A an adversary B against the
small-secret adaptive LWE assumption.

Claim 10. There exists an efficient B that distinguishes the small-secret adaptive LWE
experiments with advantage 𝜀sALWE such that |𝐴3 − 𝐴4 | ≤ 𝜀sALWE.

Next, using Schwartz–Zippel lemma (of degree-1) we show that |𝐴4 | is negligible.

Claim 11. In H4, the adversary A wins with negligible probability. Specifically, |𝐴4 | ≤
2𝐵′+1

𝑝
.

By a hybrid argument, we conclude that 𝜀A = 𝐴1 is bounded as in Equation (6) from the
proposition statement. □

We now prove the claims.

Proof (Claim 8). First, we show that |𝑍 | ≤ 𝐵A always holds. By the definition of 𝑒𝑓 , 𝑒𝑠, 𝜀1, 𝜀2,
and the setting of 𝑞, we have

|𝑍 | ≤
��⌊𝑒𝑓 ⌉𝑝�� + |𝑒𝑠 | + |𝜀1 | + |𝜀2 | ≤

⌈
(𝑚 + 1) (𝑑+1)

𝑞/𝑝 𝐵

⌉
+ 𝑛𝐵 + 5 ≤ 𝐵A.

27 / 57

Second, we show that L𝑓 (in H1) is indeed equal to ⌊𝑋2Ĥ𝑓 xG−1(a)⌉𝑝 + ⌊𝑋3⌉𝑝 + 𝑍 + 𝜇⌊𝑝/2⌉
(in H2). Expanding the term ⌊𝑋2Ĥ𝑓 xG−1(a)⌉𝑝, we have

⌊𝑋2Ĥ𝑓 ,xG−1(a)⌉𝑝 = ⌊LxĤ𝑓 ,xG−1(a)⌉𝑝
= ⌊

(
sT(B + (1, x) ⊗ QG) + (eT0, eT1, . . . , eTℓ)︸ ︷︷ ︸

Lx

)
Ĥ𝑓 ,xG−1(a)⌉𝑝

(Lemma 2) = ⌊sT(BH𝑓 − 𝑓 (x)︸︷︷︸
=1

QG)G−1(a) + (eT0, eT1, . . . , eTℓ)Ĥ𝑓 ,xG−1(a)︸ ︷︷ ︸
=𝑒𝑓

⌉𝑝

= ⌊sTBH𝑓G−1(a) − sTQa + 𝑒𝑓 ⌉𝑝
(def. of 𝜀1) = ⌊sTBH𝑓G−1(a)⌉𝑝 − ⌊sTQa⌉𝑃 + ⌊𝑒𝑓 ⌉𝑝 + 𝜀1

(def. of 𝜀2) = ⌊sTBH𝑓G−1(a)⌉𝑝 − ⌊sTQa + 𝑒⌉𝑃 + ⌊𝑒𝑓 ⌉𝑝 + 𝜀1 + 𝜀2

(def. of 𝑋3, 𝑍) = ⌊sTBH𝑓G−1(a)⌉𝑝 − ⌊𝑋3⌉𝑃 − 𝑍 − 𝑒𝑠.

Using the above, we get

⌊𝑋2Ĥ𝑓 ,xG−1(a)⌉𝑝 + ⌊𝑋3⌉𝑝 + 𝑍 + 𝜇⌊𝑝/2⌉
= ⌊sTBH𝑓G−1(a)⌉𝑝 − 𝑒𝑠 + 𝜇⌊𝑝/2⌉

(def. of 𝑒𝑠) = sT⌊BH𝑓G−1(a)⌉𝑝 + 𝜇⌊𝑝/2⌉ = L𝑓

This shows that H1 and H2 are identical. □

Proof (Claim 9). We need to show that for some efficient ℎ, replacing 𝑍 by ℎ(𝑋) only
affects the winning probability by at most 𝜀 = 𝜆−𝑘. Let (𝑋, 𝑍) be the components in the
experiment as defined earlier. Note that by Claim 8, we have |𝑍 | ≤ 𝐵′ and we can let 𝑍 be
a bit-string of length ⌈log2(2𝐵′ + 1)⌉. We construct the (deterministic) algorithm B(𝑋, 𝑍)
that (re-)performs the non-annihilability experiment:

1. B checks whether |𝑍 | ≤ 𝐵′. If not, it outputs 0 and terminates.

2. B re-runs the experiment with 𝑋0 = 𝑟A and 𝑋1 = pp = (a,B,Q). It obtains 1ℓ , 1𝑑, 𝑓 , 𝜇,
x as well as the non-zero affine function 𝛾. from A.

3. B checks whether 𝑓 (x) = 1. If this does not hold, it outputs 0 and terminates. It
also checks whether 𝛾 is the zero function. If so, it outputs 0 and terminates.

4. B sets

L𝑓 = ⌊𝑋2Ĥ𝑓 ,xG−1(a)⌉𝑝 + ⌊𝑋3⌉𝑝 + 𝑍 + 𝜇⌊𝑝/2⌉,

and checks whether 𝛾(L𝑓) = 0. It outputs 1 if this holds, and 0 otherwise.

Now let (𝑋, 𝑍) be jointly sampled by running the experiment on A and taking the
corresponding components from the execution, then B(𝑋, 𝑍) outputs whether A won,
and

Pr[B(𝑋, 𝑍) → 1] = Pr[A wins] = 𝜀A = 𝐴1 = 𝐴2.

28 / 57

Since A has polynomial circuit size 𝑠A and the experiment itself can be performed
efficiently, the circuit size of B is also bounded by a polynomial 𝑠B. We apply the
leakage simulation lemma (Lemma 7) to the joint distribution (𝑋, 𝑍) against distin-
guishers of size at most 𝑠B with error 𝜀 = 𝜆−𝑘. This gives us a simulator ℎwith complexity
Õ(2log2 (2𝐵′+1) 𝑠B𝜀−2) = Õ(𝜆𝑘𝐵′𝑠B), which is polynomial in 𝜆.

Note that if we use ℎ in H3, the probability thatA wins in H3 is exactly Pr[B(𝑋, ℎ(𝑋))],
and by the guarantee of leakage simulation lemma,

|𝐴2 − 𝐴3 | =
��Pr[B(𝑋, 𝑍) → 1] − Pr[B(𝑋, ℎ(𝑋)) → 1]

�� ≤ 𝜆−𝑘.

This finishes the proof of the claim. □

Proof (Claim 10). Recall that in both H3 and H4, the adversary A first chooses the input
length ℓ and a polynomial upperbound 𝑑 on circuit depths, and receives the public
parameter pp = (a,B,Q) (LWE public matrices). A next chooses x, and receives 𝑋2 = Lx.
The adversary A finally chooses 𝑓 , 𝜇,𝛾. The experiments test for the winning condition,
where 𝛾 is evaluated on different distributions in H3 and H4.

We construct a small-secret adaptive LWE distinguisher B (with advantage 𝜀sALWE) as
follows:

1. B launches A(1𝜆) with fresh randomness 𝑟A. It receives from A the input length
1ℓ and circuit depth upperbound 1𝑑.

2. B sets 𝑞 = 2𝑛𝛿 as described in Setup, and then sends (1ℓ , 11) (i.e., 𝑚′ = 1) to the
small-secret adaptive LWE experiment with modulus 𝑞. It receives back A,B,Q,
which have shapes 𝑛 × 1, 𝑛 × (ℓ + 1)𝑚 and 𝑛 × 𝑛. The distinguisher B sets a = A and
sends pp = (a,B,Q) to A.

3. B waits forA to submit an attribute x ∈ {0, 1}ℓ . Upon receiving x, it forwards x to the
small-secret adaptive LWE experiment, and receives back c ∈ ℤ1

𝑝 and d ∈ ℤ
(ℓ+1)𝑚
𝑝 .

It parses, sets and computes

𝑋0 = 𝑟A, 𝑋1 = pp, 𝑋2 = (L0, Lx[1]1 , . . . , Lx[ℓ]
ℓ
) ← dT, 𝑋3 = c,

and sends 𝐿x to A.

4. B waits for A to submit a policy 𝑓 ∈ Ckt𝜆,ℓ ,𝑑, a bit 𝜇 ∈ {0, 1}, and an affine function
𝛾.

5. If 𝑓 (x) ≠ 0 or 𝛾 is the zero function, the distinguisher B aborts by outputting 0.

6. Otherwise, it computes and sets

𝑍
$← ℎ(𝑋), Ĥ𝑓 ,x ← EvalCX(B,Q, 𝑓 , x),

L𝑓 ← ⌊𝑋2Ĥ𝑓 ,xG−1(a)⌉𝑝 + ⌊𝑋3⌉𝑝 + 𝑍 + 𝜇⌊𝑝/2⌋.

If |𝑍 | > 𝐵A, the distinguisher B outputs 0 and terminates.

7. Otherwise, it proceeds to evaluate 𝛾
(
L𝑓
)
. It outputs 1 if the result is zero, and 0

otherwise.

29 / 57

Clearly B is efficient. In Exp0
ALWE, the distinguisher B emulates H3 for A and outputs

whether A won. In Exp1
ALWE, it does so for H4. Therefore,

|𝐴3 − 𝐴4 | =
��Pr[B → 1 in Exp0

ALWE] − Pr[B → 1 in Exp1
ALWE]

�� ≤ 𝜀sALWE.

□

Proof (Claim 11). In H4, we need to show that the non-zero affine function 𝛾 annihilates
L𝑓 with negligible probability. Recall the components in H4:

𝑋0 = 𝑟A, 𝑋1 = pp, 𝑋2 = (L0, Lx[1]1 , . . . , Lx[ℓ]
ℓ
) = dT, 𝑋3 = c,

𝑍
$← ℎ(𝑋), L𝑓 ← ⌊𝑋2Ĥ𝑓 ,xG−1(a)⌉𝑝 + 𝑍 + ⌊𝑋3⌉𝑝 + 𝜇⌊𝑝/2⌋ = 𝑋 ′3 − 𝑍,

where 𝑋 ′3 collects the boxed terms. Note that by definition, 𝜇 and 𝛾 are determined by
𝑋0, 𝑋1, 𝑋2. In H4, the values in 𝑋3 are uniformly random and independent of 𝑋0, 𝑋1, 𝑋2
(thus 𝜇,𝛾). This implies that 𝑋 ′3 is also uniformly random and independent of 𝛾, so
L𝑓 = 𝑋 ′3 − 𝑍 is a uniformly random value perturbed by 𝑍 = ℎ(𝑋).

The following probabilities are taken in H4 and are implicitly intersected with the
requirement that 𝑓 (x) = 0, 𝛾 is not the zero function, and |𝑍 | ≤ 𝐵′. We apply union
bound over all possible values in [−𝐵′..𝐵′] to obtain

𝐴4 = Pr
[
𝛾
(
L𝑓
)
= 0

]
= Pr

[
𝛾(𝑋 ′3 − 𝑍) = 0

]
≤ Pr

[
∃𝑧 ∈ [−𝐵′..𝐵′] s.t. 𝛾(𝑋 ′3 − 𝑧) = 0

]
≤

𝐵′∑︁
𝑧=−𝐵′

Pr
[
𝛾(𝑋 ′3 − 𝑧) = 0

]
≤ 2𝐵′ + 1

𝑝
,

where the third inequality follows from Schwartz–Zippel lemma for degree 1. Since 𝐵′ is
polynomial and 𝑝 is super-polynomial, 𝐴4 is negligible. □

4.3 Secret Sharing for Boolean Formulae from Adaptive LWE

In our CP-ABE constructions, we need a secret sharing scheme with the following lin-
earity property, defined similarly to that of [AWY20].

Definition 17 (nearly linear reconstruction). A secret sharing scheme (Definition 12) is
nearly linear if it satisfies the following requirements:

• Let {𝑝𝜆}𝜆∈ℕ be a sequence of prime numbers. L0 = 𝐿0, {L𝑏
𝑖
= 𝐿𝑏

𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , L𝑓 = 𝐿𝑓 are

vectors over ℤ𝑝𝜆 .

• There is an efficient coefficient-finding algorithm FindCoef(pp, 𝑓 , x), taking as input
the public parameter pp, a Boolean function 𝑓 ∈ F𝜆,ℓ , and an input x ∈ {0, 1}ℓ to 𝑓 . It
outputs an affine function 𝛾 and a noise bound 1𝐵. For all 𝜆, ℓ ∈ ℕ, param, x ∈ {0, 1}ℓ ,
𝑓 ∈ F𝜆,ℓ ,param, 𝜇 ∈ {0, 1} such that 𝑓 (x) = 0, it holds that

Pr

pp $← Setup(1𝜆, 1ℓ , param)(
L0, {L𝑏

𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , 𝑟

) $← ShareX(pp)

L𝑓
$← ShareF(pp, 𝑓 , 𝜇, 𝑟)

(𝛾, 1𝐵) $← FindCoef(pp, 𝑓 , x)

:
4𝐵 + 1 < 𝑝𝜆 and
∃𝑒 ∈ [−𝐵..𝐵] s.t.
𝛾(L𝑓 , Lx) = 𝜇⌊𝑝/2⌉ + 𝑒

= 1.

30 / 57

Security. In addition to the non-annihilability for L𝑓 security (Definition 16), our CP-ABE
constructions need a secret sharing scheme with the following property:

Definition 18 (non-annihilability for Lx). Let {𝑝𝜆}𝜆∈ℕ be a sequence of prime numbers.
A secret sharing scheme (Definition 12) is adaptively non-annihilable for Lx if the output
L0, {L𝑏

𝑖
}𝑏
𝑖
of ShareX are vectors over ℤ𝑝𝜆 and all efficient adversary wins ExpANN-x only neg-

ligible probability, where in ExpAANN-x(1
𝜆), the adversary A interacts with the challenger

as follows:

• Setup. The challenger launches A(1𝜆) and receives from it the input length 1ℓ and
the additional parameter param. The challenger sets up the system by running
pp $← Setup(1𝜆, 1ℓ , param), and sends pp to A.

• Challenge. A submits an input x ∈ {0, 1}ℓ and an affine function 𝛾. Upon receiving
them, the challenger runs

(
L0, {L𝑏

𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , 𝑟

) $← ShareX(pp) and determines the out-
come of the experiment. A wins if i) 𝛾 is not the zero function; and ii) 𝛾(Lx) = 0.
Otherwise, A loses.

A secret sharing scheme is selectively non-annihilable for Lx if the above conditions hold
except that A must choose x before receiving pp.

We now construct a succinct secret sharing scheme, satisfying the above linearity and
security definitions, for 5-PBP from adaptive LWE. Our scheme is based on the attribute-
based laconic function evaluation scheme in [QWW18] and we employ the techniques
in [BGG+14,GV15] to control LWE noises.

Construction 2 (secret sharing for branching programs). The construction is described
for a fixed value of 𝜆, and 𝜆 is suppressed for brevity. Let 𝑛 be the LWE dimension, 𝑝 the
LWE prime modulus, 𝑚 = 𝑛⌈log2 𝑝⌉ and 𝜒 the error distribution that is 𝐵-bounded. We
set 𝑛, 𝐵 = 𝜆Θ(1) and 𝑝 = 2ω(log𝜆) . We construct a nearly linear and succinct secret sharing
scheme for the family of length-5 permutation branching programs (see Definition 4):

5PBPℓ = { 5-PBP 𝑓 : {0, 1}ℓ → {0, 1} of length at most 𝑠 },

where 𝑠 = (𝑝 − 4𝑚𝐵 − 4𝐵 − 2)/12𝑚2𝐵 = 2ω(log𝜆) . Let (EvalF, EvalFX) be the algorithms in
Lemma 3. The scheme works as follows:

• Setup(1ℓ) takes the input length as input. It samples and sets

a $← ℤ𝑛
𝑝 , A0,A1, . . . ,Aℓ

$← ℤ𝑛×𝑚
𝑝 , B = (A0,A1, . . . ,Aℓ),

and outputs pp = (a,B).

• ShareX(pp) takes as input the public parameter pp. It samples and sets

s $← ℤ𝑛
𝑝 , e0, e1, . . . , eℓ

$← 𝜒𝑚,

L0 = sT(A0 − G) + eT0, {L𝑏
𝑖
= sT(A𝑖 − 𝑏G) + eT𝑖 }

𝑏∈{0,1}
𝑖∈[ℓ] ,

and outputs (L0, {L𝑏
𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , s).

Note: We remark that an input x could be thought as being prepended with x[0] = 1
(see also Lemma 3), and L0 encodes this bit of input under A0. This extra bit enables
operating with constants in 𝑓 .

31 / 57

• ShareF(pp, 𝑓 , 𝜇, s) takes as input the public parameter pp, some 𝑓 ∈ 5PBPℓ , a secret
bit 𝜇 ∈ {0, 1}, and the shared randomness s. It runs H𝑓 ← EvalF(B, 𝑓), and samples
and sets

𝑒
$← 𝜒, L𝑓 = sTBH𝑓G−1(a) + 𝑒 + 𝜇⌊𝑝/2⌉

where G is the gadget matrix. The algorithm outputs L𝑓 .

Note: The scheme is succinct as L𝑓 contains 1 element in ℤ𝑝, and each share output by
ShareX contains 𝑚 elements in ℤ𝑝. Since, 𝑚 is a fixed polynomial in 𝜆 and is independent
of the description size of 𝑓 and the input length ℓ .

• FindCoef(pp, 𝑓 , x) takes as input the public parameter pp, some x ∈ {0, 1}ℓ , and
some 𝑓 ∈ 5PBPℓ . If 𝑓 (x) = 1, it outputs ⊥ and terminates. Otherwise, it runs
Ĥ𝑓 ,x ← EvalFX(B, 𝑓 , x) and defines

𝛾
(
L𝑓 , Lx

)
= L𝑓 − LxĤ𝑓 ,xG−1(a),

𝐵 = (3𝑚ℓBP + 1)𝑚𝐵 + 𝐵,

where ℓBP is the length of 𝑓 . The algorithm outputs (𝛾, 1𝐵).

Note: The procedure is indeed efficient since 𝐵 is polynomial in 𝜆 and ℓBP (the length
of 𝑓). We show that FindCoef is correct. By the definition of 5PBPℓ , we have ℓBP ≤ 𝑠 and
thus

4𝐵 + 1 ≤ 4
(
(3𝑚𝑠 + 1)𝑚𝐵 + 𝐵

)
+ 1 = 𝑝 − 1 < 𝑝.

By the property of EvalF, EvalFX (Lemma 3) and the definition of L𝑓 and Lx,

L𝑓 − LxĤ𝑓 ,xG−1(a)
= sTBH𝑓G−1(a) + 𝑒 + 𝜇⌊𝑝/2⌉

− sT
(
B − (1, x) ⊗ G

)
Ĥ𝑓 ,xG−1(a) − (eT0, eT1, . . . , eTℓ)Ĥ𝑓 ,xG−1(a)

= sTBH𝑓G−1(a) − sT(BH𝑓 − 𝑓 (x)︸︷︷︸
=0

G)G−1(a) + 𝜇⌊𝑝/2⌉ + 𝑒′ = 𝜇⌈𝑝/2⌉ + 𝑒′,

where 𝑒′ collects the boxed terms. Since G−1(a) ∈ {0, 1}𝑚, we have

|𝑒′ | ≤ |𝑒| + 𝑚 · ∥ĤT

𝑓 ,x∥∞ · ∥ (eT0, eT1, . . . , eTℓ)
T∥∞ ≤ 𝐵 + 𝑚(3𝑚ℓBP + 1)𝐵 = 𝐵,

where ℓBP is the length of 𝑓 .

We remark that by the choice of parameters, the above construction is a nearly linear
and succinct secret sharing scheme for the family of length-5 permutation branching
programs (Definition 4).

Efficiency. In the above construction, the public parameters pp consists of two matrices
a ∈ ℤ𝑛

𝑝 ,B ∈ ℤ
𝑛×(𝑚ℓ)
𝑝 , where 𝑝 = 2ω(log𝜆) , 𝑛 = poly(𝜆), and 𝑚 = 𝑛⌈log 𝑝⌉ = poly(𝜆).

Therefore, the bit length of pp is |pp| = poly(𝜆) · ℓ . The shares L0 and {L𝑏
𝑖
} are 2ℓ + 1

vectors in ℤ𝑚
𝑝 . Therefore |L0 | = |L𝑏

𝑖
| = poly(𝜆). Finally, L𝑓 is a single element in ℤ𝑝, hence

has bit length |L𝑓 | = poly(𝜆).
We next state and prove (in Section 4.4) non-annihilability security for both Lx and

L𝑓 of the scheme.

32 / 57

Proposition 12. Assuming the adaptive LWE assumption, Construction 2 is non-annihilable
for Lx. Specifically, for all efficient adversary A that wins the non-annihilability for Lx game
with probability 𝜀A, there exists an efficient B that distinguishes the adaptive LWE experiments
with probability 𝜀ALWE, such that

𝜀A ≤ 𝜀ALWE.

Proposition 13. Assuming the adaptive LWE assumption, Construction 2 is non-annihilable
for L𝑓 . Specifically, for all efficient adversary A that wins the non-annihilability for L𝑓 game
with probability 𝜀A, and for all 𝑘 ∈ ℕ, there exists an efficient B that distinguishes the adaptive
LWE experiments with probability 𝜀ALWE, such that

𝜀A ≤ (𝜆−𝑘 + 𝜀ALWE +
2𝐵A + 1

𝑝
), (7)

where 𝐵A = (3𝑚|A| + 1)𝑚𝐵 is a polynomial depending on the running time of A.
Remark 2. In Construction 2, if we only assume plain (non-adaptive) LWE, then the
resultant secret sharing scheme achieves selective non-annihilability for Lx and L𝑓 . The
proofs of the corresponding versions of Propositions 12 and 13 are different and program
x into the public matrix B, as done in [BGG+14,GV15].

4.4 Proof of Proposition 13

Note that Proposition 12 follows directly from the adaptive LWE assumption. We focus
on showing Proposition 13.

Proof (Proposition 13). The proof is similar to that of Proposition 6, except we will apply
the ALWE assumption, instead of the sALWE assumption.

Fix an an efficient adversary A, (with circuit size 𝑠A), and constant 𝑘 ∈ ℕ, we
construct an adversary B that distinguishes the adaptive LWE experiments. We bound the
advantage 𝜀A of A in the non-annihilability game as in Equation (7) from the proposition
statement.

Recall that in the security game, the adversary first sees the public parameter, and
chooses some x. The adversary next sees 𝐿x, and chooses 𝑓 , 𝜇 such that 𝑓 (x) = 1. It
finally, without seeing anything else, outputs some non-zero affine function 𝛾. We denote
components in the non-annihilability experiment by the following:

𝑋0 = 𝑟A, 𝑋1 = pp = (a,B), 𝑋2 =
(
L0, Lx[1]1 , . . . , Lx[ℓ]

ℓ

)
, 𝑋3 = sTa + 𝑒,

𝑋 = (𝑋0, 𝑋1, 𝑋2, 𝑋3), 𝑍 = (eT0, eT1, . . . , eTℓ)Ĥ𝑓 ,xG−1(a),
𝐵A = (3𝑚𝑠A + 1)𝑚𝐵.

Here, 𝑟A is the randomness used by A. As for 𝐵A, we will later show that it is an upper
bound of |𝑍 |. We consider four hybrids, and let 𝐴𝑖 denote the probabilities that A wins
in H𝑖 for 𝑖 ∈ [4].

• H1 is the non-annihilability experiment.

• H2 proceeds identically to H1, except for two differences. First, if 𝑍 > 𝐵A, we
immediately claim A to have lost. Second, when performing zero-tests, we replace
L𝑓 by (equivalently computed)

𝑋2Ĥ𝑓 ,xG−1(a) − 𝑍 + 𝑋3 + 𝜇⌊𝑝/2⌉.

By the following claim, we have 𝐴1 = 𝐴2.

33 / 57

Claim 14. |𝑍 | ≤ 𝐵A always holds in H1, and H1 is identical to H2.

• H3 proceeds identically to H2, except that we simulate 𝑍 (used to compute L𝑓 , which
in turn is used in performing zero-tests) by ℎ(𝑋), where ℎ is an efficient algorithm
guaranteed by the leakage simulation lemma.

Claim 15. There exists some efficient algorithm ℎ such that |𝐴2 − 𝐴3 | ≤ 𝜆−𝑘 when ℎ is
used in H3.

• H4 proceeds identically to H3, except that we replace 𝑋2, 𝑋3 by random. By the fact
that they are LWE samples, we can construct from A an adversary B against the
small-secret adaptive LWE assumption.

Claim 16. There exists an efficient B that distinguishes the adaptive LWE experiments
with advantage 𝜀ALWE such that |𝐴3 − 𝐴4 | ≤ 𝜀ALWE.

Next, using Schwartz–Zippel lemma (of degree-1) we show that |𝐴4 | is negligible.

Claim 17. In H4, the adversary A wins with negligible probability. Specifically, |𝐴4 | ≤
2𝐵A+1

𝑝
.

By a hybrid argument, we conclude that 𝜀A = 𝐴1 is bounded as in Equation (7) from the
proposition statement. □

Proof (Claim 14). We need to show that |𝑍 | ≤ 𝐵A always holds in H1, and that the expres-
sion used to compute L𝑓 in H2 is always equal to the value in H1. They follow by the
property of EvalF, EvalFX (Lemma 3).

Let ℓBP be the length of 𝑓 , and 𝑠A be the circuit size of A, then ℓBP ≤ 𝑠A since 𝑓 is
output by A. We have

∥Ĥ𝑓 ,x∥∞ ≤ 3𝑚ℓBP + 1 ≤ 3𝑚𝑠A + 1.

Since G−1(a) ∈ {0, 1}𝑚 and ∥e𝑖∥∞ ≤ 𝐵 for 𝑖 = 0, 1, . . . , ℓ , it follows that

|𝑍 | = | (eT0, eT1, . . . , eTℓ)Ĥ𝑓 ,xG−1(a) | ≤ 𝑚 · ∥ĤT

𝑓 ,x∥∞∥(eT0, eT1, . . . , eTℓ)
T∥∞ ≤ 𝑚 · (3𝑚𝑠A + 1)𝐵 = 𝐵A.

For the second half of the claim, when 𝑓 (x) = 1, we can rewrite L𝑓 as follows:

L𝑓 = sTBH𝑓G−1(a) + 𝑒 + 𝜇⌊𝑝/2⌉

(Lemma 3) = sT
((
B − (1, x) ⊗ G

)
Ĥ𝑓 ,x + 𝑓 (x)G

)
G−1(a) + 𝑒 + 𝜇⌊𝑝/2⌉,

= sT
(
B − (1, x) ⊗ G

)
Ĥ𝑓 ,xG−1(a) + sTa + 𝑒 + 𝜇⌊𝑝/2⌉,

=
(
sT
(
B − (1, x) ⊗ G

)
+ (eT0, eT1, . . . , eTℓ)

)
Ĥ𝑓 ,xG−1(a)

− (eT0, eT1, . . . , eTℓ)Ĥ𝑓 ,xG−1(a) + (sTa + 𝑒) + 𝜇⌊𝑝/2⌉

= 𝑋2Ĥ𝑓 ,xG−1(a) − 𝑍 + 𝑋3 + 𝜇⌊𝑝/2⌉.

This shows that H1 and H2 are identical. □

34 / 57

Proof (Claim 15). We need to show that for some efficient ℎ, replacing 𝑍 by ℎ(𝑋) only
affects the winning probability by at most 𝜀 = 𝜆−𝑘. Let (𝑋, 𝑍) be the components in the
experiment as defined earlier. Note that by Claim 14, we have |𝑍 | ≤ 𝐵A and we can let
𝑍 be a bit-string of length ⌈log2(2𝐵A + 1)⌉. We construct the (deterministic) algorithm
B(𝑋, 𝑍) that (re-)performs the non-annihilability experiment:

1. B checks whether |𝑍 | ≤ 𝐵A. If not, it outputs 0 and terminates.

2. B re-runs the experiment with 𝑋0 = 𝑟A and 𝑋1 = pp = (a,B). It obtains 1ℓ , 𝑓 , 𝜇, x as
well as the non-zero affine function 𝛾. from A.

3. B checks whether 𝑓 (x) = 1. If this does not hold, it outputs 0 and terminates. It
also checks whether 𝛾 is the zero function. If so, it outputs 0 and terminates.

4. B sets

L𝑓 = 𝑋2Ĥ𝑓 ,xG−1(a) − 𝑍 + 𝑋3 + 𝜇⌊𝑝/2⌉,

and checks whether 𝛾(L𝑓) = 0. It outputs 1 if this holds, and 0 otherwise.

Now let (𝑋, 𝑍) be jointly sampled by running the experiment on A and taking the
corresponding components from the execution, then B(𝑋, 𝑍) outputs whether A won,
and

Pr[B(𝑋, 𝑍) → 1] = Pr[A wins] = 𝜀A = 𝐴1 = 𝐴2.

Since A has polynomial circuit size 𝑠A and the experiment itself can be performed
efficiently, the circuit size of B is also bounded by a polynomial 𝑠B. We apply the leakage
simulation lemma (Lemma 7) to the joint distribution (𝑋, 𝑍) against distinguishers of size
at most 𝑠B with error 𝜀 = 𝜆−𝑘. This gives us a simulator ℎ with complexity Õ(2 |𝑍 |𝑠B𝜀−2) =
Õ(𝜆𝑘𝐵A𝑠B), which is polynomial in 𝜆.

Note that if we use ℎ in H3, the probability thatA wins in H3 is exactly Pr[B(𝑋, ℎ(𝑋))],
and by the guarantee of leakage simulation lemma,

|𝐴2 − 𝐴3 | =
��Pr[B(𝑋, 𝑍) → 1] − Pr[B(𝑋, ℎ(𝑋)) → 1]

�� ≤ 𝜆−𝑘.

This finishes the proof of the claim. □

Proof (Claim 16). Recall that in both H3 and H4, the adversary A first chooses the input
length ℓ , and receives the public parameter pp = (a,B) (LWE public matrices). A next
chooses x, and receives Lx. The adversary A finally chooses 𝑓 , 𝜇,𝛾. The experiments test
for the winning condition, where 𝛾 is evaluated on different distributions in H3 and H4.

We construct an adaptive LWE distinguisher B (with advantage 𝜀ALWE) as follows:

1. B launches A(1𝜆) with fresh randomness 𝑟A. It receives from A the input length
1ℓ .

2. B sends (1ℓ , 11) to the adaptive LWE experiment (i.e., 𝑚′ = 1). It receives back A,B,
which have shapes 𝑛 × 1 and 𝑛 × (ℓ + 1)𝑚. The distinguisher B sets a = A and sends
pp = (a,B) to A.

35 / 57

3. B waits for A to submit an attribute x ∈ {0, 1}ℓ . Upon receiving x, it forwards x to
the adaptive LWE experiment, and receives back c ∈ ℤ1

𝑝 and d ∈ ℤ
(ℓ+1)𝑚
𝑝 . It parses,

sets and computes

𝑋0 = 𝑟A, 𝑋1 = pp, 𝑋2 = (L0, Lx[1]1 , . . . , Lx[ℓ]
ℓ
) ← dT, 𝑋3 = c,

and sends 𝐿x to A.

4. B waits for A to submit a policy 𝑓 ∈ 5PBP𝜆,ℓ , a bit 𝜇 ∈ {0, 1}, and an affine function
𝛾.

5. If 𝑓 (x) ≠ 0 or 𝛾 is the zero function, the distinguisher B aborts by outputting 0.

6. Otherwise, it computes and sets

𝑍
$← ℎ(𝑋), Ĥ𝑓 ,x ← EvalFX(B, 𝑓 , x), L𝑓 ← 𝑋2Ĥ𝑓 ,xG−1(a) − 𝑍 + 𝑋3 + 𝜇⌊𝑝/2⌋.

If |𝑍 | > 𝐵A, the distinguisher B outputs 0 and terminates.

7. Otherwise, it proceeds to evaluate 𝛾
(
L𝑓
)
. It outputs 1 if the result is zero, and 0

otherwise.

Clearly B is efficient. In Exp0
ALWE, the distinguisher B emulates H3 for A and outputs

whether A won. In Exp1
ALWE, it does so for H4. Therefore,

|𝐴3 − 𝐴4 | =
��Pr[B → 1 in Exp0

ALWE] − Pr[B → 1 in Exp1
ALWE]

�� ≤ 𝜀ALWE.

□

Proof (Claim 17). In H4, we need to show that the non-zero affine function 𝛾 annihilates
L𝑓 with negligible probability. Recall the components in H4:

𝑋0 = 𝑟A, 𝑋1 = pp, 𝑋2 = (L0, Lx[1]1 , . . . , Lx[ℓ]
ℓ
) ← dT, 𝑋3 = c,

𝑍
$← ℎ(𝑋), L𝑓 ← 𝑋2Ĥ𝑓 ,xG−1(a) − 𝑍 + 𝑋3 + 𝜇⌊𝑝/2⌋ = 𝑋 ′3 − 𝑍,

where 𝑋 ′3 collects the boxed terms. Note that by definition, 𝜇 and 𝛾 are determined by
𝑋0, 𝑋1, 𝑋2. In H4, the values in 𝑋3 are uniformly random and independent of 𝑋0, 𝑋1, 𝑋2
(thus 𝜇,𝛾). This implies that 𝑋 ′3 is also uniformly random and independent of 𝛾, so
L𝑓 = 𝑋 ′3 − 𝑍 is a uniformly random value perturbed by 𝑍 = ℎ(𝑋).

The following probabilities are taken in H4 and are implicitly intersected with the
requirement that 𝑓 (x) = 0, 𝛾 is not the zero function, and |𝑍 | ≤ 𝐵A. We apply union
bound over all possible values in [−𝐵A..𝐵A] to obtain

𝐴4 = Pr
[
𝛾
(
L𝑓
)
= 0

]
= Pr

[
𝛾(𝑋 ′3 − 𝑍) = 0

]
≤ Pr

[
∃𝑧 ∈ [−𝐵A..𝐵A] s.t. 𝛾(𝑋 ′3 − 𝑧) = 0

]
≤

𝐵A∑︁
𝑧=−𝐵A

Pr
[
𝛾(𝑋 ′3 − 𝑧) = 0

]
≤ 2𝐵A + 1

𝑝
,

where the second inequality follows from Schwartz–Zippel lemma for degree 1. Since
𝐵A is polynomial and 𝑝 is super-polynomial, 𝐴4 is negligible. □

36 / 57

5 KP-ABE for Bounded-Depth Circuits

In this section, we combine a succinct and weakly nearly linear secret sharing scheme
that has linear function sharing, with a succinct and selectively simulation-secure IPFE
scheme to obtain a compact and adaptively secure KP-ABE scheme.

Construction 3 (KP-ABE). All variables 𝑥𝜆 are indexed by 𝜆. For simplicity of notations,
we suppress 𝜆 in subscripts. Our construction uses the following two ingredients:

• A group based IPFE scheme (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) with mod-
ulus 𝑝 given by Lemma 5.

• A secret sharing scheme (SS.Setup, SS.ShareX, SS.ShareF, SS.FindCoef) for bounded-
depth circuits as in Construction 1. Recall that the scheme has three properties.
First, the shares are succinct: L0 and L𝑏

𝑖
are vectors in ℤ𝑞 of length 𝑚 = poly(𝜆, 𝑑),

and L𝐶 is a single element in ℤ𝑝. Second, the scheme has weakly nearly linear
reconstruction: the algorithm SS.FindCoef outputs an affine function 𝛾 over L𝐶 that
approximately evaluates to 𝜇⌊𝑝/2⌉. Third, the scheme has linear function sharing:
SS.ShareFSS.pp,𝐶 (·, ·) is a deterministic linear function over ℤ𝑝.

We construct a KP-ABE scheme for the predicate family Ckt defined as follows.

𝑃Cktℓ ,𝑑 (x, 𝐶) = ¬𝐶(x) for x ∈ {0, 1}ℓ , 𝐶 ∈ Cktℓ ,𝑑,
Ckt = {𝑃Cktℓ ,𝑑 |ℓ , 𝑑 ∈ ℕ}.

• Setup(1𝜆, 𝑃) takes as input the security parameter 𝜆 in unary, and a predicate
𝑃 ∈ Ckt. Let ℓ , 𝑑 be the attribute length and depth for 𝑃. The algorithm runs and
sets

SS.pp $← SS.Setup(1𝜆, 1ℓ , 1𝑑),

(impk, imsk) $← IPFE.Setup(1𝜆, 1𝑁) for dimension 𝑁 = 𝑛 + 1,
mpk = (SS.pp, impk), msk = imsk.

It outputs mpk,msk.

• KeyGen(msk, 𝐶) takes as input the master secret key msk and a policy 𝐶 ∈ Cktℓ ,𝑑.
Since the secret sharing scheme has linear function sharing (Definition 15), the
SS.ShareFSS.pp,𝐶 (·, ·) function is a deterministic linear function with coefficients
c = (𝑐𝜇 , cr). The KeyGen algorithm samples 𝛿 $← ℤ𝑝 \ {0}, runs

isk $← IPFE.KeyGen(imsk, ⟦𝛿c⟧2),

and outputs sk = (⟦𝛿⟧2, isk) as the secret key for 𝐶.

• Enc(mpk, x, 𝜇) takes as input the master public key mpk, an attribute x ∈ {0, 1}ℓ ,
and a message 𝜇 ∈ {0, 1}. The algorithm runs(

L0, {L𝑏
𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , r

) $← SS.ShareX(SS.pp), ict $← IPFEEnc(impk, ⟦(𝜇, r)⟧1),

and outputs ct = (Lx, ict).

37 / 57

• Dec(mpk, sk, 𝐶, ct, x) takes as input the master public key mpk, a secret key sk, its
associated policy 𝐶, a ciphertext ct, and its associated attribute x. If 𝑃(x, 𝐶) =
0, the algorithm outputs ⊥ and terminates. Otherwise, it parses sk = (⟦𝛿⟧2, isk),
and computes the coefficients c = (𝑐𝜇 , cr) for ShareFSS.pp,𝐶 (·, ·) as in KeyGen. The
algorithm next parses ct into Lx, ict, and runs

Λ𝐶
$← IPFE.Dec(isk, ⟦𝛿⟧2c, ict), (𝛾, 1𝐵) $← SS.FindCoef(SS.pp, 𝐶, x, Lx).

The algorithm applies the affine function 𝛾 homomorphically in the exponent of
𝐺T to compute 𝛾(Λ𝐶). It then finds and outputs the unique 𝜇′ ∈ {0, 1} (as the
decrypted message) such that 𝛾(Λ𝐶) = ⟦𝜇′⌊𝑝/2⌉ + 𝑒⟧1⟦𝛿⟧2, for some 𝑒 ∈ [−𝐵..𝐵], by
enumerating over all possible 𝑒.

Note: We show that the scheme is correct. By the correctness of IPFE and by linear
function sharing of the secret sharing scheme, we have

Λ𝐶 = ⟦𝛿(𝑐𝜇 · 𝜇 + cr · r)⟧T = ⟦𝛿SS.ShareFSS.pp,𝐶 (𝜇, r)⟧T = ⟦𝛿L𝐶⟧T.

Therefore, 𝛾(Λ𝐶) = ⟦𝛿𝛾(L𝐶)⟧T = ⟦𝛾(L𝐶)⟧1⟦𝛿⟧2. By the correctness of the weakly nearly
linear secret sharing scheme, the decryption algorithm outputs the correct bit 𝜇′ = 𝜇.

Efficiency. By Lemma 5, for MDDH dimension 𝑘 = poly(𝜆) and input vector length 𝑁 =

𝑛+1, the IPFE components have bit lengths |impk|, |imsk|, |ict| = poly(𝜆, 𝑑), |isk| = poly(𝜆).
Also recall that the secret sharing components have bit lengths |SS.pp| = poly(𝜆, 𝑑) · ℓ ,
|L0 | = |L𝑏

𝑖
| = poly(𝜆, 𝑑), |L𝐶 | = poly(𝜆). In the above construction,

• the master public key consists of SS.pp and impk, hence has bit length
|mpk| = |SS.pp| + |impk| = poly(𝜆, 𝑑) · ℓ .

• The master secret key consists of imsk, hence has bit length
|msk| = |imsk| = poly(𝜆, 𝑑).

• A secret key consists of a single isk, and ⟦𝛿⟧2 in 𝐺2, hence has bit length
|sk| = |isk| + |𝐺2 | = poly(𝜆).

• A ciphertext consists of a single ict, and ℓ + 1 shares, hence has bit length
|ct| = |ict| + (ℓ + 1) |L0 | = poly(𝜆, 𝑑) · ℓ .

We now state and prove (in Section 5.1) adaptive IND-CPA security of the scheme.

Proposition 18. Suppose in Construction 3, the IPFE scheme is selectively simulation-secure,
and the secret sharing scheme is non-annihilable for L𝑓 . Then the constructed KP-ABE scheme
is adaptively IND-CPA in GGM. Specifically, for all efficient adversary A that distinguishes the
adaptive ABE experiments with advantage 𝜀A, there exist an efficient B1 that distinguishes the
selective simulation security experiments of IPFE with advantage 𝜀IPFE, and an efficient B2 that
wins the non-annihilable game with advantage 𝜀ANN-f, such that:

𝜀A ≤ 𝜀IPFE + 𝑄/𝑞 + 𝑇𝑄𝜀ANN-f, (8)

where 𝑇, 𝑄 are polynomial upper bounds on the number of zero-test queries and key queries
from A.
Remark 3. In Construction 3, if the secret sharing scheme is only selectively non-
annihilable, then the resultant KP-ABE achieves selective security. The proof mostly
remains unchanged, and the advantage relation in Proposition 18 holds except 𝜀A, 𝜀ANN-f
are advantages in the selective games.

38 / 57

5.1 Proof of Proposition 18

Proof (Proposition 18). Fix an an efficient adversary A, we construct adversaries B1,B2
against the selective simulation security of IPFE, and non-annihilability for L𝑓 . We
bound the advantage 𝜀A of A in the non-annihilability game as in Equation (8) from the
proposition statement.

Recall that in the adaptive security game of KP-ABE, the adversary first repeatedly
queries policies {𝐶𝑖} and receives secret keys {sk𝑖} for them. It next adaptively chooses
an attribute x as its challenge, and receives a ciphertext ct for it. After the challenge,
it again repeatedly chooses policies {𝐶𝑖} and receives secret keys {sk𝑖} for them. In the
end, it outputs a bit 𝑏 to distinguish whether the encrypted message 𝜇 in ct is 0 or 1.

Recall that the selectively simulation-security of IPFE guarantees a simulator (IPFE.�Setup,
IPFE.�KeyGen, IPFE.Ẽnc). We consider the following hybrids, and let 𝐴𝜇

𝑖
be distinguishing

advantages of A in H𝜇
𝑖
for 𝑖 ∈ [3].

• H𝜇
1 is the adaptive security experiment Exp

𝜇
CPA. Specifically, the challenger first runs

(impk, imsk) $← IPFE.Setup(1𝜆, 1(𝑛+1)),

and then computes each queried secret key for 𝐶𝑖 as follows.

isk𝑖
$← IPFE.KeyGen(imsk, ⟦𝛿𝑖c𝑖⟧2), sk𝑖 = (⟦𝛿𝑖⟧2, isk𝑖)

where 𝛿𝑖 is a fresh random non-zero element, and c𝑖 are coefficients for SS.ShareFSS.pp,𝐶𝑖
(·, ·).

The ciphertext for x is computed by first generating shares and randomness
(L0, {L𝑏

𝑖
}, r) from running SS.ShareX, and then set

ict $← IPFE.Enc(impk, ⟦(𝜇, r)⟧1) ct = (Lx, ict).

• H𝜇
2 proceeds identically to H1 except that we replace the IPFE scheme with the

simulator. Specifically, the challenger first runs

(impk,�imsk) $← IPFE�Setup(1𝜆, 1(𝑛+1)),

and then generates shares and randomness (L0, {L𝑏
𝑖
}, r) from running SS.ShareX.

Before receiving any queries or the challenge, it simulates the ĩct by

ĩct $← Ẽnc(�imsk).
The challenger computes each queried secret key for 𝐶𝑖 by computing

𝐿𝐶𝑖
= SS.ShareF(SS.pp, 𝐶𝑖, 𝜇, r), ĩsk𝑖

$← �KeyGen(�imsk, ⟦𝛿𝑖c𝑖⟧2, ⟦𝛿𝑖𝐿𝐶𝑖
⟧2),

and setting sk𝑖 = (⟦𝛿𝑖⟧2, ĩsk𝑖). Upon receiving the challenge x, it answers with
ct = (Lx, ĩct).

Claim 19. There exists an efficient B1 that distinguishes the selective simulation experi-
ments with advantage 𝜀IPFE such that |𝐴𝜇

1 − 𝐴
𝜇
2 | ≤ 𝜀IPFE.

• In H𝜇
3 , the challenger does not run the secret sharing algorithms anymore. Instead,

it obtains SS.pp, ⟦𝛿𝑖, 𝛿𝑖𝐿𝐶𝑖
⟧2 and Lx from interacting (as A′) with the Exp𝜇KP experi-

ment, where Exp𝜇KP(1
𝜆) with a machine A′ proceeds as follows:

39 / 57

– Setup. Launch A′(1𝜆) and receive from it the input length 1ℓ . First, run
SS.Setup(1𝜆, 1ℓ) to generate pp, and send it to A′. Next, run SS.Share(pp) to
generate (L0, {L𝑏

𝑘
}𝑏∈{0,1}
𝑘∈[ℓ] , 𝑟).

– Query I. Repeat the following for arbitrarily many rounds determined by A′:
In each round, A′ submit some 𝐶𝑖 ∈ Ckt𝑑ℓ . Upon this query, sample a random
element ⟦𝛿𝑖⟧2 encoded in 𝐺2 and run

L𝐶𝑖

$← SS.ShareF(pp, 𝐶𝑖, 𝜇, 𝑟).

Send (⟦𝛿𝑖L𝐶𝑖
⟧2, ⟦𝛿𝑖⟧2) to A′.

– Challenge. The adversary submits some x∗ ∈ {0, 1}ℓ . Return Lx∗ to A′.
– Query II. Same as Query I.
– Guess. The adversary outputs a bit 𝜇′. The outcome of the experiment is 𝜇′ if

𝐶𝑖 (x∗) = 0 for all 𝐶𝑖 queried in Query I/II. Otherwise, the outcome is set to 0.

|𝐴𝜇
2 −𝐴

𝜇
3 | = 0 as H𝜇

3 is the same as H
𝜇
2 by construction. We show the following claim:

Claim 20. In GGM, there exists efficient B2 that wins the non-annihilability games for
L𝑓 with advantages 𝜀ANN-f, such that

|𝐴𝜇
3 | ≤

𝑄

𝑞
+ 𝑇𝑄𝜀ANN-f,

where 𝑇, 𝑄 are polynomial upper bounds on the number of zero-test queries and key
queries from A.

□

We now prove the claims.

Proof (Claim 19). We prove this claim by reduction to the selective simulation security
of the IPFE scheme (see Definition 11). We construct a distinguisher B for the selective
simulation games Expreal and Expsim as follows:

1. B launches A(1𝜆) with fresh randomness 𝑟A, and receives from it a predicate
𝑃 ∈ Ckt𝜆. Let ℓ , 𝑑 be the attribute length and depth of 𝑃.

2. B runs

SS.pp $← SS.Setup(1𝜆, 1ℓ , 1𝑑),
(
L0, {L𝑏

𝑖
}𝑏
𝑖
, r
) $← SS.ShareX(SS.pp),

Let 𝑛 be the size of 𝑟 output by SS.ShareX, and let 𝑁 = 𝑛 + 1. B sends 1𝑁 , and the
concatenation of 𝜇, r to the challenger.

3. B receives impk, and an ict from the challenger. It sends mpk = (SS.pp, impk) to the
adversary A.

4. Upon receiving a query 𝐶𝑖 ∈ 𝑃 from A, the distinguisher B samples a random non-
zero element 𝛿𝑖, and computes the coefficient vector c𝑖 for SS.ShareFSS.pp,𝐶𝑖

(·, ·). It
then sends ⟦𝛿𝑖c𝑖⟧2 to the challenger, and receives isk𝑖 back. Finally, B answers A
with sk𝑖 = (⟦𝛿𝑖⟧2, isk𝑖).

40 / 57

5. Upon receiving a challenge x ∈ {0, 1}ℓ , the distinguisher B answers A with ct =
(Lx, ict). (The ict was received from the challenger in step 3.)

6. In the end, B receives an output bit 𝑏 from A. It outputs 1 if and only if 𝑏 = 𝜇.

First note that B is efficient. In Expreal, the distinguisher B emulates H𝜇
1 for A, and

outputs whether A’s output matches 𝜇. In Expsim, it does so for H
𝜇
2 . Therefore,

|𝐴𝜇
1 − 𝐴

𝜇
2 | =

��Pr[B → 1 in Expreal] − Pr[B → 1 in Expsim]
��

□

Proof (Claim 20). Let A′ be the challenger in H3. We consider the following hybrids, and
let 𝐴′𝜇

𝑖
be distinguishing advantages of A′ in 𝐺

𝜇
𝑖
for 𝑖 ∈ [3]. (Note that 𝐴′𝜇1 = 𝐴

𝜇
3 .)

• G𝜇
1 is the experiment Exp𝜇KP. Specifically, throughout the experiment, the GGM
oracle answers zero-test queries from the adversary of the form

𝛾
(
{𝛿𝑖L𝐶𝑖

}𝑖, {𝛿𝑖}𝑖
)
.

• G𝜇
2 proceeds identically as G

𝜇
1 , except that the challenger views each zero-test query

from A′ as a degree-1 polynomial where 𝛿𝑖 are the variables:

𝛾
(
{𝛿𝑖L𝐶𝑖

}𝑖, {𝛿𝑖}𝑖
)
=
∑︁
𝑖

𝛾𝑖

(
L𝐶𝑖

)
𝛿𝑖 +𝛼0,

where 𝛼0 is a constant. The challenger answers the query with zero if and only if
𝛾𝑖 evaluates to zero for all 𝑖, and 𝛼0 = 0.
Let 𝑄 be the maximum number of zero-test queries from A′. Since 𝛿𝑖 are sampled
independently at random, by Schwartz–Zippel lemma of degree-1 we have |𝐴′𝜇1 −
𝐴
′𝜇
2 | ≤

𝑄

𝑞
.

• G𝜇
3 proceeds identically as G

𝜇
2 , except that the challenger answers zero-test queries

with zero if and only all 𝛾𝑖 are the zero function, and 𝛼0 = 0.
Note that in GGM, A′ only gains information through zero-test queries. In G3, all
queries are answered independently of the shares. Hence A′ has zero advantage,
i.e., 𝐴

′𝜇
3 = 0. It remains to construct efficient B2 that wins the non-annihilability

game for L𝑓 with advantage 𝜀ANN-f, such that

|𝐴′𝜇2 − 𝐴
′𝜇
3 | ≤ 𝑇𝑄𝜀ANN-f,

where 𝑇, 𝑄 are polynomial upper bounds on the number of zero-test queries and
key queries (for 𝐶𝑖) from A′.

Note that G𝜇
2 and G

𝜇
3 differs if and only if there exists 𝑖, 𝑗 such that when viewing the

𝑗th zero-test query from A as a polynomial over the 𝛿’s, the affine function 𝛾𝑖 is non-zero,
but evaluates to zero. Let 𝐸𝑖, 𝑗 denote such an event for 𝑖, 𝑗, and let 𝐸 be the union of all
𝐸𝑖, 𝑗. Let 𝑇, 𝑄 be polynomial upper bounds on the number of zero-test queries and key
queries (for 𝐶𝑖) fromA′. We construct an efficient adversary B2 for the non-annihilability
game for L𝑓 as follows:

41 / 57

• B2 samples 𝑡
$← [𝑇] and 𝑞

$← [𝑄], and then launches A′(1𝜆).

• B2 receives the input length 1ℓ from A′, and forwards 1ℓ to the challenger. B2 next
receives SS.pp from the challenger, and forwards it to A′.

• Upon receiving a query 𝐶𝑖, the adversary B2 stores 𝐶𝑖, and answers with new group
handles in 𝐺2.

• Upon receiving the challenge x∗, the adversary B2 forwards x∗ to the challenger,
and receives Lx∗ back. B2 forwards Lx

∗ to A′.

• Upon receiving the 𝑗th zero-test query, if 𝑗 < 𝑞 then B2 answers as in G𝜇
3 , , by

looking only at the coefficients of all 𝛾𝑖. If 𝑗 = 𝑞, then B2 uses 𝐶𝑖 and 𝛾𝑖 in this
query, together with 𝑏 as its output.

Note that if 𝐸 happens, and B2 samples 𝑡, 𝑞 exactly equal to the smallest 𝑖, 𝑗 such that
𝐸𝑖, 𝑗 happens, then B2 wins the non-annihilability game. That is:

|𝐴′𝜇2 − 𝐴
′𝜇
3 | ≤ Pr[𝐸] ≤ 𝑇𝑄 · Pr[B2 wins in ExpANN].

□

Combining Construction 3, Proposition 18, Construction 1, Proposition 6, Lemma 4,
and Lemma 5, we have the following theorem:

Theorem 21 (KP-ABE). Assume the polynomial hardness of adaptive LWE, with subexponential
modulus-to-noise ratio. That is, there exists an arbitrary constant 𝜀 > 0 such that ALWE𝑛,𝑞,𝜒

with 𝛼 =
𝑞

𝐵
= 2𝑛𝜀 holds, where 𝜒 is the discrete Gaussian over ℤ of width 𝐵/𝜆 truncated within

absolute value of 𝐵 = poly(𝜆).
Let 𝜆 be the security parameter, and 𝑝 = 2ω(log𝜆) be an arbitrary prime. In the generic

pairing group model with order 𝑝, there exists a KP-ABE scheme for circuits that

• satisfies the adaptive IND-CPA security, and

• has constant-size secret keys |sk𝐶 | = poly(𝜆) (concretely, containing 3 group elements)
and ciphertexts of size |ctx | = poly(𝜆, 𝑑)ℓ where ℓ is the attribute length and 𝑑 is
maximum depth of the policy circuits.

Specifically, for all 𝜆 ∈ ℕ, for all efficient adversary A that distinguishes the adaptive ABE
experiments with advantage 𝜀A, and for all 𝑘 ∈ ℕ, there exist an efficient B1 that distinguishes
the selective simulation security experiments of IPFE with advantage 𝜀IPFE, and an efficient B2
that distinguishes the adaptive LWE experiments with advantage 𝜀ALWE, such that

𝜀A ≤ 𝜀IPFE + 𝜆−𝑘 + poly(|A|)𝜀ALWE +
poly(|A|,𝜆)

𝑝

6 Doubly Succinct CP-ABE

6.1 Stronger IPFE in GGM

Definition 19 (adaptive simulation in GGM). A simulator for an IPFE scheme (Definition 9)
in GGM consists of 4 efficient algorithms:

42 / 57

• �Setup(1𝜆, 1𝑁) outputs a simulated master public key �impk and an initial state st.
• �KeyGen(st) outputs an updated state st′ and a simulated key ĩsk.
• Ẽnc(st) outputs an updated state st′ and a simulated ciphertext ĩct.

• �GrpZTInPrdZT(·) (st,𝛾) takes as input a zero-test query 𝛾, which is an affine function
over all possible parings of the group handles created by earlier calls to the other
simulation algorithms. It has oracle access to InPrdZT(·), which performs zero-tests
of affine functions of the inner products and the vectors in the keys (described in
more details later). The algorithm outputs an updated state st′ and an answer 𝑧 to
the query 𝛾.

The scheme is adaptively simulation-secure in GGM if there exists a simulator such that
Expreal and Expsim are indistinguishable, where the experiments Expreal(1𝜆), Expsim(1𝜆)
with A proceed as follows:

• Setup. The challenger launches A(1𝜆) and receives the vector length 1𝑁 . It runs

in Expreal: (impk, imsk) $← Setup(1𝜆, 1𝑁);

in Expsim: (impk, st) $←�Setup(1𝜆, 1𝑁);

and sends impk to A. (Since we are considering unbounded simulation, the third
argument to Setup does not matter.)

• Challenge. The following is repeated for arbitrarily many rounds determined by A:
In each round, A submits a vector u𝑖 encoded in 𝐺1 or a vector v𝑗 encoded in 𝐺2.
Upon receiving the query, the challenger runs

in Expreal: ict𝑖
$← Enc(impk, ⟦u𝑖⟧1) or isk𝑗

$← KeyGen(imsk, ⟦v𝑗⟧2)

in Expsim: (ict𝑖, st′)
$← Ẽnc(1𝑁 , st) or (isk𝑗 , st′) $← �KeyGen(st)

and sends ict𝑖 or isk𝑗 to A. Additionally, in Expsim the challenger updates the
state st← st′, and maintains a database of the key vectors and the inner products
𝐷 = ({⟦v𝑗⟧2}𝑗∈[𝑛] , {⟦⟨u𝑖, v𝑗⟩⟧T}𝑖∈[𝑚], 𝑗∈[𝑛]).

• Guess. The adversary A outputs a bit 𝑏, which is the output of the experiment.

The adversary can submit zero-test queries at any time during the experiment. In Expreal,
the GGM oracle handles such queries, whereas in Expsim upon receiving a query 𝛾, the
challenger runs

st′, 𝑧 $←�GrpZTInPrdZT(𝐷,·) (st,𝛾),

where the InPrdZT algorithm answers zero-test queries from �GrpZT using keys and inner
products stored in 𝐷. Additionally, in Expsim the challenger updates the state st← st′.

6.2 ABDP Scheme

The IPFE scheme in [ABDP15] is only known to be selectively IND-CPA secure in the
standard model. It turns out that the very same scheme satisfies the (much stronger)
adaptive simulation security in GGM. We recall the construction below.

43 / 57

Construction 4 ([ABDP15]). The construction is described for a fixed value of 𝜆, and 𝜆 is
suppressed for brevity. The ABDP scheme in pairing groups of order 𝑝 works as follows:

• Setup(1𝑁) samples 𝑎
$← ℤ𝑝,w

$← ℤ𝑁
𝑝 and outputs impk = ⟦𝑎, 𝑎w⟧1, imsk = w.

• KeyGen(imsk, ⟦v⟧2) outputs the secret key isk = wT⟦v⟧2.

• Enc(impk, ⟦u⟧1) samples 𝑠
$← ℤ𝑝 and outputs the ciphertext

ict = (ict1, ict2) = (𝑠⟦𝑎⟧1, 𝑠⟦𝑎w⟧1 + ⟦u⟧1).

• Dec(isk, ⟦v⟧2, ict) parses ict into (ict1, ict2) and outputs −ict1 · isk + ictT2⟦v⟧2.

Correctness is readily verified by −𝑠𝑎 ·wTv + (𝑠𝑎w + u)Tv = uTv. The scheme is succinct,
as each secret key consists of only 1 group element, independent of 𝑁.

We note that the above construction has two minor differences compared to the
original version in [ABDP15]. One is that in the original version, key vectors are encoded
in ℤ𝑝 instead of any group 𝐺2 that can pair with 𝐺1. The other is that the master public
key in [ABDP15] is simply ⟦w⟧1, without the random scalar 𝑎. As we will see later, the
introduction of random scalar 𝑎 makes our security analysis easier.

We prove (in Appendix 6.3) adaptive simulation-security security of Construction 4 in
GGM.

Proposition 22. Construction 4 is adaptively simulation-secure in GGM.

6.3 Proof of Proposition 22

Proof (Proposition 22). Let A be any efficient adversary. Recall that in the security game,
A first receives a master public key impk, and then at each round receives either a a
ciphertext ict𝑖 or a secret key isk𝑗 for its query. A also receives answers to its zero-test
queries whenever it submits such queries. In the end, A outputs a bit 𝑏 to distinguish
whether its in Expreal or Expsim.

Our simulator simply produces new group handles for the simulated master public
key �impk, secret keys ciphertexts {ĩct𝑖} and {ĩsk𝑗}. The simulator also updates its state
to keep a counter 𝐶 = (𝑖, 𝑗) for the number of (𝑖) queried ciphertexts and (𝑗) keys. We
focus on the algorithm �GrpZT for answering zero-test queries from A using InPrdZT(𝐷, ·),
where InPrdZT(𝐷,𝛾′) honestly evaluates an affine query 𝛾′ over values stored in 𝐷. We
develop �GrpZT through the following hybrids, and the �GrpZT operates as described in the
final hybrid.

• H1 is the real-world experiment Expreal, where the master public key impk cipher-
texts {ict𝑖} and secret keys {isk𝑗} are generated as

impk = {[𝑎, 𝑎w]}1, ict𝑖 = {[𝑠𝑖𝑎, 𝑠𝑖𝑎w + u𝑖]}1, isk𝑗 = {[wTv𝑗]}2.

The zero-test queries are answered by the GGM oracle.

• H2 proceeds identically to H1, except we change how the master public key and the
ciphertexts are created:

impk = {[𝑎0, 𝑎0w]}1, ict𝑖 = {[𝑎𝑖, 𝑎𝑖w + u𝑖]}1, isk𝑗 = {[wTv𝑗]}2,

44 / 57

where 𝑎𝑖’s are uniformly random over ℤ𝑝. For convenience, we write u0 = 0, and
impk = ⟦𝑎0, 𝑎0w + u0⟧1. Each zero-test query from A is of the form

𝛾
(
(1, {𝑎𝑖}𝑖, {𝑎𝑖w + u𝑖}𝑖) ⊗ (1, {v𝑗}𝑗 , {wTv𝑗}𝑗)

)
.

Since each 𝑠𝑖 in H1 is sampled independently at random, H2 is the same as H1.

• H3 proceeds identically to H2, except the challenger views each zero-test query from
A as a degree-3 polynomial where 𝑎𝑖,w are the variables:

𝛾
(
(1, {𝑎𝑖}𝑖, {𝑎𝑖w + u𝑖}𝑖) ⊗ (1, {v𝑗}𝑗 , {wTv𝑗}𝑗)

)
= 𝛾0

(
{u𝑖}𝑖, {v𝑗}𝑗 , {u𝑖 ⊗ v𝑗}𝑖, 𝑗

)
+ 𝛾1

(
{v𝑗}𝑗 , {u𝑖 ⊗ v𝑗

)
·w

+
∑︁
𝑖

𝛾2,𝑖
(
{v𝑗}𝑗

)
· 𝑎𝑖 +

∑︁
𝑖

𝛾3,𝑖
(
{v𝑗}𝑗

)
· 𝑎𝑖w +

∑︁
𝑖

𝑎𝑖wT · 𝛾4,𝑖
(
{v𝑗}𝑗

)
·w.

The challenger answers with zero if and only if 𝛾0,𝛾1, {𝛾2,𝑖,𝛾3,𝑖}𝑖 all evaluate to zero
and 𝛾T

4,𝑖
(
{v𝑗}𝑗

)
+𝛾4,𝑖

(
{v𝑗}𝑗

)
= 0 for all 𝑖. 7 Since 𝑎𝑖,w are sampled at random, H2 and

H3 differ (i.e., 𝛾 is a non-zero polynomial over 𝑎𝑖,w, but evaluates to 0) with only
negligible probability by Schwartz–Zippel lemma of degree-3.

• H4 proceeds identically to H3, except the challenger translates 𝛾0,𝛾1 equivalently
into 𝛾′0,𝛾

′
1 that are affine functions over only {v𝑗}𝑗 and {uT𝑖v𝑗}𝑖, 𝑗 (in particular, not

over {u𝑖}𝑖 or {u𝑖⊗v𝑗}𝑖, 𝑗). The challenger runs InPrdZT(𝐷, ·) to evaluate 𝛾′0,𝛾′1, {𝛾2,𝑖,𝛾3,𝑖,𝛾4,𝑖}𝑖.
Since the translated 𝛾′0,𝛾

′
1 are required to be equivalent to 𝛾0,𝛾1, the hybrids H4 and

H3 are the same.

Note that in H4, the challenger needs two things to answer zero-test queries: translation
from 𝛾0,𝛾1 to 𝛾′0,𝛾

′
1 and access to InPrdZT(𝐷, ·). If we can show the translation only

requires a counter 𝐶 = (𝑖, 𝑗) of queried ciphertexts and keys, then H4 indeed specifies�GrpZT. Since A only learns information through zero-test queries, H4 and Expsim are
identical.

We now show the translation from 𝛾0,𝛾1. First, write out a zero-test 𝛾 from A
explicitly,

𝛾
(
(1, {𝑎𝑖}𝑖, {𝑎𝑖w + u𝑖}𝑖) ⊗ (1, {v𝑗}𝑗 , {wTv𝑗}𝑗)

)
= 𝛼 +

∑︁
𝑖

(
𝑏𝑖 · 𝑎𝑖 + cT𝑖 · (𝑎𝑖w + u𝑖)

)
+
∑︁
𝑗

(
𝑑𝑗 ·wTv𝑗 + f T𝑗 · v𝑗

)
+
∑︁
𝑖 𝑗

(
𝑔𝑖 𝑗 · 𝑎𝑖 ·wTv𝑗 + hT

𝑖 𝑗 · 𝑎𝑖 · v𝑗

+mT
𝑖 𝑗 · (𝑎𝑖w + u𝑖) ·wTv𝑗 + (𝑎𝑖w + u𝑖)T · N𝑖 𝑗 · v𝑗

)
.

where 𝛼, 𝑏𝑖, c𝑖, 𝑑𝑗 , f 𝑗 , 𝑔𝑖 𝑗 ,h𝑖 𝑗 ,m𝑖 𝑗 ,N𝑖 𝑗 are (vectors or matrices of) coefficients. We remark
that the last term (𝑎𝑖w + u𝑖)T · N𝑖 𝑗 · v𝑗 enables arbitrary cross-pairing of (𝑎𝑖w + u𝑖) with v𝑗
and combining the results. Each entry in N𝑖 𝑗 corresponds to the coefficient of one such
pairing result. Using these coefficients, we can explicitly write 𝛾0,𝛾1, {𝛾2,𝑖,𝛾3,𝑖,𝛾4,𝑖}𝑖 as
follows:

𝛾0
(
{u𝑖}𝑖, {v𝑗}𝑗 , {u𝑖 ⊗ v𝑗}𝑖, 𝑗

)
= 𝛼 +

∑︁
𝑖

uT𝑖c𝑖 +
∑︁
𝑗

f T𝑗v𝑗 +
∑︁
𝑖 𝑗

uT𝑖N𝑖 𝑗v𝑗 (9)

7Due to the symmetry of w and wT, 𝛾T4,𝑖
(
{v𝑗}𝑗

)
+𝛾4,𝑖

(
{v𝑗}𝑗

)
= 0 is enough to make all coefficients of terms

𝑎𝑖w[𝑎]w[𝑏] zero.

45 / 57

𝛾1
(
{v𝑗}𝑗 , {u𝑖 ⊗ v𝑗

)
=

∑︁
𝑗

𝑑𝑗v𝑗 +
∑︁
𝑖 𝑗

v𝑗mT
𝑖 𝑗u𝑖 (10)

𝛾2,𝑖
(
{v𝑗}𝑗

)
= 𝑏𝑖 +

∑︁
𝑗

hT
𝑖 𝑗v𝑗 (11)

𝛾3,𝑖
(
{v𝑗}𝑗

)
= c𝑖 +

∑︁
𝑗

(
𝑔𝑖 𝑗v𝑗 + N𝑖 𝑗v𝑗

)
(12)

𝛾4,𝑖
(
{v𝑗}𝑗

)
=

∑︁
𝑗

m𝑖 𝑗vT𝑗 (13)

Since in H3, the challenger answers zero only if 𝛾3,𝑖 ({v𝑗}𝑗) = 0, by (12) we can substitute
c𝑖 +

∑
𝑗 N𝑖 𝑗v𝑗 with

∑
𝑗 𝑔𝑖 𝑗v𝑗 in (9) to define

𝛾′0({u𝑖}𝑖, {v𝑗}𝑗 , {uT𝑖v𝑗}𝑖 𝑗) = 𝛼 +
∑︁
𝑗

f T𝑗v𝑗 −
∑︁
𝑖 𝑗

𝑔𝑖 𝑗uT𝑖v𝑗 .

Similarly, since in H3 the challenger answers zero only if 𝛾T
4,𝑖
(
{v𝑗}𝑗

)
+ 𝛾4,𝑖

(
{v𝑗}𝑗

)
= 0, by

(13) we can substitute ∑
𝑗 v𝑗mT

𝑖 𝑗
with ∑

𝑗 m𝑖 𝑗vT𝑗 in (10) to define

𝛾′1({v𝑗}𝑗 , {uT𝑖v𝑗}𝑖 𝑗) =
∑︁
𝑗

𝑑𝑗v𝑗 −
∑︁
𝑖 𝑗

m𝑖 𝑗vT𝑗u𝑖.

□

6.4 Doubly Succinct CP-ABE for Boolean Formulae

In this section, we combine a succinct nearly linear secret sharing scheme and a key-
succinct IPFE scheme to obtain a doubly succinct CP-ABE scheme.
Construction 5 (doubly succinct CP-ABE). All variables 𝑥𝜆 are indexed by 𝜆. For sim-
plicity of notations, we suppress 𝜆 in subscripts. Our construction uses the following
two ingredients:

• A key-succinct IPFE scheme (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) with mod-
ulus 𝑝 given by Construction 4.

• A secret sharing scheme (SS.Setup, SS.ShareX, SS.ShareF, SS.FindCoef) for Boolean
formulae as in Construction 2. Recall that the scheme has two properties. First,
the shares are succinct: L0, and L𝑏

𝑖
are vectors of length 𝑚 = poly(𝜆), and 𝐿𝑓 is a

single element. Second, the scheme has nearly linear reconstruction: the algorithm
SS.FindCoef outputs an affine function 𝛾 over 𝐿𝑓 , L𝑥 that approximately evaluates to
𝜇⌊𝑝/2⌉.

We construct a CP-ABE scheme for the predicate family 5PBP defined as follows.

𝑃5PBPℓ (x, 𝑓) = ¬𝑓 (x) for x ∈ {0, 1}ℓ , 𝑓 ∈ 5PBPℓ ,
5PBP𝜆 = {𝑃5PBPℓ |ℓ ∈ ℕ}.

• Setup(1𝜆, 𝑃) takes as input the security parameter 1𝜆 and a predicate 𝑃 ∈ 5PBP. Let
ℓ be the attribute length for 𝑃, and 𝑚 be the size of a share output by SS.ShareX.
The algorithm runs and sets

SS.pp $← SS.Setup(1𝜆, 1ℓ),

(impk, imsk) $← IPFE.Setup(1𝜆, 1𝑁) for dimension 𝑁 = (2ℓ + 1),
mpk = (SS.pp, impk), msk = imsk.

It outputs (mpk,msk).

46 / 57

• KeyGen(msk, x): takes as input themaster secret keymsk and an attribute x ∈ {0, 1}ℓ .
It samples 𝛿 $← ℤ𝑝 \ {0} and defines the “selecting vector” v ∈ ℤ2ℓ+1

𝑝 as:

v[𝑗] =
{

1, if 𝑗 = 1;
𝑏x[𝑖] + (1 − 𝑏) (1 − x[𝑖]), if 𝑗 = 2𝑖 + 𝑏 for 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}.

it runs isk $← IPFE.KeyGen(imsk, ⟦𝛿v⟧2) and outputs sk = (⟦𝛿⟧2, isk) as the secret key
for x.

Note: The vector v is formed as follows. First, put a 1, which will be used to select the
shares 𝐿𝑓 and L0. Next, for each 𝑖 ∈ [ℓ], append either (0, 1) if x[𝑖] = 1, or (1, 0) if
x[𝑖] = 0, which will be used to select the share Lx[𝑖]

𝑖
. Since the ABE key consists of a single

group element and an IPFE key, if the IPFE scheme is key-succinct, then the ABE is also
key-succinct.

• Enc(mpk, 𝑓 , 𝜇) takes as input the master public key mpk, a policy 𝑓 ∈ 5PBPℓ , and
a message 𝜇 ∈ {0, 1}. Let 𝑚 be the dimensions of L0, {L𝑏

𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , and 𝑁 = 2ℓ + 1

be the vector length for IPFE. The algorithm runs SS.ShareX and SS.ShareF, and
defines vectors(

L0, {L𝑏
𝑖
}𝑏∈{0,1}
𝑖∈[ℓ] , 𝑟

) $← SS.ShareX(SS.pp), 𝐿𝑓
$← SS.ShareF(SS.pp, 𝑓 , 𝜇, 𝑟),

for 𝑗 ′ ∈ [𝑁]: u𝑓 [𝑗 ′] =
{
𝐿𝑓 , if 𝑗 ′ = 1;
0, otherwise.

for 𝑗 ∈ [𝑚], 𝑗 ′ ∈ [𝑁]: u0, 𝑗 [𝑗 ′] =
{
L0 [𝑗], if 𝑗 ′ = 1;
0, otherwise.

for 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}, 𝑗 ∈ [𝑚], 𝑗 ′ ∈ [𝑁]: u𝑖,𝑏, 𝑗 [𝑗 ′] =
{
L𝑏
𝑖
[𝑗], if 𝑗 ′ = 2𝑖 + 𝑏;

0, otherwise.

It then generates IPFE ciphertexts

ict𝑓
$← IPFE.Enc(impk, ⟦u𝑓 ⟧1),

for 𝑗 ∈ [𝑚]: ict0, 𝑗
$← IPFE.Enc(impk, ⟦u0, 𝑗⟧1),

for 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}, 𝑗 ∈ [𝑚]: ict𝑖,𝑏, 𝑗
$← IPFE.Enc(impk, ⟦u𝑖,𝑏, 𝑗⟧1), ,

and sets
ct =

(
ict𝑓 , {ict0, 𝑗}𝑗∈[𝑚] , {ict𝑖,𝑏, 𝑗}𝑖∈[ℓ],𝑏∈{0,1}, 𝑗∈[𝑚]

)
.

The algorithm outputs ct as the ciphertext for 𝜇 with policy 𝑓 .

Note: The vectors u𝑓 ,u0, 𝑗’s put each component of 𝐿𝑓 , L0 at the beginning so that they
can always be “picked up” by the v’s used in KeyGen. The vectors u𝑖,𝑏, 𝑗’s put each
component of L𝑏

𝑖
at appropriate positions so that they can be “picked up” by v if and only

if x[𝑖] = 𝑏. Since each component in the shares contributes one IPFE ciphertext and each
IPFE ciphertext is of size polynomial in 𝜆, ℓ , if the secret sharing scheme is succinct, then
the ABE is ciphertext-succinct.

47 / 57

• Dec(mpk, sk, x, ct, 𝑓) takes as input the master public key mpk, a secret key sk, its
associated attribute x, a ciphertext ct, and its associated policy 𝑓 . If 𝑃(x, 𝑓) = 0, the
algorithm outputs ⊥ and terminates. Otherwise, it parses sk = (⟦𝛿⟧2, isk), recom-
putes the vector v for x as in KeyGen, and parses ct into ict𝑓 , {ict0, 𝑗} and {ict𝑖,𝑏, 𝑗}. It
runs

(𝛾, 1𝐵) ← SS.FindCoef(SS.pp, 𝑓 , x),
Λ𝑓 ← IPFE.Dec(isk, ⟦𝛿⟧2v, ict𝑓),

for 𝑗 ∈ [𝑚]: Λ0, 𝑗 ← IPFE.Dec(isk, ⟦𝛿⟧2v, ict0, 𝑗),
for 𝑖 ∈ [ℓ], 𝑗 ∈ [𝑚]: Λ𝑖,x[𝑖], 𝑗 ← IPFE.Dec(isk, ⟦𝛿⟧2v, ict𝑖,x[𝑖], 𝑗).

Let Λx =
(
{Λ0, 𝑗}𝑗∈[𝑚] , {Λ𝑖,x[𝑖], 𝑗}𝑖∈[ℓ], 𝑗∈[𝑚]

)
. The algorithm applies the affine function

𝛾 homomorphically in the exponent of 𝐺T to compute 𝛾(Λ𝑓 ,Λx). It then finds and
outputs the unique 𝜇′ ∈ {0, 1} (as the decrypted message) such that

𝛾(Λ𝑓 ,Λ
x) = ⟦𝜇′⌊𝑝/2⌉ + 𝑒⟧1⟦𝛿⟧2,

for some 𝑒 ∈ [−𝐵..𝐵], by enumerating over all possible 𝑒.

Note: We show that the scheme is correct. By definition and the correctness of IPFE, we
have Λ𝑓 = ⟦𝛿𝐿𝑓 ⟧T, and

Λ0, 𝑗 = ⟦𝛿L0 [𝑗]⟧T, Λ𝑖,x[𝑖], 𝑗 = ⟦𝛿Lx[𝑖]𝑖
[𝑗]⟧T =⇒ Λx = ⟦𝛿Lx⟧T,

and therefore, 𝛾(Λ𝑓 ,Λx) = ⟦𝛿𝛾(L𝑓 , Lx)⟧T = ⟦𝛾(L𝑓 , Lx)⟧1⟦𝛿⟧2. By the correctness of the
nearly linear secret sharing scheme, the decryption algorithm outputs the correct bit
𝜇′ = 𝜇.

Efficiency. By Construction 4, for input vector length 𝑁 = 2ℓ + 1, the IPFE components
have bit lengths |impk| = poly(𝜆) · ℓ , |imsk| = poly(𝜆) · ℓ , |ict| = poly(𝜆) · ℓ , |isk| = poly(𝜆).
Also recall that the secret sharing components have bit lengths |SS.pp| = poly(𝜆) · ℓ , and
|L𝑓 | = poly(𝜆). In the above construction,

• the master public key consists of SS.pp and impk, hence has bit length
|mpk| = |SS.pp| + |impk| = poly(𝜆) · ℓ .

• The master secret key consists of imsk, hence has bit length
|msk| = |imsk| = poly(𝜆) · ℓ .

• A secret key consists of a single isk, and ⟦𝛿⟧2 in 𝐺2, hence has bit length
|sk| = |isk| + |𝐺2 | = poly(𝜆).

• A ciphertext consists of 1 + (2ℓ + 1)𝑚 ict’s, hence has bit length
|ct| = (1 + (2ℓ + 1)𝑚) |ict| = poly(𝜆) · ℓ 2.

We now state and prove (in Section 6.5) adaptive IND-CPA security of the scheme.

Proposition 23. Suppose in Construction 5, the IPFE scheme is adaptively simulation-secure,
and the secret sharing scheme is non-annihilable for L𝑓 and Lx. Then the constructed CP-
ABE scheme is adaptively IND-CPA in GGM. Specifically, for all efficient adversary A that
distinguishes the adaptive ABE experiment with advantage 𝜀A, there exist an efficient B1

48 / 57

that distinguishes the adaptive simulation security experiments of IPFE with advantage 𝜀IPFE,
and an efficient B2,B3 that wins the non-annihilable games for L𝑓 and Lx with advantages
𝜀ANN-f, 𝜀ANN-x, such that:

𝜀A ≤ 𝜀IPFE +
𝑄

𝑞
+ 𝑇𝑄(𝜀ANN-f + 𝜀ANN-x), (14)

where 𝑇, 𝑄 are polynomial upper bounds on the number of zero-test queries and key queries
from A.

Combining Construction 5, Proposition 23, Construction 2, Proposition 12, Proposi-
tion 13, Construction 4, and Proposition 22, we have the following theorem:

Theorem 24 (Doubly Succinct CP-ABE). Assume the polynomial hardness of adaptive LWE,
with super-polynomial modulus-to-noise ratio. That is, ALWE𝑛,𝑞,𝜒 with 𝛼 =

𝑞

𝐵
= 2ω(log 𝑛) holds,

where 𝜒 is a 𝐵-bounded error distribution.
Let 𝜆 be the security parameter, and 𝑝 a super-polynomially large prime bounded by

O(𝛼 poly(𝜆)). In the generic pairing group model with order 𝑝, there exists a doubly succinct
CP-ABE scheme for boolean formulae that

• satisfies the adaptive IND-CPA security, and

• has constant-size secret keys |skx | = poly(𝜆) (concretely, containing 2 group elements)
and ciphertexts of size |ct𝑓 | = poly(𝜆)ℓ 2, where ℓ is the attribute length.

Specifically, for all 𝜆 ∈ ℕ, for all efficient adversary A that distinguishes the adaptive ABE
experiments with advantage 𝜀A, and for all 𝑘 ∈ ℕ, there exist an efficient B1 that distinguishes
the selective simulation security experiments of IPFE with advantage 𝜀IPFE, and an efficient B2
that distinguishes the adaptive LWE experiments with advantage 𝜀ALWE, such that

𝜀A ≤ 𝜀IPFE + 𝜆−𝑘 + poly(|A|)𝜀ALWE +
poly(|A|,𝜆)

𝑝

Remark 4. In Construction 5, if the secret sharing scheme is only selectively non-
annihilable for Lx and L𝑓 , then the resultant CP-ABE achieves very selective security.
This is because the adversary must commit to all the x𝑞’s (for sk𝑞’s) for the reduction
to selective security of the secret sharing scheme to apply. The advantage relation in
Proposition 23 holds, except 𝜀A, 𝜀ANN-f, 𝜀ANN-x are the advantages in the selective games.

6.5 Proof of Proposition 23

Proof (Proposition 23). Fix an an efficient adversaryA, we construct adversaries B1,B2,B3
against the selective simulation security of IPFE, and non-annihilability for L𝑓 and Lx.
We bound the advantage 𝜀A of A in the non-annihilability game as in (14) from the
proposition statement.

Recall that in the adaptive security game of CP-ABE, the adversary first repeatedly
queries attributes {x𝑖} and receives secret keys {sk𝑖} for them. It next adaptively chooses
a policy 𝑓 as its challenge, and receives a ciphertext ct for it. After the challenge, it again
repeatedly chooses attributes {x𝑖} and receives secret keys {sk𝑖} for them. In the end, it
outputs a bit 𝑏 to distinguish whether the encrypted message 𝜇 in ct is 0 or 1.

Recall that the adaptive simulation-security of IPFE guarantees a simulator (IPFE.�Setup,
IPFE.�KeyGen, IPFE.Ẽnc, IPFE.�GrpZT). We consider the following hybrids, and let 𝐴𝜇

𝑖
be dis-

tinguishing advantages of A in H𝜇
𝑖
for 𝑖 ∈ [3].

49 / 57

• H𝜇
1 is the adaptive security experiment Exp

𝜇
CPA. Specifically, the challenger first runs

(impk, imsk) $← IPFE.Setup(1𝜆, 1𝑁),

and then computes each queried secret key for x𝑖 as follows.

isk𝑖
$← IPFE.KeyGen(imsk, ⟦𝛿𝑖v𝑖⟧2), sk𝑖 = (⟦𝛿𝑖⟧2, isk𝑖)

where 𝛿𝑖 is a fresh random non-zero element, and v𝑖 is the selecting vectors
for x𝑖. The ciphertext for 𝑓 is computed by first generating shares (L0, {L𝑏

𝑖
}), L𝑓

from running SS.ShareX and SS.ShareF, and then encoding the shares into vec-
tors {u0, 𝑗}, {u𝑖,𝑏, 𝑗},u𝑓 , as described in Enc. Finally, the ciphertext consists of icts
encrypting those u vectors.

• H𝜇
2 Now the challenger simulates the GGM oracles for A. The game proceeds simi-

larly to H1 except that we replace the IPFE scheme with the simulator. Specifically,
the challenger first runs

(�impk, st) $← IPFE.�Setup(1𝜆, 1𝑁),

and initialize a database of IPFE key vectors and inner-products 𝐷 = (∅,∅).
When receiving a key query for x𝑖, the challenger simulates the isk𝑖 component
using �KeyGen:

(ĩsk𝑖, st′) $← �KeyGen(st,) sk𝑖 = (⟦𝛿𝑖⟧2, ĩsk𝑖).
It updates st← st′, and records the IPFE key vector ⟦𝛿𝑖v𝑖⟧2 into the database 𝐷. If
a ciphertext query for 𝑓 is already received (hence the u vectors already created),
then it computes all inner-products between v𝑖 and the u vectors and update them
into the databse 𝐷.
When receiving a ciphertext query for 𝑓 , the challenger simulates the ict com-
ponents similarly by running Ẽnc(1𝑁 , st). It also generate shares L0, {L𝑏

𝑖
}, 𝐿𝑓 from

running SS.ShareX and SS.ShareF, and then the u vectors encoding these shares. It
finally computes inner-products between all u vectors and stored v𝑖 vectors, and
update them into the database 𝐷.
When receiving a zero-test query 𝛾, the challenger runs

st′, 𝑧←�GrpZTInPrdZT(𝐷,·) (st,𝛾),

where the InPrdZT algorithm answers zero-test queries from �GrpZT over keys and
inner products stored in 𝐷. It updates st← st′, and sends the answer 𝑧 back to A.
That is, the zero-test query 𝛾 is translated by �GrpZT into zero-tests over values in 𝐷,
and the challenger simply answer the translated queries by looking at values in 𝐷.

Claim 25. In GGM, there exists an efficient B1 that distinguishes the adaptive simulation
experiments with advantage 𝜀IPFE such that |𝐴𝜇

1 − 𝐴
𝜇
2 | ≤ 𝜀IPFE.

• In H𝜇
3 , the challenger does not run the secret sharing algorithms anymore. Recall

that in H𝜇
2 , the challenger needs to run SS.ShareX, SS.ShareF to compute the u vec-

tors, and eventually inner-products between v𝑖 and the u vectors. By construction,
the inner-products are exactly ⟦𝛿𝑖Lx𝑖⟧T and ⟦L𝑓 ⟧T. In H𝜇

3 , the challenger instead
obtain them by interacting (as A′) with the Exp𝜇CP experiment, where Exp

𝜇
CP(1

𝜆) with
a machine A′ proceeds as follows:

50 / 57

– Setup. Launch A′(1𝜆) and receive from it the input length 1ℓ . First, run
SS.Setup(1𝜆, 1ℓ) to generate pp and send it to A′. Next, run SS.Share(pp) to
generate (L0, {L𝑏

𝑘
}𝑏∈{0,1}
𝑘∈[ℓ] , 𝑟).

– Query I. Repeat the following for arbitrarily many rounds determined by A′:
In each round, A′ submit some x𝑖 ∈ {0, 1}ℓ . Upon this query, sample a random
element ⟦𝛿𝑖⟧2 encoded in 𝐺2 and send (⟦𝛿𝑖Lx𝑖⟧2, ⟦𝛿𝑖⟧2) to A′.

– Challenge. A′ submits some 𝑓 ∗ ∈ F𝜆,ℓ . Run L𝑓 ∗
$← SS.ShareF(pp, 𝑓 ∗, 𝜇, 𝑟) and

return ⟦L𝑓 ∗⟧1 to A′.
– Query II. Same as Query I.
– Guess. A′ outputs a bit 𝜇′. The outcome of the experiment is 𝜇′ if 𝑓 ∗(x𝑖) = 0
for all 𝑥𝑖 queried in Query I/II. Otherwise, the outcome is set to 0.

|𝐴𝜇
2 −𝐴

𝜇
3 | = 0 as H𝜇

3 is the same as H
𝜇
2 by construction. We show the following claim:

Claim 26. In GGM, there exists efficient B2,B3 that wins the non-annihilability games
for L𝑓 , L𝑥 with advantages 𝜀ANN-f, 𝜀ANN-x, such that

|𝐴𝜇
3 | ≤

𝑄

𝑝
+ 𝑇𝑄(𝜀ANN-f + 𝜀ANN-x),

where 𝑇, 𝑄 are polynomial upper bounds on the number of zero-test queries and key
queries from A.

□

Proof (Claim 25). We prove this claim by reduction to the adaptive simulation security
of the IPFE scheme in GGM (see Definition 19). We construct a distinguisher B for the
adaptive simulation games Expreal and Expsim as follows:

1. B launches A(1𝜆) with fresh randomness 𝑟A, and receives from it a predicate
𝑃 ∈ P𝜆. Let ℓ be the attribute length for 𝑃 and let 𝑁 = (2ℓ + 1). The distinguisher
B sends 1𝑁 to the challenger.

2. B receives impk from the challenger, and runs

SS.pp $← SS.Setup(1𝜆, 1ℓ),
(
L0, {L𝑏

𝑖
}𝑏
𝑖
, 𝑟
) $← SS.ShareX(SS.pp).

B sends mpk = (SS.pp, impk) to the adversary A.

3. Upon receiving a query x𝑖 ∈ {0, 1}ℓ from A, the distinguisher B samples a random
non-zero element 𝛿𝑖, and computes the selecting vectors v𝑖 for x𝑖. It then sends
⟦𝛿𝑖v𝑖⟧2 to the challenger, and receives isk𝑖 back. Finally, B answers A with sk𝑖 =
(⟦𝛿𝑖⟧2, isk𝑖).

4. Upon receiving the challenge 𝑓 , the distinguisher B runs SS.ShareF(SS.pp, 𝑓 , 𝜇, 𝑟) to
generate 𝐿𝑓 , and then encode L0, {L𝑏

𝑖
}𝑏
𝑖
, 𝐿𝑓 into the u vectors as in Enc. It sends the

u vectors in 𝐺1 to the challenger, and gets back icts. It answers A with ct consisting
of those received icts.

51 / 57

5. Upon receiving a zero-test query, the distinguisher B forwards it to the challenger,
and return the answer from the challenger directly to A.

6. In the end, B receives an output bit 𝑏 from A. It outputs 1 if and only if 𝑏 = 𝜇.

First note that B is efficient. In Expreal, the distinguisher B emulates H𝜇
1 for A, and

outputs whether A’s output matches 𝜇. In Expsim, it does so for H
𝜇
2 . Therefore,

|𝐴𝜇
1 − 𝐴

𝜇
2 | =

��Pr[B → 1 in Expreal] − Pr[B → 1 in Expsim]
��

□

Proof (Claim 26). Let A′ be the challenger in H3. We consider the following hybrids, and
let 𝐴′𝜇

𝑖
be distinguishing advantages of A′ in 𝐺

𝜇
𝑖
for 𝑖 ∈ [3]. (Note that 𝐴′𝜇1 = 𝐴

𝜇
3 .)

• G𝜇
1 is the experiment Exp𝜇CP. Specifically, throughout the experiment, the GGM
oracle answers zero-test queries from the adversary of the form

𝛾
(
(1, L𝑓 ∗) ⊗ (1, {𝛿𝑖Lx𝑖}𝑖, {𝛿𝑖}𝑖)

)
.

• G𝜇
2 proceeds identically as G

𝜇
1 , except that the challenger views each zero-test query

from A′ as a degree-1 polynomial where 𝛿𝑖 are the variables:

𝛾
(
(1, L𝑓 ∗) ⊗ (1, {𝛿𝑖Lx𝑖}𝑖, {𝛿𝑖}𝑖)

)
=
∑︁
𝑖

𝛾𝑖

(
(1, L𝑓 ∗) ⊗ (1, Lx𝑖)

)
𝛿𝑖 + 𝛾0(L𝑓 ∗)

The challenger answers the query with zero if and only if 𝛾𝑖 evaluates to zero for
all 𝑖.
Let 𝑄 be the maximum number of zero-test queries from A′. Since 𝛿𝑖 are sampled
independently at random, by Schwartz–Zippel lemma of degree-1 we have |𝐴′𝜇1 −
𝐴
′𝜇
2 | ≤

𝑄

𝑝
.

• G𝜇
3 proceeds identically as G

𝜇
2 , except that the challenger answers zero-test queries

with zero if and only all 𝛾𝑖 are the zero function.
Note that in GGM, A′ only gains information through zero-test queries. In G3,
all queries are answered independently of the shares. Hence A′ has zero advan-
tage, i.e., 𝐴

′𝜇
3 = 0. It remains to construct efficient B2 and B3 that wins the non-

annihilability games for L𝑓 , L𝑥 with advantages 𝜀ANN-f, 𝜀ANN-x, such that

|𝐴′𝜇2 − 𝐴
′𝜇
3 | ≤ 𝑇𝑄(𝜀ANN-f + 𝜀ANN-x),

where 𝑇, 𝑄 are polynomial upper bounds on the number of zero-test queries and
key queries (for x𝑖) from A′.

Note that G𝜇
2 and G

𝜇
3 differs if and only if there exists 𝑖, 𝑗 such that when viewing the 𝑗th

zero-test query from A′ as a polynomial over the 𝛿’s, the affine function 𝛾𝑖 is non-zero,
but evaluates to zero. We also distinguish two cases:

• Case 1: when plugging in Lx𝑖 , 𝛾𝑖 is the zero function over L𝑓 .

• Case 2: when plugging in Lx𝑖 , 𝛾𝑖 is a non-zero function over L𝑓 (but evaluates to 0).

52 / 57

Let 𝐸𝑖, 𝑗 denote such an event for 𝑖, 𝑗, and let 𝐸 be the union of all 𝐸𝑖, 𝑗. Let 𝑇, 𝑄 be
polynomial upper bounds on the number of zero-test queries and key queries (for x𝑖)
from A′. We construct efficient adversaries B𝑑 for 𝑑 = 2, 3 against the non-annihilability
games for L𝑓 , L𝑥 as follows

• B𝑑 samples 𝑡
$← [𝑇] and 𝑞

$← [𝑄], and then launches A′(1𝜆).

• B𝑑 receives the input length 1ℓ from A′, and forwards 1ℓ to the challenger. B𝑑 next
receives SS.pp from the challenger, and forwards it to A′.

• Upon receiving a query x𝑖, the adversary B𝑑 answers with new group handles in
𝐺2.

• Upon receiving the challenge 𝑓 ∗, the adversary B𝑑 answers with new group handles
in 𝐺1.

• Upon receiving the 𝑗th zero-test query, if 𝑗 < 𝑞 then B𝑑 answers as in G𝜇
3 .

If 𝑗 = 𝑞, but A has not submitted the challenge 𝑓 ∗:

– if 𝑑 = 2, then B𝑑 aborts.
– if 𝑑 = 3, then B𝑑 sends x𝑡 to the challenger, and outputs 𝛾𝑡.

If 𝑗 = 𝑞, and A′ has submitted the challenge 𝑓 ∗, then B𝑑 sends x𝑡 to the challenger.

– If 𝑑 = 2, then B2 receives Lx. It plugs Lx into 𝛾𝑡 and outputs the resulting affine
function 𝛾′𝑡 over L𝑓 .

– if 𝑑 = 3, then B3 view 𝛾𝑡 as an affine function 𝛾′𝑡 over L𝑓 , and outputs the first
non-zero coefficient (as an affine function over x𝑡).

Note that if 𝐸 happens, and B𝑑 samples 𝑡, 𝑞 exactly equal to the smallest 𝑖, 𝑗 such that 𝐸𝑖, 𝑗

happens, then either Case 1 or Case 2 happens. In Case 1, B3 wins the non-annihilability
game for Lx, while in Case 2, B2 wins the non-annihilability game for L𝑓 . That is:

|𝐴′𝜇2 − 𝐴
′𝜇
3 | ≤ Pr[𝐸] ≤ 𝑇𝑄 ·

(
Pr[B2 wins in ExpANN] + Pr[B3 wins in Exp′ANN]

)
.

□

Acknowledgement. The authors were supported by NSF grants CNS-1528178, CNS-1929901,
CNS-1936825 (CAREER), CNS-2026774, a Hellman Fellowship, a JP Morgan AI Research
Award, the Defense Advanced Research Projects Agency (DARPA) and Army Research
Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002
through Galois. The views expressed are those of the authors and do not reflect the
official policy or position of the Department of Defense, the National Science Founda-
tion, or the U.S. Government.

References

[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval.
Simple functional encryption schemes for inner products. In Jonathan Katz,
editor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer, Heidelberg,
March / April 2015.

53 / 57

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-
tographic primitives and circular-secure encryption based on hard learning
problems. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages
595–618. Springer, Heidelberg, August 2009.

[ALdP11] Nuttapong Attrapadung, Benoît Libert, and Elie de Panafieu. Expressive
key-policy attribute-based encryption with constant-size ciphertexts. In
Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
PKC 2011, volume 6571 of LNCS, pages 90–108. Springer, Heidelberg, March
2011.

[ALS16] Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully secure functional
encryption for inner products, from standard assumptions. In Matthew Rob-
shaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 333–362. Springer, Heidelberg, August 2016.

[AT20] Nuttapong Attrapadung and Junichi Tomida. Unbounded dynamic predicate
compositions in ABE from standard assumptions. In Shiho Moriai and Huax-
iong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages
405–436. Springer, Heidelberg, December 2020.

[Att16] Nuttapong Attrapadung. Dual system encryption framework in prime-order
groups via computational pair encodings. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 591–623.
Springer, Heidelberg, December 2016.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast encryp-
tion from LWE and pairings in the standard model. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages
149–178. Springer, Heidelberg, November 2020.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pair-
ings and LWE. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 13–43. Springer, Heidelberg, May 2020.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. In 18th ACM STOC, pages 1–5. ACM
Press, May 1986.

[BDHM92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel.
Structure and importance of logspace-MOD class.Mathematical Systems Theory,
25(3):223–237, 1992.

[Bei96] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD
thesis, Technion–Israel Institute of Technology, 1996.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time
using a small number of processors. Information Processing Letters, 18(3):147–
150, 1984.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully

54 / 57

key-homomorphic encryption, arithmetic circuit ABE and compact garbled
circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. In 2007 IEEE Symposium on Security and Privacy, pages
321–334. IEEE Computer Society Press, May 2007.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
253–273. Springer, Heidelberg, March 2011.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and HoeteckWee. Pri-
vate constrained PRFs (and more) from LWE. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 264–302. Springer, Hei-
delberg, November 2017.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic
PRFs from standard lattice assumptions - or: How to secretly embed a circuit
in your PRF. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 1–30. Springer, Heidelberg, March 2015.

[CCL18] Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao. On the complexity of sim-
ulating auxiliary input. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 371–390. Springer,
Heidelberg, April / May 2018.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society
Press, October 2013.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 467–476. ACM Press, June 2013.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. How to run turing machines on encrypted data. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 536–553. Springer, Heidelberg, August 2013.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS
2006, pages 89–98. ACM Press, October / November 2006. Available as Cryp-
tology ePrint Archive Report 2006/309.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

55 / 57

[GV15] Sergey Gorbunov and Dhinakaran Vinayagamurthy. Riding on asymmetry:
Efficient ABE for branching programs. In Tetsu Iwata and Jung Hee Cheon,
editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 550–574. Springer,
Heidelberg, November / December 2015.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption with bounded collusions via multi-party computation. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 162–179. Springer, Heidelberg, August 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based
encryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, 45th ACM STOC, pages 545–554. ACM Press, June 2013.

[JP14] Dimitar Jetchev and Krzysztof Pietrzak. How to fake auxiliary input. In Yehuda
Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 566–590. Springer, Hei-
delberg, February 2014.

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa.
Adaptively secure and succinct functional encryption: Improving security and
efficiency, simultaneously. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 521–551. Springer,
Heidelberg, August 2019.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of
Structures in Complexity Theory, pages 102–111, 1993.

[KW19] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NC1

from 𝑘-Lin. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 3–33. Springer, Heidelberg, May 2019.

[LL20] Huijia Lin and Ji Luo. Succinct and adaptively secure ABE for ABP from 𝑘-
lin. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 437–466. Springer, Heidelberg, December 2020.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryp-
tion and (hierarchical) inner product encryption. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 62–91. Springer, Heidelberg,
May / June 2010.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based
encryption: Achieving full security through selective techniques. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 180–198. Springer, Heidelberg, August 2012.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April
2012.

56 / 57

[Mul87] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a matrix
over an arbitrary field. Combinatorica, 7(1):101–104, 1987.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryp-
tion with general relations from the decisional linear assumption. In Tal
Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 191–208. Springer,
Heidelberg, August 2010.

[Ps16] Rafael Pass and abhi shelat. Impossibility of VBB obfuscation with ideal
constant-degree graded encodings. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 3–17. Springer, Heidelberg,
January 2016.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation
and applications. In Mikkel Thorup, editor, 59th FOCS, pages 859–870. IEEE
Computer Society Press, October 2018.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473.
Springer, Heidelberg, May 2005.

[Tak14] Katsuyuki Takashima. Expressive attribute-based encryption with constant-
size ciphertexts from the decisional linear assumption. In Michel Abdalla
and Roberto De Prisco, editors, SCN 14, volume 8642 of LNCS, pages 298–317.
Springer, Heidelberg, September 2014.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 62–85. Springer, Heidelberg, August 2019.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure func-
tional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 678–697. Springer, Heidel-
berg, August 2015.

[Wee17] Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revis-
ited. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677
of LNCS, pages 206–233. Springer, Heidelberg, November 2017.

[YAHK14] Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and Noboru Kuni-
hiro. A framework and compact constructions for non-monotonic attribute-
based encryption. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS,
pages 275–292. Springer, Heidelberg, March 2014.

[ZGT+16] Kai Zhang, Junqing Gong, Shaohua Tang, Jie Chen, Xiangxue Li, Haifeng
Qian, and Zhenfu Cao. Practical and efficient attribute-based encryption with
constant-size ciphertexts in outsourced verifiable computation. In Xiaofeng
Chen, XiaoFeng Wang, and Xinyi Huang, editors, ASIACCS 16, pages 269–279.
ACM Press, May / June 2016.

57 / 57

	Introduction
	Technical Overview
	Preliminaries
	Attribute-Based Encryption
	Lattice Tools
	Pairing Groups and Generic Asymmetric Pairing Group Model
	Inner-Product Functional Encryption

	Computational Secret Sharing with Adaptive Security
	Secret Sharing for Bounded-Depth Circuits from (Adaptive) LWE
	Proof of Proposition 6
	Secret Sharing for Boolean Formulae from Adaptive LWE
	Proof of Proposition 13

	KP-ABE for Bounded-Depth Circuits
	Proof of Proposition 18

	Doubly Succinct CP-ABE
	Stronger IPFE in GGM
	ABDP Scheme
	Proof of Proposition 22
	Doubly Succinct CP-ABE for Boolean Formulae
	Proof of Proposition 23

	References

