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ABSTRACT
In this work, we study the blockchain leader election problem.

The purpose of such protocols is to elect a leader who decides on

the next block to be appended to the blockchain, for each block

proposal round. Solutions to this problem are vital for the secu-

rity of blockchain systems. We introduce an efficient blockchain

leader election method with security based solely on standard as-

sumptions for cryptographic hash functions (rather than public-key

cryptographic assumptions) and that does not involve a racing con-

dition as in Proof-of-Work based approaches. Thanks to the former

feature, our solution provides the highest confidence in security,

even in the post-quantum era. A particularly scalable application

of our solution is in the Proof-of-Stake setting, and we investigate

our solution in the Algorand blockchain system. We believe our

leader election approach can be easily adapted to a range of other

blockchain settings.

At the core of Algorand’s leader election is a verifiable random

function (VRF). Our approach is based on introducing a simpler

primitive which still suffices for the blockchain leader election

problem. In particular, we analyze the concrete requirements in

an Algorand-like blockchain setting to accomplish leader election,

which leads to the introduction of indexed VRF (iVRF). An iVRF

satisfies modified uniqueness and pseudorandomness properties

(versus a full-fledged VRF) that enable an efficient instantiation

based on a hash function without requiring any complicated zero-

knowledge proofs of correct PRF evaluation.We further extend iVRF

to an authenticated iVRF with forward-security, which meets all the

requirements to establish an Algorand-like consensus. Our solution

is simple, flexible and incurs only a 32-byte additional overhead

when combined with the current best solution to constructing a

forward-secure signature (in the post-quantum setting).

∗
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We implemented our (authenticated) iVRF proposal in C lan-

guage on a standard computer and show that it significantly out-

performs other quantum-safe VRF proposals in almost all metrics.

Particularly, iVRF evaluation and verification can be executed in

0.02 ms, which is even faster than ECVRF used in Algorand.
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thentication codes; Distributed systems security; Digital sig-
natures.
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1 INTRODUCTION
In a blockchain system, a number of block creators work collectively

on producing new blocks and appending them to the blockchain.

Such systems rely on consensus protocols to agree on the proper

sequencing of blocks. A major goal of a consensus protocol is to

elect a leader, who decides on the new block to be appended, and in

some cases, to additionally elect a committee, who validates newly

produced blocks. In Proof-of-Stake consensus protocols, for exam-

ple, the leader is elected among the stakeholders with probability

proportional to the amount of owned stakes.

Due to their critical roles, it is vital for the security of a blockchain

system that leaders are elected from a set of honest users that may

not be easily corrupted by an adversary. To accomplish such security

requirements, there are various cryptographic techniques employed

by different blockchain environments, e.g., [1, 16, 21, 23, 25]. For

example, Algorand, aiming for an environment-friendly solution,

employs a cryptographic sortition technique, where a user self-

determines if they are elected as a leader using a Verifiable Random

Function (VRF) [28]. The goal of the VRF is to introduce a way for
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each user to produce a unique lottery ticket whose validity can be

publicly verified via a proof shared by the user. In the case a user

has a winning ticket, they publish the ticket as well as a certifying

proof, which together constitute the VRF output. The use of VRF in

consensus protocols supports scaling and high performance, and

allows the Algorand blockchain to support millions of users. VRFs

are also used as a core cryptographic primitive in other blockchain

systems such as Ouroboros Praos [16] (used in Cardano), Dfinity

[25], Rangers Protocol [4] and Filecoin [3].

The VRF and signature solutions employed by Algorand, namely

ECVRF [30] and Ed25519 [10], rely on the hardness of discrete log-

arithm problem (DLP), which is susceptible to quantum attacks. As

discussed in [17], the lack of post-quantum security in an Algorand-

like blockchain context may be catastrophic, leading to a complete

adversarial re-write of the blockchain history. Particularly, the au-

thors in [17] discuss that even if a forward-secure signature is

used to secure the blockchain system, a quantum adversary may

break DLP to recover users’ master secret keys from their master

public keys. As such, the adversary can corrupt any user at any

time (including previous rounds) by generating the round keys

from the master secret key even when the round secret keys are

physically deleted by the users. Hence, it is important to migrate

to post-quantum solutions, particularly for the consensus part, to

make sure at least that the security of prior rounds cannot be com-

promised
1
.

A major bottleneck against making Algorand-like consensus

protocols post-quantum is the lack of an efficient post-quantum
replacement of its VRF. Prior attempts [13, 17, 18] to construct prac-

tically efficient post-quantum VRFs have significant disadvantages

compared to our solution as we discuss next.

The first practical post-quantum VRF proposal, named LB-VRF,

was introduced by Esgin et al. in [17]. This scheme is based on

lattices and is relatively efficient for the lattice setting. In particular,

an LB-VRF proof is about 5 KB, which is somewhat larger than an

ordinary signature based on the same assumptions (at around 2.5–3

KB). A significant limitation of LB-VRF is that it is only few-time,
meaning that each VRF key pair can only be used to generate a

few VRF outputs, particularly just one for the most efficient in-

stantiation. This leads to significant issues because one has to find

custom-designed methods to handle key refreshing almost every

round (i.e., every 5 seconds). Moreover, since the new key needs to

be communicated almost every round, the actual communication

cost rises by the public key size to more than 8.3 KB. Another lattice-

based VRF proposal, named LaV, was recently introduced by Esgin

et al. in [18]. Despite the fact that LaV is a standard VRF (i.e., can

directly replace ECVRF used in Algorand in terms of functionality),

its main drawback is the proof size at about 10 KB.

By employing hash-based cryptography, Buser et al. [13] intro-

duced X-VRF, a post-quantum VRF construction based on the XMSS

signature [11]. This VRF proposal is stateful (like XMSS), but this

limitation is not a significant concern in the blockchain applications

(at least for its use in Algorand). The main drawback of X-VRF (com-

pared to our solution) is the significant communication overhead

1
In recognition of the importance of post-quantum security, Algorand has recently

(concurrent to our work) introduced post-quantum secure state proofs. See https:

//developer.algorand.org/docs/get-details/algorand_consensus/#state-proof-keys (ac-

cessed on July 26, 2022).

at about 3 KB. Another solution in [13] is a standard VRF proposal,

named SL-VRF, but its communication cost is significantly larger,

at about 40 KB. A summary of the performance of these existing

VRF proposals is provided in Table 1.

Given the above state of affairs for post-quantum VRFs, a natural

question that we ask in this work is the following.

Do we really need a full VRF to realize an Algorand-like consensus? If
not, what is precisely the tool needed for that purpose and how can

we construct it from the most basic cryptographic primitives?

We emphasize the importance of simplicity, efficiency, sustainability

and (long-term) reliability as we are after a solution that (i) can

be readily deployed into Algorand’s network, (ii) does not require

wasting natural resources, and (iii) offers the strongest security in

the post-quantum era. As a result, we build our solution for the

VRF functionality based solely on hash functions.

Before going into more details of our solution, we present in-

dependent views on Bitcoin’s, Algorand’s, and our approaches to

solving the leader election
2
/lottery problem on blockchain. These

will be helpful in understanding our high-level approach without

getting into technical details.

A view of Bitcoin’s approach. A common feature of all three

approaches that we discuss now is that the blockchain protocol

generates a random “magic” number, say𝑄𝑛 , at each protocol round

𝑛. In Bitcoin’s approach, this magic number is used to select a

random function H𝑄𝑛
from a large family of hash functions. Then,

the idea of Bitcoin’s Proof-of-Work (PoW) approach is to have users

race real-time to find a “lucky” input, 𝑥 , that maps underH𝑄𝑛
to one

of the target values such as H𝑄𝑛
(𝑥) < 𝑣 for some threshold 𝑣 . The

main drawback, well-known in the community, is the tremendous

energy consumption and the waste of resources due to the real-

time racing as the more computational power one spends, the more

chance they have in winning the race.

A view of Algorand’s approach. Algorand aims to solve the

unsustainability issue of Bitcoin’s PoW by moving to a Proof-of-

Stake (PoS) based approach. In Algorand, users fix their key pairs

in advance of participating in the consensus, say (pk𝑖 , sk𝑖 ) for user
𝑖 . Effectively, fixing the keys seals everyone’s fate in that now each

user has an internal secret functionHsk𝑖 , which they cannot change

since the corresponding public key pk𝑖 acts as its commitment.

When the blockchain protocol generates the random magic number

𝑄𝑛 for round 𝑛, each user locally computes Hsk𝑖 (𝑄𝑛) and checks

whether the result is a “winning ticket”. The probability of success

in the latter check is based on the amount of stake one has. If the

check is successful, they can generate a (zero-knowledge) proof to

show that they are indeed a winner of the lottery for round 𝑛.

Views of our approach. Our approach in a way is a new look at

a combination of the above two approaches. In particular, we first

want to deviate from real-time racing in Bitcoin while still making

use of the magic number 𝑄𝑛 to choose a random function H𝑄𝑛
at

each block generation round. Since we have these functions chosen

2
We note that the high-level approaches we discuss (Bitcoin’s, Algorand’s and ours) do

not guarantee a single leader election (and hence, the term ‘leader election’ is not used

to mean ‘single leader election’). Thanks to the flexibility of our approach, if multiple

potential leaders arise in our protocol, one can employ, for example, the techniques in

Algorand (discussed in Sec. 6) to recognise one of them as the true leader.
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at each round without a particular user’s control,
3
what we do is

simply ask every user (participating in the consensus) to commit

to an input of their choice in advance of that round. In particular,

at some round 𝑡 < 𝑛 (or earlier), each user 𝑖 commits to their input

𝑥𝑖 on blockchain and simply wins the lottery if H𝑄𝑛
(𝑥𝑖 ) = 𝑣 for

a target value 𝑣 . To prove that user 𝑖 indeed won the lottery, they

simply publish 𝑥𝑖 and everyone can straightforwardly check the

claim by calculating H𝑄𝑛
(𝑥𝑖 ). Overall, for improved efficiency, we

ask users to commit to a set of inputs 𝑥𝑖, 𝑗 ’s early on and use the

𝑛-th value 𝑥𝑖,𝑛 at round 𝑛, where the use of the 𝑛-th value can be

verified so that users do not get to choose between multiple 𝑥𝑖, 𝑗 ’s.

A “dual” view of our approach is that each user 𝑖 commits to

a one-time function H𝑥𝑖,𝑛 for each round 𝑛 in advance, and just

evaluates H𝑥𝑖,𝑛 (𝑄𝑛) to check lottery winning similar to Algorand.

However, the major difference of our approach from Algorand’s

is that we do not require a (zero-knowledge) proof to show the

validity of computation and simply ask users to publish H𝑥𝑖,𝑛 . The

latter approach of ours significantly simplifies the functionality

required from the cryptographic tool to accomplish leader elec-

tion and enables a very efficient instantiation from the most basic

primitives. We discuss our approach in more detail in Sec. 1.2.

Forward security. Many blockchain systems such as Algorand

and Ouroboros Praos [16] employ forward-secure digital signatures
to maintain the security of prior rounds in case some stored user

key is compromised at some point. Existing generic approaches

to achieving forward security can be straightforwardly realized in

the post-quantum setting by instantiating the underlying ordinary

signatures using post-quantum ones.

One such generic approach is known as the MMM approach

[27]. In the MMM ‘sum’ composition, a user creates 𝑁 key pairs

(pk
1
, sk

1
), . . . , (pk𝑁 , sk𝑁 ) of an ordinary signature and constructs

a Merkle tree using the public keys as the tree leaves. To sign a

message at a particular time 𝑖 , the user communicates pk𝑖 and an

authentication path in addition to a signature on the actual message.

An alternative generic approach, adopted by Algorand, works as

follows. A user first generates a key pair (mpk,msk) of an ordinary

signature, and similarly round key pairs (pk
1
, sk

1
), . . . , (pk𝑁 , sk𝑁 ).

Then, each round public key is signed with msk, denoted as 𝜎′
𝑖
,

and at a round 𝑖 , the user communicates (𝜎′
𝑖
, pk𝑖 ) in addition to

the signature on the actual message. Therefore, the communication

difference between the Algorand’s approach vs the MMM approach

is the cost of a signature (𝜎′
𝑖
) vs an authentication path. The smallest

signature length among the schemes selected for standardization

by NIST for Post-Quantum Cryptography
4
is at about 700 bytes,

which means even an authentication path for a Merkle tree with

2
20

leaves is cheaper than such a post-quantum signature. Note

that the latter Algorand approach also incurs more computation

due to signing of round public keys.

Another alternative approach to constructing forward-secure

post-quantum signature could be to use a post-quantum Identity-

Based Signature (IBS) scheme. In this case, the IBS master secret key

3
Here, we are assuming the ideal case where𝑄𝑛 is generated truly at random by some

means. Of course, this is not possible to achieve in practice, but this issue is outside

of our simplified discussion here. In our actual protocol, the magic number will be

generated similar to Algorand and our approach is flexible enough to support different

ways to generate𝑄𝑛 .
4
https://csrc.nist.gov/Projects/post-quantum-cryptography/

is used to derive signing keys for the round keys, where each round

is assigned a different ID. Themaster secret key is deleted and round

keys are stored and used to sign messages, and then each one is

deleted as the corresponding round period expires. It is well known

that such IBS can be constructed from a two-level Hierarchical

Identity-Based Encryption (HIBE) scheme. An improved variant

of the post-quantum lattice-based Latte HIBE scheme [2] and

its practical implementation are reported in a recent work [32].

However, the user private keys in the latter scheme are already

longer than 3 KB (even for a one-level HIBE), and signatures will be

even longer. This approach to forward security therefore leads to a

longer communication cost compared to an MMM-based solution,

which can be instantiated with communication of less than 2.2 KB

for each message signed using the Falcon signature scheme [20].

We further note that Algorand’s approach described above is an

application of a folklore generic IBS construction via certification

described, e.g., in [7]. Overall, in the post-quantum setting, the

MMM approach already stands out as one of the best options and

we adopt it in our work.

1.1 Our Contributions
Our main contribution in this work is the introduction of a sim-

ple, efficient, sustainable and post-quantum solution to blockchain

leader election problem. Although our solution is based on simple

cryptographic tools, our insights to develop this solution are not

obvious as they require a new formal treatment of VRFs. Hence, we

start by formalizing the concrete VRF requirements for the leader

election problem, specifically tailored to the blockchain setting.

This leads to notions of (many-time) indexed VRF (iVRF) and au-

thenticated iVRF with forward security (‘authenticated MT-iVRF’

or ‘authenticated iVRF’, in short). The former is targeted at the

blockchain leader election problem alone, while the latter combines

all requirements to accomplish an Algorand-like consensus, where

a forward-secure signature is needed. We believe our definitions

capture the requirements in a real-life blockchain setting more

closely, particularly matching the sequential (i.e., “indexed”) nature

of blockchain protocols.

Then, we introduce our solutions for (many-time) iVRF and

authenticated iVRF that build on a cryptographic hash function,

ordinary (𝑡-time) signature (for a parameter 𝑡 ) and pseudorandom

generator (PRG), which can be built from a hash function. We prove

the security of our instantiations assuming the existence of a secure

hash function, digital signature and PRG satisfying natural security

requirements in the standard model (without random oracles). Since

we do not require a random oracle, there is no complicated quantum

random oracle model (QROM) analysis needed to argue security

against (full) quantum adversaries.

We implemented our constructions in C language on a stan-

dard computer with two different post-quantum signature schemes

Falcon [20] and XMSS [11] (see Sec. 4 for more details). The per-

formance results of iVRF together with a comparison with other

practical post-quantum VRF proposals are provided in Table 1. In

the table, we also include ECVRF (used by Algorand) performance

results as a reference point even though ECVRF is not quantum-safe.

We can see from the table that our iVRF enjoys the smallest sizes

across all components compared to other post-quantum schemes.

3
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Table 1: Performance comparison of our iVRF in Sec. 3.1 (with 𝑁 = 2
18 evaluations) to other quantum-safe VRF proposals and

(non-quantum-safe) ECVRF. The sizes are given in bytes and the times are in milliseconds. For ECVRF, we take the results
reported in [13]. For our iVRF, the VRF value can be computed from the proof and hence its size is given as zero.

Scheme Pub. Key Size Proof Size VRF Size Keygen Time Eval Time Verify Time # of Evaluations Security Basis

SL-VRF [13] 48 40000 32 0.38 765.00 475.00 Unlimited LowMC block cipher [5]

LaV [18] 5810 10270 124 - - - Unlimited Lattices

LB-VRF [17] 3320 4940 84 0.33 3.10 1.30 1 Lattices

X-VRF [13] 64 2720 32 426000.00 0.74 0.90 𝑁 = 2
18

Hash

Our iVRF 32 608 0 < 3087.00 0.01 0.02 𝑁 = 2
18

Hash

ECVRF [30] 32 80 32 0.05 0.10 0.10 Unlimited Discrete log. (not quantum-safe)

Its evaluation and verification times also outperform all proposals

in the table, including ECVRF. The only downside of our approach

is its key generation time linear in the total number of allowed

evaluations 𝑁 (arising due to a Merkle hash tree computation).

Our key generation is only a one-time computation per𝑁 evalua-

tions that can be straightforwardly parallelized. Note that blockchain

applications typically do not require very frequent such evaluations.

Particularly, each evaluation (out of 𝑁 ) of iVRF is for one Algo-

rand round, which takes about 4.5 seconds. Therefore, 𝑁 = 2
23

evaluations suffice for 4.5 · 223 seconds, which is more than a year.

As discussed in Sec. 4, for 𝑁 = 2
23
, even our full authenticated

iVRF key generation (including the signature scheme’s costs) takes

about 10 hours on a single core. This computation can be easily

completed within a year by progressively running it whenever the

device is turned on. Therefore, we believe the key generation time

is not a significant limitation for blockchain applications of our ap-

proach, especially considering the significant gains of our solution

in all other performance metrics. Note also that Algorand already

requires a similar 𝑂 (𝑁 ) key generation time as discussed further

in Sec. 6.3. We now provide an overview of our solution and then

discuss its advantages.

1.2 Overview of Solution
This section discusses an overview of how our final authenticated

iVRF construction works in the Algorand setting. As mentioned

earlier, our solution relies on having users commit to an ordered set

of inputs (i.e., random strings), where the index of each input can be

verified. We already know an excellent tool for this purpose: Merkle

tree! More generally, we can use any (static) vector commitment.

Let us set 𝑁 (a power of two) as a parameter that defines the

number of rounds before a user key is refreshed. This parameter can

be adjusted as desired, but users’ (local) key generation time is linear

in 𝑁 due to the Merkle tree construction (see Table 1 for a concrete

key generation time). We envision that key refreshments of all

users are synchronized in the following sense. The time periods are

split into epochs, composed of 𝑁 consecutive rounds, and 𝑑 rounds

before an epoch starts, for a delay parameter 𝑑 , nodes wanting to

get involved in consensus in that epoch are expected to commit

to their Merkle tree root on blockchain. If a user performs this

commitment at a later time, they still need to wait for 𝑑 rounds

before being able to join the consensus and their Merkle tree still

needs to have 𝑁 leaves
5
.

Let us now see how the key generation is done. A user, Al-

ice, generates 𝑁 pseudorandom values 𝑥0,0, . . . , 𝑥𝑁−1,0 from a ran-

dom seed 𝑠 using a pseudorandom generator (PRG) and computes

𝑥𝑖, 𝑗 = H𝑗 (𝑥𝑖,0) (i.e., 𝑗 recursive application of H on 𝑥𝑖,0) for 𝑗 =

1, . . . , 𝑡 − 1 and 𝑖 = 0, . . . , 𝑁 − 1, where 𝑡 is a parameter denot-

ing the number of iterations needed to reach agreement within

a round (with high probability). She also generates 𝑁 key pairs

(pk
0
, sk

0
), . . . , (pk𝑁−1, sk𝑁−1) of an ordinary (𝑡-time) signature Σ

using another random seed 𝑠′ with the PRG. With these values, Al-

ice now computes 𝑥𝑖,𝑡 = H(𝑥𝑖,𝑡−1, pk𝑖 ) and constructs a Merkle tree

with (𝑥0,𝑡 , . . . , 𝑥𝑁−1,𝑡 ) as the leaves (depicted in Fig. 1). Alice pub-

lishes the Merkle tree root on blockchain as her public key
6
(or com-

mitment) and keeps the seeds (𝑠, 𝑠′) and the intermediate Merkle

tree nodes as her secret key.

Now suppose we are at the 𝑗-th iteration of the 𝑖-th round of

consensus in an epoch that Alice is able to participate. Let 𝑛 denote

the actual block round number with a “magic number” 𝑄𝑛 (note

that 𝑖 ≡ 𝑛 mod 𝑁 ). To generate an authenticated iVRF output on

an input message 𝜇 to be authenticated/signed, she outputs 𝑣 =

H(𝑥𝑖, 𝑗 , 𝑄𝑛) as the VRF value, 𝜎 = Σ.Signsk𝑖 (𝜇) as the signature and
𝜋 = (𝑥𝑖, 𝑗 , pk𝑖 ,AP𝑖 ) as the proof where AP𝑖 denotes the Merkle tree

authentication path w.r.t. the index 𝑖 .7

Upon receiving an authenticated iVRF output (𝑣, 𝜎, (𝑥, pk,AP)),
the verification of iVRF works by first checking if 𝑣 = H(𝑥,𝑄𝑛)
and 𝑣 is below a threshold. Furthermore, it checks that 𝜎 is a valid

signature on 𝜇 under pk. Finally, for 𝑥 ′ := H(H𝑗 (𝑥), pk), it checks
that the Merkle tree root computed via 𝑥 ′ and AP is equal to Alice’s

public key (or commitment) on blockchain for that epoch.

The intuition behind security is quite simple. Alice generated

and committed to 𝑥𝑖, 𝑗 ’s before seeing 𝑄𝑛 . So, she cannot choose

them to bias the output of H𝑄𝑛
(𝑥𝑖,𝑛) := H(𝑥𝑖, 𝑗 , 𝑄𝑛). Merkle tree

commitment also ensures (computationally) that there is only a

single valid 𝑥𝑖, 𝑗 that Alice can use at round 𝑛. Hence, assuming the

5
If a user joins late, they can actually leave a bottom left sub-tree ‘empty’ as that part

will not be needed. For example, if a user joins 16 rounds late, then they can just pick

the left-most tree node at level 4 (from the bottom) and 𝑁 − 16 leaves to construct the
Merkle tree. The sub-tree consisting of the first 16 leaves will not be needed.

6
To prevent Alice from publishing multiple Merkle roots, we can simply have a flag

bit in each account that states whether a user has published their Merkle root for

that epoch. If that is the case, the verifiers would reject subsequent Merkle root

commitments on blockchain.

7
In the actual protocol, Alice in fact does not need to communicate 𝑣 since it can be

computed from 𝑥𝑖,𝑗 and the public𝑄𝑛 .
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randomness of 𝑄𝑛 , no user has a better advantage of winning the

lottery. Of course, as in Algorand, we can adjust the winning condi-

tion based on the amount of stake to establish a PoS-based setting

or the adjustment can be w.r.t. any publicly available information.

The forward security of our approach is inherited from the ‘sum’

composition in the MMM paper [27] (recalled in Appendix A). As

in Algorand, we assume that the adversary cannot corrupt a user

within a round (i.e., in 4-5 seconds). To allow such corruptions, we

can simply ask users to build a Merkle tree with 𝑁 · 𝑡 leaves in the

first place and consume 𝑡 leaves at each round (even if the actual

number of iterations in a round is less than 𝑡 ).

As mentioned above, our approach in general can work with

any (static) vector commitment, which would replace the role of

Merkle tree in our description. Therefore, our approach can benefit

from further improvements in the context of vector commitments.

1.3 Advantages of Our Approach
Simplicity and flexibility. Our approach supports the use of

any ordinary signature and any hash function (satisfying natural

properties), which are already supported by almost all blockchain

applications. These tools have been studied for a long time, and their

post-quantum variants are either already standardized or in stan-

dardization. Thanks to its simplicity and flexibility, we believe our

approach can be easily adapted to work for a range of blockchain

systems, for example, Cardano, Dfinity and Rangers Protocol. Note

that our approach does not necessarily require the consensus pro-

tocol to be based on Proof-of-Stake, and it may be possible, for

example, to adapt it to the Proof-of-Storage setting in Filecoin [3].

Confidence in (post-quantum) security. Hash functions (and

symmetric primitives in general) are considered to be the most reli-

able solution to building quantum-safe cryptosystems. Therefore,

our leader election solution is built on the safest alternative. For our

full solution with authentication, one can choose the best tradeoff

between security and efficiency for a specific system thanks to the

flexibility of our approach.

Sustainability. Our approach does not have any racing condition

and, therefore, does not lead to a tremendous waste of natural

resources like Bitcoin.

Efficiency. Combined with one of the best solutions (i.e., the MMM

approach) to achieving forward security in the post-quantum set-

ting, the only additional communication cost of our iVRF-based ap-

proach is 32 bytes (i.e. the cost of sending the relevant round’s 𝑥𝑖, 𝑗 ),

which is a minimal cost one could expect to have. In comparison,

combining an MMM-style forward-secure post-quantum signature

with X-VRF [13], the smallest post-quantum VRF proposal, (under

a common hash tree) would give an additional overhead due to

the VRF functionality of about 2100 bytes. This overhead is almost

two orders of magnitude more than the 32 byte overhead in our

iVRF-based construction. We discuss the computational efficiency

in Sec. 4 after introducing more details about the concrete digital

signature.

Outline of the paper. Due to limited space, standard definitions of

hash functions, Merkle tree, pseudorandom generators, and digital

signatures are recalled in Appendix A. We formally define our iVRF

notions in Sec. 2, followed by their instantiations in Sec. 3. We ana-

lyze the performance of our schemes and provide implementation

results in Sec. 4. The security analyses are provided in Sec. 5. Then,

we discuss an application of our approach in Algorand in Sec. 6.

2 FORMAL DEFINITIONS OF MANY-TIME
INDEXED VRF (MT-iVRF)

In this section, we discuss the formal definitions of a Many-Time

Indexed VRF (MT-iVRF) and authenticated MT-iVRF with forward

security. Particularly, we discuss the definitions of an authenticated

MT-iVRF with forward security, and an MT-iVRF is simply a special

case of that. For simplicity, we refer to our constructions as MT-

iVRF and authenticated MT-iVRF (omitting ‘with forward security’

or even ‘MT-’ sometimes).

Our definitions are adapted from those of an ordinary VRF [28]

and a forward-secure (or key-evolving) signature [6]. We also adapt

the unbiasability definition of [17] into our setting. An important

feature of our definitions is that we capture more closely the real-

life setting in blockchain, where the protocol is inherently stateful

and indexed (by round/iteration numbers). Our modifications over

the prior definitions allow us to construct the desired tool efficiently

from simple cryptographic primitives.

In an Algorand-like consensus setting (see Sec. 6 for details), we

want to enable parties to run a cryptographic sortition where a set

of users secretly determine their eligibility to participate in consen-

sus. This should be done in a way that no selected party is known

to the outside world until they reveal this information. To realise

this functionality, VRF is used in Algorand where the VRF unique-

ness property ensures that users cannot increase their chance of

being selected by producing multiple outputs. Furthermore, the

VRF pseudorandomness property prevents an adversary from iden-

tifying potential leaders (even if it knows the magic number 𝑄𝑛)

because each user’s VRF output looks random to the outside parties,

implying that the adversary cannot predict their output. Our main

insights in modifying the formal VRF requirements are as follows.

First, in the inherently-stateful blockchain ecosystem, we introduce

an index (corresponding, for example, to the round number) to cap-

ture time for VRF evaluation and verification to enable index-based

properties. Second, we observe that pseudorandomness property

is not required for past rounds as consensus protocol has already

finished for them. As a result, thanks to the formally captured in-

dexing, we can remove the pseudorandomness requirement for

previously queried indices. With the above high-level intuition in

mind, let us know move to the rigorous definitions.

2.1 Syntax
Let 𝑁 be the parameter denoting the maximum number of time

periods (i.e., ‘rounds’) allowed (i.e., the iVRF is 𝑁 -time), and 𝑡 be the

parameter denoting the maximum number of ‘iterations’ allowed

within any given time period/round. In particular, we are here

assuming a more generalized setting where each time period is

split into further ‘iterations’, where the forward security will be

required w.r.t. to the time periods (not iterations). Note that fixing

𝑡 = 1 leads to the standard forward security setting in [6]. In our

definitions of the authenticated MT-iVRF, we let iAV.Eval take two
input messages 𝜇1, 𝜇2 to allow verifiable VRF evaluation on one

message (𝜇1) and authentication of another message (𝜇2). The above
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two generalizations to the formal definitions are done to properly

capture an Algorand-like blockchain setting.

In the functions below, we do not index the secret key in or-

der not to clutter the presentation and the key update function

iAV.KeyUpd simply periodically updates the secret key. The time pe-

riod index 𝑖 is clear from the descriptions of iAV.Eval and iAV.Verify
functions as it is part of the input. An authenticated many-

time indexed VRF, iAV, is given by the following five algorithms

(iAV.ParamGen, iAV.Keygen, iAV.KeyUpd, iAV.Eval, iAV.Verify):

pp← iAV.ParamGen(1𝜆) : Given the security parameter 𝜆, set up

and return public parameters pp containing 𝑁 . We assume that

pp is an implicit input to the other algorithms.

(pkav, skav) ← iAV.Keygen(pp) : Given the public parameters pp,
return a public-secret key pair (pkav, skav).

skav ← iAV.KeyUpd(skav) : Given the given secret key skav for the
previous period, update (overwrite) skav for the current time

period.

(𝑣, 𝜎, 𝜋) ← iAV.Evalskav (𝜇1, 𝜇2, (𝑖, 𝑗)) : Given input messages 𝜇1, 𝜇2

∈ {0, 1}ℓ (𝜆) and a pair of indices (𝑖, 𝑗) with 0 ≤ 𝑖 < 𝑁 and

0 ≤ 𝑗 < 𝑡 , return a VRF value 𝑣 ∈ {0, 1}𝑚 (𝜆) w.r.t. 𝜇1, a signature
𝜎 w.r.t. 𝜇2 and an accompanying proof 𝜋 .

0/1← iAV.Verifypkav (𝜇1, 𝜇2, (𝑖, 𝑗), 𝑣, 𝜎, 𝜋) : Given inputmessages 𝜇1,

𝜇2, a pair of indices (𝑖, 𝑗) with 0 ≤ 𝑖 < 𝑁 and 0 ≤ 𝑗 < 𝑡 , a VRF

value 𝑣 , a signature 𝜎 and a purported proof 𝜋 , check using 𝜋 if

(𝑣, 𝜎) is correctly generated for the given (𝜇1, 𝜇2, (𝑖, 𝑗)) and pkav.

The (non-authenticated) MT-iVRF construction (in Sec. 3.1) does

not have a signature 𝜎 and a second message 𝜇2. Hence, it only

serves the VRF functionality without any authentication. The pur-

pose of the parameters 𝑡 and 𝑗 is to formally match our application

setting to Algorand. For applications not requiring them, one may

simply fix (𝑡, 𝑗) = (1, 0).

2.2 Correctness and Security Definitions
Compared to an ordinary VRF, there are two main distinctions of

our security definitions. First, uniqueness holds in the case of any

(arbitrarily-generated) fixed input-index pair (𝜇1, (𝑖, 𝑗)), rather than
just any (arbitrarily-generated) fixed input 𝜇1. Secondly, pseudoran-

domness is satisfied against any challenge input-index pair (𝜇1, 𝑖),
where the index 𝑖 is never queried to the iAV.Eval oracle OiAV.Eval.
In the case of ordinary VRFs, the adversary is not allowed to query

the OiAV.Eval oracle on the challenge input 𝜇1.

Provability. For any (𝑣, 𝜎, 𝜋) ← iAV.Evalskav (𝜇1, 𝜇2, (𝑖, 𝑗)) with
(pkav, skav) ← iAV.Keygen(pp), skav ← iAV.KeyUpd𝑖 (skav)
and pp← iAV.ParamGen(1𝜆), the algorithm iAV.Verifypkav (𝜇1,
𝜇2, (𝑖, 𝑗), 𝑣, 𝜎, 𝜋) outputs 1.

Computational Full Uniqueness (CFU). LetA be a polynomial-

time adversary playing the following experiment Exp-CFU:
(1) pp← iAV.ParamGen(1𝜆).
(2) (𝜇1, 𝑖, 𝑗, pkav, 𝜇2, 𝑣, 𝜎, 𝜋, 𝜇2, 𝑣, �̂�, 𝜋) ← A(pp).
The adversary A wins the game

if iAV.Verifypkav (𝜇1, 𝜇2, (𝑖, 𝑗), 𝑣, 𝜎, 𝜋) =

iAV.Verifypkav (𝜇1, 𝜇2, (𝑖, 𝑗), 𝑣, �̂�, 𝜋) = 1 and 𝑣 ≠ 𝑣 , with

0 ≤ 𝑖 < 𝑁 and 0 ≤ 𝑗 < 𝑡 . An (𝑁 -time) authenticated MT-iVRF

with forward security is said to satisfy computational full

uniqueness, if the adversary A wins the above game with at

most negl(𝜆) probability.
Pseudorandomness. Let A = (A1,A2) be a polynomial-time ad-

versary playing the following experiment Exp-PRand:
(1) pp← iAV.ParamGen(1𝜆),
(2) (pkav, skav) ← iAV.Keygen(pp),
(3) (𝜇∗

1
, 𝜇∗

2
, 𝑖∗, 𝑗∗, st) ← AOiAV.Eval ( ·)

1
(pkav),

(4) skav ← iAV.KeyUpd𝑖
∗ (skav),

(5) (𝑣0, 𝜎0, 𝜋0) ← iAV.Evalskav (𝜇∗1, 𝜇
∗
2
, (𝑖∗, 𝑗∗)),

(6) 𝑣1
$← {0, 1}𝑚 (𝜆) ,

(7) 𝑏
$← {0, 1},

(8) 𝑏′ ← AOiAV.Eval ( ·)
2

(𝑣𝑏 , st),
where OiAV.Eval (·) is an oracle that on input a message-index

tuple (𝜇1, 𝜇2, (𝑖, 𝑗)) outputs a VRF value 𝑣 , a signature 𝜎 and a

corresponding proof of correctness 𝜋 . The adversary is restricted

querying OiAV.Eval (·) on index pairs (𝑖, 𝑗) for 𝑗 sequentially

incrementing (i.e., A must query (𝑖, 𝑗) first before being able to
query (𝑖, 𝑗 + 1)). Let I be the set of all index pairs queried by the

adversary. The adversary wins the game if𝑏 = 𝑏′ and (𝑖∗, 𝑗∗) ∉ I.

We say that an authenticated MT-iVRF with forward security

is pseudorandom if any PPT adversary A wins Exp-PRand with

probability at most
1

2
+ negl(𝜆).

Forward-Secure Unforgeability. Let A = (A1,A2) be a

polynomial-time adversary playing the following experiment

Exp-Forge:
(1) pp← iAV.ParamGen(1𝜆),
(2) (pkav, skav) ← iAV.Keygen(pp),
(3) Set 𝑖 = 0,

(4) Until A stops or 𝑖 reaches 𝑁 − 1: increment 𝑖 by 1; set skav ←
iAV.KeyUpd(skav) and st𝑖 ← AOiAV.Eval (𝑖;· )

1
(pp, pkav),

(5) (𝜇1, 𝜇2, 𝑘, 𝑗, 𝑣, 𝜎, 𝜋) ← A2 (pp, pkav, skav, st1, . . . , st𝑖 ),
(6) 𝑏 ← iAV.Verifypkav (𝜇1, 𝜇2, (𝑘, 𝑗), 𝑣, 𝜎, 𝜋),
where OiAV.Eval (𝑖; ·) is an oracle that returns an iAV.Eval output
w.r.t. the 𝑖-th secret key skav and time period 𝑖 . A wins if 𝑏 = 1,

1 ≤ 𝑘 < 𝑖 , 0 ≤ 𝑗 < 𝑡 and 𝜇2 was not queried to OiAV.Eval. We say

that an indexed VRF is forward-secure unforgeable if

Pr[A wins Exp-Forge] ≤ negl(𝜆).

Unbiasability. Let A = (A1,A2) be a polynomial-time adversary

playing the following experiment Exp-Bias:
(1) pp← iAV.ParamGen(1𝜆),
(2) (pkav, 𝜇2, 𝑣, 𝑖, 𝑗, st) ← A1 (pp),
(3) 𝜇1

$← {0, 1}ℓ (𝜆) ,
(4) (𝜎, 𝜋) ← A2 (𝜇1, st),
(5) 𝑏 ← iAV.Verifypkav (𝜇1, 𝜇2, (𝑖, 𝑗), 𝑣, 𝜎, 𝜋).
A wins if 𝑏 = 1. We say that an authenticated MT-iVRF with

forward security is unbiasable if

Pr[A wins Exp-Bias] ≤ 2
−ℓ (𝜆) + negl(𝜆) .

3 OUR CONSTRUCTIONS
We first introduce our many-time indexed VRF (MT-iVRF) which is

constructed from a secure Merkle hash tree and which can evaluate

up to 𝑁 time periods (i.e., rounds). This scheme allows multiple
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iterations within a single round, matching the Algorand setting. Af-

ter that, we present our final MT-iVRF scheme which also provides

authentication and forward security.

3.1 Many-Time indexed VRF (MT-iVRF)
As discussed, the index has two parts as (𝑖, 𝑗), where 𝑖 = 0, . . . , 𝑁 −1
and 𝑗 = 0, . . . , 𝑡 for some public parameters 𝑡, 𝑁 ≥ 1. This con-

struction is the setting depicted in Fig. 1 with no pk𝑖 ’s. We use a

cryptographic hash familyH and a PRG G : {0, 1}𝜆 → ({0, 1}𝜆)𝑁
with functions (G.Key,G.Next) to generate an initial state and a

pair of next state and randomness, respectively (see App. A for

more details).

iVRF.ParamGen(1𝜆) : Pick a hash functionH
$←H . Set parameters

𝑡 and 𝑁 for a power-of-2 𝑁 . Return pp = (H,G, 𝑁 , 𝑡).
iVRF.Keygen(pp) :
(1) Set up 𝑠 ← G.Key(1𝜆).
(2) Derive pseudorandom values (𝑥0,0, . . . , 𝑥𝑁−1,0) by running

G.Next iteratively on 𝑠 .

(3) Compute 𝑥𝑖, 𝑗+1 = H(𝑥𝑖, 𝑗 ) for 𝑖 = 0, . . . , 𝑁−1 and 𝑗 = 0, . . . , 𝑡−1.
(4) Construct a Merkle tree using (𝑥0,𝑡 , . . . , 𝑥𝑁−1,𝑡 ). Let root be

the root of the tree.

Return (pkv, skv) = (root, 𝑠).
iVRF.Evalskv (𝜇, (𝑖, 𝑗)) :
(1) Derive 𝑥𝑖,0 from 𝑠 = skv and update the state of the PRG G.
(2) Compute 𝑦 = H𝑡−1− 𝑗 (𝑥𝑖,0).
(3) Compute 𝑣 = H(𝑦, 𝜇).
(4) Compute an authentication path AP𝑖 w.r.t. the leaf index 𝑖 .
Return 𝑣 as the VRF value along with a proof 𝜋 = (𝑦,AP𝑖 ).

iVRF.Verifypkv (𝜇, (𝑖, 𝑗), 𝑣, 𝜋) :
(1) Parse 𝜋 = (𝑦,AP).
(2) If 𝑣 ≠ H(𝑦, 𝜇), return 0.

(3) Compute 𝑥𝑖,𝑡 = H𝑗+1 (𝑦).
(4) Compute a Merkle root, root′, using 𝑥𝑖,𝑡 and AP w.r.t. the leaf

index 𝑖 .

If root′ = pkv, return 1. Otherwise, return 0.

3.2 Authenticated MT-iVRF with Forward
Security

In the MMM (recursive) sum composition approach [27], described

in App. A.3, to construct a forward-secure (FS) signature for 𝑁 time

periods, one makes use of a Merkle tree with 𝑁 leaves, where each

leaf corresponds to a random (one-time) signature key pair with

the public keys used to construct the Merkle tree. Therefore, our

MT-iVRF instantiation can be naturally combined with the MMM

approach. The advantage in this case is that we will have a single
Merkle tree (and a single tool) to realize both the VRF functionality

as well as the forward-secure signature. This means that it is suffi-

cient to communicate a single authentication path to authenticate

both the keys for the FS signature and the evaluator’s committed

values 𝑦 used to compute the VRF value 𝑣 = H(𝑦, 𝜇) (where 𝜇 is

the VRF input/message). As a result, the additional communica-

tion overhead of our final authenticated MT-iVRF construction

over the MMM approach is minimal at just 32 bytes (recall that

𝑣 = H(𝑦, 𝜇) can be computed in the Algorand application, so need

not be communicated).

Figure 1: Overall structure of our Authenticated MT-iVRF
with Forward Security. The term 𝑥𝑖,0’s are pseudorandom
strings generated from a seed. The pk𝑖 ’s are (independent)
public keys of an ordinary (𝑡-time) signature.

Concretely, when constructing the Merkle tree, we set 𝑥𝑖,𝑡 =

H(𝑥𝑖,𝑡−1, pk𝑖 ) (instead of 𝑥𝑖,𝑡 = H(𝑥𝑖,𝑡−1)) in key generation, where

pk
0
, . . . , pk𝑁−1 are independent public keys of a (𝑡-time) signature

scheme Σ with standard (Σ.Keygen, Σ.Sign, Σ.Verify) functions. As
with the previous construction, we use a cryptographic hash family

H of functions H : {0, 1}∗ → {0, 1}2𝜆 and a PRG G : {0, 1}𝜆 →
({0, 1}𝜆)𝑁 with functions (G.Key,G.Next).

iAV.ParamGen(1𝜆) : Pick hash function H
$← H . Set parameters

𝑡 = poly(𝜆) and 𝑁 = poly(𝜆) for a power-of-2 𝑁 . Return pp =

(H,G, 𝑁 , 𝑡).
iAV.Keygen(pp) :
(1) Set up seeds 𝑠, 𝑠′ ← G.Key(1𝜆).
(2) Derive pseudorandom values (𝑥0,0, . . . , 𝑥𝑁−1,0) by running

G.Next iteratively on 𝑠 .

(3) Compute 𝑥𝑖, 𝑗+1 = H(𝑥𝑖, 𝑗 ) for 𝑖 = 0, . . . , 𝑁−1 and 𝑗 = 0, . . . , 𝑡−2.
(4) Derive pseudorandomvalues (𝑟0, . . . , 𝑟𝑁−1) by runningG.Next

iteratively on 𝑠′.
(5) (pk𝑖 , sk𝑖 ) ← Σ.Keygen(pp; 𝑟𝑖 ) for 𝑖 = 0, . . . , 𝑁 − 1.
(6) Compute 𝑥𝑖,𝑡 = H(𝑥𝑖,𝑡−1, pk𝑖 ) for 𝑖 = 0, . . . , 𝑁 − 1.
(7) Construct a Merkle tree using (𝑥0,𝑡 , . . . , 𝑥𝑁−1,𝑡 ). Let root be

the root of the tree.

Return (pkav, skav) = (root, (𝑠, 0, 𝑠′, 0)).
iAV.KeyUpd(skav) : Parse skav = (𝑠, 𝑥, 𝑠′, 𝑟 ) and update skav as

(G.Next(𝑠),G.Next(𝑠′)).
iAV.Evalskav (𝜇1, 𝜇2, (𝑖, 𝑗)) :
(1) Parse skav = (𝑠𝑖 , 𝑥𝑖,0, 𝑠′𝑖 , 𝑟𝑖 ).
(2) Compute 𝑦 = H𝑡−1− 𝑗 (𝑥𝑖,0)
(3) Compute 𝑣 = H(𝑦, 𝜇1).
(4) Compute pk← Σ.Keygen(pp; 𝑟𝑖 )
(5) Compute 𝜎 ← Σ.Signsk (𝜇2)
(6) Compute an authentication path AP𝑖 w.r.t. the leaf index 𝑖 .
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Return 𝑣 as the VRF value, 𝜎 as the signature and 𝜋 = (𝑦, pk,AP𝑖 )
as the accompanying proof.

iAV.Verifypkav (𝜇1, 𝜇2, (𝑖, 𝑗), 𝑣, 𝜎, 𝜋) :
(1) Parse 𝜋 = (𝑦, pk,AP).
(2) If 𝑣 ≠ H(𝑦, 𝜇1), return 0.

(3) If Σ.Verifypk (𝜎, 𝜇2) = 0, return 0.

(4) Compute 𝑦′ = H𝑗 (𝑦)
(5) Compute 𝑥𝑖 = H(𝑦′, pk)
(6) Compute a Merkle root, root′, using 𝑥𝑖 and AP w.r.t. the leaf

index 𝑖 .

If root′ = pkav, return 1. Otherwise, return 0.

4 PERFORMANCE ANALYSIS AND
IMPLEMENTATION

Thanks to the simplicity of our scheme, the performance analysis

can straightforwardly be done by counting the number of opera-

tions. For the hash operations, we look at the amount of bytes to

be hashed rather than how many H(·) operations appear in the

description to capture a more accurate result, and consider 32-byte

values for 𝑥𝑖, 𝑗 ’s, 𝜇𝑖 ’s and the hash output. We write |𝜎 |𝐵 and |pk|𝐵
to denote the byte-lengths of the ordinary signature and its public

key.

iAV.Keygen consists of the following main operations:

(1) 2𝑁 PRG iterations,

(2) less than (𝑡 + 2) ·𝑁 · 32+𝑁 · |pk|𝐵 bytes of hash calculations,

and

(3) 𝑁 (ordinary) signature key generations.

Therefore, iAV.Keygen runtime is likely to be dominated by 𝑁 (ordi-

nary) signature key generations (for reasonable values of 𝑡 ), which

is consistent with our implementation results discussed further be-

low in this section. Note that key generation of Algorand’s approach

to forward security (as discussed in the introduction) involves in-

voking ordinary signature key generation and signing algorithms

𝑁 times each. Hence, our iAV.Keygen runtime is likely to closely

match (or may even be faster than) Algorand’s approach. Note

also that in the context of Algorand, keys for the next epoch can

be generated progressively in the current epoch so that the key

generation runtime is amortized.

Next, iAV.Eval consists of the following main operations:

(1) at most (𝑡 + 1) · 32 bytes of hash calculations,

(2) 1 (ordinary) signature key generation, and

(3) 1 (ordinary) signing.

Note that the authentication path in iAV.Eval can simply be re-

trieved when the Merkle tree is stored.

Finally, iAV.Verify consists of the following main operations:

(1) at most (2 log𝑁 +𝑡 +2) ·32+ |pk|𝐵 bytes of hash calculations,

and

(2) 1 (ordinary) signature verification.

In terms of communication, iAV.Eval requires transmission of

an ordinary signature 𝜎 , an ordinary signature public key pk, an
authentication path (log𝑁 32-byte strings) and a 32-byte string

(and another 32-byte string if 𝑣 needs to be communicated). So,

in total, |𝜎 |𝐵 + |pk|𝐵 + (log𝑁 + 1) · 32 bytes of communication is

needed.

Table 2: Performance of our authenticated MT-iVRF with
forward security in Sec. 3.2 for different parameters using
Falcon-512.

(𝑁, 𝑡) Proof Size Keygen Eval Verify

Key Lifetime

in Algorand

(218, 16) 608 bytes 19.44 mins 4.63 ms 0.046 ms 2 weeks

(218, 100) 608 bytes 19.82 mins 4.72 ms 0.088 ms 2 weeks

(223, 16) 768 bytes 10.40 hours 4.63 ms 0.049 ms > 1 year

(223, 100) 768 bytes 10.45 hours 4.67 ms 0.092 ms > 1 year

Table 3: Runtimes of our execution of signature algorithms.

Scheme Keygen Time Signing Time Verify Time

Falcon-512 4.45 ms 0.18 ms 0.023 ms

XMSS-128 290.51 ms 290.98 ms 1.23 ms

The storage requirement by the evaluator is heavily dominated

by the storage of the Merkle tree nodes (if they are stored). If the

whole tree is stored, then about 32 · 2𝑁 = 64𝑁 bytes of storage is

needed. However, standard optimizations such as partial tree stor-

age (together with progressive computation of missing nodes and

deletion of used nodes) can be adopted. For example, by computing

the two sibling leaf nodes together every two time periods, we can

avoid storage of leaf nodes and reduce the storage requirement to

32𝑁 bytes.

We implemented our authenticated MT-iVRF with forward se-

curity (from Sec. 3.2) in C language
8
(on a single Intel i7-7700K

core at 4.2GHz). We used Falcon-512 [20] to instantiate the post-

quantum signature, SHA-256 for the hash function H, and AES-256

with the CTR-DRBG mode [29] (implemented by using the AES-NI

hardware instructions [24]) for the PRG G. Falcon-512 has a public
key of 897 bytes and a signature of 666 bytes. We used the Falcon

variant with the ChaCha20 [9] seed expander provided by the lat-

est Falcon reference implementation
9
, with both AVX2 and FMA

instructions enabled. Clang 14.0.6 compiler was used to compile

the code, with optimisation flags -O3 -march=native. We disabled

Hyper-threading and Turbo Boost during the benchmarks.

In Tables 2 and 3, we summarize the concrete performance re-

sults of our authenticated MT-iVRF with forward security proposal

and our execution of Falcon-512 signature, respectively. When com-

puting the proof sizes in Table 2, we remove the costs due to the

signature scheme to clearly show the impact of varying parameters

since the cost due to the signature is fixed and arises from authenti-

cation, not the VRF functionality. We also note that when running

iAV.Eval and iAV.Verify, we set 𝑗 = 0 and 𝑗 = 𝑡 − 1, respectively, to
capture the worst-case running times.

Let us first analyze the impact of the parameter 𝑡 . It is easy to

see that the proof size is independent of 𝑡 (as also evident from the

theoretical analysis above) and that iAV.Keygen runtime increases

very little even when 𝑡 is increased to a large value like 100. The

parameter 𝑡 has also little impact on the iAV.Eval runtime, and

8
Source code available at https://gitlab.com/raykzhao/ivrf

9
https://falcon-sign.info/Falcon-impl-20211101.zip (this reference implementation is

also adopted in Algorand)

8
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iAV.Verify is still very fast even in the worst case with 𝑡 = 100.

Therefore, we believe there is a lot of freedom for the choice of 𝑡 .

Using the results of Tables 2 and 3, it is easy to derive that the vast

majority of iAV.Keygen time is spent on Falcon key generations.

Similarly, the vast majority of iAV.Eval time is spent of Falcon key

generation and signing. In fact, the slight variations in iAV.Eval for
different 𝑁 values are mainly due to the variations in the Falcon

signature runtimes as iAV.Eval runtime is (almost) independent of

𝑁 (neglecting the minor cost of retrieving log𝑁 tree nodes).

The runtimes of our execution of Falcon-512 (see Table 3) are

close to the reported runtimes on the official Falcon website
10
. Note

that some of our runtimes in Table 3 are faster, due to the ChaCha20

seed expander (up to 8% faster for Keygen on Intel CPUs, as reported

by the latest Falcon reference implementation) and higher CPU

frequency in our benchmark platform (4.2GHz vs 2.3GHz).

We also measured the performance of the XMSS signature [11]

as a choice of signature based on symmetric-key primitives. We

added the parameter set XMSS-128 with 128 leaves (greater than

our choices of 𝑡 ∈ {16, 100}) using SHA-256 in the XMSS refer-

ence implementation
11
. XMSS-128 has a public key of 64 bytes

and a signature of 2404 bytes. The runtimes of our execution of

XMSS-128 are summarised in Table 3. Note that we did not use

the “fast” variant in the XMSS reference implementation with the

BDS algorithm [12], since the BDS algorithm needs to be iterated

𝑗 times in iAV.Eval. This becomes more than 2× slower than the

iAV.Evalwithout the BDS algorithmwhen 𝑗 = 99 in our experiment.

Compared to Falcon-512, the Keygen and Verify times of XMSS-128

are more than 50× slower, and the signing time is more than 1000×
slower. In addition, the signature size of XMSS-128 is also 3.6×
bigger than Falcon-512. Therefore, Falcon-512 is a better choice as

the signature algorithm due to its advantages in the runtimes and

the signature size.

5 SECURITY ANALYSIS
Provability of our authenticated MT-iVRF (with forward security)

construction follows via straightforward investigation.

Theorem 5.1 (Computational Full Uniqeness). The authenti-
cated MT-iVRF construction of Subsection 3.2 satisfies Computational
Full Uniqueness, if the hash function familyH is Collision Resistant.

Proof. Let Game denote the Exp-CFU game running with a

PPT adversaryA on input pp = (H,G, 𝑁 , 𝑡) ← iAV.ParamGen(1𝜆).
We denote the adversary run time by 𝑇A . The adversary returns

(𝜇1, 𝑖, 𝑗, pkav, 𝜇2, 𝑣, 𝜎, 𝜋 = (𝑦, pk,AP), 𝜇2, 𝑣, �̂�, 𝜋 = (𝑦, ˆpk, ˆAP)). Let
𝑊 denote the event that A wins in Game, i.e. we have (1) 𝑣 ≠ 𝑣 ,

where 𝑣 := H(𝑦, 𝜇1), 𝑣 := H(𝑦, 𝜇1), and (2) root = ˆroot = pkav,
where root := MT.EvalAP(𝑖, 𝑥𝑖 ,AP), 𝑥𝑖 := H(𝑦′, pk), 𝑦′ := H𝑗 (𝑦)
and ˆroot := MT.EvalAP(𝑖, 𝑥𝑖 , ÂP), 𝑥𝑖 := H(𝑦′, ˆpk), 𝑦′ := H𝑗 (𝑦). If
𝑊 happens, then from (1), we have 𝑦 ≠ 𝑦.

We define three subevents that partition the event𝑊 . The subevent

𝑊1 occurs if𝑊 occurs and 𝑦′ = 𝑦′. The subevent𝑊2 occurs if𝑊

occurs,𝑊1 does not occur (so 𝑦′ ≠ 𝑦′) and 𝑥𝑖 = 𝑥𝑖 . Finally, the

subevent𝑊3 occurs if𝑊 occurs and𝑊1 and𝑊0,2 do not occur (so

𝑥𝑖 ≠ 𝑥𝑖 ).

10
https://falcon-sign.info/

11
https://github.com/XMSS/xmss-reference

Subevent𝑊1 implies H𝑗 (𝑦) = H𝑗 (𝑦) whereas 𝑦 ≠ 𝑦. Let 𝑗 ′ ≤ 𝑗

be the smallest positive integer such that H𝑗 ′ (𝑦) = H𝑗 ′ (𝑦). Then
(H𝑗 ′−1 (𝑦),H𝑗 ′−1 (𝑦)) is a collision for H. It follows that there exists
an adversary breaking the collision-resistance ofH with run-time

at most𝑇A and success probability ≥ Pr[𝑊1], so Pr[𝑊1] ≤ 𝜀H,𝐶𝑅 =

negl(𝜆). The latter equality is from the assumed collision-resistance

ofH , where 𝜀H,𝐶𝑅 is the maximal advantage of an adversary with

run time 𝑇A against collision-resistance ofH .

Similarly, subevent𝑊2 implies that H(𝑦′, pk) = H(𝑦′, ˆpk) whereas
𝑦′ ≠ 𝑦′. Then ((𝑦′, pk), (𝑦′, ˆpk)) is a collision for H, so Pr[𝑊2] ≤
𝜀H,𝐶𝑅 = negl(𝜆).
Finally, subevent 𝑊3 implies that MT.EvalAP(𝑖, 𝑥𝑖 ,AP) =

MT.EvalAP(𝑖, 𝑥𝑖 , ÂP) whereas 𝑥𝑖 ≠ 𝑥𝑖 . Then (𝑖, 𝑥𝑖 ,AP, 𝑥𝑖 , ÂP) is
an EvalAP collision for the Merkle Tree hash MT built from H .

It follows from Lemma A.2 and the collision-resistance ofH that

Pr[𝑊3] ≤ 𝜀H,𝐶𝑅 = negl(𝜆).
We conclude that Pr[𝑊 ] = Pr[𝑊1] +Pr[𝑊2] +Pr[𝑊3] = negl(𝜆),

assuming the collision-resistance ofH . □

Theorem 5.2 (Pseudorandomness). The authenticated MT-iVRF
construction of Subsection 3.2 satisfies Pseudorandomness, if the pseu-
dorandom number generator G satisfies Pseudorandomness (Def. A.3)
and the hash function familyH satisfies the Pseudorandom Function
(PRF) properties (Def. A.1).

Proof. Let𝑊 be the event that the adversary wins, i.e. 𝑏 = 𝑏′

and (𝑖∗, 𝑗∗) ∉ I. We use a game based approach to prove the

theorem.

Game0 : This is identical to Exp-PRand except that the challenger

picks at the beginning of the game a uniformly random guess

(𝑖, 𝑗) $← {0, . . . , 𝑁 − 1} × {0, . . . , 𝑡 − 1} for the challenge indices
(𝑖∗, 𝑗∗) output by A1. Let 𝐸 be the event that the guess is correct,

i.e. (𝑖, 𝑗) = (𝑖∗, 𝑗∗). We are interested in Pr[𝑊 ] and hence we have:

Pr

Game0
[𝑊 ] = Pr

Game0
[𝑊 ∩ 𝐸]/ Pr

Game0
[𝐸] = 𝑁𝑡 · Pr

Game0
[𝑊 ∩ 𝐸] .

The first equality holds since𝑊 and 𝐸 are independent in Game0.
The second equality is deduced from Pr[𝐸] = 1/(𝑁𝑡) as the at-

tacker’s view is independent of what we chose here. In the following

games we will trace both Pr[𝑊 ∩ 𝐸] and Pr[𝐸] at each game.

Game1 : This game is identical to previous game except we replace

G.Next output (𝑥0,0, . . . , 𝑥𝑁−1,0) in line 1 of iAV.Evalskav and line

2 of iAV.Keygen(pp) algorithms with uniformly random and inde-

pendent random elements in {0, 1}2𝜆 . We have that PrGame1 [𝐸] ≤
1/(𝑁𝑡) + 𝜀G, in which 𝜀G is the advantage of an adversary in dis-

tinguishing the outputs of G from random, as in Def. A.3.

Game2 : This game is identical to the previous game, except that

we replace 𝑥𝑖, 𝑗 in line 3 of iAV.Keygen(pp) by an independent uni-

formly random element𝑦 in {0, 1}2𝜆 (instead of 𝑥𝑖, 𝑗 = 𝐻𝑡−1− 𝑗 (𝑥𝑖,0)
used in Game1), and we also accordingly set 𝑦 := 𝑦 in line 2 of

iAV.Evalskav when queried at (𝑖, 𝑗) = (𝑖, 𝑗) and 𝑦 := H𝑗− 𝑗 (𝑦) when
queried at (𝑖, 𝑗) = (𝑖, 𝑗) for 𝑗 < 𝑗 by an independent uniformly

random element in {0, 1}2𝜆 (note that queries with 𝑖 = 𝑖 and 𝑗 > 𝑗

do not occur if the events of interest 𝐸 or 𝐸 ∩𝑊 occur). By ap-

plying the assumed Pseudorandom Function property (PRF) ofH
(with an empty string PRF input argument) at most 𝑡 times, we get

9

https://falcon-sign.info/
https://github.com/XMSS/xmss-reference


PrGame2 [𝐸] ≤ 1/(𝑁𝑡) + 𝜀G + 𝑡 · 𝜀PRF, where 𝜀PRF is the maximal ad-

vantage of an adversary with run-time𝑇A against the PRF security

of H . Note that in this argument we replace the output of H𝛼 (·)
for 1 ≤ 𝛼 ≤ 𝑡 with a random element because the PRF property of

H can be applied sequentially to outputs of each iteration. More

specifically, for a uniformly random input 𝑥 , H(𝑥) can be replaced

by a random string according to the PRF property ofH . Now as-

suming the indistinguishability of H(𝑥) from a random, one can

replace H(H(𝑥)) = H2 (𝑥) with a random element. This process

can be inductively iterated for any 𝛼 ≤ 𝑡 to replace H𝛼 (𝑥) with
a random element assuming the indistinguishability of H𝛼−1 (𝑥)
from a uniformly random input to H(·).
Game3 : This game is identical to the previous game, except that

we replace 𝑥𝑖, 𝑗+1 in line 2 of iAV.Keygen(pp) by an independent

uniformly random element 𝑦′ in {0, 1}2𝜆 (instead of 𝑥𝑖, 𝑗+1 = H(𝑦)
used in Game2), and we also accordingly set 𝑣 := 𝑣 for another

independent uniformly random element 𝑣 ∈ {0, 1}2𝜆 in line 3 of

iAV.Evalskav when queried at (𝑖, 𝑗) = (𝑖, 𝑗) (instead of 𝑣 = H(𝑦, 𝜇1) in
Game2) and𝑦 := H𝑗− 𝑗−1 (𝑦′) in line 2 when queried at (𝑖, 𝑗) = (𝑖, 𝑗)
for 𝑗 < 𝑗 (instead of 𝑦 = H𝑗− 𝑗 (𝑦) in Game2). Notice that we

can construct an adversary against the assumed Pseudorandom

Function property (PRF) of H with key 𝑦 as the first input that

makes two PRF oracle queries with key 𝑦 (namely at the empty

string PRF input to simulate 𝑥𝑖, 𝑗+1 = H(𝑦) and at the PRF input

𝜇1 to simulate 𝑣 = H(𝑦, 𝜇1)), such that the 𝑏 = 0 case of the PRF

game simulates the view of Game2 to A while the 𝑏 = 1 case

simulates the view of Game3 to A. Hence, we get PrGame3 [𝐸] ≤
1/(𝑁𝑡) + 𝜀G + (𝑡 + 1) · 𝜀PRF), where 𝜀PRF is the maximal advantage

of an adversary with run-time 𝑇A against the PRF security ofH .

Now observe that in Game3, if 𝐸 occurs then 𝑣0 is perfectly

indistinguishable from 𝑣1 since they are both uniformly random

and independent of A’s view. It follows that PrGame3 [𝑊 |𝐸] = 1/2.
We further deduce that:

Pr

Game3
[𝑊 ∩ 𝐸] = Pr

Game3
[𝐸]/2 ≤ 1

2

(1/(𝑁𝑡) + 𝜀G + (𝑡 + 1) · 𝜀PRF)),

where in the last equality we have used the above expression for

PrGame3 [𝐸]. Putting all these together, we have that:

Pr

Game0
[𝑊 ] = 𝑁𝑡 · Pr

Game0
[𝑊 ∩ 𝐸] (1)

≤ 𝑁𝑡 · ( Pr

Game3
[𝑊 ∩ 𝐸] + 𝜀G + (𝑡 + 1) · 𝜀PRF)

≤ 𝑁𝑡 · (1/(2𝑁𝑡) + 3𝜀G/2 + 3(𝑡 + 1) · 𝜀PRF/2) = 1/2 + 𝜀.

Since 𝜀G = negl(𝜆),𝜀PRF = negl(𝜆) and 𝑁𝑡 = poly(𝜆), we conclude
that 𝜀 := (𝑁𝑡/2) · (3𝜀G + 3(𝑡 + 1) · 𝜀PRF) = negl(𝜆). □

Theorem 5.3 (Forward-Secure Unforgeability). The authen-
ticated MT-iVRF construction of Sec. 3.2 is forward-secure, if the un-
derlying signature Σ is 𝑡-time unforgeable against CMA and the state-
ful pseudorandom number generator G satisfies Forward-Security
(Def. A.3).

Proof of Thm 5.3. We conduct the proof by the following games

from game Game0 to game Game3. For each game Game𝑖 , we
use Win𝑖 to denote the event that adversary A wins Exp-Forge in
Game𝑖 . Without loss of generality, we assume that the adversary

issues at most 𝑞 queries to OiAV.Eval.

Game0 : This is identical to Exp-Forge.
Game1 : This is identical to Game0 except we replace the output
of G.Next in iAV.KeyUpd(skav) with random elements. It is ob-

vious from the forward-security property of G that | Pr[Win1] −
Pr[Win0] | ≤ 𝜀, where 𝜀 here is the advantage of an adversary in

breaking the forward-security of G.
Game2 : This is identical to Game1 except that the adversary can

simulate (𝑣, 𝜋) without knowing the private key skav of the sig-
nature. This is the case since we replaced the output of G.Next
with random elements in previous game. Since there is no differ-

ence in the view of the attacker from the previous game, we have

Pr[Win2] = Pr[Win1]. Since we have used𝑁 consecutive sum com-

position of Σ (that is Σ⊕
log𝑁

according to [27]) in our scheme, this

game is now identical to an experiment with adversary B against

the forward-security of Σ⊕
log𝑁

. In particular, Theorem 1 of [27]

implies that: Pr[Win2] ≤ 𝑁 · Pr[B wins Exp-UF-CMA].
Overall, we have that

Pr[Win0] ≤ Pr[A wins Exp-Forge]
≤ 𝑁 · Pr[B wins Exp-UF-CMA] + 𝜀 ≤ negl(𝜆),

where the last inequality holds since 𝑁 = poly(𝜆), and 𝜀 = negl(𝜆),
Pr[B wins Exp-UF-CMA] = negl(𝜆) by the assumed forward-security

of G and 𝑡-time unforgeability of Σ, respectively. □

Theorem 5.4 (Unbiasability). The authenticated MT-iVRF con-
struction of Subsection 3.2 satisfies Unbiasability, if the hash function
familyH satisfies Everywhere Preimage Resistance (ePre) in the sense
of Def. A.1.

Proof. LetGame denote the Exp-Bias game running with a PPT

adversaryA = (A1,A2). We denote the adversary run time by𝑇A .

On input pp = H, where H
$← H , A1 returns (pkav, 𝜇2, 𝑣, 𝑖, 𝑗, st),

and on input (𝜇1, st), where 𝜇1
$← {0, 1}ℓ (𝜆) , A2 returns (𝜎, 𝜋),

where 𝜋 = (𝑦, pk,AP). Let 𝑊 denote the event that A wins in

Game, which implies that H(𝑦, 𝜇1) = 𝑣 . Then we can construct

an adversary B = (B1,B2) breaking ePre of H with run-time

at most 𝑇A and advantage 𝐴𝑑𝑣𝑒𝑃𝑟𝑒 (B) ≥ Pr[𝑊 ], which implies

that Pr[𝑊 ] ≤ 2
−ℓ (𝜆) + negl(𝜆) by the assumed ePre security of

H . Namely, on input H
$← H , B1 runs A1 on input H to get

(pkav, 𝜇2, 𝑣, 𝑖, 𝑗, st) and B1 returns (𝑣, st), and on input (𝜇1, st) for
𝜇1

$← {0, 1}ℓ (𝜆) , B2 runs A2 on (𝜇1, st) to get (𝜎, 𝜋), where 𝜋 =

(𝑦, pk,AP), and B2 returns 𝑦. □

6 APPLICATION TO ALGORAND
The Algorand protocol is a fork-free PoS protocol in which consen-

sus is achieved using a Byzantine Agreement (BA) protocol [14, 15].

To prevent the adversary from adaptively corrupting parties who

participate in the protocol, the parties who are actively running the

protocol change after every step
12

of the protocol. This is achieved

using a VRF that takes into account parties’ stakes. The security

of the signature primitives (including the VRF), and, by extension,

12
Note that a round of the Algorand protocol may include several periods, each con-

sisting of a constant number of steps, namely 5 steps [15]. In our iVRF formal model,

we use two indices (for rounds and iterations), and each step of a period in Algorand

increments one iteration in our iVRF model (i.e., there is no need to introduce a third

index in the formal model, which would unnecessarily complicate its presentation).
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of the BA protocol, rely on computational assumptions that are

known to be broken in the context of a quantum adversary. Hence,

to attain post-quantum security for this protocol, it is necessary to

shift to alternate constructions for these primitives. The purpose of

this section is to provide a high-level explanation of the relevant

aspects of Algorand’s BA protocol that should be replaced with

post-quantum secure alternatives.

We begin by explaining how parties register their keys to the

Algorand blockchain [19]. To create an account, a party registers

its public account key 𝑎𝑝𝑘 to the blockchain using a registration

transaction that includes the spending public key and the amount

of coins belonging to the account owner. At each step of the BA

protocol, parties individually run the sortition algorithm to check

if they are eligible to participate in the consensus protocol. The

sortition is implemented using a VRF (see below for how parties

register their VRF keys).

At round 𝑛, a party computes the output of their VRF on in-

put their VRF secret key 𝑣𝑠𝑘 and a special quantity 𝑄𝑛 , which is

derived from the blockchain. The main idea is that 𝑄𝑛 will be un-

predictable to any party at the time of registering its public key to

the blockchain. Therefore, it also should not be able to predict if it

will be eligible to participate in the consensus protocol at round 𝑛.

We elide a detailed description of how the protocol computes 𝑄𝑛 ,

as it is not relevant for explaining the sortition mechanism.

The initial quantity 𝑄0 is assumed to be randomly generated (as

part of the genesis block). At round 𝑛, the previous round’s magic

number 𝑄𝑛−1 is used. Particularly, the leader of period 𝑗 of round

𝑛 is elected as the party 𝑃𝑖 with the lowest VRF value (proportional

to its stakes) satisfying
13 14

H(Σ.Sign𝑖 (𝑛, 𝑗, 1, 𝑄𝑛−1)) ≤ 𝑝 · 𝑠𝑡𝑎𝑘𝑒 (𝑃𝑖 ), (2)

where 𝑝 is a predefined threshold value and 𝑠𝑡𝑎𝑘𝑒 (𝑃𝑖 ) denotes the
amount of stakes owned by 𝑃𝑖 . More generally, parties determine

their eligibility to participate in the protocol for a given step 𝑠 > 1

(of period 𝑗 ) of the BA protocol by checking whether

H(Σ.Sign𝑖 (𝑛, 𝑗, 𝑠,𝑄𝑛−1)) ≤ 𝑝′ · 𝑠𝑡𝑎𝑘𝑒 (𝑃𝑖 ), (3)

where 𝑝′ ≫ 𝑝 is a predefined value.

Every period of the protocol is associated with a leader who is

also elected via VRF. The BA protocol may have several periods

(each consisting of a constant number of steps with rotating partic-

ipants). Each potential round leader in round 𝑛 proposes a block

including new valid transactions together with its VRF proof for

round 𝑛 and broadcasts them to the network. After the blocks are

proposed by the potential leaders, all participants of the protocol

verify the correctness of the VRF outputs and choose the candidate

block with the lowest VRF value. Once a block is accepted by col-

lecting a strong majority of votes (2/3 of the votes) from the active

protocol participants, parties move on to the next round.

6.1 Key Management in Algorand
In Algorand, there are four types of keys: spending keys, VRF (selec-
tion) keys, voting keys and (recently introduced) state proof keys [19].

13
The signature used in Algorand’s VRF (given in Eqn. 2) has the uniqueness property.

14
Note that in the Algorand protocol given in [15], the period parameter 𝑗 is omitted

since each round is described over one period, whereas the current implementation of

the protocol explained in [19] may include several periods per round.

Spending keys, also known as root keys, are used for sending and

receiving coins by an account. An account is identified with the

root public key 𝑎𝑝𝑘 of the spending key. Also, later on, the VRF,

voting and state proof keys of the account are validated via the

spending keys.

VRF keys are used to check if an account is selected for partici-

pation in the voting phase as the leader or, more generally, as an

active participant in the BA protocol. Hence, all protocol messages

are validated with a VRF proof.

Voting keys are used to authenticate participation during the vot-

ing phase of the BA agreement protocol. To achieve forward security,
voting keys are periodically updated. This simple update works as

follows: parties delete the latest used private key, and move to the

next one. To avoid registering a new voting key each time, per epoch,

a batch of ephemeral voting keys (𝑒𝑝𝑘1, 𝑒𝑠𝑘1), (𝑒𝑝𝑘2, 𝑒𝑠𝑘2), ... (10,000
as the default value) are generated. These keys are authenticated

using a signature relative to the root voting key 𝑎𝑝𝑘 , which is vali-

dated by the signature of the spending key. Thus, a batch of keys

are committed and (partially) validated as follows whenever a new

epoch begins. First, the user registers a new root key 𝑒𝑝𝑘 , which it

validates by signing with the spending key of the root public key

𝑎𝑝𝑘 of the previous epoch. Each ephemeral voting key 𝑒𝑝𝑘𝑖 is later

validated using 𝑒𝑝𝑘 .

In theory (to ensure full forward security), voting keys should

be updated immediately after their use in a step of the BA protocol.

However, in practice, they are updated every round [19]. This re-

sults in a slightly weaker form of security where a fully adaptive

adversary may indefinitely stall progress of the protocol. However,

such a strong adversary appears somewhat unrealistic in practice.

Recently, Algorand introduced state proof keys used to generate

post-quantum secure state proofs. Similar to voting keys, state proof

keys consist of ephemeral keys that are renewed in epochs.

6.2 Our Modifications to the Algorand Protocol
We aim to achieve a post-quantum version of Algorand protocol by

replacing cryptographic algorithms that are vulnerable to quantum

attacks. In March 2022, concurrently and independently from our

work, Algorand added state proofs to the protocol to improve its

resilience against quantum attacks. In state proofs, a subset-sum-

based hash function [22] and the Falcon signature algorithm [20]

are used. However, the rest of the protocol mainly utilizes pre-

quantum algorithms. Algorand uses SHA-512/256 and EdDSA [8,

26] as primary hash function and signature scheme, respectively.

The security of the Algorand protocol relies on a strong honest

majority among each of the BA committees that actively run the pro-

tocol. With the above choices, the Algorand protocol achieves its de-

sired security properties with overwhelming probability (1 − 10−18
given appropriate network conditions) [21]. The committee and

leader elections for the BA protocol are done via the VRF func-

tion. However, since the VRF function is instantiated with the pre-

quantum algorithms, these election protocols are not post-quantum

secure
15
. In our protocol, we can replace the signature scheme Ed-

DSA with any post-quantum signature, and particularly propose

15
We note here that the uniqueness property of ECVRF used in Algorand does not rely

on any computational assumption [30] and, therefore, is plausibly post-quantum (in

ROM). However, the pseudorandomness property requires DDH assumption [30] and,

therefore, ECVRF as a whole is not post-quantum.
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to use Falcon signature since it has the minimal total size for a

public key and a signature among those selected by the NIST for

post-quantum signature standardization. Also, we replace the VRF

function with MT-iVRF, which is defined in Section 3. In fact, as dis-

cussed before, we can realize both VRF and signature functionalities

by a single tool, our authenticated MT-iVRF from Sec. 3.2.

As mentioned previously, the election in the BA protocol is done

via a VRF with the input of 𝑄𝑛 value, which should satisfy unique-
ness, pseudorandomness and unbiasability (See Sec. 5.6 and proof

of Lemma 5.11 in [15]). Our iVRF construction satisfies somewhat

different notions of uniqueness, pseudorandomness, and unbiasabil-

ity than the ones stated in [15]. First of all, our formal model in

Sec. 2 is designed to collectively capture the VRF and forward se-

cure signature requirements in an Algorand-like blockchain setting,

where the protocol is inherently indexed (or timed). Particularly,

we assume the protocol operates in rounds (indexed by 𝑖), periods

within rounds (indexed by 𝑗 ), and each period consists of a con-

stant number of steps. We require in an Algorand-like blockchain

setting that at any particular step of a period of any round, each

(computationally bounded) user can only produce a single valid

VRF value, as captured by our formal uniqueness model. Similarly,

we need pseudorandomness to hold against indices that have not

been queried before. That is, it is fine for the outputs from previous

steps/rounds to not satisfy pseudorandomness, as the past unique

VRF values have already served their purpose and are no longer rel-

evant. Moreover, by combining the forward-secure signature with

iVRF, our construction given in Sec. 3.2 reduces the validation costs.

More specifically, we require only one Merkle Tree authentication

path, rather than two in the separate construction case.

Thanks to the blockchain-oriented design of our formal defini-

tions, the security properties achieved by our iVRF are sufficient

to ensure the required properties on the BA committee elections

leveraged in Algorand’s proofs. As shown in Sec. 5, our iVRF satis-

fies the aforementioned properties, and thereby can be substituted

in the original Algorand protocol without impacting its security.

Finally, recall that our MT-iVRF construction includes 𝑡 pseudo-

random strings (𝑥𝑖, 𝑗 ) per round. Here, the iteration parameter 𝑡 can

be chosen based on the network and security assumptions. The BA

protocol of Algorand is expected to terminate within at most 2.5

periods (which corresponds to 16 steps in total) [14]. As discussed

in Sec. 4, the parameter 𝑡 has little impact on the computation (and

no impact on the communication) performance and, hence, can be

safely adjusted without a significant compromise in performance.

6.3 Interpreting Our iVRF Performance for
Algorand

It is easy to see that the iAV.Keygen runtime is heavily dominated

by Falcon key generations, which are needed anyway for forward

security. As discussed earlier, this key generation process can be

amortized over time or paralellized. For example for 𝑁 = 2
23
, split-

ting the computation into 4 cores (and using 4 random seeds instead

of one to generate signature keys) reduces the required once-a-year
computation time to just 2.6 hours. Alternatively, whenever the

user’s device is turned on, the signature keys can be progressively

computed (and hashed to avoid storing the whole key). Therefore,

in terms of keygen procedure, there is effectively no computational

overhead over what already needs to be done to achieve forward

security. Note that the ephemeral key generation process that al-

ready exists in Algorand together with a little more of effort for the

generation of 𝑥𝑖, 𝑗 ’s and the Merkle tree can serve as iAV.Keygen.
From Table 2, we can see that an evaluation (including signing)

can be done under 5 ms, which is well below the Algorand’s round

time at 4.5 seconds. Therefore, a committee member’s local authen-

ticated iVRF evaluations are not expected to lead to any slowdown.

We can also conclude that 50,000 or more iAV.Verify executions can
be performed within the time period of a round. In fact, as seen in

Tables 1 and 2, our verification (including signature validation) runs

even faster than ECVRF verification used by Algorand. Therefore,

we also do not expect any slowdown due to verification.

As discussed in Sec. 4, for the storage of the Merkle tree nodes,

we need about 32𝑁 bytes, meaning only 256 MB is needed even

for 𝑁 = 2
23
. Note that the existing Algorand protocol already has

a similar storage requirement where 𝑁 pairs of an ephemeral key

and a signature (each pair of size about 96 bytes) are stored.

Perhaps the only significant cost introduced with the use of our

authenticated MT-iVRF in the Algorand setting is the increased

communication. As discussed before, the vast majority of the in-

creased communication cost stems from the use of a post-quantum

forward-secure signature and there is only a 32-byte additional

cost due to the VRF functionality. Such an additional cost of in-

creased communication appears unavoidable in the current state of

affairs when post-quantum security is desired as evidenced by the

increased sizes of all schemes standardized by NIST
16
.

7 CONCLUSION
In this work, we introduced a simple and efficient method to realize

the VRF functionality required in the blockchain setting for the

leader election problem. Our solution does not involve a racing

condition as in Bitcoin and can be instantiated from well-known

basic (post-quantum) primitives. We believe that our approach can

be readily deployed in the Algorand blockchain system as only

minor modifications are needed.
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A PRELIMINARIES
For a finite set 𝑆 , we denote by 𝑥

$← 𝑆 the sampling of a uniformly

random element 𝑥 of 𝑆 . For a security parameter 𝜆, we denote by

negl(𝜆) a negligible function in 𝜆, where negl(𝜆) := 𝑂 (poly(𝜆)/2𝜆).

A.1 Hash Functions and Merkle Tree
Definition A.1 (Hash-Function Family). A (cryptographic) hash

function family with security parameter 𝜆 is a setH of polynomial-

time computable functions H : {0, 1}∗ → {0, 1}2𝜆 that map an

arbitrary-length message to an 2𝜆-bit hash value (digest). We define

the following desirable security properties for a cryptographic hash

familyH :

Everywhere Preimage Resistance (ePre): For this notion, we treat
the domain of H as {0, 1}2𝜆 × {0, 1}ℓ (𝜆) . Let 𝑣 ∈ {0, 1}2𝜆 . We

define the following experiment Exp-ePre with any PPT adver-

sary A = (A1,A2): Let (𝑣, st) ← A1 (H) for H
$← H , and

𝑦 ← A2 (𝜇, st) for 𝜇
$← {0, 1}ℓ (𝜆) . A wins game Exp-ePre if

H(𝑦, 𝜇) = 𝑣 . We say thatH satisfies Everywhere Preimage Resis-

tance (ePre) if for any PPT adversary A,

𝐴𝑑𝑣𝑒𝑃𝑟𝑒 (A) := Pr[A wins Exp-ePre] ≤ 2
−ℓ (𝜆) + negl(𝜆).

Collision Resistance (CR): We say thatH satisfies Collision Re-

sistance if, on input H
$← H , a probabilistic polynomial-time

(PPT) adversary A outputs (𝑚,�̂�) such that H(𝑚) = H(�̂�) but
𝑚 ≠ �̂�, with at most negl(𝜆) probability.

Pseudorandom Function (PRF): For this notion, we treat the do-
main of H as {0, 1}2𝜆 × {0, 1}∗ (note that the second input can be

the empty string). LetA be a PPT adversary playing the following

experiment Exp-PRF:

(1) Let H
$←H .

(2) Let 𝑦
$← {0, 1}2𝜆 .

(3) Let 𝐹 be a function chosen uniformly at random from the set

of all functions from {0, 1}∗ to {0, 1}2𝜆 .
(4) Let 𝑏

$← {0, 1}.
(5) 𝑏′ ← A𝑂𝑏 ( ·) (H).
where𝑂𝑏 (·) is an oracle that on input 𝜇 ∈ {0, 1}∗ returnsH(𝑦, 𝜇) ∈
{0, 1}2𝜆 if 𝑏 = 0 and 𝐹 (𝜇) ∈ {0, 1}2𝜆 if 𝑏 = 1. The adversary wins

the game if 𝑏 = 𝑏′.

We say thatH satisfies the Pseudorandom Function (PRF) prop-

erty if any PPT adversary A wins Exp-PRF with probability at

most
1

2
+ negl(𝜆).

We remark that all the above security properties are natural

and standard assumptions on cryptographic hash functions used

in practice. The flavour of Everywhere Preimage Resistance above

(ePre) is a variant of the ePre one-wayness notion defined in [31],

where the input 𝜇 above corresponds to the hash key in the ePre

definition in [31]. In our variant, the adversary commits to the

output value 𝑣 before getting the hash key 𝜇, whereas in [31] the

value 𝑣 is fixed at the beginning of the game.

We recall the construction of a Merkle Tree hash from a collision

resistant hash familyH . Given a hash function familyH of hash

functions H : {0, 1}2𝜆 × {0, 1}2𝜆 → {0, 1}2𝜆 , a Merkle Tree hash

MT consists of the following probabilistic polynomial-time (PPT)

algorithms (MT.Setup,MT.Eval,MT.AP,MT.EvalAP):
(pk, sk) ← MT.Setup(1𝜆, 𝑁 = 2

ℓ ): Given the security parameter 1
𝜆

and the power-of-2 number of Merkle tree leaves 𝑁 = 2
ℓ
, sample

a hash function H←H and output the public parameters pp =

(H, 𝑁 ).
(root,𝑇 ) ← MT.Eval(𝑥0, . . . , 𝑥𝑁−1): Given as input 𝑁 Merkle tree

leaf values (𝑥0, . . . , 𝑥𝑁−1), compute the Merkle tree root (root)
and other tree node values (𝑇 ) as follows:
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• (𝑥 (ℓ )
0

, . . . , 𝑥
(ℓ )
𝑁−1) ← (𝑥0, . . . , 𝑥𝑁−1)

• for 𝑗 = ℓ − 1 down to 0 (level index)

• for 𝑖 = 0, . . . , 𝑁 /2ℓ− 𝑗 (node index)
• Let 𝑥

( 𝑗 )
𝑖
← H(𝑥 ( 𝑗+1)

2𝑖
, 𝑥
( 𝑗+1)
2𝑖+1 )

• end for

• end for

• root← 𝑥
(0)
0

• 𝑇 ← (𝑥 ( 𝑗 )
𝑖
)𝑖, 𝑗

Return (root,𝑇 ).
For every 𝑗 ∈ {0, . . . , ℓ − 1} and 𝑖 ∈ {0, 𝑁 /2ℓ− 𝑗 − 1}, the pair

(𝑥 ( 𝑗+1)
2𝑖

, 𝑥
( 𝑗+1)
2𝑖+1 ) are called sibling node values in the Merkle tree,

and the node value 𝑥
( 𝑗 )
𝑖

= H(𝑥 ( 𝑗+1)
2𝑖

, 𝑥
( 𝑗+1)
2𝑖+1 ) is called the parent

node value of those sibling node values.

AP𝑖 ← MT.AP(𝑖,𝑇 ): Given as input a leaf node index 𝑖 ∈ {0, . . . , 𝑁−
1} and a node value tree 𝑇 = (𝑥 ( 𝑗 )

𝑖
)𝑖, 𝑗 , compute the list of ℓ

node values on the path P𝑖 from the leaf node value 𝑥
(ℓ )
𝑖

to the

root node value 𝑥
(0)
0

(not including the root), and return the

authentication path AP𝑖 consisting of ℓ sibling node values of the

nodes in P𝑖 .
root← MT.EvalAP(𝑖, 𝑥𝑖 ,AP𝑖 ): Given as input a leaf node index 𝑖 ∈
{0, . . . , 𝑁 − 1}, an i’th leaf node value 𝑥𝑖 and an authentication

path AP𝑖 of ℓ sibling node values along the path P𝑖 from the 𝑖’th

leaf node to the root node, compute the node values of the nodes

in P𝑖 and return the root value root.

Lemma A.2 (Merkle Tree Collision Resistance). If H is a
collision-resistant hash family, then the Merkle Tree hashMT built
fromH satisfies the following collision-resistance property:

EvalAP Collision Resistance. Let pp← MT.Setup(1𝜆, 𝑁 ). On in-
put pp, a polynomial-time adversaryA outputs (𝑖, 𝑥𝑖 ,AP𝑖 , 𝑥 ′𝑖 ,AP

′
𝑖
)

such that 𝑖 ∈ {0, . . . , 𝑁 − 1}, 𝑥 ′
𝑖
≠ 𝑥𝑖 but root′ = root with at most

negl(𝜆) probability, where root′ ← MT.EvalAP(𝑖, 𝑥 ′
𝑖
,AP′

𝑖
) and

root← MT.EvalAP(𝑖, 𝑥𝑖 ,AP𝑖 ).

A.2 Pseudorandom Generator
We start with the following definition.

Definition A.3. A (stateful) pseudorandom number generator G
with security parameter 𝜆 is a pair of algorithms (G.Key,G.Next)
and an integer 𝑄 , where G.Key is a probabilistic algorithm which

takes no input and outputs an initial state 𝑠 ∈ {0, 1}ℓ , G.Next is a
deterministic algorithm which, given the current state 𝑠 , outputs

a pair (𝑠′, 𝑟 ) ← G.Next(𝑠), where 𝑠′ is the new state and 𝑟 ∈
{0, 1}𝜆 is the output and 𝑄 is the maximal number of outputs the

pseudorandom number generator is allowed to produce.

The following security properties are desirable for a stateful

pseudorandom generator G:

Pseudorandomness of G: A challenger first lets 𝑠
$← {0, 1}𝜆 ,

𝑏
$← {0, 1}. All successive queries to OG.Next (𝑠) should be

indistinguishable from random, where OG.Next (·) uses either
(𝑠′, 𝑟0) ← G.Next(𝑠) or a random string 𝑟1

$← {0, 1}𝜆 to respond

𝑟𝑏 toA. The adversaryA returns 𝑏′ and wins the game if 𝑏′ = 𝑏.

Forward security of G: The challenger generates a random initial

secret input 𝑠 and challenges the adversary A on its capacity to

distinguish the real output of the pseudo-random number gener-

ator from random. In addition to the usual procedures detailed in

the above pseudorandomness game, the adversary A has access

to an oracle OGetState in whichA has access to the current value

of the state 𝑠 . A G is called (𝑇,𝑄, 𝜀)-forward-secure, if for any
adversary A running in time at most 𝑇 , making at most 𝑄 calls

to OG.Next (·), followed by one call to an oracle, which is the last

call A is allowed to make and gets the last state 𝑠 , the advantage

of A in this game is at most 𝜀.

A.3 Digital Signatures and Forward Security
Definition A.4 (Digital Signature). A signature scheme Σ consists

of three probabilistic polynomial-time (PPT) algorithms (Σ.Keygen,
Σ.Sign, Σ.Verify) satisfying the following:
(pk, sk) ← Σ.Keygen(1𝜆): Given the security parameter 1

𝜆
, output

a public-secret key pair (pk, sk).
(𝜎, 𝜇) ← Σ.Signsk (𝜇): Given as input a secret key sk and a message

𝜇, output a signature-message pair (𝜎, 𝜇).
0/1← Σ.Verifypk (𝜎, 𝜇): Given as input a public key pk, a signature

𝜎 and a message 𝜇 it outputs a bit 𝑏 = 1 if the signature is valid

and 𝑏 = 0 otherwise.

It is required that for every 𝜆, every key pair (pk, sk) output by the

key generation algorithm, and every message 𝜇 ∈ {0, 1}∗ it holds
that Σ.Verifypk (Σ.Signsk (𝜇), 𝜇) = 1.

Unforgeability against Chosen-Message Attacks (UF-CMA). A sig-

nature scheme Σ = (Σ.Keygen, Σ.Sign, Σ.Verify) is unforgeable

against chosen-message attacks if for all probabilistic polynomial-

time adversaries, the probability to win the following experiment

Exp-UF-CMA is negl(𝜆) :
(1) (pk, sk) ← Σ.Keygen(1𝜆)
(2) (𝜎, 𝜇) ← AOΣ.Sign(sk,· ) (pk), where OΣ.Sign(sk, ·) is a sign-

ing oracle that returns a signature on input a message 𝜇

(3) If 1 ← Σ.Verify(𝜎, 𝜇, pk) and 𝜇 has not been queried to

OΣ.Sign(sk, ·) return 1,

else return 0.

We write Σ.Keygen(1𝜆 ; 𝑟 ) to denote that the key generation func-

tion is run using a randomness 𝑟 .

In [27], the authors showed a way of constructing a forward-

secure signature from any (ordinary) signature using a ‘sum’ com-

position. Let 𝑁 be the total time period for the forward-secure

signature and assume for simplicity that 𝑁 is a power of two. We

recall below how this ‘MMM approach’ works for a given (one-time)

signature scheme Σ.

MMM forward-secure signature approach (sum composi-
tion).
(p̃k, s̃k0) ← FSS.Keygen(1𝜆, 𝑁 ) :
(1) Set up 𝑠 ← G.Key(1𝜆)
(2) Compute (𝑠𝑖 , 𝑟𝑖 ) ← G.Next(𝑠𝑖−1) for 𝑖 = 0, . . . , 𝑁 − 1 where

𝑠−1 := 𝑠

(3) Compute (pk𝑖 , sk𝑖 ) ← Σ.Keygen(1𝜆 ; 𝑟𝑖 ) for 𝑖 = 0, . . . , 𝑁 − 1.
(4) Create a Merkle tree using (pk

0
, . . . , pk𝑁−1) as the leaves and

denote its root by root.
(5) Return (p̃k, s̃k0) = (root, (𝑠, 0)).
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s̃k𝑖 ← FSS.Update(s̃k𝑖−1) : Parse s̃k𝑖−1 = (𝑠𝑖−1, 𝑟𝑖−1) and return

G.Next(𝑠𝑖−1).
�̂� ← FSS.Signs̃k𝑖 (𝜇, 𝑖) : Parse s̃k𝑖 = (𝑠𝑖 , 𝑟𝑖 ) and derive (pk, sk) ←

Σ.Keygen(1𝜆 ; 𝑟𝑖 ). Compute 𝜎 ← Σ.Signsk (𝜇). Return �̂� =

(𝜎, pk,AP) where AP is the authentication path for index 𝑖 .

0/1← FSS.Verifyp̃k (�̂�, 𝜇, 𝑖) :
(1) Parse �̂� = (𝜎, pk,AP).
(2) If Σ.Verifypk (𝜎, 𝜇) = 0, return 0.

(3) Using pk and AP, compute a Merkle root root′ w.r.t. the index
𝑖 .

(4) If root′ = p̃k, return 1. Otherwise, return 0.

In [27], the authors prove that the above construction is a proper

forward-secure signature scheme. For a digital signature scheme to

be forward-secure, it should be computationally infeasible to forge

a signature for a new message in a time period earlier than a time

period, when a secret key was given/leaked to the adversary.
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