
Scooby: Improved Multi-Party Homomorphic Secret Sharing
Based on FHE

Ilaria Chillotti1 ID , Emmanuela Orsini2 ID , Peter Scholl3 ID , Nigel Paul Smart1,2 ID , and Barry

Van Leeuwen2 ID

1 Zama, Paris, France,
2 imec-COSIC, KU Leuven, Leuven, Belgium,

3 U. Aarhus, Aarhus, Denmark.
ilaria.chillotti@zama.ai,

emmanuela.orsini@kuleuven.be,

peter.scholl@cs.au.dk,

nigel.smart@kuleuven.be,

barry.vanleeuwen@kuleuven.be

Abstract. We present new constructions of multi-party homomorphic secret sharing (HSS) based on
a new primitive that we call homomorphic encryption with decryption to shares (HEDS). Our first
construction, which we call Scooby, is based on many popular fully homomorphic encryption (FHE)
schemes with a linear decryption property. Scooby achieves an n-party HSS for general circuits with
complexity O(|F | + logn), as opposed to O(n2 · |F |) for the prior best construction based on multi-
key FHE. Scooby can be based on (ring)-LWE with a super-polynomial modulus-to-noise ratio. In our
second construction, Scrappy, assuming any generic FHE plus HSS for NC1-circuits, we obtain a HEDS
scheme which does not require a super-polynomial modulus. While these schemes all require FHE,
in another instantiation, Shaggy, we show how in some cases it is possible to obtain multi-party HSS
without FHE, for a small number of parties and constant-degree polynomials. Finally, we show that our
Scooby scheme can be adapted to use multi-key fully homomorphic encryption, giving more efficient
spooky encryption and setup-free HSS. This latter scheme, Casper, if concretely instantiated with a
B/FV-style multi-key FHE scheme, for functions F which do not require bootstrapping, gives an HSS
complexity of O(n · |F |+ n2 · logn).

1

https://orcid.org/0000-0002-0319-4707
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0002-7937-8422
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-3792-4042


Table of Contents

Scooby: Improved Multi-Party Homomorphic Secret Sharing Based on FHE . . . . . . . . . . . . . . 1

Ilaria Chillotti ID , Emmanuela Orsini ID , Peter Scholl ID , Nigel Paul Smart ID , and

Barry Van Leeuwen ID

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Homomorphic Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Spooky Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Homomorphic Encryption with Decryption to Shares (HEDS) . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Multi-input HSS from HEDS Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Linear-Decryption Based FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Two-Party Distributed Decryption: Type lsb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Scooby: Multi-Party HEDS from LD-based FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 HEDS Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Security Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 From 2-party to n-party HEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 BGV Parameters Supporting Scooby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Multi-Party HEDS from Weaker Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1 Scrappy: HEDS from Standard FHE + HSS for NC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Shaggy: Bootstrapping HEDS to More Parties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Casper: Friendly AFS-spooky Encryption from Multi-Key FHE . . . . . . . . . . . . . . . . . . . . . . 24
7.1 Spooky from MK-TFHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Spooky from MK-BFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A Two Party Distributed Decryption: Type msb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.1 n-party Scooby Decryption: the msb case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

https://orcid.org/0000-0002-0319-4707
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0002-7937-8422
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-3792-4042


1 Introduction

One of the more interesting cryptographic constructions to be developed in recent years has been
homomorphic secret sharing (HSS). This concept, which can be seen as a distributed analogue of
homomorphic encryption, was introduced in [BGI16a], where a two party construction for branching
programs was presented based on the decisional Diffie-Hellman assumption. The idea of HSS starts
from the concept of a (traditional) secret sharing scheme, where an input x to some function is
split into n shares, (x1, . . . ,xn). This sharing, that in this work we always assume to be a full
threshold sharing, is created via an algorithm (x1, . . . ,xn) ← ShareHSS(x). An HSS scheme has
two additional algorithms, the first yi ← EvalHSS(F ;xi) takes a function description F and a share
xi and produces a corresponding output share yi. The second RecHSS(y1, . . . , yn) takes the output
shares and reconstructs the result F (x). To avoid trivial solutions one requires that the length of the
yj ’s should be compact, i.e. it only depends on the output length of the function F and the security
parameter. An important class of HSS schemes are those with additive reconstruction, where the
function RecHSS simply computes y1 + . . . + yn. We refer to these as additive HSS schemes. It is
such additive HSS schemes that we focus on in this work.

Motivation for HSS. The main application of HSS is towards secure two-party or multi-party com-
putation with succinct communication. Indeed, the breakthrough work of [BGI16a] showed that for
a large class of circuits, it’s possible to achieve secure computation with sublinear communication in
the circuit size under DDH, which was previously only known using fully homomorphic encryption.
Since then, HSS has proven useful in various other applications, and is closely related to pseu-
dorandom correlation generators [BCG+19] and pseudorandom correlation functions [BCG+20],
which allow generation of correlated randomness with a minimal amount of interaction. HSS for
simple classes of functions, particularly the case of distributed point functions [GI14], has also
proven useful for applications including private information retrieval [BGI16b] and secure RAM
computation [Ds17]. On a more theoretical side, HSS has also been used to build 2-round secure
computation and nearly optimal worst-case to average-case reductions [BGI+18].

Additive reconstruction is an important feature of HSS in many secure computation settings,
where it may be desirable for the output shares to be re-used in another secure computation based
on secret sharing. This is the case, for instance, when using HSS to generate preprocessing material
for multi-party computation protocols in the dishonest majority setting [BCG+19]. It can also be a
useful feature in scenarios where a client reconstructing the output is constrained to perform only
lightweight computations.

Current State of HSS and Related Primitives. Related to HSS is the dual concept of function
secret sharing (FSS) [BGI15, BGI16b]. In FSS, the shared data is a secret function F (from some
publicly known class of functions), such that the parties can locally obtain secret shares of F (x),
for any public input x. For general function classes such as polynomially-sized circuits, function
secret sharing and homomorphic secret sharing are equivalent.

Obtaining efficient n-party HSS and FSS is complex for general functions. The most efficient
known scheme is that based on an LWE-construction from spooky encryption. Spooky encryption,
introduced by Dodis et al. [DHRW16], is a rather complex construction based on a multi-key variant
of FHE [CM15, MW16], and for our purposes we are only interested in additive-function-sharing
spooky encryption (or AFS-spooky encryption). Spooky encryption is a semantically secure public-

key encryption scheme consisting of the usual three algorithms (KeyGenSpooky,EncSpookypk ,DecSpookysk )

3



as well as an additional algorithm EvalSpookypk1,...,pkn
(F, ct1, . . . , ctn). The EvalSpooky algorithm, given a

function F on n arguments from a given class, and n ciphertexts cti, encrypting xi under pki,
produces n new ciphertexts ct′1, . . . , ct

′
n such that, computing yi ← DecSpookyski

(cti), we have that
y1 + . . .+ yn = F (x1, . . . , xn).

In [DHRW16], it is shown that it is possible to build FSS from AFS-spooky encryption. Roughly,
to share an input function F the dealer first generates n AFS-spooky key pairs (pki, ski) ←
KeyGenSpooky(1λ). The dealer also generates an n-out-of-n description of the function F , i.e. func-
tions Fi(x) such that F (x) = F1(x) + . . .+ Fn(x). Finally, the function secret sharing of the input

function F is defined to be the tuple Fi = (ski, pk1, . . . , pkn,Enc
Spooky
pk1

(F1), . . . ,Enc
Spooky
pkn

(Fn)).
To define the FSS evaluation we create a function Cx which takes as input the n additive shares

of a function F , and evaluates it on the input x, which is hard-coded into Cx. By applying

EvalSpookypk1,...,pkn

(
Cx,Enc

Spooky
pk1

(F1), . . . ,Enc
Spooky
pkn

(Fn)
)
,

we obtain ciphertexts ct′1, . . . , ct
′
n, where ct′i can be decrypted (using ski) to obtain yi such that

y1 + . . .+ yn = F (x).
In [BGI+18], Boyle et al. showed how the FSS construction from spooky encryption can be

modified to enable an additive HSS scheme. The ShareHSS(x) operation additively shares x into x =
x1+ . . .+xn, generates n spooky key pairs (pk1, sk1)← KeyGenSpooky(1λ), and then encrypts xi via

cti ← EncSpookypki
(xi). The share values xi output by ShareHSS(x) being xi = ({pki}ni=1, {cti}ni=1, ski).

The EvalHSS(F,xi) function executes EvalSpookypk1,...,pkn
on the function F and the ciphertext (ct1, . . . , ctn)

so as to obtain n ciphertexts ct′1, . . . , ct
′
n. The output of EvalHSS(F,xi) then being DecSpookyski

(ct′i).
Thus, there is a strong connection between HSS, FSS and spooky constructions, and, as men-

tioned above, the prior most efficient n-party HSS and FSS constructions for circuits arise from
AFS-spooky based on LWE (and a circular security assumption). The best current construction for
AFS-spooky encryption of Dodis et al. [DHRW16] has a complexity of O(n2 · |F |). In particular,
each gate of the underlying arithmetic circuit F requires a bootstrapping operation which in the
multi-key FHE setting has complexity O(n2).

1.1 Our Contribution

We present new constructions of homomorphic secret sharing in the multi-party setting, sup-
porting up to n−1 out of n corruptions. Our constructions improve upon the only previous general
construction, based on AFS-spooky encryption [DHRW16], either by being more efficient, or in
some cases, relying on different assumptions.

HSS from Homomorphic Encryption with Decryption Shares. We present our construc-
tions as a new primitive called homomorphic encryption with decryption to shares (HEDS), which
can be seen as a homomorphic encryption scheme with a special decryption algorithm that (non-
interactively) outputs an n-party secret share of the encrypted message. HEDS is closely related
to both spooky encryption and homomorphic secret sharing (HSS): the major difference compared
to spooky is that HEDS needs to set up private decryption keys under a common public key with
either a trusted setup algorithm or a secure multiparty computation protocol, while the difference
with HSS is that the homomorphic evaluation algorithm is public. As is the case for spooky, HEDS
immediately implies additive HSS for the same class of functions.

4



Scooby Construction: HEDS from Linear Decryption FHE. We show that HEDS can be
built using any FHE scheme with a special decryption property, which we call linear decryption
based fully homomorphic encryption (LD-based FHE) schemes. Examples of such LD-based FHE
schemes are LWE-based constructions like BGV [BGV12], BFV [FV12], GSW [GSW13] and TFHE
[CGGI16, CGGI20]. Notice this special property of almost all FHE schemes, where the decryption
function is a linear function of the secret key, has been exploited previously, including for HSS in
the two-party setting [DHRW16, BKS19] and other applications [BDGM19, GH19].

Any of these schemes can be used to instantiate our Scooby construction, giving additive HSS
for circuits. Recall in AFS-spooky the key generation is run independently by the n-parties, in our
variation the keys are instead generated by a trusted third party.4

Since this construction only requires single-key FHE and not multi-key FHE, we obtain n-party
HSS that is simpler and more efficient than the AFS-spooky-based construction. In particular, the
computational complexity grows as O(|F |+log n), whereas AFS-spooky has complexity O(n2 · |F |)
for n parties. In addition, when instantiated with BGV we show that the standard parameter sets
for bootstrapping are sufficient for our construction.

At a high level, at the core of Scooby is a well-known 2-party distributed decryption procedure,
which non-interactively decrypts an LWE-based ciphertext into two shares, assuming the ciphertext
modulus has super-polynomial size. This trick has been used previously, including in the construc-
tion of AFS-spooky. Our main contribution is to bootstrap this 2-party non-interactive algorithm
into an n-party non-interactive algorithm. We do this by placing the n parties on the leaves of a
binary tree, and then homomorphically evaluating the two party protocol at each internal node of
the tree. Each party only needs to evaluate the 2-party protocol at each node on the path from
the root to its leaf. Each homomorphic evaluation at the internal nodes is exactly equivalent to a
bootstrapping operation, namely a homomorphic evaluation of the decryption circuit for some key.
Thus, decryption into shares costs O(log n) operations per party.

Removing the Super-polynomial Modulus. The problem with Scooby, as well as all LWE-
based additive HSS schemes, is that we require a super-polynomial modulus-to-noise ratio in the
underlying LD-based FHE scheme. This is a stronger form of LWE assumption that usually requires
larger parameters to compensate. We give a variant of the construction where we only need standard
FHE, together with an HSS scheme for NC1 circuits. Using recent constructions of HSS [OSY21,
RS21, ADOS22] based on either Paillier encryption or class groups, we obtain the first additive HSS
schemes for circuits that do not require LWE with a super-polynomial modulus. The complexity of
the HSS is also O(|F |+ log n). However, it is likely to be less efficient in practice than Scooby, and
is also not secure against a quantum adversary. We call this construction Scrappy.

Avoiding FHE Entirely. We also show that in certain cases, we can obtain multi-party HSS
without using any form of FHE whatsoever. We do this through a variant of the previous construc-
tion, where we bootstrap a HEDS scheme to handle more parties by homomorphically evaluating
its own decryption circuit. This transformation is more challening to apply without resorting to
FHE, and we are only able to obtain a 4-party HEDS scheme for constant-degree polynomials,

4 In some sense the “spooky” behaviour exhibited by spooky encryption cannot really be explained, whereas our
“spooky” behaviour can be explained by the setup procedure. This setup procedure in some sense acts like the
janitor in Scooby-Doo, who has set up the spooky goings-on.

5



Construction Assumptions Setup Complexity

DHRW [DHRW16] LWE with Uniform CRS O(n2 · |F |)
(AFS-Spooky) super-polynomial modulus

Scooby: §5 LD-based FHE with Trusted O(|F |+ logn)
(HEDS) super-polynomial modulus

Scrappy: §6.1 Generic FHE + Trusted O(|F |+ logn)
(HEDS) 2-party HSS for NC1

Shaggy: §6.2 2-party HSS for NC1 Trusted O(|F |)
(HEDS) (n = 4, constant-deg F )

Casper: §7 Specific MK-FHE with Uniform CRS O(n · |F |+ n2 · logn)
(AFS-Spooky) super-polynomial modulus or O(n2 · |F |+ n2 · logn)

Table 1. Summary of n-party HSS Constructions. All FHE-based constructions allow arbitrary functions F , and
assume circular security to avoid blow-up in the key sizes (this assumption can be removed by relaxing to bounded-
depth circuits). The asymptotic complexities ignore potential factors in λ that are independent of n and F .

based on Paillier encryption. Nevertheless, as far as we are aware, this is the first instance of > 2-
party, dishonest majority HSS for constant-degree polynomials, without relying on FHE. We call
this construction Shaggy.

We summarize our results in Table 1.

Spooky from HEDS. In addition, in Section 7, we show how our Scooby scheme can be adapted
to give a true AFS-spooky encryption, i.e. with no trusted setup and independent keys, if we
base our construction on specific multi-key FHE (MK-FHE). This instantiation can have a simpler
complexity than that given in [DHRW16], in particular, assuming the function F can be evaluated
without bootstrapping, our complexity is O(n · |F | + n2 · log n). If F requires a bootstrapping for
all the operations, it is O(n2 · |F |+ n2 · log n). We call this construction Casper.

We give two variants of Casper, one based on the TFHE scheme [CCS19], and one based on
the BFV scheme [CDKS19]. We note that being MK-FHE schemes, the construction will be less
efficient than our Scooby scheme, which works over most (practical) FHE schemes. It is interesting
to note that the spooky construction from [DHRW16] also goes via MK-FHE. In particular, they
make use of the MK-FHE scheme of [CM15, MW16]. The route though is more complex than our
tree-based construction, leading to an increased complexity.

2 Preliminaries

For a set S, we denote by a ← S the process of drawing a from S with a uniform distribution
on the set S. If D is a probability distribution, we denote by a ← D the process of drawing a
with the given probability distribution. For a probabilistic algorithm A, we denote by a ← A the
process of assigning a the output of algorithm A; with the underlying probability distribution being
determined by the random coins of A.

All reductions modulo an integer p will be assumed to be centred, i.e. in the interval
(−p/2, . . . , p/2).

We let R = Z[X]/(XN +1) and Rp denote the localisation of R at p, i.e. (Z/pZ)[X]/(XN +1).
For a real interval I we let RI denote the restriction of the set R to have coefficients in the support
of I. Thus as sets (but not as rings) we have Rq = R(−q/2,...,q/2).

6



2.1 Homomorphic Secret Sharing

The following definition of public-key HSS is adapted from [BKS19]. Note that, as we are
only interested in schemes with additive reconstruction, we can disregard the decoding algorithm,
DecHSS

sk , that is given in the more general definition of HSS [BGI+18]. Concretely, in additive HSS
the decoding algorithm simply adds up all the shares.

Definition 2.1 (Additive Public Key Homomorphic Secret Sharing). An n-party, public-
key homomorphic secret sharing (HSS) scheme for a class of functions F over a ring R with input
space I ⊆ R consists of PPT algorithms (KeyGenHSS,ShareHSSpk ,EvalHSSpk ) with the following syntax:

– KeyGenHSS(1λ, n) → (pk, (ek1, . . . , ekn)): Given a security parameter 1λ, the setup algorithm
outputs a public key pk and n evaluation keys (ek1, . . . , ekn).

– ShareHSS
pk (pk, x) → (x1, . . . ,xn): Given public key pk and private input value x ∈ I, the share

algorithm outputs shares (x1, . . . ,xn).
– EvalHSS

pk (F ;xi, eki) → yi: On input a function F ∈ F , the parties share xi, and it’s evaluation
key eki, the homomorphic evaluation algorithm outputs yi ∈ R, which is party i’s share of an
output y ∈ R.

This definition is in the multi-input setting, meaning that it supports a compact evaluation of a
function F on shares of inputs x(1), . . . , x(ρ) given by ρ parties that are usually referred to as clients.

More concretely, each client inputs x(i) to the Share algorithm which returns shares x
(i)
j , j ∈ [n], to

n parties (the servers). Each server can then locally run Eval on input (x
(1)
j , . . . ,x

(ρ)
j ) obtaining a

share yj such that F (x(1), . . . , x(ρ)) =
∑

j∈[n] yj . Note that the KeyGenHSS algorithm cannot be run
by any single party, so can be seen as a form of correlated randomness generated by a trusted dealer.
We describe the required security properties for the algorithms (KeyGen,Share,Eval) according to
this more general formulation.

Definition 2.2 (HSS (Statistical) Correctness). We say that an n-party public-key HSS
scheme (KeyGenHSS,ShareHSSpk ,EvalHSSpk ) is correct for a class of functions F if, for all security pa-

rameters λ ∈ N, for all functions F ∈ F , for all x(1), . . . , x(ρ) ∈ I (where I is the input space of F ),

for all (pk, ek1, . . . , ekn) ← KeyGenHSS(1λ) and for all (x
(i)
1 , . . . ,x

(i)
n ) ← ShareHSSpk (pk, x(i)), i ∈ [ρ],

we have

Pr
[
y1 + · · ·+ yn = F (x(1), . . . , x(ρ))

]
≥ 1− negl(λ),

where
yj ← EvalHSSpk (F ; (x

(1)
j , . . . ,x

(ρ)
j ), ekj), j ∈ [n],

where the probability is taken over the random coins of KeyGenHSS, ShareHSSpk and EvalHSSpk .

Definition 2.3 (HSS Security). Let I be the set of corrupt servers. For each j ∈ I and non-
uniform adversary A (of size polynomial in the security parameter λ), it holds that∣∣∣Pr[ExpHSS,secA,j (λ) = 1]

∣∣∣ ≤ 1

2
+ negl(λ),

where ExpHSS,sec
A,j (λ) is the experiment defined in Figure 1.

7



Security Experiment ExpHSS,secA,j (λ)

Let I ⊂ [n] be the set of corrupt servers.

1. (pk, (ek1, . . . , ekn))← KeyGenHSS(1λ).
2. (x0, x1, state)← A(1λ).
3. b← {0, 1}.
4. (xb,1, . . . ,xb,n)← ShareHSSpk (pk, xb).
5. b′ ← A(state, pk, {ekj ,xb,j}j∈I).
6. Return b′ = b.

Fig. 1. Security Experiment ExpHSS,sec
A,j (λ)

Remark 2.1 (Private-key HSS). HSS can also be defined in the single-input, private key setting,
which is weaker than the public-key flavour above. Here, there is no KeyGen algorithm, and Share
is run only once on all inputs together, so can be seen as a trusted dealer algorithm that distributes
the shares.

2.2 Spooky Encryption

“Spooky” encryption is a type of public key encryption scheme which exhibits a form of limited
malleability, so called “spooky action at a distance” [DHRW16]. The particular form of spooky
encryption we will use is so called additive-function-sharing spooky encryption (or AFS-spooky
encryption). We present a definition which works for any finite ring R, and arithmetic circuit C,
and not just for the case of F2 as originally presented.

Definition 2.4 (AFS-spooky Encryption). An AFS-spooky encryption scheme, over
a ring R, is a public-key encryption scheme given by a tuple of four algorithms
(KeyGenSpooky,EncSpookypk ,DecSpookysk ,EvalSpookypk1,...,pkn

) with the following syntax:

– KeyGenSpooky(1λ): This is a probabilistic polynomial time algorithm which on input of a security
parameter λ outputs a public/private key pair (pk, sk).

– EncSpookypk (m): This probabilistic polynomial time algorithm takes a message m ∈ R and gener-
ates a ciphertext ct encrypting that message under the public key pk.

– DecSpookysk (ct): Given a ciphertext ct encrypted under the public key associated to sk, this algo-
rithm produces the underlying plaintext.

– EvalSpookypk1,...,pkn
(C, ct1, . . . , ctn): Given an arithmetic circuit description C : Rn −→ R, n public

keys pk1, . . . , pkn, and n of ciphertexts ct1, . . . , ctn, this produces n ciphertexts ct′1, . . . , ct
′
n

An AFS-spooky encryption scheme must be correct, as an encryption scheme, i.e. we must have

∀(pk, sk)← KeyGenSpooky(1λ), ∀m ∈ R : DecSpookysk ( EncSpookypk (m) ) = m.

It must also be IND-CPA as an encryption scheme and satisfy the following form of limited mal-
leability called AFS-spooky correctness.

Definition 2.5 (AFS-spooky Correctness). There exists a negligible function ν such that for
all λ ∈ N, every arithmetic circuit C computing a n-argument function f : Rn −→ R, and all

8



inputs x1, . . . , xn of C, we have

Pr

∑
i∈[n]

yi = C(x1, . . . , xn) :

∀i ∈ [n], (pki, ski)← KeyGenSpooky(1λ),

∀i ∈ [n], cti ← EncSpookypk (xi),

(ct′1, . . . , ct
′
n)← EvalSpookypk1,...,pkn

(C, ct1, . . . , ctn),

∀i ∈ [n], yi ← DecSpookyski
(ct′i)

 ≥ 1− ν(λ)

In [DHRW16], it is shown how to construct an AFS-spooky encryption scheme in the CRS model
using an LWE-based multi-key FHE [CM15, MW16] and assuming a circular security assumption.
The common reference string (output by a separate generation algorithm), necessary in the multi-
key FHE construction, is assumed as input to the key generation algorithm, and correctness and
security hold for all outputs of the common reference string generator.

In their work, Dodis et al. [DHRW16] show that AFS-spooky encryption implies FSS for general
circuit; in [BGI+18], Boyle et al. show that AFS-spooky also enables HSS for multiple inputs; in
fact, it implies HSS without any setup, where the key generation algorithm is simply run locally
by each client providing input.

3 Homomorphic Encryption with Decryption to Shares (HEDS)

In this section we formally introduce the notion of a scheme which implements Homomorphic
Encryption with Decryption to Shares (HEDS) and relate it with other concepts described in previ-
ous sections. Loosely speaking, a HEDS encryption scheme is similar to public-key HSS, except with
a public evaluation algorithm that outputs a ciphertext, more akin to evaluation in homomorphic
encryption. The ciphertext is then convert into shares in the decryption algorithm, which uses one
party’s private key. In addition, similarly to HSS, but unlike in spooky encryption, the parties need
to engage in a protocol, or assume a trusted third party, to set up the associated public and secret
keys. Thus the action from the outside seems spooky, but this can be explained away as an effect
of the setup protocol.

We start by giving the definition of HEDS, and then we show that it enables both homomorphic
and function secret sharing.

Definition 3.1 (HEDS Encryption). A HEDS encryption scheme for a class of functions F :
R∗ → R, over a ring R, is given by a tuple of PPT algorithms (SetUpHEDS,EncHEDS

pk , DecHEDS
sk ,

EvalHEDS
pk ), with the following syntax:

– SetUpHEDS(1λ, n): This randomized algorithm takes as input a security parameter λ, a number
of parties n. It outputs the tuple (pk, sk1, . . . , skn).

– EncHEDS
pk (m): This takes as input the public key and a message m ∈ R, and outputs a ciphertext

ct.

– DecHEDS
ski

(ct): Given a ciphertext ct encrypted under the public key this outputs a value yi for
each i ∈ [n].

– EvalHEDS
pk (C, (ct1, . . . , ctρ)): On input of the public key pk, a set of n ciphertexts, and an arith-

metic circuit description C : Rρ −→ R of a function from the specified class, this produces a
ciphertext ct.

The algorithms
(
SetUpHEDS,EncHEDS

pk ,DecHEDS
sk ,EvalHEDS

pk

)
should satisfy the following correct-

ness and security requirements.

9



Definition 3.2 (HEDS Correctness). There exists a negligible function ν such that for all λ ∈
N, every arithmetic circuit C computing a ρ-argument function f : Rρ −→ R in F , and all inputs
x1, . . . , xρ of C, we have

Pr

∑
i∈[n]

yi = C(x1, . . . , xρ) :

(pk, sk1, . . . , skn)← SetUpHEDS(1λ, n),

∀i ∈ [ρ], cti ← EncHEDS
pk (xi),

ct← EvalHEDS
pk (C, (ct1, . . . , ctρ)),

∀i ∈ [n], yi ← DecHEDS
ski

(ct)

 ≥ 1− ν(λ).

Definition 3.3 (HEDS Security). For all subsets A ⊂ [n] of size < n, and all probabilistic
polynomial time adversaries (A1,A2) we have

Pr

 b = b′ :

(pk, sk1, . . . , skn)← SetUpHEDS(1λ, n), b ∈ {0, 1},
(m0,m1, state)← A1(pk, {ski}i∈A),
ct← EncHEDS

pk (mb),

b′ ← A2(ct, state)

 ≤ negl(λ),

i.e. the encryption scheme is IND-CPA, even when up to n−1 secret keys are given to the adversary.

Compactness. Just as with fully homomorphic encryption, we say that HEDS is compact if the
share decryption algorithm is independent of the evaluated function.

3.1 Multi-input HSS from HEDS Encryption

Here we relate HEDS encryption and HSS showing that HEDS encryption implies HSS with
multiple inputs. Let P be a set of n servers and C be a set ofm clients. Let C be a circuit representing
a function F : Rm → R in a class function F . To build an HSS-scheme, we need to define three
algorithms KeyGenHSS, ShareHSS, EvalHSS as in Definition 2.1. Let (SetUpHEDS,EncHEDS

pk , DecHEDS
sk ,

EvalHEDS
pk ) be a HEDS encryption scheme for F , as defined in the previous section, we proceed as

follows.

– KeyGenHSS(1λ, n):
1. Run (pk, sk1, . . . , skn)← SetUpHEDS(1λ, n)
2. For each i ∈ [n], set eki := ski
3. Return pk and (ek1, . . . , ekn)

– ShareHSS
pk (x(j)): Each client Pj ∈ P, on input of x(j), computes cj = EncHEDS

pk (x(j)) and sends
this to all parties Pi, i ̸= j. Upon receipt of ci from all parties Pi, Pj sets xj = (c1, . . . , cn).

– EvalHSS
pk (F ;xi, eki): Given a function F : Rm → R, each server i ∈ [n] computes circuit descrip-

tion C of F and proceeds as follows.
1. Compute cti = EvalHEDS

pk (C,xi)

2. Compute yi = DecHEDS
eki

(cti)

By Definition 3.2, we know that the evaluation algorithm outputs to the servers the shares y1, . . . , yn
such that

∑
i∈[n] yi = y = F (x(1), . . . , x(m)).

Proposition 3.1. Assuming the existence of a HEDS encryption scheme for a class of functions
F , there exists a public-key multi-input HSS scheme for F .

Proof. Correctness follows by inspection of the scheme described above and by correctness of the
underlying HEDS construction. Security also follows from the security of HEDS.

10



In the other direction, we observe that a public-key HSS scheme implies HEDS for the same
class of functions, however, the resulting HEDS scheme may not be compact. This is because the
HSS evaluation algorithm will have to be carried out in the HEDS decryption step, since HSS uses
a private key for evaluation.

4 Linear-Decryption Based FHE

Our main constructions are based on a form of FHE which comes from LWE-style systems.
We abstract much of the details of the specific construction away in what follows, for example the
specific key generation and encryption algorithms. This allows us to capture schemes as diverse as
BGV [BGV12], BFV [FV12], GSW [GSW13] and TFHE [CGGI16, CGGI20]. These schemes all have
the same form of decryption equation, namely one based on a linear inner product combination of
the ciphertext with the secret key, modulo the ciphertext modulus. The result of this inner product
is then processed to produce the plaintext (which is an element of Rp for some prime p) in one of
two distinct ways, depending on whether the message is embedded at the top of the range modulo
q (as in FV), or the bottom of the range modulo q (as in BGV). We refer to these two types of
decryption as FHE as being of type msb and type lsb respectively. We call the whole class of such
FHE systems Linear Decryption based, or LD-based FHE. Similar definitions have been considered
previously [BKS19, GH19, BDGM19].

Let sec denote some statistical security parameter and λ denote a computational security pa-
rameter. We define such a scheme as follows, the precise encryption and evaluation algorithms are
not important for our discussion.

Definition 4.1 (LD-based FHE). An LD-based FHE scheme is given by a tuple of algorithms
(KeyGenFHE,EncFHEpk ,DecFHEsk ,EvalFHEpk ), as follows:

– KeyGenFHE(1λ, p): This randomized algorithm takes as input the security parameter λ and a
plaintext modulus space p. It outputs a tuple (q,N,B, d,∆, S, pk, sk). The value q will correspond
to the ciphertext modulus5, the value N will be the LWE-ring dimension (which for convenience
we assume is a power of two), the value B will be a “noise bound”, the value d is one less than
the dimension of the ciphertext space, the value ∆ is set to be ⌊q/p⌋, the value S is a bound on
the secret key size S, and pk (resp. sk) will be the public (resp. private) keys.
The private key sk = (s1, . . . , sd) is assumed to be a random element in Rd

q sampled such that
∥sk∥∞ ≤ S. Note, this is not necessarily sampled uniformly at random subject to this constraint.
All subsequent algorithms are assumed to take the tuple (N, q, d,B,∆) implicitly as input pa-
rameters.

– EncFHE
pk (m, type): On input of m ∈ Rp this will output a ciphertext ct ∈ Rd+1

q such that

ct · (1,−sk) =
{
m+ p · ϵ (mod q) If type = lsb,
∆ ·m+ ϵ (mod q) If type = msb.

A ciphertext such that ∥ϵ∥∞ ≤ B will be called valid. The encryption algorithm produces such
a valid ciphertext. The precise algorithm use for encryption will depend on the public key, and
the specific scheme. All that concerns us is the form of the ciphertext.

5 In practice there may be many ciphertext moduli depending on which level a ciphertext is sitting at, at a high
level this can be ignored. Although it can be important in practice

11



– EvalFHE
pk (F (x1, . . . , xℓ), {ct1, . . . , ctℓ}): On input of ℓ valid ciphertexts cti and an arithmetic func-

tion F (x1, . . . , xℓ) this function will homomorphically evaluate the function F over the cipher-
texts, producing a valid ciphertext as output.

– DecFHE
sk (ct): On input of a valid ciphertext and a secret key this will compute the message as

m =

{
(ct · (1,−sk) (mod q)) (mod p) If type = lsb,⌊
(ct · (1,−sk) (mod q)) · p/q

⌉
If type = msb.

The correctness requirement simply says that EvalFHE, when given ℓ valid ciphertexts, outputs a
valid encryption of the correct result. The security requirement is the standard notion of IND-CPA
security.

For example: In the case of the BGV scheme [BGV12] from ring-LWE we will have that ct =
(c0, c1), so that decryption is given by ct · (1,−sk) = c0−s1 · c1, and, hence, for this scheme we have
n = 1 and sk = s1. The BFV scheme [FV12] has the same structure, the main difference being that
BFV uses the msb decryption, while BGV uses lsb.

In the case of Ring-GSW, a ciphertext is in R
(d+1)×(d+1)ℓ
q , with d = 1 and sk = s1. In practice

it is composed by 2 · ℓ FV-like ciphertext (i.e., with the message encrypted in the msb). To decrypt
a Ring-GSW ciphertext, we only decrypt one of these ciphertexts: the others contain redundant
information. Another way of seeing a Ring-GSW ciphertext, is with a very sparse secret key sk =
(sk1, . . . , sk2ℓ), where all the keys corresponding to the FV-like ciphertext that we are not going
to decrypt are set to zero. The TFHE scheme [CGGI16, CGGI20] uses a combination of FV-like
ciphertexts (with message encrypted in the msb, called LWE and RLWE ciphertexts) and Ring-
GSW ones.

Parameters for Decryption to Shares. For such LD-based FHE schemes we have a special
form of non-interactive two party distributed decryption, which we shall now outline in the lsb and
the msb cases. We will require the parameters are selected so that

q > 2 · p · (B + 1) · 2sec, (1)

where sec is the statistical security parameter. This two-party distributed decryption, which is
essentially the same technique as in [DHRW16, BKS19], will form the basis of our first multi-party
HEDS construction in Section 5.

4.1 Two-Party Distributed Decryption: Type lsb

Suppose sk is split into two keys sk1 and sk2 with sk = sk1 + sk2 (mod q), with sk1 held by
party P1 and sk2 held by party P2. Now we can, without interaction, given a valid ciphertext ct
encrypting a message m, compute an additive sharing of m = m1+m2 (mod p) between P1 and P2

as follows. We require that the parties have agreed upon a public random value for each decryption,
but later will remove this using a PRF.

2-party DistDeclsb: Let R← Zq be a public random nonce.
1. P1 computes d1 ← ct · (1,−sk1) +R (mod q) and then m1 ← d1 (mod p).
2. P2 computes d2 ← ct · (0,−sk2)−R (mod q) and then m2 ← d2 (mod p).

We prove that this leads to a correct result with overwhelming probability.

12



Proposition 4.1. Given an LD-based FHE scheme of type msb (Definition 4.1), where
(q,N,B, d,∆, S, pk, sk) ← KeyGenFHE(1λ, p), with q > 2 · p · (B + 1) · 2sec and sk1 + sk2 = sk.
Let (ct,m) be a pair of ciphertext/plaintext messages and m1 and m2 values obtained with the
2-party distributed decryption procedure described above. Then, it holds that

m = m1 +m2 (mod p),

with probability at least 1−N · 2sec.

Proof. First we notice that

m = ((d1 + d2) (mod q)) (mod p),

and that we will always have m = m1 + m2 (mod p) if the internal reduction modulo q in the
decryption equation for m does not need to compensate for a wrap around. However, since we
know ct is valid (i.e., ct · (1,−sk) = m + p · ϵ (mod q) with ∥ϵ∥∞ ≤ B ) we also know that the
coefficients of d1+d2 (mod q) will lie in the range (−p·(B+1), . . . , p·(B+1)). Thus, the distributed
decryption will potentially result in an error if and only if the coefficients of d1 lie in one of the two
ranges (−q/2,−q/2 + p · (B + 1)) or (q/2− p · (B + 1), q/2). Since each party added or subtracted
the random R, it holds that d1 is uniformly distributed in the range (−q/2, . . . , q/2). Therefore,
the probability there is a wraparound in a single coefficient is bounded by 2 · p · (B + 1)/q < 2−sec.
However, we also known that, if there is a wrap around, it will definitely result in an invalid
distributed decryption, as the error only consists of the addition of a single value of q (mod p) ̸= 0.
Thus, a single coefficient will be correct with probability 1− 2−sec. To obtain a correct decryption
we need all coefficients to be correct, which will happen with probability(

1− 2−sec
)N ≈ 1−N · 2−sec.

We report details on the two party distributed decryption for the type msb in Appendix A.

5 Scooby: Multi-Party HEDS from LD-based FHE

In this section we detail how to construct a HEDS encryption scheme for the underlying ring
Rp, from generic LD-based FHE. We call our construction Scooby, as it is similar to a spooky
encryption but with a trusted setup. To denote the specific nature of this construction we refer to
SetUpScooby, EncScoobypk , etc., instead of SetUpHEDS, EncHEDS

pk , etc.

At the core of Scooby is the 2-party distributed decryption procedure described in the previous
section. We show that, assuming an LD-based FHE scheme, this directly yields a 2-party Scooby.
We then show how to bootstrap the 2-party scheme to the multi-party setting.

5.1 HEDS Key Generation

First, we need to slightly modify the KeyGen algorithm for the underlying FHE scheme to take
a “special” form that is common to all standard FHE constructions. More concretely, the algorithm
KeyGenFHE(1λ, p) proceeds as follows, using two sub-procedures ParamGen() and PubKeyGen():

13



1. params ← ParamGen(1λ, p): This algorithm takes as input a security parameter λ, a plaintext
modulo p and produces the scheme parameters params = (q,N,B, d,∆, S).

2. sk← Rn
q such that ∥sk∥∞ ≤ S.

3. pk ← PubKeyGen(1λ, sk, params): This algorithm, on input the secret key and scheme parame-
ters, samples and outputs an associated public key pk.

5.2 Security Assumption

In our construction, we generate an FHE public key based on a secret-key sk = sk0+ sk1, where
sk0, sk1 are both sampled uniformly with coefficients bounded by the parameter S. For security, we
require that the scheme defined by (pk, sk) satisfies the standard IND-CPA security notion, even
when the adversary is given one of the original secret keys ski. This is formalized as follows.

Definition 5.1 (Bounded secret key IND-CPA security). Let FHE =
(KeyGenFHE,EncFHEpk ,DecFHEsk ,EvalFHEpk ) be a linear decryption-based FHE scheme, where KeyGenFHE

is split into two sub-routines ParamGen,PubKeyGen as above.
We require that for (q,N,B, d,∆, S) ← ParamGen(1λ, p), and sk0, sk1 ← Rd

q with ∥ski∥ ≤ S,
sk = sk0+ sk1 and pk← PubKeyGen(sk), it holds that for any PPT algorithm A, for any σ ∈ {0, 1},
messages m0,m1 and bit b← {0, 1}:

Pr[A(1λ, pk, skσ,EncFHEpk (mb)) = b] ≤ 1/2 + negl(λ).

It is straightforward to verify that, given a linear decryption-based FHE scheme that satisfies
the bounded secret-key IND-CPA security, we obtain a 2-party Scooby encryption scheme using the
prior algorithms for 2-party distributed decryption into shares described in the previous section.
Indeed, this 2-party distributed decryption forms the basis of the 2-party spooky construction in
[DHRW16] and HSS construction in [BKS19]. However, to obtain an n-party generalization is not
immediate. A direct application of the trick used for 2-party to, say, 3-parties results in decryption
errors due to unaccounted for wrap-arounds in the reduction modulo q of the local decryption. Cop-
ing with these wrap-arounds, without resorting to interaction, thus seems a challenge. A challenge
which we solve in the next section.

5.3 From 2-party to n-party HEDS

Here we give the details of our construction Scooby, for n-party HEDS. The encryption and
evaluation algorithms of Scooby are identical to that of the underlying linear decryption FHE
scheme, so here we only describe the setup and share decryption procedures. We give two different
variants of the construction, depending on whether the FHE scheme encodes the message in the lsb
or msb of the ciphertext. In this section, we focus on a linear decryption FHE scheme that encodes
the message in the lsb of the ciphertext; in Appendix A.1, we give a variant for the msb type.

Scooby Setup. Recall that the setup algorithm in HEDS takes as input a security parameter and
outputs a global public key pk, as well as secret keys sk1, . . . , skn to each of the n parties. For Scooby,
in both the lsb and msb variants of LD-based FHE scheme, the underlying SetUpScooby algorithm is
the same. Note that in the following, the SetUpScooby algorithm should be seen as a trusted setup
procedure that is either run by a trusted third party, or executed via an MPC protocol, which can
be done, for instance, based on the techniques from [RST+22].

14



Fig. 2. Scooby setup for n = 4

The SetUpScooby algorithm is described in Figure 3. Recall that the main challenge is to setup up
some key material which allows n parties to convert an FHE ciphertext into shares of the message,
while using the 2-party distributed decryption method from the previous section. We build a binary
tree with n leaves, where the original FHE ciphertext lives at the root node. We split the FHE
secret key skFHE into two shares s̃k0, s̃k1, and then generate a fresh FHE key pair for each of the
two child nodes, and encrypt each s̃kb, for b ∈ {0, 1}, under the corresponding public key. This
process is repeated with the FHE secret keys generated for the children, and so on throughout the
tree. Note that we abuse notation by writing ctv = EncFHEpkv

(s̃kv), even though s̃kv may not lie in

the plaintext space; we implicitly assume here that s̃kv is broken up into bits (or possibly larger
chunks), so ctv is actually a vector of ciphertexts encrypting each bit separately.

The idea is that, during the decryption phase, the parties can homomorphically evaluate the
2-party distributed decryption function at each node of the tree, obtaining a share of the message,
now encrypted under a child node’s public key. The i-th party repeats this for each node on the
path to leaf i, where it finally obtains a ciphertext encrypting an n-party sharing of the original
message, which it can decrypt.

Given this setup procedure we define EncScoobypk and EvalScoobypk exactly as is the case in the

underlying LD-based FHE scheme. Next, we detail the DecScoobyski
procedure in the lsb case.

Scooby Decryption. The decryption algorithms for Scooby in the lsb/msb-mode are described
in Figure 4 and Figure 11, respectively. The decryption algorithm requires ⌈log n⌉ − 1 evaluations
of the EvalFHE function for the underlying LD-based FHE scheme, each for a different public key.
Note that the circuit used in EvalFHE is almost exactly the decryption circuit, so the complexity of
each of these homomorphic operations is the same as a bootstrapping operation in the underlying
FHE scheme.

It is also clear that, due to the fact that at each internal branch we are homomorphically
evaluating the two-party distributed decryption method from either Section 4.1 (for the lsb case)
or Appendix A (for the msb case), the final n messages mi will sum up to the decryption of the
ciphertext ct. The only difference is that instead of adding or subtracting a random nonce R,
the parties are using the PRF F to randomize their shares in distributed decryption; thus, the
correctness property of the scheme relies on the security of F .

15



Algorithm SetUpScooby(λ, p, n)

The algorithm takes as input the security parameter λ, plaintext modulus p, and number of parties n. It outputs
a public key pk and secret keys (sk1, . . . , skn).

1. Let params = (q,N,B, d,∆, S)← ParamGen(1λ, p).
2. Sample a key Kprf ← {0, 1}λ.
3. We construct a complete (but not necessarily full at the last layer) binary tree with n leaves and height

h = ⌈log(n)⌉, and index the levels from 0 up to h. Each node in level i of the tree is labelled with a string
of i bits, so the root is the empty string ⊥, and the children of node v are v∥0 and v∥1.

4. Sample s̃k0, s̃k1 ← Rd
q such that ∥s̃kj∥∞ ≤ S.

5. Let skFHE⊥ = s̃k0 + s̃k1 and sample pkFHE⊥ = PubKeyGen(1λ, skFHE
⊥ , params).

6. For each internal node v (excluding the root and leaves) with children v∥0 and v∥1:
(a) Sample s̃kv∥0, s̃kv∥1 ← Rd

q such that ∥s̃kj∥∞ ≤ S.

(b) Let skFHEv = s̃kv∥0 +s̃kv∥1, sample pkFHE
v = PubKeyGen(1λ, skFHE

v , params).

(c) Let ctv = EncFHEpkv
(s̃kv).

7. Let ski contain the leaf secret key s̃ki, together with Kprf and the public keys and ciphertexts on the path
from the root to leaf i.

8. Output pk := pkFHE⊥ and the secret keys (sk1, . . . , skn).

Fig. 3. Trusted setup algorithm for the Scooby construction

Algorithm DecScoobyski
(ct) (for lsb-based construction)

Let F : {0, 1}λ × [n]→ Rq be a pseudorandom function.

DecScoobyski
(ct):

1. Parse ski as s̃ki, K
prf and (pkFHEv , ctv), for every node v from the root to leaf i.

2. Let c̃t⊥ := ct.
3. For each internal node v on the path from the root to leaf i (excluding the root and leaf):

(a) Write v = u∥b, where u is the parent of v (so b = 0 if v is a left child and b = 1 otherwise).
(b) Define the function:

fb
c̃tu

: sk 7→
(
c̃tu · (b,−sk) + (−1)b · F (Kprf , u) (mod q)

)
(mod p)

(c) Compute c̃tv := EvalFHEpkv
(fb

c̃tu
, ctv).

4. Write i = u∥b, then take the leaf ciphertext c̃ti and output the share

mi =
(
c̃ti · (b,−s̃ki) + (−1)b · F (Kprf , u) (mod q)

)
(mod p)

Fig. 4. Decryption to shares for lsb-based Scooby

Theorem 5.1. Let F be a pseudorandom function, and suppose there is an LD-like FHE scheme
which satisfies the hardness assumption from Definition 5.1, such that (q,N,B, d,∆, S) ←
ParamGen(1λ, p) with q > 2 · p · (B + 1) · 2sec. Then the Scooby construction in Fig. 3–4 is a
secure n-party homomorphic encryption scheme with decryption to shares.

Proof. Let n be the number of parties. Let (pk, sk1, . . . , skn) ← SetUpScooby(λ, p, n). We need to
show that Scooby, with the setup and decryption algorithms described in Figures 3, 4 and 11,
satisfies the definition of correctness and security given in Section 3.

16



Correctness. Here, we only consider the lsb-based construction, the proof for the msb-based
variant is similar.

We assume (pk, sk1, . . . , skn) be the output of the setup algorithm. Each party Pi holds ski,
corresponding to a leaf i in the binary tree generated in the setup algorithm. We say that a party
Pi is involved in a node N of this binary tree if the path from the leaf i to the root contains the
node N .

Let ct be a ciphertext corresponding to public-key pk and encrypting a message m (possibly

obtained through EvalScoobypk ), we show that mi ← DecScoobyski
(ct), i ∈ [n], satisfy

∑
imi = m, except

with negligible probability.
During the decryption algorithm, and starting from the root, each party Pi, using its secret key

ski, iteratively performs homomorphic evaluations of the 2-party distributed decryption function
until it reaches the leaf i.

More concretely, in the first step at the root level, we have c̃t := ct and the 2-party decryption
functions:

f0
c̃t
: sk 7→

(
c̃t · (0,−sk) + F (Kprf) (mod q)

)
(mod p)

f1
c̃t
: sk 7→

(
c̃t · (1,−sk)− F (Kprf) (mod q)

)
(mod p).

Going a level down in the tree, each party Pi is involved either in the node v = 0 or in v = 1, hence
it will compute either

c̃t0 = EvalFHEpk0
(f0

c̃t
, ct0) = EvalFHEpk0

(f0
c̃t
,EncFHEpk0

(s̃k0))

or
c̃t1 = EvalFHEpk1

(f1
c̃t
, ct1) = EvalFHEpk1

(f1
c̃t
,EncFHEpk1

(s̃k0))

Since c̃t is an encryption under the public key pk corresponding to sk = s̃k0+s̃k1, the two ciphertexts
c̃t0, c̃t1 are the result of an homomorphic evaluation of the 2-party decryption functions f0

c̃t
, f1

c̃t
and

represent encryptions of m1
0 and m1

1 under pk0 and pk1, respectively, such that m1
0 +m1

1 = m.
Further following the path towards the leaf, each party will repeat the same procedure for at

most one node per level, always obtaining an encryption of a share of m that they are not able to
decrypt until they reach the level just above the leaves. In the last step, each Pi considers the leaf
ciphertext and, performing a 2-party distributed decryption, outputs a share of m.

The correctness of the procedure directly follows from the fact that all the ciphertexts are
randomized using the PRF and by Proposition 4.1. Each party involved in the decryption holds all
the necessary encryptions and secret-key material to be able to successfully conclude the algorithm
with probability at least 1 − N · 2−sec. The latter probability arising as we have N coefficients
which need to be decrypted correctly, which happens with probability of 1− 2−sec, via the method
in Section 4.1, or Appendix A. Therefore, the overall probability that all the parties are correct is
1− n ·N · 2−sec.

Security. We consider the strongest case of n−1 corruptions, so the adversary is given all-but-one
of the secret keys ski. We need to show that the resulting encryption scheme is IND-CPA secure.
Let j be the index of the honest party. We consider an experiment where the adversary is given
a public key pk together with the secret keys {ski}i ̸=j and the encryption of a challenge message
m. We show that this is indistinguishable from an experiment where the adversary receives an
encryption of a random message. We proceed via a hybrid argument, starting with the bottom
layer h of the tree.

17



Hybrid Hh. This is the experiment defined above, where the adversary is given pk, {ski}i ̸=j and an
encryption of m.

Hybrid Hℓ, for ℓ ∈ {h − 1, . . . , 1}. Let v be the index of the node on layer ℓ of the tree that lies
on the path to leaf j. This hybrid is defined as in Hℓ+1, except here we modify the ciphertext ctv,
which was previously an encryption of the secret key share s̃kv under pkv, and replace it with an
encryption of zero under pkv.

Hybrid H0. This hybrid is defined to be the same as H1, except we replace the ciphertext ct,
which previously encrypted the message m under the root key pk⊥, with an encryption of zero.
This hybrid is now independent of m.

We now argue indistinguishability. For each ℓ ∈ [h], hybrids Hℓ and Hℓ−1 are computationally
indistinguishable due to the bounded IND-CPA security property of the LD-based FHE scheme
(Definition 5.1). We can apply this property because in hybrid ℓ− 1 at node u, it always holds that
one of the secret keys s̃ku∥0 or s̃ku∥1 is unknown to the adversary, as required. Furthermore, there

is no circular security issue, because the encrypted secret key s̃ku is sampled independently of the
keys s̃ku∥0 and s̃ku∥1.

Remark 5.1. Note that for correctness to hold it is not sufficient that for a single party the path
from the root to the node is correctly split. We need this to happen for all parties simultaneously.
This means that the obtained probability is in fact 1− n ·N · 2− sec and not, as initially might be
believed, 1− log(n) ·N · 2− sec.

A simpler variant relying on circular security. The previous construction avoids relying on
a circular security assumption by switching to a freshly sampled FHE key at each node of the tree.
We could instead simplify this slightly, with a variant of the construction where only one set of
FHE secret keys is used. Here, we would start by sampling an independent secret key s̃ki for each
leaf i. The public key associated with node v is then defined as pkv = PubKeyGen(1λ, skv, params),
where skv is the sum of all the leaf secret keys that are descendants of v. We additionally encrypt sk
under pkv and give this out to the relevant parties. This introduces a circular security assumption,
however, it does not seem to offer any significant efficiency benefits except for a slightly simpler
setup algorithm.

5.4 BGV Parameters Supporting Scooby

It would appear that at first sight the parameters needed for Scooby are larger than those needed
for standard FHE bootstrapping, due to the increase in q required by Equation (1). However, this
is not necessarily the case, as we now explain in the case of the BGV encryption scheme.

Standard BGV decryption simply requires the bound q > 2 · p · (B + 1) for valid decryption,
so we appear to have boosted the size of q by a factor of 2sec. However, bootstrappable BGV as
implemented in (say) HELib [HS21] utilizes an underlying levelled SHE scheme. At level zero, where
no further homomorphic operations may take place without bootstrapping, we have a ciphertext
modulus q0 which satisfies q0 > 2 · p · (B+1). At level L, i.e., the initial encryption level, we have a
ciphertext modulus qL which satisfies qL > 2·p·(B+1)·2bp·L, where bp is the (average) bits-per-level
of the chain of ciphertext moduli. On passing from each level from L down to zero, the size of the

18



ciphertext modulus drops by (on average) 2bp . Note that, when bootstrapping a ciphertext from
level zero, we do not end up with a ciphertext at level L, instead we obtain a ciphertext at level U
(which denotes the so-called “usable” number of levels).

To see how this affects Scooby, we need to remember that at the end of the EvalScoobypk procedure

we will have a ciphertext at level U . This will satisfy our bound in Equation (1) if 2bp·U ≥ 2sec.

Then, in executing DecScoobyski
, at each level of the tree we notice that we are actually executing an

operation equivalent to boostrapping. This is because at each node v = u∥b, where u is the parent
node and b ∈ {0, 1}, we are essentially either performing a homomorphic decryption with the key

(1,−s̃k
FHE

u∥1 ), or a homomorphic decryption with the key (0,−s̃k
FHE

u∥0 ). Thus, at each stage of the

execution of DecScoobyski
we have a ciphertext ct which is at level U .

Examining the bootstrappable BGV parameters proposed in [HS21] we see that in all cases we
have 2bp·U ≥ 2128. Thus the Equation (1) does not actually result in any increase in parameters, at
least in the case of the BGV scheme.

6 Multi-Party HEDS from Weaker Assumptions

We now present alternative constructions to the previous section, without relying on FHE with
linear decryption and a super-polynomial modulus. In the first construction, in Section 6.1, we
use any generic FHE scheme and a 2-party HSS scheme that supports homomorphic evaluation
of the FHE decryption circuit. This means we no longer need the local decryption trick from
Section 4.1, so can use FHE based on LWE with a polynomial modulus [BV14]. All LWE-based
FHE constructions have decryption in NC1, so the 2-party HSS can be instantiated based on the
Paillier assumption [OSY21] or on class groups [ADOS22], which support HSS for all of NC1.

In Section 6.2, we also give a variant of the construction that only requires 2-party HSS, and
not FHE. This gives a way to bootstrap two-party HSS constructions to the multi-party setting.
We show how it can be used to transform two-party HSS for branching programs, based on Paillier
encryption, into 4-party HSS for homomorphic evaluation of constant-degree polynomials.

6.1 Scrappy: HEDS from Standard FHE + HSS for NC1

This construction, shown in Fig. 5, follows the tree-based structure of Scooby from the previ-
ous section. Previously, though, at each node of the tree, an FHE ciphertext was split into two
ciphertexts encrypting shares of the message, by doing a special homomorphic decryption proce-
dure tailored to the linear decryption property of the FHE scheme. In Scrappy, we instead do the
homomorphic decryption procedure inside a 2-party HSS scheme. Since most FHE schemes have
decryption in NC1, it suffices to rely on HSS for NC1, which can be built from non-LWE-based
assumptions. Of course, if done naively, this means we no longer get encrypted shares of the pre-
vious message, but would actually obtain the shares directly due to use of HSS. To avoid leaking
all intermediate shares, we use an additional FHE scheme on each level of the tree, and use this to
homomorphically evaluate the HSS evaluation procedure. The HSS evaluation keys are then only
given out at the leaves of the tree, while at higher levels they are encrypted under FHE. Note that
we only need the weaker, private-key form HSS, from Remark 2.1, where the sharing algorithm can
be seen as done by a trusted dealer.

19



Scrappy: n-party HEDS from FHE + HSS

Let (KeyGenFHE,EncFHE,EvalFHE,DecFHE) be an FHE scheme and (ShareHSS,EvalHSS) be a 2-party HSS scheme for
the FHE decryption circuit.

– SetUpScrappy(1λ, n): Construct a complete binary tree of height h = ⌈logn⌉ and n leaves, and index the levels
from 0 (at the root) up to h. Each node in level i of the tree is labelled with a string of i bits, so the root is
labelled with the empty string ⊥, and the children of node v are labelled v∥0 and v∥1.
1. Sample a root key pair (pk⊥, sk⊥) = KeyGenFHE(1λ).
2. Sample HSS shares (s0, s1) = ShareHSS(sk⊥).
3. For each internal node v (excluding the root and leaf nodes), with parent node u and children v∥0, v∥1,

compute the following values:
(a) (pkv, skv) = KeyGenFHE(1λ).
(b) ctsv = EncFHEpkv

(sv)

(c) (sv∥0, sv∥1) = ShareHSS(skv).
4. Output pk := pk⊥ and the secret keys ski :=

(
si, {pkv, ctsv}v∈pathTo(i)

)
, for i = 0, . . . , n− 1.

– EncScrappypk (m): Output ct = EncFHEpk (m).

– EvalScrappypk (C, (ct1, . . . , ctm)): Output c̃t = EvalFHEpk (C, ct1, . . . , ctm).

– DecScrappyski
(c̃t):

1. Let c̃t⊥ := c̃t.
2. For each internal node v on the path from the root to leaf i (excluding the root and leaf), with parent

node u:
(a) Define the pair of functions:

fc̃tu : sk 7→ DecFHEsk (c̃tu)

gc̃tu : sv 7→ EvalHSS(fc̃tu , sv)

(b) Compute c̃tv := EvalFHEpkv
(gc̃tu , ct

s
v).

3. Output yi = EvalHSS(fct, si).

Fig. 5. Constructing n-party HEDS using standard FHE and 2-party HSS

Theorem 6.1. Suppose there exists fully homomorphic encryption, and a 2-party HSS scheme that
supports homomorphic evaluation of the FHE scheme’s decryption circuit. Then, there exists an
n-party homomorphic encryption scheme with decryption to shares, for any n = poly(λ).

Proof. Correctness. We need to show that for any messages m1, . . . ,mρ and ciphertext c̃t that
is the output of Eval, on input a circuit C and encryptions of m1, . . . ,mρ, we have

y1 + · · ·+ yn = C(m1, . . . ,mρ) mod p

where yi = DecScrappyski
(c̃t) and ski is the i-th secret key.

Consider the first step of the decryption algorithm, corresponding to the left and right children
of the root node. For some v ∈ {0, 1}, this step homomorphically evaluates (in FHE) the function

gc̃t : sv 7→ EvalHSS(fc̃t, sv)

where here, fc̃t takes as input an FHE secret key, and uses it to decrypt c̃t. Note that this step is
performed on the FHE ciphertext ctsv, where v = 0 for party i with i < 2h/2, and v = 1 for the
remaining parties. The parties obtain respective ciphertexts c̃t0, c̃t1, encrypted under pk0 or pk1.

20



Let m̃0, m̃1 denote the messages in these two ciphertexts. Since s0, s1 are HSS shares of the
FHE key sk⊥, by the correctness of FHE and HSS, except with negligible probability it holds that

m̃0 + m̃1 = gc̃t(s0) + gc̃t(s1)

= EvalHSS(fc̃t, s0) + EvalHSS(fc̃t, s1)

= fc̃t(sk⊥)

= DecFHEsk⊥
(c̃t)

= DecFHEsk⊥
(EvalFHEpk⊥

(EncFHEpk⊥
(m1), . . . ,Enc

FHE
pk⊥

(mρ)))

= C(m1, . . . ,mρ)︸ ︷︷ ︸
=m̃

This shows that, after the first layer of evaluation, the partition of parties (P0, . . . , P2h/2−1) and
(P2h/2, . . . , Pn−1) will each have obtained an encryption of m̃0 or m̃1, under pk0 or pk1, which are
shares of the correct message m̃. By the same argument as above, at each subsequent node, the
encryption of m̃b will be split into two further encrypted shares, encrypted under the public keys
for the next layer. This process continues until the penultimate layer of the tree, where for each
non-leaf node v, any party i ∈ {v∥0, v∥1} will compute a ciphertext c̃tv, which encrypts under pkv
a share m̃v.

At the final layer of the tree, if v has two children v∥0, v∥1, then each of the parties labelled
with these leaves holds an HSS share si of skv, which can be used to homomorphically decrypt c̃tv,
where v is the parent of i, splitting m̃v into two last shares. Otherwise, if v itself is a leaf node,
then the party labelled with v uses its HSS share sv to recover its share directly.

This shows that, with overwhelming probability, the parties obtain a correct sharing of the
result.

Security: We argue security for the strongest case of n− 1 corruptions, and assume for sim-
plicity that n is a power of two. Let j be the index of the honest party. We consider an experiment
where the adversary is given a public key pk together with the secret keys {ski}i ̸=j , and the en-
cryption of a challenge message m. We gradually define a sequence of hybrid experiments, starting
from the bottom layer h of the tree, where we eventually end up with one that is independent of
the message m and indistinguishable from the first experiment. This implies the security property
from Definition 3.3.

Hybrid Hh,1. This is the experiment defined above, where the adversary is given pk, {ski}i ̸=j and
an encryption of m.

Hybrids Hℓ,0 and Hℓ−1,1, for ℓ = h, . . . , 1: Let v be the index of the node on layer ℓ of the tree that
lies on pathTo(j), let v be its sibling and u their parent node. These hybrids are as follows:

– Hℓ,0: This hybrid is defined as in Hℓ,1, except we replace the HSS share sv, which was origi-
nally computed with ShareHSS(sku), with a share from ShareHSS(0). If v is not a leaf node, the
ciphertext ctv is now computed as an encryption of the new share sv.

– Hℓ−1,1 This hybrid is defined as in Hℓ,0, except here we modify the ciphertext ctu, which was
either an encryption of the HSS share su under pku, or (if u = ⊥ is the root) an encryption of
m under pk⊥. In either case, we replace it with an encryption of zero under pku.

21



Hybrid Hℓ,0 is indistinguishable from Hℓ,1, because the second HSS share sv is independent
of the view of the adversary, so we can rely on the security property of HSS. Hybrid Hℓ−1,1 is
indistinguishable from Hℓ,0, due to the IND-CPA security of the FHE scheme; this relies on the
fact that in Hℓ,0, we have removed the FHE secret key sku from the view of the adversary.

In the final hybrid H0,1, the root ciphertext ct⊥ has been replaced with an encryption of zero, so
the view of the adversary is independent of the original message m. This concludes the proof.

The above theorem implies n-party HEDS assuming (1) LWE with a polynomial modu-
lus [BV14], (2) circular security, and (3) HSS for NC1 circuits, which can be based on decisional
composite residuosity [OSY21] or a DDH-like assumption in class groups [ADOS22]. If we only
require n-party HEDS for bounded-depth circuits, we can remove the circular security assumption,
since we only required levelled FHE.

6.2 Shaggy: Bootstrapping HEDS to More Parties

We now give a separate transformation that increases the number of parties in HEDS, without
relying on fully homomorphic encryption. This construction, in Fig. 6, essentially applies one layer
of the previous, tree-based construction, with a branching factor of n instead of 2. Additionally,
instead of alternating between FHE and HSS evaluation, we always evaluate within an n-party
HEDS scheme. This allows bootstrapping any sufficiently powerful n-party HEDS to support n2

parties.

Theorem 6.2. Let n-HEDS be an n-party HEDS for a class of circuits C, whose decryption al-
gorithm, when viewed as a function of ski, can be written as a circuit in C. Then, n2-HEDS (in
Figure 6) is an n2-party HEDS for C. Its encryption and evaluation algorithms are the same as in
n-Scooby, while the complexity of decryption increases by a polynomial factor.

Proof. Correctness: Let ct1, . . . , ctρ be n
2-HEDS encryptions of messages m1, . . . ,mρ. During de-

cryption, party (i, j) first computes a ciphertext c̃ti, a homomorphic decryption of ct, now encrypted
under pki, and then uses ski,j to recover yi,j , a share of this.

By the correctness of n-HEDS, for each i ∈ [n] we have

n∑
j=1

yi,j =
∑
j

Decn-HEDS
ski,j (Evaln-HEDS

pki
(fct, ct

s
i ))

= fct(ski)

= Decn-HEDS
ski (ct)

It follows, again due to the correctness of n-HEDS, that
∑n

i=1

∑n
j=1 yi,j =

∑
iDec

n-HEDS
ski

(ct) =
C(m1, . . . ,mρ), as required.

Security: The security can be argued in a similar way to the proof of Theorem 6.1, for just a
single layer of the tree. Since the adversary corrupts at most n2−1 parties, there is at least one pair
(i, j) where the adversary does not know ski,j . This means that we can replace the ciphertext ctsi by
an encryption of zero, which will be secure due to the security of n-HEDS. This in turn means that
ski is unknown to the adversary, so we can consider another hybrid where the challenge ciphertext
ct is replaced with an encryption of zero. This implies IND-CPA security to an adversary who sees
up to n2 − 1 secret keys.

22



Note that the decryption complexity of the bootstrapped construction n2-HEDS is increased by
a polynomial factor. Depending on the original n-party scheme, then, it may not be possible to
apply the transformation more than once, if the new decryption algorithm is no longer in the class
C.

Construction n2-HEDS

Let n-HEDS be an n-party HEDS. We build n2-party HEDS, and label the parties Pi,j , for i, j ∈ [n]

– SetUpn
2-HEDS(1λ, n2):

1. Let (pk⊥, sk1, . . . , skn) = SetUpn-HEDS(1λ, n).
2. For i ∈ [n]:

(a) Sample (pki, ski,1, . . . , ski,n) = SetUpn-HEDS(1λ, n).
(b) Sample ctsi = Encn-HEDS

pki
(ski).

3. Output pk := (pk⊥, ct
s
1, . . . , ct

s
n) and the n2 secret keys ski,j := (ctsi , ski,j , pki), for i, j ∈ [n].

– Encn
2-HEDS

pk (m): Output ct = Encn-HEDS
pk⊥

(m).

– Evaln
2-HEDS

pk (C, (ct1, . . . , ctρ)):

1. Compute ct = Evaln-HEDS
pk⊥

(C, ct1, . . . , ctρ).

2. Let fct be the function that takes as input ski and outputs Decn-HEDS
ski

(ct).

3. Compute c̃ti = Evaln-HEDS
pki

(fct, ct
s
i ), for i = 1, . . . , n.

4. Output (c̃t1, . . . , c̃tn).

– Decn
2-HEDS

ski,j
(c̃ti): Output yi,j = Decn-HEDS

ski,j
(c̃ti).

Fig. 6. Bootstrapping n-party HEDS to n2 parties

Shaggy: Instantiation with HSS from Paillier. We now describe the Shaggy construction,
which is obtained by applying the above transformation to two-party HSS based on the decisional
composite residuosity assumption used in Paillier encryption. We can only apply the transformation
once, so we obtain a 4-party HEDS/HSS scheme, which can support homomorphic evaluation
of constant-degree polynomials. As the underlying two-party scheme n-HEDS, we use the HSS
construction from [OSY21] or [RS21].

First, we need to frame the 2-party HSS constructions of [OSY21, RS21] in our HEDS framework.
The constructions are given in a “public-key” flavour of HSS, with SetUpHSS and EncHSS algorithms
which are the same as in HEDS. The EvalHSS algorithm, however, requires knowing a secret key,
unlike the syntax for EvalHEDS. We can still make this fit in our HEDS framework, by adjusting
the scheme so that homomorphic evaluation is performed in the DecHEDS

ski
step, which knows the

secret key, instead of EvalHEDS. Concretely, we define the EvalHEDS algorithm to simply output
an “evaluated ciphertext” defined to be the set of input ciphertexts together with the circuit C.
These are then passed to DecHEDS, together with the secret key, which then runs the HSS evaluation
algorithm. This makes the resulting HEDS non-compact, since the complexity of decryption depends
on the circuit, but it can still be used for the construction in Fig. 6.

Complexity of Evaluation in Paillier-based HEDS. We now analyze the circuit complexity of the
resulting DecHEDS algorithm, which performs HSS evaluation of constant-degree polynomials. We

23



can assume the polynomial is a simple monomial f(x1, . . . , xc) = x1x2 · · ·xc for a constant number
of inputs (since to handle sums of monomials, it’s enough to evaluate each monomial separately
and add the shares).

With the methods of [OSY21, RS21], each input xi is given as a Paillier encryption of xi, together
with encryptions of xi multiplied with each bit of the secret key. In homomorphic evaluation, the
parties perform c− 1 sequential multiplications, where in each of these, the core operation is a step
that computes:

z = DDLog(Cd mod N2) + Fk(id) mod N

Here, N = pq is a public modulus, C ∈ Z∗
N2 is a ciphertext, d is a secret share that is known only

to one party, and F is a pseudorandom function with key k known to both parties. The distributed
discrete log function DDLog(X) computes ⌊X/N⌋ · (X mod N)−1 mod N .

In general, modular exponentiation and inversion are not known to be in NC1. However, it
turns out that DDLog(Cd), when viewed as a function of d for fixed C, does lie in NC1. The idea is
that since C is public, we can consider the powers C2j mod N2 as hard-coded into the description
of the function. Similarly, we hardcode C−2j mod N , for j = 1, . . . , ℓ, where ℓ is the bit length of
d. This allows computing

Cd =
ℓ∏

j=1

(C2j )dj mod N2, (Cd mod N)−1 =
ℓ∏

j=1

(C−2j )dj mod N

Since iterated product, modular reduction, addition/subtraction and integer division are all in
NC1 [BCH84], DDLog(Cd) can be computed as an NC1 circuit. Furthermore, evaluation of a PRF
based on factoring can be done in NC1 [NR04].

In the complete multiplication algorithm, the above step is repeated O(λ) times in parallel,
which does not affect the circuit depth. The multiplication algorithm is run c times sequentially,
where the outputs of one multiplication are used as the private d shares input to the next. If c is a
constant, it follows that the entire evaluation procedure is in NC1.

Plugging in two-party HSS for poly-sized branching programs (which includes NC1), we obtain
the following.

Corollary 6.1. Assume the decisional composite residuosity assumption holds. Then, there exists
a 4-party (non-compact) homomorphic encryption scheme with decryption to shares for constant-
degree polynomials.

7 Casper: Friendly AFS-spooky Encryption from Multi-Key FHE

In this section we introduce Casper, a practical instantiation of an AFS-spooky encryption from
a multi-key FHE (MK-FHE) scheme and a tree-based construction similar to the one described in
Section 5. We recall that to obtain a spooky encryption, we need to avoid all interactions between
the parties in the key generation phase, contrarily to Scooby, where the setup phase is either
performed by a trusted third party or emulated via an MPC protocol. As mentioned before, our
technique is essentially the same as for Scooby, except we now require an MK-FHE scheme to
obtain a non-interactive setup. In FHE, such MK variants exist for many schemes, and we outline
in this section two different spooky constructions, one for TFHE style MK-FHE schemes [CCS19],
and one for B/FV-style MK-FHE schemes [CDKS19].

24



Motivation. Since these MK-FHE based constructions already exist for spooky encryption, we
might wonder why we should try to build a HEDS like functionality in the first place. The reason is
very simple: since our tree-based construction is more efficient compared to the spooky scheme of
Dodis et al., we would like to apply our improvement to an adaptation of Scooby with MK-TFHE
and obtain a more efficient spooky encryption. However, note that the resulting scheme Casper will
be less efficient than Scooby, since MK-FHE is much less efficient than single key FHE.

To give a rough idea on the slow-down in MK-FHE operations, we can consider the TFHE versus
MK-TFHE example: fixing the security level to 128 bits, the evaluation of an homomorphic NAND
gate (which performs a bootstrapping) in single-key TFHE costs about 20ms, while in MK-TFHE
the cost for the same operation may vary from 270 ms (for a 2-party scenario) to several seconds
(for a 8-party scenario).

As already remarked, an AFS-spooky solution based on MK-FHE has already been proposed
by Dodis et al. [DHRW16]. This solution is based on the LWE assumption with super-polynomial
modulus and its complexity is O(n2 · |F |), where n is the number of parties and |F | is the size of
the circuit evaluated. The main problem of this approach is that even simple operations in MK-
FHE seem have complexity O(n2). The scheme proposed in [DHRW16] was essentially based on
MK-FHE schemes proposed by Clear et al. [CM15] and Mukherjee et al. [MW16], which were just
theoretical constructions at the time and far from being practical. The two solutions we propose in
this section are based on two new MK-FHE constructions, which are the multi-key variants of the
schemes TFHE and B/FV.

Multi-key FHE. The MK-TFHE scheme in [CCS19] has been proposed as an improvement of many
of previous MK-FHE solutions, including [CM15] and [MW16] on which the first spooky scheme
in [DHRW16] was based. The construction proposed in [CM15], and simplified in [MW16], was
single-hop for keys (static), meaning that the number of parties has to be known before the compu-
tation begins, and after finishing a computation with a fixed set of keys, the output cannot be easily
used in more computations involving additional keys. The line of work by [CM15] and [MW16] has
been improved by [PS16] and [BP16], which proposed a multi-hop for keys (dynamic) construc-
tions. The multi-key variant of TFHE proposed by Chen et al. [CCS19] simplifies the constructions
proposed in previous works and is more efficient both in terms of memory and execution time. In
terms of ciphertext size, the work by [PS16] has ciphertexts that have a square factor in the number
of parties, while [BP16] and [CCS19] are linear. In terms of public and evaluation keys, [CCS19]
proposes smaller public keys and does not require to store the bootstrapping key, since bootstrap-
ping can be performed directly by using public keys. In terms of asymptotic complexity, the work
by [PS16] is O(n2.37) and the one by [BP16] is polynomial in the number of parties, while [CCS19]
the operations have a complexity of order O(n2). Unfortunately, no practical comparison can be
done between [CCS19] and previous works because [CCS19] is the only work that comes with a
proof-of-concept implementation. Previous constructions were too impractical to be implemented.
This makes us believe that, even if the asymptotic costs are similar, concretely the scheme instan-
tiated with the MK-TFHE construction by [CCS19] is more efficient.
By using the MK-TFHE construction by [CCS19], the execution requires to perform a bootstrapping
for each homomorphic NAND gate in the circuit that is evaluated, followed by log n bootstrappings
for the distributed decryption part. Furthermore, the solution presented in [CCS19] can be largely
improved by evaluating levelled integer operations (not only binary gates and no bootstrapping
after each operation). With this approach, the solution could have a huge improvement in terms of
complexity.

25



Construction Leveled operations Bootstrapping (Expected) Complexity

[DHRW16] yes yes O(n2 · |F |)
[CCS19] no yes O(n2 · |F |+ n2 · logn)

but possible

[KKL+22] yes yes O(n · |F |+ n2 · logn)

Table 2. Comparing AFS-Spooky solutions based on MK-FHE constructions.

The MK-B/FV solution [CDKS19], [KKL+22] is better than that used in [DHRW16] in terms
of complexity. The levelled operations (in particular multiplication) can be in fact evaluated
in O(n) (from [KKL+22]), instead of O(n2), and the bootstrapping can be evaluated in O(n2)
(from [CDKS19]). Again, this would lead to a better complexity for the resulting AFS-spooky
construction than previous works. More concretely, if the circuit to be evaluated does not require
bootstrapping (i.e., the parameters for the noise allow to perform all the circuit in a levelled mode),
then bootstrapping is required only in the distributed decryption part; otherwise, the complexity
should take into account the evaluation of periodic bootstrappings to reduce the noise.

We summarize the complexity of MK-FHE-based spooky encryption in Table 2 and give details
on our new MK-FHE based AFS-spooky solutions in the following sections.

7.1 Spooky from MK-TFHE

The MK-TFHE scheme proposed in 2019 by Chen et al. [CCS19], is an extension to a multi-key
setting of the gate bootstrapping technique proposed by TFHE. A gate bootstrapping allows to
evaluate a binary gate and to perform a fast bootstrapping in order to bring the noise back to a
fixed level.

The resulting MK-FHE scheme is non-interactive: after a setup phase where the secure param-
eters are fixed and a public (uniformly random) common reference string (CRS) is provided to
parties, all the parties perform the key generation without interacting with each other, i.e., they
generate both their secret and public keys locally. Public keys are then published and shared with
all the parties. We describe these two phases, setup and key generation, in Figure 7.

Each party can now encrypt their inputs by using their own secret key, and a third party
cold do the same by using the public keys. Once the encrypted inputs are provided, every party
involved in the process, or a third party, can independently perform homomorphic computations
on these encrypted inputs, and all will produce the same final result. We describe the encryption
step and the evaluation of the homomorphic NAND gate – main homomorphic operation used in
MK-TFHE – in Figure 8. For more details on all these steps, we refer to [CCS19]. Observe that the
scheme allows for more parties to join the computations afterwards, without the need for the old
participants to regenerate keys. However, the parameter set chosen during setup phase will impose
a maximal number of parties.

While all the previous algorithms are exactly the same proposed in [CCS19], the distributed
decryption that we propose is different from the original construction. We show in Figure 10 how
to perform such a decryption, without the parties interacting, in a similar way as we did for Scooby
in Figure 11. The high level idea remains the same: we start from a ciphertext encrypting the final
result under all the secret keys of the parties, and we construct a binary tree having this ciphertext
as the root. Every node in the tree represents an encryption of a share of the final result s under a
certain number of secret keys. When we split this node in two branches, the new nodes will contain

26



MK-TFHE construction (setup and key generation)

Setup(λ): Given in input the security parameter λ
1. Generate the LWE public parameters: let n ∈ Z be the LWE key size, q be the ciphertext modulus,

ϕLWE be the LWE secret key distribution over Z, χLWE be the error distribution over Zq,BLWE ≥ 2 and
dLWE ∈ N be the base and degree of decomposition, respectively.

2. Generate the RLWE public parameters: let N be the ring dimension, we assume N being a power of
2, ϕRLWE be the secret key distribution over R, χRLWE be the error distribution over Rq, BRLWE ≥ 2
and dRLWE ∈ N be respectively the base and degree of decomposition for the RGSW gadget vector g⃗ =
(q/B1, . . . , q/Bd). Moreover, generate a uniformly random Common Reference String (CRS) a⃗← U(Rd

q).
3. Set as ppLWE = (n, ϕLWE, χLWE, BLWE, dLWE) as the LWE public parameters, and as ppRLWE =

(N,ϕRLWE, χRLWE, BRLWE, dRLWE), a⃗) as the RLWE public parameters.
4. Return the public parameters pp = (ppLWE, ppRLWE).

Key Generation(pp): Given in input the public parameters pp, each party Pi does the following:
1. Sample the LWE and RLWE secrets si ← ϕLWE and the RLWE secret zi ← ϕRLWE;
2. Sample an error vector e(i) ← χ

dRLWE
RLWE ;

3. Set the RLWE public key as PKi = b(i) = si · a+ e(i) ∈ R
dRLWE
q .

4. Given in input the public parameters, its own LWE and RLWE secret keys, each Pi generates the
bootstrapping key as a uni encryption. For each of the n elements si,j (for j ∈ [n]) of the LWE secret
key:
(a) Sample rj ← ϕRLWE;
(b) Sample ej,1 ← χ

dRLWE
RLWE and ej,2 ← χ

dRLWE
RLWE ;

(c) Sample fj,1 ← U(RdRLWE
q );

(d) Compute dj = rj · a+ si,j · g + ej,1 ∈ R
dRLWE
q ;

(e) Compute fj,0 = zi · fj,1 + rj · g + ej,2 ∈ R
dRLWE
q .

5. Output BKi,j = (dj , Fj) ∈ R
dRLWE
q × R

2dRLWE
q , with Fj = [fj,0, fj,1]. Note the bootstrapping key of party

i as BKi.
6. Given in input the public parameters, its own LWE and RLWE secret keys, each party i generates the

key switching key as a list of LWE encryptions under the secret key s⃗i of all the coefficients of the
RLWE secret key zi. Note the key switching key of party i as KSi.

7. Each Pi publishes the tuple (PKi, BKi,KSi).

Fig. 7. MK-TFHE Construction (setup and key generation) [CCS19]

MK-TFHE construction (encryption and evaluation)

Encrypt(m ∈ {0, 1}, si): Party i encrypts its input message m ∈ {0, 1} under the secret key si as an LWE
ciphertext ct = (β,α) ∈ Zn+1

q , such that β −α · si ≈ q/4 ·m.
A ciphertext encrypted under a single LWE secret key, can be extended to a ciphertext encrypted in a
multi-key fashion (i.e., under all the k parties keys), by setting up to 0 all the other uniformly random parts
(e.g., ct = (β,α) ∈ Zn+1

q encrypted under party P1 secret key, becomes ct = (β,α, 0⃗, . . . , 0⃗) ∈ Znk+1
q ).

Homomorphic NAND gate(ct1, ct2, {(PKi, BKi,KSi)}i=1,...,k): The evaluator (that can be a third party
or each of the parties involved in the protocol) performs a multi-key NAND gate evaluation by:
1. Extending the input ciphertexts ct,ct2 to multi-key fashion ciphertexts ct1, ct2;
2. Performing a linear combination ct = (5q/8, 0, . . . , 0)− ct1 − ct2;
3. Performing a multi-key bootstrapping to ct followed by a multi-key key switching. For more details on

these steps, please check [CCS19, Section 4].
Return an MK-LWE ciphertext ct = (β,α1, . . . , α⃗k) ∈ Znk+1

q such that β −
∑k

i=1 α⃗i · s⃗i ≈ q/4 · (m1∧m2)
with overwhelming probability.

Fig. 8. MK-TFHE Construction (Encryption and Evaluation) [CCS19]

a new encryption of one of the two shares s1 and s2 of s, each one encrypted under one of the

27



two shares of the key used in the previous node. The computation of these new encryptions of
these shares is performed by evaluating a multi-key bootstrapping, using only the public keys of
the parties involved in that node. This means that any party, or any third party, can do the entire
computation independently. When we reach the leaves of the tree, these leaves contain encryptions
of the shares of each party, where each share is encrypted under a single secret key. At this point,
each party can decrypts and obtain their own share.

Notice all the previous algorithms are exactly the same proposed in [CCS19], whereas the
distributed decryption that we propose is different from the original construction. We show, in Fig-
ure 10, how to perform such a decryption, without the parties interacting, in a similar way as we
did for Scooby in Figure 11. The high level idea remains the same: we start from a ciphertext
encrypting the final result under all the secret keys of the parties, and we construct a binary tree
having this ciphertext as the root. Every node in the tree represents an encryption of a share of the
final result s under a certain number of secret keys. When we split this node in two branches, the
new nodes will contain a new encryption of one of the two shares s1 and s2 of s, each one encrypted
under one of the two shares of the key used in the previous node. The computation of these new
encryptions of these shares is performed by evaluating a multi-key bootstrapping, using only the
public keys of the parties involved in that node. This means that any party, or any third party,
can do the entire computation independently. When we reach the leaves of the tree, these leaves
contain encryptions of the shares of each party, where each share is encrypted under a single secret
key. At this point, each party can decrypts and obtain their own share.

7.2 Spooky from MK-BFV

An example of MK variant for the schemes BFV and CKKS has been proposed in 2019 by Chen
et al. [CDKS19], and improved in 2022 by Kim et al. [KKL+22]. In this section, we only focus on
the BFV-style solution and do not consider CKKS, since in CKKS the noise is part of the message
and cannot be reduced.

We are not aware of any practical implementation of a multi-key variant for BGV, however,
since BGV and BFV are very similar constructions, we think it should be possible to have a MK
solution for BGV too.

In [CDKS19] and [KKL+22], the authors extend addition, multiplication and bootstrapping
operations of BFV to a multi-key setting. As for MK-TFHE, the schemes are non-interactive and
the decryption is distributed.

For completeness, we describe the different algorithms of the MK version of B/FV in Figure 9
and refer to [CDKS19] and [KKL+22] for more details. As for MK-TFHE, the setup phase generates
all the parameters and a uniformly random CRS. The key generation algorithm can be performed
independently by each party, i.e., each party generates its own secret and public keys and then
broadcasts the public keys. The levelled homomorphic operations that can be performed publicly
are additions and multiplications. All these algorithms are exactly the same as the ones proposed
in the literature. As for MK-TFHE, the distributed decryption algorithm that we use to be similar
to the one we propose in Figure 11.

Acknowledgements

The work of authors from KU Leuven was supported by CyberSecurity Research Flanders with
reference number VR20192203 and by the FWO under an Odysseus project GOH9718N. Peter

28



Distributed decryption à la Scooby for MK B/FV

Setup(λ): 1. Given in input the security parameter λ, generate the RLWE public parameters: set N , a power
of 2, to be the ring dimension, t to be the plaintext modulus, Q to be the ciphertext modulus, ϕ to be
the secret key distribution over R, χ to be the error distribution over Rq;

2. Generate a uniformly random common reference string (CRS) a← U(Rd
Q);

3. Choose a gadget decomposition h : RQ → Rd with a gadget vector g ∈ Rd
Q;

4. Compute ∆ = ⌊Q/t⌉. Return the public parameters pp = (N, t,Q, ϕ, χ,a, h,g).
Key Generation(pp): Given in input the public parameters pp, each party i generates its secret and public

keys as follows:
1. Sample the RLWE secret si ← ϕ;
2. Sample an error vector e0,i ← χd and compute bi = −si · a+ e0,i ∈ Rd

Q;
3. Sample ri ← ϕ and e1,i ← χd and compute di = −ri · a+ si · g + e1,i ∈ Rd

Q;
4. Sample ui ← U(Rd

Q) and e2,i ← χd and compute vi = −si · ui − ri · g + e2,i ∈ Rd
Q;

5. Return the public key PKi = (bi,di,ui,vi) and the evaluation key EKi = (bi[0],a[0]).
Encryption(m ∈ Rt, EK): 1. Sample w ← ϕ and e0, e1 ← χ.

2. Return ct = w · EK + (∆m + e0, e1) ∈ R2
Q. A ciphertext encrypted under a single secret key, can be

extended to a ciphertext encrypted in a multi-key fashion (i.e., under all the k parties keys), by setting
up to 0 all the other uniformly random parts (e.g., ct = (β, α) ∈ R2

Q encrypted under party P1 secret

key, becomes ct = (β, α, 0, . . . , 0) ∈ Rk+1
Q ).

Homomorphic ADD(ct1 ∈ Rk+1
Q , ct2 ∈ Rk+1

Q ): The evaluator (that can be a third party or each of the parties
involved in the protocol) returns ct+ = ct1 + ct2 ∈ RQ.

Homomorphic MULT(ct1 ∈ Rk+1
Q , ct2 ∈ Rk+1

Q , {(PKi)}i=1,...,k): Let cti = (α0,i, α1,i, . . . , αk,i) ∈ Rk+1
Q . The

evaluator (that can be a third party or each of the parties involved in the protocol) performs:
1. Compute ci,j = ⌊(t/Q) · αi,1 · αj,2⌉ ∈ RQ;
2. Set ct = (ci,j)0≤i,j≤k;
3. Perform a re-linearization on ct by using the public keys {(PKi)}i=1,...,k. For more details on this

operation, we refer to [KKL+22].
Distributed Decrypt(ct, si): This step is the same as the one described in Figure 11 and uses the bootstrap-

ping technique for MK-BFV proposed in [CDKS19].

Fig. 9. MK variant of the B/FV scheme [CDKS19, KKL+22] with distributed decryption à la Scooby

Scholl was supported by the Independent Research Fund Denmark (DFF) under project number
0165-00107B (C3PO) and the Aarhus University Research Foundation (AUFF).

Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of Cyber Security Research Flanders, the
FWO, DFF or AUFF.

29



Distributed decryption à la Scooby for MK-TFHE

Scooby Decrypt(ct, si, {(PKj , BKj ,KSj)}j=1,...,k): As in Figure 11, the parties perform a spooky decryption
to retrieve the shares. Party i does:
1. Assign ctRoot ← ct.
2. Party i now iterates over the path from the root node to the i-th leaf, until it reaches the internal node

just above the leaf.
(a) Let v = (u∥b) be the current internal node (initially v = Root), with left node vL = u∥1 and right

node vR = u∥0. By assumption, except with negligible probability, ctv is a valid encryption of a
message mv such that

∑
mv = m for all internal nodes of the same height in the tree.

(b) If si ∈ vL then party Pi sets ctL = (β,α1, . . . ,αk/2). They can therefore homomorphically eval-
uate the MK bootstrapping as if the secret key encrypting it was (1,−s1, . . . ,−sk/2), by using
{(PKj , BKj ,KSj)}j=1,...,k/2.

(c) If si ∈ vR then party i sets vR = (0,αk/2+1, . . . ,αk). They can therefore homomorphically eval-
uate the MK bootstrapping as if the secret key encrypting it was (0,−sk/2+1, . . . ,−sk), by using
{(PKj , BKj ,KSj)}j=k/2+1,...,k.

(d) Set k = k/2 and iterate until k = 2.
3. Each party Pi now has a ciphertext ctv for an internal node v for which there are only two secret keys

(si and another sh) which are children of v.
4. Party Pi can now locally decrypt a message mi such that mi+mh = mv via the method from Appendix

A.

Fig. 10. Distributed decryption à la Scooby, adapted to the AFS-Spooky from MK-TFHE [CCS19]

References

ADOS22. Damiano Abram, Ivan Damg̊ard, Claudio Orlandi, and Peter Scholl. An algebraic framework for silent
preprocessing with trustless setup and active security. Cryptology ePrint Archive, Report 2022/363, 2022.
https://ia.cr/2022/363.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in
Computer Science, pages 489–518, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Correlated pseu-
dorandom functions from variable-density LPN. In 61st Annual Symposium on Foundations of Computer
Science, pages 1069–1080, Durham, NC, USA, November 16–19, 2020. IEEE Computer Society Press.

BCH84. P.W. Beame, S.A. Cook, and H.J. Hoover. Log depth circuits for division and related problems. In 25th
Annual Symposium onFoundations of Computer Science, 1984., pages 1–6, 1984.

BDGM19. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear decryption: Rate-
1 fully-homomorphic encryption and time-lock puzzles. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892 of Lecture Notes in Computer
Science, pages 407–437, Nuremberg, Germany, December 1–5, 2019. Springer, Heidelberg, Germany.

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in
Computer Science, pages 337–367, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

BGI16a. Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure computation under
DDH. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016,
Part I, volume 9814 of Lecture Notes in Computer Science, pages 509–539, Santa Barbara, CA, USA,
August 14–18, 2016. Springer, Heidelberg, Germany.

BGI16b. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016: 23rd Conference on Computer and Communications Security, pages 1292–1303, Vienna,
Austria, October 24–28, 2016. ACM Press.

30

https://ia.cr/2022/363


BGI+18. Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations of homomorphic
secret sharing. In Anna R. Karlin, editor, ITCS 2018: 9th Innovations in Theoretical Computer Science
Conference, volume 94, pages 21:1–21:21, Cambridge, MA, USA, January 11–14, 2018. LIPIcs.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations in Theoretical Computer
Science, pages 309–325, Cambridge, MA, USA, January 8–10, 2012. Association for Computing Machinery.

BKS19. Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices without FHE. In
Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part II, volume
11477 of Lecture Notes in Computer Science, pages 3–33, Darmstadt, Germany, May 19–23, 2019. Springer,
Heidelberg, Germany.

BP16. Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE with short ciphertexts. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part I, volume
9814 of Lecture Notes in Computer Science, pages 190–213, Santa Barbara, CA, USA, August 14–18,
2016. Springer, Heidelberg, Germany.

BV14. Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In Moni Naor, editor,
ITCS 2014: 5th Conference on Innovations in Theoretical Computer Science, pages 1–12, Princeton, NJ,
USA, January 12–14, 2014. Association for Computing Machinery.

CCS19. Hao Chen, Ilaria Chillotti, and Yongsoo Song. Multi-key homomorphic encryption from TFHE. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology – ASIACRYPT 2019, Part II,
volume 11922 of Lecture Notes in Computer Science, pages 446–472, Kobe, Japan, December 8–12, 2019.
Springer, Heidelberg, Germany.

CDKS19. Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient multi-key homomorphic encryption with
packed ciphertexts with application to oblivious neural network inference. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on Computer and
Communications Security, pages 395–412. ACM Press, November 11–15, 2019.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology – ASIACRYPT 2016, Part I, volume 10031 of Lecture Notes in Computer Science,
pages 3–33, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic
encryption over the torus. Journal of Cryptology, 33(1):34–91, January 2020.

CM15. Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from learning with
errors. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015,
Part II, volume 9216 of Lecture Notes in Computer Science, pages 630–656, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany.

DHRW16. Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption and its applications.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part III,
volume 9816 of Lecture Notes in Computer Science, pages 93–122, Santa Barbara, CA, USA, August 14–18,
2016. Springer, Heidelberg, Germany.

Ds17. Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Computer and
Communications Security, pages 523–535, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2012/144, 2012. https://eprint.iacr.org/2012/144.

GH19. Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In Dennis Hofheinz and
Alon Rosen, editors, TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892 of
Lecture Notes in Computer Science, pages 438–464, Nuremberg, Germany, December 1–5, 2019. Springer,
Heidelberg, Germany.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes
in Computer Science, pages 640–658, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg,
Germany.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

31

https://eprint.iacr.org/2012/144


HS21. Shai Halevi and Victor Shoup. Bootstrapping for HElib. Journal of Cryptology, 34(1):7, January 2021.
KKL+22. Taechan Kim, Hyesun Kwak, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Asymptotically faster

multi-key homomorphic encryption from homomorphic gadget decomposition. Cryptology ePrint Archive,
Report 2022/347, 2022. https://eprint.iacr.org/2022/347.

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume
9666 of Lecture Notes in Computer Science, pages 735–763, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany.

NR04. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions.
Journal of the ACM, 51(2):231–262, 2004.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homomorphic secret sharing and
public-key silent OT. In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology –
EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in Computer Science, pages 678–708, Zagreb,
Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.

PS16. Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference, Part II, volume 9986 of Lecture
Notes in Computer Science, pages 217–238, Beijing, China, October 31 – November 3, 2016. Springer,
Heidelberg, Germany.

RS21. Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing from DCR and applications.
In Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part III, volume
12827 of Lecture Notes in Computer Science, pages 687–717, Virtual Event, August 16–20, 2021. Springer,
Heidelberg, Germany.

RST+22. Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren, and Tim Wood. Actively secure
setup for SPDZ. Journal of Cryptology, 35(1):5, January 2022.

32

https://eprint.iacr.org/2022/347


Auxiliary Supplementary Material

A Two Party Distributed Decryption: Type msb

For the msb-type encryption schemes we can effectively use the same method described for the
lsb version in Section 4.1. To prove our result, we will use the following lemma.

Lemma A.1 ([BKS19], Lemma 1). Let p, q ∈ N, R = Z[X]/(XN + 1) for N a power of 2. Let
m, e ∈ Rp with ||e||∞ ≤ B, and t0, t1 ∈ Rq be uniformly random subject to t0 + t1 = (q/p) ·m + e
mod q Then, it holds that ⌊

(p/q) · t0
⌉
+
⌊
(p/q) · t1

⌉
= m mod p,

with probability at least 1−N · (B + 1) · p/q over the choice of the shares t0, t1.

Proof. Let I = [−q/(2p), q/(2p)). Let t0 = (q/p) · z0+ r0, such that z0 ∈ Rp and r0 ∈ R|I . Let l ∈ R
such that t1 = (q/p) · (m− z0) + e− r0 + q · l ∈ R. Then we have⌊

(p/q) · t0
⌉
=

⌊
(p/q) · ((q/p) · z0 + r0)

⌉
mod p

=
⌊
z0 + (p/q) · r0

⌉
mod p

By the definition of r0 we have that (p/q) · r0 ∈ R|[−1/2,1/2), which means that rounding merely
reduces the above to z0 modulo p. Moreover,⌊

(p/q) · t1
⌉
=

⌊
(p/q) · ((q/p) · (m− z0) + e− r0 + q · l)

⌉
mod p

=
⌊
m− z0 + p · l + (p/q) · (e− r0)

⌉
mod p.

Now assume that e− r0 ∈ R|I . Then it holds that (p/q) · (e− r0) ∈ R|[−1/2,1/2), hence⌊
(p/q) · t1

⌉
= m− z0 mod p

If instead e − r0 /∈ R|I , then the coefficients of r0 are too close to the boundaries of I. As t0 is
chosen uniformly at random, we have that the distribution of z0 is the uniform distribution over
Rp and the distribution of r0 is the uniform distribution of R|I . For every j ∈ {1, . . . , N} the j-th
component of r0 the probability that it is outside the interval

Ij := (−q/(2p) + ej , q/(2p) + ej ]

is at most

(||e||∞ + 1) · p/q.

As, by assumption, ||e||∞ < B, a union over all the components of r0 yields the bound of correct
rounding with a probability

1−N · (B + 1) · p/q.

33



As done before, we suppose that sk is split into two keys sk1 and sk2 such that P1 holds sk1
and P2 holds sk2, and that sk = sk1 + sk2 (mod q). We can then, without interaction, compute an
additive sharing of m = m1 +m2 given a valid ciphertext ct encrypting m. This can be achieved
as follows.

2-party DistDecmsb: Let R← Zq be a public random nonce.
1. P1 computes d1 ← ct · (1,−sk1) (mod q) and then m1 ← ⌊d1 · p/q⌉.
2. P2 computes d2 ← ct · (0,−sk2) (mod q) and then m2 ← ⌊d2 · p/q⌉.

We claim that this correctly computes m = m1 +m2 with overwhelming probability.

Proposition A.1. Given an LD-based FHE scheme of type msb (Definition 4.1), where
(q,N,B, d,∆, S, pk, sk) ← KeyGenFHE(1λ, p), with q > 2 · p · (B + 1) · 2sec and sk1 + sk2 = sk.
Let (ct,m) be a pair of ciphertext/plaintext messages and m1 and m2 values obtained with the
procedure described above. Then, it holds that

m = m1 +m2 (mod p),

with probability at least 1−N · 2sec.

Proof. By the assumption on B, namely Equation 1, and by Lemma A.1, we have

1− N · (B + 1) · p
q

≤ 1− N · (B + 1) · p
2 · p · (B + 1) · 2sec

≤ 1−N · 2−sec.

This concludes the proof.

A.1 n-party Scooby Decryption: the msb case

In Figure 11, we give the procedure for n-party decryption to shares in the msb case of the
Scooby construction.

34



Algorithm DecScoobyski
(ct) (for msb-based construction)

Let F : {0, 1}λ × [n]→ Rq be a pseudorandom function.

DecScoobyski
(ct):

1. Parse ski as s̃ki, K
prf and (pkFHEv , ctv), for every node v from the root to leaf i.

2. Let c̃t⊥ := ct.
3. For each internal node v on the path from the root to leaf i (excluding the root and leaf):

(a) Write v = u∥b, where u is the parent of v (so b = 0 if v is a left child and b = 1 otherwise).
(b) Define the function:

fb
c̃tu

: sk 7→
⌊
c̃tu · (b,−sk) + (−1)b · F (Kprf , u) (mod q)

⌉
(c) Compute c̃tv := EvalFHEpkv

(fb
c̃tu

, ctv).

4. Write i = u∥b, then take the leaf ciphertext c̃ti and output the share

mi =
⌊
c̃ti · (b,−s̃ki) + (−1)b · F (Kprf , u) (mod q)

⌉
Fig. 11. Decryption to shares for msb-based Scooby

35


	Scooby: Improved Multi-Party Homomorphic Secret Sharing Based on FHE
	Introduction
	Our Contribution

	Preliminaries
	Homomorphic Secret Sharing
	Spooky Encryption

	Homomorphic Encryption with Decryption to Shares (HEDS)
	Multi-input HSS from HEDS Encryption

	Linear-Decryption Based FHE
	Two-Party Distributed Decryption: Type lsb

	Scooby: Multi-Party HEDS from LD-based FHE
	HEDS Key Generation
	Security Assumption
	From 2-party to n-party HEDS
	BGV Parameters Supporting Scooby

	Multi-Party HEDS from Weaker Assumptions
	Scrappy: HEDS from Standard FHE + HSS for NC1
	Shaggy: Bootstrapping HEDS to More Parties

	Casper: Friendly AFS-spooky Encryption from Multi-Key FHE
	Spooky from MK-TFHE
	Spooky from MK-BFV

	Two Party Distributed Decryption: Type msb
	n-party Scooby Decryption: the msb case



